

Programming with

C++
Third Edition

D Ravichandran is currently based in Hyderabad and is a corporate trainer in software engineering, data

structures and algorithms, and programming languages. He was earlier a senior faculty in the Department

of Computing, Middle East College of Information Technology, Muscat, Sultanate of Oman. He was also

a faculty member of Department of Computer Science and Engineering, Pondicherry Engineering College,

Pondicherry, for more than 15 years. He is an expert in several computer programming languages and has

more than two decades of professional programming experience. A prolifi c writer, he has already published

many books in the fi eld of computer science and information technology. His affi liations include a life

membership of the Indian Society for Technical Education and a membership of the Computer Society of

India.

About the Author

Programming with

C++
Third Edition

D Ravichandran

Corporate Trainer in Software Engineering

Data Structures and Algorithms and Programming Languages

Hyderabad

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Programming with C++, 3/e

Copyright © 2011, 2003, 1996, by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise or stored in a database or

retrieval system without the prior written permission of the publishers. The program listing

(if any) may be entered, stored and executed in a computer system, but they may not be

reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN-13 digits: 978-0-07-068189-7

ISBN-10 digits: 0-07-068189-9

Vice President and Managing Director—McGraw-Hill Education: Asia Pacifi c Region: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Manager: Sponsoring—SEM & Tech Ed: Shalini Jha

Asst Sponsoring Editor: Surabhi Shukla

Development Editor: Surbhi Suman

Executive—Editorial Services: Sohini Mukherjee

Jr Production Manager: Anjali Razdan

Dy Marketing Manager—SEM & Tech Ed: Biju Ganesan

General Manager—Production: Rajender P Ghansela

Asst General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that Tata

McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Bukprint India, B-180A, Guru Nanak Pura, Laxmi Nagar-110 092 and printed at

Avon Printers, Plot No. 16, Main Loni Road, Jawahar Nagar, Industrial Area, Shahdara, Delhi 110 094

Cover Printer: SDR Printers

RQXCRRQZDLCZL

Dedicated to my son

Suseekaran
for his love and support

Contents

Preface to the Third Edition xv

Acknowledgements ix

1. Introduction to Object Oriented Programming 1

 1.1 Introduction 1

 1.2 What is Object Oriented Programming (OOP)? 2

 1.3 Structured Procedural Programming (SPP) 2

 1.4 Object Oriented Programming OPP 3

 1.5 Characteristics of OOPs 3

 1.6 Advantages of OOPs 6

 1.7 Disadvantages of OOPs 7

 1.8 Comparison of Structured Procedural Programming (SPP) and Object Oriented Programming

(OOP) 7

 1.9 Steps in Developing OOP Programs 8

 1.10 Structure of Object Oriented Programs 9

 1.11 Object Oriented Languages 11

 1.12 Importance of C++ 11

 Review Questions 12

2. Building ANSI C++ Program 13

 2.1 Introduction 13

 2.2 History of C++ 13

 2.3 The Latest Addenda to ANSI/ISO C++ 15

 2.4 Possible Future Additions to C++ 16

 2.5 C++ versus C 16

 2.6 Versions of C++ 17

 2.7 Source Program Names 17

 2.8 Compiling and Debugging C++ Programs 17

 2.9 Stages of Program Development 18

 2.10 Compiling GNU GCC/G++ in Linux 20

 2.11 Compiling C/C++ Program in UNIX 21

 2.12 Building C++ Under Microsoft .NET Platform 22

 Review Questions 31

 Contentsviii

3. Data Types, Operators and Expressions 32

 3.1 Identifi ers and Keywords 32

 3.2 Data Types 34

 3.3 C++ Simple Data Types 35

 3.4 Literals 38

 3.5 Variables 43

 3.6 The Const Datatype 45

 3.7 C++ Operators 46

 3.8 Arithmetic Operators 46

 3.9 Assignment Operators 50

 3.10 Arithmetic Assignment Operators 51

 3.11 Comparison and Logical Operators 52

 3.12 Bitwise Operators 58

 3.13 Bitwise Assignment Operators 62

 3.14 Special Operators 63

 3.15 Type Conversion 66

 3.16 ANSI C++ Type Casting 68

 3.17 Summary of ANSI C++ Operators 69

 3.18 ANSI C++ Alternate Punctuation Tokens 71

 Review Questions 71

 Concept Review Questions 72

4. Input and Output Streams 75

 4.1 Comments 75

 4.2 Declaration of Variables 76

 4.3 The Main () Function 77

 4.4 Simple C++ Programs 77

 4.5 Program Termination 79

 4.6 Features of Iostream 80

 4.7 Keyboard and Screen I/O 83

 4.8 Manipulator Functions 86

 4.9 Input and Output (I/O) Stream Flags 93

 Review Questions 105

 Concept Review Problems 106

 Programming Exercises 111

5. Control Statements 112

 5.1 Conditional Expressions 112

 5.2 Loop Statements 132

 5.3 Nested Control Structures 151

 5.4 Breaking Control Statements 153

 Review Questions 159

 Concept Review Problems 160

 Programming Exercises 176

 Contents ix

6. Functions and Program Structures 179

 6.1 Introduction 179

 6.2 Defi ning a Function 180

 6.3 The Return Statement 182

 6.4 Function Prototypes 183

 6.5 Types of User Defi ned Functions 185

 6.6 Actual and Formal Arguments 198

 6.7 Local VS Global Variables 200

 6.8 Default Arguments 202

 6.9 Structure of the C++ Program 205

 6.10 Order of the Function Declaration 208

 6.11 Mutually Invocated Functions 211

 6.12 Nested Functions 212

 6.13 Scope Rules 214

 6.14 Side Effects 216

 6.15 Storage Class Specifi ers 217

 6.16 Recursive Functions 226

 6.17 Preprocessors 229

 6.18 Header Files 235

 6.19 Standard Functions 235

 Review Questions 235

 Concept Review Problems 236

 Programming Exercises 247

7. Arrays 248

 7.1 Introduction 248

 7.2 Array Notation 249

 7.3 Array Declaration 249

 7.4 Array Initialisation 250

 7.5 Processing with Arrays 252

 7.6 Arrays and Functions 259

 7.7 Multidimensional Arrays 266

 7.8 Character Array 276

 Review Questions 285

 Concept Review Problems 286

 Programming Exercises 291

8. Pointers and Strings 293

 8.1 Introduction 293

 8.2 Pointer Arithmetic 299

 8.3 Pointers and Functions 305

 8.4 Pointers to Functions 311

 8.5 Passing a Function to Another Function 314

 8.6 Pointers and Arrays 316

 8.7 Arrays of Pointers 319

 Contentsx

 8.8 Pointers and Strings 320

 8.9 Pointers to Pointers 327

 8.10 Deciphering Complex Declarations 329

 Review Questions 331

 Concept Review Problems 332

 Programming Exercises 339

9. Structures, Unions and Bit Fields 340

 9.1 Introduction 340

 9.2 Declaration of a Structure 341

 9.3 Processing with Structures 343

 9.4 Initialisation of Structure 350

 9.5 Functions and Structures 352

 9.6 Arrays of Structures 357

 9.7 Arrays within a Structure 361

 9.8 Structures within a Structure (Nested Structure) 368

 9.9 Pointers and Structures 375

 9.10 Unions 379

 9.11 Bit Fields 383

 9.12 Typedef 386

 9.13 Enumerations 389

 Review Questions 391

 Concept Review Problems 392

 Programming Exercises 396

10. Classes and Objects 398

 10.1 Introduction 398

 10.2 Structures and Classes 399

 10.3 Declaration of a Class 401

 10.4 Member Functions 405

 10.5 Defi ning the Object of a Class 407

 10.6 Accessing a Member of Class 409

 10.7 Array of Class Objects 423

 10.8 Pointers and Classes 426

 10.9 Unions and Classes 430

 10.10 Classes within Classes (Nested Class) 432

 10.11 Summary of Structures, Classes and Unions 439

 Review Questions 440

 Concept Review Problems 440

 Programming Exercises 449

11. Special Member Functions 454

 11.1 Introduction 454

 11.2 Constructors 455

 11.3 Destructors 470

 Contents xi

 11.4 Inline Member Functions 476

 11.5 Static Class Members 481

 11.6 Friend Functions 487

 11.7 Dynamic Memory Allocations 496

 11.8 This Pointer 502

 11.9 Mutable 505

 Review Questions 506

 Concept Review Problems 506

 Programming Exercises 513

12. Single and Multiple Inheritance 518

 12.1 Introduction 518

 12.2 Single Inheritance 520

 12.3 Types of Base Classes 524

 12.4 Types of Derivation 531

 12.5 Ambiguity in Single Inheritance 534

 12.6 Array of Class Objects and Single Inheritance 536

 12.7 Multiple Inheritance 538

 12.8 Container Classes 549

 12.9 Member Access Control 552

 12.10 Summary of the Inheritance Access Specifi er 568

 Review Questions 568

 Concept Review Problems 569

 Programming Exercises 581

13. Overloading Functions and Operators 584

 13.1 Function Overloading 584

 13.2 Operator Overloading 607

 13.3 Overloading of Binary Operators 612

 13.4 Overloading of Unary Operators 617

 Review Questions 621

 Concept Review Problems 622

 Programming Exercises 632

14. Polymorphism and Virtual Functions 633

 14.1 Polymorphism 633

 14.2 Early Binding 634

 14.3 Polymorphism with Pointers 638

 14.4 Virtual Functions 641

 14.5 Late Binding 644

 14.6 Pure Virtual Functions 653

 14.7 Abstract Base Classes 656

 14.8 Constructors Under Inheritance 659

 14.9 Destructors Under Inheritance 661

 14.10 Virtual Destructors 664

 Contentsxii

 14.11 Virtual Base Classes 668

 Review Questions 673

 Concept Review Problems 674

 Programming Exercises 685

15. Templates, Namespace and Exception Handling 689

 15.1 Function Template 689

 15.2 Class Template 694

 15.3 Overloading of Function Template 698

 15.4 Exception Handling 703

 15.5 Namespace 710

 Review Questions 724

 Concept Review Problems 725

 Programming Exercises 735

16. Data File Operations 736

 16.1 Opening and Closing of Files 736

 16.2 Stream State Member Functions 738

 16.3 Reading/Writing a Character from a File 740

 16.4 Binary File Operations 745

 16.5 Classes and File Operations 747

 16.6 Structures and File Operations 753

 16.7 Array of Class Objects and File Operations 754

 16.8 Nested Classes and File Operations 757

 16.9 Random Access File Processing 761

 Review Questions 766

 Programming Exercises 767

17. STL–Containers Library 768

 17.1 Introduction 768

 17.2 Vector Class 769

 17.3 Double Ended Queue (Deque) Class 772

 17.4 List Class 775

 17.5 Stack Class 777

 17.6 Queue Class 781

 17.7 Priority_queue Class 786

 17.8 Set 788

 17.9 Multiset 789

 17.10 Map 790

 17.11 Multimap 792

 17.12 Bitset 793

 Review Questions 793

18. STL–Iterators and Allocators 795

 18.1 Introduction 795

 Contents xiii

 18.2 Types of Iterators 796

 18.3 <Iterator> Member Functions 796

 18.4 Operators 800

 18.5 Types of Iterator Classes 801

 18.6 Summary of Iterator Classes 802

 Review Questions 803

19. STL–Algorithms and Function Objects 804

 19.1 Introduction 804

 19.2 Non-modifying Sequence Algorithms 805

 19.3 Modifying Sequence Algorithms 806

 19.4 Sorted Sequence Algorithms 810

 19.5 Heap Operation Algorithms 812

 19.6 Comparison Algorithms 812

 19.7 Permutation Algorithm 813

 19.8 Numeric Algorithms 813

 19.9 Function Objects 814

 19.10 The Functional Members 814

 Review Questions 818

 Appendix 820

 Bibliography 836

 Index 838

Preface to the Third Edition

The book not only discusses the issues concerning the mystery of ANSI C++ but also makes a conscious

effort to relate those insights to contemporary programming. This timeless and enlightening information

is presented in a clear and concise manner. The new edition offers a fresh perspective of what ANSI C++

means and where ANSI C++ fi ts into the scheme of software life cycles. Thus, readers can gain requisite

expertise by acquiring ANSI C++ programming skills and design ideas.

Aim of the Book

A welcome introduction to the world of programming, this book discloses facts and techniques on ANSI/

ISO C++ and provides a knowledge base for advanced, standard-compliant, and effi cient use of C++.

It not only covers the syntax and semantics of ANSI C++ but also reveals the secrets of object-oriented

programming through various topics, namely, classes, objects, inheritance, polymorphism and dynamic

binding, and generic programming through STL. It offers stimulating insights into the loftiest thoughts and

realisations of what ANSI C++ is and its relationship to modern software life cycles. A must read for all

those who want to increase their understanding and awareness of object-oriented programming concepts,

the book also serves the purpose of a handy reference for C++ programming professionals.

Users

The target audience for this book is two-fold—(i) computer novices who do not have any prior programming

knowledge, and (ii) experienced C++ developers who seek a guide for enhancing their design and

programming profi ciency. Specifi cally, it can be used by undergraduate students of CSE, IT, ECE, EEE,

Electronics and Instrumentation Engineering, BCA/MCA, and BSc/MSc (Computer Science/IT). Moreover, it

would be an ideal reference for students of diploma and DOEACC courses in computer science and computer

training institutes.

New to the Edition

∑ Broader and in-depth coverage of Object Oriented Programming concepts in 2 new chapters—

Chapter 1: Introduction to Object Oriented Programming and Chapter 2: Building ANSI C++ Programs

∑ Detailed coverage of Standard Template Libraries (STL) in three new chapters—Chapters 17:

STL - Containers, Chapter 18: STL - Iterators and Chapter 19: STL - Algorithms and Function Objects

∑ Enhanced coverage for topics such as data types, arithmetic operators, IOStreams, functions and

program structures, special member functions, and exception handling

∑ Inclusion of new section on Namespaces in Chapter 15: Templates, Namespace and Exception Handling

 Preface to the Third Editionxvi

Salient Features

The revised edition has been thoroughly updated with ANSI/ISO C++ syntax. This text offers one of

the best reviews of ANSI C++ since it gives access to the most important concepts in object-oriented

programming found anywhere. It introduces the syntax and features of C++ programming languages in

a simple manner. The concepts are very well exemplifi ed with program codes containing the inputs and

outputs of the sample programs. It fi rst explains the basic concepts (like functions, arrays, pointers and

structures) and then progresses with the discussion on OOP concepts (like classes, objects, inheritance,

polymorphism and templates) which will be helpful for the beginners in better understanding of the

implementation and applications of the C++ language.

The book is impregnated with the following salient features:

∑ Offers a concise introduction to C++ and Object-Oriented Programming (OOP).

∑ Emphasises the use of software tools and covers the software engineering topics in detail.

∑ Provides pictorial representation in the form of syntax diagrams, fl owcharts and Object Modeling

Technique (OMT) class notation diagrams given.

∑ Elucidates the language features through executable codes which are tested on various compilers such

as Linux GNU C++ and .Net Microsoft Visual C++.

∑ Facilitates the readers with simple and easy-to-understand format of the program execution (i.e.,

sample input and output).

∑ Explains how to avoid and correct typical errors.

∑ Describes concept review problems to test programming profi ciency of readers on various ANSI C++

topics in a special section. Interactive exercises using the computer make learning fun.

∑ Refreshed and enhanced pedagogy includes Programming Examples (359), Review Questions

(439), Concept Review Problems (380) and Programming Exercises (197). Answers to the

Concept Review Problems are included in the Appendix.

The pedagogical features and their benefi ts are explained below:

Highlights Description and Benefi t Examples

Introduction Each chapter begins with an Introduction which helps the reader

get a brief summary of the background and contents of the chapter.

Refer pages

1, 13, 32, etc.

Sections and Sub-

sections

Object-oriented programming using C++ is one of the most widely

discussed, debated, and examined elements of modern software

life cycles, and also one of the most mysterious and misunderstood

subjects. Therefore, each chapter has been neatly divided into

sections and sub-sections so that the subject matter is studied in a

logical progression of ideas and concepts.

Refer pages

35, 63, 79,

etc.

Programming code

with sample input

and output

A set of programming codes, totaling to 314 problems is present in

relevant chapters. All sample programs are well graded and tested

using the different versions of the ANSI C++ compiler.

 These self-learning codes with sample inputs and outputs enable

students to strive towards better compre hension of the concepts and

also, master the programming skills.

Refer pages

87, 130, 222,

etc.

Preface to the Third Edition xvii

Highlights Description and Benefi t Examples

Flowcharts and

Diagrams

Flowcharts and syntax diagrams presented at appropriate locations

demystify the complexity of the diffi cult topics like pointers,

strings, streams, inheritance polymorphism, fi le handling,

templates, etc. Object Modeling Technique (OMT) diagrams easily

illustrate the advance topics, functional relationships and defi nition

sketches for mathematical models.

Refer pages

114, 133, 141,

etc.

Review Questions These are very useful for the faculty in setting class work,

assignments, quizzes and examinations and help students in

revising the learnt concepts.

Refer pages

13, 31, 71,

etc.

Programming

Exercises

This section takes an unbiased look at some of the more interesting

and relevant ideas relating to programming. The practice questions

help students get a clearer picture of the software design and

coding.

Refer pages

111, 176, 247,

etc.

Concept Review

Problems

This section concentrates on a wide range of concepts such as

syntax and semantic analysis of the code, spotting and identifying

the logical errors, technical and complexity analysis. This enhances

your knowledge and understanding of software engineering and

also, improves your programming skills.

Refer pages

72, 105, 160,

etc.

Answers to Concept

Review Problems

Answers provided for all the Concept Review Problems at the end

of the book as Appendix A help check your understanding of the

learnt concepts.

Refer pages

820, etc.

References and

Bibliography

A comprehensive list of references given at the end of the book

further enhances the subject knowledge.

Refer pages

836, etc.

Organisation

This book consists of nineteen chapters which are as follows:

Chapter 1 presents the concepts and features of Object-Oriented Programming (OOP) and highlights

some of the key terms of the OOP paradigm which are extensively used in this book.

Chapter 2 gives an overview of the latest addenda to ANSI/ISO C++ compiler and also suggests how

to build an ANSI C++ program under various platforms, namely, GNU C++ for Linux and .Net VC++ for

Windows.

Chapter 3 introduces the fundamentals of C++ programming language and summarises the most

signifi cant data types, operators and expressions used in ANSI C++.

Chapter 4 focuses on developing simple C++ programs with emphasis on the Input and Output Streams

<iostream> and highlights the features of manipulator functions and Input and Output (I/O) stream fl ags.

Chapter 5 describes the principles and guidelines in the design and evolution of C++ through control

statements which has become the standard for any programming language.

Chapter 6 deals with user-defi ned functions and program structures and stresses on how to defi ne

and use the different types of arguments (namely, actual, formal, local and global variables); how to use the

recursive functions, nested functions and preprocessors.

 Preface to the Third Editionxviii

Chapter 7 explains the importance of array data types in C++. It describes how to defi ne, declare and

use single dimensional, multidimensional and character arrays. Array notation, array initialisation and types

of data storage such as static, automatic, and free store are also dealt with numerous examples.

Chapter 8 delves on the syntax and semantics of pointer data type which is one of the strengths of the

C++ language. In addition, it demonstrates the use of strings and advanced memory management techniques

using complex pointer data types and also guides the user how to avoid common pointer related errors.

Chapter 9 deals with functional characteristics of structure and union data types. It also describes how

to declare, defi ne and use the array of structure, structure within structure, pointer to structure, union tags

and bit fi elds.

Chapter 10 elucidates the salient features of object-oriented programming and explains how classes and

objects can be defi ned, declared and used in C++. Special attention is given for defi ning the various types

of class declarations.

Chapter 11 covers the syntax and semantics of the special member functions such as constructors,

destructors, inline member functions, static class members and friend functions as well as their role in

class design. It also demonstrates several techniques and guidelines for an effective usage of these special

member functions.

Chapter 12 discusses one of the most important features of the OOP, namely, inheritance. Single and

multiple inheritance, types of derivation, public inheritance, private inheritance, protected inheritance,

container classes and member access control are explained with suitable number of examples.

Chapter 13 exemplifi es the concepts of function and operator overloading, and explores the benefi ts

as well as the potential problems of operator overloading. It discusses the restrictions that apply to operator

overloading and also explains how to avoid the common errors while using operator and function overloading.

Chapter 14 narrates the central attraction of the OOP—polymorphism with pointers and virtual

functions. Early binding, virtual functions, late binding, pure virtual functions, abstract base classes,

constructors under inheritance, destructors under inheritance, virtual destructors and virtual base classes are

presented, with well-graded examples.

Chapter 15 presents the various aspects of designing and implementing templates, including class

templates, function templates, and template issues that are of special concern. This chapter describes the

standard exception handling using the keywords—try, catch and throw. It also elucidates the rationale

behind the addition of namespaces to the language and the problems that namespaces solve. Furthermore,

how to declare, defi ne and use the namespace alias, nested namespace, unnamed namespace and namespace

std, are covered in this chapter.

Chapter 16 gives the data fi le operations in C++ and focuses on how to read and write a class of

objects from the fi les of secondary storage devices. The ANSI-ISO C++ streams and fi le processing

commands are dealt with suitable illustrations.

Chapters 17–19 provide coverage on introduction to the Standard Template Library (STL) and

generic programming in general. It discusses the principles of generic programming, focusing on STL

as an exemplary framework of generic programming. These chapters also demonstrate the use of STL

components such as containers, algorithms, iterators, allocators, adapters, binders, and function objects.

Online Learning Center

The accompanying web supplement http://www.mhhe.com/ravichandran/cp3e provides an additional

resource for students and instructors.

 Preface to the Third Edition xix

I am grateful to Dr T Sundararajan, Professor, Department of Civil Engineering, Pondicherry Engineering

College, for his timely support, encouragement, valuable comments, suggestions and many innovative ideas

in carrying out this project. I am indebted to my teachers, mentors and professors who taught me the art of

computer programming during my studentship at Indian Institute of Technology, Kharagpur, especially, to

Prof. Swapna Banerjee, Prof. N B Chakaraborthy and Prof. J C Biswas.

I extend my appreciation to Mr Christian Wolff, Heidelberg, Germany, for his continuous motivation, love

and advice in my life. I would like to express my gratitude towards Mr Arun, Mr Walid, Mr Shariq Ali and

Dr. Gulam Ahmed, Middle East College of Information Technology, Muscat, Sultanate of Oman, for their

technical comments and suggestions. I am thankful to my students [in India and abroad] who have helped

me a lot in bringing out this edition and would like to specially acknowledge the efforts of Mr Al Walid

Al Busaidi, Muscat; Mr Ashwin Kumar Chummun, UK; Mr Gowathaman, France; Mr Sampath Reddy,

US; Mr Sudheer Reddy, US; Mr Tushar Ranjan Sahoo and Dr Ram Niranjan Sahoo JIPMER, Pondicherry.

My earnest thanks are also due to the editorial and publishing professionals at Tata McGraw-Hill for

their keen interest and support in bringing out this book in record time. There have been several professors

who have participated in the review process of this book. I would like to sincerely acknowledge them for

their valuable suggestions and encouragement.

Akshay Girdhar

Guru Nanak Dev Engineering College, Ludhiana, Punjab

Amit Jain

Bharat Institute of Technology, Meerut, Uttar Pradesh

Harish Kumar

Panjab University, Chandigarh, Punjab

Prashant Sharma

Anand Engineering College, Agra, Uttar Pradesh

Dinesh Kumar Tyagi

Birla Institute of Technology and Science, Pilani, Rajasthan

Md Tanwiruddin Haider

National Institute of Technology, Patna, Bihar

Mahua Banerjee

Xavier Institute of Social Service, Ranchi, Jharkhand

Acknowledgements

N K Kamila

C V Raman College of Engineering, Bhubaneswar, Orissa

Pranam Paul

Dr B C Roy Engineering College, Kolkata, West Bengal

Sajal Mukhopadhya

National Institute of Technology, Durgapur, West Bengal

Kanhaiya Lal

Birla Institute of Technology, Patna, Bihar

Poornachandra Sarang

University of Mumbai, Mumbai, Maharashtra

Manisha J Somavanshi

Indira Institute of Management, Pune, Maharashtra

T V Gopal

Anna University, Chennai, Tamil Nadu

N Shanthi
K S Rangasamy college of Technology, Tiruchengode, Tamil Nadu

Annappa
National Institute of Technology, Surathkal, Karnataka

CH V K N S N Moorthy
R K Institute of Science and Technology, Hyderabad, Andhra Pradesh

M M Naidu
S V University College of Engineering, Tirupati, Andhra Pradesh

Finally, I thank my parents, son and wife for the love, encouragement and comfort they have
extended to me throughout my career.

 D Ravichandran

Feedback

The readers of the book are encouraged to send their comments, queries and suggestions at
the following email id—tmh.csefeedback@gmail.com, mentioning the title and author name in the
subject line. Also, please report to us any piracy of the book spo ed by you.

 Acknowledgementsxx

Introduction to Object

Oriented Programming

Chapter

1

1.1 INTRODUCTION

A major challenge for software engineering today is to improve the software programming process as

modern software life cycle has been changing very dramatically since the late nineties wherein the code

re-usability, reliability and maintainability are the key features. The very aim of using an object oriented

programming language is to handle a complex software design in a very easy, simple and effi cient manner.

Redesigning and maintaining the source code costs much more than the reusability of the source code. The

turnover time and software cost are drastically brought down. The main aim of designing the C++ language

is to support both a procedure oriented style and an object oriented programming paradigm. In that sense,

C++ is a hybrid language which supporzts both the procedural as well as object oriented programming

styles.

Softwares designed using object oriented technology can meet up the challenges of large real world

systems by enhancing the ability to produce reliable and maintainable code. Through object oriented

programming and design, such software can naturally evolve to meet changing needs. To effectively

accomplish this, one must learn new ways of thinking about programming and problem solving.

Therefore, Object Technology (OT) is drawing attention and consideration in many areas of computing,

such as

 ∑ programming

 ∑ data bases

This chapter focuses on the defi nitions, basic concepts and salient features
of Object Oriented Programming (OOP). The pros and cons of Structured
Procedural Programming (SPP) with Object Oriented Programming (OOP) are
also summarised. Major applications of OOP are also highlighted in this chapter.
It also describes how C++ can be used to improve productivity and so ware
quality by off ering features such as classes, objects, data hiding, encapsulation,
inheritance, polymorphism and templates.

 2 Programming with C++

 ∑ system analysis and design

 ∑ computer architecture

 ∑ operating systems

 ∑ expert systems, and

 ∑ internet client/server programming

1.2 WHAT IS OBJECT ORIENTED PROGRAMMING OOP ?

Object oriented programming, or OOP, is a software development philosophy based on the following

central ideas:

 ∑ encapsulation

 ∑ inheritance

 ∑ information hiding

 ∑ data abstraction and

 ∑ polymorphism

Object Oriented Programming has revolutionised the very art and practice of writing computer

applications. Object is the basic unit of object oriented programming. Designing an object-oriented model

involves defi ning a set of classes. A class is a template from which objects are created. The template, or

blueprint, provided by a class specifi es a set of data and methods that all objects created according to its

specifi cations will contain.

Hence, the object oriented programming approach has the advantage of producing more reliable

softwares for complex and large-scale systems.

1.3 STRUCTURED PROCEDURAL PROGRAMMING SPP

In the late seventies, Structured Procedural Programming

(SPP) was widely used for designing and developing

softwares. Structured programming is a programming

paradigm that to a large extent relies on the idea of

dividing a program into functions and modules (Fig. 1.1).

As programs became larger for real life applications,

they were broken down into smaller units, such as functions,

procedures, and subroutines. Functions can be grouped

together into modules according to their functionality,

objectives and tasks. In other words, SPP emphasises mostly functional decomposition and procedural

abstraction for designing and developing software systems.

However, SPP was found to be unsuitable for handling complex software systems due to lack of code

reusability, extensibility and maintainability. One of the main drawbacks of SPP is that data and functions

have to be stored separately and the data has to be globally accessed, as the systems are modularised on the

basis of functions. Information hiding and data encapsulation are not supported in SPP and therefore, every

function can access every piece of data. Functions have unrestricted access to global data. Changing the

global data in a module causes program side effects and that code becomes unreliable and error prone in a

complex system.

Some of the examples for procedural languages are ‘C’, Pascal, and Fortran.

Fig. 1.1 Procedural Programming Approach

 Introduction to Object Oriented Programming 3

It is well known that ‘C’ is widely accepted as a well structured programming language for a variety of

applications. It has many advantages over other high level programming languages. But it has fl aws and

limitations that has made it unsuitable for complex programming projects.

1.4 OBJECT ORIENTED PROGRAMMING OOP

Object Oriented Programming (OOP) alleviates

some of the problems mentioned above. The

OOP approach has the advantage of producing

better structured and more reliable softwares

for complex systems, greater reusability, more

extensibility, and easy maintainability.

In object oriented programming, systems

are modularised on the basis of data structures

(objects). Object’s state (data types) and

behavior (operations) are encapsulated. Message

passing ensures that an object’s internal state can

be accessed only if permitted, as encapsulation

prevents unauthorised access (Fig. 1.2).

Real world is represented more closely by

objects mimicking external entities. Objects of the program interact by sending messages to each other.

Each object is responsible to initialise and destroy itself correctly. Consequently, there is no longer the

need to explicitly call a creation or termination procedure.

1.5 CHARACTERISTICS OF OOPs

Following are the major characteristics for considering any programming languages to be object oriented:

 ∑ objects

 ∑ classes

 ∑ data abstraction

 ∑ data encapsulation

 ∑ information hiding

 ∑ message passing

 ∑ inheritance

 ∑ dynamic binding

 ∑ polymorphism, and

 ∑ overloading

1.5.1 Objects

In Object Oriented Programming (OOP) paradigm, objects are the fundamental building blocks for

designing a software. In other words, an object is a collection of data members and the associated member

functions are known as methods. Objects are identifi ed by its unique name (Fig. 1.3(b)). An object

represents a particular instance of a class. There can be more than one instance of an object. Each instance

of an object can hold its own relevant data.

Fig. 1.2 Object Oriented Programming (OOP)
Approach

 4 Programming with C++

An object has three characteristics:

∑ name

∑ state

∑ behaviour

(a) Name It is a unique identity for representing an object of

a class.

(b) State It is a representation of attributes by internal data

structures.

(c) Behaviour It is a set of allowed operations, functions and

methods.

 An object communicates with another by passing messages

using some protocols.

1.5.2 Class

A class is a template for constructing objects (Fig. 1.3(a) & (b)).

Objects are instances of a class, i.e., specifi c occurrences of a

class. Once a class is defi ned, any number of objects of that

class are easily created. The code or class implementation (or

class body) contains the defi nition of each method (member

functions).

1.5.3 Data Abstraction

Data abstraction is an encapsulation of an object’s state and behaviour. Data abstraction increases the power

of programming language by creating user defi ned data types (Fig. 1.4). Data abstraction also represents the

needed information in the program without presenting the details.

Fig. 1.4 Data Abstraction

1.5.4 Data Encapsulation

Data encapsulation combines data and functions into a single unit called

class. When using data encapsulation, data is not accessed directly; it is

only accessible through the methods (functions) present inside the class.

Data encapsulation enables data hiding, which is an important concept

possible of OOP (Fig. 1.5).

Fig. 1.3(a) UML object Diagram for
the Class Student_info

Fig. 1.3(b) UML Class and Object
Diagram

Fig. 1.5 Data Encapsulation

 Introduction to Object Oriented Programming 5

1.5.5 Information Hiding

Information hiding means that the implementation details of an object’s state and behaviour are hidden from

users and other objects to protect the state and behaviour from unauthorised access (Fig. 1.6).

Fig. 1.6 Information Hiding

1.5.6 Message Passing

In OOPs, processing is accomplished by sending messages to objects (Fig. 1.7). How messages are

executed or implemented is defi ned in the class methods. Methods give the implementation details for the

messages and represent a class behaviour. A message passing is equivalent to a procedure call or a function

call of a procedural programming.

Fig. 1.7 Message Passing within Objects

1.5.7 Inheritance

Inheritance is the process of forming a new class from an existing class or base class. The base class is also

known as parent class or super class. The new class that is formed is called derived class. Derived class is

also known as a ‘child class’ or ‘sub-class’.

Sub-classes (derived classes) inherit some or all of the

properties of their superclasses (base classes). Inheritance

organises classes into a hierarchy, allowing implementation

and structure to be shared. Thus, reuse becomes automatic

as the code from a superclass can be reused by a subclass.

New classes inherit both the state and behaviour from

existing classes.

In single inheritance, each subclass has only one immediate superclass (Fig. 1.8).

In multiple inheritance, each subclass has more than one superclass (Fig. 1.9).

Fig. 1.8 Single Inheritance

 6 Programming with C++

Inheritance helps to reduce the overall code size of

the program, which is an important advantage of object-

oriented programming.

1.5.8 Dynamic Binding

In dynamic binding, message passing to the objects

can be done during run time. Late binding or run time

binding have the same meaning as dynamic binding.

In a procedural programming, procedure call or

function invocation can be done only during compilation

and it is called as static binding or early binding of

a compiler. In a pure object oriented programming,

message passing to the objects can be done only during run time.

1.5.9 Polymorphism

Polymorphism uses dynamic binding and virtual methods by which different descendant objects can

respond in their own unique ways to the same method. Polymorphism enables programmers to manipulate

subclass objects using superclass references.

1.5.10 Overloading

Overloading allows an object to have different meanings depending on its context. There are two types

of overloading, namely, operator overloading and function overloading. When an exiting operator begins

to operate on a new data type, it is called operator overloading. When a message passing to the objects is

done with a different data type, or class, then it is called as function overloading. Overloading is one type

of polymorphism.

1.6 ADVANTAGES OF OOPs

The major advantages, benefi ts and merits of OOPs are given below:

 1. Since OOP provides a better syntax structure, modelling real world problems is easy and fl exible.

 2. Complex software systems can be modularised on the basis of objects and classes.

 3. Creation and maintenance of an OOP code is easy and hence reduces software development time.

 4. Since OOP technique supports reusable software components libraries, software reengineering

can be synthesised, implemented and realised easily. For example, reusable software components

libraries are called as standard templates in C++ and packages in Java.

 5. The abstract data type concept decouples the object specifi cation and object implementation.

 6. Data encapsulation and information hiding increases software reliability and modifi ability.

 7. Polymorphism and dynamic binding increases fl exibility of code by allowing the creation of generic

software components.

 8. Inheritance allows software code to be extensible and reusable. New attributes and new operations

can be added through the creation of new child object classes without modifying the original code.

Fig. 1.9 Multiple Inheritance

 Introduction to Object Oriented Programming 7

1.7 DISADVANTAGES OF OOPs

The main drawbacks of using OOPs in modern software development life cycles (SDLC) are:

 1. OOP software development, debugging and testing tools are not standardised.

 2. The functional data and process decomposition tools such as Entity-Relationship (ER) diagrams and

Data Flow Diagrams (DFD) modules need to be adapted to allow for OOP decomposition of classes

and objects.

 3. Even though OOP reduces the software development time, OOP has a steep learning curve. Software

engineers, system analysts and programmers need to learn to model real world problems into a set of

interacting objects and class hierarchies.

 4. OOP decomposition of a large hierarchy of classes is complex and diffi cult to manipulate especially

for computer novices.

 5. In real life software applications, hierarchy of classes must be decomposed properly using OOP

based tools as inheritance and polymorphism can hide from a bad design.

 6. Polymorphism and dynamic binding also require long processing time, due to overhead of function

calls during the run time.

1.8 COMPARISON OF STRUCTURED PROCEDURAL PROGRAMMING SPP
 AND OBJECT ORIENTED PROGRAMMING OOP

In order to understand the basic concepts in C++, a programmer must have a command of the basic

terminology in object-oriented programming. Table 1.1 summarises the major characteristics and salient

features of SPP and OOP:

Table 1.1 Major characteristics and salient features of SPP and OOP

Characteristics SPP OOP

1. Program modularisation On the basis of functions On the basis of data structures called objects and

classes

2. Design approach Top-down Bottom-up

3. Data

Move openly around the system

from function to function.

By default, all data are public and

hence provide global access.

Data is mostly hidden or permits restricted access

due to public, private and protected rights.

By default, all data are private and hence provide

local access only.

4. Problem emphasis Represented by logical entities and

control fl ow

Represented more closely with interacting

objects and classes.

5. Usage of abstraction Procedural abstraction Class and object abstraction

6. Function call (method

 invocation)

Programmers are responsible for

calling the active procedures to pass

parameters and arguments

Active objects communicate with each other by

passing messages to activate their operations

7. Unit/module structure Statement or expression Object treated as a software component

(Contd)

 8 Programming with C++

Characteristics SPP OOP

8. Code reusage It does not support code reusability Due to class hierarchy a part of the state and

behaviour can be re-engineered to a subclass

9. Problem decomposition Functional approach Object oriented approach

10. Function and procedure Mostly shares global data State (data types) and behaviour (methods) are

tied together in a data structure called an object

11. Code Binding By default, all function calls are

static or during compilation time.

There is no provision for late

binding.

It supports both early (static) binding and late

(dynamic) binding.

Method invocation can be done even during run

time.

12. Polymorphism It does not support. No concept of

virtual functions.

Polymorphism and dynamic binding are the

major features of OOP

13. Languages Procedure oriented languages, such

as C, Pascal, Modula-2, FORTRAN

Object Oriented Languages, such as C++, Java,

C#, Smalltalk, Simula, CLOS

1.9 STEPS IN DEVELOPING OOP PROGRAMS

There is a fundamental shift in the way programs are designed, developed, tested, and maintained using

OOP methodology. Programmers should realise that in the OOP approach, object oriented decomposition is

mostly emphasised in place of functional decomposition. Secondly, grouping of object classes on the basis

of hierarchical dependency of classes is maintained instead of grouping functions together.

Following are the steps to develop a new software system using the object oriented approach:

 1. State the problem, that is, the user requirements are analysed and given in a simple descriptive

language.

 2. Identify the object classes and their attributes (data members) and the data operations (member

functions) associated with each object class as a guideline.

 3. The system specifi cation is broken into a number of modules, with each module consisting of one or

more object classes.

 4. Declare and defi ne each object class by encapsulating its attributes and operations.

 5. Identify the message passing between interacting object classes by identifying requests answered and

services required by each object class.

 6. Identify inheritance relations and class hierarchies on the basis of dependencies between object

classes.

 7. Create a logical OOP model for the proposed system that shows the interaction between objects.

 8. Develop algorithms for member functions of each object class to process its data members.

 9. Plan an implementation strategy to code OOP program modules using an appropriate OOP language.

 10. Prepare, test, deliver, and maintain plans for the new software.

(Contd Table 1.1)

 Introduction to Object Oriented Programming 9

1.10 STRUCTURE OF OBJECT ORIENTED PROGRAMS

In C++, classes are fi rst declared and are normally put in a separate header fi le. Then the member functions

for each class are defi ned. Finally, the user code is written to create instances of classes (objects) and

to perform the required tasks. A class’s attributes and behaviours are implemented using data members

(instance variables) and member functions, respectively.

Information hiding is implemented by declaring members (data or functions) with one of the three

categories of accessibility: private, public, and protected. Any function (member or nonmember) can

access a public member. Only member functions of the class can access a private member. When members

are protected, they can be accessed by member functions of the base class and its derived classes but not by

nonmember functions. A derived class inherits all members from the base class.

The member functions can be divided into two categories:

 1. Constructor, which creates and initializes an object, and destructor, which destroys the object. They

carry the same name as the class and are called automatically.

 2. Implementor functions, which perform the required operations of the object.

 PROGRAM 1.1

A program to illustrate how to construct a single linked list using object oriented programming technique.

// Implementation of Single Linked List
// List demonstration
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
struct node_info {
 int data;
 struct node_info *ptr;
};
class single_list {
 private:

 struct node_info *head;
 struct node_info *list;
 public:
 void list_initialize();
 void create_list();
 void traverse_list();
 void menu();
};

void single_list :: list_initialize()
{
 head = list = NULL;
}

void single_list :: menu()
{
 cout << “Implementation of Single Linked list \n”;
 cout << “ a -> adding an element to the list \n”;
 cout << “ t -> traversing the list \n”;
 cout << “ m -> help menu \n”;
 cout << “ q -> quit from the main program \n”;
}

 10 Programming with C++

void single_list :: create_list()
{
 struct node_info *temp;
 temp = (struct node_info *) malloc(sizeof(struct node_info));
 cout <<“ Enter data to the current Node\n”;
 cin >> temp->data;
 if (head == NULL) {
 head = temp;
 temp->ptr = NULL;
 list = temp;
 }
 else {
 list->ptr = temp;
 temp->ptr = NULL;
 list = temp;
 }
}

void single_list :: traverse_list()
{
 struct node_info *temp;
 if (head == NULL){
 cout << “The list is empty \n”;
 return;
 }
 else {
 temp = head;
 while (temp != NULL) {
 cout <<“ Content of the Node =”;
 cout << temp->data << “\n”;
 temp = temp->ptr;
 }
 } //end of else statement
}

int main()
{
 single_list obj;
 char ch;
 obj.list_initialize();
 obj.menu();
 cout << “enter your choice \n”;
 while ((ch = getchar()) != ‘q’) {
 switch (ch) {
 case ‘a’:
 obj.create_list();
 break;
 case ‘t’:
 obj.traverse_list();
 break;
 case ‘m’:
 obj.menu();
 break;
 case ‘q’:
 exit(1);
 } // end of switch statement
 } // end of while statement
 return 0;
}

Output of the above program

Implementation of Single Linked list
 a -> adding an element to the list
 t -> traversing the list
 m -> help menu

 Introduction to Object Oriented Programming 11

 q -> quit from the main program
 Enter your choice
 a
 Enter data to the current Node
 10
 a
 Enter data to the current Node
 20
 a
 Enter data to the current Node
 30
 a
 Enter data to the current Node
 40
 t
 Content of the Node =10
 Content of the Node =20
 Content of the Node =30
 Content of the Node =40

1.11 OBJECT ORIENTED LANGUAGES

It is well known that Object Oriented Programming provides major advantages in the creation and

maintenance of software. These include shorter development time and a high degree of code sharing and

fl exibility. These advantages make object oriented programming an important technology for building

complex software systems now and in the future. A number of languages are claimed to be object oriented.

The following are certain well-known Object Oriented Programming languages:

 ∑ smalltalk

 ∑ Common Lisp Object System (CLOS)

 ∑ Object Pascal

 ∑ Object C

 ∑ C++

 ∑ Java

 ∑ C#

1.12 IMPORTANCE OF C++

C++ is a general-purpose, platform-neutral compiled programming language that supports various

programming paradigms, including procedural programming, object-based programming, object-oriented

programming, generic programming and functional programming.

In recent times, the object oriented programming (OOP) paradigm has become popular in modern

software life cycles. Now, C++ has the status of a structured programming language with Object Oriented

Programming (OOP) methodology, in which the software reusability, testability, maintainability, portability

and reliability are the key features and requisities of modern software development.

Despite a serious competition with Java, Visual Basic, and Microsoft .NET family of languages (e.g.

C#), C++ is the only truly object oriented language adopted by the IT industry. The most signifi cant impact

of C++ is its ability to support many different programming paradigms. C++ easily adapts to procedural

abstraction, modular abstraction, data abstraction and most importantly object oriented programming.

The important features added in C++ are a class construct with private, public and protected sections.

The derived classes provide both single and multiple inheritance mechanism. The additional facilities

included are as follows:

 12 Programming with C++

 ∑ polymorphism

 ∑ dynamic binding

 ∑ virtual functions

 ∑ run time type checking

 ∑ overloading functions and operators

 ∑ exception handling

 ∑ standard template libraries

C++ has become quite popular due to the following reasons:

 ∑ It supports all features of both structured programming and object oriented programming.

 ∑ It gives the easiest way to handle data hiding and encapsulation with the help of powerful keywords

such as class, private, public and protected.

 ∑ Inheritance, one of the most powerful design concept is supported with single inheritance and

multiple inheritance of base class and derived classes.

 ∑ Polymorphism through virtual functions, virtual base classes and virtual destructors give the late

binding of the compiler.

 ∑ It provides overloading of operators and functions.

 ∑ C++ focuses on function and class templates for handling parameterized data types.

 ∑ Exception handling is done by the extra keywords, namely, try, catch and throw.

 ∑ C++ provides special member functions such as friends, static methods, constructors and destructors

for the class objects in order to create and destroy the objects easily and effectively.

 ∑ Standard Template Library (STL) supports not only containers, iterators and algorithms to perform

operations such as searching and sorting but also templates for generic algorithms.

 REVIEW QUESTIONS

 1. What is meant by object-oriented paradigm?

 2. Explain the importance of OOP technology.

 3. Defi ne the following terms with respect to OOP:

 (a) objects (b) classes (c) data abstraction

 (d) data encapsulation (e) information hiding (f) message passing

 (g) inheritance (h) dynamic binding (i) polymorphism

 (j) overloading

 4. What are the demerits of using a structured procedural programming?

 5. Explain how an OOP technique improves the software system.

 6. Summarise the advantages and disadvantages of OOP.

 7. Compare the Structured Procedural Programming (SPP) with that of an Object Oriented

Programming (OOP).

 8. Explain the steps involved in developing OOP.

 9. Summarise the major Object Oriented Languages used in the fi eld of software engineering.

 10. Elucidate the importance of C++.

Building ANSI
C++ Programs

Chapter

2

2.1 INTRODUCTION

This section is for those people who want to learn programming in C++ and do not necessarily have any

previous knowledge of other programming languages. Of course, any knowledge of other programming

languages or any general computer skill can be useful to better understand this tutorial, although it is not

essential.

2.2 HISTORY OF C++

The evolution of C++ has been a continuous and progressive process, rather than a series of brusque

revolutions. C++ today is very different from what it was in 1983, when it was fi rst named “C++”. Many

features have been added to the language since then; older features have been modifi ed, and a few features

have been deprecated or removed entirely from the language. Some of the extensions have radically

changed the programming styles and concepts.

The list of extensions include: const member functions, exception handling, templates, new cast

operators, namespaces, the Standard Template Library, bool type, and many more. These have made C++

the powerful and robust multipurpose programming language that it is today.

This chapter presents the history of C++ language and also highlights some
of the key terms that are used extensively in ANSI/ISO C++. This chapter also
shows the ways and means of how to write, compile, debug and execute a C++
program under diff erent environments, namely, GNU C++ under Linux/UNIX
OS and Visual C++ under .NET Windows platform.

 Programming with C++14

2.2.1 Origins of C++

Simula67 was the fi rst object oriented programming language which was introduced in late 1960s. It was

mainly used for writing event-driven simulations. Classes, inheritance and virtual member functions were

integral features of the Simula67.

Smalltalk fi rst appeared way back in 1972 which offered not only a pure object-oriented programming

environment but also added many features from Simula67, Ada and Modula-2. In fact, Smalltalk and

Simula67 were not only the precursors to object oriented programming but also made considerable

contributions to development of OOP.

2.2.2 C with Classes

The style of C programming was so innovative and revolutionary that it became a standard in the software

industry for designing Operating Systems (OS) under UNIX. C is not only a general purpose programming

language but also widely accepted for a variety of applications. It has many advantages over other high

level programming languages. But it has fl aws and limitations that has made it unsuitable for complex

programming projects.

In 1979, Bjarne Stroustrup of AT&T started to experiment with extensions to C to make it a better tool

for implementing large-scale projects. By adding classes to C, the resultant language ‘C with classes’ could

offer better support for encapsulation and information hiding. The core of the C language was retained in

“C with classes” and that added most of the OOP features from Smalltalk and Simula67.

2.2.3 Enter C++

Several modifi cations and extensions were made to ‘C with classes’ in 1983 in order to meet the requirement

for the software industry and consequently the language ‘C with classes’ was renamed as “C++”.

Between 1985 and 1989, C++ underwent a major reform. Protected members, protected inheritance,

templates, and multiple inheritance were added to the language. A number of compilers and extensions to the

language were introduced by many software vendors. It was clear that C++ needed to become standardised.

2.2.4 ANSI Committee Established

In 1989, American National Standards Institution (ANSI) constituted a committee for standardising C++.

The offi cial name of the committee was X3J16, and later it was changed to J16.

The ANSI C committee used ‘The C Programming Language’ by Kernighan and Ritchie as a starting

point. Likewise, the ANSI C++ committee used the ‘Annotated C++ Reference Manual’ by Ellis and

Stroustrup as its base document for building and standardising.

2.2.5 The Importance of Standardising C++

The following points highlight the importance of standardising C++:

1. Language Stability It is no doubt that C++ is probably the most widely used programming language both

in commercial and in academic establishments today. Learning it from scratch is a demanding and time

consuming process. It is guaranteed that, henceforth, learning C++ is a one-time investment rather than an

iterative process.

2. Code Stability Due to different versions of C++ compilers from various software vendors, code stability

and uniformity becomes an important problem faced by the developers. Therefore, ANSI standard specifi es

a set of deprecated features that might become obsolete in the future. Other than that, fully ANSI-compliant

code is guaranteed to work in the future.

 Building ANSI C++ Programs 15

3. Manpower Portability Since the language commonality is enforced, C++ programmers can switch more

easily to different environments, projects, compilers, and to different software companies.

4. Easier Portability The standard defi nes a common denominator for all platforms and compiler vendors,

enabling easier porting of software across various operating systems and hardware architectures.

2.3 THE LATEST ADDENDA TO ANSI/ISO C++

This section summarises a panorama of the latest addenda to the ANSI/ISO C++ Standard. This section also

explains some of the key terms that are used in the standard:

1. New Typecast Operators The new cast operators make the programmer’s intention clearer and self-

documenting. The following keywords are used to handle the typecast operation in ANSI C++:

 ∑ static_cast

 ∑ dynamic_cast

 ∑ const_cast

 ∑ reinterpret_cast

2. Run Time Type Identifi cation The Run Time Type Identifi cation (RTTI) of an object can be accomplished

by the following keywords:

 ∑ typeid

 ∑ type_info

3. Built-in Bool Type The built-in bool data type was added to the ANSI C++ standard. The use of explicit

keywords such as ‘true’, ‘false’, and ‘bool’ is self-documenting and is more evident than the use of int values.

Hence, readability and portability are the major advantages of using a standardised Boolean data type.

4. Namespaces Namespaces were the latest feature to be added to the language. Namespaces are used

to prevent name confl icts and to facilitate confi guration management and version control in large-scale

projects. Most of the components of the Standard Library are grouped under namespace std.

5. Exception Handling Exception handling is used to report and handle runtime errors and that has been refi ned

and improved in ANSI C++. The following keywords are used to handle the error handling mechanism:

 ∑ try

 ∑ catch

 ∑ throw

6. Constructing Safer Classes and Objects ANSI/ISO C++ supports the safe form of constructing classes and

objects from unintentional modifi cation of data member or its member functions. The following keywords

are used for declaring objects as a mutable object member, const data or const member function, etc.

 ∑ const

 ∑ explicit

 ∑ mutable

7. Templates The old pattern of using macros was replaced with the templates. A template is a mold or a

blueprint from which related functions or classes are instantiated. The new template features give advantage

of writing compact codes for functions and classes.

8. The Standard Template Library (STL) The Standard Template Library, or STL, comprises a substantial part

of ANSI/ISO C++ addition. STL is a collection of generic containers, iterators, function objects, allocators

 Programming with C++16

and algorithms. Some of the examples for generic containers are vector, list, and stack. Generic algorithms

are used for sorting, fi nding, merging, and transforming these containers.

9. New Form of Standard I/O Streams The standard stream and string classes have been templatized to

support both narrow and wide characters. The keyword wchar_t is used to handle wide character streams.

10. New Form of Using Header File The use of header fi le has been modifi ed in ANSI C++ standard. The new

standardised class libraries such as complex, string, exception, etc., are also added.

11. Memory Management The Standard now defi nes deploying the auto_ptr for the safe release of

dynamically created objects. Overloading of the operators new and delete and advanced memory

management techniques are the additional features in the ANSI C++.

12. Constructors and Destructors Fundamental data types can be initialised by a special constructor. In

addition, the standard also defi nes a pseudo destructor for each of these types.

2.4 POSSIBLE FUTURE ADDITIONS TO C++

It is speculated that the following new features will be added to C++ in future:

 ∑ Automatic garbage collection

 ∑ Object persistence

 ∑ Support for concurrency and multithreading

 ∑ Extensible member functions

 ∑ Dynamically linked libraries

 ∑ Rule-based programming

However, automatic garbage collection, concurrency, and object persistence are already implemented in

many other object oriented programming languages. In future, they may be added to C++ as well.

2.5 C++ VERSUS C

C++ is not only derived from the C language, but also a superset of C that means almost every correct

statement in C is also correct in C++. The most important elements added to C are concerned with classes,

objects and object oriented programming.

The following features of the C++ language or library are not supported in C. A major portion of C++

and its library fall into this category. A partial list of these features includes:

 ∑ anonymous unions

 ∑ classes

 ∑ constructors and destructors

 ∑ exceptions and try/catch blocks

 ∑ external function linkages

 ∑ function overloading

 ∑ member functions

 ∑ namespaces

 ∑ new and delete operators

 ∑ operator overloading

 ∑ reference types

 ∑ standard template library (STL)

 Building ANSI C++ Programs 17

 ∑ template classes

 ∑ template functions

2.6 VERSIONS OF C++

Many software vendors have released ANSI C++ specifi c compilers for different platforms. Following is a

partial list of well-known C++ compilers that are used globally. Some of the compilers can be downloaded

for free from the internet and the others have to be acquired by making the specifi ed price.

 ∑ Apple C++

 ∑ Borland C++

 ∑ GNU C++ for Linux

 ∑ IBM C++ for IBM power, System Z

 ∑ HP C++ for Unix and HP C++ for OpenVMS

 ∑ Intel C++ for Windows and Linux

 ∑ SGI C++

 ∑ Sun C++

 ∑ Microsoft Visual C++ under .Net

 ∑ Turbo C++

Compatibility Notes The ANSI C++ standard which is accepted as an international standard is of recent

origin. It was released in November 1997, even though C++ language exists from 1980. Therefore, there

are many compilers which do not support all the new capabilities included in ANSI C++, specially those

released prior to the publication of the standard.

2.7 SOURCE PROGRAM NAMES

C++ is a hybrid language, supporting both the structured programming language “C” and Object Oriented

Programming“C++”. Therefore, a C++ compiler can accommodate both C and C++ languages. So, it is

essential to have a method to determine the type of code that is processed. To perform a C compilation, the

source program fi les have an extension of .C. On the other hand, fi les have an extension of .CPP for specifi c

C++ compilation.

Unlike several other programming languages, C++ does not impose a specifi c programming paradigm

on its users. This liberty has two major advantages: it enables reuse of C code with minimal or no

modifi cations at all, and it enables designers to choose the paradigm that suits their needs best.

2.8 COMPILING AND DEBUGGING C++ PROGRAMS

This section introduces key mechanics of C++ such as warnings, errors, portable code generation and

performance optimisation. Compiling is the process of translating a source code into an executable code.

Debugging is the art of making that code error free and make it run. These are the mechanical aspects of

programming. Programmers need to know how to run compilers and debuggers which are the essential tools

for a good programmer.

2.8.1 The Compilation Process (Fig. 2.1)

Compilation involves the following four separate processes which always take place in the following order:

 Programming with C++18

 (a) Preprocessor

 The preprocessor expands directives such as #include in a

program. This output is piped directly to the compiler.

 (b) Compiler

 The compiler translates the preprocessed C and C++

statements into the assembly language and stores it in an

intermediate fi le.

 (c) The assembler

 The assembler translates the assembly language statements

into object code and stores it in an intermediate fi le ending

in “.obj”.

 (d) The Linker

 The linker combines the program’s object code fi les with

any required libraries to create the fi nished executable

code. This output is stored as a.out in case of Linux/UNIX

C++ compiler and “. EXE” for the Visual C++ compiler or

Borland Turbo C++ compiler.

2.8.2 Types of Program Errors

The following section deals with the different types of errors and warning messages during the compilation

and execution of a program. Errors are caused by syntactical mistakes in source code such as typographical

errors, missing semicolons and other kinds of faulty constructions. In general, programming errors can be

classifi ed into two types, namely, compile time errors and runtime errors.

(a) Compile Time Errors The compile time errors are caused due to the improper use of C++ syntax and

semantics of the language. All syntax errors and some of the semantic errors (the static semantic errors) are

detected by the compiler during the compilation stage. The C++ compiler generates a message indicating

the type of error and the position in the C++ source fi le where the error has occurred. It is to be noted that

the actual error could have occurred before the position signalled by the compiler.

(b) Run Time Errors Run time errors are another class of errors which are not identifi ed during compilation

time. These errors are caused by dynamic semantic errors and logical errors in a program that cannot be

detected by the compiler during the debugging stage. The program is compiled and executed but does not

generate the required result.

It is the responsibility of the programmer to fi nd and fi x the run time errors if any, in a program to get the

desired output. There is a difference between a warning and an error. A warning is a message the compiler

prints when it discovers a potential problem in the source code. An error is a mistake in the syntax that

prevents the compiler from fi nishing its job.

(c) Warnings Warnings are frequently caused by missing declarations, values of inappropriate types and

various kinds of improper constructions. Despite the warning, the program’s source code is syntactically

correct, so these types of problems do not prevent the compiler from creating a fi nished code fi le. However,

that code might not run correctly. Warnings are sometimes called compile-time errors.

2.9 STAGES OF PROGRAM DEVELOPMENT FIG. 2.2

A little knowledge is necessary before one can write and compile programs on any computer system. Every

programmer goes through the following three-step cycle during a program development:

Fig. 2.1 The Compilation Process

 Building ANSI C++ Programs 19

Fig. 2.2 Stages of Program Development

 1. Writing the program into a fi le

 2. Compiling the program

 3. Running the program

During program development, the programmer may repeat this cycle many times, refi ning, testing and

debugging a program until a satisfactory result is achieved.

 Programming with C++20

2.10 COMPILING GNU GCC/G++ IN LINUX

Gcc stands for gnu compiler collection. Gnu is a type of licence for free, open source software. Majority

of gnu softwares are for unix-based systems. A compiler is a system software used to convert source code

into a fi le that the computer can execute. So gcc refers to a collection of Unix-based, free softwares which

convert source code into machine code.

(1) Editing the Source Program

Writing, editing and entering a program into a computer system and storing it as a source fi le is called the

preparation of the program text. Linux supports vi (Visual Editor) for editing a C++ program. The type

of fi le assumed when specifying a C++ source fi les depends on its extension, which must be one of the

following lists:

.C

.cc

.cxx

.cpp and

.c++

For example,

$ vi rst.cpp

(2) Compiling the Source Program

The GNU gcc/g++ compiler can perform preprocessing, compilation, assembly and linking of a project

from a single call to gcc/g++. Its format is:

 $ gcc rst.c (for C program)

or

 $ g++ rst.cpp (for C++ specifi c compilation)

At this point if there are errors in the source program, the compiler will show them on the screen. One

should correct these errors by opening the program in the text editor, namely, vi editor.

After the errors have been corrected, one may use the same gcc or g++ command to compile it again. If

there are no errors in the source code, the compiler will return the prompt without any error messages. This

means that the source code has been compiled into a separate executable fi le which by default is named as

a.out.

(3) Running the Compiled Program

To run the code by typing in a.out at the prompt as follows:

$./a.out

The most common way of calling g++ to compile a single source fi le in C++ is:

$ g++ source le -o exec le

where source fi le is the C++ source fi le to compile and execfi le is the name of the output fi le, generally the

executable fi le, which must always be preceded by the -o option.

For example,

 $ g++ rst.cpp -o rst

Instead of a.out, g++ creates an executable named “fi rst” and one can execute the fi le in the following

way:

 Building ANSI C++ Programs 21

 $./ rst

To know more about the GNU g++ compiler options, one can use the Linux g++ manual. The command

is as follows:

$ man g++

2.11 COMPILING C/C++ PROGRAM IN UNIX

Just as C++ is a superset of C, the C++ compilers are very similar to C compilers in that their options are

usually a superset of C compiler options. The basic compiling information about C is also applicable to

C++, with the following exceptions:

CC (upper case), g++ and gcc are all C++ compiler commands on the UNIX systems that provide C++.

Source fi lename extension conventions are compiler-dependent. Extensions include:
.C (upper case)
.c (lower case)
.cxx
.cpp
.cc
.c++

(a) Writing the Program The easiest way to enter a source program is using a text editor like vi, emacs or

xedit. To edit a fi le called rst.c using vi as

$ vi rst.cpp

(b) Compiling the Program The C++ compiler is invoked with CC (upper-case), g++ or gcc. There are

additional compiler options specifi c to C++.

For C program compilation, one of the following compiler commands is used:

$ cc rst.c

or

$ gcc rst.c

For C++ specifi c compilation, one of the following compiler commands is invoked:

$ CC rst.cpp

or

$ g++ rst.cpp

(c) Running the Program To run a program under UNIX, the following command is used:

$./a.out

In Unix systems, any fi le can be labelled as an executable, and it is common to either use the .o

extension, or to have no extension at all.

$ g++ helloworld.cpp -o helloworld

Now, instead of a.out, g++ creates an executable named “helloworld”

$./helloworld

To know more about the cc/CC/gcc/g++ compiler options, one can use the UNIX manual. The

command is as follows:

$ man CC

 Programming with C++22

2.12 BUILDING C++ UNDER MICROSOFT .NET PLATFORM

This section explains how to edit, compile and build a C++ program under Visual Studio .NET Framework

which is one of the most widely used platforms for learning and developing ANSI C++ programs.

(1) Visual Studio .NET Framework (Fig. 2.3) Visual Studio supports the Microsoft .NET Framework, which

provides the Common Language Runtime (CLR) and unifi ed programming classes. Visual Studio .NET is the

tool for rapidly building high performance desktop applications and Web and ASP applications. It supports

the following programming languages:

 ∑ Visual C++

 ∑ Visual Basic

 ∑ Visual C#

 ∑ Visual J#

Fig. 2.3 Visual Studio .NET Framework

The .NET Framework is a multi-language environment for building, deploying, and running XML Web
services and applications. It consists of three main parts:

 ∑ Common Language Runtime

 ∑ Unifi ed programming classes

 ∑ ASP.NET

 Building ANSI C++ Programs 23

The framework provides developers with a unifi ed, object-oriented, hierarchical, and extensible set of

class libraries (APIs).

(2) Microsoft Visual C++ .NET (Fig. 2.4) It is well known that Microsoft Visual C++ .NET 2003 provides
the dynamic development environment for creating Microsoft Windows-based and Microsoft NET-based ap-
plications, dynamic Web applications, and XML Web services using the C++ development language. Visual
C++ .NET includes the industry-standard Active Template Library (ATL) and Microsoft Foundation Class
(MFC) libraries, advanced language extensions, and powerful integrated development environment (IDE)

features that enable developers to edit and debug source code effi ciently.

It provides developers with a proven, object-oriented language for building powerful and performance-

conscious applications. With advanced template features, low-level platform access, and an optimizing

compiler, Visual C++ .NET delivers superior functionality for generating robust applications and

components. The product enables developers to build a wide variety of solutions, including Web

applications, smart-client Microsoft Windows-based applications, and solutions for thin-client and smart-

client mobile devices. C++ is the world’s most popular system-level language, and Visual C++ .NET 2003

gives developers a world-class tool with which to build software.

The following steps are used to create, edit and build a C++ program under Microsoft Visual .NET studio.

To select the Visual Studio .NET from the Start Menu, Click Start Menu and select All Programs ->

Microsoft Visual Studio .NET 2003 –> Press Microsoft Visual Studio .NET 2003.

 Fig. 2.4 Microsoft Visual C++ .NET

(3) Start Page (Fig. 2.5) The Start Page has been re-designed for this release. One can still set the user pref-

erences for IDE behaviour and access new or existing projects, but with a user interface designed to be easier

to navigate. Both the My Profi le and Project sections now have their own tabs. The Online Resources tab now

contains useful Microsoft related online developer resources.

 Programming with C++24

Fig. 2.5 Microsoft Development Environment Design — Start Page

(4) Integrated Development Environment (IDE) In the Menu bar, select File Æ New Æ Project

Visual C++ Projects

An application wizard provides a user interface that is used to create a project, modelled after a project

template, and generate source fi les and directories for applications.

The wizard provides program structure, basic menus, toolbars, icons, and appropriate #include

statements. Visual C++ application wizards work in conjunction with application frameworks and libraries

to create starter programs for the user.

Fig. 2.6 Creating a Project with a Visual C++ Application Wizard

 Building ANSI C++ Programs 25

(5) Creating and Managing Projects (Fig. 2.6) Every type of Visual C++ project has an application wizard

that helps the user generate new projects quickly and easily, modelled from the project template.

(a) Project types Visual Studio contains a project template or application wizard for the following project

types. Each wizard helps to create projects:

 ∑ ASP.NET Web Service Template

 ∑ Class Library Template

 ∑ Console Application Template

 ∑ Empty Project Template

 ∑ Windows Control Library Template

 ∑ Windows Forms Application Template

 ∑ Windows Service Template

To open an application wizard, the New Project dialog box has to be used to specify the project

properties like the name, or the directory and solution where your project will reside.

To open a Visual C++ application wizard

 1. On the File menu, click New, and then click Project. The New Project dialog box appears.

 2. In the Project Types pane, select the Visual C++ Projects folder. An icon for every type of C++

project appears in the Templates pane.

 3. In the Templates pane, select an icon to choose a project type. A message appears under both panes

indicating the type of project the user is going to create.

 4. Specify your project properties, or skip this step to use Visual Studio default project properties.

 5. Click OK, and the wizard for your project type opens.

Fig. 2.7 Creating a Project with a Console Application Template

(b) Console application template (Fig. 2.7) The Console Application project template adds the necessary items

needed to create a console application. Console applications are typically designed without a graphical user

interface and are compiled into a stand-alone executable fi le. A console application is run from the command line

with input and output information being exchanged between the command prompt and the running application.

 Programming with C++26

As information can be written to and read from the console window, this makes the console application a great

way to learn new programming techniques without having to be concerned with the user interface.

The template automatically adds the essential project references and fi les to use as a starting point for

your application. Header fi les “Stdafx.h” — Used to build a precompiled header fi le named Win32.pch and

a precompiled types fi le named StdAfx.obj

(6) Adding and Removing Solution
Items (Fig. 2.8)

(a) Solution Explorer To effi ciently man-

age the items that are required for devel-

opment such as references, data connec-

tions, folders, and fi les, Visual Studio

.NET provides two containers: solutions

and projects. An interface for viewing

and managing these containers and their

associated items, Solution Explorer, is

provided as part of the integrated devel-

opment environment (IDE).

Solution Explorer provides the user

with an organised view of his projects

and their fi les as well as ready access

to the commands that pertain to them.

A toolbar associated with this window

offers commonly used commands

for the item you highlight in the list.

To access Solution Explorer, select

Solution Explorer on the View menu.

(b) Removing Solution Items (Fig 2.9) One can remove an item

from the Solution Items folder. Removing is not the same as

permanently deleting an item. Removing takes away the item’s

association with the solution. The fi le that represents the former

item still remains on disk.

To remove a solution item

 1. In Solution Explorer, select the item the user wants to

remove.

 2. On the Edit menu, choose Remove.

 3. One can re-add the item as long as the fi le for the item

still exists.

(c) Adding Solution Items To add a new solution item

 1. In Solution Explorer, select the Solution node.

 2. On the Project menu, choose Add New Item.

 3. From Add New Solution Item, choose a template.

 4. Choose Open to add the item to the Solution Items folder.

To add an existing item to a solution

 1. In Solution Explorer, select the solution.

Fig. 2.8 Selecting the Solution Explorer on the View Menu

Fig. 2.9 Removing Solution Items

 Building ANSI C++ Programs 27

 2. On the Project menu, choose Add Existing Item.

 3. From Add New Solution Item, choose the item the user wants to add.

 4. Choose Open to add the item to the Solution Items folder.

(7) Adding New Project Items (Fig.
2.10(a) & (b)) Adding a project item

is one way to extend the functionality

of an application. Examples of project

items include HTML pages, Class fi les,

Web Services, ASP pages, Dataset fi les,

and Style sheets. The types of fi les that

the user can add to a project are deter-

mined by the project template used to

create it.

To add a new project item

 1. In Solution Explorer, select a

target project.

 2. On the Project menu, select Add

New Item.

 3. Select a Category in the left

pane.

 4. Select an item Template in the

right pane.

 5. Select Open.

Fig. 2.10(b) Adding New Project Item

Fig. 2.10(a) Adding New Project Item

 Programming with C++28

(8) Editing and Saving C++ Programs (Fig. 2.11a)

(a) Editing Start entering a C++ program on the editor pane.

For example,
#include “stdafx.h”
#include <iostream>
using namespace std;
int main()
{
 cout << “this is a test program by Ravich \n”;
 return 0;
}

(b) Saving (Fig. 2.11b) Save a fi le, On the

File menu, click Save First.cpp

Save a copy of a fi le

 1. On the File menu, click Save As.

 2. In the File name box, enter a new

name for the fi le.

 3. Click Save.

(9) Preparing and Managing Builds (Fig.
2.12) Visual Studio .NET offers a variety of

ways to help the user to organise fi les which

are required for a solution or a project.

To build or rebuild a single project

 1. In Solution Explorer, select or open

the desired project.

 2. On the Build menu, choose Build

[Project Name] or Rebuild [Project

Name].

Note: “Cleaning” a solution or project

deletes any intermediate and output

fi les, leaving only the project and

component fi les, from which new

instances of the intermediate and

output fi les can then be built.

To build or rebuild an entire solution,

on the Menu bar, select Build –> Build

Solution.

On the Build menu, choose Build

Solution or Rebuild Solution. Choose

Build or Build Solution to compile only

those project fi les and components that

have changed since the last build. Choose

Rebuild Solution to “clean” the solution

fi rst, and then build all project fi les and

components. Fig. 2.11(b) Saving a C++ Program

 Fig. 2.11(a) Editing a C++ Program on the Editor Pane

 Building ANSI C++ Programs 29

Fig. 2.12 Build the C++ Program

(10) Executing and Debugging Visual C++ Console Applications (Fig. 2.13) To run the program, on the

Menu bar, select Debug and select the option “Start Without Debugging”. Results will be displayed on the

new Output window (Fig. 2.14).

Fig. 2.13 Run the C++ Program

A solution and its individual projects are typically built and tested in a Debug build. Developers will

compile a Debug build repeatedly, at each step in their development process. Debugging is a two-step

process. First, compile-time errors are corrected. These errors can include incorrect syntax, misspelled

 Programming with C++30

keywords, and type mismatches. Next, the debugger is used to detect and correct such problems as logic

errors and semantic errors that are detected at run-time.

Visual Studio provides additional considerations for debugging Visual C++ console applications. These

considerations include, specifying command-line arguments, starting the application from the command

prompt rather than from Visual Studio, directing output to the Output window, and troubleshooting Console

window behaviour.

To debug a Visual C++ console application

 1. Open the project in Visual Studio

 2. Choose Start without Debugging (Ctrl + F5)

Visual Studio automatically creates required settings for the Debug and Release confi gurations.

Fig. 2.14 Output Window with Results

(11) Quit from the Visual Studio.NET Environment To exit from the Visual studio .NET environment,

select Exit option from the File menu (Fig. 2.15). Visual studio closes all fi les and the main control will be

transferred to Windows OS.

 1. On the File menu, click Exit.

 Fig. 2.15 Exit from the Visual Studio .NET Environment

 Building ANSI C++ Programs 31

 REVIEW QUESTIONS

 1. Summarise the history of ANSI C++ language.

 2. Explain the importance of standardising C++ compiler.

 3. What are the latest addenda to ANSI/ISO C++ language?

 4. Explain the pros and cons of C++ versus C.

 5. List the different versions of C++ compilers available in the market today.

 6. What is the difference between compiling and debugging of C++ programs?

 7. Explain the following terms with respect to C++ language:

 (a) Preprocessor (b) Compiler

 (c) Assembler (d) Linker

 8. Elucidate the various stages of program development in C++.

 9. Explain the difference between compile time and run time errors.

 10. Summarise the commands used for compiling GNU gcc/g++ in Linux OS.

 11. List the steps involved in compiling C/C++ programs in UNIX OS.

 12. Elucidate the various steps involved in building Visual C++ programs under Visual studio .NET

environment.

Data Types,
Operators and
Expressions

Chapter

3

3.1 IDENTIFIERS AND KEYWORDS

The program elements are the basic functional blocks of a C++ program. They consist of numbers,

identifi ers, expressions and statements. C++ identifi ers are the various program entities such as variables,

constants, data types, functions structs, unions and classes.

Identifi ers are used in a program not only to declare basic program elements like constants or variables

but also to defi ne the name of a function. Using the combination of the following C++ character sets, one

can generate a program element such as user defi ned identifi ers and statements.

The character sets used in ANSI/ISO C++ are:
Lower case : a..z
Upper case : A.. Z
Digits : 0..9
Special characters : + - * / = ++ -- . , :
 ; ‘ < <= > >= == !=
 . () { } [] ^ ! | &
 and blank space

In C++, the lower case and upper case letters (alphabets) are distinct. Hence, there is restriction on the

use of upper case or lower case letters while writing identifi ers and in fact, mixing of lower case and upper

case letters is also allowed.

For example, the following identifi ers will be treated separately because the lower and upper case letters

are used differently.

This chapter deals with data types, literals, constants, variables and some
statements used in C++ language. The entire C++ data types and operators are
discussed in a rudimentary manner with various illustrations. Elementary
defi nitions and concepts of C++ program are stressed in this chapter and the
subsequent chapters reserved for detailing all the features of C++ language.

 Data Types, Operators and Expressions 33

paybill

PAYbill
PAYBILL

In general, identifi ers can be classifi ed into two types: user defi ned identifi er and built-in identifi er or

keywords. Built-in identifi ers or keywords are meant for intended purpose in the compiler. User defi ned

identifi er are the name of the program elements.

The following rules are used to write a user defi ned identifi er in C++:

 (1) An identifi er consists of a sequence of letters and digits. However, the fi rst character of an identifi er

must be an alphabetic character, either uppercase or lowercase, or an underscore (_) character.

 (2) Identifi ers are case sensitive, fi leName is different from FileName.

 (3) User defi ned identifi ers cannot be exactly the same spelling as that of keywords or reserved words. The

keywords are the standard or predefi ned meaning for intended purpose for developing program modules.

 (4) There should not be spaces between the characters.

 (5) The ANSI/ISO C++ does not impose any limit on the number of characters in an identifi er.

 (6) Use of two sequential underscore characters (_ _) at the beginning of an identifi er, or a single

leading underscore (_) followed by a capital letter, is reserved for C++ implementations in

all scopes. User should avoid making such a type of identifi ers in a program because of possible

confl icts with current or future reserved identifi ers.

Some of the Valid Identifi ers

hello_world
pay12
_abc
DEFINED
pay_bill_my_address

Some of the Invalid Identifi ers

5thcross – the fi rst character must be an alphabet

while – reserved word and it cannot be used as a user defi ned variable

pay bill – blank spaces are not allowed

3.1.1 Reserved Words (Keywords)

The following are the list of keywords that are commonly used in C++ and enforced by the ANSI C++

committee. They have a standard and predefi ned meaning in C++ and are used only for their intended

purpose and these words must not be used for user defi ned variables in the C++ program. Total keywords

used in ANSI/ISO C++ are 73. The reserved words can be classifi ed into six groups, namely, (i) declaration

words (ii) statement words (iii) storage allocation identifi ers (iv) C++ specifi c Keywords (v) New keywords

added in ANSI C++ (vi) Alternative representations of operators in ANSI C++.

(i) Variable Declaration Words
char int sizeof
double long typedef
enum short unsigned
fl oat signed

(ii) Statements Words
break else struct
case for switch
continue goto union
default if while
do return

 Programming with C++34

(iii) Storage Allocation Identifi er
auto static
const void
extern register
volatile

(iv) C++ Specifi c Keywords

In order to add features to C, a number of new keywords were created for C++. In general, C++ provides

more language features and fewer restrictions than ANSI C. The C++ language consists of both ANSI C

keywords along with the following new additional or reserved words. The new keywords are:
asm friend protected throw
catch inline public class
new template virtual operator
this delete private try

(v) New Keywords Added in ANSI C++
typeid namespace wchar_t
typename static_cast const_cast
bool using true
dynamic_cast explicit reinterpret_cast
mutable false

 (vi) Alternative Representations of Operators in ANSI C++
and compl or_eq
and_eq not xor
bitand not_eq xor_eq
bitor or

3.1.2 Standard Identifi ers

Standard identifi ers are a set of built-in constants, variable names and functions. They are not user defi ned

identifi ers but are called as standard identifi ers as they are built in the C++ compiler for predefi ned purpose

in the user program. Standard identifi ers are very useful for developing programs in an easy manner and are

mainly used for mathematical library, fi le routines, etc.

There are differences between the standard identifi ers and the keywords. Keywords are used to construct a

C++ program whereas standard identifi ers assist the user to develop an effi cient program in an easy manner.

Without standard identifi ers, one can develop a C++ program but without keywords one cannot do anything.

Keywords are language dependent and hence, these must be same for all versions of the C++ compilers,

whereas standard identifi ers may vary from one compiler version to another and need not be the same.

Some of the examples for the standard identifi ers are:
cin min sin
cout max cos
NULL open pow
EOF close log

3.2 DATA TYPES

The data type of a variable is important because it determines the operations that are allowed and the range

of values that can be stored. C++ defi nes several types of data and each type has unique characteristics.

Because data types differ, all variables must be declared prior to their use and a variable declaration always

include a type specifi er. The compiler requires this information in order to generate correct code. In C++,

there is no concept of a “type less” variable. The built-in data types are integers, characters, fl oating point

values and Boolean values. The core of the C++ type system are the seven basic data types shown here:

 Data Types, Operators and Expressions 35

Type Meaning

char character
wchar_t wide character
int integer
fl oat fl oating point
double double fl oating point
bool Boolean
void valueless

C++ allows certain of the basic types to have modifi ers preceding them. A modifi er alters the meaning of

the base type so that it more precisely fi ts the need of various situtations. The data type modifi ers are listed

here:

 ∑ signed

 ∑ unsigned

 ∑ long

 ∑ short

The modifi ers signed, unsigned, long and short can be applied to int. The modifi ers signed
and unsigned can be applied to the char type. The type double can be modifi ed by long.

3.3 C++ SIMPLE DATA TYPES

3.3.1 Bool

The bool type is designed to hold only two types of values: true or false.

3.3.2 Char

The char data type is used to represent and store characters. Internally, every character is represented

by a small integer. What characters are available and how they are represented internally depends on the

machine on which the program runs. The most common character sets are ASCII (American Standard

Code for Information Interchange) code. ASCII is the character set used on most personal micro and

minicomputers as well as several large and mainframes.

There are 128 ASCII characters. That means ASCII characters are 7-bits (values between 0 to 127) but

are usually put into an 8-bit byte. The char data type can be classifi ed into the following four types:

char ---|-- plain char
 |
 |-- wchar_t
 |
 |-- signed char
 |
 |-- unsigned char

(i) Plain Char Any character belonging to the ASCII character set is considered as a character data type

whose maximum size is 8 bits long. The keyword char is used to represent the character data type in C++.

Character constants and literals are always represented within single quotes.

(ii) Wchar_t wchar_t is meant for wide characters for storing unicode.

(iii) Signed Char A plain char is always signed. Therefore, signed char and plain char are referred to the

same data type whose minimum range is from –128 to 127. The signed char types are simply more explicit

synonyms used in a program.

(iv) Unsigned Char The most signifi cant bit of a number is referred as a sign bit when a number is

represented in the binary form. In the case of unsigned char, the sign bit is used to store for the character

 Programming with C++36

representation rather than for the sign. Therefore, minimum range of unsigned char is from 0 to 255.

The plain char, signed char and unsigned char are three distinct types. A char, a signed char and an

unsigned char occupy the same amount of memory space. The classifi cation of the char data type is

dependent on the version of the C++ compiler.

3.3.3 Int

int data type can be classifi ed into the following three types:

int ---|-- plain int
 |
 |-- signed int
 |
 |-- unsigned int

(i) Plain Int The plain int is a standard int data type whose minimum range is from –32, 768 to 32, 767.

(ii) Signed Int A plain int is always signed. Therefore, signed int and plain int are referred to the same data

type whose minimum range is from –32, 768 to 32, 767. The signed int types are simply more explicit

synonyms used in a program.

(iii) Unsigned Int The most signifi cant bit of a number is referred as a sign bit when a number is represented

in the binary form. In the case of unsigned int, the sign bit is used to store for the number representation

rather than for the sign. The unsigned int is used to represent and assign only the positive numerals in a

program. Therefore, minimum range of unsigned int is from 0 to 65, 535.

3.3.4 Short

Short data type can be classifi ed into the following four types:

short ---|-- short
|
|-- short int
|
|-- signed short
|
|-- unsigned short

(i) Short The short data type is used to store an integer data whose minimum size is larger than or equal to

char and shorter than or equal to type int.

(ii) Short Int The short int data type is the same as that of int data type, whose minimum range is from

–32, 768 to +32, 767.

(iii) Signed Short The signed short data type is the same as that of short data type, whose minimum size is

larger than or equal to char and shorter than or equal to type int.

(iv) Unsigned Short The unsigned short data type is the same as that of short int without sign bit. In the case

of unsigned short, the sign bit is used to store for the number representation rather than for the sign. The

unsigned short is used to represent and assign only the positive numerals in a program. Therefore, minimum

range of unsigned short is from 0 to 65, 535.

3.3.5 Long

The long data type can be classifi ed into the following three types:

 Data Types, Operators and Expressions 37

 long ---|-- long
 |
 |-- signed long
 |
 |-- unsigned long

(i) Long A long int data type can be referred to as plain long.

(ii) Signed Long The signed long data type is the same as long integer whose minimum range is from

–2, 147, 483, 648 to +2, 147, 483, 647. The signed long int data types are simply more explicit synonyms

used in a program.

(iii) Unsigned Long The unsigned long data type is used to represent and assign only the positive numerals

in a program. Therefore, minimum range of unsigned long int is from 0 to 4, 294, 967, 295.

The number of bits used to represent short int, int and long int is implementation dependent so long as

the minimum ranges maintained. The keyword short is a synonym for short int, unsigned for unsigned int

and signed for signed int.

The typical integer data types and its sizes in C++ are given in the following Table 3.1.

 Table 3.1

Data types Size in bytes

char 1

short 2

int 2 or 4

long 4 or 8

3.3.6 Float

The numbers which are stored in the form of fl oating point representation with binary mantissa and

exponent are known as fl oating point numbers or real numbers. They can be declared as ‘fl oat’ in C++

whose maximum size is a rational number approximately between –0.17e38 and 0.17e38. The smallest

value other than 0 that can be represented is 0.29e-38 in C++. The real data type can be classifi ed into the

following three types:

real or ---|-- fl oat
fl oating point |
 |-- double
 |

|-- long double

(i) Float A fl oat provides at least 6 signifi cant digits and usually requires 32 bits of storage. The minimum

range of fl oat data type is from –3.4e38 to +3.4e38, with six digits of precision.

(ii) Double The keyword double is used to represent double precision fl oating point numbers in C++. The

size of ‘double’ is a rational number in the same range as fl oat and is stored in the form of fl oating point

representation with binary mantissa and exponent.

A double provides at least 10 signifi cant digits usually requires 64 bits of storage. The minimum range

of double data type is from –1.7e308 to +1.7e308, with ten digits of precision.

(iii) Long Double

A long double potentially provides even more signifi cant digits and larger range of values. The minimum

range of long double data type is from –1.7e4932 to +1.7e4932, with ten digits of precision. However,

many implementations treat doubles and long doubles as synonyms.

 Programming with C++38

We use fl oats when we need to save storage or want to avoid the overhead of double precision

operations. We use doubles when we need more signifi cant digits and we are less concerned with storage.

We use long doubles when our implementation provides even more signifi cant digits or a wider range of

values for them.

The typical fl oating point types and its sizes in C++ are given in the following Table 3.2.

Table 3.2

Data types Size in bytes

fl oat 4

double 8

long double 12 or 16

The following Table 3.3 shows the minimum range of each type as specifi ed by the ANSI/ISO C++

standard:

 Table 3.3 Minimal range of each type as specifi ed by the ANSI/ISO C++ standard

Type Minimal range

bool holds true (non-zero) or false (zero) value

char –128 to 127

wchar_t wide characters such as unicode

signed char –128 to 127

unsigned char 0 to 255

int –32, 768 to 32, 767

signed int same as int

unsigned int 0 to 65, 535

short int –32, 768 to 32, 767

signed short int same as short int

unsigned short int 0 to 65, 535

long int –2, 147, 483, 648 to 2, 147, 483, 647

signed long int same as long int

unsigned long int 0 to 4, 294, 967, 295

fl oat –3.4e38 to +3.4e38

double –1.7e308 to +1.7e308

long double –1.7e4932 to +1.7e4932

void void type

3.4 LITERALS

The lexical class of constants in ISO C is called literals in ANSI/ISO C++ and can be classifi ed into fi ve

types, namely, integers, fl oating point numbers, characters, strings and booleans.

Types of literals ---|-- integer literal
|
|-- fl oating point literal
|
 |-- character literal

 Data Types, Operators and Expressions 39

|
 |-- string literal
|
 |-- boolean literal

3.4.1 Integer Literals

An integer literal is a sequence of digits that has no period or exponent part. Integer literals may be specifi ed

in decimal, octal or hexadecimal notation.

Types of integer literals ---|-- decimal integer literal
 |
 |-- octal integer literal
 |

 |-- hexadecimal integer literal

(a) Decimal Integer Literal A decimal integer literal (base ten) begins with a digit other than 0 and consists

of a sequence of decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). In other words, a decimal integer literal consists

of a nonempty sequence of digits, the fi rst of which is not 0. Some examples of decimal integer literal are

given below:

 12389 –234567 999908

 765908 886666 –123

(b) Octal Integer Literal

An octal integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits (0, 1, 2,

3, 4, 5, 6, 7). Some of the examples for the octal integer literal are given below:

 01117 01234 076565

 07654 07777 023456

There is a question as to whether “0” is decimal or octal, but it does not matter in practice.

(c) Hexadecimal Integer Literal

An hexadecimal integer literal (base sixteen) begins with 0x or 0X and consists of a sequence of

hexadecimal digits, which include the decimal digits and the letters ‘a’ through ‘f’ (or ‘A’ through ‘F’) with

decimal values 10 through 15. Some of the examples for the hexadecimal integer literal are given below:

 0x12345 0x3455 0x121ff

 0X6ab 0Xabc123 0XFFF

(d) Long Integer Literals Any integer literal may be immediately followed by the one of the letters ‘l’ or ‘L’

to indicate a literal of type long.

decimal long literal = digit + long marker

octal long literal = 0 (octal) + long marker

hexadecimal long literal = hex-marker (hexadigit) + long marker

Some of the examples for the long integer literals

871056L

056523L

0x5464abcL

0X234affL

3.4.2 Floating Point Literals

Floating point literal may be written with a decimal point, a signed exponent or both. A fl oating point literal

is always interpreted to be in decimal radix. Real numbers can be classifi ed into two forms (i) standard

forms and (ii) exponential or scientifi c form.

 Programming with C++40

real numbers ---|-- standard form
|

 |-- exponential (scientifi c) form

(i) Standard Form Without normalising, if a real number is represented then it is called a standard form.

Representaion of the real numbers so far discussed are called the standard form. Such a representation

have a few applications in the computer usage as very large and very small numbers cannot be easily

accommodated or represented.

(ii) Exponential (Scientifi c) Form Very large and very small numbers can be represented very easily. In C++

using scientifi c notation as these numbers are stored in the computer memory in the normalised form. The

scientifi c notation is also called as exponential notation or fl oating point expression. In C++, to represent

real numbers using fl oating point notation, the letter e (alternately E) is used to realise the exponent part or

10 raised to the power.

The number before the letter e (E) must be an integer or real constant, with or without a sign or decimal

point. If a decimal point is included, it must be preceded and followed by a digit. The number after the

letter e (E) should be an integer value (preferably signed). This number is called the exponent. In practice,

the letter E is used to indicate that the value following it is the exponent.

For example,

 0.00016435 is 1.6435 × 10– 4 (conventional)

 1.6435E-4 (C++ method)

and 26472000.0 is 2.6472 × 107

 2.6472E7

Following are some examples of valid real numbers in exponential form:

1.6356E5

2.1898E+5

0.123E4

1.456E–6

1.34322E–07

–1.23E–6

+1.345E–26

2E10

2E–10

The following real number representations are invalid:

.E5 - a digit is needed to the left of the decimal point

2.678E+1.4 - exponenent part cannot have a decimal part

1.345E +/–5 - two symbols + and – cannot be represented together

1.1E - a digit is needed to the right of the exponenent part

2,345.4E-6 - comma is not permitted

Types of fl oating point literals in C++ Floating point types come in three sizes:

Types of foating point numbers ---|-- fl oat (single precision)
 |

|-- double (double precision)
 |

|-- long double (extended precision)

The exact size of single precision, double precision and extended precision is implementation dependent.

 Data Types, Operators and Expressions 41

(a) Double literal By default, a fl oating point literal is of type ‘double’. The following are the valid fl oating

point literals of type double.

1.23 –1.e10 3e1

.23 1.23e–10 0.

0.23 1e–3 .0

1.0 0.22E–6 2e+9

(b) Float literal The suffi x f or F is used along with a fl oating point literal in order to represent type fl oat.

For example,

3.1456F –11.453f

2.01f 23.45E3f

(c) Long double literal The suffi x l or L is used to represent a fl oating point literal of type long double. For

example,

3.1452L –11.45e2L

2.01L 2.234E7L

3.4.3 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ‘x’, optionally preceded by the

letter L, as in L ‘x’.

Types of character literals ---|-- Narrow (ordinary) character literal
 |

|-- Wide character literal
 |

|-- Escape sequence characters
 |

|-- Trigraph sequence characters

(a) Narrow (Ordinary) Character Literal A narrow (ordinary) character literal is one or more characters

enclosed in single quotes. In other words, a character literal that does not begin with L is an ordinary

character literal, also referred to as a narrow-character literal.

An ordinary character literal that contains a single c-char has type char, with value equal to the numerical

value of the encoding of the c-char in the execution character set. An ordinary character literal that contains

more than one c-char is a multicharacter literal. A multicharacter literal has type int and implementation

defi ned value.

For example,

‘a’

‘?’

‘1’

(b) Wide Character Literal A character literal that begins with the letter L, such as L‘x’, is a wide-character

literal. A wide-character literal has type wchar_t. The value of a wide-character literal containing a single

c-char has value equal to the numerical value of the encoding of the c-char in the execution wide-character

set. The value of a wide-character literal containing multiple c-chars is implementation defi ned.

For example,

L‘a’

L‘?’

L‘1’

 Programming with C++42

(c) Escape Sequence Characters The backslash (\) is used to denote non-graphic characters and other

special characters for specifi c operation. These characters are called escape sequence characters. Table 3.4

summarises the escape sequence characters that are used in C++:

Table 3.4

 Escape

sequence

Character Meaning

\a BEL alert a bell character

\n NL or LF newline or line feed

\t HT horizontal tab

\b BS backspace

\r CR carriage return

\f FF form feed

\v VT vertical tab

\\ \ back slash

\’ ’ single quote

\” ” double quote

\0 NULL null character

\? ? question mark

\000 000 octal value

\xhhh hhh hexadecimal value

Note that the null character ‘\0’ is to be distinguised from 0 (zero, not the alphabet ‘o’)

(d) Trigraph Sequence Characters Before any other processing takes place, each occurrence of one of the

following sequences of three characters (“trigraph sequences” is replaced by the single character indicated

in Table 3.5.

Table 3.5

trigraph replacement

??= #

??/ \

??’ ^

??([

??)]

??! |

??< {

??> }

??- ~
For example,
 ??=defi ne arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes
 #defi ne arraycheck(a,b) a[b] || b[a]

Trigraph replacement is done left to right, so that when two sequences which could represent trigraphs

overlap, only the fi rst sequence is replaced. Characters that result from trigraph replacement are never part

of a subsequent trigraph.

 Data Types, Operators and Expressions 43

For example,

 The sequence “???=” becomes “?=”, not “?#”.

 The sequence “?????????” becomes “???”, not “?”.

3.4.4 String Literals

A string literal is a sequence of characters surrounded by double quotes, optionally beginning with the letter

L, as in “...” or L“...”.

Types of string literals ---|-- Narrow (ordinary) string literal
 |
 |-- Wide string literal

(a) Narrow (Ordinary) String Literal A narrow or ordinary string literal is a sequence of characters

surrounded by double quotes and that does not begin with L is an ordinary string literal, also referred to as

a narrow string literal. An ordinary string literal has type “array of n const char” and static storage duration,

where n is the size of the string and is initialised with the given characters.

For example,

 “abc”

 “this is a test program by Ravich”

 “1234”

(b) Wide String Literal A string literal that begins with L, such as L“computer”, is a wide string literal. A

wide string literal has type “array of n const wchar_t” and has static storage duration, where n is the size of

the string and is initialized with the given characters.

The following are for wide string literal representation:

L“abc”

L“this is a test program”

L“1234”

3.4.5 Boolean Literals

The Boolean literals are the keywords false and true. Such literals have type bool. They are not lvalues.

The value of the boolean literal is given below:

 ∑ true

 ∑ false

3.5 VARIABLES

A variable is the symbolic address of a location in memory where data can be stored. Variables are object of

the program elements that may change its contents of the value during program execution.

In some programming languages like FORTRAN one must be cautious in selecting the identifi ers for

integers and reals as there is a lot of restriction in the use of variable names. Sometimes, the above restriction

will make the source code look clumsy. In C++, no such rules are used to identify a variable separately as

integer and real in a program, except, the standard rules applicable for forming a user defi ned identifi er.

Every identifi er in a C++ program has a type associated with it. This type determines what operations

can be applied to the name and how such operations are interpreted. Variables in C++ can be classifi ed into

four types based on its data type: (i) integer variables, (ii) real variables, (iii) character variables, and (iv)

boolean variables

 Programming with C++44

Types of variables --|-- Integer variables
 |
 |-- Real or fl oating point variables
 |
 |-- Character variables
 |
 |-- Boolean variables

(a) Integer Variables Identifi ers which are used to hold integer data items are called integer variables. All

integer variables that are used within a program should be declared in the variable declaration part of the

program. The standard identifi er ‘int’ is used to declare the integer group of variables.

The general syntax for declaring an int variable is:
 int id1,id2;

where id1, id2 are the list of integer variables that are to be used in a program.

For example, following are some valid integer variable declarations:
 int a,b;
 int x = 10,y = 20,z = 30;

In the fi rst statement, the user defi ned variables ‘a’ and ‘b’ are declared as integer variables in which ‘a’

and ‘b’ are the symbolic representation of the memory address for manipulating only with an integer data

type. If the variables are defi ned as integer group and any attempt is made to assign any other data type

such real or boolean or character, then computer will display an error message. The second statement of the

variable declaration of the above example contains three variables as integer type namely ‘x’, ‘y’ and ‘z’.

(b) Real Variables Identifi ers which are used to manipulate fl oating point numbers (real numbers) are called

real variables. One of the standard identifi ers, namely, fl oat, double or long double is used to declare the

real group of variables.

The general syntax of the real variable declaration is:
 fl oat id1,id2,idn;

where id1,id2 and idn are the list of real variables that are to be used in a program.
 double fd1,fd2;

where fd1 and fd2 are the list of real variables of type double.

For example, following are some valid real variable declarations:
 fl oat x,y;
 fl oat abc = 1.2f;
 double a = 1.1,b = 2.2e-4,c = 1.1e-3;

Integer data can be assigned to fl oating point variables whereas, the other way is not permitted. Any

other data type such as boolean or character is not permitted to be assigned to a real type variable.

(c) Character Variables Variables which are used to store and manipulate only a single alphanumeric

character is known as character variable. The standard identifi er ‘char’ stands for character and is used to

declare the character group of variables.

The general syntax of the character variable declaration is:
 char id1,id2,idn;

 where id1,id2 and idn are the list of character variables that are to be used in a program.

For example, following are some valid character variable declaration:
 char ch1,ch2;
 char ch = ‘a’, ch3 = ‘?’;

where ch1,ch2, ch and ch3 are character variables that are used to handle only a single alphanumeric

character. No other data type is permitted to be assigned to a character variable.

 Data Types, Operators and Expressions 45

(d) Boolean Variables Variables which are used to handle only the boolean value of either ‘true’ or ‘false’

type are called boolean variables. The boolean data can be assigned from one variable to another or

sometimes it can be initialized but it cannot be given as input from the keyboard. The standard identifi er

‘bool’ is used to declare boolean variables in C++.

The general syntax of the boolean variable declaration is:

 bool id1,id2,idn;
 where id1,id2 and idn are the list of boolean variables that are to be used in a program.

For example, following are some valid boolean variable declarations:

 bool fl ag1 = true,fl ag2 = false;
 bool fl ag = 1;

where fl ag1 and fl ag2 are boolean variables that are used to handle only a boolean value such as ‘true’

or ‘false’.

Some invalid variable declarations Following are some examples of invalid variable declarations. The reasons

for such an invalid declaration are also given.
(1) fl oat rate of interest; // error

Note that there is no space permitted in the user defi ned variable if it is to be treated as a single

variable.
(2) integer a,b; // error

Note that the data type ‘int’ is wrongly placed as integer.
(3) char ‘a’, ‘b’ // error

where variables ‘a’ and ‘b’ are not the user defi ned identifi ers.
(4) bool cfl ag; //error
 char cfl ag;

Note that same variable name cannot be given to two different identifi ers.
(5) int x1,y1,x1; // error

where the user defi ned identifi er x1 has repeated twice which is also not permitted.

3.6 THE CONST DATATYPE

A constant is similar to a variable except that it holds one value for its entire existence. The compiler will issue

an error if one tries to change a constant. In C++, the const modifi er is used to declare a constant variable.

The main purpose of using the constant in a progam is

 ∑ to prevent inadvertent errors caused by the users

 ∑ to give names to unclear literal values

 ∑ to facilitate changes to the code

The general syntax of const variable is given below:

 const data_type identifi er = initial_value;

For example,

 const int i = 30;
 where i is a user defi ned const int variable and initialized with 30.

 const fl oat pi = 3.142;
 const char password = ‘?’;

The value of const data type is unalterable or unchangeable in a program. The const variables are

initialized at the time of declaration and they cannot be modifi ed or altered within a program. The const

variables are called as unalterable or unchangeable variables in a program.

 Programming with C++46

3.7 C++ OPERATORS

Operators are a set of symbols or notations which are used to perform a predefi ned operation within objects.

For example, plus (+) symbol is used to add the contents of the two operands. In general, an operator is

placed between the operands. Based on operator usage in the expression, the C++ operators can be classifi ed

into various groups such as arithmetic, logical, assignment, bitwise logical operators, etc.

In the following section, the different types of C++ operators and their usages are explained in detail.

Types of C++ operators --|-- Arithmetic operators
 |

|-- Assignment operators
 |

|-- Comparison and logical operators --|-- Relational
| |
|-- Bitwise operators |-- Equality
| |
|-- Special operators |-- Logical
 |-- Unary operators

 |
 |-- sizeof operator
 |
 |-- Ternary operator
 |
 |-- Comma operator
 |
 |-- Other operators

3.8 ARITHMETIC OPERATORS

In any computer programming language, arithmetic operations are the most basic and common operations

which is to be performed within two objects. Operators that are used to perform the arithmetic operations

are called arithmetic operators.

Arithmetic operators are known as binary operators as they require two variables to be evaluated. An

arithmetic operator with single operand is meaningless and hence the computer cannot evaluate with single

operand. For example, if one wants to multiply any two numbers, one has to enter or feed the multiplicand

and the multiplier. That is why, it is considered as a binary operator. In other words, an operator which

require two operands to be evaluated is called a binary operator.

Based on the data types, an arithmetic expression can be classifi ed into three types, namely, integer

mode, real mode and mixed mode operations.

Arithmetic types ---|-- integer mode operations
 |
 |-- real mode operations
 |
 |-- mixed mode operations

3.8.1 Integer Mode Arithmetic

Integer mode operators are the set of arithmetic operators used only for integer type operands, constants, or

expressions. The integer type expression always returns only an integer quantity.

 Data Types, Operators and Expressions 47

Following are the integer operators that are used for integer data types or operands in Table 3.6.

Table 3.6

operator meaning

+ addition

- subtraction

* multiplication

/ division

% modulus

(a) Modulus Operator % The modulus operator % gives the remainder after performing integer divisions of

two operands. For example, let us take two integer variables i and j. Then, i % j gives the remainder after

dividing i by j.

Some examples for % operator are:
 9/2 = 1
– 9/2 = –1
 9/(–2) = 1
– 9/(–2) = –1
 4/2 = 0
 4/(–2) = 0
 2/3 = 2

(b) Division Operator / The division operator / is used to get a quotient of two integer quantities after

performing integer division. For example, let us take two integer variables ‘i’ and ‘j’. Then, i/j gives the

quotient after dividing ‘i’ by ‘j’.

Some examples for / operator are:
– 9/2 = –4
 9/2 = 4
– 9/(–2) = 4
 9/(–2) = –4
 1/(–2) = 0
– 1/(–2) = 0
 0/2 = 0

The following rules are applied whenever % operator is used in an arithmetic expression:

 ∑ second operand of the % operator cannot be zero

 ∑ % operator gives the result either as an integer or zero.

Strictly speaking, % operator is used only for the integer data type and cannot be used for real mode or

mixed mode data type. For example, the following simple arithmetic expression shows how C++ compiler

evaluates the operators of the data types within the operands.

a = 1 , b = 2 and c = 3;
 (1) a * b / c
 1* 2 / 3

 (1 * 2) / 3
 2 / 3
 0

The above expression evaluates and gives the value of the statement as 0.

Consider the following example,
(2) a * b % c + 1
 1 * 2 % 3 +1
 ((1 * 2) % 3) +1
 (2 % 3) +1
 2 + 1
 3

 Programming with C++48

The second expression evaluates and gives the value as 3.

Following are some of invalid usage of the % and / operators in an expression:

 15 % 0 - second operand of % must be nonzero

 23.3 % 1.1 - both operands of % must be integer data types

 17 / 0 - second operand of / must be nonzero

3.8.2 Real Mode Arithmetic

Real mode arithmetic expressions are formed using real mode quantities such as constants, variables,

functions with real mode arithmetic operators. Following are the real mode arithmetic operators that are

used in C++ compiler in Table 3.7.

Table 3.7

operator meaning

+ addition

- subtraction

* multiplication

/ division

For example, following variables are declared in real mode whose values are assigned as ;

 x = 1.1, b = 2.2 and c = 3.3
(1)
 a + b * c
 1.1 + (2.2 * 3.3)
 1.1 + 7.26
 8.36

The above expression evaluates and gives the value as 8.36

Consider the following second expression
(2)
 a + b - c * a
 1.1 + 2.2 - 3.3 * 1.1
 1.1 + 2.2 - (3.3 * 1.1)
 1.1 + 2.2 - 3.63
 3.3 - 3.63
 -0.33

The above expression evaluates and displays the value as –0.33

Note that while using division / operator, the second operand must be nonzero.

3.8.3 Mixed Mode Arithmetic

When an integer and real quantities such as constants, variables, expressions are mixed to form an

expression, it is called as mixed mode arithmetic operations. While constructing mixed mode arithmetic

expressions, one has to note that the integer specifi c operators such as / and % should be declared only as

integer data type. These operators yield the result also an integer mode.

For example, integer division / and real mode division / give two different results as:

Integer Mode
int a = 6,b = 8;
int result;
result = a/b;
that is, 6 / 8 = 0 (integer mode division)

 Data Types, Operators and Expressions 49

Real Mode
fl oat a = 6, b = 8;
fl oat result;
result = a/b;
that is, 6.0 / 8.0 = 0.75 (real mode division)

Mixed Mode
int a = 6;
fl oat b = 8f;
result = a/b;
that is, 6/8 = 0.75 (mixed mode division)

In the mixed mode operation, if an expression involving both integer and real values are to be evaluated,

C++ compiler fi rst converts the integer operands to real mode and then the expression will be evaluated. The

result of such an expression is always a real value but the C++ compiler drops the digits after the decimal

point. In order to improve the precision, the cast operation is done. Casting is a process of converting one

data type to another without dropping the precision or number of digits. The cast operator will be discussed

subsequently in this chapter. In general, the casting operation is done in the following form:
int a,b;
a = 6;
b = 8;
double result = (double)a / (double)b;

3.8.4 Arithmetic Operator Precedence

The operator precedence is a set of rules, in which a C++ operator gets evaluated in an hierarchical order. The

list of priority levels in which C++ arithmetic operators are carried out is given in the following Table 3.8.

Table 3.8

priority level operators

highest parentheses

high % / *

low + -

When an arithmetic expression containing two or more operators are to be evaluated, the operations are

performed one at a time, in sequence. The associativity of the arithmetic operators are from left to right.

For example, consider the following arithmetic expression and see how it gets evaluated:
 x = 1, y = 4 and z = 2
 x + y % z * 5 - y

The above expression will be evaluated in the following manner as per the precedence rules designed in

the C++ compiler.
x + ((y % z) * 5) - y
1 + ((4 % 2) * 5) - 4
1 + ((4 % 2) * 5) - 4
1 + (0 * 5) - 4
1 + 0 - 4
1 - 4
 - 3

The expression gives the result as –3

3.8.5 Use of Parentheses

For example, consider the following arithmetic expression and the order of evaluation:
x = 38, y = 100 and z = 64
x + y / z

 Programming with C++50

If no parenthesis is used, then the C++ compiler apply the precedence rules based on the default setting

of the compiler and hence, the above expression will be evaluated as:
x + (y / z)
38 + (100 / 64)
 38 + 1
 39

The / operator has higher priority than the addition operator + and so, the above expression gives the

result as 39.

In case, one intends to evaluate the addition operator fi rst, then the parentheses are required so that the

default order of precedence of arithmetic operators can be changed. The purpose of using parentheses is

to change the order of precedence from the default setting by the compiler, to the user choices. Of course,

inside the parentheses, the same order of precedence will be applied.

For example, consider the following expression:
 (x + y) / z
 (38 + 100) / 64
 138 / 64
 2

The parentheses have the highest priority of all arithmetic operators and so the above expression gives

the value as 2.

3.8.6 Subexpression

An expression that is enclosed in parentheses within another expression is called a subexpression. For

example, suppose the following variables are defi ned, whose values are assigned as:
a = 125, b = 40, c = 6, d = 5 and e = 72
(a + b % c) * d - e

In the above expression, (a + b % c) is a subexpression and within the subexpression, the same

order of the precedence is used to evaluate an expression. The above expression is evaluated as follows:
(a + b % c) * d - e
(125 + 40 % 6) * 5 - 72
 (125 + 4) * 5 - 72
 129 * 5 - 72
 645 - 72
 573

In case, a subexpression itself is enclosed within many parentheses, the innermost parentheses will be

evaluated fi rst. For example, consider the following expression:
a = 5, b = 4, c = 6, d = 3, e = 9
(a*b-c) % e + ((b+c) *e / d)
 (5*4 -6) % 9 + ((4+6) * 9 / 3)
 (20 -6) % 9 + ((10 * 9 / 3)
 14 % 9 + (90 / 3)
 5 + 30
 35

The above expression gives the value as 35.

3.9 ASSIGNMENT OPERATORS

A statement which contains an assignment operator is called the assignment statement and it is used to store

the value of an expression in the computer memory for further reference. In other words, an assignment

operator is used to assign back to a variable, a modifi ed value of the present one. The assignment statement

is one of the most common statements in any computer programming language.

 Data Types, Operators and Expressions 51

The general syntax of the assignment statement is given in Table 3.9(a).
 variable = expression;

where expression is any valid arithmetic or logical expression.

Table 3.9(a)

Operator Meaning

= Assign Right Hand side (RHS) value to the Left Hand Side (LHS)

The symbol = is used as an assignment operator, and it is evaluated at the last.

The assignment operator does two things. First, the expression on the right side of the assignment

statement is evaluated. Then the result is stored in the variable on the left side of the assignment operator.

The type of expression on the RHS must agree with the type of the target variable on the LHS of the

assignment operator. For example, one can only assign an expression of type Boolean to a variable of

Boolean type, or an expression of string type to a variable of string type. There are two exceptions. For

example, an integer may be assigned to a real variable (but not vice versa) and a char value may be assigned

to a string variable (but not vice versa). Note that the expression on the right may be any valid C++

expression.

Following are valid C++ assignment statements:
 count = 10;
 a = b+y;
 nextchar = nextchar+1;
 index = 2*count+1;

Some of the invalid assignment expressions are:
 x := a+b; - the colon symbol (:) is not allowed

 index+1 = index; - the assignment operator is placed wrongly

 a+b+d = c; - LHS should be a single variable but not an expression

The corrected code of the above invalid statements are given below:
 x = a+b;
 index = index+1;
 c = a+b;

3.10 ARITHMETIC ASSIGNMENT OPERATORS

An assignment operator is used to assign back to a variable, a modifi ed value of the present holding. The

following Table 3.9(b) given the summary of arithmetic assignment operator used in C++:

Table 3.9(b)

Operator Meaning

= Assign right hand side (RHS) value to the left hand side (LHS).

+= Value of LHS variable will be added to the value of RHS and assign it back to the variable in LHS.

– = Value of RHS variable will be subtracted from the value of LHS and assign it back to the variable in LHS.

*= Value of LHS variable will be multiplied by the value of RHS and assign it back to the variable in LHS.

/= Value of LHS variable will be divided by the value of RHS and assign it back to the variable in LHS.

%=
The remainder will be stored back to the LHS after the integer division is carried out between the LHS

variable and the RHS variable.

(Contd)

 Programming with C++52

Operator Meaning

>>= Right shift and assign to the LHS.

<<= Left shift and assign to the LHS.

&= Bitwise AND operation and assign to the LHS.

|= Bitwise OR operation and assign to the LHS.

^= Bitwise complement and assign to the LHS.

The symbol = is used as an assignment operator and it is evaluated at the last. Remember that equal to

= is an operator and not an equation maker and hence, it can appear anywhere in place of another operator.

The following are valid C++ statements.
 a = b = c+4;
 c = 3*(d = 12.0/x);

For example,
 x += y is equal to x = x+y
 x -= y is equal to x = x-y;

3.11 COMPARISON AND LOGICAL OPERATORS

Operators that are used to compare and relate two quantities of numbers, strings, or characters in C++ are

called comparison operators. In general, the comparison and logical operators are used in a program to

make a decision or a selection based on some condition.

Comparison and logical operators can be classifi ed into three types: (i) relational operators, (ii) equality

operators, and (iii) logical operators. This section shows how to defi ne and use a comparison and logical

operators in C++. The following Table 3.10 is a list of operators that are used in C++ for decision making

purpose.

Table 3.10

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= = Equal to

!= Not equal to

&& Logical AND

|| Logical OR

! Not

Note that all of the above operators return ‘1’ for true and ‘0’ for false.

3.11.1 Relational Operators

Operators that are used to relate and compare any two items are called relational operators. In other words,

relational operators compare values to see if they are equal or if one of them is greater than the other and so

on. An expression that uses a relational operator is known as a relational expression.

Relational operators in C++ produce only a one or a zero result. These are often specifi ed as “true”

or “false” respectively, since these are the only two values possible. The following operators are used to

perform the relational operations of the two variables or expressions.

 Data Types, Operators and Expressions 53

Operators that are used to perform relational operations of two variables or arithmetic expressions are

given below in the Table 3.11.

Table 3.11

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

The general syntax of the relational operators is:
 expression_1 relational_operator expression_2

The expression_l will be compared with expression_2 and depending upon the relation like

greater than, greater than or equal to and so on, the result will be either “0” or “1”.

For example, following is a list of simple relational expression and their corresponding results:

Expression Logical Result C++ Return Value

 3 > 4 false 0

6 <= 2 false 0

10 > –32 true 1

(23*7) >= (–67+89) true 1

For example, consider the following variables which are defi ned as integer data type whose values are

assigned as:
 a = 4, b = 6, c = 8,
 (a + b * c) != (a * b + c)

Then the expression evaluates in the following manner:
 (4 + 6 * 8) != (4 * 6 + 8)
 (4 + 48) != (24 + 8)
 52 != 32
 false, which returns 0.

The above expression evaluates as ‘false’. The relational operators have the lowest priority than the

arithmetic operators. If more than one operator occurs in the same precedence of a given expression, then

the evaluation will be done from left to right.

 3.11.2 Equality Operators

Operators that are used to equate two quantities are called equality operators. When two items are compared,

the result will be either equal or not equal. The two quantities can be any arithmetic expression, character or

string data types. The result of the equality expression is always one of the values either “0” or “1”

These operators are normally represented by using the symbol = = (equal to) and ! = (not equal to). Note

that the single equal to sign = is the assignment operator in C++. Proper care must be taken while using these

operators. The following Table 3.12 gives the summary of equality operators used in C++:

Table 3.12

Operator Meaning

= = Equal to

!= Not equal to

 Programming with C++54

Like the relational operators, the equality operators also produce the result, either ‘0’ or ‘1’, depending

on the condition used in a program.

The general syntax of the equality operators is:
 expression_1 equality_operator expression_2

The expression_1 will be equated with expression_2 and depending on the relation like equal

to and not equal to, the logical result will be either ‘true’ or ‘false’.

For example, following is a simple expression which uses the equality of two items:

Expression Logical Result C++ Return Value

3 = = 4 false 0

 6 != 2 true 1

10 != –32 true 1

(23*7) = = (–67+89) false 0

‘a’ = = ‘A’ false 0

‘a’ != ‘b’ true 1

For example, consider the following variables which are defi ned as integer data type whose values are

assigned as:
 a = 4, b = 6, c = 8,
 (a + b * c) != (a * b + c)

The above expression evaluates in the following manner:
 (4 + 6 * 8) != (4 * 6 + 8)
 (4 + 48) != (24 + 8)
 52 != 32
 true, which returns 1.

The above expression evaluates as true. The relational and the equality operators have the lowest

priority than the arithmetic operators. If more than one operator occurs in the same precedence of a given

expression, then the evaluation will be done from left to right.

3.11.3 Logical Operators (Boolean Operators)

Operators that are used to make a decision or a selection of a program based on the logical values of either

‘true’ or ‘false’ are called as logical operators. The logical operators are also called Boolean operators. Any

expression either integer arithmetic or character or boolean data which uses logical operators is called logical

expression. Of course, the result of the logical expression will be one of the boolean values i.e., either ‘true’

or ‘false’. Recall that in C++, ‘true’ is equivalent to any nonzero value, and ‘false’ is equivalent to zero.

Boolean variables are used in programs for the following reasons:

 ∑ to avoid multiple evaluations of boolean expressions

 ∑ to improve program clarity

 ∑ to serve as indicators, called fl ags, of program status.

Logical operators AND and OR are lower in precedence than the relational operators < and > which are

lower than the arithmetic operators + and –. The operator AND is higher than the operator OR. Some other

languages place the logical operators higher than the relational operators, which require parentheses.

The list of the logical (Boolean) operators that are used in C++ is given in Table 3.13.

Table 3.13

Operatior Meaning

&& Logical AND

|| Logical OR

! Logical negation

 Data Types, Operators and Expressions 55

(a) Logical AND (&&) The logical AND operator (&&) gives a value of TRUE, if and only if, both its

operands have the value TRUE. Otherwise, the value is FALSE. In other words, a compound expression is

true, when two conditions (expressions) are true.

The general syntax of the logical AND (&&) operator usage is as given below:
 expression_1 && expression_2

where expression_1 and expression_2 must be one of these expressions: integer arithmetic

expressions, character data or Boolean data types. When a character data type is used for logical operations,

character is converted to integer and are thus allowed in the expression.

The following table 3.14 summarises the various possible conditions and their results of the logical AND

(&&):

Table 3.14

Situation Results

true && true true

true && false false

false && true false

false && false false

Consider the following variables which are declared as integer data with the values assigned as:

For example,
 a = 4, b = 5, and c = 6
 (a < b) && (b < c)

Then, the logical expression evaluates in the following manner:
 (4 < 5) && (5 < 6)
 true && true
 true

The result of the above expression is true which returns 1.

Short circuit evaluation of logical AND A logical operator expression consists of two expressions separated

by one of the logical operators (&&) and (||). For each of the logical operators described in this section,

the second operand is not evaluated at all if the value of the fi rst operand provides suffi cient information to

determine the result of the logical operator expression.

In a short circuit evaluatioon, the logical AND (&&) will not evaluate the second condition, if the fi rst

condition is false, due to the result will be false.

For example, consider the following expression
 int a = 10, b = 20, c = 30;
 (a > b) && (b < c)
 (10 > 20)
 false

The expression (b < c) will not evaluate when the fi rst expression is false. In case, the fi rst expression is

true, the logical AND (&&) operator forces the second expression to be evaluated.
 (a < b) && (b > c)
 (10 < 20)
 true && (20 >30)
 true && false

 false, which returns 0

(b) Logical OR (||) The logical OR operation gives a value of TRUE if either or both of the operands has

a value TRUE; otherwise the value is FALSE. In other words, a compound expression is false, when two

conditions (expressions) are false.

 Programming with C++56

The general syntax of the logical OR operator (||) usage is given below:
 expression_1 || expression_2

where expression_1 and expression_2 must be one of these expressions: integer arithmetic

expressions, character data or Boolean data types. When a character data type is used for logical operations,

character is converted to integer and are thus allowed in the expression.

The following Table 3.15 summarises the various possible conditions and their results of the logical OR (||):

Table 3.15

Situation Results

true || true true

true || false true

false || true true

false || false false

Consider the following variables which are declared as integer data with the values assigned as:
 a = 4, b = 5, and c = 6
 (a < b) || (b > c)

Then, the logical expression evaluates in the following manner:
 (4 < 5) || (5 > 6)
 true || false
 true

The result of the above expression is true which returns 1.

Short circuit evaluation of logical OR In a short circuit evaluation, the logical OR (||) will not evaluate the

second condition if the fi rst condition is true, due to the result will be true.

For example, consider the following expression
 int a = 10, b = 20, c = 30;
 (a < b) || (b > c)
 (10 < 20)
 true

The expression (b < c) will not evaluate when the fi rst expression is true. In case, the fi rst expression

is false, the logical OR (||) operator forces the second expression to be evaluated.
 (a > b) || (b < c)
 (10 > 20)
 false || (20 < 30)
 false || true

 true, which returns 1.

(c) Logical Negation Operator (!)

The logical negation or NOT operator (!) is used to change the value of a logical expression false to true or

from true to false. The results of logical negation operator (!) are in Table 3.16

Table 3.16

Situation Results

!(true) false

 !(false) true

The general form of the expression is:
 !(expression)

 Data Types, Operators and Expressions 57

Depending on the value of the expression, i.e. whether it is true or false the result will be complement of

the value of the expression.

Consider the following variables which are declared as integer data with the values are assigned as:
 a = 4, b = 5, and c = 6

(1) !(a < b) Then, the logical expression evaluates in the following manner:
!(4 < 5)
!(true)
false

The result of the above expression is false which returns 0.

(2) For example, consider the following complex logical expression:
 !(a < b) || (c > b)
 !(4 < 5) || (6 > 5)
 !(true) || true
 false || true
 true, which returns 1.

This expression evaluates to true as the logical negation operator has the highest priority among the

relational and logical operators and that is why the above expression gets the value as ‘true’.

(3) Consider the following logical expression:
 ! ((a < b) || (b > c))
 ! ((4 < 5) || (5 > 6))
 ! (true || false)
 ! (true)
 false, which returns 0.

The above expression evaluates to false because the parentheses have the fi rst priority and so the inside

parentheses will be evaluated fi rst. That is why, the above expression gives the value as ‘false’. To resolve

ambiguities in the order of application of Boolean operators, the following Table 3.17 precedence rules are

applied:

Table 3.17

Operator Priority

! highest (evaluate fi rst)

&& intermediate

 || Lowest (evaluate last)

Parentheses can be used to change the order of evaluation.

The negation operator has a higher precedence level than AND and OR. Parentheses are usually

necessary to arrive at desired order of evaluation. Since the logical AND has a higher precedence than the

logical OR, some care should be taken wherever required.

For example,
 expression1 || expression2 & & expression3 || expression4

The computer will be evaluated as
 expression1 || (expression2 & & expression3) || expression4

Suppose, one intends to evaluate the above expression in the following manner:
 (expression1 || expression2) && (expression3 || expression4)

Then, use of parentheses is absolutely essential.

For example, consider the following expression;
 a = 4, b = 5, and c = 6

 Programming with C++58

(1)
 (a < b) || (b > c) && (a > b) || (a > c)
 (4 < 5) || (5 > 6) && (4 > 5) ||(5 > 6)
 true || false && false || false
 true || (false && false) || false
 true || false || false
 true || false
 true, which returns 1.

The logical AND (&&) has higher precedence over the logical OR (||) and that is why, the above

expression evaluates as ‘true’.

(2) Now consider the second expression:
 ((a < b) || (b > c)) && ((a > b) || (a > c))
 ((4 < 5) || (5 > 6)) && ((4 > 5) || (5 > 6))
 (true || false) && (false || false)
 true && false
 false, which returns 0.

To avoid unpredictable or undesirable results, it is better to use parentheses.

The precedence rules that are used in C++ operators are given in Table 3.18:

Table 3.18

Precedence Operators

highest ! unary + unary – * / % && + – ||

Lowest < <= != = = >= >

The last =

Note that operations within parentheses are performed before operations not enclosed in parentheses.

In the case of nested parentheses, operations within the inner parentheses are evaluated before those in

the outer parentheses. Otherwise, operations having the same precedence are evaluated in the left to right

sequence of their appearance.

3.12 BITWISE OPERATORS

This section deals with the bitwise operations which are supported by the C++ compilers. There are some

situations wherein bitwise operations are to be performed, which is possible in C++.

The following operators are used for the bitwise logical decision making. Normally, most of the high

level programming languages do not support the bitwise operations. The bitwise operators are one of the

salient features of C++. The following operations can be performed using bitwise operators:

 ∑ bitwise AND

 ∑ bitwise OR

 ∑ bitwise exclusive OR

 ∑ bitwise left shift

 ∑ bitwise right shift

 ∑ bitwise complement

The bitwise operators that are supported in the C++ are given in Table 3.19

 Data Types, Operators and Expressions 59

Table 3.19

Operator Meaning

~ Bitwise complement

& Bitwise AND

| Bitwise inclusive OR

 ^ Bitwise exclusive OR (XOR)

>> Bitwise right shift

<< Bitwise left shift

(a) Bitwise Complement Operator (~) The complement operator (~) switches all the bits in a binary pattern,

that is, all the zeroes become ones and all the ones become zeroes. The complement of a pattern is often

useful in signalling and controlling other devices where several different signals may be complement to

each other. The following example shows how the bitwise complement works without using a sign bit:

Variable Value Binary pattern

x 23 00010111 (8 bits)

~x 232 11101000

y ff 11111111

~y 00 00000000

The general syntax of the bitwise NOT (~) operator is:
 var2 = ~var1;

where var2 and var1 are declared as one of the simple data types, namely, int, short int, etc.

For example, the following C++ program segment shows how to use the bitwise NOT operator (~):
 int a = 5,b;
 b = ~a;
 cout << “a = ” << a;
 cout << “b = ” << b;

(b) Bitwise Logical Operators This section shows us how to use the bitwise logical operations. It has already

been discussed in the previous section that C++ supports various types of logical (boolean) operators

that are used for making a decision or a selection of the part of a program. The following bitwise logical

operators are used for logical decision making in C++:

 ∑ bitwise AND (&)

 ∑ bitwise OR (|)

 ∑ bitwise exclusive OR (^)

(i) Bitwise AND operator (&) The bitwise AND operation will be carried out between the two bit patterns of

the two operands. For example,

Variable Value Binary pattern

x 5 0101

y 2 0010

x & y 0 0000

a 6 0110

b 3 0011

a & b 2 0010

 Programming with C++60

To generate a 1 bit in the result, bitwise AND needs a one in both numbers. Masking bits can be done

using bitwise AND. The most useful part of the bitwise operations is a bitwise AND. Normally it is called

a mask operator and one may select the particular pattern as either a one or a zero and it selects certain

specifi c bits and ignores the others.

The general syntax of the bitwise AND (&) operator is:
 var3 = var2 & var1;

where var2 and var1 are declared as one of the simple data types, namely, int, short int etc.

For example, the following C++ program segment shows how to use the bitwise AND operator (&):
 int a = 5,b = 2,c;
 c = a & b;
 cout << “a = ” << a;
 cout << “b = ” << b;
 cout << “c = ” << c;

(ii) Bitwise OR operator (|) The bitwise OR operations are similar to the bitwise AND and the result is 1 if

any one of the bit value is 1. The symbol (|) represents the bitwise OR.

For example,

Variable Value Binary pattern

x 5 0101

y 2 0010

x | y 7 0111

a 6 0110

b 1 0001

a | b 7 0111

The general syntax of the bitwise OR operator (|) is:
 var3 = var2 | var1;

where var2 and var1 are declared as one of the simple data types, namely, int, short int, etc.

For example, the following C++ program segment shows how to use the bitwise OR operator (|):
 int a = 5,b = 2,c;
 c = a | b;
 cout << “a = ” << a;
 cout << “b = ” << b;
 cout << “c = ” << c;

(iii) Bitwise Exclusive OR (XOR) Operator (^) The bitwise exclusive OR will be carried out by the notation (^).

To generate a 1 bit in the result, a bitwise exclusive OR needs a 1 in either number but not both.

Variable Value Binary pattern

x 5 0101

y 2 0010

x ^ y 7 0111

a 6 0110

b 3 0011

a ^ b 5 0101

The general syntax of the bitwise XOR operator (^) is:
 var3 = var2 ^ var1;

 Data Types, Operators and Expressions 61

where var2 and var1 are declared as one of the simple data types, namely, int, short int. etc.

For example, the following C++ program segment shows how to use the bitwise XOR operator (^):
 int a = 5,b = 2,c;
 c = a ^ b;
 cout << “a = ” << a;
 cout << “b = ” << b;
 cout << “c = ” << c;

(c) Shift Operations Shift operations take binary patterns and shift the bits to the left or right, keeping the

same number of bits, by dropping shifted bits off the end and fi lling in with zeroes from the other end. C++

provides two types of shift operations such as left shift and right shift.

(i) Shift bitwise left operator (<<) The << operator is used for left shifting.

Variable Value Binary pattern

x 33 00100001 (8 bits)

x << 1 the bit pattern of the x value is left shifted once.

x 66 0 01000010

x << 3 the bit pattern of the x value is left shifted by thrice.
 0 0 1 0 0 0 0 1
 0 0 1 0 0 0 0 1 0
 0 1 0 0 0 0 1 0 0
 1 0 0 0 0 1 0 0 0

The resultant bit pattern will be
 0 0 0 0 1 0 0 0

The general syntax of the bitwise shift left operator (<<) is:
 var2 = var1 << n;

where var2 and var1 are user defi ned identifi ers whose data types are integers. The counter value n is

used to shift the bit pattern of the var1, leftwise n times and the resultant value of the var1 is assigned to the

var2.

For example, the following C++ program segment shows how to use the bitwise shift left operator (<<):
 int a = 33,b = 3,c;
 c = a << b;
 cout << “a = ” << a;
 cout << “b = ” << b;
 cout << “c = ” << c;

(ii) Shift bitwise right operator (>>) The right shift >> operator is used for right shifting.

Variable Value Binary pattern

y 41 00101001

y >> 1 the bit pattern of the x value is right shifted once.

y 20 00010100 1 skipped

y >> 3 the bit pattern of the y value is right shifted thrice
 0 0 1 0 1 0 0 1
 0 0 0 1 0 1 0 0 1
 0 0 0 0 1 0 1 0 0
 0 0 0 0 0 1 0 1 0

the resultant bit pattern will be
 0 0 0 0 0 1 0 1

 Programming with C++62

The general syntax of the bitwise shift right operator (>>) is:
 var2 = var1 >> n;

where var2 and var1 are user defi ned identifi ers whose data types are integers. The counter value n is

used to shift the bit pattern of the var1, right n times and the resultant value of the var1 is assigned to the

var2.

For example, the following C++ program segment shows how to use the bitwise shift right operator

(>>):
 int a = 5,b = 2,c;
 c = a >> b;
 cout << “a = “ << a;
 cout << “b = “ << b;
 cout << “c = “ << c;

3.13 BITWISE ASSIGNMENT OPERATORS

All the bitwise operators may appear with the assignment operator just like the arithmetic operators

discussed earlier.

Assignment operators

∑ Arithmetic assignment operators

∑ Bitwise assignment operators

The bitwise assignment operators are summarised in the following table.

Bitwise Assignment Operators

The summary of the bitwise assignment operators is given in table 3.20:

Table 3.20

Operator Meaning

>>= Right shift and assign to the LHS

<<= Left shift and assign to the LHS

&= Bitwise AND operation and assign to the LHS

|= Bitwise OR operation and assign to the LHS

^= Bitwise exclusive OR and assign to the LHS

For example,

 (1) n >>= 1 means n = n >> 1
 n will be shifted right by 1 and then assigned back to variable n.

 (2) a <<= b means a = a << b
 the content of the a will be shifted left by the content of b and then assigned back to a.

 (3) x &= 4 means x = x&4
 The bitwise AND operation will be carried out between the bit patterns of the two operands, namely

x and 4 and then assigned back to x.

 (4) i ^= k means i= i^k
 The bitwise exclusive OR operation will be carried out between the bit patterns of the two operands,

namely i and k and then assigned back to i.

 (5) j |= 5 means j = j|5
 The bitwise OR operation will be carried out between the bit patterns of the two operands, namely j

and 5 and then assigned back to j.

 Data Types, Operators and Expressions 63

3.14 SPECIAL OPERATORS

There are some special operators used in the C++ language to perform a particular type of operation.

These special operators are mostly used for pointer and memory manipulation. Some of the examples for

the special operators are unary operators, ternary operator, incrementer, decrementer and sizeof operators.

These operators are very unique and special in C++.

3.14.1 Unary Operators

The unary operators require only a single expression to produce a line. Unary operators usually precede

their single operands. Sometimes, some unary operators may be followed by the operands such as

incrementer and decrementer. The most common unary operation is unary minus, where a minus sign

precedes a numerical literal, a variable or an expression.

The unary operators that are used in c++ are given in the Table 3.21.

Table 3.21

Operator Meaning

* Contents of the storage fi eld to which a

Pointer is pointing (refer chapter 8)

& Address of a variable (refer chapter 8)

– Negative value (minus sign)

! Negation (0, if value # 0 and 1,if value = 0)

~ Bitwise complement

++ Incrementer

– – Decrementer

type Forced type of conversion

sizeof Size of the subsequent data type or type in byte

(a) Pointer Operator (*) The pointer operator is used to get the content of the address operator pointing to a

particular memory element or cell.

(b) Address Operator (&) The address operator & is used to get the address of the other variable in an

indirect manner.

The pointer operator (*) and the address (&) are explained in Chapter 8 on “Pointers and Strings.”

(c) Incrementer and Decrementer Two special operators are used in C++, namely, incrementer and

decrementer. These operators are used to control the loops in an effective and compact manner.

(i) Incrementer The ++ (double plus) symbol or notation is used for incrementing by 1. For example,

++i; is equal to i = i+1;

i++; is equal to i = i+1;

There are two types of incrementers: prefi x incrementer (++i), and postfi x incrementer (i++). For the

time being, let us take it that they can be used according to a programmer’s liking but there are some special

conditions under which these incrementers are used very particularly.

In prefi x incrementer, fi rst it is incremented and then the operations are performed. On the other hand, in

the postfi x incrementer, fi rst the operations are performed and then it is incremented. However, the result of

the incremented value will be the same in both the cases.

 Programming with C++64

For example,

 int i = 7;
 (1) x = ++i;
 (2) x = i++;

 After execution, the value of i in both cases will be set to 8. But in the fi rst case, the value of x is set to

8 due to prefi x incrementer and the second case, the value of x is set to 7 only due to postfi x incrementer. In

the case of postfi x, fi rst the value is assigned and then incrementation is performed.

(ii) Decrementer The decrementer is also similar to the incrementer. The – – (double minus) symbol or

notation is used for decrementing by 1. For example, consider the following expression,

--i is equal to i = i-1;
i-- is equal to i = i-1;

In this also, there are two types of decrementers, prefi x decrementer (– –i) and postfi x decrementer (i– –).

In prefi x decrementer, fi rst it is decremented and then the operations are performed. On the other hand,

in the postfi x decrementer, fi rst the operations are performed and then it is decremented. However, the

result of the decremented value will be the same in both the cases.

For example,

 int i = 7;
 (1) x = --i;
 (2) x = i--;

After execution, the value of i in both cases will be set to 6. But in the fi rst case, the value of x is set to 6

due to prefi x decrementer and the second case, the value of x is set to 7 due to postfi x decrementer.

Summary of the incrementers and decrementers is given in Table 3.22 The difference between the prefi x and

postfi x is subtle but can be very important.

Table 3.22

Operator Symbol Form Meaning

prefi x increment ++ ++i increment i, then get value of i

prefi x decrement – – – –i decrement i, then get value of i

postfi x increment ++ i++ get value of i, then increment i

postfi x decrement – – i– – get value of i, then decrement i

Like the unary minus operator, the increment and decrement operators are unary. The operand must be a

scalar lvalue, it is illegal to increment or decrement a constant or a structure.
 ++5; // error

(d) The Sizeof Operator In general, the sizeof operator is used to fi nd the size of aggregate data objects

such as arrays, structures, classes and objects. The sizeof operator is used to give the direction to the C++

compiler to reserve the memory size or block to the particular data type which is defi ned in the structure

type of data in the linked list. The sizeof operator can be used in one of the following forms:
sizeof(t);
or
sizeof t;

where t is any data type or expression.

The sizeof operator accepts two types of operands: an expression or a data type. However, the expression

may not have type function, or void or be a bitfi eld. Moreover, the expression itself is not evaluated, the

compiler determines only what type the result would be.

 Data Types, Operators and Expressions 65

If the operand is an expression, sizeof returns the number of bytes that the result occupies the memory;

sizeof(13 + 5) - returns the size of an int (4 if ints are four bytes long)

sizeof(113.0 + 5) - returns the size of a double (8 if doubles are eight bytes long)

For expressions, the parentheses are optional, so the following is legal:

 sizeof x;
By convention, however, the parentheses are usually included. The operand can also be a data type, in

which case the result is the length in bytes of objects of that type:
 sizeof(char) - 1 byte

 sizeof(short) - 2 byte

 sizeof(fl oat) - 4 byte

The parentheses are required if the operand is a data type. Note that the results of most sizeof expressions

are implementation dependent. The only result that is guaranteed is the size of a char, which is always

1. One can also use the sizeof operator to obtain information about the sizes of the objects in the C++

environment. The following program prints the size of the basic data types:
#include <iostream>
using namespace std;
int main()
{
 cout << “char = ” << sizeof(char) << endl;
 cout << “short = ” << sizeof(short) << endl;
 cout << “int = ” << sizeof (int) << endl;
 cout << “long = ” << sizeof (long) << endl;
 cout << “fl oat = ” << sizeof(fl oat) << endl;
 cout << “double = “ << sizeof (double) << endl;
 return 0;
}

Output of the above program

char = 1
short = 2
int = 4
long = 4
fl oat = 4
double = 8

(e) Cast Operator The cast operator is to convert the set of declared data type to some other required type.

C++ provides a specifi c and a special way for converting one data type to the other using a cast operator.

3.14.2 Ternary Operator (?:)

C++ includes a very special operator called the ternary or conditional operator. It is called ternary because

it uses three expressions. The ternary operator acts like a shorthand version of the if-else construction. The

general format of the ternary operator is:
 expression1 ? expression2 : expression3

which results in either expression2 or expression3 being evaluated. If expression1 is true, then

expression2 is evaluated; otherwise, expression3 is evaluated. The conditional operator is used in

place of a single if-else to make an assignment.

For example,
 if ((value % 2) == 0)
 even = true;
 else
 even = false;

 Programming with C++66

This can be written as
 even = ((value % 2) == 0) ? true: false;

Another example would be to fi nd the larger of two numbers,
 if (fi rst > second)
 min = fi rst ;
 else
 min = second;

 This can be written as
 min = (fi rst > second) ? fi rst: second;

3.14.3 Comma Operator

C++ uses the comma in two ways. The fi rst use of comma is as a separator in the variable declaration.
 int a,b,c;
 fl oat x,y,z;

Another use is as an operator in an expression for loop. It is explained in detail in the Chapter 5 on

“Control statements”.

3.14.4 Other Operators

The following are the special operators used in C++ for representing arrays, structures, classes, unions and

pointers.

 (i) Parentheses for grouping expressions

 (ii) Membership operators

(a) Parentheses for Grouping Expressions () The precedence and associativity of each operator determines

whether it takes effect before or after the next operator in an expression. Often, it is more convenient to

control this order of evaluation. When parentheses are put around an element of an expression, that element

evaluates before anything outside the parentheses.

For example, (a+b) *c would cause the addition to be performed the multiplication, whereas a+b*c

would cause the multiplication to be performed.

(b) Membership Operator There are several kinds of variables used in C++, containing a set of values rather

than just one, namely arrays structures and unions. To represent the variables, membership operators are

used, which are represented as []. –>

3.15 TYPE CONVERSION

This section presents how to convert and promote one data type to another using the cast operator. The type

conversion is to convert the set of declared type to some other required type. It is easy to convert values

from one type to another type in a C++ program.

In certain situations, when some variables are declared as integer but sometimes it may be required to

get the result as fl oating point numbers.

For example, assume that the following type has been declared
 int x;
 fl oat y = 11.99912;

The question now arises whether, for example,
 x = y;

where x is an integer type and y is a fl oating point type, is a valid assignment.

 Data Types, Operators and Expressions 67

The answer to this question is in affi rmative, but we should be aware that truncation will take place. This

happens most often between fl oat and double, and between int and char, since converting between fl oat and

int or double and int involves cutting off all the decimal places.

Conversion can be carried out in two ways:

∑ Converting by assignment

∑ Using cast operator

(a) Converting by Assignment It is a usual way of converting a value from one data type to another by using

the assignment operator (equal to sign). This means that we can convert a value from one type to another

just by assigning a fl oat variable’s value to a double value variable, a char variable to an int variable or an

int variable to a fl oat variable.

For example,
 int x,y,z;
 fl oat a,b,c;
 double dvalue;
 x = 10;
 a = 3101.2567
 dvalue = 3546879.908
 b = x;
 y = a;
 z = dvalue;

The fi rst one is an integer value assigned back to a fl oating point number. In the second example, the

fl oat variable is assigned back to the integer variable, and in the third, the double value is assigned to the

fl oat variable.

In C++, converting by assignment operator is not recommended to the programmer, as it will truncate

the fractional or real parts and one may not get the desired results. To avoid this, there is a special way of

converting one data type to the other, by using the cast operator.

(b) Cast Operator Converting by assignment operator is carried out automatically but one may not get the

desired result. The cast operator is a technique to forcefully convert one data type to the other. The operator

used to force this conversion is known as the ‘cast operator’ and the process is known as ‘casting’. The cast

operator takes on the format.
 (cast-type) expression;

or
 cast-type (expression);

As an example, to force a fl oating point number to an integer, we could use the following.
 result = (int)(19.2/4);

or
 result = int (19.2/4);

The cast operation (int) casts not only the 19.2 but the entire expression. Thus, results receive the value

4, rather than the entire quotient 4.8. The cast operator takes precedence over most other operations.

To demonstrate the use of the cast operator, let us consider the following example:
 char ch;
 int x,y,z;
 fl oat abc;

(1) x = (int)ch;
 where ch is a character variable and force to convert as the integer data type

(2) abc = fl oat(y) / fl oat(z);
 where the expression (y/z) is an integer data type and force to convert as a fl oating point number.

 Programming with C++68

One of the uses of casts, is to promote an integer to a fl oating point number to ensure that the result of a

division operation is not truncated, as illustrated in the following example.

 3/2 which yields 1

because fractional part is truncated.

using cast operation
 result = fl oat (3) / fl oat(2);

result is 1.5 because the 3 is converted to a fl oat.

Note that the cast operator has very high precedence, so the preceding expression is parsed as if it had

been written
 ((fl oat) 3) /2

Another use of the cast operator is to convert function arguments. Most of the runtime mathematical

library functions expect its arguments to be of type double. If the variables are integers, one needs to cast

them to double before pass them as arguments.

The ANSI C++ standard supports a new syntax for declaring the type of arguments that makes this sort

of cast unnecessary. The most frequent and important uses of casts involve pointers and data initialization.

3.16 ANSI C++ TYPE CASTING

In C++, one can certainly use C-style casts, but ANSI/ISO C++ provides several casting operators that old

C++ doest not support. These operators and their purposes are listed in the following Table 3.23:

Table 3.23 Casting operators available in ANSI/ISO C++

Operator Description

dynamic_cast Returns a valid object pointer only if the object used as its operand is of an expected type.

static_cast can be used to explicitly perform any implicit type conversion, much like the ANSI C cast.

const_cast can be used to remove any const, volatile or unsigned attribute from a class.

reinterpret_cast Allows any pointer type to be converted into any other pointer type; also allows any integral type

to be converted into any pointer type and vice versa.

(a) Dynamic_Cast The dynamic_cast operator is used to support and manipulate runtime identifi cation of

class objects addressed by pointer or reference. The general syntax of the dynamic_cast operator is,
 dynamic_cast <type>(expression)

(b) Static_Cast The static_cast operator is used to make explicit casts, without runtime type checking and

turns off warning messages. The general syntax of the static_cast operator is,
 static_cast <type>(expression)

One can use static_cast to make explicit the kinds of casts that the compiler could actually perform

implicitly (although it might issue a warning). For example, the following program illustrate show a static_

cast operator is used for casting from a fl oat value to an int value.
#include <iostream>
using namespace std;
int main()
{
 int sum;
 int abc = 10;
 fl oat pi = 3.99;
 int sum = static_cast <int>(pi) + abc;
 cout << “ sum = ” << sum << endl;
 }

 Data Types, Operators and Expressions 69

Output of the above program
 sum = 13

(c) Const_Cast The const_cast operator is used to remove the constness in a program. The general syntax of

the const_cast operator is,
 const_cast <type>(expression)

(d) Reinterpret_Cast The reinterpret_cast operator is used to support and realize low level reinterpretation

of the bit pattern of the expression. The general syntax of the reinterpret_cast operator is,
 reinterpret_cast <type> (expression)

3.17 SUMMARY OF ANSI C++ OPERATORS

The C++ language includes all C operators and adds several new operators. Operators specify an evaluation

to be performed on one of the following:

∑ One operand (unary operator)

∑ Two operands (binary operator)

∑ Three operands (ternary operator)

Operators follow a strict precedence, which defi nes the evaluation order of expressions containing these

operators. Operators associate with either the expression on their left or the expression on their right; this is

called “associativity.” The following Table 3.24 shows the precedence and associativity of C++ operators

(from highest to lowest precedence). Operators in the same segment of the table have equal precedence and

are evaluated left to right in an expression unless explicitly forced by parentheses.

Table 3.24

Operator Name or Meaning Associativity

:: Scope resolution None

. Member selection (object) Left to right

–> Member selection (pointer) Left to right

[] Array subscript Left to right

() Function call Left to right

() member initialization Left to right

++ Postfi x increment Left to right

– – Postfi x decrement Left to right

typeid() type name Left to right

const_cast Type cast (conversion) Left to right

dynamic_cast Type cast (conversion) Left to right

reinterpret_cast

static_cast

Type cast (conversion)

Type cast (conversion)

Left to right

Left to right

sizeof Size of object or type Right to left

++ Prefi x increment Right to left

– – Prefi x decrement Right to left

~ One’s complement Right to left

! Logical not Right to left

– Unary minus Right to left

(Contd)

 Programming with C++70

Operator Name or Meaning Associativity

+ Unary plus Right to left

& Address-of Right to left

* Indirection Right to left

new Create object Right to left

delete Destroy object Right to left

() Cast Right to left

.* Pointer-to-member (objects) Left to right

–>* Pointer-to-member (pointers) Left to right

* Multiplication Left to right

/ Division Left to right

% Modulus Left to right

+ Addition Left to right

– Subtraction Left to right

<< Left shift Left to right

>> Right shift Left to right

< Less than Left to right

> Greater than Left to right

<= Less than or equal to Left to right

>= Greater than or equal to Left to right

= = Equality Left to right

!= Inequality Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise inclusive OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

e1?e2:e3 Conditional Right to left

= Assignment Right to left

*= Multiplication assignment Right to left

/= Division assignment Right to left

%= Modulus assignment Right to left

+= Addition assignment Right to left

– = Subtraction assignment Right to left

<<= Left-shift assignment Right to left

>>= Right-shift assignment Right to left

&= Bitwise AND assignment Right to left

|= Bitwise inclusive OR assignment Right to left

^= Bitwise exclusive OR assignment Right to left

throw expr throw expression Right to left

, Comma Left to right

 Data Types, Operators and Expressions 71

3.18 ANSI C++ ALTERNATE PUNCTUATION TOKENS

The ANSI/ISO C++ provides the following keywords as synonyms for punctuation tokens. These keywords

are also recognized by the C++ preprocessor. The ANSI C++ alternate punctuation takens are given in

Table 3.25.

Table 3.25

Keywords Operator Meaning

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

 REVIEW QUESTIONS

 1. What is an identifi er? Explain how a user defi ned identifi er is different from a standard identifi er.

 2. What is meant by a keyword or reserved word? List all the keywords that are used in the C++

language.

 3. What are the rules to be followed for forming a user defi ned identifi er in C++?

 4. Summarise the various data types that are supported in C++.

 5. How do the following data types different from one another?

 (a) short (b) signed

 (c) unsigned (d) hexadecimal

 (e) octal (f) long

 6. What is an integer data type? Explain the different types of integers represented in C++.

 7. What is a fl oating point number? List a few applications of using fl oating point numbers in a real life

problems.

 8. Elucidate how a fl oating point number is realised and represented in C++.

 9. Explain the difference between numeral and non-numeral representation of data in a programming

concept.

 10. Explain the difference between simple data type and aggregated data type. Give suitable examples

for your explanation.

 11. What is meant by standard data type? In what way a standard data type is different from a user

defi ned data type?

 12. What is a constant data type and what are the merits and demerits of defi ning constant data type in a

program?

 Programming with C++72

 13. What is a character data? Explain how a character data is different from an integer item.

 14. Explain how a Boolean data is represented in C++? List a few applications of using Boolean data in

a program.

 15. What is a character literal? In what way a character literal is different from the boolean literal?

 16. What is a string literal? What are the rules to be followed to form a string literal?

 17. What is a variable? Explain the differences between variables and constants.

 18. What are the rules to be followed to defi ne and use a variable in C++?

 19. Explain the following with suitable examples:

 (a) integer variable (b) real variable

 (c) character variable (d) bool variable

 20. What is an operator? List the various types of operators that are used in the C++ language.

 21. Can you defi ne a statement without an operator? Explain.

 22. List the operators that are used only for the integer arithmetic operations in C++.

 23. List the operators that are used for the real arithmetic operations in C++.

 24. What is the importance of using precedence rules in C++ operators?

 25. Summarise the rules associated with assignment operator.

 26. What is meant by the comparison and logical operators? How are they different from arithmetic and

assignment operators?

 27. List all the operators that are used for the comparison and logical decison making in C++.

 28. What is meant by equality operator? In what way is an equality operator different from an assignment

operator?

 29. Explain the importance of arithmetic assignment operators.

 30. Distinguish between binary minus and unary minus operators.

 31. What is a modulus operator and how does it work in C++?

 32. What is meant by bitwise operator? List a few applications of using a bitwise operator in a program.

 33. What are the differences between logical && and the bitwise & operator ?

 34. List the various bitwise operators used in C++.

 35. Explain the following bitwise operators with a suitable example.

 (a) Bitwise AND (b) Bitwise OR

 (c) Bitwise exclusive OR (d) Bitwise left shift

 (e) Bitwise right shift (f) Bitwise complement

 36. What is a unary operator? List out the different types of unary operators used in C++.

 37. What is meant by incrementer and decrementer in C++?

 38. Explain the uses of the following special operators in C++:

 (a) pointer operator (b) address operator

 (c) sizeof operator (d) ternary operator

 (e) comma operator

 39. What is meant by membership operator in C++?

 40. What is the use of type conversion in C++?

 41. What is meant by cast operator? How is it different from other operators and what is the associativity?

 42. Summarise all the operators that are used in C++ along with their associativity.

 CONCEPT REVIEW QUESTIONS

 1. Some of the following user defi ned identifi ers are written wrongly. Find the errors (if any):

 (a) pay bill gross (b) a+b (c) ‘a’ (d) xy12

 Data Types, Operators and Expressions 73

 (e) 21a (f) signed (g) private (h) “and”

 (i) _a123 (j) Rs 10 (k) $value123 (l) pay_bill

 2. Find out the valid and invalid representation of the following integer literals:

 (a) 7,000 (b) +0.0 (c) Rs 10 (d) 1e2

 (e) 7.1e–2 (f) –2 (g) sum (h) 7756

 (i) 10u (j) 1232L (k) 67565UL (l) –765LU

 (m) 656 (n) 4321l (o) 65467FL (p) 543el

 3. Find out the valid and invalid representation of the following octal and hexadecimal literals:

 (a) ox1000U (b) +0 (c) 0abcUL (d) 0XabcdefUL

 (e) 7.1eXl (f) –02L (g) 0xfffabcdfL (h) 0886

 (i) x89 (j) LUx0123 (k) 0x123U (l) –0765

 (m) –0X8765 (n) 01234560 (o) L “ff345” (p) L‘oxa’

 4. Find out the valid and invalid representation of the following fl oating point literals:

 (a) Rs 45.55 (b) 1.1e–2 (c) 0.1e–03 (d) 1,12.2

 (e) 1e–2 (f) 0 (g) –0.0001 (h) 1.1e–1.1

 (i) 1.1f (j) –2.2e–3L (k) 0.0F (l) 1223E1

 (m) 3.3333L (n) 9.999999FL (o) .1E–3F (p) 0.F

 5. Determine the valid character and string literals among the following:

 (a) L‘a’ (b) ‘a+b’ (c) L “a” (d) x

 (e) L “Hello C++” (f) ‘Computer’ (g) abc123 (h) LU123

 (i) “this is a test” (j) L “\n” (k) ‘\n’ (l) L ‘\0’

 6. Write the following algebraic expression in C++:

 (a)
a

b
 + 10 (b)

5

9
 (f–32) (c)

a

b
 *

c

d
 (d) a

a v

b

+

- 1

 7. Find the syntax error/(s), if any, in each of the following. Assume that all variables are declared as

real data types.

 (a) result = pay bill +5.0; (b) x / y *c = sum;

 (c) y = 1.0/–2.5 *y; (d) pay = Rs 100 +basic* DA;

 (e) sum = s (s–a) (s–b) (s–c); (f) fi nal = a % 3;

 (g) value = a / b + 1.0 *a*b;

 8. Write the algebraic expression corresponding to each of the following C++ statements:

 (a) g = x * (x * x + y * y)/ (x *x – y* y +2.0);

 (b) sum = x*x/a/b;

 (c) y = x + x/z + x–2.0;

 (d) root = (b*b –4.0 *a *c)/ (2.0*a);

 (e) interest = p * n *r /100.0;

 9. Find the fi nal value of each of the following arithmetic expression. Assume that all variables are

declared as real data types and initialised with the following data:

 double a = 4, b = 3, c = 2, d = 1;
 (a) v1 = b–c *d / a–d;

 (b) v2 = (a * b +c+d) *a;

 (c) v3 = a*a + c *d / a–b;

 (d) v4 = ((a+b) *(c*a +(a*a))– b *b) / ((c+d) * (c–d));

 (e) v5 = (a –2.0 * (a–b))/ (d–c) + a–b*a;

 (f) v6 = b*b –4.0*a*c/2*a ;

 (g) v7 = (b *b – 4.0 *a*c)/(2.0*a);

 Programming with C++74

 10. Determine the fi nal value of each of the following arithmetic expression. Assume that all variables

are declared as integer data types and initialized with the following data:

int a = 1, b = 2, c = 3, d = 4;
 (a) sum1 = b–c*d / a–d;

 (b) sum2 = (a % b +c / d)*a;

 (c) sum3 = a % a + c*d / a–b;

 (d) sum4 = ((a+b)% (c / a +(a*a))– b / b)+((c+d)*(c–d));

 (e) sum5 = (a / (–2) % (a–b)) – (d–c) + a–b*a;

 (f) sum6 = b*b –4 / a*c % 2*a ;

 (g) sum7 = (b *b – 4*a *c)+ (a % d);

 11. Determine the fi nal value of each of the following Boolean expression. Assume that the variables

a, b and c are declared as integer data types and the variables ch1 and ch2 as character types. The

variables are initialised with the following data:

 int a = 4, b = 3, c = –2;
 ch1 = ‘a’, ch2 = ‘b’;
 (a) exp1 = (a < b) && (b >c);

 (b) exp2 = (a > b) || (ch1 != ch2) && (a < c);

 (c) exp3 = (a == b) || (ch1 == ch2) && (a <= c);

 (d) exp4 = !(a > b) && (ch1 <= ch2);

 (e) exp5 = !(ch1 >= ch2) || (a >= c) && (b >= c);

 (f) exp6 = (a == b) && (a > b) && !(ch1 <= ch2);

 (g) exp7 = (a+b * c) > (a*c);

 (h) exp8 = ((a % 5) + (b / c) + (a + b)) <= (a*b);

 (i) exp9 = (!(ch1 <= ch2)) || (!(a <= c)) && (!(a>=b));

 (j) exp10 = (a % b+b % c+a % c) == (a / b+b / c+a / c);

 (k) exp11 = !((a*b) + (a*c)) <= ((b*a) + a % c);

 12. Determine the fi nal value of each of the following Boolean expression. Assume that all variables are

declared as Boolean data types and initialized with the following data:

 bool x = true;
 bool y = false;
 bool z = false;
 (a) f1 = x || y && z ; (b) f2 = x && y || !z;

 (c) f3 = !x && !y && !z; (d) f4 = !(x && !x || !y);

 (e) f5 = !(!z && !y && !x); (f) f6 = x && y && z || (x && !(y || x));

 (g) f7 = !x || !y && !z || y && z; (h) f8 = y && !z || !(!y && z);

 13. Determine the fi nal value of each of the following arithmetic assignment expression. Assume that all

variables are declared as integer data types and initialized with the following data:

 int a = 1, b = 2, c = 3, d = 4;
 (a) a += b*c–d;

 (b) b –= (++c / ++d)*a;

 (c) c *= a % b + a++ + ++b;

 (d) d /= a+b–c;

 (e) a %= b*a;

 (f) b += b*b –4 / a*c % 2*a;

Input and
Output Streams

Chapter

4

4.1 COMMENTS

C++ supports two types of comments: one retaining the C style comments and other is a C++ style that

introduces the comment to end of line delimiter. C programmers will be already familiar with comments

delimited by /* and */ while C++ gives the comments to end of line delimiter //.

For example, C programming style of comments are given below:
/*

 #include <stdio.h>
 void main()
 {
 printf (“ Hello World !\n”);
 } */

The C++ programming style of comments are as follows:
// #include <iostream>

 // using namespace std;
 // int main()
 // {
 // cout <<“ Hello, C++ world\n”;
 // return 0;
 // }

This chapter presents the preliminary concepts of the structure of the C++
program. The emphasis is on the various types of declaration and arithmetic
operations of the C++ language using the basic input and output statements and
the defi nition of Input and Output (I/O) streams using the header fi les such as
<iostream> and <iomanip> and forma ing of input and output streams with
manipulators. Numerous illustrative examples are given to explain the above
concepts.

 Programming with C++76

In general, /*... */ comments style is used for large block of statements and the // style is used for one

line comments.

For example, for a block of statements,
/* this is

 a test
 program
 by ravic */

For a single line, the comments are as mentioned below :
 // i++; C++ style

4.2 DECLARATION OF VARIABLES

ANSI C and C++ share a common base syntax. The rules that apply to variable declaration and creation

are the same. One of the most obvious differences between the two languages is in the declaration of

variables. In C, it is essential to declare all the variables within a scope, before executable statements

are to be defi ned. On the other hand, C++ allows a user to mix data declaration within functions and

executable code.

For example, the following program segment illustrates how variables are declared after the executable

statements are defi ned.
int main()
{
 int x;
 printf (“ this is a test program \n”);
 printf (“ by Ravich \n”);
 fl oat x,y; // allows in C++
}

C++ allows declaration of variables to be placed very close to their point of actual usage. The main

advantages of using this manner of declaration are:

 ∑ easier to follow and understand the variable declaration, if it is required to go through the program for

further enhancements.

 ∑ from software engineering point of view, the maintainability, and modifi ability of the code is much

cheaper.

 ∑ C++ has made less prone to errors.

 ∑ testability of the code is less complex.

 ∑ C++ also permits to declare the index variables within the for loop statement itself.

For example,

Case 1
 for (int i = 0; i<= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)

 }

Case 2
 for (int i=0, j = 10; i<= n-1; j– ,i++) {

 }

 Input and Output Streams 77

4.3 THE MAIN FUNCTION

C does not defi ne a specifi c format for the main () function. The defi nition of the main function look like

this:
 main()
 {
 /*

 main program code
*/

 }

Otherwise, in the following way the main() function can be defi ned with command line arguments:
 main (int argc, char *argv[])
 {
 /*

 main program code
*/

 }

But, the ANSI/ISO standard C++ explicitly defi nes main () as matching one of the two following two

prototypes:
 int main()
 {
 // main program code here
 return 0;
 }

Otherwise, the main () function is defi ned with the command line arguments:
 int main (int argc, char *argv[])
 {
 // main program code here
 return 0;
 }

where argc is the number of arguments passed to the program and argv [0] are the addresses

of the passed arguments. argv[0] is equivalent to argv[argc-1].

C++ compilers will also give an error or warning message if it does not return a value from main. Whenever a

main function returns a null value, it is essential to declare a main function with the prototype void.

Restrictions of using main () function in C++ Several restrictions apply to the main function that do not apply

to any other C++ functions. The main function:

 ∑ Cannot be overloaded (see Overloading).

 ∑ Cannot be declared as inline.

 ∑ Cannot be declared as static.

 ∑ Cannot have its address taken.

 ∑ Cannot be called.

4.4 SIMPLE C++ PROGRAMS

The skeleton of a typical ANSI/ISO C++ program structure is given below:
#include <iostream>
using namespace std;
int main()

 Programming with C++78

{
 return 0;
}

 PROGRAM 4.1

The following is a standard C++ program structure to display the message “Hello C++ world, Many
Greetings to you” on the video screen.

#include <iostream>
using namespace std;
int main()
{
 cout << “ Hello C++ world, Many Greetings to you ”;
 return 0;
}

The function main() must be placed before the begin statement. It invokes other functions to perform

its job. The ({) symbol or notation is used as the begin statement. The declaration of variables and the type

of operations are placed after the begin statement. The end statement is denoted by the symbol (}). In C++,

the semicolon (;) serves the purpose of a statement terminator rather than a separator.

Statements are terminated by a semicolon and are grouped within braces {...}. Most statements contain

expression, sequences of operators, function calls, variables and constants that specify computation.

Variable and function names are of arbitrary lengths and consist of upper and lower case letters, digits and

underscore and they may not start with a numeral. All C++ keywords are written in lowercase letters.

The symbol back-slash (\) followed by a lowercase n is used for line feed or a new line. In C++, it is

considered as a single character
\n Newline or line feed

 PROGRAM 4.2

A program without using a new line character in the cout stream statement is given below:

#include <iostream>
using namespace std;
int main()
{
 cout << “ Hello, C++ world! ”;
 cout << “ Many greetings to you ”;
} return 0;

Output of the above program

Hello, C++ world! Many greetings to you

 PROGRAM 4.3

A modifi ed program is shown below for displaying the message in two lines using a new line character
(\n) in the cout statement.

#include <iostream>
using namespace std;

 Input and Output Streams 79

int main()
{
 cout << “ Hello, C++ world\n”; //newline character is inserted
 cout << “ Many greetings to you ”;
 return 0;
}

Output of the above program
Hello, C++ world
Many greetings to you

4.5 PROGRAM TERMINATION

In C++, there are several ways to exit a program:

 ∑ Call the exit () function.

 ∑ Call the abort () function.

 ∑ Execute a return statement from main.

(a) The Exit () Function The exit() function, declared in the standard include fi le STDLIB.H, terminates

a C++ program. The value supplied as an argument to exit is returned to the operating system as the

program’s return code or exit code. By convention, a return code of zero means that the program completed

successfully.

Issuing a return statement from the main function is equivalent to calling the exit function with the return

value as its argument.
#include <iostream>
using namespace std;
int main()
{
 cout <<“Hello, C++ world!\n”;
 exit(0);
}

Output of the above program
Hello, C++ world!

Note that one can use the constants EXIT_FAILURE and EXIT_SUCCESS, defi ned in STDLIB.H, to

indicate success or failure of the program.
#include <iostream>
using namespace std;
int main()
{
 cout <<“Hello, C++ world!\n”;
 EXIT_SUCCESS;
}

Output of the above program
Hello, C++ world!

(b) The Abort () Function The abort() function, also declared in the standard include fi le STDLIB.

H, terminates a C++ program. The difference between exit and abort is that exit allows the C++

run-time termination processing to take place (global object destructors will be called), whereas abort

terminates the program immediately.
#include <iostream>
using namespace std;

 Programming with C++80

int main()
{
 cout <<“Hello, C++ world!\n”;
 abort ();
}

Output of the above program
Hello, C++ world!

(c) The Return Statement Issuing a return statement from main is functionally equivalent to calling the exit

function.

Consider the following example:
#include <stdlib.h>
int main()
{
 exit(3);
 return 3;
}

The exit and return statements in the preceding example are functionally identical. However, C++

requires that functions that have return types other than void return a value. The return statement allows

one to return a value from main.

4.6 FEATURES OF IOSTREAM

It is well known that C++ is a tool for Object Oriented Programming (OOP). In order to handle the various

object oriented features of a program, it is essential to have robust input and output facilities. Most of the

object oriented programs handle three items: objects, message passing and optional parameters with the

message from the outside world. C++ provides a new way to perform the input and output operations called

iostream method.

The standard header fi le input and output stream (iostream) contains a set of small and specifi c

general purpose functions for handling input and output data. The I/O stream is a sequence of following

characters written for the screen display or read from the keyboard. The standard input and output

operations in C++ are normally performed by using the I/O stream as cin for input and cout for output.

It is well known that the C programming language comes with an extensive library of functions for

handling input and output but it cannot add new format specifi er to printf()/scanf() functions. C++

supports input and output of numbers, characters and strings more conveniently and effi ciently than C. The

ANSI/ISO standard C++ compiler supports both C-style of I/O header <cstdio> and C++ form of I/O

header <iostream>.

4.6.1 Diff erences in Standard C++ Iostream

The iostream library is one of the main differences between the Standard C++ Library and previous versions

of run-time libraries. Details of the iostream implementation have changed, and it may be necessary to

rewrite parts of C++ code that use iostream if one wants to link with the Standard C++ Library.

A list of non-standard versions or any old iostream headers is given below:

 iostream.h
 istream.h
 ostream.h
 iomanip.h

 Input and Output Streams 81

 ios.h
 fstream.h
 streamb.h and
 strstrea.h
The new Standard C++ iostream headers are given below and all without the .h extension.

 <iostream>
 <istream>
 <ostream>
 <iomanip>
 <ios>
 <iosfwd>
 <fstream>
 <sstream>
 <streambuf> and
 <strstream>
One can include the standard headers in any order, a standard header more than once, or two or more

standard headers that defi ne the same macro or the same type. Including a standard header within a

declaration is not permitted. It is advisable not to defi ne macros that have the same names as that of macros

within the standard header.

4.6.2 Types of IOstreams

In fact, C++ does not have built-in input and output functions for handling input and output of data from the

outside world, but it supports different kinds of stream related header fi les for providing these facilities.

The Input and Output (I/O) streams fall into two groups, namely, byte oriented and wide character oriented.

For Conventional Byte Oriented Operations cin, cout, cerr, and clog are byte oriented, performing

conventional byte-at-a-time transfers.
cin standard input
cout standard output
cerr standard error with limited buffering
clog similar to cerr but with full buffering

For Handling Wide Characters wcin, wcout, wcerr, and wclog are wide oriented, translating to and from the

wide characters that the program manipulates internally.
wcin standard input for handling wide character
wcout standard output for handling wide character
wcerr standard error with limited buffering for wide character
wclog similar to cerr but with full buffering for wide character

Operations on a stream manipulation are different for byte oriented and wide character oriented. One

cannot perform operations of a different orientation on the same stream. Therefore, a program cannot

operate interchangeably on both cin and wcin.

4.6.3 ios

The stream library is a hierarchy of classes and summarizes in Table 4.1. The streambuf class is the basis

of all streams. It defi nes the basic characteristics of buffers that hold characters for input and output. The

ios class is derived from streambuf. It defi nes the basic formatting and error control capabilities used in

streambuf. The ios is a virtual base class for the classes istream (input stream) and ostream (output stream).

The iostream (input/output stream) class is derived from both istream and ostream. The ‘ios’ correspond

 Programming with C++82

to input and output streams (hence io). The defi nitions based on ‘istream’ correspond to input streams and

those based on ‘ostream’ to output streams. C++ allows six types of stream classes, namely,

 ∑ istream
 ∑ ostream
 ∑ iostream
 ∑ wistream
 ∑ wostream
 ∑ wiostream

Table 4.1

Stream classes Meaning

istream The istream consists of input functions to read a stream of characters from the keyboard.

ostream The ostream consists of output functions to write a character onto the screen.

iostream The iostream supports both input/output stream of functions to read a stream of characters from

the keyboard and to display a stream of objects onto the video screen.

wistream The wistream is a type basic_istream specialised on wchar_t.

wostream The wostream is a type basic_ostream that is specialised on wchar_t.

wiostream The wiostream is a type basic_iostream specialised on wchar_t.

4.6.4 Output Streams
An output stream object is a destination for bytes. The three most important output stream classes are

ostream, ofstream, and ostrstream.

(i) ostream The ostream class, which can be confi gured for buffered or unbuffered operation, is best suited

to sequential text-mode output. All functionality of the base class, ios, is included in ostream.

(ii) ofstream The ofstream class supports disk fi le output. If one needs an output-only disk, construct an

object of class ofstream. One can specify whether ofstream objects accept binary or text-mode data before

or after opening the fi le. Many formatting options and member functions apply to ofstream objects, and all

functionality of the base classes ios and ostream is included.

(iii) ostrstream The ostrstream class supports output to in-memory strings. To create a string in memory

using I/O stream formatting, construct an object of class ostrstream.

4.6.5 Input Streams

An input stream object is a source of bytes. The three most important input stream classes are istream,

ifstream, and istrstream.

(i) istream The istream class is best used for sequential text-mode input. One can confi gure objects of

class istream for buffered or unbuffered operation. All functionality of the base class, ios, is included in

istream.

(ii) ifstream The ifstream class supports disk fi le input. If one needs an input-only disk fi le, construct

an object of class ifstream. One can specify binary or text-mode data. If one declares a fi lename in the

constructor, the fi le is automatically opened when the object is constructed.

(iii) istrstream The istrstream class supports input from in-memory strings. To extract data from a

character array that has a null terminator, allocate and initialise the string, then construct an object of class

istrstream.

 Input and Output Streams 83

4.6.6 <iostream> Members

The following are the member functions of the <iostream> class presents in Table 4.2.
cin wcin
cout wcout
cerr wcerr
clog wclog

Table 4.2

Iostream

Member

Meaning

cerr The object controls unbuffered insertions to the standard error output as a byte stream.

cin The object controls extractions from the standard input as a byte stream.

clog The object controls buffered insertions to the standard error output as a byte stream.

cout The object controls insertions to the standard output as a byte stream.

wcerr The object controls unbuffered insertions to the standard error output as a wide stream.

wcin The object controls extractions from the standard input as a wide stream. Once the object is
constructed, the call wcin.tie returns &wcout.

wclog The object controls buffered insertions to the standard error output as a wide stream.

wcout The object controls insertions to the standard output as a wide stream.

4.7 KEYBOARD AND SCREEN I/O

(a) cout The cout is used to display an object onto the standard device, normally the video screen. The

insertion operator (the double less than sign <<) is used along with the cout stream.

The general syntax of the cout stream is,

cout << variable 1 << variable 2 <<....<< variable n ;

Following are a few examples to illustrate the cout member function

 (1)
 int x = 123;
 fl oat y = -45.67f;

 cout << x << y ;

The output will be 123-45.67
The insertion operator << will not add any space between any two data items and it is up to the

programmer to defi ne and introduce the space between them.

 (2)
 int x = 123;
 fl oat y = -45.67f;

 cout << x << ‘\t’ << y ;

 The output will be 123 –45.67

 (3) Use of different data types freely on one line is permitted.
 int x = 123;
 fl oat y = -45.67f;

 Programming with C++84

 cout << “ x = ” << x << ‘\t’ << “ y = ” << y ;

 The output will be x = 123 y = -45.67

 (4) The cout stream is used to display different data types.

 //cout is used to display different data types
 #include <iostream>
 using namespace std;
 int main()
 {
 int num = 3;
 cout << “ number = ” << num << “\n”;
 char ch = ‘a’;
 cout << “ character = ” << ch << “\n”;
 fl oat fa = -34.45f;
 cout << “ real number = ” << fa << “\n”;
 }

Output of the above program
number = 3
character = a
real number = -34.45

(b) cin The cin is used to read a number, a character or a string of characters from a standard input

device, normally the keyboard. The extraction operator (the double greater than sign >>) is used along with

the cin operator.

The general syntax of the cin is

cin >> variable 1 >> variable 2 >> ...variable n;

For example, the following are certain valid cin member function usage in C++.
 int a,b;
 fl oat f1,f2;
 char c1,c2;

(1)
 cin >> a >> b >> f1 >> f2 >> c1 >> c2 ;

(2)
 cin >> a >> b;
 cin >> f1 >> f2;
 cin >> c1 >> c2;

(3)
 cout << “ enter two integers \n”;
 cin >> a >> b;
 cout << “ enter two fl oating point numbers \n”;
 cin >> f1 >> f2;
 cout << “ enter any two characters \n”;
 cin >> c1 >> c2;

 PROGRAM 4.4

A program to read any two numbers through the keyboard and to perform simple arithmetic operations (i.e.,
addition, subtraction, multiplication and division) and display the results using cin and cout functions.

//using cout and cin stream
#include <iostream>
using namespace std;

 Input and Output Streams 85

int main()
{
 int a,b,sum,diff,prod;
 fl oat div;
 cout << “ Enter any two numbers” << endl;
 cin >> a >> b;
 sum = a+b;
 diff = a-b;
 prod = a*b;
 div = (fl oat)a/(fl oat)b;
 cout << ” a = “ << a << ” b = ” << b << “ sum = ” << sum << endl;
 cout << ” a = “ << a << ” b = ” << b << “ diff = ” << diff << endl;
 cout << ” a = “ << a << ” b = ” << b << “ prod = ” << prod << endl;

 cout << ” a = “ << a << ” b = ” << b << “ div = ” << div << endl;
 return 0;
}

Output of the above program Enter any two numbers
10 20
a = 10 b = 20 sum = 30
a = 10 b = 20 diff = -10
a = 10 b = 20 prod = 200
a = 10 b = 20 div = 0.5

(c) cerr and clog In addition to the function cout, C++ provides other functions of the class ostream

called cerr and clog. They are used to redirect error messages to other devices. The output of cerr is

unbuffered, while the output of clog is buffered. The use of the above functions are illustrated below.
//using cerr and clog
#include <iostream>
using namespace std;
int main()
{
 cout << “ Hello, C++ world ! using cout \n”;
 cerr << “ many greetings to you ! using cerr \n”;
 clog << “ hello, computer ! using clog \n”;
} return 0;

Output of the above program
Hello, C++ world ! using cout
many greetings to you ! using cerr
hello, computer ! using clog

 PROGRAM 4.5

A program to demonstrate how to use the wcout method for displaying the wide characters.

#include <iostream>
using namespace std;
int main()
{
 wchar_t ch = L‘C’;
 wcout << ch << endl;
 return 0;
}

Output of the above program
C

 Programming with C++86

Summary of C++ I/O streams

The summary of C+ + I/O streams in given in Table 4.3

Table 4.3

Stream Meaning

cin keyboard input (stdin)

cout screen output (stdout)

cerr standard error device output (stderr)

clog buffered output of standard error (stderr)

wcin keyboard input (stdin) for handling wide characters

wcout screen output (stdout) for handling wide characters

wcerr standard error device output (stderr)

wclog buffered output of standard error (stderr)

4.8 MANIPULATOR FUNCTIONS

Manipulator functions are special stream functions that change certain characteristics of the input and

output. They change the format fl ags and values for a stream. The main advantage of using manipulator

functions is that they facilitate the formatting of input and output streams.

The following are the list of standard manipulators used in a C++ program. To carry out the operations

of these manipulator functions in a user program, the header fi le input and output manipulator <iomanip>

must be included.

4.8.1 Predefi ned Manipulators

The Table 4.4 presents the summary of predefi ned manipulation normally lined in the stream classes.

Table 4.4

Manipulators Meaning

endl generates a carriage return or line feed character.

ends attach a null terminating character (‘\0’) at the end of a string.

fl ush used to cause the stream associated with the output to be completely emptied.

hex,dec,oct Set base for integers.

resetiosfl ags Clears the specifi ed fl ags.

setbase Set base for integers.

setfi ll Sets the character that will be used to fi ll spaces in a right-justifi ed display.

setiosfl ags Sets the specifi ed fl ags.

setprecision Sets the precision for fl oating-point values.

setw Specifi es the width of the display fi eld.

ws ignores the leading white space that preceds the fi rst fi eld.

 Input and Output Streams 87

(a) endl The endl is an output manipulator to generate a carriage return or line feed character. The endl

may be used several times in a C++ statement. For example,

 (1)
 cout << “ a ” << endl << “b” << endl;

 (2)
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;

 PROGRAM 4.6

A program to display a message on two lines using the endl manipulator and the corresponding output is
given below.

//using endl manipulator
#include <iostream>
using namespace std;
int main()
{
 cout << “ Hello, C++ world!”;
 cout << endl;
 cout << “ Many greetings to you ”;
} return 0;

Output of the above program
Hello, C++ world!
Many greetings to you

The endl is the same as the non-graphic character to generate line feed (\n).

 PROGRAM 4.7

A program to illustrate the usage of the line feed character and the endl manipulator and the
corresponding output are given below.

#include <iostream>
using namespace std;
int main()
{
 int a;
 a = 20;
 cout << “ a = ” << a << endl;
 cout << “ a = ” << a << “\n”;
 cout << “ a = ” << a << ‘\n’;
 return 0;
}

Output of the above program
a = 20
a = 20
a = 20

(b) ends The ends is a manipulator used to attach a null terminating character (‘\0’) at the end of a

string. The ends manipulator takes no argument whenever it is invoked. This causes a null character to the

output.

 Programming with C++88

 PROGRAM 4.8

A program to show how a null character is inserted using ends manipulator while displaying a string onto
the screen.

//using ends manipulator
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int number = 231;
 cout << ‘\”’ << “ number = ” << number << ends;
 cout << ‘\”’ << endl;
 return 0;
}

Output of the above program
“ number = 231 ”

(c) fl ush The fl ush member function is used to cause the stream associated with the output to be

completely emptied. This argument function takes no input parameters whenever it is invoked. For output

on the screen, this is not necessary as all output is fl ushed automatically. However, in the case of a disk fi le

being copied to another, it has to fl ush the output buffer prior to rewinding the output fi le for continued use.

The function fl ush () does not have anything to do with fl ushing the input buffer.

 PROGRAM 4.9

A program to show how to use the fl ush () member function for displaying a string onto the screen.

//using fl ush member function
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 cout << “ Hello\n”;
 cout << “ C++, World \n”;
 cout.fl ush();
 return 0;
}

Output of the above program
Hello
C++, World

(d) Setbase () The setbase() manipulator is used to convert the base of one numeric value into another

base. Following are the common base converters in C++.

dec - decimal base (base = 10)

hex - hexadecimal base (base = 16)

oct - octal base (base = 8)

In addition to the base conversion facilities such as to bases dec, hex and oct, the setbase()

manipulator is also used to defi ne the base of the numeral value of a variable. The prototype of setbase
()manipulator is defi ned in the iomanip header fi le and it should be included in user program. The hex,

 Input and Output Streams 89

dec, oct manipulators change the base of inserted or extracted integral values. The original default for

stream input and output is dec.

 PROGRAM 4.10

A program to show the base of a numeric value of a variable using hex,oct and dec manipulator
functions.

//using dec,hex,oct manipulator
#include <iostream>
using namespace std;
int main()
{
 int value;
 cout << “ Enter number” << endl;
 cin >> value;
 cout << “ Decimal base = ” << dec << value << endl;
 cout << “ Hexadecimal base = ” << hex << value << endl;
 cout << “ Octal base = ” << oct << value << endl;
 return 0;
}

Output of the above program
Enter number
15
Decimal base = 15
Hexadecimal base = f
Octal base = 17

 PROGRAM 4.11

A program to show the base of a numeric value of a variable using setbase manipulator function.

//using setbase manipulator
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int value;
 cout << “ Enter number” << endl;
 cin >> value;
 cout << “ Decimal base = ” << setbase(10) << value << endl;
 cout << “ Hexadecimal base = ” << setbase(16) << value << endl;
 cout << “ Octal base = ” << setbase(8) << value << endl;
 return 0;
}

Output of the above program
Enter number
15
Decimal base = 15
Hexadecimal base = f
Octal base = 17

(e) setw () The setw() stands for the set width. The setw() manipulator is used to specify the minimum

number of character positions on the output fi eld a variable will consume.

 Programming with C++90

The general format of the setw manipulator function is
 setw(int w)

which changes the fi eld width to w, but only for the next insertion. The default fi eld width is 0.

For example,
 cout << setw(1) << a << endl;
 cout << setw(10) << a << endl;

Between the data variables in C++ space will not be inserted automatically by the compiler. It is up to a

programmer to introduce proper spaces among data while displaying onto the screen.

 PROGRAM 4.12

A program to display the content of a variable without inserting any space

#include <iostream>
using namespace std;
int main()
{
 int a,b;
 a = 200;
 b = 300;
 cout << a << b << endl;
 return 0;
}

Output of the above program
200300

 PROGRAM 4.13

A program to insert a tab character between two variables while displaying the content onto the screen.

//using tab character
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int a,b;
 a = 200;
 b = 300;
 cout << a << ‘\t’ << b << endl;
 return 0;
}

Output of the above program
200 300

 PROGRAM 4.14

A program to display the data variables using setw manipulator functions.

//using setw manipulator
#include <iostream>
#include <iomanip>
using namespace std;

 Input and Output Streams 91

int main()
{
 int a,b;
 a = 200;
 b = 300;
 cout << setw(5) << a << setw(5) << b << endl;
 cout << setw(6) << a << setw(6) << b << endl;
 cout << setw(7) << a << setw(7) << b << endl;
 cout << setw(8) << a << setw(8) << b << endl;
 return 0;
}

Output of the above program
 200 300
 200 300
 200 300
 200 300

(f) setfi ll() The setfi ll() manipulator function is used to specify a different character to fi ll the unused fi eld

width of the value.

The general syntax of the setfi ll() manipulator is
 setfi ll(char f)

which changes the fi ll character to f. The default fi ll character is a space. For example,
 setfi ll(‘.’); // fi ll a dot (.) character
 setfi ll(‘*’) //fi ll an asterisk (*) character

 PROGRAM 4.15

A program to illustrate how a character is fi lled in the unused fi eld width of the value of the data variable.

//using setfi ll manipulator
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int a,b;
 a = 200;
 b = 300;
 cout << setfi ll(‘*’);
 cout << setw(5) << a << setw(5) << b << endl;
 cout << setw(6) << a << setw(6) << b << endl;
 cout << setw(7) << a << setw(7) << b << endl;
 cout << setw(8) << a << setw(8) << b << endl;
 return 0;
}

Output of the above program
200300
200300
****200****300
*****200*****300

(g) setprecision() The setprecision() is used to control the number of digits of an output stream display of

a fl oating point value. The setprecision() manipulator prototype is defi ned in the header fi le <iomanip>.

The general syntax of the setprecision manipulator is setprecision (int p)

which sets the precision for fl oating point insertions to p. The default precision is 6.

 Programming with C++92

 PROGRAM 4.16

A program to use the setprecision manipulator function while displaying a fl oating point value onto the screen.

//using setprecision manipulator
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 fl oat a,b,c;
 a = 5;
 b = 3;
 c = a/b;
 cout << setprecision(1) << c << endl;
 cout << setprecision(2) << c << endl;
 cout << setprecision(3) << c << endl;
 cout << setprecision(4) << c << endl;
 cout << setprecision(5) << c << endl;
 cout << setprecision(6) << c << endl;
 return 0;
}

Output of the above program
2
1.7
1.67
1.667
1.6667
1.66667

(h) ws The manipulator function ws stands for white space. It is used to ignore the leading white space

that precedes the fi rst fi eld.

 PROGRAM 4.17

A program to illustrate how to use the ws manipulator function for reading a set of strings from the keyboard.

//using ws manipulator
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 char name[100];
 cout << “ enter a line of text \n”;
 cin >> ws;
 cin >> name;
 cout << “ typed text = ” << name << endl;
 return 0;
}

Output of the above program
enter a line of text
this is a test program by Ravich
typed text = this

 Input and Output Streams 93

(i) Setios ags and Resetios ags The setiosfl ags manipulator function is used to control different

input and output settings. The I/O stream maintains a collection of fl ag bits.

The setiosfl ags manipulator performs the same function as the setf function. The fl ags represented by the

set bits in f are set. The general syntax of the setiosfl ags is:
 setiosfl ags (long f)

The resetiosfl ags manipulator performs the same function as that of the resetf function. The fl ags

represented by the set bits in f are reset. The general syntax of the resetiosfl ags is as follows:
 resetiosfl ags (long f)

 PROGRAM 4.18

A program to demonstrate how setios ags is set while displaying a base of a numeral.

//using basefi eld bit format fl ag
#include <iostream>
using namespace std;
int main()
{
 int num;
 cout <<“enter a number\n”;
 cin >> num;
 cout << “ default display decimal = ” << num << “\n”;
 cout.setf(ios::oct,ios::basefi eld);
 cout << “ octal = ” << num << “\n”;
 cout.setf(ios::hex,ios::basefi eld);
 cout << “ hexadecimal = ” << num << “\n”;
 cout.setf(ios::dec,ios::basefi eld);
 cout << “ decimal = ” << num << “\n”;
 return 0;
}

Output of the above program
enter a number
15
default display decimal = 15
octal = 17
hexadecimal = f
decimal = 15

4.9 INPUT AND OUTPUT I/O STREAM FLAGS

To implement many of the above manipulators, I/O streams have a fl ag fi eld that specifi es the current

settings. The fl ag names and their meanings are given in the following Table 4.5 below:

Table 4.5

Stream Flags Meaning

boolalpha displays the bool value as true or false in the stream.

dec decimal base (show integers in decimal format)

fi xed displays a fl oating-point number in fi xed-decimal notation.

hex hexadecimal base (show integers in hexadecimal format)

internal pad after sign or base indicator

(Contd)

 Programming with C++94

Stream Flags Meaning

left left justifi cation of output

noboolalpha displays the bool value as 1 or 0 in the stream.

noshowbase Turns off indicating the notational base in which a number is displayed.

noshowpoint Displays only the whole-number part of fl oating-point numbers whose fractional part is zero.

noshowpos Causes positive numbers to not be explicitly signed.

noskipws Cause spaces to be read by the input stream.

nounitbuf Causes output to be buffered and processed when the buffer is full.

nouppercase

scientific

¸
˝
Ô

Ǫ̂
Specifi es that hexadecimal digits and the exponent in notation appears in lowercase.

oct octal base (shows integers in octal format)

right right justifi cation of output

scientifi c Causes fl oating point numbers to be displayed using scientifi c notation (use E for fl oating

notation).

showbase show base for octal and hexadecimal numbers

showpoint show the decimal point for all fl oating point numbers

showpos show ‘+’ to positive integers

skipws skip white space during input

unitbuf fl ush all stream after insertions

uppercase

scientific

¸
˝
Ô

Ǫ̂
Specifi es that hexadecimal digits and the exponent in notation appear in uppercase.

(a) Turning the Bit Format Flag On In order to change the state of the cout object, the bits that represent its

state must be changed. The setf() function is invoked for setting the bit format fl ags of the I/O stream. The

general format of the setf() function is

 cout.setf(fl ags to be set);

For example,
 cout.setf(ios::showbase);

The bitwise OR (|) operator is used in the argument list of the setf () function in order to change the bit

format fl ag more than one.

For example,
 cout.setf(ios::showbase | ios::showpoint | ios:: uppercase);

(b) Turning the Bit Format Flag Off The usetf () function is used to change the bits directly off. This function

takes exactly one argument to turn off the bit pattern.

The general syntax of the unsetf () function is,
 cout.unsetf(fl ags to be turned off);

For example,
 cout.unsetf(ios::uppercase);

The bitwise OR (|) operator is used in the argument list in order to turn off more than one bit format fl ag

of the I/O stream.

(c) Boolalpha and Noboolalpha Format Flag

(1) Boolalpha The boolalpha format fl ag is used to specify that variables of type bool appear as true or false

in the stream. By default, variables of type bool are displayed as 1 or 0.

 Input and Output Streams 95

The general syntax of the boolalpha is,

cout << boolalpha;

(2) Noboolalpha The noboolalpha format fl ag is used to specify that variables of type bool appear as 1 or 0

in the stream. In other words, the noboolalpha reverses the effect of boolalpha format fl ag setting.

The general syntax of the noboolalpha is,

cout << noboolalpha;

 PROGRAM 4.19

A program to display the contents of the bool variable using boolalpha and noboolalpha format fl ag.

//using boolalpha and noboolalpha
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true;
 cout << boolalpha;
 cout << “\n setting boolalpha \n”;
 cout << “\n Flag value = ” << fl ag;
 cout << “\n setting noboolalpha \n”;
 cout << noboolalpha;
 cout << “\n Flag value = ” << fl ag;
 return 0;
}

Output of the above program
setting boolalpha
Flag value = true
setting noboolalpha
Flag value = 1

(d) Basefi eld Bit Format Flag The basefi eld format fl ag is used to display integers in the proper base.

ios::dec – show integers in decimal format

ios::oct – show integers in octal format

ios::hex – show integers in hexadecimal format

Only one of the above can be set at any time. These format fl ags control the base in which numbers are

displayed. By default, dec is set. The syntax of the basefi eld bit format fl ag setting is
cout.setf(ios::dec,ios::basefi eld);
cout.setf(ios::oct,ios::basefi eld);
cout.setf(ios::hex,ios::basefi eld);

 PROGRAM 4.20

A program to display the given integer numbers using diff erent bases, namely, decimal, octal and
hexadecimal format.

//using dec,oct,hex format fl ag
#include <iostream>
using namespace std;
int main()
{
 int num;

 Programming with C++96

 cout <<“enter a number\n”;
 cin >> num;
 cout << “ decimal = ” << num << “\n”;
 cout.setf(ios::oct,ios::basefi eld);
 cout << “ octal = ” << num << “\n”;
 cout.setf(ios::hex,ios::basefi eld);
 cout << “ hexadecimal = ” << num << “\n”;
 cout.setf(ios::dec,ios::basefi eld);
 cout << “ decimal = ” << num << “\n”;
 return 0;
}

Output of the above program
enter a number
10
decimal = 10
octal = 12
hexadecimal = a
decimal = 10

(e) Showbase and Noshowbase Format Flag

(1) Showbase The showbase format fl ag is used to display the base for octal and hexadecimal numbers. If

showbase is set, this fl ag prefaces integral insertions with the base indicators used with C++ constants. If

hex is set, for instance, an 0X will be inserted in front of any integral insertion.

The syntax of the showbase fl ag is,
 cout.setf(ios::showbase);

(2) Noshowbase The noshowbase format fl ag is used to turn off indicating the notational base in which a

number is displayed. By default, noshowbase format fl ag is set. In other words, the noshowbase manipulator

effectively calls the unsetf() function to invalidate the base setting.

The syntax of the noshowbase fl ag is,
 cout << noshowbase;

 PROGRAM 4.21

A program to display the base of the given integer numbers using showbase and noshowbase format fl ag.

//using showbase and noshowbase format fl ag
#include <iostream>
using namespace std;
int main()
{
 int num;
 cout <<“enter a number\n”;
 cin >> num;
 cout.setf(ios::showbase);
 cout << “ decimal = ” << num << “\n”;
 cout.setf(ios::oct,ios::basefi eld);
 cout << “ octal = ” << num << “\n”;
 cout.setf(ios::hex,ios::basefi eld);
 cout << “ hexadecimal = ” << num << “\n”;
 cout.setf(ios::dec,ios::basefi eld);
 cout << “ decimal = ” << num << “\n”;
 cout << noshowbase;
 cout << “calling noshowbase and default is decimal\n”;
 cout << “ decimal = ” << num << “\n”;
 return 0;
}

 Input and Output Streams 97

Output of the above program
enter a number
10
decimal = 10
octal = 012
hexadecimal = 0xa
decimal = 10
calling noshowbase and default is decimal
decimal = 10

(f) Showpos and noshowpos Format Flag

(1) Showpos The showpos format fl ag is used to display the sign of an integer. If this fl ag is set, a “+” sign
will be inserted before any integral insertion. It remains unset by default. Note that on positive decimal
output, the ‘+’ is assumed, but by default it will not appear. If the number is negative, the ‘-’ sign will
always appear.

The syntax of the showpos fl ag is,
 cout.setf(ios::showpos);

(2) Noshowpos The noshowpos format fl ag causes positive numbers to not be explicitly signed. By default,
noshowpos format fl ag is set. In other words, the noshowpos manipulator effectively calls the unsetf()
function to invalidate the setting of a positive sign.

The syntax of the showpos fl ag is,
 cout << noshowpos

 PROGRAM 4.22

A program to show the sign of the given number using the showpos and noshowpos format fl ag.

//using showpos and noshowpos fl ag
#include <iostream>
using namespace std;
int main()
{
 int num = 71;
 cout << “ decimal = ” << num << “\n”;
 cout.setf(ios::showbase);
 cout.setf(ios::showpos);
 cout.setf(ios::oct,ios::basefi eld);
 cout << “ octal = ” << num << “\n”;
 cout.setf(ios::hex,ios::basefi eld);
 cout << “ hexadecimal = ” << num << “\n”;
 cout.setf(ios::dec,ios::basefi eld);
 cout << “ decimal = ” << num << “\n”;
 cout << “calling noshowpos format fl ag \n”;
 cout << noshowpos;
 cout << “ decimal = ” << num << “\n”;
 return 0;
}

Output of the above program
decimal = 71
octal = 0107
hexadecimal = 0x47
decimal = +71
calling noshowpos format fl ag
decimal = 71

 Programming with C++98

(g) Uppercase and Nouppercase Format Flag

(1) uppercase The uppercase format fl ag is used to display output in uppercase. The following notations

appear in uppercase

 ∑ a hexadecimal number (A, B, C, D, E and F)
 ∑ the base of a hexadecimal number (0X)
 ∑ a fl oating point number in the scientifi c notation (4.3E3)

The syntax of the uppercase format fl ag is,
 cout.setf (ios::uppercase);

(2) nouppercase The nouppercase manipulator specifi es that hexadecimal digits and the exponent in

scientifi c notation appear in lowercase. In other words, the nouppercase manipulator effectively calls the

unsetf () function to revert back to lowercase.

By default, the following notations always appear in lowercase

 ∑ a hexadecimal number (a,b,c,d,e,f)
 ∑ the base of a hexadecimal number (0x)
 ∑ a fl oating point number in the scientifi c notation (4.3e3)

The syntax of the nouppercase format fl ag is,
 cout << nouppercase;

 PROGRAM 4.23

A program to display the base of the given hexadecimal number in uppercase using the fl ag setting.

//using uppercase and nouppercase fl ag

#include <iostream>

using namespace std;

int main()

{

 int num = 9999;

 cout.setf(ios::showbase);

 cout.setf(ios::hex,ios::basefi eld);

 cout << “ hexadecimal = ” << num << “\n”;

 cout.setf(ios::uppercase | ios::showbase);

 cout.setf(ios::hex,ios::basefi eld);

 cout << “ hexadecimal = ” << num << “\n”;

 cout << nouppercase;

 cout <<“calling nouppercase and default is lowercase\n”;

 cout.setf(ios::hex,ios::basefi eld);

 cout << “ hexadecimal = ” << num << “\n”;

 return 0;

}

Output of the above program
hexadecimal = 0x270f
hexadecimal = 0X27F
calling nouppercase and default is lowercase
hexadecimal = 0x270f

(h) Formatting Floating Point Numbers The following sections explain how fl oating values are formatted

using the different fl ag settings in C++.

 Input and Output Streams 99

 PROGRAM 4.24

A program to show the fl oating point numbers without any special formatting.

//using fi eld justifi cation
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b,c,d;
 a = 1.23456789;
 b = 34.56;
 c = 1.34E2;
 d = -123.5677;
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 return 0;
}

Output of the above program
a = 1.23457
b = 34.56
c = 134
d = -123.568

(i) Showpoint and noshowpoint Format Flag

(1) Showpoint The showpoint bit format fl ag is used to show the decimal point for all fl oating point values.

By default, the number of decimal position is six. The showpoint and precision is used to display zeros after

the decimal point.

The syntax of the showpoint fl ag is,
 cout.setf(ios::showpoint);

(2) Noshowpoint The noshowpoint manipulator fl ag is used to display only the whole-number part of

fl oating-point numbers whose fractional part is zero. By default, noshowpoint format fl ag is set.

The noshowpoint manipulator effectively calls the unsetf() fl ag to undo the showing of all decimal

values of a fl oating point number.

The syntax of the noshowpoint fl ag is,
 cout << noshowpoint;

 PROGRAM 4.25

A program to display a fl oating point value with all decimal places using showpoint and noshowpoint
format fl ag.

//using showpoint and noshowpoint format fl ag
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b,c,d;
 a = 1.23456789;
 b = 34.000;

 Programming with C++100

 c = 1.3400;
 d = -123.56770001;
 cout.setf(ios::showpoint);
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 cout << “calling noshowpoint \n”;
 cout << noshowpoint;
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 return 0;
}

Output of the above program
a = 1.23457
b = 34.0000
c = 1.34000
d = -123.568
calling noshowpoint
a = 1.23457
b = 34
c = 1.34
d = -123.568

(j) Precision The precision member function is used to display the fl oating point value as defi ned by the

user. The general syntax of the precision is,
 cout.precision (int n)

where n is the number of decimal places of the fl oating value to be displayed. For example,
 cout.precision(5);

which displays a fl oating point number of fi ve decimals.

 PROGRAM 4.26

A program to display a fl oating point value in the formatted form using the showpoint and precision

member function.

//using showpoint and precision member function
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b,c,d;
 a = 1.23456789;
 b = 34.56;
 c = 1.34E2;
 d = -123.5677;
 cout.setf(ios::showpoint);
 cout.precision(5);
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 return 0;
}

Output of the above program
a = 1.2346

 Input and Output Streams 101

b = 34.560
c = 134.00
d = -123.57

(k) Floatfi eld Bit Format Flag Sometimes a fl oating point value may have to be displayed in scientifi c

notation rather than in fi xed format.

(1) Scientifi c When scientifi c is set, fl oating point values are inserted using scientifi c notation. There is only

one digit before the decimal point followed by the specifi ed number of precision digits which in turn is

followed by an uppercase or a lowercase e depending on the setting of uppercase and the exponent value.

The general syntax of the scientifi c notation is,
 cout.setf(ios::scientifi c, ios::adjustfi eld);

(2) Fixed When fi xed is set, the value is inserted using decimal notation with the specifi ed number of

precision digits following the decimal point. If neither scientifi c nor fi xed is set (the default), scientifi c

notation will be used when the exponent is less than 4 or greater than precision. Otherwise, fi xed notation is

used.

The general syntax of the fi xed notation is,
 cout.setf(ios::fi xed, ios::adjustfi eld);

 PROGRAM 4.27

A program to display a fl oating point value in both scientifi c and fi xed notation using the fl oatfi eld format fl ag.

//using fi xed and scientifi c fl ag
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b,c,d;
 a = 1.23456789;
 b = 34.56;
 c = 1.34E2;
 d = -123.5677;
 cout.setf(ios::showpoint);
 cout.precision(4);
 cout.setf(ios::fi xed, ios::fl oatfi eld);
 cout << “ display in conventional notation \n”;
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 cout.setf(ios::scientifi c, ios::fl oatfi eld);
 cout << “ display in scientifi c notation \n”;
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “d = ” << d << “\n”;
 return 0;
}

Output of the above program
display in conventional notation
a = 1.2346
b = 34.5600
c = 134.0000
d = -123.5677

 Programming with C++102

display in scientifi c notation
a = 1.2346e+00
b = 3.4560e+01
c = 1.3400e+02
d = -1.2357e+02

(l) Adjustfi eld Bit Format Flag The adjust fi eld consists of three fi eld settings
ios::left left justifi cation

ios::right right justifi cation

ios::internal pad after sign or base indicator

(1) Left Only one of these may be set at any time. If left is set, the inserted data will be fl ush left in a fi eld of

characters widthwide. The extra space, if any, will be fi lled by the fi ll character (specifi ed by the fi ll function).

The general syntax of the left justifi cation format fl ag is,
 cout.setf(ios::left,ios::adjustfi eld);

(2) Right If right is set, the inserted data will be fl ush right. The general syntax of the right justifi cation

format fl ag is,
 cout.setf(ios::right,ios::adjustfi eld);

(3) Internal If internal is set, the sign of a numeric value will be fl ush left while the numeric value

fl ush right, and the area between them will contain the pad character. The general syntax of the internal

justifi cation format fl ag is,
 cout.setf(ios::internal,ios::adjustfi eld);

 PROGRAM 4.28

A program to demonstrate how a fi eld justifi cation of an integer value is carried out using the adjust fi eld
format fl ag.

//using fi eld justifi cation
#include <iostream>
using namespace std;
int main()
{
 int num = 71;

 cout.fi ll(‘*’);
 cout.setf(ios::showpos);
 cout.setf(ios::left,ios::adjustfi eld);
 cout.width(6);
 cout << num << “\n”;
 cout.setf(ios::right,ios::adjustfi eld);
 cout.width(6);
 cout << num << “\n”;
 cout.setf(ios::internal,ios::adjustfi eld);
 cout.width(6);
 cout << num << “\n”;
 return 0;
}

Output of the above program
+71***
***+71
+***71

 Input and Output Streams 103

(m) Fill and Width If the total number of characters needed to display a fi eld is less than the current fi eld

width, the extra output spaces will be fi lled with the current fi ll character. In C++, it is permitted to use any

character to serve as the fi ll character. But by default it is blank.

(1) Fill The fi ll() member function is used to specify a new fi ll character. Once it is specifi ed, it remains as

the fi ll character unless it is changed.

The general syntax of the fi ll() member function is,
 cout.fi ll(char ch);

where ch is a character to be fi lled. For example,
 cout.fi ll(‘*’);
 cout.fi ll(‘0’);

(2) Width The width() member function is used to specify the size of the data variable.

The general syntax of the width() member function is,
 cout.width(int n);

where n is a total fi eld width of a variable. For example,
 cout.width(10);
 cout.width(3);

 PROGRAM 4.29

A program to demonstrate how a fi ll and width member function is used to display a numeral in C++.

//using fi ll and width
#include <iostream>
using namespace std;
int main()
{
 cout.width(10);
 cout.fi ll(‘x’);
 int num = 6;
 cout << num << “ \n”;
 cout.width(15);
 cout.fi ll(‘b’);
 num = 12345;
 cout << num << endl;
 return 0;
}

Output of the above program
xxxxxxxxx6
bbbbbbbbbb12345

(n) Stdio This fl ag fl ushes the stdout and stderr devices defi ned in stdio.h. This is unset by default.

The general syntax of the stdio fl ag is,
 cout.setf(ios::stdio);
//using stdio
#include <iostream>
using namespace std;
int main()
{
 cout.setf(ios::stdio);
 cout << “ this is a test program to fl ush out \n”;
 cout << “ the input stream\n”;
} return 0;

 Programming with C++104

(o) Skipws and Noskipws The non-printable character such as space bar, tab character, form feed or

newline and backspace are called as whitespaces.

(1) Skipws The skipws format fl ag cause spaces to not be read by the input stream. In other words, if skipws

format fl ag is set, leading white space is ignored on extraction. By default skipws is set. The manipulator

effectively calls setf(ios:: skipws).

 PROGRAM 4.30

A program to demonstrate how to use the skipws format fl ag for reading a set of strings with white spaces.

#include <iostream>
#include <string>
using namespace std;
int main()
{
 string s1, s2, s3;
 cout << “Enter three names: ”;
 cin >> skipws >> s1 >> s2 >> s3;
 cout << “.” << s1 << “.” << endl;
 cout << “.” << s2 << “.” << endl;
 cout << “.” << s3 << “.” << endl;
} return 0;

Output of the above program
Enter three names:
Bangalore Mumbai Hyderabad
.Bangalore.
.Mumbai.
.Hyderabad.

(2) Noskipws The noskipws format fl ag cause spaces to be read by the input stream. The manipulator

effectively calls unsetf (ios:: skipws),

 PROGRAM 4.31

A program to demonstrate how to use the noskipws format fl ag for reading a set of strings with white spaces.

#include <iostream>
#include <string>
using namespace std;
int main()
{
 string s1, s2, s3;
 cout << “Enter three names: “;
 cin >> noskipws >> s1 >> s2 >> s3;
 cout << “.” << s1 << “.” << endl;
 cout << “.” << s2 << “.” << endl;
 cout << “.” << s3 << “.” << endl;
} return 0;

Output of the above program
Enter three names:
Bangalore Mumbai Hyderabad
.Bangalore.
..
..

 Input and Output Streams 105

The noskipws reads whitespace as an input and therefore the above output is displayed.

(p) Unitbuf and Nounitbuf

(1) unitbuf The unitbuf format fl ag causes output to be processed when the buffer is not empty. In other

words, when unitbuf is set, the stream is fl ushed after every insertion. This fl ag is unset by default.

The general syntax of the unitbuf is,
 cout.setf(ios::unitbuf);

(2) nounitbuf The nounitbuf format fl ag causes output to be buffered and processed on when the buffer

is full. The manipulator effectively calls unsetf (ios:: unitbuf),
//using unitbuf
#include <iostream>
using namespace std;
int main()
{
 cout.setf(ios::unitbuf);
 cout << “ this is a test program to fl ush out \n”;
 cout << “ the input stream\n”;
 return 0;
}

Output of the above program

this is a test program to fl ush out the input stream

The following table summarises the constants used with setf() manipulators.

Arguments for setfl ags

First argument (fl ag name) Second argument

ios:: skipws

ios::left
ios::right ios::adjustfi eld
ios::internal
ios::dec
ios::oct ios::basefi eld
ios::hex
ios::boolalpha
ios::showbase
ios::showpos
ios::uppercase
ios::showpoint

ios::scientifi c
ios::fi xed ios::fl oatfi eld
ios::unitbuf
ios::stdio

 REVIEW QUESTIONS

 1. How are the variables or the user defi ned identifi ers declared in C++?

 2. What is an expression? How is a n expression different from the variables?

 3. What are the different types of I/O streams used in C++?

 Programming with C++106

 4. Explain the salient features of the following header fi les.

 (i) input and output stream class (iostream>
 (ii) input and out manipulator (iomanip>
 (iii) input and output (ios)
 5. What is a manipulator? List the merits and demerits of it.

 6. Explain the syntactic rules governing cin and cout.

 7. Explain the following:

 (i) istream
 (ii) ostream
 (iii) iostream
 8. What are the various standard manipulators used in C++?

 9. How is the comment statement represented in C++? What are the uses of defi ning a comment

statement in a program?

 10. Explain the syntactic rules governing the following manipulators.

 (i) setbase (ii) setfi ll
 (iii) setw (iv) setprecision
 11. How is the basefi eld of a numeral defi ned in C++?

 12. What is an I/O stream fl ag? What stream fl ags are more suitable than standard manipulator?

 13. List the various I/O stream fl ags and their meanings.

 14. Explain the syntactic rules governing the following I/O stream fl ags.

 (i) showbase (ii) showpoint
 (iii) showpos (iv) scientifi c
 15. What is an adjust fi eld format fl ag?

 16. Explain the various kinds for formatting of a fl oating point value used in C++?

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
 #include <iostream>
 using namespace std;
 int main()
 {
 int x(10);
 cout << “value of x = ” << x << endl;
 return 0;
 }

 (b)
 #include <iostream>
 using namespace std;
 int main()
 {
 int x(10),y(20),sum(0);
 sum = x+y;
 cout << “ x = ” << x <<“ y = ”<< y;
 cout << “ sum = ” << sum << endl;
 return 0;
 }

 Input and Output Streams 107

 (c)
#include <iostream>
using namespace std;
int main()
{
 int x = 10,y = 20,sum = 0;
 sum = x+y;
 cout << “ x = ” << x <<“ y = ”<< y;
 cout << “ sum = ” << sum << endl;
 return 0;
}

 (d)
#include <iostream>
int main()
{
 using namespace std;
 bool b = cout.bad();
 cout << b << endl;
 b = cout.good();
 cout << b << endl;
 return 0;
}

 (e)
#include <iostream>
int main(void)
{
 using namespace std;
 double i = 1.23e100;
 cout << i << endl;
 cout << uppercase << i << endl;
 int j = 10;
 cout << hex << nouppercase << j << endl;
 cout << hex << uppercase << j << endl;
} return 0;

 (f)
#include <iostream>
int main()
{
 using namespace std;
 int j = 100;
 cout << showbase << j << endl;
 cout << hex << j << showbase << endl;
 cout << oct << j << showbase << endl;
 cout << dec << j << noshowbase << endl;
 cout << hex << j << noshowbase << endl;
 cout << oct << j << noshowbase << endl;
} return 0;

 (g)
#include <iostream>
int main()
{
 using namespace std;
 bool b = true;
 cout << b << endl;

 Programming with C++108

 boolalpha(cout);
 cout << b << endl;
 noboolalpha(cout);
 cout << b << endl;
 cout << boolalpha << b << endl;
} return 0;

 (h)
#include <iostream>
int main()
{
 using namespace std;
 cout << !cout << endl;
} return 0;

 (i)
#include <iostream>
int main()
{
 using namespace std;
 cout << (bool)&cout << endl;
} return 0;

 2. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 bool a = true;
 bool b = true;
 int c = a-b;
 cout << c << endl;
} return 0;

 (b)
#include <iostream>
using namespace std;
int main()
{
 bool a = true;
 bool b = true;
 int c = a+b;
 cout << c << endl;
} return 0;

 (c)
#include <iostream>
using namespace std;
int main()
{
 bool a = true;
 bool b = false;
 int c = a*b;
 cout << c << endl;
} return 0;

 (d)
#include <iostream>
using namespace std;

 Input and Output Streams 109

int main()
{
 bool a = 20;
 bool b = 210;
 int c = a+b;
 cout << c << endl;
} return 0;

 (e)
#include <iostream>
using namespace std;
int main()
{
 bool a = 0;
 bool b = -1;
 int c = a+b;
 cout << “a = ” << a << endl;
 cout << “b = ” << b << endl;
 cout << “c = a+b = “<< c << endl;
} return 0;

 (f)
#include <iostream>
using namespace std;
int main()
{
 bool a = -200;
 bool b = -100;
 int c = a+b;
 cout << “a = ” << a << endl;
 cout << “b = ” << b << endl;
 cout << “c = a+b = ”<< c << endl;
} return 0;

 (g)
#include <iostream>
using namespace std;
int main()
{
 bool a = -200;
 bool b = -200;
 bool c = a+b;
 cout << “a = ” << a << endl;
 cout << “b = ” << b << endl;
 cout << “c = a+b = ”<< c << endl;
} return 0;

 (h)
#include <iostream>
using namespace std;
int main()
{
 bool a = 0;
 bool b = 20;
 bool c = a+b;
 cout << “a = ” << a << endl;
 cout << “b = ” << b << endl;
 cout << “c = a+b = ”<< c << endl;

 Programming with C++110

} return 0;

 (i)
#include <iostream>
using namespace std;
int main()
{

bool a = 10;
bool b = false;
int x = a-b;
cout << “a = ” << a << endl;
cout << “b = ” << b << endl;

 cout << “x = a-b = ” << x << endl;
 return 0;

}

 (j)
#include <iostream>
using namespace std;
int main()
{
 wchar_t ch1 = L‘A’;
 wchar_t ch2 = L‘B’;
 wchar_t ch3 = L‘C’;
 wcout << ch1;
 wcout << ch2;
 wcout << ch3;
 return 0;
}

 (k)
#include <iostream>
using namespace std;
int main()
{
 wchar_t ch1 = L‘A’;
 wchar_t ch2 = L‘B’;
 wchar_t ch3 = L‘C’;
 wcout << ch1 << endl;
 wcout << ch2 << endl;
 wcout << ch3 << endl;
 return 0;
}

 (l)
#include <iostream>
using namespace std;
int main()
{
 wchar_t s1[] = L“Hello”;
 wchar_t s2[] = L“C++”;
 wchar_t s3[] = L“program”;
 wcout << s1 << endl;
 wcout << s2 << endl;
 wcout << s3 << endl;
 return 0;
}

 Input and Output Streams 111

 PROGRAMMING EXERCISES

 1. Write a program in C++ to perform the following:

 (i) Area of a circle

 (ii) Circumference of a circle

 (iii) Area of a triangle

 (iv) Area of a rectangle

 2. Write a program in C++ to fi nd the simple interest for a given principal, rate of interest, and number

of years.

 3. Write a program in C++ to fi nd the compound interest for a given principal, rate of interest and

number of years.

 4. Write a program in C++ to solve a quadratic equation.

 5. Develop a program in C++ to read a set of fi ve real numbers from the keyboard and to fi nd out their

sum and average.

 6. Write a program in C++ to read the name, age, sex, height and weight of a student and to display

with proper heading for each variable.

 7. Write a program in C++ to accept a single character from the keyboard. Using printf, display the

character or keystroke and its decimal, hexadecimal and octal values.

 Display in the following format

 Character Decimal Hexadecimal Octal

Control
Statements

Chapter

5

5.1 CONDITIONAL EXPRESSIONS

Conditional statements are a set of C++ statements that are used for checking the truth of one or more

conditions and perform different set of calculations, depending on the conditions. In other words,

conditional expressions are mainly used for decision making or selecting a particular portion of a program

for execution. In the subsequent sections, the structures of the control statements and the different usages

are explained. The following statements are used to perform the task of conditional operations in C++:

 ∑ The if statement

 ∑ The if-else statement

 ∑ The switch-case statement

5.1.1 The if Statement

The simplest of the conditional statement is the if statement. A condition or logical expression is tested

for selecting a particular portion of a program for execution. If the condition is true, a particular segment of

the program is executed. The segment may consist of either single statement(s) or a compound statement(s)

enclosed in a pair of {and } braces as delimiters. If the condition is false, the particular segment is passed

over or ignored.

The general syntax of the if statement is:

 if (expression)
 statement;

This chapter mainly gives how to implement a control statement for decision
making purpose in a program. The various types of conditional expressions that
are used for the multiway selection or decision making namely, if, if-else and
switch-case statements are explained with numerous illustrative examples in this
chapter. The diff erent kinds of loop statements such as for loop, while loop, and
do-while loop are discussed in this chapter. This chapter also presents how to use
the goto statement, the break statement and the continue statement that are used
for breaking the control within the loop statements.

 Control Statements 113

where expression is a simple or a compound condition for testing the if statement. The expression

can be any valid statement such as arithmetic, logical or boolean statement which evaluates to either ‘true’

or ‘false’.

The general syntax of the if for a block of statements is:

 if (expression)
 {
 statement_1;
 statement_2;

 statement_n;
 }

The expression is evaluated and if it is ‘true’, then the statement following the ‘if’ is executed. In

case, the given expression is ‘false’, then the statement is skipped and execution continues with the next

statement.

Consider the following program segment which shows how to use a simple if statement in C++:
#include <iostream>
using namespace std;
int main()
{
 int a,b;
 a = 20;
 b = 10;
 if (a > b)
 cout << “ Largest value = ” << a << endl;
 return 0;
}

If the given condition evaluates to true, then the computer will print the message ‘Largest value = 20’

and if not, it will simply skip the statement (cout statement).

Another example is given below which highlights the execution of how to represent a block of

statements using the if condition. The compound or block of statements are always considered as a single

statement in C++. It is necessary to use the braces begin ({) and end (}) as delimiter.

#include <iostream>
using namespace std;
int main()
{
 int a,b;
 a = 5;
 b = 2;
 if (a > b)
 {
 cout << “ one ” << endl;
 cout << “ two ” << endl;
 cout << “ three ” << endl;
 }
 return 0;
} // end of the main

Output of the above program
one
two
three

If the condition is ‘false’, the entire block of if-statements are skipped or ignored by the C++ compiler.

 Programming with C++114

5.1.2 The if-else Statement

The general form of the syntax and a fl ow chart showing the effects of an if-else are given in Fig. 5.1. The

if-else statement is one of the most widely used conditional expressions in C++.

The general syntax of the if–else conditional expression is given below:

 if (expression)
 statement_1;
 else
 statement_2;

If the condition is ‘true’, then the statement_1 or the block of statements between the expression will be

executed. If it is ‘false’, statement_2 or the block of statements between else and end will be performed.

This differs from the ‘if’ statement where there is only one option that is either execution or skipping of a

statement or a block of statements.

Fig. 5.1(a) Flow chart for if–else statement

Fig. 5.1(b) Syntax diagram of if–else statement

The ‘if-else’ statement begins with the keyword ‘if’ followed by a boolean expression. This is followed

by a C++ statement or a group of statements. Finally, the reserved word ‘else’ is written, again followed by

a C++ statement or a group of statements. Note that there is a semicolon used in each statement that gives

the meaning of termination of the statement in C++.

The ‘if-else’ statement is executed as follows. The boolean expression is fi rst evaluated and if it is true,

then statement_1 is executed and statement_2 is ignored. If it is false, then the statement_1 is skipped

 Control Statements 115

and statement_2 is executed. In this case, either of the two statements are executed depending upon the

evaluated value of the expression.

For example, the following ‘if-else’ structure is used to check whether a given number is odd or even:

#include <iostream>
using namespace std;
int main()
{
 int number;
 cout << “enter a number ” << endl;
 cin >> number;
 if ((number % 2) == 0)

cout << “number is even ” << endl;
 else
 cout << “ number is odd ” << endl;
 return 0;
}

Output of the above program
enter a number
10
number is even

When the expression (number % 2 = = 0) is executed and found true, the message ‘number is even’ will

be displayed. If the expression is false, then the else part of the statement that is the message ‘number is

odd’ will be displayed.

To represent a block of statements, the use of the keywords begin and end are essential. For example, if-

else conditional expression is realised with a block of statements as given below:
if (expression)
{
 statement_1;
 statement_2;

}
else
{
 statement_1;
 statement_2;

}

The syntactic ambiguity The else part is optional in the if-else structure. Omitting the else part leads to

confusion especially in a nested if-else sequence.

For example, consider the following if-else construction:

 if (expression_1)
 if (expression_2)
 statement_1;
 else
 statement_2;

In the above if-else construction, the else part gives a syntactic ambiguity. That is, it is not clear whether

the else part belongs to the inner if statement or to the outer if statement. The syntactic ambiguity of the

above if-else construction can be resolved by interpreting the construction as equivalent to:

 Programming with C++116

 if (expression_1)
 {
 if (expression_2)
 statement_1;
 else
 statement_2;
 }

Note that the else statement without begin–end statements leads to confusion, like, whether it belongs

to the inner if or outer if statement. Normally, begin({) and end(}) statements are used to clearly indicate

proper association.

Special features of the if–else statement

Note that there is a semicolon after each of the statement but not after the if (expression). In other words, if

we have
 if (a >b);
 temp = a;

then the C++ compiler will interpret it as
 if (a > b)
 ;
 temp = a;

which is meaningless if the actual intention is to write
if (a > b)
 temp = a;

The following are some of the sample if-else constructions that are most widely used:

 (1)
 if (expression)
 {

 ––-----
 ––-----

 }
 else
 {

 ––-----
 ––-----

 }

 (2)
 if (expression)
 {
 if (expression)
 {
 ––-----
 ––-----
 }
 else
 {
 ––-----
 ––-----
 }
 }
 else
 {
 ––-----
 ––-----
 }

 Control Statements 117

 (3)
 if (expression)
 {
 if (expression)
 {

 }
 else
 {

 }
 }
 else
 {
 if (expression)
 {

 }
 else
 {

 }
 }

The generalised if structure permits us to make a multiway decision, the syntax of which is as:

 if (expression)
 {
 statement 1
 statement 2

 }
 else if (expression)
 {
 statement 1
 statement 2

 }
 else if (expression)
 {

 statement 1
 statement 2

 }
 else
 {
 statement 1
 statement 2

 Programming with C++118

 ––-----
 }

 PROGRAM 5.1

A program to read any two numbers from the keyboard and display the largest value of them.

// example 5.1
// if-else structure
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b;
 cout <<“ Enter any two numbers ” << endl;
 cin >> a >> b;
 if (a > b)
 cout <<“ Largest value is = ” << a << endl;
 else
 cout <<“ Largest value is = ” << b << endl;
 return 0;
}

Output of the above program

Enter any two number
 10 20
 Largest value is = 20

 PROGRAM 5.2

A program to fi nd the largest value of any three numbers.

// example 5.2
#include <iostream>
using namespace std;
int main()
{

 fl oat a,b,c;
 cout <<“ Enter any three numbers ” << endl;
 cin >> a >> b >> c;
 if (a > b)
 {
 if (a > c)
 cout <<“ Largest value is ” << a;
 else
 cout <<“ Largest value is = ” << c;
 }
 else
 {
 if (b > c)
 cout <<“ Largest value is = ” << b;
 else
 cout <<“ Largest value is = ” << c;
 }
 return 0;
} // end of the main program

Output of the above program

Enter any three numbers

 Control Statements 119

10 20 30
Largest value is = 30

 PROGRAM 5.3

A program to fi nd the largest value among any four numbers.

// example 5.3
#include <iostream>
using namespace std;
int main()
{
 fl oat a,b,c,d;
 cout <<“ Enter any four numbers ” << endl;
 cin >> a >> b >> c >> d;
 if (a > b)
 {
 if (a > c)
 {
 if (a > d)
 cout <<“ largest = ” << a;
 else
 cout <<“ largest = ” << d;
 }
 else
 {
 if (c > d)
 cout <<“ largest = ” << c;
 else
 cout <<“ largest = ” << d;
 }
 } // end of outer most if part
 else
 {
 if (b > c)
 {
 if (b > d)
 cout <<“ largest = ” << b;
 else
 cout <<“ largest = ” << d;
 }
 else
 {
 if (c > d)
 cout <<“ largest = ” << c;
 else
 cout <<“ largest = ” << d;
 }
 } // end of outer most else part
 return 0;
} // end of the main program

Output of the above program

Enter any four numbers
10 20 30 40
largest = 40

 Programming with C++120

 PROGRAM 5.4

A program to display the name of the day in a week, depending upon the number which is entered by the
keyboard using the if–else structure.

// example 5.4
#include <iostream>
using namespace std;
int main()
{
 int day;
 cout <<“ Enter a number between 1 and 7 ” << endl;
 cin >> day;
 if (day == 1)
 cout <<“ Monday ” << endl;
 else if (day == 2)
 cout <<“ Tuesday ” << endl;
 else if (day == 3)
 cout <<“ Wednesday ” << endl;
 else if (day == 4)
 cout <<“ Thursday “ << endl;
 else if (day == 5)
 cout <<“ Friday ” << endl;
 else if (day == 6)
 cout <<“ Saturday ” << endl;
 else if (day == 7)
 cout <<“ Sunday ” << endl;
 else
 cout <<“ Enter a correct number ” << endl;
 return 0;
} // end of main program

Output of the above program

Enter a number between 1 and 7
7
Sunday

Nested if–else structure

Whenever an if statement is constructed within another if statement, it is called as a nested if statement.

C++ permits one to realise nested if statements to any level of nesting with or without else clauses.

The general syntax of the nested if-without else part, is given below :
 if (boolean expression_1)
 if (boolean expression_2)
 if (boolean expression_3)

 if (boolean expression_n)
 statement;

The statement inside the nested if conditions will be executed, if and only if, the value of every boolean

expression evaluates to true. Furthermore, the conditional expression is evaluated in the order of boolean

expression_1, boolean expression_2 and so on. If one of the boolean expression gets evaluated as false,

then further execution of the boolean expression is stopped automatically.
#include <iostream>
using namespace std;
int main()
{

 Control Statements 121

 int math,physics,chemistry;
 math = 60;
 physics = 45;
 chemistry = 70;
 if (math >= 50)
 if (physics >= 45)
 if (chemistry >= 45)
 cout << “ pass ” << endl;
 else
 cout << “ fail ” << endl;
 return 0;
}

Output of the above program
pass

The nested if condition can be realised in a single boolean expression using boolean operators in a

compound boolean expression. For example, the following program segment illustrates how to implement a

single boolean expression with compound boolean conditions:
#include <iostream>
using namespace std;
int main()
{
 int math,physics,chemistry;
 math = 60;
 physics = 45;
 chemistry = 70;
 if ((math >= 50) && (physics >= 45) && (chemistry >= 45))
 cout << “ pass ” << endl;
 else
 cout << “ fail ” << endl;
 return 0;
}

 PROGRAM 5.5

A program to solve a quadratic equation and to fi nd out the diff erent types of roots for given coeffi cients.

// example 5.5
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
 fl oat a,b,c,det;
 fl oat x1,x2,x;
 cout <<“enter the coeffi cients for a,b,c ” << endl;
 cin >> a >> b >> c;
 if (a == 0)
 {

 x = -c/b;
 cout <<“roots are linear = ” << x;
 }
 else
 {
 det = b*b-4*a*c;
 if (det == 0)
 {

 Programming with C++122

 x = -b/(2*a);
 cout <<“roots are identical(x1 = x2) ” << endl;
 cout << x;
 }
 else if (det < 0)
 cout <<“roots are complex” << endl;
 else
 {
 x1 =(-b+sqrt(det))/(2*a);
 x2 =(-b-sqrt(det))/(2*a);
 cout <<“roots are real ” << endl;
 cout <<“ x1 = ” << x1 << endl;
 cout <<“ x2 = ” << x2 << endl;
 }
 } // end of outer else part
 return 0;
} // end of the main program

Output of the above program
enter the coeffi cients for a,b,c
0 4 2
roots are linear = -0.5
enter the coeffi cients for a,b,c
1 4 2
roots are real
x1 = -0.585786
x2 = -3.41421
enter the coeffi cients for a,b,c
2 1 4
roots are complex
enter the coeffi cients for a,b,c
2 4 2
roots are identical(x1 = x2)
-1

 PROGRAM 5.6

A program to compare two given characters such as equal to, less than or greater than using if–else
statements.

// example 5.6
#include <iostream>
using namespace std;
int main()
{
 char ch1,ch2;
 cout << “enter a fi rst character” << endl;
 ch1 = cin.get();
 cin.ignore(); // skip a newline character
 cout << “enter a second character” << endl;
 ch2 = cin.get();
 cout << “ch1 = ” << ch1 << endl;
 cout << “ch2 = ” << ch2 << endl;
 if (ch1 > ch2)
 cout << “ch1 > ch2 ” << endl;
 else if (ch1 < ch2)
 cout << “ch1 < ch2 ” << endl;
 else
 cout << “ch1 = ch2” << endl;
 return 0;
}

 Control Statements 123

Output of the above program
enter a fi rst character
a
enter a second character
a
ch1 = a
ch2 = a
ch1 = ch2

enter a fi rst character
a
enter a second character
b
ch1 = a
ch2 = b
ch1 < ch2

enter a fi rst character
b
enter a second character
a
ch1 = b
ch2 = a
ch1 > ch2

5.1.3 The switch-case Statement

The switch-case statement is a special multiway decision maker that tests whether an expression matches

one of the number of the constant values, and perform a part of a statement or a block of statements within

the case structure. The general form of the syntax and fl ow chart diagram of the switch-case statement is

given in Fig. 5.2. A switch case structure is one such statement in C++ wherein the delimiter begin ‘{’ and

end ‘}’ should be used.

Fig. 5.2(a) Flow chart for Switch-case Statement

 Programming with C++124

The general syntax of the case statement is:
 switch (expression) {
 case constant_1
 statement
 case constant_2
 statement

 case constant_n
 statement
 default
 statement
 } // end of switch-case statement

The case statement consists of an expression (the selection) and a list of statements, each being

associated with one or more constant values of the type of the selector. Sometimes case label is called as

a case constant. Note that case labels are entirely different from the program labels, which are used along

with a goto statement.

Fig. 5.2(b) Syntax Diagram of Switch-case Statement

The expression whose value is being compared, can be any valid expression including the value of

the variable, an arithmetic expression, logical comparison, bitwise expression or the return value from

a function call, but not a fl oating point expression. The constants in each of the case statements must

obviously be of the same type. The expression value is checked against each of the specifi ed cases and

when a match occurs, the statement following that is executed. Again, to maintain generality the statement

can be either a simple or a compound statement.

The value that follows the keyword case can only be constants and cannot be expressions. They may

be integers or characters, but not fl oating point numbers or character strings. If it is necessary to check

the value of an expression against another expression, then the if-else structure should be used. Case

statements are generally used for multiway decision making only but not for repetitive purpose.

Fig. 5.2(c) Syntax Diagram of Case Statement

The last case of this statement which is called the default case is optional and should be used according

to the program’s specifi c requirement. It is analogous to the last else of the if-else-if structure.

 Control Statements 125

Although the default case is optional its position is fi xed; it must follow all the other cases. Typically, it can

be used for error trapping or impossible cases. If the default case is not included in a switch statement and

the expression is not matched by any other cases, nothing happens and the statement following the switch

constant is executed.

Fig. 5.2(d) Syntax Diagram of Default Case Statement

Execution of the switch constant in C++ follows a different logic. No statements are executed until

a case has been matched or the default case has been encountered. However, it continues to execute all

statements once a case has been matched, irrespective of the fact whether those statements belong to the

case that has been matched or not.

As an example, consider a program segment written in C++:
 input_ch = cin.get();
 switch (input_ch) {
 case ‘R’:
 cout << “Red ” << endl;
 case ‘W’:
 cout << “White ” << endl;
 case ‘B’:
 cout << “Blue ” << endl;
 }

Due to the fall through effect, when input_ch is ‘R’ the Red, White and Blue will be printed,

when the choice is ‘W’, then White and Blue will be printed and when the choice is ‘B’, only Blue

will be printed.

C++ offers a method of overcoming this side effect with the help of the break statement. The break

statement causes an immediate exit from the switch construct. As the default case is placed at the end of

the case constant it is not necessary to include a break statement there. However, in general it is advisable

to use the break statement explicitly whenever exclusion of a case statement is required. Thus, the general

format of the mutually exclusive switch constant is:

 switch (expression) {
 case constant_1 :

 statement_1

 break;

 case constant_2 :
 statement_1

 break;

 case constant_n :

 statement_1
 break;

 } // end of switch-case structure

 Programming with C++126

Although there is no clear cut rule for the use of the if-else and switch constants, it is easy to use

the former for isolating ranges in the expression being evaluated, while the latter is used for decision based

on discrete values along with one default case for everything else.

Thus, if in a program for intercepting vowels out of a stream of characters it is required to print them, it

would be more meaningful to make use of the switch constant than the if-else constant. The following

example will help in understanding this, along with the use of the break statement.

#include <iostream>
using namespace std;
int main()
{
 char input_ch;
 cout << “enter a character” << endl;
 input_ch = cin.get();
 switch (input_ch) {
 case ‘A’ :
 case ‘a’ :
 cout << “A ” << endl;
 break;
 case ‘E’ :
 case ‘e’ :
 cout << “E ” << endl;
 break;
 case ‘I’ :
 case ‘i’ :
 cout << “I ” << endl;
 break;
 case ‘O’ :
 case ‘o’ :
 cout << “O ” << endl;;
 break;
 case ‘U’ :
 case ‘u’ :
 cout << “U ” << endl;
 break;
 default :
 cout << “Not a vowel ” << endl;
 break;
 } // end of the switch-case structure
 return 0;
}

The above case structure can easily be realised with multiple if-else structure which is given below:

 if ((inputchar == ‘a’) || (inputchar == ‘A’))
 cout << “A ” << endl;
 else if ((inputchar == ‘e’) || (inputchar == ‘E’))
 cout << “E ” << endl;
 else if ((inputchar == ‘i’) || (inputchar == ‘I’))
 cout << “I ” << endl;
 else if ((inputchar == ‘o’) || (inputchar == ‘O’))
 cout << “O ” << endl;
 else if ((inputchar == ‘u’) || (inputchar == ‘U’))
 cout << “U ” << endl;
 else
 cout << “Not a vowel ” << endl;

 Control Statements 127

Invalid case expressions For example, following are some invalid constructions of the case structure in

C++:

 (1) The case label must not be a fl oating point number. Case labels should be either integer constants or

character constants.

 switch (value) { // invalid
 case ’10.11’ :

 break;
 case ’10.1111’ :

 break;
 default :

 } // end of the switch-case structure

 (2) The case label must not be a string expression or a string of characters.

 switch (value) { // invalid
 case “good” :

 break;
 case “bad” :

 break;
 default :

 } // end of the switch-case structure

 (3) The case label cannot be an expression using arithmetic, logical or combination of all.
 switch (expression) { // invalid
 case ‘a+b’ :

 break;
 case ‘a-b’:

 break;
 default :

 } // end of the switch-case structure

 (4) The case label or case constant must not be repeated in the same case construction.
 switch (expression) { // invalid
 case 1,2 :

 break;
 case 3,4,5:

 Programming with C++128

 break;
 case 2,6,7 :

 break;
 default :

 } // end of the switch-case structure

 Note that case label 2 is repeated twice in the above example and hence, it is invalid.

 (5) The case label or case constant cannot have a range of numbers.
 switch (expression) { // invalid
 case 1..2 :

 break;
 case 3..5:

 break;
 case 6..9 :

 break;
 default :

 } // end of the switch-case structure

The above case construction is invalid, as the case constants have been defi ned using a range of

numbers.

 PROGRAM 5.7

A program to display the name of the day in a week, depending upon the number entered through the
keyboard using the switch-case statement.

// example 5.7
#include <iostream>
using namespace std;
int main()
{
 int day;
 cout << “Enter a number between 1 and 7 ” << endl;
 cin >> day;
 switch (day) {
 case 1 :
 cout << “ Monday ” << endl;
 break;
 case 2 :
 cout << “ Tuesday ” << endl;
 break;
 case 3 :
 cout << “ Wednesday ” << endl;
 break;
 case 4 :
 cout << “ Thursday ” << endl;
 break;

 Control Statements 129

 case 5 :
 cout << “ Friday ” << endl;
 break;
 case 6 :
 cout << “ Saturday ” << endl;
 break;
 case 7 :
 cout << “ Sunday ” << endl;
 break;
 default :
 cout << “ enter a correct number ” << endl;
 break;
 } // end of the switch-case statement
 return 0;
} // end of main program

Output of the above program

Enter a number between 1 and 7
1
Monday

 PROGRAM 5.8

A program to perform simple arithmetic operations such as addition, subtraction, multiplication, and
division using the switch-case statement.

// example 5.8
#include <iostream>
using namespace std;
int main()
{
 fl oat x,y,z;
 char ch;
 cout << “enter any two numbers” << endl;
 cin >> x >> y;
 cin.ignore(); //skip a line feed character
 cout << “enter any one of the following codes” << endl;
 cout << “a - addition” << endl;
 cout << “s - subtraction” << endl;
 cout << “m - multiplication” << endl;
 cout << “d - division” << endl;
 ch = cin.get();
 switch(ch) {
 case ‘a’:
 z = x+y;
 cout << “ x = ” << x << “ y = ” << y;
 cout << “ x+y = ” << z;
 break;
 case ‘b’:
 z = x-y;
 cout << “ x = ” << x << “ y = ” << y;
 cout << “ x-y = ” << z;
 break;
 case ‘c’:
 z = x*y;
 cout << “ x = ” << x << “ y = ” << y;
 cout << “ x*y = ” << z;
 break;
 case ‘d’:
 z = x/y;
 cout << “ x = ” << x << “ y = ” << y;
 cout << “ x/y = ” << z;

 Programming with C++130

 break;
 } // end of the switch-case statement
 return 0;
} // end of main

Output of the above program
enter any two numbers
10 20
enter any one of the following codes
a - addition
s - subtraction
m - multiplication
d - division
a
x = 10 y = 20 x+y = 30

 PROGRAM 5.9

A program to demonstrate how to use the switch–case statement for more than one case label is to be
executed.

// example 5.9
#include <iostream>
using namespace std;
int main()
{
 int number;
 cout << “enter a number below 10” << endl;
 cin >> number;
 switch (number) {
 case 1:
 case 2:
 cout << “number = 1 or 2” << endl;
 break;
 case 3:
 case 4:
 case 5:
 cout << “number = 3 or 4 or 5” << endl;
 break;
 case 6:
 case 7:
 case 8:
 case 9:
 cout << “number = 6 or 7 or 8 or 9” << endl;
 break;
 case 0:
 cout << “number = 0” << endl;
 break;
 default:
 cout << “ enter a correct number ” << endl;
 break;
 } // end of the switch-case statement
 return 0;
} // end of the main program

Output of the above program
enter a number below 10
1
number = 1 or 2

 Control Statements 131

 PROGRAM 5.10

A program to fi nd the number of vowels and consonants in a given sentence using the case statement.

// example 5.10
#include <iostream>
using namespace std;
int main()
{
 char name[100];
 int i,max, nvow ,ncons;
 char ch;
 cout << “enter a sentence and terminate with ‘@’” << endl;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 name[i++] = ch;
 }
 name[i++] = ‘\0’;
 max = i-1;
 cout << “entered sentence is” << endl;
 for (i = 0; i <= max; ++i) {
 cout << name[i];

 }
 nvow = 0;
 ncons = 0;
 i = 0;
 while (name[i] != ‘\0’) {
 switch (name[i]) {
 case ‘a’:
 case ‘e’:
 case ‘i’:
 case ‘o’:
 case ‘u’:
 nvow = nvow+1;
 break;
 case ‘b’:
 case ‘c’:
 case ‘d’:
 case ‘f’:
 case ‘g’:
 case ‘h’:
 case ‘j’:
 case ‘k’:
 case ‘l’:
 case ‘m’:
 case ‘n’:
 case ‘p’:
 case ‘q’:
 case ‘r’:
 case ‘s’:
 case ‘t’:
 case ‘v’:
 case ‘w’:
 case ‘x’:
 case ‘y’:
 case ‘z’:
 ncons = ncons+1;
 break;
 }
 i = i+1;
 } // end of while loop
 cout << “No of vowels = ” << nvow << endl;
 cout << “No of consonants = ” << ncons << endl;
 return 0;
}

 Programming with C++132

Output of the above program
enter a sentence and terminate with ‘@’
this is a test
@
entered sentence is
this is a test
No of vowels = 4
No of consonants = 7

enter a sentence and terminate with ‘@’
aeiou
@
entered sentence is
aeiou
No of vowels = 5
No of consonants = 0

5.2 LOOP STATEMENTS

This section presents how to construct a loop statement in which a set of statements or a sequence of

instructions are repeatedly executed until the predefi ned condition is met, to exit from the loop. Loop

statements are also called as iterative statements. More technically, repetition is called as iteration.

The main application of using the loop statements in a program are:

∑ to read, write and process a large scale data easily, for example array processing

∑ to perform iterative computing

∑ business application, and so on

Now it is clear that loop statements are essential to construct systematic block styled programming. In C++,

there are various ways one can implement the control structures using the different types of loop operations.

Sometimes, other high level languages may not support all the features of the C++ control structures.

The loop or repetition can be classifi ed into two types: (i) defi nite loop and (ii) indefi nite loop. The

defi nite loop is a loop construction in which the termination condition is met by changing the initial value

within the loop or changing its boolean condition in order to meet the termination condition. An indefi nite

loop is a kind of loop construction that never meets its termination condition and can be terminated only by

means of an external operation to the program like resetting or rebooting the computer.

The following loop structures are supported by C++:

 (1) for loop

 (2) while loop

 (3) do-while loop

The for loop is a defi nite control structure where the number of passes through the loop is determined

prior to execution. On the other hand, the control structure such as while and do-while are called as

indefi nite control structures, as the number of iteration or repetition of the loop body may vary depending

on the value of an arbitrary boolean expression.

5.2.1 The for loop

The for statement is one of the most commonly used statements for constructing loop operations in C++.

The for loop is a defi nite control structure where the number of passes through the loop is determined prior

to execution. The loop variable of the for loop is automatically changed from an initial value to a fi nal value

if the incrementer or decrementer is used.

 Control Statements 133

In other words, the for loop consists of three expressions. This

fi rst expression is used to initialise the index value, the second to

check whether or not the loop is to be continued again and the third

to change the index value for further iteration.

The general syntax of the for loop is,
for (control_variable = initial_value; fi nal_value;

incrementer/decrementer)
 Statement

where the control_variable is a variable that controls the loop

operation in which the C++ compiler determines how many times

that loop should be repeated. The initial_value is an expression that

initializes the control variable and the fi nal_value is an expression

that determines the maximum or minimum value depending on

individual cases like incrementing the loop or decrementing the

loop. The general syntax of the for loop and a fl ow chart showing

the effects of a for loop are given in Fig. 5.3.

The control variable must be of ordinal type, such as integer,

character or enumerated data. The initial value and the fi nal value

must be of data type compatible with control variable. The control

variable of the for statement cannot be altered within the for loop.

The control variable is incremented or decremented by 1. To declare

a control variable of the for loop with real data type is valid in C++

but it is not mostly used.

Fig. 5.3(b) Syntax Diagram of for Statement

C++ permits two types of for loop construction: one for incrementing from a low value to a high value and

another decrementing by one in each iteration from an upper to lower value which is the fi nal value of the loop.

(a) Incrementing Type The general syntax of the for loop for incrementing operation of a single statement is:
 for (variable = expression_1;expression_2;expression_3)
 statement;

For a block of statements, the keywords begin({) and end(}) are enclosed.
 for (variable = expression_1; expression_2; expression_3)
 {
 statement_1;
 statement_2

Fig. 5.3(a) Flow Chart for the for
 Loop

 Programming with C++134

 statement_n;
 }

where variable is called as the control variable of the for loop and that it can be any identifi er of integer,

char or enumerated data type but not real data type. Expression_1 is called as the initial value and gives the

initial value of the control variable. Expression_2 is called as the fi nal value and it gives the fi nal value of

the control variable. The expression_3 is used to change the initial value of the expression_1.

(b) Decrementing Type The general syntax of the for loop for decrementing operation of a single statement is:
 for (variable = expression_1; expression_2; expression_3)
 statement;

For a block of statements, the keywords begin({) and end(}) are enclosed.
 for (variable = expression_1; expression_2; expression_3)
 {
 statement 1;
 statement 2

 }

where variable is called as the control variable of the for loop and that it can be of any identifi er of integer,

char or enumerated data type. Expression_1 is called as the initial value and it gives the initial value of the

control variable normally the maximum size. Expression_2 is called as the fi nal value and it gives the fi nal

value of the control variable, that is, the minimum number. The expression_3 is used to change the initial

value of the expression_1.

For example, the following C++ segment illustrates how to construct the for loop.

(1)
 initial = 1;
 fi nal = 10;
 for (counter = initial; counter <= fi nal; ++counter)
 cout << “within the for loop ”;

 The above program segment displays the message ‘within the for loop’ 10 times. The initial

value 1 is assigned to the loop variable counter and incremented by one. The counter value is

compared with the fi nal value that is defi ned in the for loop statements. Depending on the result

of the comparison, the for loop determines whether, the loop is to be repeated again or not. When

the content of the control variable is matched with that of the fi nal value, the loop automatically

terminates and exits out of the loop.

 (2) When a for loop is used to construct a block of statements, it is essential to use the keywords begin

‘{’ and end ‘}’ as a delimiter. For example, the following for loop illustrates how to construct a

compound or a block of statements:

 initial = 1;
 fi nal = 10;
 for (counter = initial; counter <= fi nal; ++counter) {
 cout <<“ within the for loop ” << endl;
 cout <<“ multiple statements of execution” << endl;
 }

Following are some valid C++ programming segments using the for loop:

 (3) To compute the sum of the fi rst 10 natural numbers.

 #include <iostream>
 using namespace std;
 int main()
 {

 Control Statements 135

 int i,sum = 0;
 for (i = 1; i <= 10; ++i) {
 sum = sum+i;
 cout << “ i = ” << i;
 cout << “ sum = ” << sum << endl;
 }
 return 0;
 }

Output of the above program
 i = 1 sum = 1

 i = 2 sum = 3

 i = 3 sum = 6

 i = 4 sum = 10

 i = 5 sum = 15

 i = 6 sum = 21

 i = 7 sum = 28

 i = 8 sum = 36

 i = 9 sum = 45

 i = 10 sum = 55

 (4) To write the 26 lower case letters of the English alphabet.

#include <iostream>
using namespace std;
int main()
{
 char ch;
 for (ch = ‘a’; ch <= ‘z’; ++ch)
 cout << ch;
 return 0;
}

Output of the above program

 abcdefghijklmnopqrstuvwxyz

 (5) To write the numbers from 10 to 1 decrementing them by 1
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int j;
 for (j = 10; j >= 1; – j)
 cout << setw(5) << j;
 return 0;
}

Output of the above program
10 9 8 7 6 5 4 3 2 1

 PROGRAM 5.11

A program to fi nd the sum and average of a given set of numbers using for loop.

#include <iostream>
using namespace std;

 Programming with C++136

int main()
{
 int i,n;
 fl oat sum,av,x;
 cout << “How many numbers ” << endl;
 cin >> n;
 sum = 0;
 for (i = 0; i <= n-1; ++i) {
 cout << “enter a number ” << endl;
 cin >> x;
 sum += x;
 }
 av = sum/x;
 cout << “Sum = ” << sum << “ and Average = ”<< av;
 cout << endl;
 return 0;
}

Output of the above program
How many numbers
4
enter a number
10
enter a number
20
enter a number
30
enter a number
40
Sum = 100 and Average = 2.5

Nested for loops Nested for loop is a kind of loop construction in which a for loop is declared within

another for loop. Whenever a nested for loop is declared in a program, the index variable of the for loop

must be suffi ciently different in order to distinguish the control variables of the for loops. The order of

execution of the for loop is that the innermost for loop will be executed fi rst.

The general syntax of the nested for loop is:

 for (outer_control = expression_1; expression_2; expression_3) {
 for (inner_control = expression_1; expression_2; expression_3) {
 statements;
 statements;

 } // end of inner loop
 } // end of outer loop

 PROGRAM 5.12

A program to demonstrate how a nested for loop structure can be realised in C++.

// nested for loop
#include <iostream>
using namespace std;
int main()
{
 int i,j,counter = 0;
 for (i = 1; i <= 3; ++i) {

 Control Statements 137

 cout << “ \n i = ” << i;
 cout << “ Inside j loop ” << endl;
 for (j = 1; j <= 3; ++j) {
 cout << “ j = ” << j << endl;
 counter++;
 }
 }
 cout << “counter value = ” << counter;
 return 0;
}

Output of the above program
i = 1 Inside j loop
j = 1
j = 2
j = 3
i = 2 Inside j loop
j = 1
j = 2
j = 3
i = 3 Inside j loop
j = 1
j = 2
j = 3
counter value = 9

For example, consider the following program segment, where in the same index variable is used both in

the outer and in the inner for loops.
#include <iostream>
using namespace std;
int main()
{
 int j;
 for (j = 1; j <= 3; ++j) {
 for (j = 1; j <= 2; ++j)
 cout << “ j = ” << j << endl;
 }
 return 0;
}

Output of the above program
j = 1
j = 2

Note that the C++ compiler will not display any signifi cant error message and that it cannot differentiate

the control variables of the outer for loop from that of the inner for loop. In the above program, the control

variable ‘j’ will be executed only twice but not 6 times.

In the following program, there are two for loops which are embedded within another for loop. The inner

for loops are constructed such that both the control variables are not altered by each other. In other words,

the inner for loops are disjointed loops and hence, the same control variables are permitted for both loops.

 PROGRAM 5.13

A program to demonstrate how to declare the same index variable when the inner loops are disjointed.

#include <iostream>
#include <cstdio>

 Programming with C++138

using namespace std;
int main()
{
 int i,j;
 for (i = 1; i <= 3; ++i) {
 for (j = 1; j <= 3; ++j)
 putchar(‘*’);
 for (j = 1; j <= 3; ++j)
 putchar(‘-’);
 cout << “” << endl;
 }
 return 0;
}

Output of the above program
***–––
***–––
***–––

 PROGRAM 5.14

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
 int row,column;
 for (row = 1; row <= 10; ++row) {
 for (column = 1; column <= row; ++column)
 putchar(‘+’);
 for (column = 1; column <= row; ++column)
 putchar(‘*’);
 cout << “” << endl;
 }
 return 0;
}

Output of the above program
+*
++**
+++***
++++****
+++++*****
++++++******
+++++++*******
++++++++********
+++++++++*********
++++++++++**********

Some unusual constructions of for loop

Case 1 Sometimes, one may write the for loop in C++ in the following way, which is even though valid, is

less desirable than the conventional form.
#include <iostream>
using namespace std;
int main()
{
 int i;
 i = 0;
 for (; i < 4;)

 Control Statements 139

 cout << i++ << endl;
 return 0;
}

Output of the above program
0
1
2
3

Case 2 Sometimes, the initial condition may not be required to be declared for some cases, like reading a

string from a keyboard or a fi le. For that case;

for (; (ch = cin.get()) != ‘\n’;)

 PROGRAM 5.15

A program to read a line from the keyboard using for loop.

// reading character input
#include <iostream>
using namespace std;
int main()
{
 char ch;
 cout <<“enter a string ” << endl;
 for (; (ch = cin.get()) != ‘\n’;)
 cout.put(ch);
 return 0;
}

Output of the above program
enter a string
this is a test

this is a test

The for loop is used to read a character from the keyboard as long as the test condition is being a new

line or a carriage return. The for loop will be repeated until an Enter key is pressed. Suppose, the fi rst

character itself is an Enter key, then the for loop will not be repeat.

Case 3 Sometimes, one may enter the for loop as:
 for (;;)

Here, the for loop is valid but it will execute the loop indefi nitely because there is no condition to be

checked to terminate this loop.
// reading character input
#include <iostream>
using namespace std;
int main()
{
 char ch;
 cout << “enter a string ” << endl;
 for (;;) {
 ch = cin.get();
 cout.put(ch);
 }
 return 0;
}

 Programming with C++140

Output of the above program
enter a string
this is a test

this is a test

Cntrl+C is pressed to break the for loop. Here, the for loop will be repeated for ever until a user presses a

termination key to stop from the program execution.

Case 4 Another type of for loop is:

for (i = 0; i <= 9; i++);

This loop will be repeated till the i value becomes 9. There is no statement used in this loop and the

semicolon is used for terminating the loop. It will just repeat the loop operation as long as the given

condition becomes true. One may require this type of operation for introducing time delay in a program.

Case 5 The comma operator can be used in conjunction with the for statement which permits two different

expressions to appear in a situation where only one expression would ordinarily be used. For example,
for (expression 1a, expression 1b; expression 2 ; expression 3){
 statements
 statements
}

where expression 1a and expression 1b are the two expressions separated by the comma operator and

normally only expression 1 would appear.

The two expressions would typically initialize two separate indices that would be used simultaneously

within the for loop. Another way of using the comma operator in a for statement is:
 for (expression1; expression2 ; expression 3a,expression 3b) {
 statement
 statement

 }

Here, expression 3a and expression 3b, separated by the comma operator, appear in place of a single

expression, expression 3. In this application two separate expressions would typically be used to alter (e.g.

incrementer or decrementer) the two different indices used simultaneously within the loop. For example,

one index may count forward while the other backward.

 PROGRAM 5.16

A program to display the number between 0 to 9 as well as 9 to 0 simultaneously one by one using for
statement.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int i,j;
 for (i = 0,j = 9; i <= 9; i++,j––)
 cout << “i = “ << i << setw(8) << “j = ” << j <<‘\n’;
 return 0;
}

 Control Statements 141

Output of the above program
i = 0 j = 9
i = 1 j = 8
i = 2 j = 7
i = 3 j = 6
i = 4 j = 5
i = 5 j = 4
i = 6 j = 3
i = 7 j = 2
i = 8 j = 1
i = 9 j = 0

5.2.2 The while loop

The second type of loop, the while loop, is used when we are not certain about the execution of the loop.

After checking whether the initial condition is true or false and fi nding it to be true only, then the while

loop will enter into the loop operations. The general form of the while loop is:

For a single statement,
 while (boolean condition)
 statement;

For a block or compound statements the braces { and } must be included as a delimiter of the loop.
 while (boolean condition) {
 statement 1;
 statement 2;

 }

The boolean condition can be any valid C++ expression

and the boolean expression includes the value of a variable.

The boolean condition can be a singular a compound condition

and the condition is actually the test condition. In the for

loop, increment or decrement is done automatically, whereas,

the while loop does not explicitly contain initialisation or

incrementation parts of the loop, which are normally provided

by the programmers.

The general form of the while syntax diagram and a fl ow chart

showing the effects of the while loop are given in Fig. 5.4. Prior

to each cycle of the loop, the boolean expression that appears

after the keyword while is evaluated and tested. A new cycle

is started, if and only if, the value of the boolean expression is

true. Otherwise, the next statement after the While statement is

executed. The statement following the keyword while represents

the body of the loop. It is imperative that this statement

eventually causes the value of the boolean expression to be false,

when it is evaluated prior to beginning of a new cycle, so that the

loop will be terminated after a fi nite number of cycles.

Fig. 5.4(b) Syntax Diagram of while Statement

Fig. 5.4(a) Flow Chart for While Loop

 Programming with C++142

The following program segment shows the use of the initial and the test conditions to be used in a program.

initial_condition

while (test_condition) {

 statement 1;

 statement 2;

 change of the initial_condition;

}

Comments on the above while loop

 (1) The loop may never be executed as test is at the start of the loop as in a for statement.

 (2) The begin ‘{‘ and end ‘}’ braces are used when the number of statement in the loop is more than

one.

 (3) Part of the loop will alter some aspect of the Boolean expression, otherwise the loop executes forever

or not at all.

 PROGRAM 5.17

A program to demonstrate how to construct a while loop in C++.

#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true; //initial condition

 while (fl ag) { // test condition
 cout << “inside the while loop \n”;
 fl ag = false; // change of initial condition
 }
 return 0;
}

Output of the above program

inside the while loop

A following program explains a while loop where the change of initial condition is skipped inside the

while loop. Hence the following program runs for ever until a user interrupts through external commands

like, pressing Cntrl + C for termination from the program execution.

#include <iostream>

using namespace std;

int main()

{

 bool fl ag = true;

 while (true) {

 cout << “inside the while loop \n”;

 }

 return 0;

}

 Control Statements 143

 PROGRAM 5.18

A program to fi nd the sum of the fi rst n natural numbers using while loop.

sum = 1+2+3 + n
// 1+2+3+...+n
#include <iostream>
using namespace std;
int main()
{
 int digit,n,sum;
 cout << “How many numbers ” << endl;
 cin >> n;
 digit = 1;
 sum = 0;
 while (digit <= n) {
 sum += digit;
 digit++;
 }
 cout << “ 1+2+3 + ... ” << n << “ = ”;
 cout << sum << endl;
 return 0;

}

Output of the above program
How many numbers
10
1+2+3 + ... 10 = 55

In the above program, the initial condition is assigned to 0 and the test condition is used to check

whether the digit value has become the value of n. If not, it will repeat the loop, the fi nal statement of the

program digit++ will be incremented by one. During each execution of the while loop, the value of the

initial index is changed.

 PROGRAM 5.19

A program to display the fi rst n odd numbers using while loop.

// to display fi rst n odd numbers
#include <iostream>
using namespace std;
int main()
{
 int n,counter;
 cout << “ maximum number ? ” << endl;
 cin >> n;
 counter = 1;
 while (counter <= n) {
 cout << counter << ‘\t’;
 counter = counter+2;
 }
 return 0;
}

Output of the above program
maximum number?
11
1 3 5 7 9 11

 Programming with C++144

In each iteration, the counter value is incremented by 2 and the fi nal condition is checked and when it is

met, the loop control automatically exits from the loop.

 PROGRAM 5.20

A program to fi nd the sum and average of the given numbers using the while loop.

// to fi nd sum and average of a given numbers
#include <iostream>
using namespace std;
int main()
{
 int i,n;
 fl oat sum = 0,av,x;
 cout << “How many numbers ” << endl;
 cin >> n;
 i = 1;
 while (i <= n) {
 cout << “enter a number ” << endl;
 cin >> x;
 sum += x;
 i++;
 }
 av = sum/n;
 cout << “Sum = ” << sum << “ and Average = ” << av;
 return 0;
}

Output of the above program
How many numbers
4
enter a number
1
enter a number
2
enter a number
3
enter a number
4
Sum = 10 and Average = 2.5

Nested while loop Nested while loop is a kind of loop construction such that a while loop is embedded

within another while loop. C++ permits to realise any level of loops to be embedded with in any other

control blocks. In other words, one can construct absolutely any level of loops within any other loops

provided each innermost loop must terminate with boolean conditions. Otherwise, the inner loop that is not

defi ned with proper termination condition, may execute indefi nitely.

The general syntax of the nested while loop is:
 while (outer_loop_condition) {
 while (inner_loop) {
 while (innermost_loop) {

 } // end of innermost loop

 } // end of inner loop

 Control Statements 145

 } // end of outer loop

For example, the following program segment illustrates how to declare a nested while loop:

 PROGRAM 5.21

// nested while loop
#include <iostream>
using namespace std;
int main()
{
 int i,j;
 i = 1;
 while (i <= 3) {
 cout << “ \n i = ” << i << endl;
 j = 1;
 while (j <= 3) {
 cout << “ j = ” << j;
 j++;
 }
 i++;
 cout << “” << endl;
 }
 return 0;
}

Output of the above program
i = 1
j = 1 j = 2 j = 3

i = 2
j = 1 j = 2 j = 3

i = 3
j = 1 j = 2 j = 3

The value of j of the inner while loop will be executed 3 times for each iteration of the outer while loop.

The value of i will be displayed 3 times. Totally, the above nested structure repeats its control operation 9

times.

Role of incrementer and decrementer in C++ One must be always cautious while using the incrementer or

decrementer as i++ and ++i. The following program segment to fi nd the sum of the fi rst 10 numbers shows

the distinct use of the two types of incrementers.

case (a)
sum = 0;

 i = 1;
while (i <= 10)

sum += i++;

case (b)
sum = 0;

 i = 1;
while (i <= 10)
 sum += ++i;

 Programming with C++146

In both cases, the value of i will be the same for each iteration but the value of sum is different due to

the post-increment and pre-increment operators. In the fi rst case, the value of i will be assigned to the sum

before incrementation due to the post-increment operator (i++).
sum += i++;

Hence, the value of sum and i for the fi rst case, are as sum = 55, i = 11

In the second case, the value of i will be incremented and then assigned to the sum due to the pre-

increment operator (++i).
sum += ++i;

Hence, the value of sum and i for the second case, are as sum = 65, i = 11

Consider another program segment to compute the sum of the fi rst 3 numbers, using post-incrementor

and pre-incrementor as given below:
#include <iostream>
using namespace std;
int main()
{
 int i,j,sum1,sum2;
 sum1 = sum2 = 0;
 i = j = 0 ;
 while (i <= 2) {
 sum1 += i++;
 cout << “ i++ = ” << i << endl;
 sum2 += ++j;
 cout << “ ++j = ” << j << endl;
 cout << “ sum1 = ” << sum1 << endl;
 cout << “ sum2 = ” << sum2 << endl;
 }
}

sum2 = 14

At the end, sum1 will be calculated for 4, and the sum2 will be 6.

Use of while loop to input data Normally, the while loop is used for reading data and processing it until the

end of data is found. The above use is illustrated through a program segment which reads a set of characters

from the keyboard until it fi nds a carriage return key or a new line and displays it on the video screen.
// reading a line of characters using while loop
#include <iostream>
using namespace std;
int main()
{
 char ch;
 cout << “ enter a line of text” << endl;
 ch = cin.get();
 while (ch != ‘\n’) {
 cout.put(ch);
 ch = cin.get();
 }
 return 0;
}

Output of the above program
enter a line of text
this is a test

this is a test

 Control Statements 147

Another compact C++ code is,

// reading a line of characters using while loop

// version 2.cpp

#include <iostream>

using namespace std;

int main()

{

 char ch;

 cout << “ enter a line of text ” << endl;

 while ((ch = cin.get()) != ‘\n’) {

 cout.put(ch);

 }

 return 0;

}

Sometimes, one may use more than one test condition using different logical expressions as a single

statement. For example, one expression can be used to check both the new line and the tab character.

 ch = cin.get();

 while (ch != ‘\n’ && ch != ‘\t’) {

 cout.put(ch);

 ch = cin.get();

 }

5.2.3 The do–while loop

The do-while loop is another repetitive loop used in C++ program. Whenever one is sure of the test

condition, then the do-while loop can be used as it enters into the loop at least once and then checks whether

the given condition is true or false. As long as the test condition is true, the loop operations or statements

will be repeated again and again. As in the case of a while loop, here also three expressions are used to

construct this loop. The expression_1 is used to initialise the index value which normally appears out of the

loop. Expression_2 is used to change the index value and the expression_3 is used to check whether or not

the loop is to be repeated again.

The general syntax of the do-while loop is:

 do {

 statement_1

 statement_2

 }

 while (boolean condition);

The boolean condition in the above type of loop is

always written as the last statement. That is why this

loop is executed at least once. The general form of the

do-while syntax diagram and a fl ow chart showing the

effects of the do-while loop are given in Fig. 5.5.

Fig. 5.5(a) Flow Chart for do-while Loop

 Programming with C++148

Fig. 5.5(b) Syntax Diagram of do-while Statement

Note that the do-while control structure does not need a begin ‘{’ and end ‘}’ braces to bracket

more than one statement, as the do–while structure itself acts as a compound statement. The above syntax

structure can be modifi ed as:
 expression_1
 do {
 statement 1
 statement 2

 expression_2
 }
 while (expression_3);

where expression_1 is an initialisation statement of the index value and the expression_2 is a statement

in which the index value changes and the expression_3 is a boolean statement which is used for the test

condition of the loop i.e., for deciding whether the loop should be repeated or not and based on the test

condition only, the loop enters or exits. The test condition may be of a single boolean condition or a

compound condition.

Comments on the do–while loop

 (1) Note that the body of the do-while loop can consist of more than one statement and hence, it may

not be required to include begin ‘{’ and end ‘}’ statements as delimiters.

 (2) The body of the loop will be executed at least once as the test for termination of the loop appears

at the end of the loop. The for loop and the while loop, however, may never be executed as the test

condition is at the beginning.

 (3) There will be at least one statement in the body of the loop that alters some part of the boolean

expression. If this is not present, then the loop will never terminate.

 PROGRAM 5.22

A program to fi nd the sum and average of the given numbers using a do-while loop.

// to display sum and average using do-while
#include <iostream>
using namespace std;
int main()
{
 int i = 1,n;
 fl oat sum = 0,av,x;
 cout << “How many numbers \n”;
 cin >> n;
 do {
 cout << “enter a number \n”;
 cin >> x;
 sum += x;

 Control Statements 149

 i++;
 }
 while (i <= n);
 av = sum/n;
 cout << “Sum = ” << sum << “ and Average = ” << av;
 return 0;
}

Output of the above program
How many numbers
4
enter a number
10
enter a number
20
enter a number
30
enter a number
40
Sum = 100 and Average = 25

 PROGRAM 5.23

A program to generate a fi bonacci series of ‘n’ numbers, where n is defi ned by the programmer.
(series should be: 0 1 1 2 3 5 8 13 21 34 and so on.)

// to generate a fi bonacci series of ‘n’ numbers
// using do-while statement
#include <iostream>
using namespace std;
int main()
{
 int i,n;
 int fi b0,fi b1,fi b;
 cout << “How many numbers ? \n”;
 cin >> n;
 fi b0 = 0;
 fi b1 = 1;
 cout << fi b0 << ‘\t’ << fi b1 << ‘\t’;
 i = 3;
 do {
 fib = fi b0+fi b1;
 cout << fi b << ‘\t’;
 fib0 = fi b1;
 fib1 = fi b;
 i++;
 }
 while (i <= n);
 return 0;
}

Output of the above program

How many numbers ?
6
0 1 1 2 3 5

 Programming with C++150

 PROGRAM 5.24

A program to fi nd the factorial of a given number using do-while loop.

// factorial of a given number
#include <iostream>
using namespace std;
int main()
{
 int i,n;
 long int fact;
 cout << “enter a number \n”;
 cin >> n;
 fact = 1;
 if (n == 0)
 cout << “factorial = ” << fact;
 else {
 i = 1;
 do {
 fact = fact*i;
 i++;
 }
 while (i <= n);
 cout << “factorial = ” << fact;
 }
 return 0;
}

Output of the above program

enter a number
5
factorial = 120

Nested do–while loop Nested do–while loop is a kind of loop construction wherein a do–while loop

is embedded within another do–while loop. C++ permits to realise any level of loops to be embedded

within any other control blocks. In other words, one can construct absolutely any level of loops within any

other loops, provided, each innermost loop must terminate with boolean conditions, otherwise, the inner

loop that is not defi ned with proper termination condition, may execute indefi nitely.

 PROGRAM 5.25

A program to demonstrate the construction of nested do–while structure.

// nested do-while loop
#include <iostream>
using namespace std;
int main()
{
 int i,j;
 cout << “demonstration of nested do-while loop ” << endl;
 i = 1;
 do {
 cout << “i = ” << i << “\n”;
 j = 1;
 do {
 cout << “j = ” << j << ‘\t’;
 j++;
 }

 Control Statements 151

 while (j <= 5);
 cout << “” << endl;
 i++;
 }
 while (i <= 3);
 return 0;
}

Output of the above program
demonstration of nested do-while loop
i = 1
j = 1 j = 2 j = 3 j = 4 j = 5

i = 2
j = 1 j = 2 j = 3 j = 4 j = 5

i = 3
j = 1 j = 2 j = 3 j = 4 j = 5

The ‘value of j’ of the inner do-while loop will be executed 5 times for each iteration of the outer do-

while loop. The ‘value of i’ will be displayed 3 times. Totally, the above nested structure repeats its control

operation 15 times.

5.3 NESTED CONTROL STRUCTURES

So far, the declaration and implementation of nested for loop, nested while loop, and nested do-while
loop have been discussed. In practical situations, one control statement will be embedded within another

control block. This section presents few examples for constructing a nested control strcuture in C++. The

termination condition for the inner and outer loops must be distinct and defi ned properly, otherwise, the

loop will be executed indefi nitely. The outer loops should not be overlapped with the inner loops. When

loops are nested, the innermost loop, is executed fi rst.

For example, the following program segment illustrates how to defi ne a nested control structure:

Case 1
 for (expression) {
 while (condition) {
 for (expression) {

 } // end of for loop
 } // end of while loop
 } // end of i loop

Case 2 The following program segment contains both a do–while and while block within a for statement:
 for (expression) {
 do {

 }
 while (condition);

 while (condition) {

 }
 } // end of for loop

 Programming with C++152

 PROGRAM 5.26

A program to generate the following series of numbers using nested loop structure:

1
1 2
1 2 3
.....
......
1 2 3 4 5 6 7 8 9

// Generation of series of numbers
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int i,j;
 cout << “Generation of series of numbers \n ”;
 i = 1;
 do {
 for (j = 1; j <= i; ++j)
 cout << setw(3) << j;
 cout << endl;
 i++;
 }
 while (i <= 9);
 return 0;
}

Output of the above program
Generation of series of numbers
 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8 9

 PROGRAM 5.27

A program to generate the following series of numbers using nested loop structure:

9 8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
......
.....
1

// Generation of series of numbers
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int i,j;

 Control Statements 153

 cout << “Generation of series of numbers ” << endl;
 i = 9;
 do {
 for (j = i; j >= 1; ––j)
 cout << setw(3) << j;
 cout << endl;
 i––;
 }
 while (i >= 1);
 return 0;
}

Output of the above program
Generation of series of numbers
 9 8 7 6 5 4 3 2 1
 8 7 6 5 4 3 2 1
 7 6 5 4 3 2 1
 6 5 4 3 2 1
 5 4 3 2 1
 4 3 2 1
 3 2 1
 2 1
 1

5.4 BREAKING CONTROL STATEMENTS

Sometimes, it may be required to break the control within a control block. In such situations C++ permits

the use of a special technique in which control is transferred from one part of a program to another part.

Following statements are used for breaking the control in a C++ program.

 (1) break statement

 (2) continue statement

 (3) goto statement

5.4.1 Label Declaration

Any statement may be labelled. The label must be any valid identifi er of C++. The numerals are not

permitted to use as the label statement in the C++ language. Label should not be defi ned in the declaration

part of a program. The label statement defi ned in any part of a program is different from the case label, if it

is defi ned within a program structure.

For example, consider the following program segment which illustrates how a label is defi ned and used

in a segment of a C++ program.
#include <iostream>
int main()
{

 error:

 goto error;
 again:

 goto again;
}

 Programming with C++154

5.4.2 The goto Statement

The goto statement is used to alter the program execution sequence by transferring the control to some

other part of the program. The syntax diagram of the goto statement is given in Fig. 5.6.

Fig. 5.6 Syntax Diagram of goto Statement

The general syntax of the goto statement is:
 goto label;

where label is any valid C++ identifi er such that control could be transferred to the destination.

There are two ways of using goto statements in a program, namely, as a conditional goto and as an

unconditional goto.

(a) Unconditional goto The unconditional goto statement is used just to transfer the control from one part

of the program to the other part, without checking any condition. Normally, a good programmer will not

prefer to use the unconditional goto statement in his program as it may lead to a very complicated problem

like a never ending process. The use of unconditional goto statement is illustrated in the following segment:
#include <iostream>
using namespace std;
int main()
{
 again:
 cout << “Welcome to the computer world \n”;
 goto again;
 cout << “output data \n”;
 return 0;
}

In the above program, cout <<“output data \n”, will not be executed for ever, as the control always

gets transferred from goto label, to the fi rst part of the executable statement. Hence, the statements

that are defi ned after the goto statement will not be executed at all. The ‘cout <<“output data

\n”;’ is known as the unreachable code. This type of goto statement usage is called as unconditional goto. In

such cases, control cannot be terminated until the computer is reset through an external medium.

(b) Conditional goto Conditional goto is used to transfer the control of the execution from one part of the

program to other part under certain situations.

Comments on goto statements

 (1) Any statement can be labelled.

 (2) It is forbidden to jump into a block created by a repetitive statement or a conditional statement, i.e. a

do-while loop, for loop, or while loop, switch-case and if blocks.

 (3) If a label is declared, it must prefi x a statement.

The goto statement label is a label that appears in both the execution and in the declaration sections. The

following sample program explains the usage of conditional goto statements.

 PROGRAM 5.28

A program to fi nd the sum of only positive integers using the goto statement.

// using goto statement
#include <iostream>

 Control Statements 155

using namespace std;
int main()
{
 int x,i,n,sum;
 cout << “How many numbers ?\n”;
 cin >> n;
 i = 1;
 sum = 0;
 while (i <= n) {
 cout << “enter a number\n”;
 cin >> x;
 if (x < 0) goto error;
 sum += x;
 ++i;
 }
 error:
 cout <<“sum of values (only positive) = ” << sum;
 return 0;
}

Output of the above program
How many numbers?
4
enter a number
1
enter a number
2
enter a number
-4
sum of values (only positive) = 3

The above program calculates the sum of only the positive integers. If a negative number is entered,

control will break from the while loop and displays the sum of the positive numbers that have already been

entered. In case, the fi rst number itself is a negative number, the computer will display sum as 0, because

there is no provision in the above program to iterate for fi nding the sum of positive numbers.

Note that there is similarity between case labels and goto labels. However, they are independent and

distinct. For example, consider the following program segment which shows how a case label is different

from the goto label, even though, both labels contain the same form:

 PROGRAM 5.29

#include <iostream>
using namespace std;
int main()
{
 char a,b;
 b = ‘a’;
 a:
 switch (b) {
 case ‘a’:
 cout << “hello \n”;
 break;
 case ‘b’:
 cout << “two \n”;
 goto a;
 }
 return 0;
}

 Programming with C++156

Output of the above program
hello

Note that the case label and the goto label (equal to ‘a’ in the above example) are two different

entities. Though the same form is used for case and goto labels, it does not mean that both are same.

The compiler will generate separate address for case and goto labels individually and hence, no error

message will be displayed.

Invalid construction of the goto statements Following are some program structures that are wrongly

constructed:

Case 1 Note that a transfer of control using goto statments to the middle of a loop statement is illegal.

For example,
 // invalid
 while (condition) {

 error:
 cout <<“a message \n”;
 }
 goto error;

Case 2 It is invalid usage of the goto statement when control is transferred from outside to inside the

control block such as for loop, do-while and while-do.
 // illegal jump of goto statement within the control block
 goto again;
 for (i = 1; i <= n; ++i) {

 again:
 cout <<“error \n”;
 }

Case 3 Note that it is an illegal if goto statements jump inside the if-else statements.

 goto error;
 if (condition) {

 }
 else if (condition)
 {

 error: // illegal
 }
 else
 {

 repeat: // illegal

 }
 goto repeat;

 Control Statements 157

5.4.3 The break statement

The break statement is used to terminate the control from the loop statements of the switch-case

structure. The break statement is normally used in the switch-case loop and in each case condition, the

break statement must be used. If not, the control will

be transferred to the subsequent case condition also.

The syntax diagram of the break statement is given in

Fig. 5.7.

The general format of the break statement is:
 break;

where the break is a keyword in the C++ program and the semicolon must be inserted after the break

statement. Two uses of the break statements are illustrated below:

(1) Break statement used with switch-case structure
 switch (day) {
 case 1:
 cout <<“Monday \n”;
 break;
 case 2:
 cout <<“Tuesday \n”;
 break;
 default:
 cout <<“All days \n”;
 } // end of switch-case structure

If we have written the switch-case structure like this,
 switch (day) {
 case 1:
 cout <<“Monday \n”;
 case 2:
 cout <<“Tuesday \n”;
 break;
 default :
 cout <<“All days \n”;
 } // end of switch-case structure

 then the computer will print the message like this when the value of the day = 1
 Monday
 Tuesday
 All days

Since there is no break statement in the case 1, the computer will transfer the control to other cases also.

To avoid this sort of undesired results, normally the break statement will be used in the each case section.

(2) Break statement used in a while loop A break statement is used in other loops also and it is explained

with the following illustration:

 PROGRAM 5.30

// using break statement inside the while loop
#include <iostream>
using namespace std;
int main()
{
 int value,i;
 i = 0;

Fig. 5.7 Syntax Diagram of break Statement

 Programming with C++158

 while (i <= 10) {
 cout <<“ enter a number ” << endl;
 cin >> value;
 if (value <= 0) {
 cout << “zero or negative value found \n”;
 break;
 }
 i++;
 }
 return 0;
}

Output of the above program
enter a number
1
enter a number
0
zero or negative value found

The above program segment will process only the positive integers. Whenever a zero or negative value

is encountered, the computer will display the message “Zero or negative value found” as an error and exit

from the while loop.

5.4.4 The Continue Statement

The continue statement is used to repeat the same

operations once again even if it checks the error.

The syntax diagram of the continue statement is

given in Fig. 5.8.

 The general syntax of the continue statement is,
 continue;

where continue is a keyword followed by the semicolon. The continue statement is used for the

inverse operation of the break statement.

The following program segment illustrates the use of the continue statement operation.

 PROGRAM 5.31

// using continue statement
#include <iostream>
using namespace std;
int main()
{
 int x,i,n,sum;
 cout << “How many numbers ? ” << endl;
 cin >> n;
 i = 1;
 sum = 0;
 while (i <= n) {
 cout << “enter a number ” << endl;
 cin >> x;
 if (x < 0) continue;
 sum += x;
 ++i;
 }
 cout <<“sum of values (only positive) = ” << sum << endl;
 return 0;
}

Fig. 5.8 Syntax Diagram of continue Statement

 Control Statements 159

Output of the above program
How many numbers?
3
enter a number
1
enter a number
1
enter a number
-10
enter a number
-20
enter a number
-1
enter a number
10
sum of values (only positive) = 12

This program segment will process only the positive integers. Whenever a zero or negative value

is encountered, the computer will display the message “Zero or negative value found” as an error and it

continues the same loop as long as the given condition is satisfi ed.

 REVIEW QUESTIONS

 1. What is a conditional expression? List a few applications of using a conditional expression in real

life problems.

 2. What is a nested if statement?

 3. When two if statements are nested, what is the rule that determines which else clause matches

which if?

 4. What is the difference between these two operators = and ==?

 5. What are the different ways of constructing a multiway if-else structure?

 6. Elucidate few examples of the nested if-else structure with suitable examples.

 7. What is a case statement and how is it different from the multiway if-else structure?

 8. What is a boolean expression and how it can be used in a program for decision making?

 9. Draw a syntax diagram of the switch-case structure that is used in C++.

 10. What is looping in C++? What are the advantages of using loops in C++?

 11. What are the different types of loop statements that are used in C++?

 12. What is for loop? Under what circumstances the for loop is used to construct a looping in C++?

 13. What are nested for loops?

 14. What is a while loop and how does it differ from the for loop?

 15. What is the appropriate place or circumstance under which the while loop is better than the for

loop?

 16. Draw a fl ow chart and the syntax diagram of the while-do loop.

 17. What is do-while loop?

 18. How the do-while loop varies from the while-do loop? Explain.

 19. Draw a fl ow chart and the syntax diagram of the do-while loop.

 20. Explain the following loop control statements as used in C++.

 (a) label statement (b) goto statement

 (c) break statement (d) continue statement

 Programming with C++160

 21. What is the use of a label statement in C++?

 22. List the merits and demerits of while-do loop and do-while loop

 23. Why is goto not necessary for a structured programming language like C++?

 24. Summarise the syntactic rules of the following loop statements:

 (a) for loop

 (b) while-do loop

 (c) do-while loop

 25. Explain the following with suitable examples:

 (a) conditional expression (b) arithmetic expression

 (c) logical expression (d) boolean expression

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a > b) && (++b < ++c))
 cout <<“ a = ” << a <<“ b = ” << b <<“\n”;
 else
 cout <<“ b = ” << b <<“ c = ” << c <<“\n”;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a < b) && (b++ < c++))
 cout <<“ a = ” << a <<“ b = ” << b <<“\n”;
 else
 cout <<“ b = ” << b <<“ c = ” << c <<“\n”;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a < b) || (++b < c++))
 cout <<“ b = ” << b <<“ c = ” << c <<“\n”;
 else
 cout <<“ a = ” << a << “b = ” << b <<“\n”;
 return 0;
}

 Control Statements 161

 (d)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a > b) || (b++ < c++))
 cout <<“ b = ” << b <<“ c = ” << c <<“\n”;
 else
 cout <<“ a = ” << a <<“ b = ” << b <<“\n”;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a > b) && (b++ < c++))

 cout <<“ value of a = ” << a <<“\n”;
 else
 {
 if ((a < b) || (a++ < c++))
 cout <<“a+b+c = ” << a+b+c <<“\n”;
 else
 cout <<“a*b*c = ” << a*b*c <<“\n”;
 }
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a > b) && (b++ < c++))
 cout <<“ value of a = ” << a <<“\n”;
 else
 {
 if ((a < b) && (a++ < c++))

 cout <<“a+b+c = ” << a+b+c <<“\n”;
 else
 cout <<“a*b*c = ” << a*b*c <<“\n”;

 }
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30;
 if ((a < b) || (b++ > c++))
 {

 Programming with C++162

 if ((a < c) && (b++ > c++))
 cout <<“ value of a+b = ” << a+b <<“\n”;
 else
 cout <<“ value of a*b = ” << a*b <<“\n”;
 }
 else
 {
 if ((a < b) && (a++ < c++))
 cout <<“a+b+c = ” << a+b+c <<“\n”;
 else
 cout <<“a*b*c = ” << a*b*c <<“\n”;
 }
 return 0;
}

 (h)
#include <iostream>
using namespace std;
int main()
{
 int a = 10, b = 20, c = 30,d = 40;
 if ((a++ < d) || (b++ < c++))
 {
 if ((a++ < c) || (b++ < d++))
 {
 if ((a++ <= d) && (b++ <= c++))
 cout <<“ value of a+b = ” << a+b <<“\n”;
 else
 cout <<“ value of a*b = ” << a*b <<“\n”;
 }
 }
 else
 {
 if ((a < b) && (a++ < c++))
 cout <<“a+b+c = ” << a+b+c <<“\n”;
 else
 cout <<“a*b*c = ” << a*b*c <<“\n”;
 }
 return 0;
}

 2. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 int x,i = 2;
 x = 75;
 switch (x % i) {
 case 1:
 cout <<“case 1 \n”;
 break;
 case 2:
 cout <<“case 2 \n”;
 break;

 Control Statements 163

 default:
 cout <<“default case \n”;
 break;
 }
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int x,i = 2;
 x = 75;
 switch (x % i) {
 case 1:
 cout <<“case 1 \n”;
 break;
 case 2:
 cout <<“case 2 \n”;
 break;
 default:
 switch (i) {
 case 1:
 cout <<“inner case 1 \n”;
 break;
 case 2:
 cout <<“inner case 2 \n”;
 break;
 default:
 cout <<“default inner \n”;
 break;
 }
 break;
 }
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int x,i = 3;
 x = 75;
 switch (x % i) {
 case 1:
 cout <<“case 1 \n”;
 break;
 case 2:
 cout <<“case 2 \n”;
 break;
 default:
 switch (i % 4) {
 case 1:
 cout <<“inner case 1 \n”;
 break;

 Programming with C++164

 case 2:
 cout <<“inner case 2 \n”;
 break;
 case 3:
 cout <<“inner case 3 \n”;
 break;
 default:
 cout <<“default inner \n”;
 break;
 }
 break;
 }
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int x = 0,i = 4;
 switch (i) {
 case 1:
 x += 1;
 case 2:
 x += 2;
 case 3:
 x += 3;
 case 4:
 x += 4;
 cout <<“ x = ” << x << “\n”;
 default:
 x += 5;
 cout <<“ x = ” << x << “\n”;
 break;
 }
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int x = 0,i = 4;
 switch (i) {
 default:
 x += 5;
 cout <<“ x = ” << x << “\n”;
 case 4:
 x += 4;
 cout <<“ x = ” << x << “\n”;
 case 1:
 x += 1;
 case 2:
 x += 2;

 Control Statements 165

 case 3:
 x += 3;
 cout <<“ x = ” << x << “\n”;
 }
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int i,x = 1,y = 4;
 y = x % y;
 cout <<“ y = ” << y << “\n”;
 switch (y) {
 case 1:
 for (i = 1; i <= 5; ++i)
 x += x;
 break;
 case 2:
 for (i = 5; i <= 0; ––i)
 x += i;
 break;
 case 3:
 i = 1;
 while (i <= 5) {
 x += 2;
 i++;
 }
 break;
 case 4:
 i = 1;
 do {
 x += 4;
 i++;
 }
 while (i <= 5);
 break;
 default:
 x += 5;
 }
 cout <<“ x = ” << x << “\n”;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 int a = 75;
 a = a / 10;
 cout <<“a = ” << a << “\n”;
 switch (a) {

 Programming with C++166

 case 9:
 cout <<“grade - A \n”;
 break;
 case 8:
 cout <<“grade - B \n”;
 break;
 case 7:
 cout <<“grade - C \n”;
 break;
 case 6:
 cout <<“grade - D \n”;
 break;
 default:
 cout <<“ grade - fail \n”;
 break;
 }
 return 0;
}

 3. Convert the following switch-case structure into an equivalent if-else structure.
#include <iostream>
using namespace std;
int main()
{
 int a = 75;
 a = a % 10;
 cout <<“a = ” << a;
 switch (a) {
 case 9:
 cout <<“grade - A \n”;
 break;
 case 8:
 cout <<“grade - B \n”;
 break;
 case 7:
 cout <<“grade - C \n”;
 break;
 case 6:
 cout <<“grade - D \n”;
 break;
 default:
 cout <<“ grade - fail \n”;
 break;
 }
 return 0;
}

 4. Convert the following if–else structure into an equivalent switch–case structure.
#include <iostream>
using namespace std;
int main()
{
 char grade;
 grade = ‘E’;
 if (grade == ‘A’)
 cout <<“ Excellent \n”;
 else if ((grade == ‘B’) || (grade == ‘C’))

 Control Statements 167

 cout <<“ Good \n”;
 else if ((grade == ‘D’) || (grade == ‘E’))
 cout <<“ Poor \n”;
 else
 cout <<“ Grade - Fail \n”;
 return 0;
}

 5. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 int p,r = 1,s = 2, t = 3;
 p = (10 % 2) / 3;
 switch (p) {

 case 0:
 r++;
 cout << “ r = ” << r <<“\n”;
 break;
 case 1:
 s++;
 cout << “ s = ” << s <<“\n”;
 break;
 case 2:
 case 3:
 case 4:
 t++;
 cout << “ t= ” << t <<“\n”;
 break;
 }
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int p,r = 1,s = 2, t = 3;
 p = (10 % 2) / 3;
 if (p++ == 0)
 {
 r++;
 cout << “ r = ” << r <<“\n”;
 }
 else if (p++ == 1)
 {
 s++;
 cout << “ s = ” << s <<“\n”;
 }
 else if ((p++ == 2) || (p++ == 3) || (p++ == 4))
 {
 t++;
 cout << “ t= ” << t <<“\n”;
 }

 Programming with C++168

 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int p,r = 1,s = 2, t = 3;
 p = (10 % 2) / 3;
 if (++p == 0)
 {
 r++;
 cout << “ r = ” << r <<“\n”;
 }
 else if (p++ == 1)
 {
 s++;
 cout << “ s = ” << s <<“\n”;
 }
 else if ((p++ == 2) || (p++ == 3) || (p++ == 4))
 {
 t++;
 cout << “ t= ” << t <<“\n”;
 }
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int p,r = 1,s = 2, t = 3;
 p = (10 % 2) / 3;
 if ((++p)++ == 0)
 {
 r++;
 cout << “ r = ” << r <<“\n”;
 }
 else if (p++ == 1)
 {
 s++;
 cout << “ s = ” << s <<“\n”;
 }
 else if ((p++ == 2) || (p++ == 3) || (p++ == 4))
 {
 t++;
 cout << “ t= ” << t <<“\n”;
 }
 cout <<“ p = ” << p <<“\n”;
 return 0;
}

 6. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;

 Control Statements 169

int main()
{
 int j = 0;
 for (;j;)
 cout <<“ j = ” << j++ <<“\n”;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int j = 1;
 for (;j;)
 cout <<“ j = ” << j++ <<“\n”;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int j = -6;
 for (;j;)
 cout << j++ << ‘\t’;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int j = -6;
 for (;;);
 cout << j++ << ‘\t’;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int j = -6;
 for (;;)
 cout << j++ <<“\n”;
 return 0;

}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int j = -6;
 for (;;j++)

 Programming with C++170

 cout << j <<“\n”;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 char ch;
 for (ch = ‘A’; ch <= 90; ++ch)
 cout.put(ch);
 return 0;
}

 (h)
#include <iostream>
using namespace std;
int main()
{
 int j;
 for (j = 1; j <= 10; ++j)
 {
 cout <<“j = ” << j << ‘\t’;
 j++;
 }
 return 0;
}

 (i)
#include <iostream>
using namespace std;
int main()
{
 for (int j = 0; j <= 10; j = j+3)
 {
 cout <<“j = ” << j << ‘\t’;
 }
 return 0;
}

 (j)
#include <iostream>
using namespace std;
int main()
{

 for (fl oat j = 0; j <= 1; j += 0.2)
 cout <<“j = “ << j << ‘\t’;
 return 0;
}

 7. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true;
 for (int i = 0; fl ag; ++i)

 Control Statements 171

 cout << “i = ” << i <<“\n”;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 for (int i = 0; false; ++i)
 cout << “i = ” << i <<“\n”;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int i = 0;
 for (;;);
 cout << “i = ” << i <<“\n”;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int i = 0;
 for (true; ++i; false)
 cout << “i = ” << i <<“\n”;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 for (fl oat a = -1.1; true; a = a+0.5)
 cout << “a = ” << a <<“\n”;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 for (char ch = ‘A’; ch <= (int)ch; ++ch)
 cout << “ch = ” << ch <<“\n”;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{

 Programming with C++172

 for (int i = 0;;)
 cout << “i = ” << ++i <<“\n”;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
int main()
{
 for (int i = 0;;)
 cout << “i = ” << i <<“\n”;
 return 0;
}

 8. Determine the output of each of the following programs when it is executed.
 (a)

#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true;
 int i = 0;
 while (fl ag)
 cout << “i = ” << i++ <<“\n”;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true;
 int i = 0;
 while (fl ag)
 cout << “i = ” << ++i <<“\n”;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int i = 0;
 while (!!!(true))
 cout << “i = ” << ++i <<“\n”;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int i = 0;
 while ()
 cout << “i = ” << ++i <<“\n”;
 return 0;
}

 Control Statements 173

 (e)
#include <iostream>
using namespace std;
int main()
{
 int j = 0;
 while (j) {
 cout << j << ‘\t’;
 j++;
 }
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int j = 1;
 while (j) {
 cout << j << ‘\t’;
 j++;
 }
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 int j = -6;
 while (j)
 cout << j++ << ‘\t’;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
int main()
{
 int i = 0,n = 10,counter = 0;
 while (i < n){
 cout <<“Komputer \n”;
 i += 4;
 cout <<“Komputer \n”;
 i -= 2;
 counter++;
 cout << “ i = ” << i << endl;
 }
 cout <<“No of iterations = ” << counter << endl;
 return 0;
}

 (i)
#include <iostream>
using namespace std;

 Programming with C++174

int main()
{
 int i = 0,n = 10;
 int j = 0,inner = 0,outer = 0;
 while (i < n){
 cout <<“Komputer \n”;
 j = i % 3;
 while (j < 4) {
 cout <<“Hello world \n”;
 j += 4;
 inner++;
 }
 i += 4;

 outer++;
 }
 cout <<“No of iterations of the inner “;
 cout <<“loop = ” << inner << endl;
 cout <<“No of iterations of the outer “;
 cout <<“loop = ” << outer << endl;
 return 0;
}

 9. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = 1;
 do
 cout << “ fl ag = ” << fl ag << endl;
 while (fl ag);
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = 1;
 do {
 cout << “ fl ag = ” << fl ag << endl;
 fl ag = !(fl ag);
 }
 while (fl ag);
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 bool fl ag = true;
 do {
 cout << “ fl ag = ” << fl ag << endl;
 !(fl ag);

 Control Statements 175

 }
 while (fl ag);
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int i = 0, n = 5;
 do {
 cout <<“ Hello”;
 i += 2;
 cout << “ C++ world” << endl;
 i -= 1;
 }
 while (i < n);
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int i = 0, n = 5;
 do {
 cout <<“ Hello”;
 i += 2;
 cout << “ C++ world” << endl;
 i -= 1;
 if (i == 3) break;
 }
 while (i < n);
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int i = 0, n = 5;
 do {
 cout <<“ Hello”;
 i += 2;
 cout << “ C++ world” << endl;
 i -= 1;
 if (i == 5) {
 n = 6;
 continue;
 }
 }
 while (i < n);
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()

 Programming with C++176

{
 int i = 0, n = 5;
 do {
 cout <<“ Hello C++ world” << endl;
 ++i;
 if (i == 2) goto again;
 }
 while (i < n);
 again:
 cout << “ i = ” << i << endl;
 return 0;
}

 PROGRAMMING EXERCISES

 1. Write a program in C++ to fi nd the square of the numbers from 1 to 100 using

 (i) for loop

 (ii) while-do loop

 (iii) do-while loop

 The output should be as follows:

Number Square

 . .

 . .

 2. Modify the above program so that it prints only the squares of numbers (not the numbers) from 1 to

125, each on its own line. It should print 1 4 9 16 25, and so on.

 3. Write a program in C++ that prints the numbers and its cube from 1 to 10 using the following control

statements:

 (i) if-else (ii) for loop

 (iii) while-do loop (iv) do-while loop

 4. Modify the above program so that it prints the number, square and the cubes of only odd numbers

from 0 to 100. The output should be like

Number Square Cube

 . . .

 . . .

 5. Modify program 4 so that it prints the number, square, and cube of only even numbers from 0 to 100

with the same format of output.

 6. Write a program in C++ that will print all the numbers less than 2000 that are evenly divisible by 10 using

 (i) if-else and goto statement (ii) for loop

 (iii) while-do loop (iv) do-while loop

 The output should be like 10 20 30

 7. Write a program in C++ to fi nd the sum of the following series using

 (i) for loop (ii) while-do loop

 (iii) do-while loop (iv) goto statement

 (a) sum = 1- 2 + 3 - ... + n
 (b) sum = 1 + 3 + 5 + ... + n
 (c) sum = 1 - 2 + 4 - ... + n

 Control Statements 177

 (d) sum = 1 +
2

2!

3

3!
+

n

n!
- �

 (e) sum = x +
x

2!
+
x

4!
+

x

n!

2 4 n

�

 (f) sum = x
x

3!
+
x

5!

x

n!

3 5 n

- - �

 (g) sum = 12 + 22 + 32 + 42 + ... + n2

 (h) sum = 13 + 23 + 33 + 43 + ... + n3

 (i) sum = 1 + 22 + 42 + ... + n2

 (j) sum = 1 + 32 + 52 + ... + n2

 8. Write a program in C++ to generate the following series of numbers:

 (i) (ii)

 1 2 3 4 5 6 7 8 9 1
 1 2 3 4 5 6 7 8 2 1
 1 2 3 4 5 6 7 3 2 1
 1 2 3 4 5 6 4 3 2 1
 1 2 3 4 5 5 4 3 2 1
 1 2 3 4 6 5 4 3 2 1
 1 2 3 7 6 5 4 3 2 1
 1 2 8 7 6 5 4 3 2 1
 1 9 8 7 6 5 4 3 2 1

 9. Write a program in C++ that determines whether a given number is a prime number or not and prints

it, using

 (i) for loop

 (ii) while-do loop

 (iii) do-while loop

(Hint: Prime number is a number which is divisible only by 1 and by itself. 3 is a prime number since

it is divisible by 1 and 3, whereas 6 is not a prime number because, it is divisible by 1, 2 and 3.)

 10. Write a program in C++ to read a number n from the standard input device, i.e. keyboard, and again

read a digit and check whether the digit is present in the number n. If it is so, count how many times

it is repeated in the number n.

 For example, let n = 12576

 digit to be checked 5.

 The digit is present once.

 11. Write a program in C++ to read a number n, and digit d, and check whether d is present in the

number n. If it is so, fi nd out the position of d in the number n. For example,

 Let n = 75689 and d = 5

 The digit d, i.e., 5 is present at the position 4 from left to right.

 12. Write a program in C++ to read a number n and fi nd out the sum of the integers from 1 to 2, then
from 1 to 3, then 1 to 4, and so on and to display the sum of the integers from 1 to n. For example,

from 1 to 2 = 1
 1 to 3 = 3
 1 to 4 = 6
 1 to 5 = 10
 1 to 6 = 18

 Programming with C++178

 13. Write a program in C++ to read a positive number n and to generate the following series using
 (i) for loop
 (ii) while-do loop
 (iii) do-while loop
 (a) number = 1 2 3 4 … n
 (b) number = 0 2 4 6 … n
 (c) number = 1 3 5 7 … n
 (d) number = 1 22 32 42 … n2

 (e) number = 1 23 33 43 … n3

 14. Write a program in C++ to read a positive integer number n and to generate the numbers in the
following form.

 For example,

Enter a number: 5

 Output 5 4 3 2 1 0 1 2 3 4 5

 Enter a number: 7

 Output 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
 15. Write a program in C++ to generate the following pyramid of numbers.

 0

 1 0 1

 2 1 0 1 2

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

6 5 4 3 2 1 0 1 2 3 4 5 6

 16. Write a program in C++ to read a hex number and to fi nd out the 15’s and 16’s complement of the
given hex number using comma operator in the for loop.

 17. Write a program in C++ to read an octal number and to fi nd out the 7’s and 8’s complement of the
given octal number using comma operator in the for loop.

 18. Write a program in C++ to read a set of real numbers from a standard input device and check
whether any 0 has been entered. If it is so, using break statement, just stop the execution and display
a message “zero entered”.

 19. Write a program in C++ to read a positive integer number n and to generate the following numbers
up to n, using goto statement.

number = 1 2 3 4 … n

 number = 0 2 4 6 … n

 number = 1 3 5 7 … n

 number = 1 22 32 42 … n2

 20. Write a program in C++ to read a positive integer number n from a standard input device and to
display the number and digit. For example, n = 5678
Output

 5
 6
 7
 8

Functions
and Program
Structures

Chapter

6

6.1 INTRODUCTION

A complex problem can be decomposed into small or easily manageable parts. Each small module is called

a subprogram. A subprogram is a program unit which performs a particular task. Subprograms are very

useful to read, write, debug, modify and easy to use in the main program. It cannot execute itself and it is

called either in the main program or by other subprogram. The main advantages of using a subprogram are:

 ∑ simple to write correctly a small subprogram

 ∑ easy to read, write and debug a subprogram

 ∑ easier to maintain or modify a subprogram

 ∑ it tends to be self documenting and highly readable.

 ∑ it may be called any number of times in any place with different parameters.

6.1.1 Types of Functions

In C++, a function can be classifi ed into two types: built-in functions and user-defi ned functions.
functions —|— built-in functions
 |
 |— user-defi ned functions

Some examples for built-in functions are: mathematical libraries, namely, cos(), sin(), etc. This

chapter elucidates both built–in and user-defi ned functions with suitable examples.

This chapter deals with the method of declaring an user-defi ned function
and its use in the C++ program. The scope of variables such as local, global,
formal and actual arguments are explained with numerous examples. This
chapter also covers how to realize recursive function that constitutes one of
the salient features of C++. The standard functions which are supported for the
mathematical operations, fi le operations, string operations are also discussed in
this chapter. Advanced topics such as passing a function or function to another
subprogram are explained in Chapter 8 on “Pointers”.

 Programming with C++180

Most of the high level languages such as BASIC, FORTRAN, or Pascal allow both subroutines or
procedures and functions. In these languages, the formal arguments may be passed and returned only by the
subroutines or procedures. The functions may take some formal arguments and can only return one value
and then only through the function name itself.

In C++, there is no difference between a function and a procedure. The functions may or may not take
some formal arguments for calling a portion of the program. The function may or may not transfer back
values to a called function block. It may behave like a traditional procedure or as a function or as both.
Secondly, most high level languages differentiate between a main program and subprograms. In C++, all
modules are called functions and they all have the same structure and the data type declaration and uses.

The following section explains how to use and realise the various user-defi ned functions in C++ for
both as a procedure and as a function. In C++, there is no separate form or method to write a procedure and
function, it gives the power of fl exibility to the user to construct the user-defi ned functions to behave like
traditional subprograms such as procedures and functions. There is only one form of writing a subprogram
in C++ and that is one of the importance strength of the C++ language.

6.2 DEFINING A FUNCTION

A function is a subprogram or a subroutine, similar in form to a program. It must be declared in the
declaration part of a program and is executed, when its name is called. A function defi nition has a name,
a parentheses pair containing zero or more parameters and a body. For each parameter, there should be a
corresponding declaration that occurs before the body. Any parameter not declared is taken to be an int
by default. It is good programming practice to declare all parameters. The syntax diagram of function
defi nition is given in Fig 6.1.

Fig. 6.1 Syntax Diagram of Function Defi nition

A function is defi ned the same way the main function is defi ned. All function defi nitions follow the same
pattern; it’s basically the function prototype with the function’s body added to it. The function defi nition
always consists of the following:
 (1) function’s return value
 (2) function’s name
 (3) function’s parameter list
 (4) actual function body, enclosed in curly braces

The general format of the function defi nition is given below:
return_value functionname (datatype argument1,datatype argument2...)
{
 body of function

 return something
}

 Functions and Program Structures 181

(a) Declaring the Type of a Function Function refers to the type of value it would return to the calling portion

of the program. Any of the basic data types such as int, float, char, etc. may appear in the function

declaration. In many compilers, when a function is not supposed to return any value, it may be declared as

type void, which informs the compiler not to save any temporary space for a value to be sent back to the

calling program.

For example,
 void functionname (...)
 int functionname (...)
 float functionname (...)
 char functionname (...)

(b) Function Name The function name is an user-defi ned identifi er and the syntax rules to form a function

name is same as the rules of the variables. Normally, a function is named such that it is reminiscent of

the function operation, as it is easy for the user to keep track of functions, whenever, a transfer of similar

function is used in the main program.

For example,
 counter ();
 square ();
 display_value();
 output ();

(c) Formal Arguments Any variable declared in the body of a function is said to be local to that function.

Other variables which are not declared either as arguments or in the function body, are considered “global”

to the function and must be defi ned externally. The storage classes or scope of variables are discussed

subsequently in this chapter.

For example,

 (1)
 void square (int a, int b) // a, b are the formal arguments
 {

 }

Note that the variables a and b are called formal arguments. Sometimes, a function may be invoked

without passing any parameters.

 (2)

int counter (fl oat x1, fl oat x2, int y1, int y2)
 { // x1, x2, y1, and y2 are the formal arguments

 return (int_value);
 }

 (3) fl oat output (void) // function without formal argument
 {
 statement;

 return(fl oat_value);
 }

(d) Function Body After declaring the function, function name and formal arguments, a statement or a

block of statements is placed between the begin and the end statements. In C++, each function is declared

 Programming with C++182

almost like a main program and it consists of label, constant, type, variable declarations with begin and end

statements. The syntax diagram of function body is given in Fig. 6.2.

Fig. 6.2 Syntax Diagram of Function Body

For example,
 void all_add (int a,int b,int c, fl oat x, fl oat y)
 {
 int i,j,n; // local variables, if any
 statement_1;

 // body of the function
 }

(e) Calling Functions In the C++ language, the act of transferring control to a function is known as calling

the function. The following steps take place when a function is called:

 (1) The compiler makes a note of the location from which the function was called and makes a copy of

the parameter list, if any.

 (2) Any storage required for the function to execute is temporarily created.

 (3) The called function starts executing, using copies of the data that was supplied in the parameter list.

 (4) After the function has fi nished executing, control is returned to the calling function, and memory

used by the function is released.

6.3 THE RETURN STATEMENT

The keyword return is used to terminate function

and return a value to its caller. The return statement

may also be used to exit a function without

returning a value. The return statement may or may

not include an expression. The syntax diagram of

return statement is given in Fig. 6.3.

The general syntax of the return statement is,
 return;
 return (expression);

The return is a full-fl edged C++ statement that can appear anywhere within a function body. A function

can also have more than one return although it is good programming style for a function to have a single

entrance and a single exit.

Following are some valid return statements:
 return;
 return (54);
 return (x+y);
 return (++i);
 return ++j; // correct, but not good style

Fig. 6.3 Syntax Diagram of Return Statement

 Functions and Program Structures 183

The return statement terminates the execution of the function and pass on the control back to the calling

environment. For example, a few valid function declarations are,

 (1)
 int sum (int x,int y)
 {
 return(x+y); // return int value
 }

 (2) A function can declare more than one return statement
 fl oat maximum(fl oat a, fl oat b)
 {
 if (a > b)
 return(a);
 else
 return(b);
 }

6.4 FUNCTION PROTOTYPES

Even though, C++ is an object-oriented programming, still functions play a vital role in any C++ program.

After all, functions do the actual work in a program.

In order to construct an effi cient class for a complex software, it is essential to have sophisticated

member functions. In that view, C++ supports very good features for the function usage. C++ retains the

base elements of function defi nition, declaration and invocation from C.

The type of function in which the function returns a value and the formal arguments, if any, must

be defi ned in the function declaration part. The following three things are to be considered, whenever a

function usage is involved in C++:

 ∑ function declaration

 ∑ function defi nition

 ∑ function calling or invocation

In this section, how a function is declared, defi ned, and invocated from a portion of a program to another

part, using a function, is explained.

(a) Function Declaration A function declaration is a process in which a function identifi er or name, return

type, the number and type of each parameter in the list are defi ned. The syntax diagram of function

declaration is given in Fig. 6.4.

Fig. 6.4 Syntax Diagram of Function Declaration

The general syntax of the function declaration in C++ are given below:
 return_type function_name (arg name,arg name... arg_n name);

 Programming with C++184

Some of the valid examples for the function declaration in C++ is given below:
 void display (void);
 int calculate (int, double, char);
 void message (int &, fl oat &);

Some users use an alternative form for the parameter list declaration. They include dummy variable

name chosen to indicate the meaning of the parameter or arguments. For example,
 int sum (int x, int y, fl oat number);

(b) Function Defi nition The defi nition of a C++ function also follows the same style as that of a C function.

The function declaration should be repeated as a header of the function defi nition part and the formal

arguments should be declared because they are needed in the body of the function.

For example, the following program example shows how a function defi nition is written in C++:
 void funct (int x, int y, fl oat abc)
 {

 // body of the function
 return ;
 }

A return statement is necessary to send a value back to the calling portion of the program through the

function name.

For example,

 (1)
 void square (int a, int b)
 // a, b are the formal arguments
 {

 }

 (2)
 int counter (fl oat x1, fl oat x2, int y1, int y2)
 { // x1, x2, y1, and y2 are the formal arguments

 return (int value);
 }

 (3) fl oat output (void) // function without formal argument
 {
 statement;

 return(fl oat value);
 }

(c) Function Calling Calling a function in C++ is the same as that of function invocation C. A function

identifi er or name will stand alone as a single statement or it may be part of an expression of a statement.

The syntax diagram of function call is given in Fig. 6.5.

For example,

 funct (a,b); // stand alone

or
 sum = sum (x,y); // part of an expression

 Functions and Program Structures 185

Fig. 6.5 Syntax Diagram of Function Call

Whenever a return value is not used in the calling portion of a program or a function must perform

some activity independently of its return value, it is better to have a function as a stand alone in a line. For

example,

 swap (a,b); // no return statement is required
 display (void); //displays a message

For example, the following program segment shows how to declare, defi ne and invoke a function in C++.

 void main()
 {
 void funct (formal arguments, if any);
 // function declaration

 funct (actual arguments); // function invocation

 }
 void funct (formal arguments) // function defi nition
 {

 }

6.5 TYPES OF USER DEFINED FUNCTIONS

User-defi ned functions can be classifi ed into three types based on the data communication between the
called and the calling portions of the program as detailed below:
 ∑ a function is called without taking any formal arguments from the calling portion of a program. The

called function also does not return any value to the calling portion (Type 1).
 ∑ a function is called by passing some formal arguments from the calling portion of a program but the

called function does not return any value to the calling portion (Type 2).
 ∑ a function is called by passing some formal arguments to the function from a calling portion of a

program and returns some value to the calling environment (Type 3).

6.5.1 Type 1 (No Data Communication between Functions)

It is the simplest way of writing a user-defi ned function in C++. There is no data communication between
the calling portion of a program and called function block. The function is invoked by a calling environment
by not feeding any formal arguments and also the function does not return any value to the calling portion.

Only the transfer of control takes place between the main program and a function block.

The general syntax of the Type-1 category of the function usage:

#include <iostream>
using namespace std;

 Programming with C++186

int main()
{
 void function_name (void); /* function declaration */

}
void function_name (void)
{

 /* no return data type */
}

For example, the following program segment illustrates how to declare and invoke a user-defi ned

function of Type 1 category:

 (1) A program contains a single function of type 1 category, namely, display ().

#include <iostream>
using namespace std;
int main()
{
 int x,y;
 void display (void); /* function declaration */

 display(); /* function calling */
}
void display (void) /* function defi nition */
{
 statement;
}

 (2) A program contains two functions namely inputdata and outputdata of Type 1 category.
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 void inputdata (void); /* function declaration */
 void outputdata (void);

 inputdata(); /* function calling */
 outputdata();

}
void inputdata(void) /* function defi nition */
{
 statement;

 /* void function does not return anything */
}
void outputdata(void) /* function defi nition */
{

 Functions and Program Structures 187

 statement;

 /* void function does not return anything */
}

 PROGRAM 6.1

A program to demonstrate how to declare and invoke a function in the main program based on the Type 1
category.

// Example 6.1
#include <iostream>
using namespace std;
int main()
{
 void draw_box(void);
 cout <<“calling a function \n”;
 draw_box();
 cout <<“Again calling the same function \n”;
 draw_box();
 return 0;
}
void draw_box()
{
 cout <<“*****\n”;
 cout <<“* *\n”;
 cout <<“* *\n”;
 cout <<“*****\n”;
}

Output of the above program

Calling a function

* *
* *

Again calling the same function

* *
* *

 PROGRAM 6.2

A program to display the following numbers and invoke a function in the main program based on the Type
1 category.

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1
#include <iostream>
#include <iomanip>
using namespace std;

 Programming with C++188

int main()
{
 void display(void);
 display();
 return 0;
}
void display()
{
 for (int i = 5; i >= 1; i)
 {
 for (int j = i; j >= 1; j)
 cout << j << setw(5);
 cout << “\n”;
 }
}

Output of the above program
5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

6.5.2 Type 2 (One Way Data Communication)

The second type of writing an user-defi ned function is passing the formal arguments to a function but the

called function does not return any value to the caller. It is one way data communication between a calling

portion of the program and the function block. In other words, Type 2 function declaration and invocation

is known as the call by value or value parameter.

The general syntax of the Type 2 category of function declaration and usage is given below:

#include <iostream>
using namespace std;
int main()
{
 void function_name (list of parameters); /* function declaration */
}
void function_name (list of parameters) /* function defi nition */
{

 /* no return data type */
}

For example, the following program segment illustrates how to declare and invoke a user-defi ned

function of Type 2 category:

#include <iostream>
using namespace std;
int main()
{
 int x,y;
 void display (int x,int y); /* function declaration */

 display(x,y); /* function calling */
}
void display (int a,int b) /* function defi nition */

 Functions and Program Structures 189

{

 statement;
 /* function does not return anything as it has been defi ned
 as a void category */
}

 PROGRAM 6.3

A program to fi nd the area and the circumference of a circle for a given value of radius using a function
type 2 category.

// Example 6.3
#include <iostream>
const fl oat pi = 3.14159;
using namespace std;
int main()
{
 void area_circle (fl oat a);
 void circumference (fl oat a);
 fl oat radius;
 cout <<“enter radius \n”;
 cin >> radius;
 area_circle(radius);
 circumference(radius);
 return 0;
}
void area_circle(fl oat radius)
{
 double area;
 area = pi * radius * radius;
 cout <<“ Area of the circle = ” << area;
 cout << “\n”;
}

void circumference (fl oat radius)
{
 double circum;
 circum = 2 * pi * radius;
 cout <<“Circumference of the circle = ” << circum;
 cout << “\n”;
}

Output of the above program
enter radius
10
Area of the circle = 314.159
Circumference of the circle = 62.8318

The list of parameters that can be defi ned in the function heading can be anything, such as int, fl oat and

char. Even the list of parameters can also be aggregated data types, namely, arrays, structs and unions.

The list of parameters that are defi ned in the function heading need not follow any order. All the

parameters need not necessarily be written in the same line. However, each variable and their data type

must be separated by a comma. Some of valid declarations of a function with a list of parameters are given

below:

 void sample (int i, fl oat abc, char ch);

An alternative form for declaring the above function sample is:

 Programming with C++190

 void sample (int i,
 fl oat abc,
 char ch);

Various forms of declaring formal parameters in the function heading are given below. In the following

usages, the list of parameters have the same effect.

 (1) void calculate (int x, int y, int z, fl oat abc,char ch);
 (2) void calculate (int ,int,int,fl oat,char);

The following form of declaring formal parameters in the function heading gives error message:
void calculate (int x,y,z); /* error */

Each parameter of the variable in a function heading should be defi ned its data type individually.
void calculate (int x,int y,int z);

There is no restriction to defi ne the list of parameters in the function header. C++ permits the user

to defi ne the list of parameters in any order but the only condition is that the number of parameters and

the sequence of the data types must be same in the actual and formal argument lists. In other words, the

data type and its parameters should be matched in both the function declaration heading and the function

defi nition header.

 PROGRAM 6.4

A program to fi nd the sum of the given two numbers using a function type 2 category.

#include <iostream>
using namespace std;
int main()
{
 void sum(int a, int b);
 int x = 10, y = 20;
 sum(x,y);
 return 0;
}

void sum (int item1, int item2)
{
 int temp;
 temp = item1+item2;
 cout <<“sum = ” << temp;
 cout << “\n”;
}

Output of the above program

sum = 30

6.5.3 Type 3 (Two Way Data Communication)

The third type of writing a user-defi ned function is passing some formal arguments to a function from the

calling portion of the program and the computed values, if any, is transferred back to the caller. Data is

communicated both from the calling portion and a function block.

The general syntax of the Type 3 category of function declaration and usage is given below:

#include <iostream>
using namespace std;
int main()
{
 return_data_type function_name (list of parameters); /* function declaration */

 Functions and Program Structures 191

}

// function defi nition
return_data_type function_name (list of parameters)
{

 return (return_data_type);
}

For example, the following program segment illustrates how to declare and invoke a user-defi ned

function of Type 3 category:

#include <iostream>
using namespace std;
int main()
{
 int x,y,total;
 int sum (int x,int y); /* function declaration */

 total = sum(x,y); /* function calling */
}

int sum (int a,int b) /* function defi nition */
{
 statement;

 return (int_data_type); /* function should return something
 as it has been defi ned as Type 3 category */
}

 PROGRAM 6.5

A program performs a simple arithmetic operations, such as addition, subtraction, multiplication and
division on two numbers using a function of Type-3 category.

// Example 6.5
// demonstration of Type-3 function
#include <iostream>
using namespace std;
int main()
{
 int x,y,value;
 char ch;
 void menu();

 fl oat newvalue;
 int add (int x,int y);
 int sub (int x,int y);
 int mult (int x,int y);
 fl oat divd (int x,int y);
 cout <<“Enter any two integers \n”;
 cin >> x >> y;

 Programming with C++192

 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘a’:
 value = add(x,y);
 cout <<“x = ” << x << “\t y = ” << y;
 cout <<“\t sum = ” << value;
 cout << “\n”;
 break;
 case ‘s’:
 value = sub (x,y);
 cout <<“x = ” << x << “\t y =” << y;
 cout <<“\t diff = ” << value;
 cout << “\n”;
 break;
 case ‘m’:
 value = mult (x,y);
 cout <<“x = ” << x <<“\t y = ” << y;
 cout <<“\t product = ” << value;
 cout << “\n”;
 break;
 case ‘d’:
 newvalue = divd (x,y);
 cout <<“x = ” << x << “\t y = ” << y;
 cout <<“\t Quotient = ” << newvalue;
 cout << “\n”;
 break;
 } // end of case statement
 } // end of while loop
 return 0;
}
void menu()
{
 cout <<“ a -> addition \n”;
 cout <<“ s -> subtraction \n”;
 cout <<“ m -> multiplication \n”;
 cout <<“ d -> division \n”;
 cout <<“ q -> quit \n”;
}

int add (int x,int y)
{
 return (x+y);
}

int sub (int x,int y)
{
 return (x-y);
}

int mult (int x,int y)
{
 return (x*y);
}

fl oat divd (int x,int y)
{
 return (fl oat (x) / fl oat (y));
}

Output of the above program
Enter any two integers
1 2
a -> addition
s -> subtraction
m -> multiplication

 Functions and Program Structures 193

d -> division
q -> quit
a
x = 1 y = 2 sum = 3
s
x = 1 y = 2 diff = -1
m
x = 1 y = 2 product = 2
d
x = 1 y = 2 Quotient = 0.5
q

 PROGRAM 6.6

A program to fi nd the factorial of a given number function of Type 3 category.

// Example 6.6
#include <iostream>
using namespace std;
int main()
{
 int n;
 long int factorial (int n);
 long int fact;
 cout <<“ enter a number \n”;
 cin >> n;
 fact = factorial(n);
 cout <<“Factorial = ” << fact << “\n”;
 return 0;
}
long int factorial (int max)
{
 int i;
 long int value = 1;
 if (max <= 0)
 return (value);
 else
 {
 for (i = 1; i <= max; ++i)
 value *= i;
 return (value);
 }
}

Output of the above program

enter a number
5
Factorial = 120

 PROGRAM 6.7

A program to generate a Fibonacci series of numbers using a function technique.

Fibonacci series is:

0 1 1 2 3 5 8 13 21
34 55 89 144 233 377

 Programming with C++194

// Example 6.7
// fi bonacci series
#include <iostream>
using namespace std;
int main()
{
 void fi bonacci (int max);
 int n;
 cout <<“How many terms \n”;
 cin >> n;
 again : if (n <= 0) {
 cout <<“enter only a positive number\n”;
 goto again;
 }
 fi bonacci(n);
 return 0;
}

void fi bonacci(int max)
{
 int i,fi b0,fi b1,fi b;
 fi b0 = 0;
 fi b1 = 1;
 cout <<“Fibonacci series \n”;
 cout << fi b0 << ‘\t’;
 cout << fi b1 << ‘\t’;
 i = 3;
 while (i <= max)
 {
 fib = fi b0+fi b1;
 cout << fi b << ‘\t’;
 fib0 = fi b1;
 fib1 = fi b;
 i++;
 }
 cout << “\n”;
}

Output of the above program

How many terms
6
Fibonacci series
0 1 1 2 3 5

 PROGRAM 6.8

A program to fi nd the sum of the given series of non-negative integers using a function. sum = 1+2+3+4....n

// sum = 1+2+3+4 ...n
#include <iostream>
using namespace std;
int main()
{
 int fi nd_sum(int max);
 int n,value;
 cout <<“ enter a maximum number \n”;
 cin >> n;
 value = fi nd_sum(n);

 cout <<“1+2+3+4... ” << n <<“ = ” << value;
 cout << “\n”;
 return 0;
}

 Functions and Program Structures 195

int fi nd_sum(int max)
{
 int i,value;
 value = 0;
 if (max <= 0)
 return (value);
 else
 {
 for (i = 1; i <= max; ++i)
 value += i;
 return (value);
 }
}

Output of the above program
enter a maximum number
10
1+2+3+4... 10 = 55

 PROGRAM 6.9

A program to generate power series using a function technique.

// Example 6.9
// generation of power series
#include <iostream>
using namespace std;
int main()
{
 void power_series(fl oat base,int n);
 fl oat x;
 int n;
 again: cout <<“enter values for the base and n \n”;
 cin >> x >> n;
 if (n <= 0)
 {
 cout <<“enter only a positive number for n \n”;
 goto again;
 }
 cout <<“Power series \n”;
 power_series(x,n);
 return 0;
}

void power_series(fl oat base,int n)
{
 fl oat power = 1;
 int i = 1;
 cout <<“counter x x^counter \n”;
 cout <<“ \n”;
 while (i <= n)
 {
 power = power*base;
 cout << i <<‘\t’<< base <<‘\t’<< power;
 i++;
 cout <<“\n”;
 }
}

Output of the above program
enter values for the base and n
2 10
Power series

 Programming with C++196

 counter x x^counter
 1 2 2
 2 2 4
 3 2 8
 4 2 16
 5 2 32
 6 2 64
 7 2 128
 8 2 256
 9 2 512
 10 2 1024

 PROGRAM 6.10

A program to fi nd the sum of the following series using a function.

sum = - + - +1
1

2

1

3

1

4

1

! ! ! !
�

n

// Example 6.10
// sum = 1-(1/2!)+ (1/3!)-(1/4!)... (1/n!)
#include <iostream>
using namespace std;
int main()
{
 int n;
 void calculate(int j);
 cout <<“Enter value for n \n”;
 again:
 cin >> n;
 if (n <= 0) {
 cout <<“enter only a positive number \n”;
 goto again;
 }
 calculate(n);
 return 0;
}
void calculate (int n)
{
 fl oat sum = 0.0,newtemp;
 int i,sign,temp;
 int factorial (int i);
 sign = 1;
 i = 1;
 while (i <= n) {
 temp = factorial(i);
 newtemp = (fl oat)1/temp;
 sum = sum+sign*newtemp;
 cout <<“i = ” << i <<‘\t’ << “fact = ”<< temp;
 cout <<“\t sign = ” << sign << ‘\t’ <<“ sum = ” << sum;
 cout << “\n”;
 sign = (-1)*sign;
 i++;
 }
 cout <<“ sum = 1-(1/2!)+(1/3!)-... = ” << sum;
 cout <<“\n”;
}
int factorial (int i)
{
 int j,value = 1;
 for (j = 1; j <= i; j++)

 Functions and Program Structures 197

 value *=j;
 return (value);
}

Output of the above program

Enter value for n
5

i = 1 fact = 1 sign = 1 sum = 1
i = 2 fact = 2 sign = -1 sum = 0.5
i = 3 fact = 6 sign = 1 sum = 0.666667
i = 4 fact = 24 sign = -1 sum = 0.625
i = 5 fact = 120 sign = 1 sum = 0.633333
sum = 1-(1/2!)+(1/3!)-... = 0.633333

 PROGRAM 6.11

A program to fi nd the sum of the following series using a function.

sum = - + -x
x x x

n

n3 5

3 5! ! !
�

// Example 6.11
// sum = x - (x^3/3!) + (x^5/5!) + ...
#include <iostream>
using namespace std;
int main()
{
 int n;
 fl oat x;
 void calculate(fl oat base, int max);
 cout <<“Enter the value for x and n \n”;
 again:
 cin >> x >> n;
 if (n <= 0) {
 cout <<“enter only a positive number \n”;
 goto again;
 }
 calculate(x,n);
 return 0;
}
void calculate (fl oat x, int n)
{
 fl oat sum = 0.0,temp,pow;
 int i,sign,fact;
 int factorial (int i);
 fl oat calpower (fl oat x,int i);
 sign = 1;
 i = 1;
 while (i <= n) {
 pow = calpower(x,i);
 fact = factorial(i);
 temp = (fl oat)pow/fact;
 sum = sum+sign*temp;
 cout <<“i = ” << i << ‘\t’ <<“ fact = ” << fact;
 cout << “\t pow = ” << pow << ‘\t’;
 cout <<“ sign = ” << sign <<‘\t’<<“sum = ” << sum;
 cout << “\n”;
 sign = (-1)*sign;
 i = i+2;
 }
 cout <<“ sum = x-(x^3/3!)+(x^5/5!)-...= ” << sum;

 Programming with C++198

 cout << “\n”;
}

fl oat calpower(fl oat base,int max)
{
 int j = 1;
 fl oat power;
 power = 1;
 while (j <= max) {
 power = power*base;
 j++;
 }
 return (power);
}

int factorial (int i)
{
 int j,value = 1;
 for (j = 1; j <= i; j++)
 value *=j;
 return (value);
}

Output of the above program
Enter the value for x and n
2 5

i = 1 fact = 1 pow = 2 sign = 1 sum = 2
i = 3 fact = 6 pow = 8 sign = -1 sum = 0.666667
i = 5 fact = 120 pow = 32 sign = 1 sum = 0.933333

sum = x-(x^3/3!)+(x^5/5!)-...= 0.933333

6.6 ACTUAL AND FORMAL ARGUMENTS

Arguments are user-defi ned identifi ers or variables, constants and other program elements. Sometimes,

these arguments are also called as parameters. They are defi ned in the subprogram defi nition part of a

program or at the time of invoking a subprogram such as a function. Generally, arguments can be classifi ed

into two types: actual and formal data types.
 Arguments | actual arguments
 |

| formal arguments

The comparison and contrast between the actual and formal arguments are discussed below in detailed

manner.

6.6.1 Actual Arguments

Actual argument is a variable or expression contained in a function call that replaces the formal parameter

(which is the part of the function declaration). The general syntax of declaring formal and actual arguments

in a function is given below:

#include <iostream>
using namespace std;
int main()
{
 function declaration_part (list of formal arguments);
 local variable declaration_part;

 Functions and Program Structures 199

 function_invocation(list of actual arguments);
}

function_defi nition_part (list of formal arguments)
{

}

The formal arguments and actual arguments can have the same name or it can be different. But the

order of defi ning the arguments and their data types must be the same both in the actual and in the formal

argument list. In other words, the data type in which it is defi ned in the formal arguments must match with

the actual arguments.

For example, consider the following program segment in which actual and formal arguments are declared:

#include <iostream>
using namespace std;
int main()
{
 int funct (int a, int b); /* a and b formal parameters */
 int x,y,temp;

 funct(x,y); /* x and y are the actual parameters */
}

int funct (int a, int b) /* a and b formal parameters */
{
 local variable declaration, if any

 return (int_data_type);
}

Note that the variables x and y are actual arguments which are defi ned in the main program. The contents

of the actual parameters are copied onto the formal arguments in a subprogram whenever they are invoked

through a function call. In the case of variable parameters in a subprogram, the address of the actual and

formal arguments are the same. In other words, formal arguments are dummy variables that are created by

the C++ compiler at the time of using a particular subprogram. When the control of the program moves to the

other part of the program, dummy variables which are created already will be purged automatically.

6.6.2 Formal Arguments

Formal arguments are user-defi ned identifi ers that are declared in a function header and they are used

throughout the function. Whenever the function is invoked, formal parameter is replaced by actual parameter.

The use of formal arguments are illustrated in the following program segment:

#include <iostream>
using namespace std;
int main()
{
 void sum(int a, int b); // a and b are formal arguments
 int x = 10, y = 20;
 sum(x,y); // actual arguments

 Programming with C++200

}

void sum (int item1, int item2) // item1 and item2 are formal arguments
{
 int temp;
 temp = item1+item2;
 cout << ”sum =“ << temp;
}

The variable declared in the function declaration part is called the formal or dummy arguments. The

order of the parameters must be the same both in the main and in the subprogram.

For example, the following program is an invalid way of declaring actual and formal arguments:

#include <iostream>
using namespace std;
int main()
{
 void display(fl oat x1, fl oat y2, char ch1, char ch2, int t1, int t2); //* function declaration */
 int x,y;
 char s1,s2;
 fl oat a,b;

 display (x,y,s1,s2,a,b); /* data mismatch error */
}

void display (fl oat x, fl oat y, char s1, char s2, int t1,int t2)
{

}

The arguments that are declared in the function invocation do not match with the parameter that are

defi ned in the actual function implementation. For example, in the above program segment, x and y are

the variables that are defi ned as integer data in the function invocation but in the function defi nition part,

these are declared as real data type. Hence, C++ compiler treats these variables as separate and fi nds data

mismatch between formal and actual parameters list.

6.7 LOCAL VS GLOBAL VARIABLES

In general, variables which are declared in a program can be classifi ed into two types: local and global.

 variables --|-- local variables
 |

|-- global variables

This section explains how these variables can be defi ned and used in a program. The comparison and

contrast between the local and global variables are also discussed with suitable examples.

6.7.1 Local Variables

Identifi ers that are declared such as label, const, type, variables in a function block are said to belong to the

particular subprogram or block and these identifi ers are known as local parameters or variables.

For example, consider the following program segment wherein a local variable is declared and used:

 Functions and Program Structures 201

 (1)
#include <iostream>
using namespace std;
int main()
{

int function_f11(int x, int y);
 int x,y,z;

 function_f11 (x,y);
}
int function_f11 (int x, int y)
{

int temp,i,j; // local variables

}

 (2) In another example, the local variable is declared within the different block of a function with the same

name. In each block, within the curly braces {and}, the local variables are different entities. The life and

scope of the local variables are pertained only to the particular block. When the control is terminated from

the particular block, the local variables, if any, will be purged automatically by the compiler. The life and

scope of the variables are only limited to the particular block or a function module.

 PROGRAM 6.12

A program to illustrate how to declare the local variable.

#include <iostream>
using namespace std;
int main()
{
 void display();
 cout <<“ demonstrating local variables” << endl;
 display();
 return 0;
}

void display(void)
{
 int i = 10;
 {
 int i = 20;
 {
 int i = 30;
 cout << “innermost i = ” << i;
 cout << endl;
 }
 cout << “ inner i = ” << i;
 cout << endl;
 }
 cout << “outer i = ” << i;
 cout << endl;
}

Output of the above program
demonstrating local variables
inner most i = 30

 Programming with C++202

inner i = 20
outer i = 10

6.7.2 Global Variables

Global variables are declared in the declaration part of the main program block. The scope of the variables

are same both in the main and in the subprogram.

For example, the following program segment illustrates the usage of the global variable declaration.

#include <iostream>
using namespace std;
int x = 10; /* global variable */
int main()
{
 void funct1(void);
 void funct2(void);
 int y;

 cout <<“ value of x in the main program = x;

 funct1();
 funct2();
}

void funct1(void)
{

 cout <<“ value of x inside funct1 = ” << x;
}

void funct2(void)
{

 cout <<“ value of x inside funct2 = ” << x;
}

Since the variable x is declared as global, it can be accessed both in the main and in the subprograms.

The value of the variable x will be same in both the functions funct1 () and funct2 ().

6.8 DEFAULT ARGUMENTS

One of the most useful facilities available in C++ is the facility to defi ne default argument values for

functions. In the function prototype declaration, the default values are given. Whenever a call is made to

a function without specifying an argument, the program will automatically assign values to the parameters

from the default function prototype declaration. Default arguments facilitate easy development and

maintenance of programs.

For example, the following program segment illustrates the default argument declaration:

#include <iostream>
using namespace std;
void sum (int x = 10, int y = 20); // function prototype declaration
 // with default argument list

 Functions and Program Structures 203

void main()
{
 int a,b;
 sum (); // function calling, with default parameters

}

void sum(int a1,int a2) // function defi nition
{
 int temp;
 temp = a1+a2; // a1 = 10 and a2 = 20 by default arguments
}

 PROGRAM 6.13

A program to fi nd the sum of the given numbers using default argument declaration.

//default argument declaration
#include <iostream>
using namespace std;
void sum (int a,int b,int c = 6, int d = 10);
void main()
{
 int a,b,c,d;
 cout << “ enter any two numbers \n”;
 cin >> a >>b;
 sum (a,b); // sum of default values
}

void sum (int a1,int a2,int a3,int a4)
{
 int temp;
 temp = a1+a2+a3+a4;
 cout << “ a = ” << a1 << endl;
 cout << “ b = ” << a2 << endl;
 cout << “ c = ” << a3 << endl;
 cout << “ d = ” << a4 << endl;
 cout << “ sum = ” << temp;
}

Output of the above program

enter any two numbers
11 21

a = 11
b = 21
c = 6
d = 10
sum = 48

The above program can be slightly modifi ed, invoking the function sum()with user-defi ned input data

as parameters. By this, the default values are not assigned to the function sum().

//default argument declaration
#include <iostream>
using namespace std;
void main()
{

 Programming with C++204

 void sum (int a = 2,int b = 4,int c = 6, int d = 10);
 int a,b,c,d;
 cout << “ enter four numbers \n”;
 cin >> a >> b >> c >> d;
 sum (a,b,c,d);
}

void sum (int a1,int a2,int a3,int a4)
{
 int temp;
 temp = a1+a2+a3+a4;
 cout << “ a = ” << a1 << endl;
 cout << “ b = ” << a2 << endl;
 cout << “ c = ” << a3 << endl;
 cout << “ d = ” << a4 << endl;
 cout << “ sum = ” << temp;
}

Output of the above program
enter four numbers
1 2 3 4

a = 1
b = 2
c = 3
d = 4
sum = 10

The function call without arguments is valid in C++. The default arguments are given only in the

function prototypes and should not be repeated in the function defi nition. The following program calculates

the sum of the default values when the function is called without arguments.

//default argument declaration
#include <iostream>
using namespace std;
void sum (int a = 2,int b = 4,int c = 6, int d = 10);
void main()
{
 int a,b,c,d;
 sum (); // sum of default values
}

void sum (int a1,int a2,int a3,int a4)
{
 int temp;
 temp = a1+a2+a3+a4;
 cout << “ a = ” << a1 << endl;
 cout << “ b = ” << a2 << endl;
 cout << “ c = ” << a3 << endl;
 cout << “ d = ” << a4 << endl;
 cout << “ sum = ” << temp;
}

Output of the above program

a = 2
b = 4
c = 6

 Functions and Program Structures 205

d = 10
sum = 22

A few special cases of the function prototypes with default arguments and invoking a function are illustrated below.

Case 1

//default argument declaration
#include <iostream>
using namespace std;
void main()
{
 void sum (int a = 2,int b,int c = 6, int d = 10);

 sum (b); // invalid
}

Error: The C++ compiler displays the error message as the default value missing following the parameter “a”.

Case 2

//default argument declaration
#include <iostream>
using namespace std;
void main()
{
 void sum (int a = 2,int b = 3,int c, int d);

 sum (c,d); // invalid
}

A function may have more than one default parameter. The default parameters must be grouped

consecutively and are available only at the end of a function declaration. Following is a valid way of a

function declaration and calling a function with default arguments.

Case 3

//default argument declaration
#include <iostream>
using namespace std;
void main()
{
 void sum (int a ,int b ,int c = 5 , int d = 8);

 sum (a,b); // valid
}

6.9 STRUCTURE OF THE C++ PROGRAM

C++ is a block structure language. The main idea of using a block-structured language is the easiness with

which a program can be written and to realise a complex program in a modular form. In other words, a

modular program is a systematic development of a language style in which there is a main part containing

various functions and function calls.

 Programming with C++206

In order to exploit the full potential of the modular approach, it is necessary to invoke one or more

modules within another or by itself. In this context, it will be convenient to introduce the term block to refer

to the whole of any program and a module.

For example, the following program segment illustrates the complete structure of the C++ program:

#include <iostream>
using namespace std;
int main()
{
 variable declaration part
 function declaration part

 function calling
}

function1_defi nition_part()
{
 local variable declaration part;

}

function2_defi nition_part()
{
 local variable declaration part;

}

function_n_defi nition_part()
{
 local variable declaration part;

}

Note that the structure of a C++ program consists of a program header followed by a block. A block is

defi ned as a sequence of declarations, followed by a set of statements enclosed within begin and end. The

following program segment illustrates the various program structures and styles of writing a program in

C++:

 (1) A simple program structure with main function:

#include <iostream>
using namespace std;
int main()
{
 declaration part, if any

 return 0;
}

 (2) A program consists of a set of functions. For example, functions funct1() and funct2() are

declared as a part of the program.

 Functions and Program Structures 207

#include <iostream>
using namespace std;
int main()
{
 variable declaration part
 funct1 declaration part
 funct2 declaration part

 funct1_calling
 funct2_calling

}

funct1_defi nition_part()
{
 local variable declaration part;

}

funct2_defi nition_part()
{
 local variable declaration part;

}

 (3) A more complex program structure is given below, which consists of two functions, namely,

funct1 () and funct2 (). Within the function funct1 (), two more functions funct11 () and

funct12 () have been declared. Inside the function funct2 (), another function funct21 () is

defi ned. The various invocation of these functions are also marked in the corresponding part of the

program.
#include <iostream>
using namespace std;
int main()
{
 variable declaration part
 funct1 declaration part
 funct2 declaration part

 funct1_calling
 funct2_calling

}

funct1_defi nition_part()
{
 local variable declaration part;
 funct11 declaration part
 funct12 declaration part

 funct11_calling;

 Programming with C++208

 funct12_calling;
}

funct11_defi nition_part()
{
 local variable declaration part;

}

funct12_defi nition_part()
{
 local variable declaration part;

}

funct2_defi nition_part()
{
 local variable declaration part;
 funct21 declaration part

 funct21_calling;
}

funct21_defi nition_part()
{
 local variable declaration part;

}

6.10 ORDER OF THE FUNCTION DECLARATION

The order of a function declaration is one of the important steps in writing a complex and multiple usages

of the functions. In C++, the hierarchy is not very strictly maintained for function usage in a program. Users

can have a choice to design or to use their own style or pattern of declaring functions. In some programming

languages such as Pascal, Modula-2 or Ada, the function which is fi rst referenced must be defi ned fi rst and

so on. In other words, a called subprogram must be defi ned above the calling portion of a program.

A function calls as “calling up” other functions and put called functions above the ones doing the

calling. But in C++, it is so fl exible that user can have its own style of pattern to write his functions. The

only thing the ANSI C++ expects from the user that function declaration, function defi nition and function

invocation should be maintained.

For example, the following program segment shows how to defi ne a called function which must be

defi ned above the function which is calling other functions:

Case 1

#include <iostream>
using namespace std;
int main()
{

 Functions and Program Structures 209

 function fi rst(list of parameters); /* function declaration
 function second(list of parameters);
 function third(list of parameters) ;

 fi rst(); /* function invocations */
 second();
 third();

}

function fi rst(list of parameters) /* function defi nition */
{

} /* call up function */

function second (list of parameters) /* function defi nition */
{

} /* call up function */

function third (list of parameters) /* function defi nition */
{

} /* call up function */

In the above program segment, three functions are declared, in which third function calls the fi rst and

second functions and so the same order is maintained for declaring the functions. Function fi rst is defi ned

initially which is followed by the second function. The third function is defi ned after the fi rst and second

functions but before the main program block.

Case 2 The function defi nitions can be carried out even before the main() function declaration part.

#include <iostream>
using namespace std;

function fi rst(list of parameters) /* function defi nition */
{

} /* call up function */

function second (list of parameters) /* function defi nition */
{

} /* call up function */

function third (list of parameters) /* function defi nition */
{

} /* call up function */

 Programming with C++210

void main()
{

 function fi rst(list of parameters); /* function declaration */
 function second(list of parameters);
 function third(list of parameters) ;

 fi rst(); /* function invocations */
 second();
 third();
}

Case 3 The order of defi ning the functions in C++ is so fl exible that user can choose his own choice of

writing in any order. The function defi nition need not be followed the same hierarchy of the functions

declaration in the main() program part.

#include <iostream>
using namespace std;
int main()
{

 function fi rst(list of parameters); /* function declaration */
 function second(list of parameters);
 function third(list of parameters) ;

 fi rst(); /* function invocations */
 second();
 third();
}

function fi rst(list of parameters) /* function defi nition */
{

} /* call up function */

function third (list of parameters) /* function defi nition */
{

} /* call up function */

function second (list of parameters) /* function defi nition */
{

} /* call up function */

In the above program segment, three functions are declared, in which third function is defi ned between

the function defi nitions of fi rst and second.

 Functions and Program Structures 211

6.11 MUTUALLY INVOCATED FUNCTIONS

It may be recalled that a function cannot be invoked unless the function declaration appears before the

statement that invokes it. However, sometimes it may be necessary to call a function that has not been

declared before the invoking statement.

For example, one may have functions one and two, each of which calls the other:

/* function defi nition part */
function one (list of paramters);
{
 declaration of function two();
 statementes, if any;
 two (actual paramters)
}

/* function defi nition part */
function two(list of parameters)
{
 declaration of function one();
 statementes, if any;
 one (actual paramters)
}

As written above, function two is correct, since it references function one which has been defi ned. But

function one is not correct as it references function two which has not been defi ned. Reversing the order

of the direction does not solve the above problem, as in that case, function two will inherit the error. When

there is a mutual recursion call taking place, then one of the functions must be defi ned earlier, before it is

referenced in the call up function.

/* function defi nition part */
function one (list of paramters);
{
 statementes;
 two (actual paramters)
}

/* function defi nition part */
function two(list of parameters)
{
 statementes;
 one (actual paramters)
}

 PROGRAM 6.14

A program to demonstrate how to call up the functions mutually each other in C++.

// demonstration of function with mutual invocations
#include <iostream>
using namespace std;
int main()
{
 int x,i,sum;
 int one (int y, int sum);

 Programming with C++212

 x = 10;
 sum = 0;
 one (x,sum);
 return 0;
}
int one (int x, int sum)
{
 int two (int y, int sum);
 sum = x+sum;
 cout <<“ inside the function one (sum = ” << sum << “)\n”;
 if (sum != 100)
 two(x,sum);
}

int two (int y, int sum)
{
 int one (int x, int sum);
 sum = y+sum;
 cout <<“ inside the function two (sum = ” << sum << “)\n”;
 if (sum != 100)
 one(y,sum);
}

Output of the above program
inside the function one (sum = 10)
inside the function two (sum = 20)
inside the function one (sum = 30)
inside the function two (sum = 40)
inside the function one (sum = 50)
inside the function two (sum = 60)
inside the function one (sum = 70)
inside the function two (sum = 80)
inside the function one (sum = 90)
inside the function two (sum = 100)

6.12 NESTED FUNCTIONS

When a function is written within another function, it is called a nested function. The number of nesting

of functions (within another function) is virtually infi nitive in C++. However, the number of nesting of the

functions is restricted depending on the particular version compiler being used a system. The scope and

the arguments that are declared and used in nested functions are complicated for debugging, testing and

maintaining the source code.

For example, the following program segment illustrates how to declare a function within another

function (nested functions) in C++:

Case 1

#include <iostream>
using namespace std;
int main()
{
 function f1();/* declaration */
 variable declaration; /* main program */

 f1();
}

function f1() /* defi nition part */

 Functions and Program Structures 213

{
 function f11(); /* declaration */
 /* variables local to f1 */

 f11(); /* calling the function f11() */
}

function f11() /* defi nition part */
{
 /* variables local to f11 */

}

Within the function f1(), another function f11() is declared. The parameters that are declared in the

function f11() can be accessed by both functions f11() and f1(). The scope of the function f11() is

limited only to the function f1().

Case 2 Another example for the nested function is given below:
#include <iostream>
using namespace std;
int main()
{
 function f1();/* declaration */
 variable declaration;
 /* main program */

 f1();
}

function f1() /* defi nition part */
{
 function f11(); /* declaration */
 function f12();
 /* variables local to f1 */

 f11(); /* calling the function f11() */
 f12();
}

function f11() /* defi nition part */
{
 /* variables local to f11 */

}

function f12() /* defi nition part */
{
 /* variables local to f12 */

}

 Programming with C++214

In the above program segment, function f1() that is embedded of two other functions f11() and

f12(). The scope of the variables of the functions f11() and function f12() are limited only to the

function f1(). However, the function f11() is independent of the function f12() and so the variables

that are declared within the function f11() cannot be accessed by the function f12() or vice versa.

6.13 SCOPE RULES

The scope of the variable is defi ned as a set of functions within which the variable is defi ned. The variable

may be declared in any number of places either in the main program or in the subprogram. Scope rules are

limited to the particular block or a subprogram. The data type is limited to a particular block even if it is

used with the same variable name.

For example, the following program segment illustrates how to declare the same variable name in

different functions of the same program.
#include <iostream>
using namespace std;
int main()
{
 function_f1();
 function_f2();
 int x;

}

function_f1()
{
 fl oat y;
 y = -30; /* variable y belongs to function f1() */

}

function_f2()
{
 char y;
 y = ‘c’; /* variable y belongs to function f2() */
}

The variable y is declared in the functions f1() and f2() with different data types which is permitted

in C++, as the variables that are declared in the function f1()are local to that particular function block

and these variables are not seen in other functions. Hence, C++ compiler treats these variables as separate

arguments with its own data types.

Each function declaration has a structure similar to a program, i.e., each consists of a heading and a

block. Hence, function declarations may be nested within other functions. Labels, constants, type, variables,

and function declarations are local to the function in which they are declared. That is, their identifi ers have

signifi cance only within the program text that constitutes the block. This region of program text is called

the scope of these identifi ers.

As blocks may be nested, so also scopes. Objects that are declared in the main program, i.e. not local to

some function or function, are called global and have signifi cance throughout the entire program. The scope

of an identifi er declaration is the block in which the declaration occur, and all blocks are nested within that

 Functions and Program Structures 215

block. If an identifi er is declared in a block and if another block is nested within that block, then the scope

of the fi rst declaration specifi cally excludes the second block and any block it contains.

Consider the following program segment which illustrates how scope rules are applicable to the various

parameters in the different function blocks:
#include <iostream>
using namespace std;
int main()
{
 function_f1();
 function_f2();

}

function_f1()

{

 function_f11(); /* declaration */

}

function_f11()

{

 function_f11_inner();/* declaration */

 local variables, if any

 function_f11_inner();

}

function_f11_inner()

{

 local variable, if any

}

function_f2()

{

 function_f21(); /* declaration */

 function_f22();

}

function_21()

{

 local variables, if any

}

 Programming with C++216

function_22()

{

 local variables, if any

}

The following table summarises the scopes of the individual function blocks and their accessibility in

other blocks or modules of the above program segment is given below:

Block Modules which access the blocks

main() main()
function_f1() function_f1(), main()
function_f11() function_f11(), function_f1(), main()
function_f11_inner() function_f11_inner(), function_f11()

function_f1(), main()
function_f2() function_f2(), main()
function_f21() function_f21(), function_f2(), main()
function_f22() function_22(), function_f2, main()

6.14 SIDE EFFECTS

Software testing and maintenance are the important and time consuming tasks. When a program is defi ned

in which the subprogram alters the value of the global variable and if it is not echoed in the main program

part or block, then debugging, testing and maintaining such codes are really time consuming and it is also

diffi cult to trace the errors in them.

Alteration of a global variable by a subprogram is called a side effect. The accidental alteration of global

value during the invocation of a subprogram can be an extremely diffi cult error to detect and correct.

 PROGRAM 6.15

 A program that demonstrates how a side eff ect occurs when a global variable is altered in a function.

// demonstration of side effects
#include <iostream>
using namespace std;
int global_g = 0;
int main()
{
 int sum (int x);
 cout <<“ sum1 = ” << sum(0);

 cout <<“ \n sum2 = ” << sum(0);
 cout <<“ \n sum3 = ” << sum(0);
 cout <<“ \n sum4 = ” << sum(0);
 return 0;
}

int sum (int x)
{
 x = x+global_g;
 global_g = global_g +1; // global values is altered (side effects)

 return(x);
}

 Functions and Program Structures 217

Output of the above program

sum1 = 0
sum2 = 1
sum3 = 2
sum4 = 3

A function should perform some task using the input parameters and return a single value. A function can

modify the contents of a global variable and perform input/output statement. The operation in which the

content of global variable is altered in a subprogram is called as a side effect. In most cases, side effects

should be avoided. Side effects can cause program bugs that may be diffi cult to identify and correct. All

information passed to or from a function should be done through the parameter list and not through global

variables. This will make the function a self-contained independent module, which can be tested and

debugged on its own.

 PROGRAM 6.16

A program to demonstrate how to prevent the side eff ects of global variables being declared as const
data type.

// prevention of side effects
#include <iostream>
using namespace std;
const int global_g = 0;
int main()
{
 int sum (int x);
 cout <<“ sum1 = ” << sum(0);
 cout <<“ \n sum2 = ” << sum(0);
 cout <<“ \n sum3 = ” << sum(0);
 cout <<“ \n sum4 = ” << sum(0);
 return 0;
}

int sum (int x)
{
 x = x+global_g;
 global_g = global_g +1; // error, global values cannot be
 // altered, there is no side effects
 return(x);
}

Compilation error const value is for read only. It cannot be changed. In this way, one can avoid side

effects even if there is a global variable.

6.15 STORAGE CLASS SPECIFIERS

The storage class specifi er refers to how widely it is known among a set of functions in a program. In other

words, how the memory reference is carried out for a variable. Every identifi er in C++ has not only a type

such as integer, char, double, and so on but also a storage class that provides information about its visibility,

lifetime and location. For example, if the variable belongs to an automatic type, that means whenever the

variable is used in a main program or a function, the computer will automatically reserve a memory space

for it. Normally, in C++, a variable can be declared as any one of the following groups:

 (1) Automatic variable

 (2) Register variable

 Programming with C++218

 (3) Static variable

 (4) External variable

The keywords that are used for declaring the storage class

specifi ers in C++ are as follows:

∑ auto
∑ register
∑ static
∑ extern
The syntax diagram of a variable storage specifi er is given

in Fig. 6.6

Three variable storage modifi ers are used in ANSI/ISO

C++:

∑ const

∑ volatile
∑ mutable
Any of the storage class modifi ers may appear before or after

the variable name in a declaration but by convention they come

before the variable name.

The syntax diagram of a variable storage modifi er is given in

Fig. 6.7.

6.15.1 Automatic Variable

The auto and register storage-class specifi ers can be used only to declare names used in blocks or to declare

formal arguments to functions. The term “auto” comes from the fact that storage for these objects is

automatically allocated at run time (normally on the program’s stack).

The auto storage-class specifi er declares an automatic variable, a variable with a local lifetime. It is the

default storage-class specifi er for block-scoped variable declarations. An auto variable is visible only in

the block in which it is declared. Since variables with auto storage class are not initialised automatically,

one should either explicitly initialise them when it is declared, or assign initial values to them in statements

within the block. The values of uninitialised auto variables are undefi ned. (A local variable of auto or

register storage class is initialised each time it comes in scope if an initialiser is given.)

Automatic variables can be declared not only at the beginning of a function but also at the beginning of

a compound statement (also called a block). Local variables are given the storage class auto by default. One

can use the keyword auto to make the storage class explicit but no one does. In other words, the keyword

auto is somewhat superfl uous and is rarely used.

For example, the following program segment illustrates how the keyword auto is used in the C++

program.
#include <iostream>
using namespace std;
int main()
{
 auto int a,b,c;

}

is exactly equivalent to

Fig. 6.7 Variable storage modifi er

Fig. 6.6 Variable storage specifi er

 Functions and Program Structures 219

#include <iostream>
using namespace std;
int main()
{
 int a,b,c;

}

The general syntax of an automatic variable is,

 storage_class data_type variable_1,variable_2...variable_n;

Here the storage class is an automatic, so it can be written as
 auto int x,y,z;
 auto fl oat a1,a2;
 auto char name1;

But the above declaration can also be written as
 int x,y,z;
 fl oat a1,a2;
 char name1;

However, both the declarations are same. The keyword auto is used only if one desires to declare a

variable explicitly as an automatic variable. However, a variable which is declared as an automatic cannot

be accessed outside of the function. The scope of the automatic variable is within a block and the duration

is also temporal. The keyword auto can be used as function arguments.

 PROGRAM 6.17

In the following program the identifi er ‘i’ is used for three distinct variables.

// using auto storage identifi er
#include <iostream>
using namespace std;
int main()
{
 void display ();
 int i = 10; // inside the main
 display();
 cout << “value of i (inside main) = ” << i;
 cout << ‘\n’;
 return 0;
}

void display()
{
 int i = 20; // i in the local variable
 {
 int i = 3; // i within the compound statement
 cout << “value of i in the compound statement = ” << i;
 cout << ‘\n’;
 {
 int i = -5; // innermost declaration
 cout << “value of i (innermost) = ” << i;
 cout << ‘\n’;
 }
 }
 cout << “value of i (local to the function) = ” << i;
 cout << ‘\n’;
}

 Programming with C++220

Output of the above program

value of i in the compound statement = 3

value of i (innermost) = – 5

value of i (local to the function) = 20

value of i (inside main) = 10

The automatic variables have two distinct advantages. First, memory space is used economically since it

is used only as long as it is needed. Secondly, their local scope prevent from affecting other functions due

to inadvertent usage. Hence, variables in other functions need not necessarily be given different names.

6.15.2 Register Variable

The register keyword specifi es that the variable is to be stored in a machine register, if possible. The

keyword ‘register’ is used for automatic variables that are accessed very frequently in a program. The

keyword register may be used only for variables declared within a function.

Automatic variables are stored in the memory. As accessing a memory location takes time (much more

time than accessing one of the machine’s registers), one can make the computer to keep only a limited

number of variables in their registers for fast processing. Whenever some variables are to be read or

repeatedly used, they can be assigned as register variables.

The general syntax of a register variable is,
 register datatype variable1,variable2......variable n;

The keyword register is used to declare that the storage class of the variable is a register type.

For a limited number of variables it is possible to make the computer to keep them permanently in fast

registers. Then the keyword register is added in their declaration. For example,
function (register int n)
{
 register char temp;

}

If possible, machine registers sometimes called accumulators, can be assigned to the variable n and

temp, which would increase the speed. If there are not enough register variables then the request will

simply be ignored. However, a variable which is declared as a register cannot be accessed outside of the

function. The scope of the register variable is within a block and the duration is also temporal. The keyword

register can be used as function arguments.

 PROGRAM 6.18

A program to display the number and its square from 0 to 10 using register variables.

// using register variable declaration
#include <iostream>
using namespace std;
int main()
{
 // function declaration
 int funct (register int x, register int y);
 register int x,y,z;
 x = 0;

 Functions and Program Structures 221

 y = 0;
 cout << “x square(x)\n”;
 cout << “ \n”;
 do {
 z = funct (x,y);
 cout << x << ‘\t’ << z << ‘\n’;
 ++x;++y;
 }
 while (x <= 10);
 return 0;
}

int funct (register int x, register int y)
{
 register int temp;
 temp = x*y;
 return (temp);
}

Output of the above program

x square(x)

0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

There are some restrictions on register variables. As a machine register is usually a single word, many

compilers allow only those variables that fi t into a word to be placed in registers. This means that int, char,

or pointer variables can only be placed in registers. In addition, most compilers have only a few registers

available to user programs, usually two or three.

Suppose, some of the variables have been declared as register variables and if these variables are not the

correct data type such as char or int and if there are not enough registers available, then the C++ compiler will

automatically ignore the register data type and it keeps them in the memory, treating them as automatic variables.

6.15.3 Static Variable

The static variables are defi ned within a function and they have the same scope rules of the automatic variables

but in the case of static variables, the contents of the variables will be retained throughout the program.

The keyword static may be used to declare variables both within and outside a function except for

function arguments. When the static variables are declared within a function, the static causes variables to

have fi xed duration instead of the default automatic duration. For static variables those are declared outside

a function, the static keyword gives the variable fi le scope instead of program scope. The keyword static

should not be used as function arguments.

The general syntax of the static variable is,
 static datatype variable 1,variable2,....variable n;

 where static is a keyword used to defi ne the storage class as a static variable.

 Programming with C++222

The following declarations are valid
 static int x,y;
 static int x = 100;
 static char a1,ch;

 PROGRAM 6.19

A program to display 1 to 10 with addition of 100 using the automatic variable.

// using automatic variable
#include <iostream>
using namespace std;
int main()
{
 int funct(int x); // function declaration
 int i,value;
 for (i = 1; i <= 10; i++) {
 value = funct (i);
 cout << i << ‘\t’ << value << ‘\n’;
 }
 return 0;
}

int funct (int x)
{
 int sum = 100; // automatic variable
 sum += x;
 return (sum);
}

Output of the above program

1 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109
10 110

The above program can be modifi ed using sum as a static variable:

 PROGRAM 6.20

A program to display 1 to 10 with addition of 100 using the static variable.

// using static storage modifi er
#include <iostream>
using namespace std;
int main()

{
 int funct(int x); // function declaration
 int i,value;
 for (i = 1; i <= 10; i++) {
 value = funct (i);

 Functions and Program Structures 223

 cout << i << ‘\t’ << value << ‘\n’;
 }
 return 0;
}

int funct (int x)
{
 static int sum = 100; // static variable
 sum += x;
 return (sum);
}

Output of the above program

1 101
2 103
3 106
4 110
5 115
6 121
7 128
8 136
9 145
10 155

Since sum has a permanent memory space it retains the same value in the period of time between

leaving function and again entering it later. In contrast to automatic variable, static variables are initialised

only once. Hence in the above program, sum has the value 100 only.

6.15.4 External Variable

Variables which are declared outside the main are called external variables and these variables will have

the same data type throughout the program, both in main and within the functions. The keyword extern
specifi er may be used for declaring both within and outside a function except for function arguments.

Normally, variables are declared only at the beginning of blocks. But one can also declare variables

outside any function, anywhere in the fi le. Functions can access these variables, which resemble the

global variables of Pascal and the common variables of FORTRAN, simply by referring to them by their

name. Global variables have the same lifetime and initlialisation rules as the static variables. This implicit

initialisation is convenient and is taken advantage of by countless programs, but explicitly initialising global

variables makes programs more readable.

The general syntax of the external variable is,
 extern datatype variable 1,varibale2,....variable n;

 where extern is a keyword used to defi ne the storage class as external variables.

The following declarations are valid
 extern int x,y;
 extern fl oat p,q,r;
 extern char a1,ch;

 PROGRAM 6.21

A program to defi ne a variable as an external data type and to display the contents of the variable.

// using extern storage modifi er
#include <iostream>
using namespace std;

 Programming with C++224

extern int x = 10; // extern variable should be initialised
int main()
{
 void funct (void);
 cout << “content of x (in main) = ” << x << ‘\n’;
 funct();
 cout << “content of x (in main) = ” << x << ‘\n’;
 return 0;
}

void funct (void)
{
 cout << “content of x (inside a function) = ” << ++x;
 cout << ‘\n’;
}

Output of the above program

content of x (in main) = 10
content of x (inside a function) = 11
content of x (in main) = 11

In the above program, x has been declared as the global variable, in other words, as any external

variable. One has to declare the external variables only once but these external variables can be used in both

main and functions without declaring the data type again.

For example, the following program gives error message while compiling the program due to non-

initialisation of extern variables. By default, the variables that are declared as extern, should be initialised

by the user as it cannot be initialised by the compiler automatically.

Since the extern int x is not initialised with data, the compiler gives error message during the

compilation time.

// using extern storage modifi er
#include <iostream>
using namespace std;
extern int x; // extern variable should be initialised
int main()
{
 void funct (void);
 cout << “content of x (in main) = ” << x;
 funct();
 return 0;
}

void funct (void)
{
 cout << “content of x (inside a function) = ” << x;
}

6.15.5 The const Modifi er

The const modifi er is used along with a variable declaration exclusively for read only purpose. User

cannot change the value of the variable once the variables are declared as const type.

 PROGRAM 6.22

A program to defi ne a variable as a const data type and display the contents of the variable.

 Functions and Program Structures 225

// using const storage modifi er
#include <iostream>
using namespace std;
const int x = 10;
int main()
{
 void funct (void);
 cout << “content of x (in main) = ” << x << ‘\n’;
 funct();
 return 0;
}

void funct (void)
{
 cout << “content of x (inside a function) = ” << x;
 cout << ‘\n’;
}

Output of the above program

content of x (in main) = 10
content of x (inside a function) = 10

For example, the following program gives error message while compiling the program due to change

of the const value. By default, the const variable is meant for read only purpose. Hence, it gives error

message.

// error
#include <iostream>
using namespace std;
const int x = 20;
int main()
{
 x++; //altering the cost variable
 cout << “x = ” << x;
 return 0;
}

 PROGRAM 6.23

A program to defi ne a variable as a const data type and display the contents of the variable without
initialisation.

//const storage modifi er, error due to uninitialisation
#include <iostream>
using namespace std;
const int x;
int main()
{
 void funct (void);
 cout << “content of x (in main) = ” << x <<‘\n’;
 funct();
 return 0;
}
void funct (void)
{
 cout << “content of x (inside a function) = ” << x;
 cout << ‘\n’;
}

 Programming with C++226

Compile time error The variables that are declared as const, should be initialised. Since const int x

is uninitialised, compiler gives the error message.

6.15.6 The Volatile Modifi er

The volatile modifi er is used along with a variable for giving directions to the compiler to turn off

certain optimisations. This is especially useful for device registers and other data segments while operating

on the fl oating point operations and the system level calls.

 PROGRAM 6.24

A program to defi ne a variable as a volatile data type and display the contents of the variable.

// using volatile storage modifi er
#include <iostream>
using namespace std;
volatile int x = 10;
int main()
{
 void funct (void);
 cout << “content of x (in main) = ” << x << ‘\n’;
 funct();
 cout << “content of x (after function call) = ” << x;
 cout << ‘\n’;
 return 0;
}
void funct (void)
{
 x++;
 cout << “content of x (inside a function) = ” << x;
 cout << ‘\n’;
}

Output of the above program
content of x (in main) = 10
content of x (inside a function) = 11
content of x (after function call) = 11

6.16 RECURSIVE FUNCTIONS

This section explains how to declare, defi ne and invoke a recursive subprogram. A subprogram which calls

itself directly or indirectly again and again, is known as a recursive subprogram.

It is well known that a function is a subprogram and when a function is invoked or called by itself

again and again is called as a recursive function. When a function is invoked or called by itself in a part of

program, it is known as recursive function call.

C++ permits the declaration and invocation of a function recursively. The way in which a recursive

function is declared, defi ned and called are all similar to a normal function. Whenever a function is called

either as a normal or as a recursive call, the value of the function must be assigned to the left hand side of

the variable.

The main advantages of using recursive subprograms are:

 (1) Recursive functions are very useful while constructing data structures, like, linked lists, double

linked lists and binary trees.

 (2) Recursive call is faster.

 Functions and Program Structures 227

 (3) There is minimum transfer of control.

 (4) Recursive functions normally take less memory space than normal or conventional functions.

 (5) The code size becomes small, if it is designed using recursive methods.

But developing, testing and maintaining recursive codes are always very diffi cult than usual techniques.

There is much difference between normal and recursive functions. Normal function will be called by the

part of a program, whenever, the function name is used. On the other hand recursive function will be called

by itself, directly or indirectly, as long as the given condition is satisfi ed.

For example, the following program segment shows how to declare a recursive function in C++.

#include <iostream>
void main()
{
 void funct1(); /* function declaration */

 funct1(); /* function calling */
}
void funct1() /* function defi nition */
{

 funct1(); /* function calls recursively */
}

The following program shows how to declare the main() function for a recursive call in C++.
#include <iostream>
using namespace std;
int main()
{
 cout << “this is a test program \n”;
 main();
 return 0;
}

Output of the above program

The message ‘this is a test program’ will be displayed for ever until the user interrupts the

execution by pressing the Cntrl+C keys from the command window.

 PROGRAM 6.25

A program to fi nd the sum of given non-negative integer numbers using a recursive function.

 sum = 1+2+3+4 ...n
// sum = 1+2+3+4n using recursive function
#include <iostream>
using namespace std;
int main()
{
 int sum (int);
 int n,temp;
 cout << “Enter any integer number \n”;
 cin >> n;
 temp = sum(n);
 cout << “1+2+3... ” << n;
 cout <<“ and its sum = ” << temp << ‘\n’;
 return 0;

 Programming with C++228

}

int sum (int n) // recursive function
{
 int sum (int); // local function declaration
 int value = 0;
 if (n == 0)
 return (value);
 else
 value = n+sum(n-1);
 return (value);
}

Output of the above program
Enter any integer number
5
1+2+3... 5 and its sum = 15

The following illustrations will be helpful to understand the recursive function call.

For value 1
 = 1 + sum (1-1)
 = 1 + 0
 = 1

For value 2
 = 2 + sum (2-1)
 = 2 + 1+sum (1-1)
 = 3

For value 3
 = 3 + sum (3-1)
 = 3 + 2 + sum (2-1)
 = 3 + 2 + 1+ sum (1-1)
 = 6

 PROGRAM 6.26

A program to fi nd the factorial of the given number using recursive function.

The factorial of n (written n!) is the product of all integers between 1 to n. (assume n is non-negative).

n! =
1 0

1 0

n

n n n

=

- >

Ï
Ì
Ó ()

// factorial of a given number using recursive function
#include <iostream>
using namespace std;
int main ()
{
 long int fact (long int);
 long int x,n;
 cout << “Enter any integer number \n”;
 cin >> n;
 x = fact (n);
 cout << “value = ” << n << “ and its factorial = ” << x;
 cout << ‘\n’;
 return 0;
}

long int fact (long int n) // recursive function
{

 Functions and Program Structures 229

 long int fact(long int); // local function declaration
 int value = 1;
 if (n == 1)
 return (value);
 else
 {
 value = n * fact (n-1);
 return (value);
 }
}

Output of the above program

Enter any integer number
5
value = 5 and its factorial = 120

The following steps illustrate how a factorial of a given number is calculated using recursive call.

For value 1
 = 1*fact (1-1)
 = 1

For value 2
 = 2 *fact (2-1)
 = 2*1
 = 2

For value 3
 = 3*fact (3-1)
 = 3*2*fact (2-1)
 = 3*2*1
 = 6

6.17 PREPROCESSORS

Preprocessor is a program that modifi es the C++ source program according to directives supplied in the
program. The original source program is usually stored in a fi le. The preprocessor does not modify this
program fi le, but creates a new fi le that contains the processed version of the program. This new fi le is then
submitted to the compiler. The preprocessor makes the program easy to understand and port it from one
platform to another. A preprocessor carries out the following actions on the source fi le before it is presented
to the compiler. These actions consist of

 ∑ replacement of defi ned identifi ers by pieces of the text,

 ∑ conditional selection of parts of the source fi le,

 ∑ inclusion of other fi les, and

 ∑ renumbering of source fi les and the renaming of the source fi les itself.

The general rules for defi ning a preprocessor are,

 (a) All preprocessor directives begin with the sharp sign (#).
 (b) They must start in the fi rst column and on most C++ compiler there can be no space between the

number sign and the directive.

 (c) The preprocessor directive is terminated not by a semicolon.

 (d) Only one preprocessor directive can occur in a line.

 (e) The preprocessor directives may appear at any place in any source fi le: outside/inside functions or

inside compound statements.

The C++ preprocessor is a simple macroprocessor that conceptually processes the source text of a

C++ program before the compiler parses the source program. The preprocessor is controlled by special

 Programming with C++230

preprocessor command lines, which are lines of the source fi le beginning with the character ‘#’. Note that

character ‘#’ has no other use in the C++ language.

The Common C++ preprocessor directives and their uses are:

 Directive Uses

#include insert text from another fi le

#defi ne defi ne preprocessor macro

#undef remove macro defi nitions

#if conditionally include some text based on the value of the constant expression

#ifdef conditionally include some text based on predefi ned macro name

 #ifndef conditionally include some text with the sense of the test opposite to that of #ifdef

#else alternatively include some text, if the previous # if, #ifdef, or #ifndef tests failed

#elif combination of #if and #else

#endif terminate conditional text

#line give a line number for compiler messages

#error terminate processing early

6.17.1 Simple Macro Defi nitions

A macro is simply a substitution string that is placed in a program.

Fig. 6.8 Syntax Diagram of Macro Declaration

For example, consider the following program segment,

#defi ne MAX 100
void main()
{
 char name[MAX];
 for (i=0; i<= MAX-1; ++i)
}

which is internally replaced with the following program

void main()
{
 char name[100];
 for (i=0; i<= 100-1; ++i)
}

and subsequently compiled. Each occurrence of the identifi er MAX as a token is replaced with the string

100 that follows the identifi er in the #defi ne line. The simple form of macro is particularly useful for

introducing named constants into a program. This makes it easier to change the number later.

For example, the following are valid #defi ne statements.
 #defi ne TRUE 1
 #defi ne FALSE 0

 Functions and Program Structures 231

 #defi ne EOF -1
 #defi ne SIZE 5
 #defi ne TRACK_SIZE 6
 #defi ne MAX_BLOCK 100

The syntax of the #defi ne command does not require an equal sign or any other special delimiter token

after the name being defi ned.

Some invalid #defi ne statements are illustrated below.

 (1)

 #defi ne SIZE =3

 The #defi ne statement is used to merely substitute the string constants into the source program.

 For example,

#defi ne SIZE =3
#include <iostream>
void main()
{

int value [SIZE];
for (i=0; i<= SIZE-1; ++i)

}

 The macro substitutes every occurrence of the SIZE with the =3, modifying the above source

program as,

#include <iostream>
void main()
{

int value [=3]; /* syntax error */
for (i=0; i<= =3-1; ++i) /* syntax error */

}

 (2) The #defi ne statement does not take the semicolon.

 #defi ne MAX 100; /* error */

 For example,
#defi ne MAX 100;
#include <iostream>
void main()
{

char name [MAX];
for (i=0; i<= MAX-1; ++i)

}

 The macro substitutes every occurrences of the MAX with the 100; modifying the above program

segment, as
#include <iostream>
void main()
{

char name [100;]; /* syntax error */
for (i=0; i<= 100;-1; ++i) /* syntax error */

 Programming with C++232

}

6.17.2 Macro with Parameters

A more complex form of a macro defi nition declares the names of formal parameters within parentheses,

separated by commas.

#defi ne name (variable 1,variable2,...variable n) subtitution_string

For example,

 #defi ne PRODUCT (x,y) ((x) *(y))
 #defi ne max (x,y) ((x) > (y) ? (x) : (y))
 #defi ne min(x,y) ((x) < (y) ? (x) : (y))

Macros operate purely by textual substitution of tokens. The C++ compiler parses the source program

only after the completion of the macro expansion processes are completed. Hence, care must be taken to get

the desired results. For example,

 #defi ne PRODUCT (x) x*x

If we call this macro defi nition in the C++ program,

 #defi ne PRODUCT (x) x*x
 void main()
 {
 PRODUCT (10);

 }

PRODUCT (10) expands to 10 *10. However, the expression

 PRODUCT (a+1) expands to

 a+1*a+1

When the above expression is executed, it is interpreted as a+ (1*a) +1 because the multiplication

has higher precedence over the addition. This will not produce the same result as (a+1) *(a+1) unless

a happens to be zero. It would be somewhat safer to put parentheses around occurrences of the formal

parameters in the defi nition of PRODUCT as,
 #defi ne PRODUCT (x) (x) * (x)

Even this defi nition does not provide complete protection against precedence problems.

For example,

#defi ne PRODUCT (x) (x)* (x)
#include <iostream>
void main()
{
 (short) PRODUCT (a+1)

}

The preprocessor substitutes the macro as
 (short) (a+1) * (a+1)

then, it would be parsed as
 ((short) (a+1)) * (a+1)

as a cast has higher precedence over multiplication. Hence proper parentheses should be used within the

macro defi nition statement to get the desired results. The correct way of defi ning the PRODUCT macro is
 #defi ne PRODUCT (x) ((x) * (y))

 Functions and Program Structures 233

6.17.3 Other Preprocessing Techniques

As the preprocessor merely substitutes a string of text for another without any checking, a wide variety

of substitutions are possible and hence, it is possible to make any typed source program look like another

language. To illustrate the above, if someone has a strong liking for Assembly level programming and its

syntax, then Assembler symbols can be used in C++ by just including as many #defi ne statements so as to

convert them to valid C++ symbols before the compilation.

 PROGRAM 6.27

A program for microprocessor simulator using the macro defi nition.

#include <stdio.h>
#defi ne SWAP(x,y,type) {type temp;temp=(x);(x)=(y);(y)=temp;}

#defi ne MOV(d,s) (d)=(s);
#defi ne ADD(d,s) (d)=(d)+(s);
#defi ne MUL(d,s) (d) = (d)*(s); /* s - source */
#defi ne DIV(d,s) (d) = (d)/(s); /* d - destination */
#defi ne XCHG(d,s) SWAP(d,s,SWAPTYPE);
#defi ne OUT(value) printf(“%d”,(value));
#defi ne OUTB(value) printf(“%c”,(value));
#defi ne OUTS(label) printf(“%s”,(label));
#defi ne LF printf (“\n”);
#defi ne ASCII(label,string) char *label ={ string };
#defi ne WORD(label) int label;
#defi ne BYTE(label) char label;

#defi ne START main() {
#defi ne END }

#defi ne SWAPTYPE int

ASCII(msg,“Microprocessor simulator ”)

START
 WORD(result)
 WORD(r1)
 WORD(r2)
 MOV (result ,0)
 MOV (r1 ,20)
 MOV (r2,20)
 MOV (result ,r1)
 ADD (result ,r2)
 LF
 OUTS(“ Sum of = ”)
 OUT (result)
 LF
 MOV (result ,r1)
 MUL (result ,r2)
 OUTS (“Multiplication of =”);
 OUT (result)
 LF
 MOV (result ,r1)
 DIV (result ,r2)
 OUTS (“Division of =”)
 OUT (result)
END

Output of the above program

Sum of = 40

 Programming with C++234

Multiplication of = 400
Division of = 1

6.17.4 Conditional Compilation

The preprocessor conditional compilation commands allow lines of the source text to be passed through or

eliminated by the preprocessor on the basis of a computed condition.

The following are the preprocessor conditional commands.
 #if
 #else
 #endif
 #elif

The above commands are used in the following way:
#if constant expression
 group of lines 1
#else
 group of lines 2
#endif

A group of lines may contain any number of lines of the text or any kind, even other preprocessor

command lines, or no lines at all. The #else command may be omitted.

The #elif command The #elif command is fairly a recent addition to C++. It is supported by very few

compilers only. The #elif command is like a combination of #if and #else. It is used between #if

and #endif in the same way as #else but has a constant expression to evaluate in the same way as #if.

It is used in the following format:

#if constant expression
 group of lines 1
#elif constant expression
 group of lines 2
#elif constant expression
 group of lines 3

#else
 group of lines n
#endif

The same commands can be written using #if, #else and #endif.

For example,

 #if expression

 #elif expression

 #elif expression

 #else

 #endif

In case a particular C++ compiler is not supporting the #elif conditional command, then the above

commands may be modifi ed as:

 Functions and Program Structures 235

 #if expression

 #else
 #if expression

 #else
 #if expression

 #else

 #endif
 #endif
 #endif

6.18 HEADER FILES

A header fi le contains the defi nition, global variable declarations, and initialisation by all the fi le in a

program. Header fi les are not compiled separately. The header fi le can be included in the program using

the macro defi ntion #include command. A header fi le can be declared as a fi rst line in any C++ program.

For example, the standard input/output stream <iostream> header fi le contains the macro defi nitions and

functions needed by the program input/output statements.

The header fi le can be declared in one of the following ways:
 #include <myprogram.h>

or
 #include “myprogram.h”

6.19 STANDARD FUNCTIONS

Standard libraries are used to perform some predefi ned operations on characters, strings, etc. The standard

libraries are invoked using different names such as library functions, built-in functions or predefi ned

functions. As the term library function indicates, there are a great many of them, actually they are not part

of the language. Many facilities that are used in C++ programs need not be part of the C++ language. Most

of the C++ compilers support the following standard library facilities.

 ∑ operations on characters <cctype>

 ∑ operations on strings <cstring>

 ∑ mathematical operations <cmath>

 ∑ storage allocation procedures

 ∑ input / output operations <cstdio>

 REVIEW QUESTIONS

 1. What is a function? List out the advantages and disadvantages of using functions in C++.

 2. How a function is declared in C++?

 Programming with C++236

 3. What is meant by call by reference and call by value?

 4. What is the purpose of the return statement?

 5. What is meant by the function arguments, function call and return values?

 6. List out the rules normally governing the use of the return statement.

 7. In C++, can a function be called from more than one place within a program?

 8. How is a function declaration different from the function defi nition?

 9. What is meant by the scope of variables? Summarise the variable types of storage class in C++?

 10. What is an automatic variable and what is the use of it?

 11. Explain how data can be initialised in the automatic variable.

 12. What is meant by the register variable and what is the scope of it?

 13. How is a register variable different from an automatic variable?

 14. What is a static variable and what is its scope?

 15. How are data elements initialised in the case of static type variable?

 16. How is a static variable different from an automatic variable?

 17. What is the use of the external data type in C++?

 18. What is a recursive function? List out the merits and demerits of the function.

 19. How is a recursive function different from an ordinary function?

 20. What is the storage class used in a recursive function?

 21. What is a preprocessor in C++?

 22. What is a macro and how is it different from a preprocessor?

 23. What is a header fi le in C++? What is the purpose of using these fi les in C++?

 24. What is meant by command line arguments?

 25. What is a standard function and how is it useful for a developing program?

 26. List out the C++ preprocessor directives and their uses.

 27. What is meant by macro operators?

 28. Distinguish between a #include and #defi ne.

 29. What is meant by conditional compilation?

 30. List out the various operators of <cmath> library function.

 31. Summarise the purpose of <cstring> function.

 32. What are the different functions involved in <cctype>?

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 void display();
 int x = 1;
 cout << x;
 display();
 cout <<‘\t’<< x;
 return 0;
}

 Functions and Program Structures 237

void display()
{
 int x = 5;
 cout <<‘\t’ << x;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 void display1(void);
 void display2(void);
 int x = 1;
 cout << x;
 display1();
 cout << ‘\t’ << x;
 display2();
 cout << ‘\t’ << x;
 return 0;
}
void display1()
{
 int x = 5;
 cout <<‘\t’ << x;
}
void display2()
{
 int x = 10;
 cout <<‘\t’ << x;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 void display1(void);
 int x = 1;
 cout << x;
 display1();
 cout <<‘\t’<< x;
 return 0;
}
void display1()
{
 void display2(void);
 int x = 5;
 cout <<‘\t’ << x;
 display2();
 cout <<‘\t’ << x;
}
void display2()
{
 int x = 10;
 cout <<‘\t’ << x;
}

 Programming with C++238

 (d)
#include <iostream>
using namespace std;
int main()
{
 int display1(int x);
 int x = 1;
 cout << x;
 x = display1(x);
 cout <<‘\t’ << x;
 return 0;
}
int display1(int x)
{
 int y = 5;
 x += y;
 cout <<‘\t’ << x;
 return (x);
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int display1(int x);
 int x = 1;
 cout << x;
 x = display1(x);
 cout <<‘\t’ << x;
 return 0;
}
int display1(int x)
{
 void display2(int x);
 int y = 5;
 x += y;
 cout <<‘\t’ << x;
 display2(x);
 return (x);
}
void display2(int x)
{
 int y = 10;
 x += y;
 cout <<‘\t’ << x;
}

 (f)
#include <iostream>
using namespace std;
int x = 10;
int main()
{
 void display1();
 cout << x;

 Functions and Program Structures 239

 display1();
 cout <<‘\t’ << x;
 return 0;
}
void display1()
{
 int y = 1;
 x += y;
 cout <<‘\t’ << x;
}

 (g)
#include <iostream>
using namespace std;
static int x = 10;
int main()
{
 void display1();
 cout << x;
 display1();
 cout <<‘\t’ << x;
 return 0;
}
void display1()
{
 int y = 1;
 x += y;
 cout <<‘\t’ << x;
}

 (h)
#include <iostream>
using namespace std;
extern int x = 10;
int main()
{
 int display1();
 cout << x;
 x = display1();
 cout <<‘\t’<< x;
 return 0;
}
int display1()
{
 static int x = 1;
 x++ ;
 cout <<‘\t’<< x;
 return (x);
}

 (i)
#include <iostream>
using namespace std;
extern int x = 10;
int main()
{
 void display1();
 cout << x;

 Programming with C++240

 display1();
 cout <<‘\t’<< x;
 return 0;
}
void display1()
{
 static int x = 1;
 x++;
 cout <<‘\t’<< x;
}

 2. What will be the output of each of the following programs when it is executed?

 (a)
#include <iostream>
using namespace std;
int main()
{
 int sum (int i,int j);
 int i = 10,j = 20,total;
 total = sum (i,j);
 cout << “ total = ” << total;
 return 0;
}
int sum (int a, int b)
{
 cout << “i = ” << a << ‘\t’;
 cout << “j = ” << b << ‘\t’;
 return (a+b,a-b,a*b);
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int sum (int i,int j);
 int i = 10,j = 20,total;
 total = sum (i,j);
 cout << “ total = ” << total;
 return 0;
}
int sum (int a, int b)
{
 cout << “i = ” << a << ‘\t’;
 cout << “j = ” << b << ‘\t’;
 return;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int display();
 int total;
 total = display();
 cout <<“total = ” << total;
 return 0;

 Functions and Program Structures 241

}
int display()
{
 int i = 10, j = 20, k = 30, m = 40;
 return (i,j,k,m);
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int display (int i);
 int sum,i = 10;
 sum = display (i);
 cout <<“sum = ” << sum;
 return 0;
}

int display (int a)
{
 return (a++);
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int display_main (int i);
 int sum,i = 10;
 sum = display_main (i);
 cout <<“sum = ”<< sum;
 return 0;
}

int display_main (int i)
{
 int display_one (int i);
 int a;
 a = display_one(i);
 return (a++);
}

int display_one (int i)
{
 int display_two (int i);
 int a;
 a = display_two(i);
 return (a++);
}

int display_two (int i)
{
 return (i++);
}

 Programming with C++242

 (f)
#include <iostream>
using namespace std;
int main()
{
 int display_main (int i);
 int sum,i = 10;
 sum = display_main (i);
 cout <<“sum = ”<< sum;
 return 0;
}
int display_main (int i)
{
 int display_one (int i);
 int a;
 a = display_one(i);
 return (++a);
}

int display_one (int i)
{
 int display_two (int i);
 int a;
 a = display_two(i);
 return (++a);
}

int display_two (int i)
{
 return (++i);
}

 (g)
// default function call
#include <iostream>
using namespace std;
int main()
{
 int display();
 int sum;
 sum = display();
 cout <<“sum = ”<< sum;
 return 0;
}
int display()
{
}

 (h)
// default function call
#include <iostream>
using namespace std;
int main()
{
 int display1();
 int display2();
 int display3();

 Functions and Program Structures 243

 int sum;
 sum = display1()+ display2() + display3();
 cout <<“sum = ” << sum;
 return 0;
}
int display1()
{
}
int display2()
{
}
int display3()
{
}

 3. Determine the output of each of the following programs when it is executed:

 (a)
#include <iostream>
using namespace std;
int main()
{
 void display();
 display();
 cout << “In main ...\n”;
 return 0;
}
void display()
{
 void display_inner();
 display_inner();
 cout << “Within a function 1 \n”;
}
void display_inner()
{
 void display_innermost();
 display_innermost();
 cout <<“now inside the function 2 \n”;
}
void display_innermost()
{
 cout << “Innermost ...\n”;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 int display(int a);
 int a = 10;
 int b = display(a);
 cout << “ b = ” << b;
 return 0;
}
int display(int i)
{
 int display_inner(int a);

 Programming with C++244

 int j = display_inner(i);
 cout << “j = ” << j;
 return (++j);
}
int display_inner(int i)
{
 return (++i);
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int display(int a);
 int a = 10;
 display(a);
 cout << “ a = ” << a;
 return 0;
}
int display(int i)
{
 int display_inner(int a);
 display_inner(i);
 cout << “i = ” << i;
 return (++i);
}
int display_inner(int i)
{
 return (++i);
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int display(int a);
 int a = 10;
 a = display(a);
 cout << “ a = ” << a;
 return 0;
}
int display(int i)
{
 int display_inner(int a);
 i = display_inner(i);
 cout << “ i = ” << i;
 return (++i);
}
int display_inner(int i)
{
 return (++i);
}

 (e)
#include <iostream>
using namespace std;

 Functions and Program Structures 245

int main()
{
 int display(int a);
 int a = 10;
 a = display(a);
 cout << “ a = ” << a;
 return 0;
}
int display(int i)
{
 int display_inner(int a);
 i = display_inner(i);
 cout << “ i = ” << i;
 return (i++);
}
int display_inner(int i)
{
 return (i++);
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int display(int i);
 int sum,a;
 sum = display(a);
 cout << “ sum = ” << sum;
 return 0;
}
int display(int i)
{
 return (++i);
}

 (g)
#include <iostream>
using namespace std;
static int a;
int main()
{

int display(int i);
 int sum;

sum = display(a);
cout << “ sum = ” << sum;

 return 0;
}
int display(int i)
{
 return (++i);
}

 (h)
#include <iostream>
using namespace std;
static int a;

 Programming with C++246

int main()
{
 int display(int i);
 int sum;
 sum = display(a) + display(a) + display (a);
 cout << “ sum = ” << sum;
 return 0;
}
int display(int i)
{
 return (i++);
}

 (i)
#include <iostream>
using namespace std;
static int a;
int main()
{
 int display(int i);
 int sum;
 sum = display(a) + display(a) + display (a);
 cout << “ sum = ” << sum;
 return 0;
}
int display(int i)
{
 return (++i);
}

 (j)
#include <iostream>
using namespace std;
int main()
{
 const volatile int display (const volatile int a);
 const volatile int a = 10;
 cout << “ value of a (in main) = ” << a << ‘\n’;
 display (a);
 cout << “ value of a (after function call) = ” << a;
 cout << ‘\n’;
 return 0;
}

const volatile int display (const volatile int a)
{

 cout << “ value of a (inside function) = ” << a;
 cout << ‘\n’;

}

 (k)
#include <iostream>
using namespace std;
int main()
{
 const static int a = 10;
 cout << “a = ” << a << ‘\n’;

 Functions and Program Structures 247

 return 0;
}

 PROGRAMMING EXERCISES

 1. Write a function in C++ to fi nd the sum of the following series:
 (a) sum = 1 + 2 + 3 + ... + n
 (b) sum = 1 + 3 + 5 + ... + n
 (c) sum = 1 + 2 + 4 + ... + n

 (d) sum = 1
2

2

3

3
+ - +

! !
...

!

x

n

 (e) sum = x
x x n

+ + +
2 4

2 4! !
...

!

x

n

 (f) sum = x
x x

- + -
3 5

3 5! !
...

!

x

n

n

 (g) sum = 12 + 22 + 32 + 42 + ... + n2

 (h) sum = 13 + 23 + 33 + 43 + ... + n3

 (i) sum = 1 + 22 + 42 + ... + n2

 (j) sum = 1 + 32 + 52 + ... + n2

 2. Write a function in C++ to generate a Fibonacci series of ‘n’ numbers, where n is defi ned by a

programmer.

 (The series should be: 1 1 2 3 5 8 13 21 32 and so on.)

 3. Write a function in C++ to generate the following series of numbers:
 (a) number = 1 2 3 4 ... n
 (b) number = 0 2 4 6 ... n
 (c) number = 1 3 5 7 ... n
 (d) number = 1 22 32 42 ... n2

 (e) number = 1 23 33 43 ... n3

 4. Write a function in C++ to generate the following pyramid of numbers:

 0
 1 0 1
 2 1 0 1 2
 3 2 1 0 1 2 3
 4 3 2 1 0 1 2 3 4
 5 4 3 2 1 0 1 2 3 4 5
6 5 4 3 2 1 0 1 2 3 4 5 6

 5. Develop a program in C++ to fi nd the largest of any three numbers using a macro defi nition.

 6. Write a macro in C++ to fi nd the odd and even numbers from a given set of numbers.

 7. Write a macro in C++ to fi nd the cube of any three numbers.

 8. Write a macro to fi nd the power of given numbers.

 9. Write a macro in C++ to swap two data items.

 10. Write a macro in C++ to fi nd the factorial of a given number.

 11. Write a macro in C++ to fi nd the sum of the following series:

 (i) sum = 1-3+5-7...n
 (ii) sum = 2*2 +4*4 +6*6+ ... n*n

 (iii) sum = 1
1

2

1

3

1
+ + +

! !
...

!n

Arrays
Chapter

7

7.1 INTRODUCTION

One of the most attractive features of C++ is that it supports various user-defi ned data types to cater the

requirements of a variety of applications in business, scientifi c and engineering disciplines. It has been

explained in previous chapters that C++ data types, in general, can be classifi ed into two types: simple

and structured. A simple variable contains the built-in or standard data types, such as integer, fl oating point

number, and character. One of the common features of a simple data type is that each variable represents

only a single data item. For example, an integer variable which is declared can hold only a single integer

quantity. In other words, a single integer variable cannot have the memory space to accommodate more

than one data element.

When there is a necessity to process more than a two data elements, it is advisable to use common

variable names. To defi ne and realise common variables in C++, structured data types are used. The main

characteristics of a structured data type is to defi ne a variable which holds more than one data item. For

example, to process the grades of a student in a class, it is not a good practice to declare an individual

variable for each subject for all students. It is quite impossible and also the variables are redundant in

nature. To avoid the unnecessary repetition of same variables, array data type is used. Array is a structured

data type and it has many advantages over the conventional data types.

This chapter explains how to declare and realise single dimensional and
multidimensional array data types and how to develop a modular program
using subprogram concepts with the help of call by value and call by reference
methods of the array data type. This chapter also elucidates how to realise the
non-numeric data which is one of the most a ractive features in C++. The various
operations of the non-numeric data, such as string length, string compare, string
copy, string concatenate, etc. are also discussed.

 Arrays 249

7.2 ARRAY NOTATION

An array is a collection of identical data objects which are stored in consecutive memory locations under

a common heading or a variable name. In other words, an array is a group or a table of values referred to

by the same variable name. The individual values in an array are called elements. Array elements are also

variables.

Arrays are sets of values of the same type, which have a single name followed by an index. In C++,

square brackets appear around the index right after the name, with the fi rst element referred to by the

number. Whenever an array name with an index appears in an expression, the C++ compiler assumes that

element to be of an array type.

7.3 ARRAY DECLARATION

Arrays, records, sets and fi les are structured data types which are used to store and process more than a

single entity. It is a group or table of values in which all items are of homogeneous data type. For example,

if an array is declared as an integer type, then the particular array cannot read, write or store any other data

type other than an integer. If attempts are made to process with non-integer data types, a signifi cant error

message will be displayed.

Before one attempts to use an array variable in a program, it must be declared well in advance with

suffi cient information to the compiler at the time of compiling. The compiler expects information from the

user, such as name of the array, type of elements stored in that array and the maximum number of elements

likely to be stored in it.

Array declaration is a process of declaring the name and type of an array and setting the number of

elements in the array. In C++, there is no separate statement called DIMENSION in which the array size

is defi ned as in the case of some programming languages like FORTRAN. Sometimes, dimensioning of an

array is also called as array declaration.

An array is a static allocation of memory space that is required for the variables of a program. When the

array size is large declared requiring large memory space and at the time of execution of a program, if only

a small portion of the declared memory is used, then the rest of the heap memory space is getting wasted. In

order to use the heap memory effectively and effi ciently, it is required to handle array declaration with due

care. It is not a good programming practice to grab the enitre system memory for one’s requirement alone.

 Before any linear or multidimensional array is used in a program one must provide to the compiler or to

the interpreter the following information:

 (1) Type of array (i.e. integer, fl oating point number, char type, etc.)

 (2) Name of the array

 (3) Number of subscripts in the array (i.e. whether the array is one or multi-dimensional etc.)

 (4) Total number of memory locations required to be allocated or more specifi cally the maximum value

of each subscript)

 In general, one-dimensional array may be expressed as

 storage_class data_type array_name [expression]

where the storage_class refers to the scope of the array variable such as external, static, or an

automatic; and data_type is used to declare the nature of the data elements stored in the array,

like character type, integer and fl oating point. Array_name is the name of the array, and an

expression is used to declare the size of the memory locations required for further processing by the

program.

 Programming with C++250

The storage class is optional. Default values are automatic for arrays defi ned within a function or a block

and extended for arrays defi ned outside the function.The syntax diagram of array declaration is given in

Fig. 7.1.

Fig. 7.1 Syntax Diagram of Array Declaration

Some valid one-dimensional array declarations are:

 int marks [300];
 char line [90];
 static char page [8];
 oat coordinate [400];

In the above illustrations, the fi rst one has been declared as a mark of 300 integer numbers; the second is

a line of 90 characters; the third is a static array which consists of 8 characters and the fourth is a set of 400

fl oating point numbers stored in the array of coordinate.

Some invalid array declaration are:

 int value [0];
 static int values [0.002];
 oat numbers [-90];
 char s[$];

For an expression, positive integer numbers should be placed for the memory allocations whenever an

array in C++ is declared.

7.4 ARRAY INITIALISATION

Automatic arrays cannot be initialised, unlike automatic variables in the older versions of the C++ compiler.

However, external and static arrays can be initialised if it is desired. The latest version of the ANSI C++

compiler supports all forms of array initialisation. The initial values must appear in the same order in which

they will be assigned to the individual array elements, enclosed in braces and separated by commas.

The general format of the array initialisation is,

 storage_class data_type array_name [expression] =
 {element1, element2,.. element n};

where the storage_class is used to declare the scope of the arrays like static, automatic or

external; data_type is the nature of data elements such as integer, fl oating, or character, etc.; the

array_name is used to declare the name of the array; and the elements are placed one after the

other within the braces and fi nally ends with the semicolon. The syntax diagram of array intialisation

is given in Fig. 7.2.

 Arrays 251

 Fig. 7.2 Syntax Diagram of Array Initialisation

For example,

 int values [7] = {10,11,12,13,14,15,16};
 oat coordinate[5] = {0,0.45,-0.50,-4.0,5.0};
 char sex [2] = {‘M’,‘F’};
 char name [5] = {‘R’,‘a’,‘v’,‘i’ ,‘c’};

The results of each of the above array element are:

values [0] = 10
values [1] = 11
values [2] = 12
values [3] = 13
values [4] = 14
values [5] = 15
values [6] = 16

coordinate [0] = 0
coordinate [1] = 0.45
coordinate [2] = -0.50
coordinate [3] = -4.0
coordinate [4] = 5.0

sex[0] = ‘M’
sex[1] = ‘F’

name [0] = ‘R’
name [1] = ‘a’
name [2] = ‘v’
name [3] = ‘i’
name [4] = ‘c’

Note that in C++, the fi rst element is always placed in the 0th place; it means that the array index starts

from 0 to n–1, where n is the maximum size of the array declared by the programmer.

Some unusual way of initialising the array elements are discussed below. For example, if the array

elements are not assigned explicitly, initial values will be automatically set to zero. Consider the following

array declaration
 int number [5] = {1,2,3};

For the above, the elements will be assigned to the array in the following way:

 Programming with C++252

 number [0] = 1
 number [1] = 2
 numebr [2] = 3
 number [3] = 0
 number [4] = 0

7.5 PROCESSING WITH ARRAYS

In this section manipulating array elements individually and separately as a simple variables are discussed.

Reading and writing array elements is one of the very important steps when array structures are used in a

program. C++ compiler cannot read and write a whole array in a single command.

Consider the symbolic representation of an array as shown below, wherein the maximum size of the

array is 200 number.

a[0], a[1], , a [199]

10 20 3 ... <— elements

1 2 3 4 5 6 <—— position

If one would like to avail more than the declared size, then, the compiler will treat only the fi rst n

elements as signifi cant and the rest will be omitted, where n is the maximum size of the array. We can have

access to these variables in any order we like and can use them in the same way as simple variables.

For example, we can write
a[15] = 3;
a[83] = 2;
cout << a[83]*a[15] + 1;

which will print 7. Instead of contents of 83,

Any integer expression can be used as a subscript in the array. For example,
int i,j;
for (i=0; i<=100; ++i) {
 a[i] = 0;

}

Some invalid array index
#include <iostream>
using namespace std;
int main()
{
 oat x;
 oat a[100];

 for (x = 0; x <= 10.11; ++0.1) { // error
 a[x] = 10;

 }
}

Note that the array index must be an integer data type.

In the array declaration the number of elements (here, 100) has to be specifi ed as a constant. However

this constant need not necessarily be written as a sequence of digits. It is generally considered good

 Arrays 253

programming practice to use named constants for this purpose. In C++, named constants are defi ned by a

#de ne preprocessor control line. For example,

const int MAX_SIZE = 100;
int main()
{ int i;
 int a[MAX_SIZE);
 for (i=0; i<= MAX_SIZE-1; ++i)
 a[i] = 1;

}

In C++, simple operations involving entire arrays are not permitted. So every character must be treated

as a separate variable for processes like assignment operations, comparison operations, and so on. For

example, though a and b are two arrays having the same storage class, data type, and maximum size,

assignment and comparison operations should be carried out only on element by element basis.
 int a[4] = { 4,5,6,7};
 int b[4] = { 1,2,3,4 };

The following operations are invalid:

 (1)
 if (a == b)
 cout <<“ Array elements are different \n”;

 (2)
 while (a > b) // a and b are array types
 {
 cout << “array processing \n”;

 }

7.5.1 Writing an Array Data Type

There is no single statement or command available to display an entire array of elements. For example, the

use of the cout() stream function in the following program segment is invalid:

const int MAX = 20;
int main()
{
 int a[MAX],b[MAX],c[MAX];
 cout << a; // error
 cout << b; // error
 cout << c; // error

 return 0;
}

Note that in the above program segment, a single cout() function is used to display the contents of

an entire array of matrix, whose size is 20 elements. C++ does not support reading or writing an array by a

single statement and hence a signifi cant error message will be displayed.

To write the contents of an array, the subscripts must be enclosed along with the variables of the array

type in the cout() function. For example, one can use the cout() function in the following way to

display the contents of an array.

 Programming with C++254

const int MAX = 20;
int main()
{
 int a[MAX];
 cout << a[0];
 cout << a[1];
 cout << a[2];
 cout << a[3];

 cout << a[19];
}

In the above program, the cout() function is repeated 20 times to display the elements of the array.

But one can avoid using unnecessary repetition of the cout() function by using the loop statement for

displaying the contents of an array.

For example, in the above program segment, one can use the loop statement to display the elements of

the array.

const int MAX = 20;
int main()
{
 int a[MAX];
 int i;

 for (i = 0; i <= MAX-1; ++i)
 cout << a[i];
}

Formatting array elements C++ compiler is so fl exible that a user can easily format array data elements. It

is up to the user to introduce the space between the data of the array elements as the compiler does not give

any space between the elements while displaying the array data on the screen.

 PROGRAM 7.1

A program to initialise a set of numbers in an array and to display them onto a standard output device.

#include <iostream>
using namespace std;
int main()
{
 int a[10] = { 0,1,2,3,4,5,6,7,8,9 };
 int i;
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= 9; ++i)
 cout << a[i];
 return 0;
}

Output of the above program

Contents of the array
0123456789

Note that space will not be inserted between the data items automatically by the compiler. It is up to a

programmer to introduce proper spaces or tab set between data items.

 Arrays 255

The following programs show how the output of array elements will be displayed, if the format

command is used along with cout() stream functions.

 PROGRAM 7.2

A program to initialise a set of numbers in an array and to display them onto a standard output device
along with a newline character (\n) between the elements.

#include <iostream>
using namespace std;
int main()
{
 int a[10] = { 0,1,2,3,4,5,6,7,8,9 };
 int i;
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= 9; ++i)
 cout << a[i] << ‘\n’;
 return 0;
}

Output of the above program

Contents of the array
0
1
2
3
4
5
6
7
8
9

 PROGRAM 7.3

A program to initialise a set of numbers in an array and to display them onto a standard output device
along with a tab space character (\t) between the elements.

#include <iostream>
using namespace std;
int main()
{
 int a[10] = { 0,1,2,3,4,5,6,7,8,9 };
 int i;
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= 9; ++i)
 cout << a[i] << ‘\t’;

 return 0;

}

Output of the above program
Contents of the array
0 1 2 3 4 5 6 7 8 9

 Programming with C++256

 PROGRAM 7.4

A program to demonstrate how to use the iomanip functions for formatting the elements of an array:

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int a[10] = {0,1,2,3,4,5,6,7,8,9};
 int i;
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= 9; ++i)
 cout << setw(5) << a[i];
 return 0;
}

Output of the above program
Contents of the array
0 1 2 3 4 5 6 7 8 9

7.5.2 Reading an Array Data Type

As there is no single statement or command available to read an entire array of elements, the use of the

cin() function in the following program segment is invalid:

const int MAX = 20;
int main()
{
 int a[MAX],b[MAX],c[MAX];
 cin >> a; // error
 cin >> b; // error
 cin >> c; // error

}

In the above program segment, as a single statement is used to read the contents of an entire array of

matrix having 20 elements, a signifi cant error message will be displayed.

To read the contents of an array, the subscripts must be enclosed along with the variables of the array

type in the cin() function. For example, one can use the cin() function in the following way to get the

contents of an array from the keyboard.

const int MAX = 20;
int main()
{
 int a[MAX],b[MAX],c[MAX];
 cin >> a[0];
 cin >> a[1];
 cin >> a[2];
 cin >> a[3];

 cin >> a[19];
}

In the above program, the cin() function is repeated 20 times to get the elements of the array. But one

can avoid unnecessary repetition of cin () function by using a loop statement for reading data items from

 Arrays 257

the keyboard. For example, in the above program segment, one can use the following loop statement to get

the elements of the array.

const int MAX = 20;
int main()
{
 int a[MAX],b[MAX],c[MAX];
 int i;
 for (i = 0; i <= MAX-1; ++i)
 cin >> a[i];

}

 PROGRAM 7.5

A program to read ‘n’ numbers from the keyboard (where‘n’ is defi ned by the programmer) to store it
in an one-dimensional array and to display the content of that array onto the video screen.

// example 7.5
#include <iostream>
using namespace std;
int main()
{
 int a[100];
 int i,n;
 cout <<“ How many numbers are in the array ? \n”;
 cin >> n;
 cout <<“Enter the elements \n”;
 for (i = 0; i <= n-1; ++i)
 cin >> a[i];
 cout <<“ Contents of the array \n”;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
 return 0;
}

Output of the above program
How many numbers are in the array?
5
Enter the elements
10 11 12 13 14
Contents of the array
10 11 12 13 14

 PROGRAM 7.6

A program to read a set of numbers from the keyboard and to fi nd out the largest number in the given
array (the numbers are stored in a random order).

// example 7.6
#include <iostream>
using namespace std;

int main()
{
 int a[100];

 Programming with C++258

 int i,n,larg;
 cout <<“ How many numbers are in the array ? \n”;
 cin >> n;
 cout <<“Enter the elements \n”;
 for (i = 0; i <= n-1; ++i)
 cin >> a[i];
 cout <<“Contents of the array \n”;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
 larg = a[0];
 for (i = 0; i <= n-1; ++i) {
 if (larg < a[i])
 larg = a[i];
 }
 cout <<“ \n Largest value in the array = ” << larg;
 return 0;
}

Output of the above program

How many numbers are in the array?
6
Enter the elements
11 22 -33 44 -65 3
Contents of the array
11 22 -33 44 -65 3
Largest value in the array = 44

 PROGRAM 7.7

A program to read a set of numbers from the standard input device and to sort them in ascending order.

// example 7.7
#include <iostream>
using namespace std;
int main()
{
 int a[100];
 int i,j,n,temp;
 cout <<“How many numbers are in the array ? \n”;
 cin >> n;
 cout <<“Enter the elements \n”;
 for (i = 0; i <= n-1; ++i)
 cin >> a[i];
 cout <<“Contents of the array (unsorted form) \n”;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
 //sorting block
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 if (a[i] < a[j]) {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }
 cout <<“Contents of the array (sorted form)\n”;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
 return 0;
}

 Arrays 259

Output of the above program

How many numbers are in the array?
7
Enter the elements
44 -24 33 2 80 76 -7
Contents of the array (unsorted form)
44 -24 33 2 80 76 -7
Contents of the array (sorted form)
-24 -7 2 33 44 76 80

7.6 ARRAYS AND FUNCTIONS

The entire array can be passed on to a function in C++. An array name can be used as an argument for the

function declaration. No subscripts or square brackets are required to invoke a function using arrays. The

following program illustrates how to invoke a function using an array declaration.
#include <iostream>
using namespace std;
const int MAX = 100;
int main()
{
 int sumarray(int a[], int n);
 int a[MAX];
 int sum;

 sum = sumarray(a,n);
 }

int sumarray(int x[] ,int max)
{
 /* local variable declaration, if any

 body of the function */

 return(value);
}

 PROGRAM 7.8

A program to read a set of numbers from the keyboard and to fi nd out the sum of all elements of the
given array using a function.

// example 7.8
#include <iostream>
using namespace std;
const int MAX = 100;
int main()
{
 void display (int a[],int n); // function declaration
 int sumarray(int a[], int n);
 int a[MAX];
 int i,n,sum;

 Programming with C++260

 cout <<“How many numbers are in the array ? \n”;
 cin >> n;
 cout <<“Enter the elements \n”;
 for (i = 0; i <= n-1; ++i)
 cin >> a[i];
 cout <<“contents of the array \n”;
 display (a,n);
 sum = sumarray(a,n);
 cout <<“\n sum of the elements of the array = ” << sum;
 cout <<“\n”;
 return 0;
}
void display (int a[],int n)
{
 int i;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
}

int sumarray(int x[] ,int max)
{
 int i,temp = 0;
 for (i = 0; i <= max-1; ++i)
 temp = temp +x[i];
 return(temp);
}

Output of the above program

How many numbers are in the array?
5
Enter the elements
1 2 3 4 5
Contents of the array
1 2 3 4 5
sum of the elements of the array = 15

 PROGRAM 7.9

A program to read a set of numbers from the keyboard and to sort out the given array of elements in
ascending order using a function.

// example 7.9
#include <iostream>
using namespace std;
const int MAX = 100;
int a[MAX];
int main()
{
 void getdata (int n); // function declaration
 void display(int a[], int n);
 void sort(int a[],int n);
 int n;
 cout <<“How many numbers are in the array ?\n”;
 cin >> n;
 getdata(n);
 cout <<“Unsorted array” << endl;
 display(a,n);
 sort(a,n);
 cout <<“\n Sorted array ” << endl;
 display(a,n);
 return 0;

 Arrays 261

} // end of the main program

void getdata(int n)
{
 int i;
 cout <<“Enter the elements \n”;
 for (i = 0; i <= n-1; ++i)
 cin >> a[i];
}

void display (int a[],int n)
{
 int i;
 for (i = 0; i <= n-1; ++i)
 cout << a[i] << ‘\t’;
}

int sort (int a[], int n)
{
 int temp,i,j;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-2; ++j)
 if (a[i] < a[j]) {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }
}

Output of the above program

How many numbers are in the array?
6
Enter the elements
11 22 -34 5 -6 47
Unsorted array
11 22 -34 5 -6 47
Sorted array
-34 -6 5 11 22 47

 PROGRAM 7.10

A program to read a number n, and print it out digit by digit, as a series of words. For example, the
number 756, should be printed as “Seven Five Six”.

// example 7.10
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 20;
int a[MAX];
int main()
{
 void nd(long int number);
 long int n;
 start:
 cout <<“Enter a number” << endl;
 cin >> n;
 if (n < 0){

 cout <<“ enter only positive numbers” << endl;
 goto start;

 Programming with C++262

 }
 nd(n);
 return 0;
}
void nd(long int n)
{
 void display (int b[], int max);
 int b[MAX];
 int i,j,max;
 i = 0;
 while (n > 0)
 {
 a[i] = n % 10;
 n = n / 10;
 ++i;
 }
 cout <<“ Number of digits = ” << i;
 cout << “\n”;
 max = i;
 --i;
 for (j = 0; j <= max-1; ++j){
 b[j] = a[i];
 --i;
 }
 display(b,max);
 cout <<“\n”;
}

void display (int b[], int max)
{
 int j;
 cout <<“number and its words” << endl;
 for (j = 0; j <= max-1; ++j)
 cout << b[j];
 cout << ‘\t’;
 j = 0;
 while (j != max) {
 switch (b[j]) {
 case 1:
 cout <<“ one ” << setw(6);
 break;
 case 2:
 cout <<“ two ” << setw(6);
 break;
 case 3:
 cout <<“ three ” << setw(6);
 break;
 case 4:
 cout <<“ four ” << setw(6);
 break;
 case 5:
 cout <<“ ve ” << setw(6);
 break;
 case 6:
 cout <<“ six ” << setw(6);
 break;
 case 7:
 cout <<“ seven ” << setw(6);
 break;
 case 8:
 cout <<“ eight ” << setw(6);
 break;
 case 9:
 cout <<“ nine ” << setw(6);
 break;
 case 0:

 Arrays 263

 cout <<“ zero ” << setw(6);
 break;
 } // end of switch-case statement
 j = j+1;
 } // end of while statement
}

Output of the above program

Enter a number
45678
Number of digits = 5

number and its words
45678 four ve six seven eight

 PROGRAM 7.11

A program to read a set of numbers and to store it as a one-dimensional array; again read a number ‘d’
and check whether the number ‘d’ is present in the array. If it is so, print how many times the number
‘d’ is repeated in the array.

// example 7.11
#include <iostream>
using namespace std;
const int MAX = 20;
int a[MAX];
bool ag;
int main()
{
 void nd(long int number, int digit);
 long int n;
 int digit;
 st_one:
 cout <<“Enter a number” << endl;
 cin >> n;
 if (n < 0){
 cout <<“ enter only positive numbers” << endl;
 goto st_one;
 }
 st_two:
 cout <<“Enter a digit to be checked ?” << endl;
 cin >> digit;
 if ((digit < 0) || (digit > 9){
 cout <<“ enter only positive and single digit number\n”;
 goto st_two;
 }
 nd(n, digit);
 return 0;
}

void nd(long int n, int digit)
{
 void display (int b[], int max, int digit);
 int b[MAX];
 int i,j,max;
 i = 0;
 while (n > 0)
 {
 a[i] = n % 10;
 n = n / 10;
 ++i;

 }

 Programming with C++264

 max = i;
 --i;
 for (j = 0; j <= max-1; ++j){
 b[j] = a[i];
 --i;
 }
 display(b,max,digit);
}

void display (int b[], int max, int digit)
{
 int j,counter, ag;
 counter = 0;
 ag = false;
 for (j = 0; j <= max-1; ++j){
 if (b[j] == digit) {
 counter = counter + 1;
 ag = true;
 }
 } // end of for loop
 if (ag == true) {
 cout <<“ given digit = ” << digit <<“ is present ”;
 cout <<“in the number ”;
 for (j = 0; j <= max-1; ++j)
 cout << b[j];
 cout <<“\n and repeats = ” << counter <<“ times \n”;
 }
 else
 {
 cout <<“entered digit = ” << digit <<“ is not present ”;
 cout <<“in the number “;
 for (j = 0; j <= max-1; ++j)
 cout << b[j];
 cout << “\n”;
 }
}

Output of the above program
Enter a number
23452
Enter a digit to be checked?
2
given digit = 2 is present in the number 23452
and repeats = 2 times

 PROGRAM 7.12

A program to read a set of numbers and store it as a one-dimensional array; again read a number n
and check whether it is present in the array. If it is so, print the position of n in the array and also check
whether it is repeated in the array.

// example 7.12
#include <iostream>
using namespace std;
const int MAX = 20;
int a[MAX];
bool ag;
int main()
{
 void nd(long int number, int digit);
 long int n;

 Arrays 265

 int digit;
 st_one:
 cout <<“Enter a number \n”;
 cin >> n;
 if (n < 0){
 cout <<“ enter only positive numbers\n”;
 goto st_one;
 }
 st_two:
 cout <<“Enter a digit to be checked ?\n”;
 cin >> digit;
 if ((digit < 0) || (digit > 9)){
 cout <<“ enter only positive and single digit number\n”;
 goto st_two;
 }
 nd(n, digit);
 return 0;
}

void nd(long int n, int digit)
{
 void display (int b[], int max, int digit);
 int b[MAX];
 int i,j,max;
 i = 0;
 while (n > 0)
 {
 a[i] = n % 10;
 n = n / 10;
 ++i;
 }
 max = i;
 --i;
 for (j = 0; j <= max-1; ++j){
 b[j] = a[i];
 --i;
 }
 display(b,max,digit);
}

void display (int b[], int max, int digit)
{
 int j,k,counter, ag;
 counter = 0;
 ag = false;
 k = 0;
 for (j = 0; j <= max-1; ++j){
 if (b[j] == digit) {
 counter = counter + 1;
 ag = true;
 a[k] = 1+j;
 k++;
 }
 } // end of for loop
 if (ag == true) {
 cout <<“ given digit = ”<< digit << ” is present \n”;
 cout <<“ in the number ”;
 for (j = 0; j <= max-1; ++j)
 cout << b[j];
 cout <<“\n and its position is ”;
 for (j = 0; j <= k-1; ++j)
 cout << a[j];
 cout <<“ from left to right \n”;
 }
 else
 {
 cout <<“ entered digit = ” << digit <<“ is not present \n”;

 Programming with C++266

 cout <<“ in the number ”;
 for (j = 0; j <= max-1; ++j)
 cout << b[j];
 cout << “\n”;
 }
}

Output of the above program

Enter a number
34562
Enter a digit to be checked?
2
given digit = 2 is present
in the number 34562
and its position is 5 from left to right

Enter a number
12345
Enter a digit to be checked?
9
entered digit = 9 is not present
in the number 12345

7.7 MULTIDIMENSIONAL ARRAYS

Multidimensional arrays are defi ned in the same manner as one-dimensional arrays, except that a separate

pair of square brackets are required for each subscript. Thus, a two-dimensional array will require two pairs

of square brackets; a three-dimensional array will require three pairs of square brackets, and so on.

The genearal format of the multidimensional array is,
 storage_class data_type arrayname [expression1][expression2]...
 [expression n];

where storage_class refers to the scope of the array variable such as external, static, automatic

or register; data_type refers to the nature of the data elements in the array such as character type,

integer type or fl oating point, etc., and arrayname is the name of the multidimensional array.

expression1, expression2 ... expression n refers to the maximum size of the each array

locations.

For example,
 oat coordinate x[10][10];
 int value [50][10][5];
 char line [10][80];
 static double records [100][100][10];

In the above illustration, the fi rst line defi nes the coordinate as a fl oating point array having 10 rows, 10

columns with a total of 100 elements. The second one is a three-dimensional integer array whose maximum

size is 2500 elements.

Multidimensional array initialisation Similar to one-dimensional array, multidimensional arrays can also be

initialised, if one intends to assign some values to these elements. It should be noted that only external or

static arrays can be initialised. For example, consider the following two-dimensional array declaration:

(1)
 int x[2][2] = { 1,2,3,4};

where x is a two-dimensional array of integer numbers whose maximum size is 4 and the assignments would be
 x[0][0] = 1;

 Arrays 267

 x[0][1] = 2;
 x[1][0] = 3;
 x[1][1] = 4;

(2)
 static oat sum [3][4] = {0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9,1,1,1,1};

where sum is a static two-dimensional array of fl oating point numbers and the maximum size of the array is

3 rows and 4 columns having a total of 12 elements.

The assignments would be

 sum [0][0] = 0.1 sum [0][1] = 0.2 sum [0][2] = 0.3 sum[0][3] = 0.4
 sum [1][0] = 0.6 sum [1][1] = 0.7 sum [1][2] = 0.8 sum[1][3] = 0.9
 sum [2][0] = 1 sum [2][1] = 1 sum [2][2] = 1 sum[2][3] = 1

The natural order in which the initial values are assigned can be altered by forcing groups of initial

values enclosed within braces, i.e. {...}.

For example, in the following a two-dimensional array can be declared.

 int A[3][3] = {
 { 1,2,3},
 { 4,5,6},
 { 7,8,9}
 };

In the above array declaration, the three values in the fi rst inner pair of braces are assigned to the array

element in the fi rst row; the values in the second pair of braces are assigned to the array element in the

second row and so on.

The elements in the above array A will be assigned as

 A[0][0] = 1 A[0][1] = 2 A[0][2] = 3
 A[1][0] = 4 A[1][1] = 5 A[1][2] = 6
 A[2][0] = 7 A[2][1] = 8 A[2][2] = 9

Now consider the following two-dimensional array defi nition,

int matrixa[3][3] = {
 {1,2},
 {4,5},
 {7,8}
 };

This defi nition assigns values only to the fi rst two elements in each row, and hence, the array elements

will have the following initial values

 matrixa[0][0] = 1 matrixa[0][1] = 2 matrixa[0][2] = 0
 matrixa[1][0] = 4 matrixa[1][1] = 5 matrixa[1][2] = 0
 matrixa[2][0] = 7 matrixa[2][1] = 8 matrixa[2][2] = 0

Note that the last element in each row is assigned a value zero.

If we declare the two-dimensional array as

 int matrixa[3][3] = {1,2,3,4,5,6,7};

then following assignment will be carried out :

 matrixa[0][0] = 1 matrixa[0][1] = 2 matrixa[0][2] = 3
 matrixa[1][0] = 4 matrixa[1][1] = 5 matrixa[1][2] = 6
 matrixa[2][0] = 7 matrixa[2][1] = 0 matrixa[2][2] = 0

Two of the array elements will be again assigned zero, though the order of the assignment will be different.

If one declares the array defi nition as

 int a[3][3] = {
 {1,2,3,4},

 Programming with C++268

 {5,6,7,8},
 {9,10,11,12}

 };

then, the maximum array allocation for the above two dimensional declaration is 3×3 = 9 elements. But the

initial defi nition of the array elements have exceeded the declared size and hence, normally, the compiler

will produce the error message. To avoid the above problem, the array may be declared and written as,
 int a[3][4] = {
 {1,2,3,4},
 {5,6,7,8},
 {9,10,11,12}
 };

 PROGRAM 7.13

A program to read the elements of a given matrix of order n × n and to display the contents of the matrix
on the screen.

// example 7.13
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 10;
int main()
{
 oat a[MAX][MAX];
 int i,j,n;
 cout <<“ order of the matrix ” << endl;
 cin >> n;
 cout <<“ enter the elements” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> a[i][j];
 }
 cout <<“ output of the matrix” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j){
 cout << setw(4) << a[i][j];
 }
 cout <<“” << endl;
 }
 return 0;
}

Output of the above program
order of the matrix
3
enter the elements
1 2 3
4 5 6
7 8 9
output of the matrix
 1 2 3
 4 5 6
 7 8 9

 Arrays 269

 PROGRAM 7.14

A program to initialise a set of numbers in a two-dimensional array and to display the content of the array
on the screen.

// example 7.14
#include <iostream>
#include <iomanip>
using namespace std;
const int N = 3;
const int M = 4;
int main()
{
 int i,j;
 double a[N][M] = {
 {1,2,3,4},
 {5,6,7,8},
 {9,10,11,12}
 };
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= N-1; ++i) {
 for (j = 0; j <= M-1; ++j) {
 cout << setprecision(2);
 cout << setw(4) << a[i][j];
 }
 cout <<“” << endl;
 }
 return 0;
}

Output of the above program

Contents of the array
 1 2 3 4
 5 6 7 8
 9 10 11 12

 PROGRAM 7.15

A program to initialise only a few elements of a two-dimensional array and to display the content of the
array on the screen.

// example 7.15
#include <iostream>
#include <iomanip>
using namespace std;
const int N = 3;
const int M = 4;
int main()
{
 int i,j;
 oat a[N][M] = {
 {1,2,3},
 {5,6,7},
 {9,10,11}
 };
 cout <<“Contents of the array ” << endl;
 for (i = 0; i <= N-1; ++i) {
 for (j = 0; j <= M-1; ++j)

 Programming with C++270

 cout << setw(4) << a[i][j];
 cout <<“” << endl;
 }
 return 0;
}

Output of the above program
Contents of the array
 1 2 3 0
 5 6 7 0
 9 10 11 0

 PROGRAM 7.16

A program to read the elements of the given two matrices of order n × n and to perform the matrix addition.

// example 7.16
// matrix addition
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 100;
int main()
{
 // function declaration
 void output (oat a[MAX][MAX],int n);
 void add (oat a[MAX][MAX], oat b[MAX][MAX],int n);
 oat a[MAX][MAX],b[MAX][MAX];
 int i,j,n;
 cout <<“Order of matrix ” << endl;
 cin >> n;
 cout <<“Enter the elements of A Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> a[i][j];
 }
 cout <<“Enter the elements of B Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> b[i][j];
 }
 cout <<“Output A[i][j] ” << endl;
 output (a,n);
 cout <<“” << endl;
 cout <<“Output B[i][j] ” << endl;
 output (b,n);
 add (a,b,n);
 return 0;
}

void add (oat a[MAX][MAX], oat b[MAX][MAX] , int n)
{
 void output (oat c[MAX][MAX],int n); // function declaration
 oat c[MAX][MAX];
 int i,j,k;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 c[i][j] = a[i][j]+b[i][j];
 }
 cout <<“” << endl;
 cout <<“Output of C[i][j] matrix” << endl;
 output(c,n);
}

 Arrays 271

void output (oat x[MAX][MAX],int n)
{
 int i,j;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)

 cout << setw(4) << x[i][j];
 cout <<“” << endl;

 }
}

Output of the above program

Order of matrix

4

Enter the elements of A Matrix

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Enter the elements of B Matrix

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

Output A[i][j]

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

Output B[i][j]

 2 2 2 2
 2 2 2 2
 2 2 2 2
 2 2 2 2

Output of C[i][j] matrix

 3 3 3 3
 3 3 3 3
 3 3 3 3
 3 3 3 3

 PROGRAM 7.17

A program to read the elements of the given two matrices of order n × n and to perform the matrix
subtraction.

// example 7.17
// matrix subtraction
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 100;

 Programming with C++272

int main()
{
 // function declaration
 void output (oat a[MAX][MAX],int n);
 void sub (oat a[MAX][MAX], oat b[MAX][MAX],int n);
 oat a[MAX][MAX],b[MAX][MAX];
 int i,j,n;
 cout <<“Order of matrix ” << endl;
 cin >> n;
 cout <<“Enter the elements of A Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> a[i][j];
 }
 cout <<“Enter the elements of B Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> b[i][j];
 }
 cout <<“Output A[i][j] ” << endl;
 output (a,n);
 cout <<“” << endl;
 cout <<“Output B[i][j] ” << endl;
 output (b,n);
 sub (a,b,n);
 return 0;
}

void sub (oat a[MAX][MAX], oat b[MAX][MAX] , int n)
{
 void output (oat c[MAX][MAX],int n); // function declaration
 oat c[MAX][MAX];
 int i,j,k;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j) {
 c[i][j] = a[i][j]-b[i][j];
 }
 }
 cout <<“” << endl;
 cout <<“Output of C[i][j] matrix” << endl;
 output(c,n);
}

void output (oat x[MAX][MAX],int n)
{
 int i,j;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cout << setw(4) << x[i][j];
 cout <<“” << endl;
 }
}

Output of the above program

Order of matrix
3
Enter the elements of A Matrix

1 1 1
1 1 1
1 1 1

Enter the elements of B Matrix

2 2 2
2 2 2
2 2 2

 Arrays 273

Output A [i][j]

 1 1 1
 1 1 1
 1 1 1

Output B [i][j]

 2 2 2
 2 2 2
 2 2 2
Output of C [i][j] matrix

 -1 -1 -1
 -1 -1 -1
 -1 -1 -1

 PROGRAM 7.18

A program to read the elements of the given two matrices of order n × n and to perform the matrix
multiplication.

// example 7.18
// matrix multiplication
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 100;
int main()
{
 // function declaration
 void output (oat a[MAX][MAX],int n);
 void mul (oat a[MAX][MAX], oat b[MAX][MAX],int n);
 oat a[MAX][MAX],b[MAX][MAX];
 int i,j,n;
 cout <<“Order of matrix ” << endl;
 cin >> n;
 cout <<“Enter the elements of A Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> a[i][j];
 }
 cout <<“Enter the elements of B Matrix ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cin >> b[i][j];
 }
 cout <<“Output A[i][j] ” << endl;
 output (a,n);
 cout <<“” << endl;
 cout <<“Output B[i][j] ” << endl;
 output (b,n);
 mul (a,b,n);
 return 0;
}

void mul (oat a[MAX][MAX], oat b[MAX][MAX], int n)
{
 void output (oat c[MAX][MAX],int n); // function declaration
 oat c[MAX][MAX];
 int i,j,k;
 for (i = 0; i <= n-1; ++i) {

 for (j = 0; j <= n-1; ++j) {

 Programming with C++274

 c[i][j] = 0.0;
 for (k = 0; k <= n-1; ++k)
 c[i][j] = c[i][j]+a[i][k]*b[k][j];
 }
 }
 cout <<“” << endl;
 cout <<“Output of C[i][j] matrix” << endl;
 output(c,n);
}

void output (oat x[MAX][MAX],int n)
{
 int i,j;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j)
 cout << setw(4) << x[i][j];
 cout <<“” << endl;
 }
}

Output of the above program

Order of matrix
3

Enter the elements of A Matrix

1 1 1
1 1 1
1 1 1

Enter the elements of B Matrix

1 1 1
1 1 1
1 1 1

Output A [i][j]

 1 1 1
 1 1 1
 1 1 1

Output B [i][j]

 1 1 1
 1 1 1
 1 1 1

Output of C [i][j] matrix

 3 3 3
 3 3 3
 3 3 3

 PROGRAM 7.19

A program to fi nd the sum of the elements of a given three dimensional array in which data are read from
the keyboard.

// example 7.19
// three dimensional array
#include <iostream>

 Arrays 275

#include <iomanip>
using namespace std;
const int MAX = 10;
int main()
{
 oat a[MAX][MAX][MAX];
 int i,j,k,n;
 oat total;
 cout <<“Order of the three dimensional matrix ?”;
 cin >> n;
 cout <<“Enter the elements ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j){
 for (k = 0; k <= n-1; ++k)
 cin >> a[i][j][k];
 }
 }
 // nding the sum of the elements
 total = 0;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j){
 for (k = 0; k <= n-1; ++k)
 total = total+a[i][j][k];
 }
 }
 // displaying the contents of the array
 cout <<“ contents of the array ” << endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-1; ++j){
 for (k = 0; k <= n-1; ++k){
 cout <<“ [” << i << j << k << “] = ” ;
 cout << setw(4) << a[i][j][k];
 }
 cout <<“” << endl;
 }
 cout <<“” << endl;
 }
 cout <<“ ” << endl;
 cout <<“ sum of the elements = ” << total;
 return 0;
}// end of the main program

Output of the above program

Order of the three dimensional matrix ?
2
Enter the elements
1 1
2 2
3 3
4 4

 contents of the array
 [000] = 1 [001] = 1
 [010] = 2 [011] = 2

 [100] = 3 [101] = 3
 [110] = 4 [111] = 4

 sum of the elements = 20

 Programming with C++276

7.8 CHARACTER ARRAY

The procedure for declaring character array is almost the same as for other data types such as integer or

fl oating point. One can declare the character array by means of alphanumeric characters. The general format

of the character array is,

 storage_class character_data_type array_name[expression];

where the storage class is optional and it may be either one of the scope of the variable such as

automatic, external, static, or register; the array name can be any valid C++ identifi er and the

expression a positive integer constant.

For example,
 char page [40];
 char sentence[300];
 static char line[50];

The basic structure of the character array is

R A V I C \0

Each element of the array is placed in a defi nite memory space and each element can be accessed

separately. The array element should end with the null character as a reference for the termination of a

character array.

Initialising the character array

Like an integer or a fl oating point array, the character array can also be initialised,

For example,
 char colour[3] = “RED”;

The elements would be assigned to each of the character array positions in the following way:

 colour [0] = ‘R’;
 colour [1] = ‘E’;
 colour [2] = ‘D’;

The character array always terminate with the null character, that is, a back-slash followed by a letter

zero (not letter ‘l289’ or ‘o’), and the computer will treat them as a single character. The null character

will be added automatically by the C++ compiler provided there is enough space to accommodate the

character.

For example,
 char name [5] = “ravic” /* wrong */

The following assignment would be for the each cell,
 name [0] = ‘r’;
 name [1] = ‘a’;
 name [2] = ‘v’;
 name [3] = ‘i’;
 name [4] = ‘c’;

The above declaration is wrong because there is no space to keep the null character in the array as a

termination character and it can be corrected by redefi ning the above array as

 char name [6] = “ravic” /* right */

The following assignment would be for the each cell,

 name [0] = ‘r’;
 name [1] = ‘a’;
 name [2] = ‘v’;

 Arrays 277

 name [3] = ‘i’;
 name [4] = ‘c’;
 name [5] = ‘\0’;

Following is a valid array declaration:

 char line[] = “this is a test program”

The square brackets can be empty, as the array size would have been specifi ed as part of the array

defi nition.

 PROGRAM 7.20

A program to initialise a set of characters in a one-dimensional character array and to display the content
of the given array.

// example 7.20
#include <iostream>
using namespace std;
int main ()
{
 int i;
 static char name[5] = { ‘r’,‘a’,‘v’,‘i’,‘c’};
 cout <<“Contents of the array” << endl;
 for (i = 0; i <= 4; ++i)
 cout <<“name[” << i <<“] = ” << name[i] << ‘\n’;
 return 0;
}

Output of the above program

Contents of the array
name[0] = r
name[1] = a
name[2] = v
name[3] = i
name[4] = c

 PROGRAM 7.21

A program to initialise a string of characters in a one-dimensional array and to display the content of the array.

// example 7.21
#include <iostream>
using namespace std;
int main()
{
 int i;
 static char name[] = “this is a test program”;
 cout <<“Contents of the array” << endl;
 for (i = 0; name[i] != ‘\0’; ++i)
 cout <<“name[” << i <<“] = ” << name[i] << ‘\n’;
 return 0;
}

Output of the above program

Contents of the array
name[0] = t
name[1] = h

 Programming with C++278

name[2] = i
name[3] = s
name[4] =
name[5] = i
name[6] = s
name[7] =
name[8] = a
name[9] =
name[10] = t
name[11] = e
name[12] = s
name[13] = t
name[14] =
name[15] = p
name[16] = r
name[17] = o
name[18] = g
name[19] = r
name[20] = a
name[21] = m

 PROGRAM 7.22

A program to read a set of lines from the keyboard and to store it in a one-dimensional array and to
display the content of the array on the screen.

// example 7.22
// reading a set of lines from keyboard
// and displaying onto the video screen

#include <iostream>
using namespace std;
const int MAX = 1000;
int main()
{
 char line[MAX];
 char ch;
 int i;
 cout <<“enter a set of lines and terminate with @\n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 line[i++] = ch;
 }
 line[i++] = ‘\0’;
 cout <<“ output from the array\n”;
 for (i = 0; line[i] != ‘\0’; ++i){
 cout.put(line[i]);
 }
 return 0;
}

Output of the above program

enter a set of lines and terminate with @
this is a test program
by Ravich
@
output from the array
this is a test program
by Ravich

 Arrays 279

 PROGRAM 7.23

A program to read a set of lines from the keyboard; store it in a one-dimensional array; fi nd the number of
characters of a given text and also display the contents of the array on the screen.

// example 7.23
// nding a number of characters of a given text
#include <iostream>
using namespace std;
const int MAX = 1000;
int main()
{
 int number (char line[]);
 char line[MAX];
 char ch;
 int i,n_ch;;
 cout <<“enter a set of lines and terminate with @\n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 line[i++] = ch;
 }
 line[i++] = ‘\0’;
 n_ch = number (line);
 cout <<“ output from the array\n”;
 for (i = 0; line[i] != ‘\0’; ++i){
 cout.put(line[i]);
 }
 cout <<“ Number of characters = ” << n_ch;
 return 0;
}

// function to nd the number of characters
int number (char s[])

{
 int i = 0;
 while (s[i] != ‘\0’)
 ++i;
 return(i);
}

Output of the above program

enter a set of lines and terminate with @
this is
a test
program
@
output from the array
this is
a test
program
Number of characters = 24

 PROGRAM 7.24

A program to read a set of lines from the keyboard; store it in a one-dimensional array; fi nd the number of
characters and lines in a given text and also display the contents of the array on the screen.

 Programming with C++280

// example 7.24
// nding a number of characters and lines of a given text
#include <iostream>
using namespace std;
const int MAX = 1000;
int main()
{
 int number_ch (char line[]);
 int number_line(char line[]);
 char line[MAX];
 char ch;
 int i,n_ch,n_ln;
 cout <<“enter a set of lines and terminate with @\n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 line[i++] = ch;
 }
 line[i++] = ‘\0’;
 n_ch = number_ch (line);
 n_ln = number_line(line);
 cout <<“ output from the array\n”;
 for (i = 0; line[i] != ‘\0’; ++i){
 cout.put(line[i]);
 }
 cout <<“ Number of characters = ” << n_ch;
 cout <<“\n Number of lines = ” << n_ln;
 cout << ‘\n’;
 return 0;
}

// function to nd the number of characters
int number_ch (char s[])
{
 int i = 0;
 while (s[i] != ‘\0’)
 i++;
 return(i-1);
}

// function to nd the number of lines
int number_line (char s[])
{
 int i = 0, n_ln = 0;
 while (s[i] != ‘\0’)
 {
 if (s[i] == ‘\n’)
 n_ln++;
 ++i;
 }
 return(n_ln);
}

Output of the above program

enter a set of lines and terminate with @
this
is
test
@

output from the array
this
is
test
Number of characters = 12
Number of lines = 3

 Arrays 281

 PROGRAM 7.25

A program to read a set of lines from the keyboard; store it in a one-dimensional array A; copy the
contents of A to an array B and display the contents of arrays A and B separately.

For program,

A Æ t h i s

B Æ t h i s

// example 7.25
// string copy
#include <iostream>
using namespace std;
const int MAX = 1000;
int main()
{
 void stringcopy (char dest[], char source[]);
 char line[MAX],page[MAX];
 char ch;
 int i;
 cout <<“enter a set of lines and terminate with @\n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 line[i++] = ch;
 }
 line[i++] = ‘\0’;
 stringcopy (page,line);
 cout <<“ output from the array (line)\n”;
 for (i = 0; line[i] != ‘\0’; ++i){
 cout.put(line[i]);
 }
 cout <<“ output from the array (page)\n”;
 for (i = 0; page[i] != ‘\0’; ++i){
 cout.put(page[i]);
 }
 return 0;
}

// function to perform the string copy
void stringcopy (char dest[], char source [])
{
 int i = 0;
 while (source[i] != ‘\0’) {
 dest[i] = source[i];
 i++;
 }
 dest[i++] = ‘\0’;
}

Output of the above program

enter a set of lines and terminate with @
this is
a test
program by
Ravich
@

output from the array (line)
this is

 Programming with C++282

a test
program by
Ravich

output from the array (page)
this is
a test
program by
Ravich

 PROGRAM 7.26

A program to read a set of lines from the keyboard; store it in the array A; again read a set of lines from
the keyboard and store it in the array B; copy the contents of array A and array B into an array TOTAL
and display the contents of arrays A and B and TOTAL separately.

For program,

A Æ t h i s

B Æ i s . .

TOTAL t h i s i s ...

// example 7.26
// string concatenate
#include <iostream>
using namespace std;
const int MAX = 1000;
int main()
{
 void stringconcat (char dest[], char sour1[],char sour2[]);
 char source1[MAX],source2[MAX],total[MAX];
 char ch;
 int i;
 cout <<“enter a set of lines and terminate with @ \n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 source1[i++] = ch;
 }
 source1[i++] = ‘\0’;
 cin.get(); // delete an extra line feed character
 cout <<“ Another input data ” << endl;
 cout <<“enter a set of lines and terminate with @ \n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 source2[i++] = ch;
 }
 source2[i++] = ‘\0’;
 stringconcat (total,source1,source2);
 cout <<“ output from the array (source1)\n”;
 for (i = 0; source1[i] != ‘\0’; ++i){
 cout.put(source1[i]);
 }
 cout <<“ output from the array (source2)\n”;
 for (i = 0; source2[i] != ‘\0’; ++i){
 cout.put(source2[i]);
 }
 cout <<“ output from the array (total)\n”;
 for (i = 0; total[i] != ‘\0’; ++i){
 cout.put(total[i]);
 }

 Arrays 283

 return 0;
}

// function to perform the string concatenate
void stringconcat (char dest[], char sour1 [], char sour2[])
{
 int i = 0, j;
 while (sour1[i] != ‘\0’) {
 dest[i] = sour1[i];
 i++;
 }
 j = 0;
 while (sour2[j] != ‘\0’) {
 dest[i] = sour2[j];
 i++;
 j++;
 }
 dest[i++] = ‘\0’;
}

Output of the above program

enter a set of lines and terminate with @
this is a
test
@

Another input data
enter a set of lines and terminate with @
program by
Ravich
@

output from the array (source1)
this is a
test

output from the array (source2)
program by
Ravich

output from the array (total)
this is a
test
program by
Ravich

 PROGRAM 7.27

A program to read a set of lines from the keyboard; store it in a one-dimensional array A; remove white
spaces such as horizontal tab, vertical tab, back space, line feed and new line from the contents of the
array and display the contents of array.

// example 7.27
// removing white space
const int SIZE = 1000;
#include <iostream>
using namespace std;
int main()

 Programming with C++284

{
 char source[SIZE];
 char ch;
 int i,max;
 cout <<“enter a set of lines and terminate with @ \n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 source[i++] = ch;
 }
 source[i++] = ‘\0’;
 max = i;
 cout <<“ output from the array\n”;
 for (i = 0; i <= max-1; ++i)
 cout.put(source[i]);
 cout <<“ output after removing white space \n”;
 // A single space between ‘ ’ is for a space character
 for (i = 0; i <= max-1; ++i) {
 if ((source[i] == ‘ ’) || (source[i] == ‘\t’) ||
 (source[i] == ‘\n’) || (source[i] == ‘\\’) ||
 (source [i] == ‘\r’) || (source [i] == ‘\f’))
 cout <<“”;
 else
 cout.put (source[i]);
 }
 return 0;
}

Output of the above program

enter a set of lines and terminate with @
this is a test
program by
Sampath K Reddy
@

output from the array
this is a test
program by
Sampath K Reddy

output after removing white space
thisisatestprogrambySampathKReddy

 PROGRAM 7.28

A program to read a set of lines from the keyboard; store it in a one-dimensional array A; perform the string
reversal of the given text. The last character of the array is displayed as the fi rst character and so on.

For program,

A Æ t h i s

B Æ s i h t

// example 7.28
#include <iostream>
using namespace std;
const int SIZE = 1000;
int main()
{
 void reverse(char s[SIZE],char d[SIZE]);
 char source[SIZE],dest[SIZE];

 Arrays 285

 char ch;
 int i,max;
 cout <<“enter a set of lines and terminate with @ \n”;
 i = 0;
 while ((ch = cin.get()) != ‘@’) {
 source[i++] = ch;
 }
 source[i++] = ‘\0’;
 max = i;
 cout <<“ output from the array\n”;
 for (i = 0; i <= max-1; ++i)
 cout.put(source[i]);
 reverse(source,dest);
 cout <<“ After string reversal \n”;
 for (i = 0; i <= max-1; ++i)
 cout.put(dest[i]);
 return 0;
}

void reverse(char s[SIZE], char d[SIZE])
{
 int stringlen(char a[SIZE]);
 int i,j;
 j = stringlen(s);
 i = 0;
 while (j >= 0) {
 d[i] = s[j];
 i++;
 j–—;
 }
}
int stringlen(char a[SIZE])
{
 int i=0;
 while (a[i] != ‘\0’)
 i++;
 return (i);
}

Output of the above program

enter a set of lines and terminate with @
this is a
test program
@

output from the array
this is a
test program

After string reversal
margorp tset
a si siht

 REVIEW QUESTIONS

 1. What is an array? Explain how an array variable is different from an ordinary variable.

 2. What is an array indexing?

 3. Explain how the individual elements are accessed and processed in an array.

 4. State the rules used to declare a one-dimensional array.

 Programming with C++286

 5. What is meant by array initialisation?

 6. Explain the salient features of an array and their uses.

 7. How are arrays usually processed in C++?

 8. Can an array name be used as an argument to a function? Explain.

 9. Summarise the rules for passing arrays to a function.

 10. What is a multidimensional array and how is it different from a one-dimensional array?

 11. Summarise the syntatic rules to be governed for declaring a multidimensional array.

 12. How are data elements intilialised in a multidimensional array? What are the scope rules for the

multidimensional array?

 13. Explain how the individual elements of a multidimensional array are accessed and processed.

 14. What is a character array? How is it different from other data type arrays?

 15. Distinguish between a character array and a string.

 16. Can a list of strings be stored within a two-dimensional array?

 17. Explain the differences between an array of characters and an array of integers.

 18. Explain the pros and cons of a multidimensional array over a single dimensional in C++.

 19. Summarises the various formats for declaring two-dimensional arrays in C++.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{

 const int a[6] = {1,2,3,4};
 cout <<“contents of the array\n”;
 for (int i = 0; i <= 5; ++i)
 cout << a[i] << ‘\t’;
 return 0;

}

 (b)
 #include <iostream>
 using namespace std;
 int main()
 {

 int a[5] = {1,2,3,4,5};
 cout <<“contents of the array\n”;
 for (int i = 0; i <= 4; ++i) {
 a[i] = i*i;
 cout << a[i] << ‘\t’;
 }
 return 0;

 }

 (c)
 #include <iostream>
 using namespace std;

 Arrays 287

 int main()
 {

 const int a[5] = {1,2,3,4,5};
 cout <<“contents of the array\n”;
 for (int i = 0; i <= 4; ++i) {
 a[i] = i*i;
 cout << a[i] << ‘\t’;
 }
 return 0;

 }

 (d)
 #include <iostream>
 using namespace std;
 int main()
 {

 static int a[5] = {1,2,3,4,5};
 void display (int a[],int n);
 int n = 5;
 cout <<“contents of the array in main\n”;
 for (int i = 0; i <= n-1; ++i) {
 a[i] = i*i;
 cout << a[i] << ‘\t’;
 }
 display(a,n);
 return 0;

 }
 void display(int a[],int n)
 {

 cout <<“\ncontents of the array in function\n”;
 for (int i = 0; i <= n-1; ++i) {
 a[i] = i*i;
 cout << a[i] << ‘\t’;
 }

 }

 (e)
 #include <iostream>
 using namespace std;
 int main()
 {

 static int a[5] = {1,2,3,4,5};
 void display (int a[],int n);
 int n = 5;
 cout <<“contents of the array in main\n”;
 for (int i = 0; i <= n-1; ++i) {
 a[i] = a[i] % 2;

 cout << a[i] << ‘\t’;
 }

 display(a,n);
 return 0;

 }
 void display(int a[],int n)
 {

 cout <<“\ncontents of the array in function\n”;

 Programming with C++288

 for (int i = 0; i <= n-1; ++i) {
 a[i] = i % 2;
 cout << a[i] << ‘\t’;
 }

 }

 (f)
 #include <iostream>
 using namespace std;
 int main()
 {

 int a[] = {1,2,3,4,5};
 cout <<“Contents of the array\n”;
 for (int i = 0; i <= 4; ++i)
 cout <<“a[” << i <<“] = ” << a[i] << ‘\n’;
 return 0;

 }

 2. What will be the output of each of the following program when it is executed?

 (a)
 #include <iostream>
 #include <iomanip>
 using namespace std;
 int main()
 {
 int a[3][3] = {
 {1},
 {0,1},
 {0,0,1}
 };
 cout <<“Contents of the array \n”;
 for (int i = 0; i <= 2; ++i) {
 for (int j = 0; j <= 2; ++j)
 cout << a[i][j] << setw(5);
 cout << “\n”;
 }
 return 0;
 }

 (b)
 #include <iostream>
 #include <iomanip>
 using namespace std;
 int main()
 {

 int sum(int a[3][3], int n);
 void display(int a[3][3],int n);
 int n = 3,total;
 int a[3][3] = {

 {1},
 {0,1},
 {0,0,1}
 };

 display(a,n);
 total = sum(a,n);
 cout << “Sum of all elements in the array = ”<<total <<“\n”;

 Arrays 289

 }
 void display (int a[3][3],int n)
 {

 cout <<“Contents of the array \n”;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 cout << a[i][j] << setw(5);
 cout << “\n”;
 }

 }
 int sum (int a[3][3],int n)
 {

 int temp = 0;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 temp = temp+a[i][j];
 }

 return (temp);
 }

 (c)
 #include <iostream>
 #include <iomanip>
 using namespace std;
 int main()
 {

 int sum(int a[3][3], int n);
 void display(int a[3][3],int n);
 int n = 3,total;
 int a[3][3] = {
 {1,2,13},
 {4,15,6},
 {17,8,9}
 };
 display(a,n);
 total = sum(a,n);
 cout << “Sum of all diagonal elements in the array = ”<<total;
 cout <<“\n”;

 }
 void display (int a[3][3],int n)
 {
 cout <<“Contents of the array \n”;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 cout << setw(6) << a[i][j];
 cout << “\n”;

 }
 }
 int sum (int a[3][3],int n)
 {

 int temp = 0, max = n-1;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 if (j == max) {
 temp = temp+a[i][j];
 max—–;
 }

 Programming with C++290

 }
 return (temp);

 }

 (d)
 #include <iostream>
 #include <iomanip>
 using namespace std;
 int main()
 {

 int sum(int a[3][3], int n);
 void display(int a[3][3],int n);
 int n = 3,total;
 int a[3][3] = {
 {1,2,13},
 {4,15,6},
 {17,8,9}
 };
 display(a,n);
 total = sum(a,n);
 cout << “Sum of all diagonal elements in the array = ”<<total;
 cout <<“\n”;

 }

 void display (int a[3][3],int n)
 {

 cout <<“Contents of the array \n”;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 cout << setw(6) << a[i][j];
 cout << “\n”;

 }
 }

 int sum (int a[3][3],int n)
 {

 int temp = 0;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-1; ++j)
 if (i == j)
 temp = temp+a[i][j];
 }
 return (temp);

 }

 (e)
 #include <iostream>
 using namespace std;
 int main()
 {

 int a[5] = {1,2,3,4,5};
 int sum (int a[],int n);
 int n = 5,total = 0;
 cout <<“contents of the array in main\n”;
 for (int i = 0; i <= n-1; ++i) {
 a[i] = a[i] % 5;

 Arrays 291

 cout << a[i] << ‘\t’;
 }
 total = sum(a,n);
 cout << “\n sum of all elements = ” << total << “\n”;
 return 0;

 }

 int sum (int a[],int n)
 {

 int temp = 0;
 for (int i = 0; i <= n-1; ++i)
 temp = temp+a[i];
 return (temp);

 }

 PROGRAMMING EXERCISES

 1. Write a program in C++ to read an integer number and fi nd out the sum of all the digits till it reduces

to a single digit using an array. For example,

 (i) n = 1256
 sum = 1+2+5+6 = 14
 sum = 1+4 = 5

 (ii) n = 7896
 sum = 7+8+9+6 = 30
 sum = 3+0 = 3

 2. Write a program in C++ to read a set of numbers up to n (where n is defi ned by the programmer) and

print the contents of the array in reverse order.

 For example, for n = 4, let the set be
 26 56 51 123

 which should be printed as
 123 51 56 26

 3. Write a program in C++ to read n numbers (where n is defi ned by the programmer) and fi nd the

average of the non-negative integer numbers. Find also the deviation of the numbers.

 4. Write a program in C++ to read a set of numbers and store it in a one-dimensional array; to fi nd

the largest and the smallest number. Find also the difference between the two numbers. Using the

difference, fi nd the deviation of the numbers of the array.

 5. Write a program in C++ to read a set of numbers to store it in a one-dimensional array A; copy the

elements into another array B in the reverse direction; fi nd the sum of the individual elements of the

array A and B. Store the results in another array C and display all the three arrays.

 6. Write a program in C++ to read a four digit positive integer number n and generate all the possible

permutation of numbers using the above digits. For example, n = 7812 then the permutations are
 7821
 8721
 8712
 2871
 2817

(Hint: Read a number n and separate it digit by digit and store it in an array and then generate a

permutation.)

 Programming with C++292

 7. Write a program in C++ to read a two-dimensional square matrix A and display its transpose.

Transpose of matrix A is obtained by interchanging all the elements of rows and columns of original

matrix A.

 8. Write a program in C++ to read a two-dimensional array and fi nd the sum of the elements in each

row and column separately and display the sum of the elements in the rows and columns.

 9. Write a program in C++ to generate a magic square A, where the sum of the elements in each row

and column are the same.

 10. Write a program in C++ to read a set of lines and fi nd out the number of characters, words, and lines

in a given text.

 11. Write a program in C++ to read a line and fi nd out the number of vowels (a, e, i, o, u) and consonants

present in the given line.

 12. Write a program in C++ to read a set of lines from the stdin and print out the longest line.

 13. Write a program in C++ to read a line, encode the line and display the original and encoded form.

The encode should be
 a b c d ... z
 z y x w ... a

 14. Write a program to read an encoded form of a line given in the above problem (No 16) and display

the decoded form on the stdout.

 15. Write a program to read any four characters and print out all the possible combinations. For

example, for ABCD
 ACBD
 ADBC
 ADCB
 .
 .
 .

 16. Write a program to read a student’s name and his average mark. If a student gets less than 40

then declare that he has failed or else passed. Prepare a computer list to give the list of names in

alphabetical order separately for passed and failed students.

 17. Write a program to read the names of books, authors and accession numbers of all books in a library.

Check whether the given accession number is present in the array, if it is not, print the name of the

book and the author’s name.

 18. Write a program to read a set of lines from stdin and store them in an array A. Again read a string

S from the stdin and check whether the given string S is in the array A. If it is so, print that line and

also how many times the string is repeated in the array A.

 19. Write a program to read a set of lines from stdin and store them in an array A. Again read a string S

from the stdin and check whether the given string S is in the array A. If it is not, remove string S

from the array A and print the updated array on the stdout. For example,
 A = concatenate
 S = cat

 The updated A is conenate

 20. Write a program to read a set of lines from stdin and store them in an array A. Again read strings S1

and S2 from the stdin and check whether the given string S1 is in the array A. If it is not, replace the

string S1 with string S2 and print the updated array. For example,
 A = concatenate
 S1 = cat
 S2 = 123

 The updated A is con123enate

Pointers and
Strings

Chapter

8

8.1 INTRODUCTION

It is well known that pointer data type is somewhat diffi cult to understand by the novice programmers but

it is one of the strengths of the C++ language. The pointer is a powerful technique to access the data by

indirect reference as it holds the address of that variable where it has been stored in the memory.

8.1.1 Pointer Declaration

A pointer is a variable which holds the memory address of another variable. Sometimes, only with the

pointer a complex data type can be declared and accessed easily. The pointer has the following advantages:

 ∑ It allows to pass variables, arrays, functions, strings and structures as function arguments.

 ∑ A pointer allows to return structured variables from functions.

 ∑ It provides functions which can modify their calling arguments.

 ∑ It supports dynamic allocation and deallocation of memory segments.

 ∑ With the help of a pointer, variables can be swapped without physically moving them.

 ∑ It allows to establish links between data elements or objects for some complex data structures such as

linked lists, stacks, queues, binary trees, tries and graphs.

 ∑ A pointer improves the effi ciency of certain routines.

A pointer contains a memory address. Most commonly, this address is the location of another variable

where it has been stored in memory. If one variable contains the address of another variable, then the fi rst

This chapter deals with one of the important topics namely, pointer. This chapter
also elucidates how a pointer variable is declared, used and manipulated in C++
programming. The major operations and applications of the pointer declarations,
pointer arithmetic, pointer operators, pointer to functions, pointer to arrays and
pointer to pointer are covered in a very simple manner and illustrated with
numerous examples.

 Programming with C++294

variable is said to point to the second. In C++, pointers are distinct such as integer pointer, fl oating point

number pointer, character pointer, etc. A pointer variable consists of two parts, namely, (i) the pointer

operator, and (ii) the address operator.

8.1.2 Pointer Operator

A pointer operator can be represented by a combination of * (asterisk) with a variable. For example, if a

variable of integer data type and also declared * (asterisk) with another variable, it means the variable is of

type “pointer to integer”. In other words, it will be used in the program indirectly to access the value of one

or more integer variables.

The general format of the pointer declaration is given below:

 data_type *pointer_variable;

where data_type is a type of pointer variable such as integer, character and fl oating point number,

structs, arrays, etc. and the pointer_variable is any valid C++ identifi er. Note that the asterisk must

be preceded by the pointer variable.

For example,

 int *ptr;

where ptr is a pointer variable which holds the address of

an integer data type. The internal representation of ptr is

shown in the following Fig. 8.1.

All pointer variables must be declared before it is used in

C++ programs like other variables. When a pointer variable

is declared, the variable name must be preceded by an

asterisk (*). This identifi es the variable as a pointer.

Following are valid pointer declarations.

 oat *fpointer;
 double *dpoint;
 char *mpoint1;

The base type of the pointer indicates the type of variable the pointer is pointing to. Technically, any

type of pointer can point to anywhere in the memory. All pointer arithmetic is done relative to its base type.

Hence, it is important to declare pointers correctly. For example, a character data item may require to store

only a byte (8 bits); an integer may require to store two bytes (16 bits); a fl oating point number may require

four bytes (32 bits), a double precision number may require eight bytes (64 bits). The number of bytes

required to store a particular data items varies from machine to machine.

8.1.3 Address Operator

An address operator can be represented by a combination of & (ampersand) with a pointer variable. For

example, if a pointer variable is an integer type and also declared & with the pointer variable, then it means

that the variable is of type “address of”. In other words, it will be used in the program to indirectly access

the value of one or more integer variables.

The & is a unary operator that returns the memory address of its operand. A unary operator requires only

one operand.

For example,

 m = &ptr;

Note that the pointer operator & is an operator that returns the address of the variable following it.

Therefore, the preceding assignment statement could be verbalised as “m receives the address of ptr”.

Fig. 8.1 Memory Address of a variable x

 Pointers and Strings 295

The other operator * is the complement of &. It is a unary operator that returns the value of the variable

located at the address that follows.

The operation of * translates to the phrase “at address”. Note that the symbol * represents both the

multiplication sign and the “at address”, and the symbol & represents both bitwise AND and the “address

of” sign. When these are used as pointer operators, they have no relationship to the arithmetic operators

that happen to look like the same. Both the pointer operators, & and *, have a higher precedence over all

other arithmetic operators except the unary minus, with which they have equal precedence.

The pointer and address operators & and * are the members of the same precedence group as the

other unary operators such as -, ++, --,!, sizeof and cast operator. Note that the group unary

operators have higher precedence over the group of arithmetic operators, and the associatives of the unary

operators are from left to right.

8.1.4 Pointer Expressions

(a) Pointer Assignment A pointer is a variable data type and hence the general rule to assign its value to the

pointer is same as that of any other variable data type. For example,
 int x,y;

 int *ptr1,*ptr2;

 (1)
 ptr1 = &x;

 The memory address of variable x is assigned to the pointer variable ptr1.

 (2)
 y = *ptr1;

 The contents of the pointer variable ptr1 is assigned to the variable y, not the memory address.

 (3)
 ptr1 = &x;
 ptr2 = ptr1; // address of ptr1 is assigned to ptr2

 The address of the ptr1 is assgined to the pointer variable ptr2. The contents of both ptr1 and

ptr2 will be the same as these two pointer variables hold the same address. The following Fig. 8.2

shows how an address of ptr1 is assigned to ptr2.

Fig. 8.2 Address of ptr1 is assigned to ptr2

Some invalid pointer declaration

(1)
 int x;
 int x_pointer;
 x_pointer = &x;

 Error: pointer declaration must have the prefi x of * (unary operator).

 Programming with C++296

(2)
 oat y;
 oat *y_pointer;
 y_pointer = y;

 Error: While assigning variable to the pointer variable the address operator (&) must be used along

with the variable y.

(3)
 int x;
 char *c_pointer;
 c_pointer = &x;

 Error: Mixed data type is not permitted.

(b) Finding the Address of an Object As we described earlier, every variable has a unique address that

identifi es its storage location in memory. For some applications, it is useful to access the variable through

its address rather than through its name. To obtain the address of a variable, programmer has to use the

ampersand (&) operator.

Suppose, for instance, that j is the long int whose address is 248600, the statement,
 ptr = &j;

stores the address value 248600 in the variable ptr. When reading an expression, the ampersand operator

is translated as “address of”. One would read this statement as: “ Assign the address of j
to the ptr”. The following program points the value of the variable called j and the address of j:

#include <iostream>
using namespace std;
int main()
{
 int j = 100;
 cout <<“ value of j = ” << j << endl;
 cout <<“ address of j = ” << &j << endl;
 return 0;
}

Output of the above program

value of j = 100
address of j = 0x1ab4fff2

The address represents the actual location of j in memory. The particular address listed above

is arbitrary. Note that one cannot use the ampersand operator on the left hand side of an assignment

expression. For instance, the following is illegal since one cannot change the address of an object:
 &ptr = 1000; // error

(c) Initialising Pointers One can initialise a pointer variable just like any other type of variable in a program.

However, the initialisation value must be an address. The following pointer declaration is valid

 int j;
 int *ptr = &j;

However, one cannot reference a variable before it is declared, so the following declarations would be

illegal:

 int *ptr = &j;
 int j; // error

(d) The NULL Pointer The C++ language supports the notion of a null pointer. A null pointer is a method

or approach in which a pointer variable is guaranteed not to point to a valid object. In other words, a null

pointer is any pointer assigned the integral value zero.

 Pointers and Strings 297

For example,

 char *ptr;
 ptr = 0; // make ptr a null pointer

Another form of using the null pointer is given below:
 ptr = NULL;

NULL is a built-in constant for assigning the integral value zero.

Null pointers are particularly useful in control fl ow statements since the zero valued pointer evaluates to

false, whereas all other pointer values evaluates to true. For example, the following while loop continues

iterating while ptr is null pointer.
 char *ptr;

 while (ptr) {

 } // iterate until ptr is a null pointer

This use of null pointers is particularly prevalent in applications that are arrays of pointers.

 PROGRAM 8.1

A program to assign an address of an integer variable to the pointer variable and display the content of
and address of the pointer.

#include <iostream>
using namespace std;
int main()
{
 int x;
 int *ptr;
 x = 10;
 ptr = &x;
 cout << “ x = ” << x <<“ and ptr = ” << ptr;
 cout << endl;
 cout << “ x = ” << x << “ and *ptr = ” << *ptr;
 cout << endl;
 return 0;
}

Output of the above program

x = 10 and ptr = 0xbfffe7d4
x = 10 and *ptr = 10

In the above program, x is an integer variable and ptr is declared as the pointer to an integer. Initially,

value 10 is assigned to the integer variable x. The address of the variable x is assigned to the ptr.

 ptr = &x //address of x is assigned to the variable ptr
 *ptr = &x //content of x is assigned to the *ptr

 PROGRAM 8.2

A program to assign a character variable to the pointer and display the content of the pointer.

#include <iostream>
using namespace std;
int main()

 Programming with C++298

{
 char x,y;
 char *pointer;
 x = ‘c’; // assign character
 pointer = &x;
 y = *pointer;
 cout << “ value of x = ” << x;
 cout << endl;
 cout << “ pointer value = ” << y;
 cout << endl;
 return 0;
}

Output of the above program
value of x = c
pointer value = c

 PROGRAM 8.3

A program to display the address and the content of a pointer variable.

#include <iostream>
using namespace std;
int main()
{
 int x;
 int *ptr;
 x = 10;
 ptr = &x;
 cout << “value of x = ”<< x << ‘\n’;
 cout << “contents of ptr = ” << *ptr << ‘\n’;
 cout << “Address of ptr = ” << ptr << ‘\n’;
 return 0;
}

Output of the above program

value of x = 10
contents of ptr = 10
Address of ptr = 0xbffff654

 PROGRAM 8.4

A program to assign the pointer variable to another pointer and display the contents of both the pointer variables.

#include <iostream>
using namespace std;
int main()
{
 int x;
 int *ptr1,*ptr2;
 x = 10;
 ptr1 = &x;
 ptr2 = ptr1;
 cout << “value of x = ” << x << ‘\n’;
 cout << “Contents of ptr1 = ” << *ptr1 << ‘\n’;
 cout << “Contents of ptr2 = ” << *ptr2 << ‘\n’;
 return 0;
}

 Pointers and Strings 299

Output of the above program

value of x = 10
Contents of ptr1 = 10
Contents of ptr2 = 10

8.2 POINTER ARITHMETIC

As a pointer holds the memory address of a variable, some arithmetic operations can be performed with

pointers. C++ supports four arithmetic operators that can be used with pointers, such as

 Addition +
 Subtraction -
 Incrementation ++
 Decrementation --

Pointers are variables. They are not integers, but they can be displayed as unsigned integers. The

conversion specifi er for a pointer is added and subtracted. For example,

 ptr++ causes the pointer to be incremented, but not by 1.
 ptr-- causes the pointer to be decremented, but not by 1.

The following program segment illustrates the pointer arithmetic.

The integer value would occupy bytes 2000 and 2001

 int value , *ptr;
 value = 120;
 ptr = &value;
 ptr++;
 cout << ptr;

The above C++ program segment displays 2002.

Figure 8.3(a) shows how a pointer arithmetic is carried out for an int data type.

Fig. 8.3(a) Pointer Arithmetic

The pointer ptr is originally assigned the value 2000. The incrementation, ptr++, increments the

number of bytes of the storage class for the particular machine. If the system used four bytes to store an

integer, then ptr++ would have resulted in ptr being equal to 2004.

 Programming with C++300

The general rule for pointer arithmetic is that pointer performs the operation in bytes of the appropriate

storage class. Figure 8.3(b) illustrates how a pointer arithmetic is performed for a fl oating point data type.

Fig. 8.3(b) Pointer Arithmetic

 PROGRAM 8.5

A program to display the memory address of a variable using pointer before incrementation and after
incrementation.

// pointer arithmetic
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int value ;
 int *ptr;
 value = 120;
 ptr = &value;
 cout << “Memory address before incrementation = ” << ptr;
 cout << endl;
 ptr++;
 cout << “Memory address after incrementation = ” << ptr;
 cout << endl;
 return 0;
}

Output of the above program

Memory address before incrementation = 0xbfffe7d4
Memory address after incrementation = 0xbfffe7d8

 PROGRAM 8.6

A program to display the memory address of a variable using pointer before decrementation and after
decrementation.

// pointer arithmetic
#include <iostream>
using namespace std;
int main()
{

 Pointers and Strings 301

 oat value ;
 oat *ptr;
 value = 120.00;
 ptr = &value;
 cout << “Memory address = ” << ptr <<endl;
 ptr—–;
 cout << “Memory address after decrementer = ” << ptr << endl;
 return 0;
}

Output of the above program
Memory address = 0xbffff8d4
Memory address after decrementer = 0xbffff8d0

Each time a pointer is incremennted, it points to the memory location of the next element with its base

type. Each time it is decremented, it points to the location of the previous element. In the case of pointers

to characters, this often produces what appears to be “normal” arithmetic. However, all other pointers

increase or decrease the length of the data type they point to.

For example, assume 1 byte characters and 2 byte integers. When a character pointer is incremented, its

value increases by 1. However, when an integer pointer is incremented, its value increases by 2. The reason

for this is that each time a pointer is incremented or decremented, it is incremented or decremented relative

to its length of its base type so that it always points to the next element.

All pointer arithmetic are done relative to the base type of the pointer so that the pointer is always

pointing to the appropriate element of the base type. The pointers are not limited to only incrementing or

decrementing. A pointer variable may be added or subtracted to or from integers. For example,
 ptr = ptr +9 ;

makes ptr to point to the ninth element of ptr type beyond the element it currently points to.

 PROGRAM 8.7

A program to display the memory address of a variable using a pointer; add an integer quantity with the
pointer and to display the contents of the pointer.

// pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x;
 int *ptr1,*ptr2;
 x = 10;
 ptr1 = &x;
 ptr2 = ptr1+6;
 cout << “\n value of x = ” << x;
 cout << “\n Contents of ptr1 = ” << *ptr1;
 cout << “\n Address of ptr1 = ” << ptr1;
 cout << “\n Address of ptr2 = (ptr1+6) = ” << ptr2;
 cout << “\n Contents of ptr2 = ” << *ptr2;
 return 0;
}

Output of the above program
value of x = 10
Contents of ptr1 = 10
Address of ptr1 = 0xbffff1d4
Address of ptr2 = (ptr1+6) = 0xbffff1ec
Contents of ptr2 = 1073829932 (garbage value)

 Programming with C++302

The memory address of the pointer variable ptr1 is 0xbffff1d4 and an integer value 6 is added with

a pointer ptr2. For one integer, the pointer variable takes 4 bytes to store, then, the resultant address value

is 0xbffff1ec. The content of the pointer is a garbage data.

No other arithmetic operations are allowed other than addition and subtraction with pointers on integers.

To be specifi c, pointers are not permitted to perform the following arithmetic operations.

 (i) To multiply or divide,

 (ii) To operate the bitwise shift and mask operations, and

 (iii) To add or subtract type fl oat or type double to pointers.

 PROGRAM 8.8

A program to display the address and content of a pointer variable; subtract with an integer quantity and
to display the address of and the contents the pointer variable.

// pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x;
 int *ptr1,*ptr2;
 x = 10;
 ptr1 = &x;
 ptr2 = ptr1-2;
 cout << “value of x =” << x <<endl;
 cout << “Contents of ptr1 = ” << *ptr1 <<endl;
 cout << “Address of ptr1 =” << ptr1<<endl;
 cout << “Address of ptr2 = (ptr1-2) =” << ptr2 << endl;
 cout << “Contents of ptr2 =” << *ptr2 <<endl;
 return 0;
}

Output of the above program

value of x =10
Contents of ptr1 = 10
Address of ptr1 =0xbfffed54
Address of ptr2 = (ptr1-2) =0xbfffed4c
Contents of ptr2 =-1073746612

 PROGRAM 8.9

A program to display the contents of the pointer variables using arithmetic operation.

// pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 int *ptr;
 x = 10;
 ptr = &x;
 cout << “\n value of x =” << x << “ and pointer =” << *ptr;
 y = *ptr +1;
 cout << “\n value of y =” << y << “ and pointer =” << *ptr;
 return 0;
}

 Pointers and Strings 303

Output of the above program

value of x =10 and pointer =10
value of y =11 and pointer =10

 PROGRAM 8.10

A program to display the contents of a pointer variable before and after incrementation.

//pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 int *ptr;
 x = 10;
 ptr = &x;
 cout << “\n value of x =” << x <<“ and pointer =” << *ptr;
 y = ++ *ptr;
 cout << “\n value of y =” << y <<“ and pointer =” << *ptr;
 cout << ‘\n’;
 return 0;
}

Output of the above program

value of x = 10 and pointer = 10
value of y = 11 and pointer = 11

 PROGRAM 8.11

A program to display the contents and the address of a pointer variable using diff erent types of incrementation.

//pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 int *ptr, *ptr2;
 x = 10;
 ptr = &x;
 cout << “content of pointer =”<<*ptr<<endl;

 *ptr = *ptr +1; // (*ptr++)
 y = *ptr;
 cout << “value of y =” << y << ‘\t’;
 cout << “and pointer *ptr = *ptr +1 =” << *ptr<<endl;

 *ptr += 1; // (*ptr++)
 y = *ptr;
 cout << “value of y = ” << y << ‘\t’;
 cout << “and pointer *ptr += 1 =” << *ptr<<endl;

 (*ptr)++; // parentheses are necessary
 y = *ptr;
 cout << “value of y = ” << y << ‘\t’;
 cout << “ and pointer (*ptr)++ =” << *ptr<<endl;

 ++ *ptr;

 Programming with C++304

 y = *ptr;
 cout << “value of y =” << y << ‘\t’;
 cout << “and pointer (++ *ptr) =” << *ptr<<endl;

 ++ *ptr;
 ptr2 = ptr;
 cout << “pointer1 = ” << *ptr << ‘\t’;
 cout << “and pointer2 =” << *ptr2 <<endl;
 return 0;
}

Output of the above program
content of pointer = 10
value of y = 11 and pointer *ptr = *ptr + 1 = 11
value of y = 12 and pointer *ptr + = 1 = 12
value of y = 13 and pointer (*ptr)++ = 13
value of y = 14 and pointer (++ *ptr) = 14
pointer1 = 15 and pointer2 = 15

 PROGRAM 8.12

A program to display the content of a pointer variable using an ordinary and pointer arithmetic.

// pointer arithmetic
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 int *xpointer;
 int temp;
 temp = 3;
 x = 5* (temp+5);
 xpointer = &temp;
 y = 5* (*xpointer+5);
 cout << “x = ” << x <<endl;
 cout << “y = ” << y <<endl;
 return 0;
}

Output of the above program

x = 40
y = 40

The above program consists of two expressions — one, an ordinary arithmetic expression and the other

a pointer expression.
 x = 5 * (temp +5)
 where temp = 3
 x = 5 *(3 + 5)
 = 5 * (8)
 = 40

Using the pointer arithmetic,

 xpointer = &temp;

where temp = 3;
 y = 5 * (*xpointer + 5)
 = 5 * (3 + 5)
 = 5 * 8 = 40

 Pointers and Strings 305

8.2.1 Summary of Pointer Arithmetic

Pointer arithmetic description
 ptr++ ptr = ptr+sizeof(data_type)

use original value of ptr and then ptr is incremented after statement execution
++ptr ptr = ptr+sizeof(data_type)

original ptr is incremented before execution of statement
ptr-- ptr = ptr-sizeof(data_type)

use original value of ptr and then ptr is decremented after statement execution
--ptr ptr = ptr-sizeof(data_type)

original ptr is decremented before the execution of statement
*ptr++ *(ptr++)

retrieve the content of the location pointed to by pointer and then increment ptr
* ++ptr *(++ptr)

increment pointer and then retrieve the content of the new location pointed to by ptr
(*ptr)++ increment content of the location pointed to by ptr. For pointer type content, use pointer

arithmetic else use standard arithmetic
++ *ptr ++ (*ptr)

increment the content of the location pointed to by ptr depending on the type of the content
-- *ptr -- (*ptr)

decrement content of the location pointed to by ptr depending on the type of the content
*ptr-- *(ptr--)

retrieve the content of the location pointed to by ptr and then decrement ptr
* --ptr *(--ptr)

decrement ptr, then retrieve the content of the new location pointed to by ptr
(*ptr)-- retrieve content *ptr of the location pointed to by ptr, then decrement the content of that

location; ptr is not changed

8.3 POINTERS AND FUNCTIONS

Pointers are very much used in a function declaration. Sometimes only with a pointer a complex function

can be easily represented and accessed. The use of pointers in a function defi nition may be classifi ed into

two groups; they are call by value and call by reference.

8.3.1 Call by Value

C++ passes parameters into a function using call by value in which copies of the actual parameters are

made in temporary variables and these are passed. Even if they are represented with the same variable

names, internally they are treated as different items.

The call by value type of writing a user-defi ned function is passing some formal arguments to a function

but the function does not return back any value to the caller. It is one way data communication between a

calling portion of the program and the function block.

Whenever a portion of the program invokes a function with formal arguments, control will be transferred

from the main to the calling function and the value of the actual argument is copied to the function. Within the

function, the actual value copied from the calling portion of the program may be altered or changed. When the

control is transferred back from the function to the calling portion of the program, the altered values are not

transferred back. This type of passing formal arguments to a function is technically known as call by value.

 Programming with C++306

The main characteristics of the call by value are:

 (1) The formal parameter assumes only the value of the actual parameter. The address of the actual

parameter is not known in the subprograms and hence, whatever changes made in the formal

parameter in a subprogram cannot be refl ected back to the calling portion of a program.

 (2) In other words, formal and actual parameters are two distinct variables and the C++ compiler reserves

the memory space which required for these parameters separately, of course, by default, automatically.

 (3) Value parameters do not allow the transfer of values from the subprograms to the calling portion of a

program.

 (4) The actual parameter may be any expression, constants, variables, functions or a combination of them.

 (5) Call by value also allows declaration of parameters of the formal arguments as arrays, structs, unions

and classes.

 (6) C++ compiler treats the formal parameters as call by value, by default.

 (7) Value parameters do not require any extra keywords or any specifi c commands in the C++ language,

for their defi nition.

For example, the following program segment illustrates the use of the call by value.

#include <iostream>
using namespace std;
int main ()
{
 void funct (int x , int y); // function declaration
 int x = 10,y = 20;
 funct (x,y); // call by value
 cout << “ x = ” << x << “ ,y = ” << y << endl;
 return 0;
}
void funct (int a, int b)
{
 a = a*a; // new values will not be re ected into the main
 b = b*b;
}

Output of the above program

 x = 10 ,y = 20

 PROGRAM 8.13

A program to exchange the contents of two variables using a call by value.

// call by value
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 void swap (int, int);
 x = 100;
 y = 20;
 cout << “ values before swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 swap (x,y); // call by value
 cout << “ values after swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 return 0;
}

 Pointers and Strings 307

void swap(int x, int y) // values will not be swapped
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

Output of the above program

values before swap ()
x = 100 and y = 20
values after swap ()
x = 100 and y = 20

Since the above function is declared call by value, the desired result is not obtained. As a single variable

is transferred to the function, it protects the value of this variable from alteration within the function. On

the other hand, it prevents the altered value being transferred back from the function to the calling portion

of the program.

 PROGRAM 8.14

A program to display the contents of a variable using call by value in both main and a function.

// call by value
#include <iostream>
using namespace std;
int main()
{
 int x = 100;
 void display(int x);
 cout << x;
 display(x); // value is passed, not address
 cout<< ‘\t’ << x;
 return 0;
}
void display(int x)
{
 cout<< ‘\t’ << ++x;
}

Output of the above program

100 101 100

In the above program, parameters are passed to a function using call by value in which copies of the

actual parameters are made in temporary variables and these are passed. Even if they are represented with

the same variable names, internally they are treated as different items. When the control is transferred back

from the function to the calling portion of the program, the altered values are not transferred back.

8.3.2 Call by Reference

The call by reference is a type of method invocation in which the address or the location of the parameters

are passed to the calling portion of a function. In other words, when a function is called by a portion of the

program, the address of the actual arguments are copied onto the formal arguments, even though, they are

referenced in different variable names.

The values that are altered or changed within the function are refl ected into the calling portion of a

program in the altered form itself, as the formal arguments and the real arguments are referencing the same

memory location or address. Only the user-defi ned variable names are different in the function block and in

 Programming with C++308

the calling portion of a program but technically the scope and the life of the variables are same throughout

the program. If the contents of the variable parameters are altered in one part of the program, these will

be refl ected back, wherever they are referred in the program. This type of declaring a function in C++ is

technically known as call by reference, or call by address or call by location.

The main characteristics of call by reference are:

 (1) The formal parameter gets the address of the actual parameter and hence, the formal and actual

variables are same. Though, sometimes user-defi ned identifi ers are referred in different names in the

formal arguments and in the list of the actual arguments, they are internally considered the same items.

 (2) In order to differentiate, the method of declaring call by reference and call by value, it is essential to

use the indirection operator (*) as a prefi x to the variables at the time of declaring the variables in

the function defi nition part.

 (3) Whenever the contents of the formal parameter are changed in a subprogram, the new values are

refl ected back to the actual parameter also as both the actual and formal variables hold the same

address. So, the content of the address will be same for both actual and formal parameters.

 (4) In the call by reference, more than one value of the parameters can be returned from a subprogram

to the calling portion of a program.

 (5) Since the parameters are treated by default as call by value, it is a must to defi ne the parameters

prefi xed with the indirection operator (*) in order to give directions to the compiler that such

parameters should be treated as variable parameters.

 (6) In the case of call by reference, the actual parameter list must have only the variables. It cannot have

constants or function parameters.

For example, the following program segment illustrates the use of call by reference.

#include <iostream>
using namespace std;
int main ()
{
 void funct (int *x , int *y); // function declaration
 int x = 10,y = 20;
 funct (&x,&y); // call by reference
 cout << “ x = ” << x << “ ,y = ” << y << endl;
 return 0;
}
void funct (int *a, int *b)
{
 *a = *a * *a; // new values will be re ected throughout the program
 *b = *b * *b;
}

Output of the above program

 x = 100 ,y = 400

 PROGRAM 8.15

A program to exchange the contents of two variables using call by reference (version 1).

// call by reference
//swap function version 1.cpp
#include <iostream>
using namespace std;
int main()

 Pointers and Strings 309

{
 int x,y;
 void swap (int *x, int *y);
 x = 100;
 y = 20;
 cout << “ values before swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 swap (&x,&y); // call by reference
 cout << “ values after swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 return 0;
}
void swap(int *x, int *y) // values will be swapped
{
 int temp;
 temp = *x;
 *x = *y;
 *y = temp;
}

Output of the above program

values before swap ()
x = 100 and y = 20
values after swap ()
x = 20 and y = 100

 PROGRAM 8.16

A program to exchange the contents of two variables using call by reference (version 2).

//call by reference
//swap function version 2.cpp
#include <iostream>
using namespace std;
int main()
{
 int x,y;
 void swap (int &x, int &y);
 x = 100;
 y = 20;
 cout << “ values before swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 swap (x,y);
 cout << “ values after swap () ” << endl;
 cout << “ x = ” << x << “ and y = ”<< y <<endl;
 return 0;
}

void swap(int &x, int &y) // values will be swapped
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

Output of the above program

values before swap ()
x = 100 and y = 20
values after swap ()
x = 20 and y = 100

 Programming with C++310

 PROGRAM 8.17

A program to display the contents of a variable using call by reference in both main and a function.

// call by reference
#include <iostream>
using namespace std;
int main()
{
 int x = 10;
 void display(int *x);
 cout << x;
 display(&x); // address is passed, not the content
 cout<< ‘\t’ << x;
 return 0;
}
void display(int *x)
{
 cout<< ‘\t’ << ++*x;
}

Output of the above program

10 11 11

The call by reference is a type of function defi nition, declaration and invocation in which the address of

the parameter is passed to the function. The function can use the address to access and alter the memory

allocated to the parameter. When the control is transferred back from the function to the calling portion of

the program, the altered values are refl ected throughout the program.

 PROGRAM 8.18

A program to display the contents of a variable and its memory address using call by reference in both
main and a function.

// call by reference
#include <iostream>
using namespace std;
int main()
{
 int x = 10;
 void display(int *ptr);
 cout << “Address of x = ” << &x;
 cout << endl;
 cout << “Contents of x = ” << x << ‘\n’;
 display(&x); // address is passed, not the content
 return 0;
}
void display(int *ptr)
{
 cout <<“Address of the x (inside function) = ” << ptr;
 cout << endl;
 cout << “Contents of x =” << *ptr;
}

Output of the above program

Address of x = 0xbfffef54
Contents of x = 10
Address of the x (inside function) = 0xbfffef54
Contents of x = 10

 Pointers and Strings 311

The formal parameter gets the address of the actual parameter and hence, the formal and actual

variables are same. Though, sometimes user-defi ned identifi ers are referred in different names in the formal

arguments and in the list of the actual arguments, they are internally considered the same items.

8.4 POINTERS TO FUNCTIONS

In the previous section, we have seen how a pointer data type is so important for the program development.

This section presents how a function can be referenced with pointer data type and how these concepts can

be implemented and realised in C++.

Pointers to functions are a powerful tool because they provide an elegant way to call different functions

based on the input data. C++ allows functions to be referenced by a pointer. A pointer to a function must

be declared to be a pointer variable to the data type returned by the functions, like void, int, fl oat, and so

on. In addition, the argument type of the function must also be specifi ed when the pointer is declared. The

argument declaration is a list of formal arguments, separated by commas and enclosed in parentheses.

The general syntax of a pointer to a function is,

 return_type (* variables) (list of parameters);

For example, following are valid examples.

(1)

 void (*ptr)(oat, oat,int);

In the above declaration, a pointer to a function returns void and takes the formal arguments of two

 oat and one int.

(2)

 oat (*ptr) (char,double,int, oat);

In the second declaration of a pointer to a function, it returns a fl oating point value and takes the formal

arguments of char, double, int and oat.

Note that a pointer variable name and de-referencing operator (*) are enclosed in parentheses and

precedes the list of argument data types. Suppose, the following a pointer to a function declaration is written

without parentheses.

 void *ptr (oat, oat,int)

then C++ compiler interprets it as in the following way which is not the intention of the above declaration.

 void * (ptr (oat, oat,int));

After the declaration of a pointer to a function, the address of the function must be assigned to a pointer.

 ptr = &average; // where average is a function name

The starting address of the function average is loaded into a pointer ptr which is pointing to a function.

The following program segment shows how a pointer to a function is declared, assigned and invoked for

fi nding the average of three numbers,

//pointers to functions
void main ()
{
 oat average (oat, oat, oat); //function declaration
 oat a,b,c,avg;
 oat (*ptrf)(oat, oat, oat);// pointer to function declaration
 ptrf = &average;

 avg = (*ptrf)(a,b,c); // function calling using pointer

 Programming with C++312

}
 oat average (oat x, oat y, oat z)
{

}

 PROGRAM 8.19

A program to fi nd the sum of three numbers using a pointer to function method.

//pointers to functions
#include <iostream>
using namespace std;
int main ()
{
 oat average (oat, oat, oat); //function declaration
 oat a,b,c,avg;
 oat (*ptrf)(oat, oat, oat);// pointer to function declaration
 ptrf = &average;
 cout << “ enter three numbers \n”;
 cin >> a >> b >> c;
 avg = (*ptrf)(a,b,c); // function calling using pointer
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;
 cout << “ c = ” << c << endl;
 cout << “ Average = ” << avg << endl;
 return 0;
}
 oat average (oat x, oat y, oat z)
{
 oat temp;
 temp = (x+y+z)/3.0;
 return(temp);
}

Output of the above program

enter three numbers
1 2 3

 a = 1
 b = 2
 c = 3
 Average = 2

 PROGRAM 8.20

A program to demonstrate how a pointer to a function is declared to perform simple arithmetic
operations such as addition, subtraction, multiplication and division of two numbers.

//pointers to functions 2.cpp
#include <iostream>
using namespace std;
int main ()
{
 oat add (oat, oat); //function declaration
 oat sub (oat, oat);
 oat mul (oat, oat);
 oat div (oat, oat);

 Pointers and Strings 313

 oat (*ptradd)(oat, oat);// pointer to function declaration
 oat (*ptrsub)(oat, oat);
 oat (*ptrmul)(oat, oat);
 oat (*ptrdiv)(oat, oat);
 void menu(void);
 oat a,b,value;
 char ch;
 ptradd = &add;
 ptrsub = ⊂
 ptrmul = &mul;
 ptrdiv = ÷
 cout << “ demonstration of pointer to functions \n”;
 cout << “ enter any two numbers \n”;
 cin >>a >> b ;
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;
 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘a’ :
 value = (*ptradd)(a,b);
 cout << “ Addition of two numbers = ” << value ;
 cout << endl;
 break;
 case ‘s’ :
 value = (*ptrsub)(a,b);
 cout << “ Subtraction of two numbers = ”<< value;
 cout << endl;
 break;
 case ‘m’ :
 value = (*ptrmul)(a,b);
 cout << “ Multiplication of two numbers = ”<< value;
 cout << endl;
 break;
 case ‘d’ :
 value = (*ptrdiv)(a,b);
 cout << “ Division of two numbers = ” << value;
 cout << endl;
 break;
 } // end of switch-case statement
 } // end of while loop
 return 0;
}

void menu()
{
 cout << “ a -> addition ” << endl;
 cout << “ s -> subtraction ” << endl;
 cout << “ m -> multiplication ” << endl;
 cout << “ d -> division ” << endl;
 cout << “ q -> quit ” << endl;
 cout << “ option,please ? \n”;
}

 oat add (oat x, oat y)
{
 return(x+y);
}

 oat sub (oat x, oat y)
{
 return(x-y);
}

 oat mul (oat x, oat y)
{

 Programming with C++314

 return(x*y);
}
 oat div (oat x, oat y)
{
 return(x/y);
}

Output of the above program
demonstration of pointer to functions
enter any two numbers
10 20

a = 10
b = 20
a -> addition
s -> subtraction
m -> multiplication
d -> division
q -> quit
option, please?
a
Addition of two numbers = 30
s
Subtraction of two numbers = -10
m
Multiplication of two numbers = 200
d
Division of two numbers = 0.5
q

8.5 PASSING A FUNCTION TO ANOTHER FUNCTION

In this section, how a function can be passed as a formal argument to another function is described using

a pointer technique. C++ allows a pointer to pass one function to another as an argument. Passing a

function to another function as a function parameter is one of the major attractions and strengths of the C++

language. The general syntax of passing a function to another function is

return_type function_name (pointer_to_function (other arguments));

For example, the following declaration of passing a function to another function is valid.

 oat calculation (oat (*) (oat, oat), oat, oat);

where the function calculation returns a type oat and takes the formal argument of a pointer to another

function and two other oat types. As a pointer to function declaration itself is a pointer data, it returns a

type oat and takes a formal argument of two fl oating point values.

 PROGRAM 8.21

A program to demonstrate how a function can be passed to another function as a formal argument. This
program peforms addition and subtraction of two fl oating point numbers by another function which
takes the formal arguments of the functions add (), sub () and returns the result.

//passing a function to another function
#include <iostream>

 Pointers and Strings 315

using namespace std;
int main ()
{
 oat add (oat, oat); //function declaration
 oat sub (oat, oat);
 oat action (oat (*) (oat, oat), oat, oat);
 oat (*ptrf)(oat, oat);// pointer to function declaration
 oat a,b,value;
 char ch;
 cout << “ passing a function to another function\n”;
 cout << “ enter any two numbers \n”;
 cin >> a >> b ;
 cout << “ a -> addition ” << endl;
 cout << “ s -> subtraction ” << endl;
 cout << “ option,please ? \n”;
 cin >> ch;
 if (ch == ‘a’)
 ptrf = &add;
 else
 ptrf = ⊂
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;
 value = action (ptrf,a,b);
 cout << “ Answer = ” << value << endl;
 return 0;
}

 oat add (oat x, oat y)
{
 oat ans;
 ans = x+y;
 return(ans);
}

 oat sub (oat x, oat y)
{
 oat ans;
 ans = x-y;
 return(ans);
}

 oat action (oat (*ptrf)(oat, oat), oat x, oat y)
{
 oat answer;
 answer = (*ptrf)(x,y);
 return(answer);
}

Output of the above program
passing a function to another function
enter any two numbers
1 2
a -> addition
s -> subtraction
option, please?
a

a = 1
b = 2
Answer = 3

 Programming with C++316

8.6 POINTERS AND ARRAYS

In C++, there is a close correspondence between array data type and pointers. An array name in C++ is very

much like a pointer but there is a difference between them. The pointer is a variable that can appear on the

left side of an assignment operator. The array name is a constant and cannot appear on the left side of an

assignment operator. In all other respects, both the pointer and the array version are the same.

8.6.1 Pointer and One Dimensional Array

In C++, pointers and one-dimensional arrays have a close relationship. Consider the following valid declaration,

 int value[20];
 int *ptr;

where the array variable value is an array type, and the address of the fi rst element can be declared as

 value[0] - which holds the address of the zeroth element of the array value.

The pointer variable ptr is also an address so the declaration value [0] and ptr is same as both

hold addresses. The following is a valid assi]gnment:

 ptr = &value[0];

The address of the zeroth element is assigned to a

pointer variable ptr. Figure 8.4 shows the relationship

between the pointer and one-dimensional array.

If the pointer is incremented to the next data element,

then the address of the incremented value of the pointer

will be same as the value of the next element.

 ptr++ == value[1];

For example, the following equalities are valid.

 ptr+6 == &value[6]
 *ptr == &value[0]
 *ptr == value[]
 *(ptr+6) == value[6]
 ptr++ == &value[1]

For example,
 int sarray[200];
 int *sptr;
 sptr = sarray;

The value sarray is converted to a pointer to the fi rst element of the array. It is exactly as if it has been written

 sptr = &sarray[0];

Secondly, array subscripting is defi ned in terms of pointer arithmetic. That is, the expression

 a[i]

is defi ned to be the same as

 *((a) + (i))

which is to say the same as
 * (&(a)[0] + (i))

 PROGRAM 8.22

A program to display the content of an array using a pointer arithmetic (version 1).

Fig. 8.4 Pointer and One-dimensional Array

 Pointers and Strings 317

// pointers and arrays
#include <iostream>
using namespace std;
int main()
{
 static int a[4] = { 11,12,1,14 };
 int i,n,temp;
 n = 4;
 cout << “ Contents of the array ”<<endl;
 for (i=0; i<= n-1; ++i) {
 temp = *((a) + (i));
 cout << “ value = ” << temp << endl;
 }
 return 0;
}

Output of the above program
Contents of the array
value = 11
value = 12
value = 13
value = 14

 PROGRAM 8.23

A program to display the content of an array using a pointer arithmetic (version 2).

// version 2
#include <iostream>
using namespace std;
int main()
{
 static int a[4] = { 11,12,13,14 };
 int i,n,temp;
 n = 4;
 cout << “ Contents of the array ”<<endl;
 for (i=0; i<= n-1; ++i) {
 temp = *(&(a)[0] + (i));
 cout << “ value = ” << temp <<endl;
 }
 return 0;
}

Output of the above program

Contents of the array
value = 11
value = 12
value = 13
value = 14

8.6.2 Pointer and Multidimensional Array

A pointer to an array contains the address of the fi rst element. In a one-dimensional array, the fi rst element

is &[0]. In a two-dimensional array, it is

 &value[0][0]

For example,

 int value[][];
 int *ptr;
 ptr = value;

 Programming with C++318

The address of the zeroth row and the

zeroth column of the two-dimensional array

value is assigned to the pointer variable value.

Figure 8.5 shows the relationship between the

pointer and multi-dimensional array.

Suppose, if ptr++ is written, the pointer

variable will be incremented to the next data

element in the two-dimensional array that

is equal to value[0][1] because a two-

dimensional array is stored by rows.

So, the following equality is true.

 ptr+1 == &value[0][1]

For example,

 oat value[20][30];
 oat *ptr1;
 ptr1 = &value[0][0]; // pointer initialisation
 ptr1+4 == &value[0][4];
 ptr1+30 == &value[1][0];

The 30th element of the value is the fi rst element in the second row because the counting starts at 0, so

the 30th element is value [1][0].

For example, if s is a 2 by 3 array as defi ned above, then the expression

 s[1][2] is expressed as

 ((s+1) +2) which is evaluated in the following order
 s
 s+1
 *(s+1)
 *(s+1)+2
 ((s+1)+2)

 PROGRAM 8.24

A program to display the contents of a two-dimensional array using a pointer arithmetic.

// pointers and multidimensional arrays
#include <iostream>
using namespace std;
int main()
{
 static int a[2][3] = {
 {11,12,13},
 {14,15,16}
 };
 int *ptr;
 int i,j,n,m,temp;
 n = 2;
 m = 3;
 cout << “ Contents of the array ”<<endl;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j<=m-1; ++j) {
 temp = *(*(a+i) + j);
 cout << temp << ‘\t’;
 }
 cout << endl;

Fig. 8.5 Pointer and Multi-dimensional Array

 Pointers and Strings 319

 }
 return 0;
}

Output of the above program

Contents of the array
11 12 13
14 15 16

8.7 ARRAYS OF POINTERS

Arrays of pointers are frequently used to access arrays of strings. The pointers may be arrayed like any

other data type. The declaration for an integer pointer array of size 10 is

 int *ptr[10];

makes

 ptr[0],ptr[1],ptr[2]...ptr[9]

an array of pointers.

Figure 8.6 shows the representation of an array of pointers.

Fig. 8.6 Array of Pointers

For example, one can use
 int a[10],b[10],c[20];
 int *ptr[40];

where ptr is an array of pointers that can be used to point to the fi rst elements of the arrays a, b and c.

The following are valid assignment statements in C++:
 ptr[0] = &a[0];
 ptr[9] = &b[0];
 ptr[19] = &c[0];

The following declaration is valid in C++ for the two-dimensional arrays.

 char *text [row][col];
for array of characters to pointers.

For example,
 char *name[10][15];
 name[1][] = “Hyderabad”;
 name[2][] = “Bangalore”;

and so on.

 Programming with C++320

 PROGRAM 8.25

A program to display the contents of pointers using an array of pointers.

// arrays of pointers
#include <iostream>
using namespace std;
int main()
{
 char *ptr[];
 ptr[0] = “Bangalore”;
 ptr[1] = “Hyderabad” ;
 ptr[2] = “Mumbai”;
 cout << “ Contents of pointer 1 = ” << ptr[0]<<endl;
 cout << “ Contents of pointer 2 = ” << ptr[1]<<endl;
 cout << “ Contents of pointer 3 = ” << ptr[2]<<endl;
 return 0;
}

Output of the above program

 Contents of pointer 1 = Bangalore
 Contents of pointer 2 = Hyderabad
 Contents of pointer 3 = Mumbai

8.8 POINTERS AND STRINGS

This section deals with one of the important applications of pointers with character arrays. This section also

covers how to read and write a string; how to perform string length, string copy and string concatenate etc.,

using a pointer technique. As a matter of fact that many string operations in C++ are usually implemented,

realised and performed using pointers to

character arrays and pointer arithmetic.

(a) Introduction A string is an array of

characters terminated by a null character. A

null character is a character with a numeric

value of zero. It is represented in C++ by

the escape sequence ‘\0’. A string constant,

sometimes called a string literal, is any series

of characters enclosed in double quotes.

Figure 8.7 shows the storage pattern of

pointer and character array.

It has a data type of array of char and

each character is the string takes up one

byte. In addition, the compile automatically

appends a null character to designate the end

of the string.

(b) Declaring and Initialising Strings To store a string in memory, one needs to declare an array of type

char. One may initialise an array of chars with a string literals. One must allocate enough characters to

hold the string if one wants to specify an array size for declaring string data type.

For example,

 static char str[] = “this text”;

Fig. 8.7 Pointer and Character Array

 Pointers and Strings 321

The array is one element longer than the number of characters in the string to accommodate the trailing

null character. str [], therefore, is ten characters in length.

If the following example, for instance, the fi rst four elements are initialised with the characters

‘y’,’e’,’s’ and ‘\0’. The remaining elements receive the default initial value of zero.

 static char str[10] = “yes”;

The following statement, however, is illegal due to insuffi cient memory space to accommodate all elements.
 static char str[3] = “four”; // error

(c) String Assignments C++ treats string literals like other arrays and that it interprets a string constant as a

pointer to the fi rst character of the string. This means that one can assign a string constant to a pointer that

point to a char. The following program illustrates how to assign and process the string literals with pointers.

#include <iostream>
using namespace std;
int main()
{
 char *ptr = “this”;
 cout << “string \n”;
 while (*ptr != ‘\0’) {

 cout << *ptr;
 ptr++;

 }
 return 0;
}

Output of the above program

string
this

(d) String vs Chars It is important to recognise the difference between string constants and character

constants. In the following two declarations, one byte is allocated for char and two bytes are allocated for

the string “a”, (an extra byte for the terminating null character), plus additional memory is allocated for

the pointer ptr.
 char ch = ‘a’; // one byte is allocated for ‘a’
 char *ps = “a”;

In the above declaration, two bytes are allocated for “a”, plus an implementation defi ned number of

bytes are allocated for the pointer ps.

Figure 8.8 shows the internal storage representation of a character and string data type.

Fig. 8.8 Diff erence between a Character and String

It is illegal to assign a character constant through a dereferenced pointer:
 *ptr = ‘a’; // invalid

But it is correct to assign a string to a dereferenced char pointer:
 *ptr = “a”; // valid

Since a string is intialised as a pointer to a char and a dereferenced pointer has the type of the object

that it points to assign a pointer value to a char variable. The following program illustrates how to defi ne,

declare and realise the character assignment and string assignment with pointer.
#include <iostream>

 Programming with C++322

using namespace std;
int main()
{
 char ptr1 = ‘a’;
 char *ptr2 = “a”;
 cout << “ character = ” << ptr1 << endl;
 cout << “ string = ” << *ptr2 << endl;
 return 0;
}

Output of the above program
character = a
string = a

It is illegal to assign a string to a pointer (without dereferencing it).

 char ptr2 = “a”; //invalid

It is also correct to assign a character constant to a pointer.

 char *ptr1 = ‘a’; //invalid

The following program displays error message during compile time for converting char to ponter *.

#include <iostream>
using namespace std;
int main()
{
 char *ptr1 = ‘a’; //error, ptr1 = ‘a’; is right
 char ptr2 = “a”; //error, *ptr2 = “a”; is right
 cout << “ character = ” << ptr1 << endl;
 cout << “ string = ” << ptr2 << endl;
 return 0;
}

(e) Pointers and String Operations Many string operations in C++ are usually performed by using pointers

to the array and then using pointer arithmetic. As strings tend to be accessed strictly in sequential order,

pointers use the obvious choice. Strings are one-dimensional arrays of type char. In C++, a string is

terminated by null character or ‘\0’. String constants are written in double quotes.

For example,

“this” is a character string of 5 and the last element being the null character ‘\0’. Therefore, a string

constant such as “a” is not the same as the character constant ‘a’. Many string operations such as string

length, string compare, string copy, string concatenate, etc. are performed using pointer method.

 PROGRAM 8.26

A program to read a string from the stdin and to display it in the video screen using a pointer technique.

#include <iostream>
using namespace std;
int main()
{

 void display(char *str);
 char str[80],ch;
 int i = 0;
 cout << “enter a line of text \n”;
 while ((ch = cin.get()) != ‘\n’)
 str[i++] = ch;

 Pointers and Strings 323

 str[i++] = ‘\0’;
 cout<<“Typed string is :\n”;
 display(str);
 cout<< endl;
 return 0;
}
void display(char *ptr)
{
 while (*ptr != ‘\0’) {
 cout.put(*ptr);
 ptr++;
 }
}

Output of the above program

enter a line of text
this is a test program by Ravich
Typed string is :
this is a test program by Ravich

 PROGRAM 8.27

A program to fi nd the number of characters in a given string using a pointer method.

// string length version 1
#include <iostream>
using namespace std;
int main()
{
 void display(char *str);
 int stringlength(char *str);
 char str[80],ch;
 int i = 0,nch;
 cout << “enter a line of text \n”;
 while ((ch = cin.get()) != ‘\n’)
 str[i++] = ch;
 str[i++] = ‘\0’;
 cout<<“Typed string is :\n”;
 display(str);

 nch = stringlength(str);
 cout<<“\n”;
 cout<<“Number of Characters :” << nch << endl;
 return 0;
}
void display(char *ptr)
{
 while (*ptr != ‘\0’) {
 cout.put(*ptr);
 ptr++;
 }
}
int stringlength (char *ptr)
{
 int i = 0;
 while (*ptr != ‘\0’){
 i++;
 ptr++;
 }
 return(i);
}

 Programming with C++324

Output of the above program

enter a line of text
this is a test
Typed string is:
this is a test
Number of Characters: 14

The above string length function can be modifi ed in the following form:
// string length version 2
int stringlength (char *ptr)
{
 char *source = ptr;
 while (*ptr != ‘\0’)
 ptr++;
 return(ptr-source);
}

 PROGRAM 8.28

A program to copy the contents of one string to another string using a pointer method.

// string copy version 1
#include <iostream>
using namespace std;
int main()
{
 void display(char *str);
 char *stringcopy(char *dest, char *source);
 char source[80],dest[80],ch;
 int i = 0;
 cout << “enter a line of text \n”;
 while ((ch = cin.get()) != ‘\n’)
 source[i++] = ch;
 source[i++] = ‘\0’;
 cout<<“Contents of the source_ptr:\n”;
 display(source);
 stringcopy(dest,source);
 cout<<“\nContents of the dest_ptr :\n”;
 display(dest);
 cout << “\n”;
 return 0;
}

void display(char *ptr)
{
 while (*ptr != ‘\0’) {
 cout.put(*ptr);
 ptr++;
 }
}

char *stringcopy (char *dest_ptr,char *source_ptr)
{
 while (*source_ptr != ‘\0’){
 *dest_ptr = *source_ptr;
 dest_ptr++;
 source_ptr++;
 }
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

 Pointers and Strings 325

Output of the above program

enter a line of text
this is a test string
Contents of the source_ptr:
this is a test string
Contents of the dest_ptr:
this is a test string

The above string copy function can be modifi ed in the following form:
// string copy version 2
char *stringcopy (char *dest_ptr,char *source_ptr)
{
 while (*source_ptr != ‘\0’){
 *dest_ptr++ = *source_ptr++;
 }
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

The string copy function may be written in the following compact form also.
// string copy version 3
char *stringcopy (char *dest_ptr,char *source_ptr)
{
 while ((*dest_ptr++ = *source_ptr++) != ‘\0’);
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

 PROGRAM 8.29

A program to concatenate the given two strings into a one string using a pointer method.

// string concatenate version 1
#include <iostream>
using namespace std;
int main()

{
 void display(char *str);
 char *strconcatenate (char *dest, char *source1,
 char *source2);
 char source1[80],source2[80],dest[280],ch;
 int i,j;
 i = 0;
 cout << “enter a line of text \n”;
 while ((ch = cin.get()) != ‘\n’)
 source1[i++] = ch;
 source1[i++] = ‘\0’;
 i = 0;
 cout << “enter another line of text \n”;
 while ((ch = cin.get()) != ‘\n’)
 source2[i++] = ch;
 source2[i++] = ‘\0’;
 cout<<“\n Contents of the source_ptr1:\n”;
 display(source1);
 cout<<“\n Contents of the source_ptr2:\n”;
 display(source2);
 strconcatenate(dest,source1,source2);
 cout<<“\n Contents of the dest_ptr :\n”;
 display(dest);

 Programming with C++326

 cout << “\n”;
 return 0;
}

void display(char *ptr)
{
 while (*ptr != ‘\0’) {
 cout.put(*ptr);
 ptr++;
 }
}

char *strconcatenate (char *dest_ptr, char *source1,char *source2)
{
 while (*source1 != ‘\0’) {
 *dest_ptr = *source1;
 dest_ptr++;
 source1++;
 }
 *dest_ptr++ = ‘ ’;
 while (*source2 != ‘\0’) {
 *dest_ptr = *source2;
 dest_ptr++;
 source2++;
 }
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

Output of the above program

enter a line of text
this is a test

enter another line of text
program by Ravich

Contents of the source_ptr1:
this is a test

Contents of the source_ptr2:
program by Ravich

Contents of the dest_ptr:
this is a test program by Ravich

The above string concatenate function can be modifi ed in the following form:
// string concatenate version 2
char *strconcatenate (char *dest_ptr, char *source1,char *source2)
{
 while (*source1 != ‘\0’) {

 *dest_ptr++ = *source1++;
 }
 *dest_ptr++ = ‘ ‘;
 while (*source2 != ‘\0’) {

 *dest_ptr++ = *source2++;
 }
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

 Pointers and Strings 327

The string concatenate function may be written in the following compact form also.

// string concatenate version 3
char *strconcatenate (char *dest_ptr, char *source1,char *source2)
{
 while ((*dest_ptr++ = *source1++) != ‘\0’);
 *dest_ptr––;
 *dest_ptr++ = ‘ ’;
 while ((*dest_ptr++ = *source2++) != ‘\0’);
 *dest_ptr++ = ‘\0’;
 return (dest_ptr);
}

In addition to the string functions used in the previous examples, there are many others in the standard

library:

String functions in the standard library

strcpy() copies a string to an array
strncpy() copies of a portion of a string to an array
strcat() appends one string to another
strncat() copies a portion of one string to another
strcmp() compares two strings
strncmp() compares two strings up to a specifi ed number of characters
strchr() fi nds the fi rst occurrence of a specifi ed character in a string
strcoll() compares two strings based on an implementation defi ned collating sequence.
strcspn() computes the length of a string that does not contain specifi ed characters
strerror() maps an error number with a textual error message
strlen() computes the length of a string
strpbrk() fi nds the fi rst occurrence of any specifi ed characters in a string
strrchr() fi nds the last occurrence of any specifi ed characters in a string
strspn() computes the length of a string that contains only specifi ed character.
strstr() fi nds the fi rst occurrence of one string embedded in another
strtok() breaks a string into a sequence of tokens
strxfrm() transforms a string so that it is as suitable as an argument to strcmp().

8.9 POINTERS TO POINTERS

An array of pointers is the same as pointers to pointers. As an array of pointers is easy to index because

the indices themselves convey the meaning of a class of pointers. However, pointers to pointers can be

confusing. The pointer to a pointer is a form of multiple of indirections or a class of pointers.

In the case of a pointer to a pointer, the fi rst pointer contains the address of the second pointer, which

points to the variable that contain the values desired. To declare a pointer to a pointer, precede the variable

name with two successive asterisks. Multiple indirections can be carried on to whatever extent desired,

but there are a few cases where more pointer to a pointer is needed or written. A pointer to a pointer is a

construct used frequently in sophisticated programs.

Excess indirection is diffi cult to follow and process as it leads to conceptual errors.

pointer --------Æ variable

pointer --------Æ pointer --------Æ variable

A variable that is a pointer to a pointer must be declared as such. This is done by placing an additional *

in front of the variable name.

 Programming with C++328

For example,

 int **ptr;

declares ptr to be a pointer to a pointer to an int. To dereference the

pointer and access the int, one has to use two asterisks. For example,

 j = **ptr; // assigns an integer to j

Consider the following series of declarations:

 int value = 5;
 int *ptr = &value;
 int **ptr_to_ptr = &ptr;

These declarations result in the storage pattern is shown in Fig. 8.9.

Both ptr and ptr_to_ptr are pointers but the ptr contains the

address of an int, whereas ptr_to_ptr contains the address of a

pointer to an int.

 PROGRAM 8.30

A program to declare the pointer to pointer variable and display the contents of these pointers.

// pointer to pointer 1.cpp
#include <iostream>
using namespace std;
int main()
{

 int value;
 int *ptr1;
 int **ptr2;
 value = 120;
 cout << “ value ” << value << endl;
 ptr1 = &value;
 ptr2 = &ptr1;
 cout << “pointer 1 = ” << *ptr1 <<endl;
 cout << “pointer 2 = ” << **ptr2 <<endl;
 return 0;
}

Output of the above program

value 120
pointer 1 = 120
pointer 2 = 120

 PROGRAM 8.31

A program to declare the pointer to a pointer to a pointer variable and display the contents of these pointers.

// pointer to pointer to pointer
#include <iostream>
using namespace std;
int main()
{
 int *ptr1;
 int **ptr2;
 int ***ptr3;
 int data;
 data = 100;

Fig. 8.9 Storage pattern of
pointer to pointer

 Pointers and Strings 329

 ptr1 = &data;
 ptr2 = &ptr1;
 ptr3 = &ptr2;
 cout << “\n contents of ptr1 = ” << *ptr1;
 cout << “\n contents of ptr2 = ” << **ptr2;
 cout << “\n contents of ptr3 = ” << ***ptr3;
 return 0;
}

Output of the above program

contents of ptr1 = 100
contents of ptr2 = 100
contents of ptr3 = 100

8.10 DECIPHERING COMPLEX DECLARATIONS

This section explains how to decode and fi gure out the complex pointer declarations. It is well known

that C++ allows us to declare arbitrarily complex data types, including types such as arrays of pointers

to functions and functions that return pointers to functions. These type declarations appear in numerous

places, including variable declarations, function headers and type casts.

8.10.1 Simple Data Type Declarations

It is easy to fi gure out and decipher the meaning if we declare a variable with one of the basic types.
 int i; // an int
 double d; // a double

We can declare several more complicated type by combining the identifi er with a single *, () and [].

Prefacing the identifi er with * declares a pointer to the base type.

 int *ptr; // pointer to an int
 char *cptr; // pointer to a char

Following the identifi er with [] declares an array of the base type.

 double dtab[10]; // array of 10 doubles
 char ctab[10]; // array of 10 characters

We need to include a subscript only if we are defi ning storage and we are not following the declaration

with an initialisation expression.

Following the identifi er with a (), possibly with an enclosed list of types, declares a function.

 int ifunct(void); // function returning an int
 double dfunct(void); // function returning a double

Here, we are assuming we want to declare functions that take no parameters. Otherwise, we would

replace the void with a list of type declarations for these parameters.

8.10.2 Complex Pointer Declarations

We declare even more complex types, such as pointers to functions and array of pointers, by combining the

pieces used to form the previous declarators. However, one has to take care of the operator precedence.

The best strategy for deciphering a declaration is to start with the variable name by itself and then each

part of the declaration, starting with the operators that are closest to the variable name. In the absence of

parentheses to affect binding, one would add all of the function and array operators on the right side of the

variable name fi rst (since they have higher precedence) and then add the pointer operators on the left side.

(1) Array of Pointers Consider the following declaration,

 (a) char *ptr[];

 Programming with C++330

would be deciphered through the following steps:
 ptr[] – is an array
 *ptr[] – is an array of pointers
 char *ptr[] – is an array of pointers to chars.

 (b) int *ptr[10];
would be fi gure out in the following form:
 ptr[10] – is an array of 10 elements
 *ptr[10] – is an array of 10 elements of pointers
 or (is an array of 10 pointers)
 int *ptr[10] – is an array of 10 elements of pointers
 to int or (is an array of 10 pointers to int)

The simplest combinations are an array of pointers:
 double *iptr[10]; // array of 10 pointers to double
 char *dptr[10]; // array of 10 pointers to char

(2) Function Returning a Pointer Consider the following declaration,

 (a) int *ptrfunct();
 would be deciphered through the following steps:

 ptrfunct() – is a function
 *ptrfunct() – is a function returning a pointer

 int *ptrfunct() – is a function returning a pointer to int

 (b) char *abc(void);
 would be fi gure out in the following form:

 abc(void) – is a function taking void data type
 *abc(void) – is a function taking void data type and returning a pointer

 char *abc(void) – is a function taking void data type and returning a pointer to char.

(3) Pointer to an Array Consider the following pointer to an array declaration,

 (a) char (*ptr)[];

When we combine declarators, * has lower precedence than either () or []. Parentheses must be used

to override the normal precedence.
 (*ptr) – is a pointer to
 (*ptr)[] – is a pointer to an array
 char (*ptr)[] – is a pointer to an array of characters

 (b) int (*ptr)[10];
 would be fi gure out in the following form:
 (*ptr) – is a pointer to
 (*ptr)[10] – is a pointer to an array of 10 elements
 int (*ptr)[10] – is a pointer to an array of 10 elements of integer data types or (pointer to an array

of 10 int)

(4) Pointer to a Function Consider the following a pointer to a function declaration,

 (a) int (*ptr)();
 would be deciphered through the following steps:

 (*ptr) – is a pointer to
 (*ptr)() – is a pointer to a function

 int (*ptr)() – is a pointer to a function returning int

 (b) void (*x) (void);
 would be fi gure out in the following form:

 Pointers and Strings 331

 (*x) – is a pointer to
 (*x)(void) – is a pointer to a function taking void data type
 void (*x)(void) – is a pointer to a function taking void data type and returning void data

(5) Array of Pointers to Functions Consider the following an array of pointers to a function declaration.

Parentheses can be used to change the precedence order.

 (a) int (*ptr[]) ();
 would be decomposed as follows

 ptr[] – is an array
 *ptr[] – is an array of pointers
 (*ptr[])() – is an array of pointers to functions

 int (*ptr[])() – is an array of pointers to functions returning int.

If this declaration had been written without the parentheses as
 int *ptr[]();

it would have been translated as an array of functions returning pointers to int, which is illegal declaration

since array of functions are invalid.

 (b) void (*table[]) (void);
 would be deciphered through the following steps:

 table[] – is an array
 *table[] – is an array of pointers
 (*table[]) (void) – is an array of pointers to a function taking void data type
void (*table[]) (void) – is an array of pointers to a function taking void data type and

returning void data.

 REVIEW QUESTIONS

 1. What is a pointer? What are the uses of pointers in C++?

 2. How is a pointer variable different from an ordinary variable?

 3. What is meant by the address of a memory cell?

 4. What is meant by address operator?

 5. What are the scope rules of a pointer variable?

 6. What is the use of an indirection operator?

 7. How is a pointer variable declared in C++?

 8. What is the relationship between a pointer and an array?

 9. How can an indirection operator be used to access a multidimensional array?

 10. Explain how a portion of an array can be passed onto a function.

 11. How can a one-dimensional array of pointers be used to represent a collection of strings?

 12. Under what conditions two pointer variables can be added?

 13. Under what conditions two pointer variables can be subtracted?

 14. Under what conditions two pointer variables can be compared?

 15. What is the relationship between a pointer and a function name?

 16. What is meant by pointer to pointer? What is its advantage?

 17. What is meant by the call by value and call by reference?

 18. What are the advantages of declaring a pointer variable in a function declaration?

 19. Under what conditions the call by reference is preferred than the call by value?

 Programming with C++332

 20. What is meant by pointers to pointers?

 21. What is an array of pointers?

 22. What is the difference between the array of pointers and pointer to the array?

 23. Explain how a pointer to function can be declared in C++.

 24. What is meant by passing a function to another function as an argument?

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 int a = 10;
 int *ptr1;
 ptr1 = &a;
 cout << “ ++(*ptr1) = ” << ++(*ptr1) <<“\n”;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{

 int a = 10;
 int *ptr1;
 ptr1 = &a;
 cout << “ (*ptr1)++ = ” << (*ptr1)++ <<“\n”;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int a = 10;
 int *ptr1;
 ptr1 = &a;
 cout << “ *ptr1++ = ” << *ptr1++ <<“\n”;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int a = 10;
 int *ptr1;
 ptr1 = &a;

 Pointers and Strings 333

 cout << “ ++*ptr1 = ” << ++*ptr1 <<“\n”;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int a = 10;
 int *ptr1;
 ptr1 = &(++a);
 cout << “ *ptr1 = ” << *ptr1 <<“\n”;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int a = 10;
 int *ptr1;
 ptr1 = &(a++);
 cout << “ *ptr1 = ” << *ptr1 <<“\n”;
 return 0;

}

 (g)
#include <iostream>
using namespace std;
int main()
{
 bool ag = false;
 bool *ptr1;
 ptr1 = & ag;
 cout << “ *ptr1 = ” << *ptr1 <<“\n”;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
int main()
{
 bool ag = true;
 bool *ptr1;
 ptr1 = & ag;
 cout << “ *ptr1 = ” << *ptr1 <<“\n”;
 return 0;
}

 (i)
#include <iostream>
using namespace std;
int main()
{
 void display (int *abc);

 Programming with C++334

 int a = 10, *ptr;
 ptr = &a;
 display(ptr);
 return 0;
}
void display(int *abc)
{
 cout <<“*ptr = ” << *abc;
 cout << “\n”;
}

 2. What will be the output of each of the following program when it is executed?

 (a)
#include <iostream>
using namespace std;
int main()
{
 void display (int *abc);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;
 display(ptr);
 cout << *ptr << endl;
 return 0;
}
void display(int *abc)
{
 cout << (*abc)++ << ‘\t’;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 void display (int *abc);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;
 display(ptr);
 cout << *ptr << endl;
 return 0;
}
void display(int *abc)
{
 cout << ++(*abc) << ‘\t’;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 void display (int *);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;

 Pointers and Strings 335

 display(ptr);
 cout << *ptr << ‘\t’;
 return 0;
}
void display(int *abc)
{
 void display2(int *);
 cout << ++(*abc) << ‘\t’;
 display2(abc);
}

void display2(int *a)
{
 cout << ++(*a) << ‘\t’;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 void display (int *);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;
 display(ptr);
 cout << *ptr << ‘\t’;
 return 0;
}
void display(int *abc)
{
 void display2(int *);
 cout << ++(*abc) << ‘\t’;
 display2(abc);
 cout << *abc << ‘\t’;
}

void display2(int *a)
{
 cout << ++(*a) << ‘\t’;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 void display (int *);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;
 display(ptr);
 cout << *ptr << ‘\t’;
 return 0;
}
void display(int *abc)
{

 Programming with C++336

 void display2(int *);
 cout << ++(*abc) << ‘\t’;
 display2(abc);
 cout << *abc << ‘\t’;
}
void display2(int *a)
{
 cout << (*a)++ << ‘\t’;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 void display (int *);
 int a = 10, *ptr;
 ptr = &a;
 cout << *ptr << ‘\t’;
 display(ptr);
 cout << *ptr << ‘\t’;
 return 0;
}
void display(int *abc)
{
 void display2(int *);
 cout << ++(*abc) << ‘\t’;
 display2(abc);
 cout << *abc << ‘\t’;
}

void display2(int *a)
{
 cout << —(*a) << ‘\t’;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 void display(int *ptr);
 const int x = 10;
 cout << “ x = ” << x << endl;
 display(&x);
 cout << “ x = ” << x << endl;
 return 0;
}
void display(int *ptr)
{
 cout << “ x = ” << *ptr << endl;
}

 3. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>

 Pointers and Strings 337

using namespace std;
int main()
{
 static char *ptr[4];
 ptr[0] = “Hyderabad”;
 ptr[1] = “Mumbai”;
 ptr[2] = “Chennai”;
 ptr[3] = “New Delhi”;
 cout << ptr[3] << endl;
 cout << ptr[2] << endl;
 cout << ptr[1] << endl;
 cout << ptr[0] << endl;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 static char *ptr[4];
 ptr[0] = “Hyderabad”;
 ptr[1] = “Mumbai”;
 ptr[2] = “Chennai”;
 ptr[3] = “New Delhi”;
 for (int i = 0; i <= 3; ++i)
 cout << ptr[i] << endl;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 int *ptr1;
 int **ptr2;
 int data;
 data = 100;
 ptr1 = &(++data);
 ptr2 = &ptr1;
 cout << “contents of ptr1 = ” << *ptr1;
 cout << “\n contents of ptr2 = ” << **ptr2;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 int *ptr1;
 int **ptr2;
 int ***ptr3;
 int data;
 data = 10;
 ptr1 = &data;

 Programming with C++338

 ptr2 = &ptr1;
 ptr3 = &ptr2;
 cout << “\n contents of ptr1 = ” << *ptr1;
 cout << “\n contents of ptr2 = ” << **ptr2;
 cout << “\n contents of ptr3 = ” << ***ptr3;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 int a = 2, b = 3, c = 5;
 int *ptr;
 cout << a << ‘\t’ << b << ‘\t’ << c;
 cout << endl;
 ptr = &a;
 *ptr = 10;
 ptr = &b;
 *ptr = 20;
 ptr = &c;
 *ptr = 30;
 cout << a << ‘\t’ << b << ‘\t’ << c;
 cout << endl;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 int abc = 10;
 int *ptr = &abc;
 cout << “*ptr = ” << *ptr << endl;
 ++abc;
 cout << “*ptr = ” << *ptr << endl;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
int main()
{
 int abc = 10;
 int *ptr1, *ptr2;
 ptr1 = &abc;
 cout << “*ptr1 = ” << *ptr1 << endl;
 ptr2 = ptr1;
 ++abc;
 cout << “*ptr1 = ” << *ptr1 << endl;
 cout << “*ptr2 = ” << *ptr2 << endl;
 return 0;
}

 Pointers and Strings 339

 PROGRAMMING EXERCISES

 1. Write a program in C++ to read a set of characters using a pointer and to print in the reverse order.

 Input : ravic

 Output : civar

 2. Write a program in C++ to fi nd a given string in a line of text using a pointer.

 3. Write a program in C++ to compare the two given strings using a pointer.

 4. Write a program in C++ to check whether a given string is a palindrome or not using the pointer

method.

 (Note that a palindrome is a string that reads the same both forward and backward.

 For example, madam, radar, malayalam, otto, 12321, etc.)

 5. Write a program in C++ to fi nd the number of words in a set of lines using a pointer.

 6. Write a program in C++ to sort out a set of names in the alphabetical order using pointer technique.

 7. Write a program in C++ to fi nd the number of vowels in each word of a given text using a pointer.

 8. Write a program to read a set of lines from stdin; store them in an array A; again read a string S from

the stdin and check whether the given string S is in the array A. If it is, then print that line and also

how many times it repeats in the array A using pointer method.

 9. Write a program to read a set of lines from stdin; store them in an array A; again read a string S from

the stdin and check whether the given string S is in the array A. If is, then remove the string S from

the array A and print the updated array on the stdout using pointer. For example,

 A = concatenate

 S = cat

 The updated A is concotenate

 10. Write a program to read a set of lines from stdin and store them in an array A; again read strings S1

and S2 from the stdin and check whether the given string S1 is in the array A. If it is, then replace

the string S1 with string S2 and print the updated array using pointer. For example,

 A = concatenate

 S1 = cat

 S2 = 123

 The updated A is con123enate

Structures,
Unions and
Bit Fields

Chapter

9

9.1 INTRODUCTION

It is well known that C++ supports a wide variety of data types like simple, standard and structured

types. This is one of the strengths of the C++ language. In Chapter 7, arrays of one-dimensional and

multidimensional of the structured data types have been introduced. In this chapter we discuss about one

more data type known as a structure which is a group of variables placed under a common name. A structure

has many fi elds and each fi eld may be of different data type like integer, fl oating point, character or string

or even a structure. Normally, a structure is a heterogeneous data type whereas an array is a homogeneous

data type.

In C++, collection of heterogeneous (different) types of data can be grouped to form a structure. When

this is done, the entire collection can be referred by a structure name. In addition, the individual components

which are called fi elds or members can be accessed and processed separately.

Array is a structured data type in which components are the same and identical in nature and each

component can be accessed and processed individually only with the index value. On other hand,

components of the structure are accessed and processed by its member name or fi eld name. The elements or

components of the arrays are homogeneous whereas structures are heterogeneous. The keyword struct is

used to defi ne a structure data type.

A structure data type also permits to declare one or more structures as a member of another structure.

When a structure is declared as a member or fi eld of another structure, it is called as a nested structure.

This chapter presents how to declare, defi ne and use a structure data type which
is one of the salient features of the C++ language. This chapter also explains how
to realise the various topics of the structures such as arrays of structures, arrays
within a structure, structure within a structure with suitable illustrations. This
chapter also deals with the unions, bit fi elds and enumerated data types.

 Structures, Unions and Bit Fields 341

When an array is declared as a member of fi eld of a structure, it is called an array within a structure. C++

also permits declaration of a structure of its array nature. Whenever a structure data type is defi ned as an

array, it is called as array of structures. The various usages of the structure data type are elucidated in this

chapter.

9.2 DECLARATION OF A STRUCTURE

It is well known that a structure consists of one or more fi elds of the same or different data types. Like any

other variable, a structure variable must be defi ned before one attempts to use it in a program. Declaration

of structure is one of the important steps for processing a structure data type in a program. Each fi eld of a

structure must have its own data type which can be one of either simple or structured data type.

The structure can be represented graphically as follows:

There are two important distinctions between arrays and structures. First, all the elements of an array must be

of the same type. In a structure, the components or fi elds may have different data types. Secondly, a component

of an array is referred by its position in an array, whereas each component of a structure has a unique name.

Structures and arrays are similar in that both must be defi ned with a fi nite number of components.

The symbolic representation of the structure is:

 struct user_de ned_name {
 member 1;
 member 2;

 member n;
 };

A structure defi nition is specifi ed by the keyword struct. This is followed by a user-defi ned name

surrounded by braces, which describes the members of the structure. A member of a structure is a single unit.

The general format for a declaration of a structure is

 storage_class struct user_de ned_name {
 data_type member 1;
 data_type member 2;

 data_type member n;
 };

The storage class is optional, whereas the keyword struct and the braces are essential. The user-

defi ned name is usually used, but there are situations in which it is not required. The data type and members

 Programming with C++342

are any valid C++ data objects such as short integer, oat and char. The syntax diagram of struct

declaration is given in Fig. 9.1

Fig. 9.1 Syntax Diagram of Struct Declaration

For example, the date of a day can be arranged in the following form:

 int day;
 int month;
 int year;

The date is a structure consisting of three members and all the members are of the same data type.

 struct date {
 int day;
 int month;
 int year;
 };

The struct date can be represented symbolically as:

 (2) Similarly, a student’s particulars can be placed like this:

 Roll no, age, sex, height and weight

 The structure declaration for the above can be as follows:

 struct student {
 int rollno;
 int age;
 int sex;
 int height;
 int weight;
 };

Each member of a structure, is specifi ed by a variable name with a period and the member name. The

period is a structure member operator which we can be referred simply as the period operator. For example,

the date is a structure consisting of three members which can be referred in program as:

struct date {
 int day;

 Structures, Unions and Bit Fields 343

 int month;
 int year;
};
int main()
{
 struct date today;
 today.day;
 today.month;
 today.year;

 return 0;
}

Assigning values to members of the structure can be done as follows:

 today.day = 10;
 today.month = 2;
 today.year = 1993;

When a structure member is named using the period operator, the variable name and member name are

still separate identifi ers. For example, the variable ‘today.year’ exceeds more than eight characters but

in the structure, each one is a separate identifi er so truncation will not take place for both as they are taken

as a single variable.

9.3 PROCESSING WITH STRUCTURES

This section presents how to read, write and assign data to the structure variables. Each member of a

structure is specifi ed by the following variable name with a period and the member name. The period is a

structure member operator which we shall hereafter refer to simply as the period operator.

To access a component in an array, subscript or an index is used. To access the fi eld of a structure,

structure variable name followed by the period and the fi eld identifi er of the structure is used. The general

syntax of accessing the fi eld name is:

 structure_variable_name. eld_name = variable;

For example, consider the following structure declaration:

#include <iostream>
using namespace std;
int main()
{
 struct student_info {
 int rollno;
 int age;
 int sex;
 int height;
 int weight;
 };
 student_info student; // creating a variable

 return 0;
}

The following manner one can access the individual fi eld of a structure with period operator:

 Programming with C++344

 student.rollno
 student.age
 student.sex
 student.height
 student.weight

Field designators with simple types are treated just like ordinary variables. The following manner one

can assign the values or data to the fi elds of a structure.

 student.rollno = 100;
 student.age = 13;
 student.sex = ‘M’;
 student.height = 167.77
 student.weight = 45.67

When a structure member is named using the period operator, the variable name and member name

are still separate identifi ers. For example, the variable ‘student.rollno’ can exceed more than eight

characters but in the structure, each one is a separate identifi er and hence truncation will not take place

treating both as a single variable.

(a) Reading and Writing of a Structure This section presents how to read and write a structure variable from

standard input and output devices. For example, date is a structure consisting of three members which can

be used to refer in a program as:

#include <iostream>
using namespace std;
int main()
{
 struct date {
 int day;
 int month;
 int year;
 };
 struct date today;

 return 0;
}

C++ compiler will not read or write an entire structure using a single command like this:
 cin >> today; // error
 cout << today; // error

It will read or write the members of a structure separately as: To read a value for the fi elds of the

structure date, one can use the cin function to get the input data from the keyboard in the following format:
 // reading a structure
 cin >> today.day;
 cin >> today.month;
 cin >> today.year;

Similarly, one can use the cout function to display the contents of a structure in the following form:

 // displaying onto the video screen
 cout << today.day;
 cout << today.month;
 cout << today.year;

 Structures, Unions and Bit Fields 345

 PROGRAM 9.1

A program to demonstrate how to initialise the members of the structure and display the contents of the
structure onto the video screen.

// example 9.1
#include <iostream>
using namespace std;
int main()
{
 struct date {
 int day;
 int month;
 int year;
 };
 struct date today;
 today.day = 10;
 today.month = 5;
 today.year = 2007;
 cout << “Today’s date is :”;
 cout <<today.day << “/” << today.month << “/” << today.year;
 return 0;
}

Output of the above program

Today’s date is: 10/5/2007

(b) The Structure Tag It is possible to defi ne a structure variable name in the structure type declaration itself.

The general format of the structure tag declaration is:

 storage_class struct user_de ned_name {
 data_type member 1;
 data_type member 2;

 data_type member n;
 } variable 1, variable 2...variable n;

For example, the following structure declaration of a,b could be written as

/* structure tag declaration */
 struct student {
 int rollno;
 int age;
 int sex;
 int height;
 int weight;
 } a,b;

 PROGRAM 9.2

A program to assign some values to the member of a structure and to display the structure on the video
screen using the structure tag.

#include <iostream>
using namespace std;
int main()

 Programming with C++346

{
 struct sample {
 int x;
 oat y;
 } obj;
 obj.x = 20;
 obj.y = -23.44;
 cout <<“Contents of the structure \n”;
 cout <<“ x = ” << obj.x << ‘\n’;
 cout <<“ y = ” << obj.y << ‘\n’;
 return 0;
}

Output of the above program

Contents of the structure
x = 20
y = -23.44

(c) Other Declaration A fi eld of a structure is a unique name for the particular structure. The same fi eld or

member name can be given to the other structures also with different data types. C++ compiler will treat

each structure member as a separate variable and reserves memory space according to the corresponding

data types. For example, the following declaration is valid in C++, even though the same fi eld name is used

to represent the different data types in the two different structures.

For example, consider the following valid declaration:

 struct rst {
 int a;
 oat b;
 char c;
 };
 struct second {
 char a;
 int b;
 oat c;
 };

In the above two structures, namely, the fi rst and second have three members and all the three are

of different data types but have the same names. It is advisable to use different names for the different

structures so that no confusion arises while using them in a program. In this section, same member names

have been used to explain the different usages and declaration in C++, whereas in a practical situation, the

names of members should be distinct.

 PROGRAM 9.3

A program to declare the same fi eld name for the diff erent data types in two structures; assign some
values into the corresponding fi elds and to display the contents of the structure.

// example 9.3
// other structure declaration
#include <iostream>
using namespace std;
int main ()
{
 struct rst {
 int a;
 oat b;

 Structures, Unions and Bit Fields 347

 char c;
 };
 struct second {
 char a;
 int b;
 oat c;
 };
 struct rst one;
 struct second two;
 one.a = 23;
 one.b = 11.89;
 one.c = ‘f’;
 two.a = ‘m’;
 two.b = 5;
 two.c = -45.78;
 cout <<“ contents of the rst structure \n”;
 cout <<“ a = ” << one.a <<“ ,b = ” << one.b << “ ,c = ” << one.c;
 cout <<“\n contents of the second structure \n”;
 cout <<“ a = ” << two.a <<“ ,b = ” << two.b << “ ,c = ” << two.c;
 cout << endl;
 return 0;
}

Output of the above program

contents of the rst structure
a = 23 ,b = 11.89 ,c = f
contents of the second structure
a = m ,b = 5 ,c = -45.78

In the above two structures, namely, rst and second are defi ned with three members and each

member is unique of its data type. However, C++ compiler permits to declare the same fi eld name for

different structures. In a practical situation, the names of structure members should be distinct.

(d) Copying a Structure to Another If two structures are of the same data type, the value of one structure can

be assigned as the value of another structure. For example, consider the following structure declaration:
 struct student_info {
 int rollno;
 char sex;
 int age;
 oat height;
 oat weight;
 };
 struct student_info student1,student2;

Since the structure variables student1 and student2 are the data type of student_info, the

following assignment statement is valid:
 student2 = student1; /* valid */

For example, the following values are assigned to the individual members of the structure student1:
 student1.rollno = 101;
 student1.sex = ‘M’;
 student1.age = 23;
 student1.height = 123.45;
 student1.weight = 56;

then the student2 = student1 will be assigned and the contents of each of the individual fi elds of student1

will be copied to the student2.
 student2.rollno = 101;
 student2.sex = ‘M’;
 student2.age = 23;
 student2.height = 123.45;
 student2.weight = 56;

 Programming with C++348

 PROGRAM 9.4

A program to assign some values to the member of a structure and copy the contents of the one structure
into another and display the contents of the structure on the video screen.

// copying a structure to another
#include <iostream>
using namespace std;
int main()
{
 struct student_info {
 int rollno;
 oat height;
 oat weight;
 };
 struct student_info studold,studnew;
 studold.rollno = 1001;
 studold.height = 174.67;
 studold.weight = 45;
 cout <<“Contents of the old structure \n”;
 cout <<“ Roll no = ” << studold.rollno << ‘\n’;
 cout <<“ Height = ” << studold.height << ‘\n’;
 cout <<“ Weight = ” << studold.weight << ‘\n’;
 studnew = studold; // copying the structure to another
 cout <<“\n Contents of the new structure \n”;
 cout <<“ Roll no = ” << studnew.rollno << ‘\n’;
 cout <<“ Height = ” << studnew.height << ‘\n’;
 cout <<“ Weight = ” << studnew.weight << ‘\n’;
 cout << endl;
 return 0;
}

Output of the above program

Contents of the old structure
Roll no = 1001
Height = 174.67
Weight = 45

Contents of the new structure
Roll no = 1001
Height = 174.67

Weight = 45

(e) Comparing Two Structures The members of a structure can appear in the condition part of if statement

and while statement. All relational operators that are supported by C++ compiler are permitted to be used

along with the members of structure. It is invalid to use one structure with another structure in a single

statement. For example, consider the following structure type declaration:

struct date_info {
 int day;
 int month;
 int year;
};
struct date_info date1,date2;

The following usage of relational operators are invalid:

 Structures, Unions and Bit Fields 349

(1)
 if (date1 < date2) // error
 cout << error \n”;

(2)
 while (date1 != date2) { // error

 }

(3)
 if (date1.day <= date2) // error
 cout << error \n”;

To decide whether two structures are equal, it is necessary to compare the individual members of the

structure. For example, to test equality of date1 and date2, then the suitable statement is:

 if ((date1.day == date2.day) &&
 (date1.month == date2.month) &&
 (date1.year == date2.year))
 cout << “date1 is equal to date2 \n”;
 else
 cout << “both structures are different \n”;

The following conditional expressions using relational operators are valid:

(1)
 if (date1.day <= date2.day)
 cout << “valid \n”;

(2)
 while (date1.month != date2.month) {

 }

(3)
 if (date1.year >= date2.year)
 cout << “valid \n”;

 PROGRAM 9.5

A program to assign some values to the member of a structure and compare the contents of one structure
into another and display the result of structure comparison on the video screen.

#include <iostream>
using namespace std;
int main()
{
 struct date {
 int day;
 int month;
 int year;
 };
 struct date day1,day2;
 day1.day = 10;
 day1.month = 5;
 day1.year = 2003;
 day2.day = 10;
 day2.month = 5;
 day2.year = 2003;

 Programming with C++350

 cout <<“ day1 : ”;
 cout << day1.day << “/” << day1.month;
 cout << “/” << day1.year << ‘\n’;
 cout <<“ day2 : ”;
 cout << day2.day << “/” << day2.month;
 cout << “/” << day2.year << ‘\n’;
 if ((day2.day== day1.day) && (day2.month == day1.month) &&
 (day2.year == day1.year))
 cout <<“two structs consist of the same data\n”;
 else
 cout <<“two structs are different \n”;
 return 0;
}

Output of the above program

 day1 : 10/5/2003
 day2 : 10/5/2003
two structs consist of the same data

9.4 INITIALISATION OF STRUCTURE

A structure can be initialised in the same way as any other data type in C++. In keeping with the array

analogy, a structure must be either static or external. For example,

students’ particulars
 rollno
 age
 sex
 height
 weight
static struct student_info student = { 95001,24,‘M’,167.9,56.7 };

The C++ compiler assigns the following values to each of the fi elds:

Roll no = 95001
Age = 24
Sex = M
Height = 167.9
Weight = 56.7

 PROGRAM 9.6

A program to initialise the members of a structure and display the contents of the structure on the screen.

// structure initialization
#include <iostream>
using namespace std;
int main ()
{
 struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 struct student_info student = { 20071,24,‘M’,167.9,56.7 };
 cout <<“ Contents of structure \n”;

 Structures, Unions and Bit Fields 351

 cout <<“ Roll no = ” << student.rollno << ‘\n’;
 cout <<“ Age = ” << student.age << ‘\n’;
 cout <<“ Sex = ” << student.sex << ‘\n’;

 cout <<“ Height = ” << student.height << ‘\n’;
 cout <<“ Weight = ” << student.weight << ‘\n’;
 return 0;
}

Output of the above program

Contents of structure
Roll no = 20071
Age = 24
Sex = M
Height = 167.9
Weight = 56.7

The initialiser of a structure must be enclosed within a pair of braces. The constants to be assigned to the

members of the structure must be in the same order in which the members are specifi ed. There must be one

to one correspondence between the members and the initialising values. If some of the structure members

are not initialised, then the C++ compiler will automatically initialise them to zero. For example,

students’ particulars
 rollno
 age
 sex
 height
 weight
 static struct student_info student = {95001,24,‘M’};

The C++ compiler assigns the following values to each of the fi elds:

 Roll no = 95001
 Age = 24
 Sex = M
 Height = 0
 Weight = 0

 PROGRAM 9.7

A program to initialise some members of a structure and display the contents of the structure.

/* some members of the structure are initialized
 and the rest of the members are
 initialized to zero by default */
#include <iostream>
using namespace std;
int main ()
{
 struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 struct student_info student = { 20071,24,‘M’ };
 cout <<“ Contents of structure \n”;
 cout <<“ Roll no = ” << student.rollno << ‘\n’;
 cout <<“ Age = ” << student.age << ‘\n’;

 Programming with C++352

 cout <<“ Sex = ” << student.sex << ‘\n’;
 cout <<“ Height = ” << student.height << ‘\n’;
 cout <<“ Weight = ” << student.weight << ‘\n’;
 return 0;
}

Output of the above program

Contents of structure
Roll no = 20071
Age = 24
Sex = M
Height = 0
Weight = 0

In the above example, it has been declared that static student of structure has fi ve fi elds such as rollno,

age, sex, height and weight. The initial values are assigned only for the fi rst three members of the structure

so the C++ compiler will automatically assign zero to the rest of the members which are not initialised.

9.5 FUNCTIONS AND STRUCTURES

As discussed in Chapter 6 “Functions and Program Structures”, a function is a very powerful technique to

decompose a complex problem into separate manageable parts or modules. Each part is called a function

and is very much used to convert a complicated program into a very simple one. As functions can be

compiled separately, they can be tested individually and fi nally invoked into a main program as a whole.

A structure can be passed to a function as a single variable. The scope of a structure declaration should

be an external storage class whenever a function in the main program is using a structure data types. The

fi eld or member data should be same throughout the program either in the main or in a function.

Designing and developing a subprogram with structure data type is one of the most important features of C++

programming as functions are a very powerful tool for designing a complicated problem in the easiest manner.

It is well known that there are two types of parameter passing techniques used in C++, namely, call by

value and call by reference. C++ also permits to declare a function with structure data type either through

call by value or through call by reference.

Types of Functions using Structured Data Type It is well known that C++ supports two types of calling a

function from any part of a program: call by value and call by reference. When a call by reference is made, the

indirection operator (*) must be prefi xed along with the parameter list in order to indicate to the compiler that

a variable parameter is being passed. By default, C++ takes a structure data type as call by value only.

The general syntax of the function using structure data type is:

 return_type fname (struct struct_name parameters);

where return_type of a function may be one of the following namely, void, simple data type

or structure data. The fname is a user-defi ned function identifi er followed by a list of parameters of a

structure data type.

(a) Call by Value with Structure Data Type Whenever a call by value is made, the values or contents

of a structure will be copied into a function as dummy arguments and if any changes are made in the

subprogram, that will not be refl ected back to the calling portion of the program. The scope and visibility of

the value parameters are limited only to the particular function block.

For example, the following program segment illustrates how call by value of a function with a structure

data type can be realised.

 Structures, Unions and Bit Fields 353

#include <iostream>
using namespace std;
struct sample_info {
 int x;
 oat y;
};
struct sample_info rst;
int main ()
{
 void display (struct sample_info out); // function declaration

 display (out); // function calling

}
void display (struct sample_info out) // function de nition
{

 out.x = 10;
 out.y = -20.20;

}

 PROGRAM 9.8

A program to demonstrate how a call by value of the function with structure data type in its arguments is
realised.

// passing a struct to a function
// using a call by value technique
#include <iostream>
using namespace std;
struct date {
 int day;
 int month;
 int year;
};
int main()
{
 struct date today;
 void display_newdate (struct date newdate);
 today.day = 10;
 today.month = 5;
 today.year = 2003;
 cout <<“Before a function call \n”;
 cout <<“Today’s date is :”;
 cout << today.day << “/” << today.month << “/” << today.year;

 cout << endl;
 display_newdate(today);
 cout <<“After a function call \n”;
 cout <<“Today’s date is :”;
 cout << today.day << “/” << today.month << “/” << today.year;
 cout << endl;
 return 0;

 Programming with C++354

}
void display_newdate(struct date today)
{
 today.day++;
 today.month++;
 today.year++;
}

Output of the above program

Before a function call
Today’s date is: 10/5/2003
After a function call
Today’s date is: 10/5/2003

(b) Call by Reference with Structure Data Type Whenever a call by reference is made, the address of the

structure will be copied into a function subprogram and if changes are made in the subprogram, that will

also be refl ected back to the calling portion of a program because the address of the structure is same in

both the calling and called up portions of the program. The scope and visibility of the variable parameters

are the same throughout the program.

A program segment to illustrate how call by reference of a procedure subprogram with a structure data

type can be implemented in C++.
#include <iostream>
using namespace std;
struct sample_info {
 int x;
 oat y;
};
struct sample_info * rst;
int main ()
{
 void display (struct sample_info *out); // function declaration

 display (out); // function calling

}
void display (struct sample_info *ptr) // function de nition
{

 ptr->x = 10;
 ptr->y = -20.20;

}

 PROGRAM 9.9

A program to demonstrate how a call by reference of the function with structure data type in its
arguments is realised.

// passing a struct to a function
// using a call by reference technique

 Structures, Unions and Bit Fields 355

// method 1.c using (->) operator
#include <iostream>
using namespace std;
struct date {
 int day;
 int month;
 int year;
};
int main()
{
 struct date *today;
 void display_newdate (struct date *newdate);
 today->day = 10;
 today->month = 5;
 today->year = 2003;
 cout <<“Before a function call \n”;
 cout <<“Today’s date is :”;
 cout << today->day << “/” << today->month << “/” << today->year;
 cout << endl;
 display_newdate(today);
 cout <<“After a function call \n”;
 cout <<“Today’s date is :”;
 cout << today->day << “/” << today->month << “/” << today->year;
 cout << endl;
 return 0;
}
void display_newdate(struct date *today)
{
 today->day++;
 today->month++;
 today->year++;
}

Output of the above program

Before a function call
Today’s date is: 10/5/2003
After a function call
Today’s date is: 11/6/2004

 PROGRAM 9.10

A program to perform the following arithmetic operations of a complex number using a structure data type.

 (1) Addition of two complex numbers
 (2) Subtraction of two complex numbers
 (3) Multiplication of two complex numbers
 (4) Division of two complex numbers
// complex number operations using function
struct complex {
 oat real;
 oat imag;
};
struct complex add (struct complex a, struct complex b);
struct complex sub (struct complex a, struct complex b);
struct complex mul (struct complex a, struct complex b);
struct complex div (struct complex a, struct complex b);
#include <iostream>
using namespace std;
int main ()
{
 struct complex a,b,c;

 Programming with C++356

 int ch;
 void menu();
 cout <<“enter a rst complex number \n”;
 cin >> a.real >> a.imag;
 cout <<“ enter a second complex number \n”;
 cin >> b.real >> b.imag;
 menu();
 while ((ch = getchar()) != ‘q’) {
 switch (ch) {
 case ‘a’ :
 c = add(a,b);
 cout <<“ Addition of two complex numbers \n”;
 cout << c.real << “+i” << c.imag << ‘\n’;
 break;
 case ‘s’ :
 c = sub (a,b);
 cout <<“ Subtraction of two complex numbers \n”;
 cout << c.real << “+i” << c.imag << ‘\n’;
 break;
 case ‘m’ :
 c = mul (a,b);
 cout <<“ Multiplication of two complex numbers \n”;
 cout << c.real << “+i” << c.imag << ‘\n’;
 break;
 case ‘d’ :
 c = div (a,b);
 cout <<“ Division of two complex numbers \n”;
 cout << c.real << “+i” << c.imag << ‘\n’;
 break;
 } // end of switch
 }
 return 0;
}

void menu()
{
 cout <<“ complex number operations \n”;
 cout <<“ menu () \n”;
 cout <<“ a -> addition \n”;
 cout <<“ s -> subtraction \n”;
 cout <<“ m -> multiplication \n”;
 cout <<“ d -> division \n”;
 cout <<“ q -> quit \n”;
 cout <<“ option, please ? \n”;
}

struct complex add (struct complex a, struct complex b)
{
 struct complex c;
 c.real = a.real+b.real;
 c.imag = a.imag+b.imag;
 return(c);
}

struct complex sub (struct complex a, struct complex b)
{
 struct complex c;
 c.real = a.real-b.real;
 c.imag = a.imag-b.imag;
 return(c);
}

 Structures, Unions and Bit Fields 357

struct complex mul (struct complex a, struct complex b)
{
 struct complex c;
 c.real = (a.real*b.real)-(a.imag*b.imag);
 c.imag = (a.real*b.imag)+(a.imag*b.real);
 return(c);
}

struct complex div (struct complex a, struct complex b)
{
 struct complex c;
 oat temp;
 temp = (b.real*b.real)+(b.imag*b.imag);
 c.real = ((a.real*b.real)+(a.imag*b.imag))/temp;
 c.imag = ((b.real*a.imag)-(a.real*b.imag))/temp;
 return(c);
}

Output of the above program
enter a rst complex number
1 1
enter a second complex number
2 2
complex number operations
menu ()
a -> addition
s -> subtraction
m -> multiplication
d -> division
q -> quit
option, please ?

a
Addition of two complex numbers
3+i3

s
Subtraction of two complex numbers
-1+i-1

m
Multiplication of two complex numbers
m
0+i4

d
Division of two complex numbers
0.5+i0
q

9.6 ARRAYS OF STRUCTURES

It is well known that an array is a group of identical data which is stored in consecutive memory locations

in a common heading or common variable name. A similar type of structures that are placed in a common

heading or a common variable name is called an array of structures. For an example, we would like to

process the student’s particulars for the entire school. That means there are more than one or two students.

 Programming with C++358

So we need this type of structure facilities.

For example, the following program segment illustrates how to declare an array of structure data type in

C++.
 struct student_info {
 int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 student_info student[300];

The student [300] is a structure variable. It may accommodate the structure of a student up to 300.

Each record may be accessed and processed separately like individual elements of an array.

Reading and writing of an array of a structure is similar to the conventional array methods. The cin

function can be used to get an input data from the keyboard. The cout method are used to display the

contents of the structures onto the video screen.

Initialisation of Arrays of Structures A structure can be initialised in the same way as that of array data in

C++. In keeping with the array analogy, a structure must be either static or external. The structure can be

initialised in the following way:
 struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 student_info student[3] = {
 {95001,24,‘M’, 167.9,56.7},
 {95002,25,‘F’, 156.6,45},
 {95003,27,‘M’, 189.9,78}
 };

The C++ compiler will assign the values to the individual elements of a the particular structure in the

following way:

For the fi rst record,

student[0].rollno = 95001;
student[0].age = 24;
student[0].sex = ‘M’;
student[0].height = 167.9;
student[0].weight = 56.7;

For the second record,

student[0].rollno = 95002;
student[0].age = 25;
student[0].sex = ‘F’;
student[0].height = 156.6;
student[0].weight = 45;

Like this, the C++ compiler will assign the individual elements to each record. Suppose, if any of the

structure is not initialised then the compiler will automatically assign zero to the elements of the particular

record.

 Structures, Unions and Bit Fields 359

For example,
struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 student_info student[5] = {
 { 95001,24,‘M’ },
 { 95002,25,‘F’}
 };

For the above, the C++ compiler will assign the values to the individual elements of the particular

structure in the following way:
student[0].rollno = 95001;
student[0].age = 24;
student[0].sex = ‘M’;
student[0].height = 0;
student[0].weight = 0;

For the second record,

student[0].rollno = 95002;
student[0].age = 25;
student[0].sex = ‘F’;
student[0].height = 0;
student[0].weight = 0;

For the third and the rest of the structure, it will assign zeros as they are not initialised explicitly in the

above declaration. Even the C++ declaration allows to initialise the values to the members of a structure in

the following format:

struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 student_info student[3] = {
 95001,24,‘M’, 167.9,56.7,
 95002,25,‘F’, 156.6,45,
 95003,27,‘M’, 189.9,78,
 };

In this case, each member of a structure must be initialised and cannot be skipped to assign zero

automatically by the C++ compiler. Some of the structures can be initialised zero automatically if they are

not initialised explicitly in the declaration part.

 PROGRAM 9.11

A program to demonstrate how data items are intialised in the array of structures and display the
contents of the variables onto the screen.

 Programming with C++360

// arrays of structure initialisation
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 struct student_info student[MAX] = {
 {20071,24,‘M’, 167.9,56.7},
 {20072,25,‘F’, 156.6,45},
 {20073,27,‘M’, 189.9,78}
 };
 int i;
 for (i = 0; i <= MAX-1; ++i) {
 cout <<“\n contents of structure = ” << i+1 << ‘\n’;
 cout <<“ Roll no = ” << student[i].rollno << ‘\n’;
 cout <<“ Age = ” << student[i].age << ‘\n’;
 cout <<“ Sex = ” << student[i].sex << ‘\n’;
 cout <<“ Height = ” << student[i].height << ‘\n’;
 cout <<“ Weight = ” << student[i].weight << ‘\n’;
 }
 return 0;
}

Output of the above program

Contents of structure = 1
Roll no = 20071
Age = 24
Sex = M
Height = 167.9
Weight = 56.7

Contents of structure = 2
Roll no = 20072
Age = 25
Sex = F
Height = 156.6
Weight = 45

Contents of structure = 3
Roll no = 20073
Age = 27
Sex = M
Height = 189.9
Weight = 78

 PROGRAM 9.12

A program to initialise a few members of an array of structures and display the contents of all the structures.

// arrays of structure - initialization
#include <iostream>
using namespace std;

 Structures, Unions and Bit Fields 361

const int MAX = 4;
int main ()
{

 struct student_info {
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 struct student_info student[MAX] = {
 {2001,24,‘M’, 167.9,56.7},
 {2002,25,‘F’, 156},
 {2003,27,}
 };
 int i;
 for (i = 0; i <= 3; ++i) {
 cout <<“ \ncontents of structure = ”<< i+1 << ‘\n’;
 cout <<“ Roll no = ” << student[i].rollno << ‘\n’;
 cout <<“ Age = ” << student[i].age << ‘\n’;
 cout <<“ Sex = ” << student[i].sex << ‘\n’;
 cout <<“ Height = ” << student[i].height << ‘\n’;
 cout <<“ Weight = ” << student[i].weight << ‘\n’;
 }
 return 0;
}

Output of the above program
Contents of structure = 1
Roll no = 2001
Age = 24
Sex = M
Height = 167.9
Weight = 56.7

Contents of structure = 2
Roll no = 2002
Age = 25
Sex = F
Height = 156
Weight = 0

Contents of structure = 3
Roll no = 2003
Age = 27
Sex =
Height = 0
Weight = 0

9.7 ARRAYS WITHIN A STRUCTURE

It has already been discussed that C++ permits declaration of both simple and structured data types as a

fi eld of a structure. The components of a structure can also be an array data type that is one of the structured

data type groups in C++. Whenever a structure is defi ned with member of an array data type, the fi elds or

members can be accessed and processed using conventional array techniques.

 Programming with C++362

The general syntax of the array within a structure is:

 storage_class struct user_de ned_name {
 data_type member_1 [SIZE];
 data_type member_2 [SIZE];

 data_type member_n [SIZE];
 };

Where the base_type of an array can be any valid C++ data objects such as int, oat, char, etc.

Once the structure has been declared, it may be used. The user defi ned variables v1, v2 and vn are the

structure types whose fi eld data types are an array.

For example, the following program segment illustrates how to declare a structure whose member is an

array type:

(1)
 struct student {
 char name[20];
 int subj[7];
 };

(2)
 struct employee {
 char name[20];
 char sex;
 char address[20];
 char place[10];
 char pincode;
 };

The C++ compiler allows to initialise the members of a structure even if the array data type is a member

to it. In the following way one can initialise the members,

 struct student_info {
 char name[20];
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 };
 student_info student[MAX] = {
 {“Sampath Reddy”, 2001,24,‘M’, 167.9,56.7},
 {“Makesh”, 2003,25,‘F’, 156.6,45},
 {“kumar ”,3003,27,‘M’ }
 };

The C++ compiler assigns the values to its members of a structure as

 student[0].name[] = “Sampath Reddy”;
 student[0].rollno = 2001;
 student[0].age = 24;
 student[0].sex = ‘M’;
 student[0].height = 167.9;
 student[0].weight = 56.7;

and so on. In case if some of the members are not initialised explicitly, the compiler will treat them as zero.

 Structures, Unions and Bit Fields 363

 PROGRAM 9.13

A program to demonstrate how data items are intialised in the array of structures and display the
contents of the variables onto the screen. This program illustrates how to defi ne, declare and realise the
array within the array of structures.

// initialization of array of structure
#include <iostream>
using namespace std;
const int MAX = 3;
int main()
{
 struct student_info {
 char *st_name;
 long int rollno;
 char sex;
 oat height;
 oat weight;
 };
 struct student_info stud[MAX] = {
 {“Sampath Reddy”, 200701,‘M’,175,65},
 {“Kuppusamy”, 200702,‘M’, 155,60},
 {“Jacob Daniel”, 200703,‘M’, 181,80},
 };
 int i;
 cout <<“Contents of the student_info :\n”;
 for (i = 0; i <= MAX-1; ++ i) {
 cout <<“\n Record No = ” << i+1 << ‘\n’;
 cout <<“Name : ” << stud[i].st_name << ‘\n’;
 cout <<“Roll no : ” << stud[i].rollno << ‘\n’;
 cout <<“sex : ” << stud[i].sex << ‘\n’;
 cout <<“Height : ” << stud[i].height << ‘\n’;
 cout <<“Weight : ” << stud[i].weight << ‘\n’;
 }
 return 0;
}

Output of the above program

Contents of the student_info:
Record No = 1
Name : Sampath Reddy
Roll no : 200701
sex : M
Height : 175
Weight : 65

Record No = 2
Name : Kuppusamy
Roll no : 200702
sex : M
Height : 155
Weight : 60

Record No = 3
Name : Jacob Daniel
Roll no : 200703
sex : M
Height : 181
Weight : 80

 Programming with C++364

 PROGRAM 9.14

A program to read a set of names from the keyboard and to sort the names in an alphabetical order. This
program demonstrates how to implement and realise the array within the array of structures.

// sorting of names based on alphabetical order
// using bubble sort algorithm
#include <iostream>
#include <cstring>
using namespace std;
const int MAX = 100;
struct student_info {
 char name[20];
};
int main()
{
 int i,j,n;
 char ch;
 struct student_info stud[MAX];
 void output_data(struct student_info sample[],int n);
 void sort_data(struct student_info sample[],int n);
 cout <<“ How many names ?\n”;
 cin >> n;
 getchar(); // to skip any extra line feed
 cout <<“enter name ...\n”;
 for (i = 0; i <= n-1; ++i) {
 cout <<“Name : [“ << i+1 << ”] ”;
 j = 0;
 while ((ch = getchar()) != ‘\n’)
 stud[i].name[j++] = ch;
 stud[i].name[j++] = ‘\n’;
 stud[i].name[j++] = ‘\0’;
 }
 cout <<“ \n \n”;
 cout <<“Unsorted order ... \n”;
 cout <<“---------\n”;
 output_data(stud,n);
 sort_data(stud,n);
 cout <<“\n \n”;
 cout <<“Sorted order ... \n”;
 cout <<“---------\n”;
 output_data(stud,n);
 return 0;
}

void output_data(struct student_info sample[],int n)
{
 int i,j;
 char ch;
 for (i = 0; i <= n-1; ++i) {
 j = 0;
 while ((ch =sample [i].name[j++]) != ‘\n’)
 putchar(ch);
 putchar(‘\n’);
 }
}

/* bubble sort algorithm */
void sort_data(struct student_info a[],int n)
{
 int i,j;
 char temp[20];
 for (i = 0; i <= n-1; ++i) {

 Structures, Unions and Bit Fields 365

 for (j = 0; j <= n-2; ++j) {
 if (strcmp (a[j].name,a[j+1].name) >= 0)
 {
 strcpy (temp,a[j].name);
 strcpy (a[j].name,a[j+1].name);
 strcpy (a[j+1].name,temp);
 }
 } /* end of j loop */
 } /* end of i loop */
}

Output of the above program

How many names ?
7
enter name ...
Name: [1] Velusamy.L
Name: [2] Kandasamy.K
Name: [3] Antony Paul
Name: [4] Marry Josphine
Name: [5] Ahmed Gulam
Name: [6] Anbu Mani
Name: [7] Chrisite Peter

Unsorted order ...

Velusamy.L
Kandasamy.K
Antony Paul
Marry Josphine
Ahmed Gulam
Anbu Mani
Chrisite Peter

Sorted order ...

Ahmed Gulam
Anbu Mani
Antony Paul
Chrisite Peter
Kandasamy.K
Marry Josphine
Velusamy.L

 PROGRAM 9.15

A program to read students’ information such as name, roll number, age, sex, height and weight from the
keyboard and to sort student’s structures in an alphabetical order in which name is key for sorting. The
sorted and unsorted structures are displayed onto the video screen.

// sorting of array of structures (name is the key)
#include <iostream>
#include <cstring>
using namespace std;
const int MAX = 100;
struct student_info {
 char name[20];
 long int rollno;
 char sex[5];
 oat height;

 Programming with C++366

 oat weight;
};
int main()
{
 int i,j,n;
 char ch;
 struct student_info stud[MAX];
 void output_data(struct student_info sample[],int n);
 void sort_data(struct student_info sample[],int n);
 cout <<“ How many records ?\n”;
 cin >> n;
 getchar(); // to skip any extra line feed
 cout <<“enter data ...\n”;
 for (i = 0; i <= n-1; ++i) {
 cout <<“\n Record = ” << i+1 << ‘\n’;
 cout <<“Name : ”;
 j = 0;
 while ((ch = getchar()) != ‘\n’)
 stud[i].name[j++] = ch;
 stud[i].name[j++] = ‘\n’;
 stud[i].name[j++] = ‘\0’;
 cout <<“Roll no : ”;
 cin >> stud[i].rollno;
 cout <<“sex : ”;
 cin >> stud[i].sex;
 cout <<“Height : ”;
 cin >> stud[i].height;
 cout <<“Weight : ”;
 cin >> stud[i].weight;
 getchar(); // skip white space,if any
 }
 cout <<“ \n \n”;
 cout <<“Unsorted order ... \n”;
 cout <<“---------\n”;
 output_data(stud,n);
 sort_data(stud,n);
 cout <<“\n \n”;
 cout <<“Sorted order ... \n”;
 cout <<“---------\n”;
 output_data(stud,n);
 return 0;
}

void output_data(struct student_info sample[],int n)
{
 int i,j;
 char ch;
 cout <<“Name Roll_No Sex Height Weight \n”;
 cout <<“-------------- \n”;
 for (i = 0; i <= n-1; ++i) {
 j = 0;
 while ((ch =sample[i].name[j++]) != ‘\n’)
 putchar(ch);
 cout <<‘\t’ << sample[i].rollno << ‘\t’;
 cout << sample[i].sex << ‘\t’;
 cout << sample[i].height << ‘\t’;
 cout << sample[i].weight << ‘\t’;

 cout <<“\n”;
 cout <<“------------------ \n”;
 }
}

/* bubble sort algorithm */
void sort_data(struct student_info a[],int n)
{
 struct student_info temp;

 Structures, Unions and Bit Fields 367

 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j <= n-2; ++j) {
 if (strcmp (a[j].name,a[j+1].name) >= 0)
 {
 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 }
 } /* end of j loop */
 } /* end of i loop */
}

Output of the above program

How many records?
7
enter data ...

Record = 1
Name : Sampath Reddy
Roll no : 20071
sex: M
Height : 178
Weight : 67

Record = 2
Name: Sudheer Reddy
Roll no : 20078
sex : M
Height : 167
Weight : 90

Record = 3
Name: Velusamy.L
Roll no : 20072
sex: M : M
Height : 156
Weight : 67

Record = 4
Name : Mary Peter
Roll no : 20074
sex : F
Height : 145
Weight : 50

Record = 5
Name : Ahmed Saif
Roll no : 20079
sex : M
Height : 190
Weight : 90

Record = 6
Name : Antony Paul
Roll no : 20070
sex : M
Height : 145

 Programming with C++368

Weight : 56

Record = 7
Name : Kuppusamy.K
Roll no : 200711
sex : M
Height : 186
Weight : 78

Unsorted order

--
Name Roll_No Sex Height Weight
--
Sampath Reddy 20071 M 178 67

Sudheer Reddy 20078 M 167 90

Velusamy.L 20072 M 156 67

Mary Peter 20074 F 145 50

Ahmed Saif 20079 M 190 90

Antony Paul 20070 M 145 56

Kuppusamy.K 200711 M 186 78

Sorted order

--
Name Roll_No Sex Height Weight
--
Ahmed Saif 20079 M 190 90

Antony Paul 20070 M 145 56

Kuppusamy.K 200711 M 186 78

Mary Peter 20074 F 145 50

Sampath Reddy 20071 M 178 67

Sudheer Reddy 20078 M 167 90

Velusamy.L 20072 M 156 67
--

9.8 STRUCTURES WITHIN A STRUCTURE NESTED STRUCTURE

So far, whatever discussions have been made pertaining to the declaration of the fi eld of a structure are

restricted only to simple and array data types. In C++, it is permitted to declare a structure as a member

of another structure. When a structure is declared as the member of another structure, it is called as nested

structure or structure within a structure. The main advantages of using nested structure is to process and

realise complex structures in an easy manner. Storing and retrieving of nested structures are much simpler

than the conventional structures if there are many fi elds to be processed.

 Structures, Unions and Bit Fields 369

The general format for a declaration of a nested structure is as follows:

 storage_class struct outer_structname {
 data_type member 1;
 data_type member 2;

 data_type member n;
 };
 storage_class struct user_de ned_name {
 outer_structname member 1;
 data_type member 2;
 };

The storage class is optional, whereas the keyword struct and the braces are essential. The user-
de ned name is usually used, but there are situations in which it is not required. The data type and

members are any valid C++ data objects such as short int, oat, char and struct. The level of

nesting of structures depends on the compiler being used in the machine.

The nested structure can be represented graphically as:

To process the individual elements in a nested structure, fi rst represent the structure variable name and

the fi rst structure, and then the fi eld name of the fi rst structure.

(struct variable name).(struct rst name). eld name = variable;

For example, the following program segment illustrates how to declare a nested structure in C++. The

structure student_info contains three members, namely, name, rollno and dob where dob is a struct data

type. The dob is declared as struct which consists of three members, namely, day, month and year.

struct date {
 int day;
 int month;
 int year;
};
struct student_info {
 char name[20];
 long int rollno;
 struct date dob;
};
struct student_info a;
int main ()

 Programming with C++370

{
 // nested structure assignments

 a.name[] = “ sample ”;
 a.rollno = 95001;
 a.dob.day = 21;
 a.dob.month = 12;
 a.dob.year = 1990;

 return 0;
}

 PROGRAM 9.16

A program to demonstrate how to defi ne, declare and realise a nested structure in C++.

// nesting struct (struct within struct)
#include <iostream>
using namespace std;
int main()
{
 struct date {
 int day;
 int month;
 int year;
 };
 struct student_info {
 long int rollno;
 char sex;
 oat height;
 oat weight;
 struct date dateofbirth;
 };
 struct student_info student;
 student.rollno = 2003101;
 student.sex = ‘M’;
 student.height = 175;
 student.weight = 65;
 student.dateofbirth.day = 10;
 student.dateofbirth.month = 5;
 student.dateofbirth.year = 1964;
 cout <<“Contents of the student_info :\n”;
 cout <<“\n Roll no : ” << student.rollno;
 cout <<“\n sex : ” << student.sex;
 cout <<“\n Height : ” << student.height;
 cout <<“\n Weight : ” << student.weight;
 cout <<“\n Date of birth :”;
 cout << student.dateofbirth.day << “/”;
 cout << student.dateofbirth.month << “/”;
 cout << student.dateofbirth.year << ‘\n’;
 return 0;
}

Output of the above program
Contents of the student_info:
Roll no : 2003101
sex : M
Height : 175

 Structures, Unions and Bit Fields 371

Weight : 65
Date of birth : 10/5/1964

 PROGRAM 9.17

A program to demonstrate how to defi ne, declare and realise a deep nested structure in C++.

// nesting struct (struct within struct)
#include <iostream>
using namespace std;
int main()
{
 struct date {
 int day;
 int month;
 int year;
 };
 struct physical_info {
 char *st_name;
 long int rollno;
 char sex;
 oat height;
 oat weight;
 };
 struct course_details {
 char *cu_name;
 int no_semester;
 struct date datejoin;
 };
 struct student_info {
 struct physical_info basic;
 struct course_details course;
 struct date datebirth;
 };
 struct student_info stud;
 stud.basic.st_name = “Sampath Reddy”;
 stud.basic.rollno = 2003101;
 stud.basic.sex = ‘M’;
 stud.basic.height = 175;
 stud.basic.weight = 65;
 stud.course.cu_name = “B.Tech”;
 stud.course.no_semester = 8;
 stud.course.datejoin.day = 10;
 stud.course.datejoin.month = 5;
 stud.course.datejoin.year = 2003;
 stud.datebirth.day = 23;
 stud.datebirth.month = 12;
 stud.datebirth.year = 1978;
 cout <<“Contents of the student_info :\n”;
 cout <<“\n Name : ” << stud.basic.st_name;
 cout <<“\n Roll no : ” << stud.basic.rollno;
 cout <<“\n sex : ” << stud.basic.sex;
 cout <<“\n Height : ” << stud.basic.height;
 cout <<“\n Weight : ” << stud.basic.weight;
 cout <<“\n Course Detail’s :”;
 cout <<“\n Course Name :” << stud.course.cu_name;
 cout <<“\n No of Semester :” << stud.course.no_semester;
 cout <<“\n Date of joining the course :”;
 cout << stud.course.datejoin.day << “/”;
 cout << stud.course.datejoin.month << “/”;
 cout << stud.course.datejoin.year ;
 cout <<“\n Date of birth :”;
 cout << stud.datebirth.day << “/”;
 cout << stud.datebirth.month << “/”;

 Programming with C++372

 cout << stud.datebirth.year << ‘\n’;
 return 0;
}

Output of the above program

Contents of the student_info :

Name : Sampath Reddy
Roll no : 2003101
sex : M
Height : 175
Weight : 65
Course Detail’s:
Course Name: B.Tech
No of Semester: 8
Date of joining the course: 10/5/2003
Date of birth: 23/12/1978

 PROGRAM 9.18

A program to read a students’ information such as name, roll number, sex and date of joining like day, month
and year of the institute from the keyboard and to sort the student’s structures in an alphabetical order in
which name is key for sorting. The sorted and unsorted structures are displayed onto the video screen.

// sorting of array of nested structures (name is key)
#include <iostream>
#include <cstring>
using namespace std;
const int MAX = 100;
struct date {
 int day;
 int month;
 int year;
};
struct physical_info {
 char name[20];
 long int rollno;
 char sex[5];
 oat height;
 oat weight;
};
struct student_info {
 struct physical_info basic;
 struct date dateofbirth;
};
int main()
{
 int i,j,n;
 char ch;
 struct student_info stud[MAX];
 void output_data(struct student_info sample[],int n);
 void sort_data(struct student_info sample[],int n);
 cout <<“ How many records ?\n”;
 cin >> n;
 getchar(); // to skip any extra line feed
 cout <<“enter data ...\n”;
 for (i = 0; i <= n-1; ++i) {
 cout <<“\n Record = ” << i+1 << ‘\n’;
 cout <<“Name : ”;
 j = 0;

 Structures, Unions and Bit Fields 373

 while ((ch = getchar()) != ‘\n’)
 stud[i].basic.name[j++] = ch;
 stud[i].basic.name[j++] = ‘\n’;
 stud[i].basic.name[j++] = ‘\0’;
 cout <<“Roll no : ”;
 cin >> stud[i].basic.rollno;
 cout <<“sex : ”;
 cin >> stud[i].basic.sex;
 cout <<“Height : ”;
 cin >> stud[i].basic.height;
 cout <<“Weight : ”;
 cin >> stud[i].basic.weight;
 cout <<“Enter date of Birth (dd-mm-yy) \n”;
 cin >> stud[i].dateofbirth.day;
 cin >> stud[i].dateofbirth.month;
 cin >> stud[i].dateofbirth.year;
 getchar(); // skip white space,if any
 }
 cout <<“ \n \n”;
 cout <<“Unsorted order ... \n”;
 cout <<“-- -------\n”;
 output_data(stud,n);
 sort_data(stud,n);
 cout <<“\n \n”;
 cout <<“Sorted order ... \n”;
 cout <<“----------\n”;
 output_data(stud,n);
 return 0;
}

void output_data(struct student_info sample[],int n)
{
 int i,j;
 char ch;
 cout <<“Name Roll Sex Height Weight DateofBirth\n”;
 cout <<“-------------------- \n”;
 for (i = 0; i <= n-1; ++i) {
 j = 0;
 while ((ch =sample[i].basic.name[j++]) != ‘\n’)
 putchar(ch);
 cout << ‘\t’<< sample[i].basic.rollno;
 cout << ‘\t’<< sample[i].basic.sex;
 cout << ‘\t’<< sample[i].basic.height;
 cout << ‘\t’<< sample[i].basic.weight;
 cout << ‘\t’ << sample[i].dateofbirth.day;
 cout << “/” << sample[i].dateofbirth.month;
 cout << “/” << sample[i].dateofbirth.year;
 cout <<“\n”;
 cout <<“-------------------- \n”;
 }
}

/* bubble sort algorithm */
void sort_data(struct student_info a[],int n)
{
 int i,j;
 struct student_info temp;
 for (i = 0; i <= n-1; ++i) {
 for (j = 0; j <= n-2; ++j) {
 if (strcmp (a[j].basic.name,a[j+1].basic.name) >=0)
 {

 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 }

 Programming with C++374

 } /* end of j loop */
 } /* end of i loop */
}

Output of the above program

How many records?
6
enter data ...

Record = 1
Name : Velusamy
Roll no : 27001
sex : M
Height : 167
Weight : 89
Enter date of Birth (dd-mm-yy) 12 12 1980

Record = 2
Name : Antony
Roll no : 27002
sex : M
Height : 156
Weight : 78
Enter date of Birth (dd-mm-yy) 21 11 1980

Record = 3
Name : Mary
Roll no : 27004
sex : F
Height : 145
Weight : 45
Enter date of Birth (dd-mm-yy) 10 10 1980

Record = 4
Name : Anbu
Roll no : 27006
sex : M
Height : 164
Weight : 67
Enter date of Birth (dd-mm-yy) 12 12 1979

Record = 5
Name : Arul
Roll no : 27007
sex : M
Height : 178
Weight : 67
Enter date of Birth (dd-mm-yy) 13 11 1981
Record = 6
Name : Sinha
Roll no : 27009
sex : M
Height : 156
Weight : 67
Enter date of Birth (dd-mm-yy) 25 10 1981

 Structures, Unions and Bit Fields 375

Unsorted order

--–––––––––––––––
Name Roll Sex Height Weight Date of Birth
--–––––––––––––––
Velusamy 27001 M 167 89 12/12/1980

Antony 27002 M 156 78 21/11/1980

Mary 27004 F 145 45 10/10/1980

Anbu 27006 M 164 67 12/12/1979

Arul 27007 M 178 67 13/11/1981

Sinha 27009 M 156 67 25/10/1981
--–––––––––––––––

Sorted order

--–––––––––––––––
Name Roll Sex Height Weight Date of Birth
--–––––––––––––––
Anbu 27006 M 164 67 12/12/1979

Antony 27002 M 156 78 21/11/1980

Arul 27007 M 178 67 13/11/1981

Mary 27004 F 145 45 10/10/1980

Sinha 27009 M 156 67 25/10/1981

Velusamy 27001 M 167 89 12/12/1980
--–––––––––––––––

9.9 POINTERS AND STRUCTURES

So far, it has been shown that a member of a structure could be an ordinary data type such as int, fl oat, char

or even a structure also. In this section, how a pointer variable can be declared as a member to a structure is

discussed. In Chapter 6 on pointers, it has been stated that a pointer is a variable which holds the memory

address of a variable of basic data types such as int, fl oat or sometimes an array. A pointer can be used to

hold the address of a structure variable too. The pointer variable is very much used to construct complex

data bases using the data structures such as linked lists, double linked lists and binary trees.

The following declaration is valid

 struct sample {
 int x;
 oat y;
 char s;
 };
 struct sample *ptr;

where ptr is a pointer variable holding the address of the structure sample and is having three members

such as int x, oat y and char s.

 Programming with C++376

The pointer to structure variable can be accessed and processed in one of the following ways:

 (*structure name). eld name = variable;

The parentheses are essential because the structure member period (.) has a higher precedence over

the indirection operator (*). The pointer to structure can also be expressed using dash (–) followed by the

greater than sign (>).

 structure name -> eld name = variable;

The following assignment is a valid pointer structure:

Type 1 The pointer to structure variable can be accessed and processed in the following ways:

 (*structure name). eld name = variable;

The parentheses are essential because the structure member period (.) has a higher precedence over the

indirection operator (*).
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 oat y;
 char s;
 };
 struct sample *ptr;
 (*ptr).x = 10;
 (*ptr).y = -23.45;
 (*ptr).s = ‘d’;

 return 0;
}

 PROGRAM 9.19

A program to assign some values to the member of a structure using an indirection operator.

//pointers and structures
//method 1
#include <iostream>
using namespace std;
int main()
{
 struct sample{
 int x;
 int y;
 };
 sample *ptr;
 sample one;
 ptr = &one;
 (*ptr).x = 10;
 (*ptr).y = 20;
 cout << “contents of x = ”<< (*ptr).x << endl;
 cout << “contents of y = ”<< (*ptr).y << endl;
 return 0;
}

 Structures, Unions and Bit Fields 377

Output of the above program
contents of x = 10
contents of y = 20

Type 2 The pointer to structure can also be expressed using dash (–) followed by the greater than sign (>).

 structure name -> eld name = variable;

The pointer to structure variable can be accessed and processed in the following ways:

#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 oat y;
 char s;
 };
 struct sample *ptr;
 ptr->x = 10;
 ptr->y = -23.45;
 ptr->s = ‘d’;

 return 0;
}

 PROGRAM 9.20

A program to assign some values to the member of a structure using a pointer structure operator.

//pointers and structures
// method 2

#include <iostream>
using namespace std;
int main()
{
 struct sample{
 int x;
 int y;
 };
 sample one;
 sample *ptr;
 ptr = &one;
 ptr->x = 10;
 ptr->y = 20;
 cout << “contents of x = ”<< ptr->x << endl;
 cout << “contents of y = ”<< ptr->y << endl;
 return 0;
}

Output of the above program

contents of x = 10
contents of y = 20

 Programming with C++378

 PROGRAM 9.21

A program to read a set of values from the keyboard using a pointer to structure operator and display the
contents of the structure on the screen.

//pointers and structures
#include <iostream>
using namespace std;
int main()
{
 struct sample{
 int x;
 int y;
 };
 sample *ptr;
 cout << “enter value for x and y \n”;
 cin>> ptr->x >> ptr->y;
 cout << “contents of x = ”<< ptr->x << endl;
 cout << “contents of y = ”<< ptr->y << endl;
 return 0;
}

Output of the above program

enter value for x and y
10 20
contents of x = 10
contents of y = 20

The indirection operator is also used to assign the pointer variable to a structure. For example,

#include <iostream>
using namespace std;
int main()
{
 struct sample{
 int *ptr1;
 oat *ptr2;
 };
 sample * rst,obj;
 rst = &obj;
 int value1;
 oat value2;

 (* rst).ptr1 =&value1;
 (* rst).ptr2 =&value2;

 return 0;
}

 PROGRAM 9.22

A program to declare a pointer variable as a member of a structure and display the contents of the
structure.

 Structures, Unions and Bit Fields 379

//pointers and structures
#include <iostream>
using namespace std;

int main()
{
 struct sample{
 int *ptr1;
 oat *ptr2;
 };
 sample * rst,obj;
 int value1;
 oat value2;
 value1 = 10;
 value2 = -20.20;
 rst = &obj;
 rst->ptr1 = &value1;
 rst->ptr2 = &value2;
 cout << “contents of the rst member = ”<< * rst->ptr1 << endl;
 cout << “contents of the second member = ”<< * rst->ptr2 << endl;
 return 0;
}

Output of the above program

contents of the rst member = 10
contents of the second member = -20.2

9.10 UNIONS

It is well known that a structure is a heterogeneous data type which allows to pack together different types
of data values as a single unit. Union is also similar to a structure data type with a difference in the way the
data is stored and retrieved.

The union stores values of different types in a single location. A union will contain one of the many
different types of values (as long as only one is stored at a time). The declaration and the usage of union is
same as structures. Union holds only one value for one data type. If a new assignment is made, the previous
value is automatically erased.

The symbolic representation of a union declaration is:

 union user_de ned_name {
 member 1;
 member 2;

 member n;
 };

The keyword union is used to declare the union data type. This is followed by a user_de ned_
name surrounded by braces which describes the member of the union.

The general format of the union is,

 storage_class union user_de ned_name {
 data_type member 1;
 data_type member 2;

 data_type member 1;
 };

 Programming with C++380

The storage class is optional. The keyword union and the braces are essential. The data type and

members can be any valid C++ data objects such as short int, oat and char.

The syntax diagram of union declaration is given in Fig. 9.2.

Fig. 9.2 Syntax Diagram of Union Declaration

A union may be a member of a structure and a structure may be a member of a union. Moreover,

structures and unions can be mixed freely with arrays.

9.10.1 The Union Tag

C++, permits the defi nition of a union data type without declaring a variable. This is called as union tag.

The general format of the union tag declaration is:

 union user_de ned_name {
 data_type member 1;
 data_type member 2;

 data_type member n;
 } variable 1 , variable 2 ... variable n;

For example,

 union sample {
 int rst;
 oat second;
 char third;
 } one,two;

where one and two are the union variables similar to data size of the sample.

9.10.2 Processing with Union

A period operator is used in between the union variable name and the fi eld name. Once a union type is

defi ned, variables for the union data types can be declared.

 union value {
 int ch;
 double dd;
 };
 union value x;

Similar to structures, the dot operator is used to access a union’s individual fi elds. To assign to the

integer fi eld of x one can use.
 x.ch;
 x.dd;

 Structures, Unions and Bit Fields 381

For example,

 x.ch = 12;
 x.dd = -123.4456;

9.10.3 Initialization of Unions

Static and external structures can be initialised when they are defi ned, and it may seem reasonable to allow the

same for unions. However, a union has only one active member at any given time and it is up to the programmer

to keep track of the active member, as this information is not inherently stored with the union itself.

Although pointers to unions may be used just like pointers to structures, unions themselves may not be

passed as function arguments used in assignment statements or returned by a function. A variable may be a

pointer to a union fi rst as a pointer can point to a structure.

 union value {
 int one;
 oat two;
 char three;
 };
 union value *ptr;

The member can be referred by using the pointer operator

 item1 = ptr->one;
 item2 = ptr->two;
 item3 = ptr->three;

A union can be a member of a structure and it can appear as any member of the structure. Whenever, a

union is declared as a member of a structure, it should not be the fi rst member, but the last one.

For example,

#include <iostream>
using namespace std;
int main ()
{
 struct value {
 int slno;
 char sex;
 union item {
 int one;
 oat two;
 char three;
 };
 int i;
 }; // end of struct declaration
 struct value *u;

 u->item.one = 10;

}

 PROGRAM 9.23

A program to initialise the members of a union and display the contents of the union.

 Programming with C++382

// union 1.cpp
#include <iostream>
using namespace std;
int main ()
{
 union value {
 int i;
 oat f;
 };
 union value x;
 x.i = 10;
 x.f = -1456.45;
 cout << “ rst member = ” << x.i << endl;
 cout << “ second member = ”<< x.f << endl;
 return 0;
}

Output of the above program

 rst member = -994701722
second member = -1456.45

In the above program, the union consists of two members such as an int and a fl oat. Only the fl oat values

are stored and displayed correctly, and the integer values are displayed wrongly. The union only holds a

value for one data type which requires a larger storage among their members.

 PROGRAM 9.24

A program to declare a member of a union as a structure data type and to display the contents of the union.

//union 2.cpp
#include <iostream>
using namespace std;
int main ()
{
 struct date {
 int day;
 int month;
 int year;
 };
 union value {
 int i;
 oat f;
 struct date bdate;
 };
 union value x;
 x.i = 10;
 x.f = -1456.45;
 x.bdate.day = 12;
 x.bdate.month = 7;
 x.bdate.year = 1995;
 cout << “ rst member = ”<< x.i << endl;
 cout << “ second member = ” << x.f << endl;
 cout << “ structure : ” << endl;
 cout << x.bdate.day << “/” << x.bdate.month << “/” ;
 cout << x.bdate.year << endl;
 return 0;
}

Output of the above program

 rst member = 12
second member = 1.68156e-44

 Structures, Unions and Bit Fields 383

structure :
12/7/1995

In the above program, the union consists of three members such as an int, a fl oat and a struct. Only the

values of struct members are stored and displayed correctly. The values of int and fl oat are displayed with

certain garbage values. It is noted that the union only holds a value for one data type which requires a larger

storage among their members.

 PROGRAM 9.25

A program to declare a union as a pointer data type and display the contents of the union using pointer operator.

// union 3.cpp
#include <iostream>
using namespace std;
int main ()
{
 union value {
 int i;
 oat f;
 };
 union value *ptr;
 ptr->i = 10;
 ptr->f = -1456.45;
 cout << “ rst member = ” << ptr->i << endl;
 cout << “ second member = ”<< ptr->f << endl;
 return 0;
}

Output of the above program

 rst member = -994701722
second member = -1456.45

9.11 BIT FIELDS

A bit fi eld is a special type of structure member in the sense several bit fi elds can be packed into an int.

While bit fi elds are variables, they are defi ned in terms of bits rather than characters or integers. Bit fi elds

are useful for maintaining single or multiple bit fl ags in an int without having to use logical AND and

logical OR operations to set and clear them. They can also assist in combining and dissecting bytes and

words that are sent to and received from external devices.

The formal declaration of a bit fi eld is same as the declaration of a structure, but there is a difference in

accessing and using a bit fi eld in a structure. The number of bits required by a variable must be specifi ed

and followed by a colon while declaring a bit fi eld. The bit fi elds can be signed or unsigned integers, from 1

to 16 bits in length. The number of bits will depend on the machine being used.

The bit fi eld is very useful with data items where only a few bits are required to indicate a true or false

condition. Secondly, the bit fi eld is used to save the memory space. The number of bits required by each

variable is declared in a structure. So, C++ will accommodate all these bits into a packed binary form.

The general format of the bit fi eld declaration is:

 struct user_de ned_name {
 data_type member 1;
 data_type member 2;

 Programming with C++384

 data_type member n;
 };

where the individual elements have the same meaning as in structure declaration. Each member declaration

must now indicate a specifi cation indicating the size of the corresponding bit fi eld. To do so, the member

name must be followed by a colon and an unsigned integer indicating the size of fi eld. The interpretation of

these bit fi elds may vary from one C++ compiler to another. For example, some C++ compilers may order

the bit fi eld from right to left, whereas other C++ compilers will order from left to right.

For example,

 struct date {
 unsigned int day : 5; // day is 5 bits
 unsigned int month :4; // month is 4 bits
 unsigned int year :7 ; // year is 7 bits
 };

Declare a structure with these fi elds:

day, month and year as shown below

15...9 8...5 4...0

year month day

The entire structure bits is a single 16 bit word, day takes up 5 bits, month takes up 4 bits and year takes

up 7 bits. The way of accessing a bit fi eld in a structure is similar to accessing another structure fi eld. The

period operator is used to access a bit fi eld of a structure.

For example,

 struct date {
 unsigned int day : 5;
 unsigned int month :4;
 unsigned int year :7 ;
 };
 struct date birthday; // holds a date
 birthday.day = 16;
 birthday.month = 3;
 birthday.year = 1994;

There is one restriction. One cannot take the address of a bit fi eld; which means that one cannot use

scanf or cin to read values into a bit fi eld. Instead, one has to read into a temporary variable and then

assign its value to the bit fi eld. Even the bit fi elds may be accessed in a structure using a pointer operator or

indirection operator.

For example,

Case 1 Accessing a bit fi eld using a pointer operator.

 struct date {
 unsigned int day : 5;
 unsigned int month :4;
 unsigned int year :7 ;
 };
 struct date *bday; // holds a date
 bday->day = 16;
 bday->month = 3;
 bday->year = 1994;

Case 2 Accessing a bit fi eld using an indirection operator.

 struct date {

 Structures, Unions and Bit Fields 385

 unsigned int day : 5;
 unsigned int month :4;
 unsigned int year :7 ;
 };
 struct date *bday; // holds a date
 (*bday).day = 16;
 (*bday).month = 3;
 (*bday).year = 1994;

 PROGRAM 9.26

A program to declare the member of a structure using a bit fi eld data type and display the contents of the
structure.

//bit eld 1.cpp
#include <iostream>
using namespace std;
int main ()
{
 struct value {
 unsigned day :5;
 unsigned month :4;
 unsigned year :7;
 };
 struct value obj;
 obj.day = 12;
 obj.month = 7;
 obj.year = 95;
 cout << “ Date : ” << obj.day << “/” << obj.month;
 cout << “/” << obj.year << endl;
 cout << “ obj requires ” << sizeof(obj) << “ bytes” << endl;
 return 0;
}

Output of the above program

Date: 12/7/95
obj requires 4 bytes

 PROGRAM 9.27

A program to declare the member of a structure as a bit fi eld data type using a const defi nition and display
the contents of the structure.

//bit eld 2.cpp - using const width de nitions
#include <iostream>
using namespace std;
const int BF1 = 5;
const int BF2 = 4;
const int BF3 = 7;
int main ()
{
 struct value {
 unsigned day :BF1;
 unsigned month :BF2;
 unsigned year :BF3;
 }a;
 a.day = 12;
 a.month = 7;

 Programming with C++386

 a.year = 95;
 cout << “ Bit eld using the const ” << endl;
 cout << “ Date : ” << a.day << “/” << a.month << “/”;
 cout << a.year << endl;
 return 0;
}

Output of the above program

Bit eld using the const
Date: 12/7/95

 PROGRAM 9.28

A program to initialise the member of a structure as a bit fi eld data type using a const defi nition and
display the contents of the structure.

//bit eld 3.cpp - bit eld initialization
#include <iostream>
using namespace std;
const int BF1 = 5;
const int BF2 = 4;
const int BF3 = 7;
int main ()
{
 struct value {
 int i;
 unsigned day :BF1;
 unsigned month :BF2;
 unsigned year :BF3;
 oat f;
 };
 struct value a = { 10,23,7,95,-123.4 };
 cout << “ Bit eld initialization ” << endl;
 cout << “ integer value =” << a.i << endl;
 cout << “ Date :”;
 cout << a.day << “/” <<a.month <<“/” << a.year << endl;
 cout << “ oating point value = ”<< a.f;
 return 0;
}

Output of the above program

Bit eld initialization
integer value = 10
Date: 23/7/95
 oating point value = -123.4

9.12 TYPEDEF

The typedef is used to defi ne new data items that are equivalent to the existing data types. Once a user-

defi ned data is declared, then new variables, arrays, structures, and so on can be declared in terms of this

new data types.

The general format of the user-defi ned data types

 typedef datatype newtype;

where typedef is a keyword for declaring the new data items and data type is an existing data type

being converted to the new name.

 Structures, Unions and Bit Fields 387

For example,

 typedef int integer;
 typedef oat real;

 integer i,j;
 real a,b;

where the declaration is same

 int i,j;
 oat a,b;

The typedef is used in a program to make it readable and portable.

 PROGRAM 9.29

A program to defi ne the variables using typedef and to display the contents of the variable.

//using typedef
#include <iostream>
using namespace std;
int main ()
{
 typedef int integer;
 typedef oat real;
 typedef char character;
 integer i,j;
 character ch;
 real a,b;
 i = 10;
 j = 30;
 ch = ‘m’;
 a = -23.45;
 b = 34.89;
 cout << “ using typedef ” << endl;
 cout << “ i = ” << i << ‘\t’;
 cout << “ j = ” << j << endl;
 cout << “ ch = ” << ch << endl;
 cout << “ a = ” << a << ‘\t’;
 cout << “ b = ” << b << endl;
 return 0;
}

Output of the above program

using typedef
i = 10 j = 30
ch = m
a = -23.45 b = 34.89

Even in the array declaration, the user-defi ned data type can be used. For example,

 typedef char value[30];
 value name;

is equivalent to the following declaration

 char name[30];

The following typedef in an array declaration is valid.

 (1)
 typedef char value[20];
 value name;

 Programming with C++388

(2)
 typedef char value;
 value name[20];

The typedef is used for declaring the structure data items also.

 PROGRAM 9.30

A program to declare the member of a structure using typedef and to display the contents of the
structure.

//using typedef in a structure
#include <iostream>
using namespace std;
int main ()
{
 struct rst {
 int a;
 oat b;
 char c;
 };
 typedef struct rst number ;
 number one;
 one.a = 23;
 one.b = -13.45;
 one.c = ‘n’;
 cout << “ contents of the structure ” << endl;
 cout << one.a << ‘\t’ << one.b << ‘\t’ << one.c <<endl;
 return 0;
}

Output of the above program

contents of the structure
23 -13.45 n

The following are valid typedef declarations in the structure data type.

(1)
 typedef struct rst {
 int a;
 oat b;
 char c;
 } number;
 number one;

 (2)
 typedef struct {
 int day;
 oat month;
 char year;
 } date;
 typedef struct {
 char name[20];
 int rollno;
 date dob;
 } student;
 student a[200];

(3)
 typedef struct {

 Structures, Unions and Bit Fields 389

 int day;
 oat month;
 char year;
 } date;
 typedef struct {
 char name[20];
 int rollno;
 date dob;
 } student[200];
 student a;

(4)
 typedef struct {
 int day;
 oat month;
 char year;
 } date;
 typedef struct {
 char name[20];
 int rollno;
 date dob;
 } a[200];

9.13 ENUMERATIONS

Enumeration data types are available in other high level programming languages such as Pascal and Ada.

It is also supported by all C++ compilers. An enumeration data type is a set of values represented by

identifi ers called enumeration constants. The enumeration constants are specifi ed when the type is defi ned.

The general format of the enumeration data type is,

 enum user_de ned_name {
 member 1;
 member 2;

 member n;
 };

where enum is a keyword for defi ning the enumeration data type and the braces are essential. The

members of the enumeration data type such as member 1, member 2 and member n are the individual

identifi ers. Once the enumeration data type is defi ned, it can be declared in the following ways:

 storage_class enum user_de ned_name variable1,variable2 ..variablen

where the storage class is optional. For example, following are valid enumeration data type declarations:

 (1)
 enum sample {
 mon,tue,wed,thu,fri,sat,sun };
 enum sample day1,day2,day3;

 (2)
 enum drinks {
 cola,maza,limca,rasna };
 enum drinks ravi,raju,rani;

 (3)
 enum games {

 Programming with C++390

 tennis,chess,shuttle,swimming,walking };
 enum games student,staff;

The enumeration data type declaration can be written in a single declaration as:

 enum sample {
 mon,tue,wed,thu,fri,sat,sun } day1,day2,day3;

which is exactly equivalent to

(1)
 enum sample {
 mon,tue,wed,thu,fri,sat,sun } day1;
 enum sample day2,day3;

(2)
 enum sample {
 mon,tue,wed,thu,fri,sat,sun };
 enum sample day1;
 enum sample day2;
 enum sample day3;

The enumeration constants can be assigned to the variable like

 day1 = mon;

 day2 = tue and so on.

Enumeration constants are automatically assigned to integers starting from 0, 1, 2 etc. up to the last

number in the enumeration.

 PROGRAM 9.31

A program to declare the enumeration data type and to display the integer values on the screen.

// enumeration 1.cpp
#include <iostream>
using namespace std;
int main ()
{
 enum sample {
 mon,tue,wed,thu,fri,sat,sun }
 day1,day2,day3,day4,day5,day6,day7;
 day1 = mon;
 day2 = tue;
 day3 = wed;
 day4 = thu;
 day5 = fri;
 day6 = sat;
 day7 = sun;
 cout << “ Monday = ” << day1 << endl;
 cout << “ Tuesaday = ” << day2 << endl;
 cout << “ Wednesday = ” << day3 << endl;
 cout << “ Thursday = ” << day4 << endl;
 cout << “ Friday = ” << day5 << endl;
 cout << “ Saturday = ” << day6 << endl;
 cout << “ Sunday = ” << day7 << endl;
 return 0;

}

Output of the above program

Monday = 0
Tuesday = 1

 Structures, Unions and Bit Fields 391

Wednesday = 2
Thursday = 3
Friday = 4
Saturday = 5
Sunday = 6

These integers are normally chosen automatically but they can also be specifi ed by the programmer. For

example,

 enum sample {
 mon,tue,wed = 10,thu,fri,sat = 15,sun }
 day1,day2,day3,day4,day5,day6,day7;

The C++ compiler assigns the enumeration constants as

Monday = 0
Tuesday = 1
Wednesday = 10
Thursday = 11
Friday = 12
Saturday = 15
Sunday = 16

Even negative integers are permitted to be defi ned as enumeration constants. For example, if,

enum sample {
 mon,tue,wed = 10,thu,fri = -1,sat,sun }
 day1,day2,day3,day4,day5,day6,day7;

then the C++ compiler assigns the following enumeration constants:

Monday = 0
Tuesday = 1
Wednesday = 10
Thursday = 11
Friday = -1
Saturday = 0
Sunday = 1

 REVIEW QUESTIONS

 1. What is a structure and what are its uses?

 2. Distinguish a structure data type with other data type variables.

 3. How is a structure different from an array?

 4. Summarise the rules governing the declaration of a structure.

 5. Describe how a structure can be initialised and what are the scope rules for that.

 6. What is meant by a member or fi eld of a structure?

 7. What is the difference between declaration of a structure and initialisation of a structure?

 8. What is meant by an array of fi elds in a structure and how is it different from an array?

 9. How are the data elements of a structure accessed and processed?

 10. What is meant by an array of structure?

 11. How does the formal argument of a structure passed in a function call?

 12. Can the return statement be used within a calling function of a structure?

 13. What is meant by a structure within a structure?

 14. Summarize a few real life applications of a structure data type.

 Programming with C++392

 15. What is a bit fi eld and what is its use?

 16. Describe how a bit fi eld can be used within a structure declaration.

 17. What is meant by a union? Differentiate between a structure data type and a union.

 18. What is the advantage of using a union in C++?

 19. Explain how a bit fi eld can be used within a union data type.

 20. What is a user-defi ned data type? List its merits and demerits.

 21. Explain the salient features of the typedef.

 22. How many data items can be stored in a union at any given time?

 23. Is the structure tag required? Give an example of a structure with no tag.

 24. List the merits and demerits of the enumeration data types.

 25. What is the use of declaring an anonymous union in C++?

 26. Summarise a few real-life applications of a structure data type.

 27. Explain how the structures of two different types of fi elds can be compared and assigned.

 28. Explain the various methods of declaring structures in C++.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 int y;
 };
 struct sample *ptr,obj;
 ptr = &obj;
 (*ptr).x = 100;
 (*ptr).y = -200;
 cout <<“Contents of x = ” << ++(*ptr). x << ‘\n’;
 cout <<“Contents of y = ” << ++(*ptr). y << ‘\n’;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *x;
 int *y;
 };
 struct sample *ptr,obj;
 int ix = 10,iy = -20;
 ptr = &obj;
 ptr->x = &ix;
 ptr->y = &iy;
 cout <<“Contents of x = ” << *(*ptr).x << ‘\n’;

 Structures, Unions and Bit Fields 393

 cout <<“Contents of y = ” << *(*ptr).y << ‘\n’;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *x;
 int *y;
 };
 struct sample *ptr,obj;
 int ix = 10,iy = -20;
 ptr = &obj;
 ptr->x = &ix;
 ptr->y = &iy;
 cout <<“Contents of x = ” << ++(*(*ptr).x) << ‘\n’;
 cout <<“Contents of y = ” << ++(*(*ptr).y) << ‘\n’;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *x;
 int *y;
 };
 struct sample *ptr,obj;
 int ix = 10,iy = -20;
 ptr = &obj;
 (*ptr).x = &ix;
 (*ptr).y = &iy;
 cout <<“Contents of x = ” << ++(*ptr->x) << ‘\n’;
 cout <<“Contents of y = ” << ++(*ptr->y) << ‘\n’;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 int y;
 };
 struct sample *ptr,obj;
 ptr = &obj;
 ptr->x = 10;
 ptr->y = -20;
 cout <<“Contents of x = ” << ++(*ptr).x << ‘\n’;
 cout <<“Contents of y = ” << ++(*ptr).y << ‘\n’;

 Programming with C++394

 return 0;
}

 2. What will be the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 int y;
 };
 struct sample *ptr,obj;
 ptr = &obj;
 ptr->x = 10;
 ptr->y = -20;
 (*ptr).x++;
 (*ptr).y++;
 cout <<“Contents of x = ” << (*ptr).x << ‘\n’;
 cout <<“Contents of y = ” << (*ptr).y << ‘\n’;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 int y;
 };
 struct sample *ptr,obj;
 ptr = &obj;
 ptr->x = 10;
 ptr->y = -20;
 ++ptr->x;
 ++ptr->y;
 cout <<“Contents of x = ” << ptr->x << ‘\n’;
 cout <<“Contents of y = ” << ptr->y << ‘\n’;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int x;
 int y;
 };
 struct sample *ptr,obj;
 ptr = &obj;
 ptr->x = 10;
 ptr->y = -20;

 Structures, Unions and Bit Fields 395

 (ptr++)->x;
 (ptr++)->y;
 cout <<“Contents of x = ” << ptr->x << ‘\n’;
 cout <<“Contents of y = ” << ptr->y << ‘\n’;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *ptr1;
 int *ptr2;
 };
 struct sample *abc,obj;
 int value1 = 10,value2 = -20;
 abc = &obj;
 abc->ptr1 = &value1;
 abc->ptr2 = &value2;
 cout <<“Contents of x = ” << *abc->ptr1 << ‘\n’;
 cout <<“Contents of y = ” << *abc->ptr2 << ‘\n’;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *ptr1;
 int *ptr2;
 };
 struct sample *abc,obj;
 int value1 = 10,value2 = -20;
 abc = &obj;
 abc->ptr1 = &value1;
 abc->ptr2 = &value2;
 abc->ptr1++;
 abc->ptr2++;
 cout <<“Contents of x = ” << *abc->ptr1 << ‘\n’;
 cout <<“Contents of y = ” << *abc->ptr2 << ‘\n’;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
int main()
{
 struct sample {
 int *ptr1;
 int *ptr2;
 };
 struct sample *obj,ptr;

 Programming with C++396

 int value1 = 10,value2 = -20;
 obj = &ptr;
 obj->ptr1 = &value1;
 obj->ptr2 = &value2;
 ++(obj->ptr1);
 ++(obj->ptr2);
 cout <<“Contents of x = ” << *obj->ptr1 << ‘\n’;
 cout <<“Contents of y = ” << *obj->ptr2 << ‘\n’;
 return 0;
}

 PROGRAMMING EXERCISES

 1. (a) Develop a program in C++ to create a database for the on-line Banking system. Your database

should consist of the following information:

 customer name

 customer code

 Type of Account (Savings, Current, Fixed)

 Amount deposited

 Contact Address

 E-mail ID

 (b) Your program should do the following things:

 ∑ build a master table

 ∑ list a table

 ∑ insert a new entry

 ∑ delete an old entry

 ∑ edit entry

 ∑ search for a structure to be printed

 ∑ sort entries

 2. Develop a program in C++ to create a data base with the following items using a structure data type:

 name of the patient

 sex

 age

 ward number

 bed number

 nature of the illness

 date of admission

 Your program should have the facilites as in 1 (b).

 3. Develop a program in C++ to create a pay roll system of an organisation assuming that the following

information can be read from the keyboard

 employee name

 employee code

 designation

 account number

 date of joining

 basic pay

 Structures, Unions and Bit Fields 397

 DA, HRA and CCA

 deductions like PPF, GPF, CPF, LIC, NSS, NSC, etc.

 Your program should have the facilities as in 1(b).

 4. Develop a program in C++ to prepare the mark sheet of a university examination assuming that the

following items are read from the keyboard:

 name of the student

 roll number

 subject code

 subject name

 internal marks

 external marks

 Your program should have the facilities as in 1(b).

 5. Develop a program in C++ to create a library information system

 accession number

 name of the author

 title of the book

 year of publication

 publisher’s name

 cost of the book

 Your program should have the facilities as in 1(b).

 6. Develop a program in C++ to create a data base of the personnel information system containing

 name

 date of birth

 blood group

 height

 weight

 insurance policy number

 contact address

 telephone number

 driving licence number, etc.

 Your program should have the facilities as in 1(b).

 7. Develop a program in C++ to create a database for the Employee Information System (EIS) of an

organisation and your data base should consist of the following information:

 employee name

 employee code

 designation

 years of experience

 age

 Your program should have the facilities as in 1(b).

Classes and
Objects

Chapter

10

10.1 INTRODUCTION

So far, how to develop C++ programs without the use of classes and objects have been explained without

exploiting the full potential of C++ by using objects and classes. A class is a user-defi ned data type which

holds both the data and functions. The internal data of a class is called member data (or data member) and

the functions are called member functions. The member functions mostly manipulate the internal data of

a class. The member data of a class should not normally be addressed outside a member function. The

variables of a class are called objects or instances of a class.

The word ‘class’ is a fundamental and powerful keyword in C++. It is signifi cantly useful as it is used

to combine the data and operations of a structure into a single entity. The class construct differs from the

conventional C language struct construct. The class construct provides support for data hiding, abstraction,

encapsulation, single inheritance, multiple inheritance, polymorphism and public interface functions

(methods) for passing message between objects. This section stresses only the elementary concepts of the

object-oriented programming (OOP) terminology and the subsequent sections deals with implementation of

these topics in C++.

In the previous chapter, it has been explained how diff erent data items could
be grouped into a single entity as a structure or a union. Classes and objects are
the main ideas of the object-oriented programming tools. How these items are
realised in C++ are discussed in this chapter. The array of class objects, pointers
to classes, and classes within a class are explained in this chapter with numerous
illustrative examples. This chapter mainly covers how a class of objects can be
defi ned, declared and used in a program. The various topics of classes, namely,
class constructors, destructors, copy constructor, conversion constructor, this
argument, inline functions and dynamic memory allocation operators such as
new and delete are explained in the subsequent chapters.

 Classes and Objects 399

(a) Data Abstraction In OOP, the data abstraction is defi ned as a collection of data and methods (functions).

(b) Data Hiding In C++, the class construct allows to declare data and methods, as a public, private and

protected group. The implementation details of a class can be hidden. This is done by the data hiding

principle.

(c) Data Encapsulation The internal data (the member data) of a class are fi rst separated from the outside

world (the defi ned class). They are then put along with the member functions in a capsule. In other words,

encapsulation groups all the pieces of an object into one neat package. It avoids undesired side effects of

the member data when it is defi ned out of the class and also protects the intentional misuse of important

data. Classes effi ciently manage the complexity of large programs through encapsulation.

(d) Inheritance C++ allows a programmer to build hierarchy of classes. The derivation of classes is used

for building hierarchy. The basic features of classes (parent classes or basic classes) can be passed onto the

derived classes (child classes). In practice, the inheritance principle reduces the amount of writing; as the

derived classes do not have to be written again.

(e) Polymorphism In OOP, polymorphism is defi ned as how to carry out differnt processing steps by a

function having the same messages. Polymorphism treats objects of related classes in a generic manner.

The following equivalent terminology is used between the function oriented programming and OOP:

Function oriented programming Object oriented programming (OOP)

User-defi ned types Classes

Variables Objects

Structure members Instance variables

Functions Methods

Function call Message passing

10.2 STRUCTURES AND CLASSES

It has already been stated in the previous chapter

that a structure contains one or more data items

(called members) which are grouped together as

a single unit. On the other hand, a class is similar

to a structure data type but it consists of not only

data elements but also functions which are operated

on the data elements. Secondly, in a structure, all

elements are public by default, while in a class it is

private. The data and functions can be defi ned in a

class as one of the sections such as private, public

and protected. Function defi ned within a class

have a special relationship to the member data and

member functions (methods). The Object Modelling

Technique (OMT) of a class notation is given in Fig. 10.1.

The general syntax of the class construct is:

Fig. 10.1 Object Modelling Technique (OMT) of a
 Class Notation

 Programming with C++400

 class user_de ned_name {
 private :
 data_type members
 implementation operations
 list of friend functions
 list of friend functions
 public :
 data_type members
 implementation operations
 protected :
 data_type operations
 implementation operations
 };
 class user_de ned_name variable1,variable2..variable n;

 The keyword typedef is not required since a class name is a type of name. The keywords private,

protected and public are used to specify the three levels of access protection for hiding data and function

members internal to the class.

(a) Private In private section, a member data can only be accessed by the member function and friends of

this class. The member functions and friends of this class can always read or write private data members.

The private data member is not accessible to the outside world (out of the class).

(b) Protected The members which are declared in the protected section, can only be accessed by the

member functions and friends of this class. Also, these functions can be accessed by the member functions

and friends derived from this class. It is not accessible to the outside world.

(c) Public The members which are declared in the public section, can be accessed by any function in the

outside world (out of the class). The public implementation operations are also called as member functions

or methods, or interfaces to out of the class. Any function can send messages to an object of this class

through these interface functions.

The public data members can always read and write outside this class. A member function can be inline,

which means the member function can be defi ned within the body of the class constant. The keyword inline

is used for short functions and effi cient storage like the register keyword.

A class may be defi ned using one of the following keywords:

 class
 struct
 union

A structure is a class declared with the class key struct; its members and base classes are public by

default. A union is a class declared with the class key union; its members are public by default and it holds

only one member at a time.

For example, the following declaration illustrates the default member access specifi er:

 (1) A class is declared with the keyword ‘class’,

 class sample {
 int a;
 oat x;
 char ch;
 }; // A class by default has all its members private

 (2) A class is declared with the keyword ‘struct’,

 struct sample {
 int a;

 Classes and Objects 401

 oat x;
 char ch;
 }; // A struct by default has all its members public

 (3) A class is declared with the keyword ‘union’,

 union sample {
 int a;
 oat x;
 char ch;
 };

A union by default has all its members public and it holds only one member at a time.

Class is a key concept of C++. A class is a user-defi ned type and it is the unit of data hiding and

encapsulation. Polymorphism is supported through classes with virtual functions. The class provides a unit

of modularity.

10.3 DECLARATION OF A CLASS

A class is a user-defi ned data type which consists of two sections, a private and a protected section that

holds data and a public section that holds the interface operations.

A class defi nition is a process of naming a class and data variables, and methods or interface operations

of the class. In other words, the defi nition of a class consists of the following steps:

 (i) Defi nition of a class

 (ii) The internal representation of data structures and storage

 (iii) The internal implementation of the interface

 (iv) The external operations for accessing and manipulating the instance of the class.

A class declaration specifi es the representation of objects of the class and the set of operations that can

be applied to such objects.

The general syntax of the class construct is:

 class user_de ned_name {
 private :
 data_type members
 implementation operations
 list of friend functions
 list of friend functions
 public:
 list of friend functions
 data_type members
 implementation operations
 protected :
 list of friend functions
 data_type operations
 implementation operations
 };
 class user_de ned_name variable1,variable2..variable n;

 The keyword typedef is not required since a class name is a type of name. The keywords private,

protected and public are used to specify the three levels of access protection for hiding data and function

members internal to the class.

 Programming with C++402

The syntax diagram of a class declaration is given in Fig. 10.2(a).

Fig. 10.2(a) Syntax Diagram of Class Declaration

A class declaration introduces the class name into the scope where it is declared and hides any class,

object, function or other declaration of that name in an enclosing scope.

 class item {
 // member lists
 };

Class members can be one of the following member lists:

 ∑ data

 ∑ functions

 ∑ classes

 ∑ enumerations

 ∑ bitfi elds

 ∑ friends

 ∑ data type names

Fig. 10.2(b) Syntax Diagram of Class Member Declaration

For example,

 (1) A class date is defi ned as day, month and year of a member data variable without any method or any

member function.

 class date {
 private :

 int day;
 int month;
 int year;

 };
 class date today; // today is object of class date

 (2) The student’s particulars such as rollno, age, sex, height and weight can be grouped as:

class student

 Classes and Objects 403

{
 private :
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 public :
 oat weight;
 void getinfo (); //member function
 void disinfo (); // member function
}; // end of class de nition

The class defi nition is permitted to be declared within the class declaration itself.

 class date {

 public :
 int day;
 int month;
 int year;

 } today; // now the object is created of class date

The keyword class is essential for defi ning a class data type in C++. The important difference between

structures and classes lies in the validity of area of the members. As we have already seen, in a class, by

default, all members are private while in a structure or in a union it is public.

Fig. 10.2 (c) Syntax Diagram of Member Data Declaration

The following declaration is identical while accessing the member of the class.

(1)

 class sample {
 int x;
 int y;

 }; // by default members are private

(2)

 class sample {
 private :

 int x;
 int y;

 };

Note that the keyword ‘private’ is used for declaring the data items of a class explicitly as a private

group.

Some special features of declaring a class data type Note that classes may be unnamed. An unnamed class

cannot have constructors and destructors, and cannot be passed as an argument or returned as a value. Class

objects may be assigned, passed as arguments to functions or returned by functions.

 Programming with C++404

In C++, it is possible to declare an empty class having a nonzero size.

 class sample { }; // class with no members

Note, that a member may not be declared twice in the member list. The member list defi nes the full set

of members of the class and no member can be added elsewhere.

The following class declarations are invalid.

(1)

 class sample {
 private :
 int one;
 int two;
 int one;

 };
 // error, the data member ‘one’ has been redeclared

(2)
 class item {
 private :
 oat x;
 char ch;

 };

 item:: y;
 // error, no member can be added elsewhere, other than class declaration

(3)
 class sample {
 private :

 int x,y;
 public :

 int one;
 void setdata();
 void getdata();
 void display();
 void setdata(); // error, redeclaration

 };

The same rule applies for function declaration also.

 (4) Note that a single name can denote several function members provided their types are suffi ciently

different. The same name cannot denote both a member function and a member data.

 class xy {
 private :

 int funct;
 public :

 int funct(); // error, same name is used for both
 }; // data member and function

(5)
 class abc {
 public :
 int funct();
 int (*funct) ();
 };
 // error, pointer to a function and the function name are same

Note that a member declaration cannot contain an initialiser. A member of a class can be initialised by a

special member function called a constructor.

 Classes and Objects 405

A data member may not be auto, extern or register. The following are illegal declarations of the

data types:

 class sample {
 private :
 auto int x,y;
 extern a,b;
 register one,two;
 };
 // error, illegal data type declaration

10.4 MEMBER FUNCTIONS

A function declared as a member (without the friend specifi er) of a class is called as a member function.

Member functions are mostly given the attributes of public because they have to be called outside the class

either in a program or in a function.

The member functions of a class are designed to operate upon three data types. It can typically be

classifi ed under three types:

 ∑ manager functions

 ∑ accessor functions

 ∑ implementor functions

(a) Manager Functions Manager functions are used to perform initialisation and clean up of the instance of

the class objects. Some of the examples for the manager functions are constructor and destructor functions.

More of these functions are discussed in the next chapter.

(b) Accessor Functions The accessor member functions are the constructor functions that return information

about an object’s current state. An example for the accessor function is a const member function. These

accessor member functions are explained in the next chapter.

(c) Implementor Functions These are the functions that make modifi cations to the data members. These

functions are also called as mutators. In this section, the focus is on how to defi ne and use the implementor

functions which are one of the key concepts in defi ning the data hiding and data encapsulation.

As a class contains not only a data member but also a function which are called methods, it must be

defi ned before it is be used.

For example, the following program segments illustrate how a data member and member function are

defi ned in C++:

 class sample {
 private :
 int x;
 int y;
 public :
 int sum() { //member function
 return(x+y);
 }
 int diff() { //member function
 return(x-y);
 }
 }; // end of class de nition

The member functions sum () and diff () are defi ned quite normally within the class declaration.

The member function can be more complex as they can have local variable, parameters etc.

 Programming with C++406

Defi ning a member function of a class outside its scope In C++, it is permitted to declare the member functions

either inside the class declaration or outside the class declaration. A member function of a class is defi ned

using the :: (double colon symbol) scoping operator.

The syntax diagram of member function declaration is given in Fig. 10.2(d).

Fig. 10.2 (d) Syntax Diagram of Member Function Declaration

The general syntax of the member function of a class outside its scope is

 return_type class_name :: member_functions(argument 1,2...n)

Note, that the type of member function arguments must exactly match with the types declared in the

class defi nition of the class_name.

The important point to note is the use of the scope resolution operator (::) along with the class name

in the header of the function defi nition. Only the scope operator identifi es the function as a member of

a particular class. Without this scope operator, the function defi nition would create an ordinary function,

subject to the usual function rules of access and scope.

For example, the following program segment shows how a member function is declared outside the class

declaration. The member functions are defi ned separately as part of the program.

 class sample {
 private :
 int x;
 int y;
 public :
 int sum(); // member function declaration
 int diff(); // member function declaration
 }; // end of class de nition
 int sample :: sum() // member function de nition
 {
 return(x+y);
 }

 int sample ::diff() // member function de nition
 {
 return(x-y);
 }

The use of the scope operator double colon (::) is important for defi ning the member functions outside

the class declaration. For example, the following program segment illustrates the importance of the scoping

of member functions in a class.

 Classes and Objects 407

 class rst {
 private :
 int x;
 int y;
 public :
 int sum();
 int diff();
 }; // end of class de nition
 class second {
 private :
 int x;
 int y;
 public :
 int sum() ;
 int diff() ;
 }; // end of class de nition
 rst one;
 second two;
 int sum() // error, scope of the member function is not de ned
 {
 return(x+y);
 }

In the above program segment, both classes are defi ned with the same member function names while

accessing these member functions, which is an error. The scope of the member function sum() is not

defi ned. When accessing the member function sum(), control will be transferred to both classes one and

two. So the scope resolution operator (::) is absolutely necessary for defi ning the member functions outside

the class declaration.

 int one :: sum() // correct

 {
 return(x+y);
 }

 int two ::sum() // correct
 {
 return(x+y);

 }

10.5 DEFINING THE OBJECT OF A CLASS

The terms objects and classes have been used loosely throughout the preceding section. In general, a class

is a user-defi ned data type, while an object is an instance of a class template. A class provides a template,

which defi nes the member functions and variables that are required for objects of the class type. A class

must be defi ned prior to the class declaration.

The general syntax for defi ning the object of a class is:

 class user_de ned_name {
 private :
 // methods
 public :
 // methods

 Programming with C++408

 protected :
 // methods
 };
 user_de ned_name object 1,object 2 ... object n;

where object 1, object 2 and object n are the identical class of the user_defi ned_name.

A class defi nition is very similar to a C structure defi nition. The class defi nition defi nes the member

variables and functions.

For example, the following program segments show how to declare and to create a class of objects.

 (1) Student’s information such as roll no, age, sex, height and weight are grouped as

class student_info
 {
 private :
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 public :
 void getinfo ();
 void disinfo ();
 void process();
 void personal();
}; // end of class de nition
student_info obj;
// obj is the object of the class student_info

 The OMT of a class student_info is given in Fig. 10.3.

 (2) The hospital information system such as patient name, sex, age,

etc. can be grouped as

class hospital_info {
 private :
 char patient_name[20];
 char sex;
 int age;
 char fathers_name[20];
 char address[20];
 char illness[30];
 int wardno;
 int bedno;
 public :
 void getinfo();
 void display_info();
 void payment();
 void operation();
}; end of class declartion
hospital_info obj1,obj2;
// obj1 and obj2 are the two objects
 // of the class hospital_info

The OMT of a class hospital_info is given in Fig. 10.4.

 (3) The employee particulars such as employee_name, employee_code,

designation, address, monthly salary and age can be grouped as
class employ_info {
 private :

Fig. 10.3 OMT of a Class
Student_info

Fig. 10.4 OMT of a Class
Hospital_info

 Classes and Objects 409

 char employee_name[20];
 int employee_code;
 char designation [20];
 char address[30];
 oat monthly_salary;
 int age;
 public :
 void salary_payment();

 void saving();
 void tax_payment();
 void get_info();
 void display_info();

}; // end of class de nition
employ_info x,y; // x and y are the two objects of the class employ_info

The OMT of a class employee_info is given in Fig. 10.5.

Fig. 10.5 OMT of a Class Employee_info

10.6 ACCESSING A MEMBER OF CLASS

There are two ways one can access a member of a class similar to accessing member of a struct or union

construct. A data or function member of a class construct is accessed using the . (period) operator.

The general syntax for accessing a member of class is

 class_object.data_member
 class_object.function_member

For example,

class sample {

 private :

 int x;

 int y;

 public :

 int sum();

 int diff();

}; // end of class de nition

 Programming with C++410

void main (void)

{

 sample one;

 one.sum(); // accessing the member function sum()

 one.diff(); // accessing the member function diff()

}

 PROGRAM 10.1

A program to assign values to the data members of a class such as day, month, year and display the
contents of the class on the screen.

// class 1.cpp
#include <iostream>
using namespace std;
int main()
{
 class date {
 public :
 int day,month,year;
 };
 class date today;
 today.day = 10;
 today.month = 5;
 today.year = 2007;
 cout << “ Today’s date is = ” << today.day << “/”;
 cout << today.month << “/” << today.year << endl;
 return 0;
}

Output of the above program

Today’s date is = 10/5/2007

While the keyword public is not used to defi ne the members of a class, the C++ compiler assumes,

by default, that all its members are private. The data members are not accessible outside the class. For

example, the following program demonstrates the accessibility of the members.

// class 2.cpp
#include <iostream>
using namespace std;
int main()
{
 class date { // by default, members are private
 int day,month,year;
 };
 class date today;
 today.day = 10;
 today.month = 5;
 today.year = 2007;
 cout << “ Today’s date is = ” << today.day << “/”;
 cout << today.month << “/” << today.year << endl;
}

The following error message will be displayed during the compilation time.

 Classes and Objects 411

date.day is a private

date.month is a private

date.year is a private

 PROGRAM 10.2

A program to demonstrate how to defi ne both data member and member function of a class within the
scope of class defi nition.

The OMT of a class date is given in Fig. 10.6.

Fig. 10.6 OMT of a Class Date

//class with data and member function
#include <iostream>
using namespace std;
class date {
 private :
 int day,month,year;
 public :
 void getdata(int d,int m,int y)
 {
 day = d;
 month = m;
 year = y;
 }
 void display (void)
 {
 cout << “ Today’s date is = ” << day << “/”;
 cout << month << “/” << year << endl;
 }
}; // end of class de nition

int main()
{
 date today;
 int d1,m1,y1;
 d1 = 10;
 m1 = 5;
 y1 = 2007;
 today.getdata(d1,m1,y1);
 today.display();
 return 0;
}

 Output of the above program
 Today’s date is = 10/5/2007

 Programming with C++412

 PROGRAM 10.3

A program to read the data variables of a class by the member function and display the contents of the
class objects on the screen.

//class with data and member function
#include <iostream>
using namespace std;

class date {
 private :
 int day,month,year;
 public :
 void getdata()
 {
 cout << “ enter the date (dd-mm-year) ” << endl;
 cin >> day >> month >> year;
 }
 void display ()
 {
 cout << “ Today’s date is = ” << day << “/”;
 cout << month << “/” << year << endl;
 }
}; // end of class de nition

int main()
{

 date today;
 today.getdata();
 today.display();
 return 0;
}

Output of the above program
enter the date (dd-mm-year)
12 5 2007
Today’s date is = 12/5/2007

 PROGRAM 10.4

A program to illustrate the use of the simple arithmetic operations such as addition, subtraction,
multiplication and division using a member function. These methods are defi ned within the scope of a
class defi nition.

// member functions are de ned within the class de nition
#include <iostream>
using namespace std;
class sample {
 private :
 int x,y;
 public :
 void getinfo(){
 cout << “ enter any two numbers ? ” << endl;
 cin >> x >> y ;
 }
 void display(){

 Classes and Objects 413

 cout << “ x = ” << x << endl;
 cout << “ y = ” << y << endl;
 cout << “ sum = ” << sum() << endl;
 cout << “ dif = ” << diff() << endl;
 cout << “ mul = ” << mult() << endl;
 cout << “ div = ” << div() << endl;
 }
 int sum(){
 return(x+y);
 }

 int diff(){
 return(x-y);
 }
 int mult(){
 return(x*y);
 }
 oat div(){
 return((oat)x/(oat)y);
 }
}; // end of class de nition
int main()
{
 sample obj1;
 obj1.getinfo();
 obj1.display();
 obj1.sum();
 obj1.diff();
 obj1.mult();
 obj1.div();
 return 0;
}

Output of the above program

enter any two numbers ?
1 2
x = 1
y = 2
sum = 3
dif = -1
mul = 2
div = 0.5

 PROGRAM 10.5

A program to illustrate the use of the simple arithmetic operations such as addition, subtraction,
multiplication and division using a member function. These are defi ned out of the scope of a class defi nition.

//methods are de ned out of the class de nition
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 int y;
 public :
 void getinfo();
 void display();
 int sum();
 int diff();
 int mult();
 oat div();

 Programming with C++414

}; // end of class de nition
void sample :: getinfo()
{
 cout << “ enter any two number ? ” << endl;
 cin >> x >> y ;
}

void sample :: display()
{
 cout << “ x = ” << x << endl;
 cout << “ y = ” << y << endl;
 cout << “ sum = ” << sum() << endl;
 cout << “ dif = ” << diff() << endl;
 cout << “ mul = ” << mult() << endl;
 cout << “ div = ” << div() << endl;
}

int sample :: sum()
{
 return(x+y);
}
int sample :: diff()
{
 return(x-y);
}

int sample :: mult()
{
 return(x*y);
}

 oat sample :: div()
{
 return((oat)x/ (oat)y);
}

int main()
{
 sample obj1;
 obj1.getinfo();
 obj1.display();
 obj1.sum();
 obj1.diff();
 obj1.mult();
 obj1.div();
 return 0;
}

Output of the above program

enter any two number?
1 3
x = 1
y = 3
sum = 4
dif = -2
mul = 3
div = 0.333333

 PROGRAM 10.6

A program to fi nd the area of a circle whose radius is given as input using an OOP technique.

 Classes and Objects 415

// nding the area of a circle
#include <iostream>
#include <cmath>
using namespace std;
const oat pi = 3.14159;
class circle {
 private :
 oat radius,area;
 public :
 void get_radius();
 void nd_area();
 void display_area();
}; // end of class de nition

void circle ::get_radius()
{
 cout << “enter radius of a circle \n”;
 cin >> radius;
}
void circle :: nd_area()
{
 area = pi * radius * radius;
}

void circle :: display_area()
{
 cout << endl;
 cout << “ radius = ” << radius << ‘\n’;
 cout << “ Area of a circle = ” << area << ‘\n’;
}

int main()
{
 circle obj;
 obj.get_radius();
 obj. nd_area();
 obj.display_area();
 return 0;
}

Output of the above program

enter radius of a circle
10
radius = 10
Area of a circle = 314.159

 PROGRAM 10.7

A program to fi nd the sum of the following series using an OOP technique.

sum = 1 + 3 + 5 + 7 + ... n

//summing of series
// sum = 1 + 3 + 5 ... n
#include <iostream>
using namespace std;
class abc {
 private:
 int n;
 public:
 int sum(int n);
};

 Programming with C++416

int abc :: sum (int n)
{
 int temp = 0;
 for (int i = 1; i <= n; i += 2)
 temp += i;
 return (temp);
}

int main()
{
 int max;
 abc obj;
 cout << “enter a value for n ”;
 cin >> max;
 int total = obj.sum(max);
 cout <<“Summing of series \n”;
 cout <<“ 1 + 3 + 5 + ... ” << max << “ = ” << total;
 cout << endl;
 return 0;
}

Output of the above program
enter a value for n
9
Summing of series
1 + 3 + 5 + ... 9 = 25

 PROGRAM 10.8

A program to fi nd the factorial of a given number using an OOP technique.

// nding factorial of a number
#include <iostream>
using namespace std;
class abc {
 private:
 int n;
 public:
 long int fact (int n);
};

long int abc :: fact(int n)
{
 long int temp = 1;
 for (int i = 1; i <= n; ++i)
 temp *= i;
 return (temp);
}

int main()
{
 abc obj;
 int max;
 cout << “ enter a number \n”;
 cin >> max;
 long int total = obj.fact(max);
 cout << “Factorial ” << max << “! = ” << total;
 cout << endl;
 return 0;
}

 Classes and Objects 417

Output of the above program

enter a number
5
Factorial 5! = 120

 PROGRAM 10.9

A program to solve a quadratic equation using an OOP technique.

//solution of quadratic equation using OOP
#include <iostream>
#include <cmath>
using namespace std;
class equation {
 private :
 oat a,b,c;
 public :
 void getinfo(oat a, oat b, oat c);
 void display();
 void equal(oat a, oat b);
 void imag();
 void real(oat a, oat b, oat det);
}; // end of class de nition

void equation ::getinfo(oat aa, oat bb, oat cc)
{
 a = aa;
 b = bb;
 c = cc;
}
void equation :: display()
{
 cout << endl;
 cout << “ a = ” << a << ‘\t’;
 cout << “ b = ” << b << ‘\t’;
 cout << “ c = ” << c << endl;
}

void equation :: equal(oat a, oat b)
{
 oat x;
 x = -b/(2*a);
 cout << “ roots are equal = ” << x <<endl;
}

void equation :: imag()
{
 cout << “ roots are imaginary \n”;
}

void equation :: real(oat a, oat b, oat det)
{
 oat x1,x2,temp;
 temp = sqrt(det);
 x1 = (-b+temp)/(2*a);
 x2 = (-b-temp)/(2*a);
 cout << “ roots are real \n”;
 cout << “ x1 = ” << x1 << endl;
 cout << “ x2 = ” << x2 << endl;
}

int main()
{

 Programming with C++418

 class equation equ;
 oat a,b,c;
 cout << “ enter three numbers \n”;
 cin >> a >> b >> c;
 equ.getinfo(a,b,c);
 equ.display();
 if (a == 0) {
 oat temp;
 temp = -c/b;
 cout << “ linear roots = ” << temp << endl;
 }
 else {
 oat det;

 det = b*b-4*a*c;
 if (det == 0)
 equ.equal(a,b);
 else if (det < 0)
 equ.imag();
 else
 equ.real(a,b,det);
 }
 return 0;
} // end of main program

Output of the above program

enter three numbers
0 1 2
a = 0 b = 1 c = 2
linear roots = -2

enter three numbers
2 4 2
a = 2 b = 4 c = 2
roots are equal = -1

 PROGRAM 10.10

A program to perform simple complex number arithmetic operations using an OOP technique.

// complex number operations using OOP
#include <iostream>
#include <cstdio>
using namespace std;
class complex {
 private :
 oat areal;
 oat aimag;
 oat breal;
 oat bimag;
 public :
 void getinfo(oat a, oat, oat c, oat d);
 void display ();
 void menu();
 void add (oat areal, oat aimag, oat breal , oat bimag);
 void sub (oat areal, oat aimag, oat breal , oat bimag);
 void mul (oat areal, oat aimag, oat breal , oat bimag);
 void div (oat areal, oat aimag, oat breal , oat bimag);
};

void complex::getinfo(oat x, oat y, oat z , oat w)
{

 Classes and Objects 419

 areal = x;
 aimag = y;
 breal = z;
 bimag = w;
}
void complex :: display()
{
 cout << “ rst complex number \n”;
 cout << areal;
 if (aimag < 0)
 cout << “-i” << (-1)*aimag << endl;
 else
 cout << “+i”<< aimag << endl;

 cout << “ second complex number \n”;
 cout << breal;
 if (bimag < 0)
 cout << “-i” << (-1)*bimag << endl;
 else
 cout << “+i”<< bimag << endl;
}

void complex :: menu(void)
{
 cout << “ complex number operations \n”;
 cout << “ menu () \n”;
 cout << “ a -> addition \n”;
 cout << “ s -> subtraction \n”;
 cout << “ m -> multiplication \n”;
 cout << “ d -> multiplication \n”;
 cout << “ q -> quit \n”;
 cout << “ option, please ? \n”;
}

void complex :: add(oat areal, oat aimag, oat breal, oat bimag)
{
 oat creal,cimag;
 creal = areal+breal;
 cimag = aimag+bimag;
 cout << “ Addition of two complex numbers \n”;
 cout << creal;
 if (cimag < 0)
 cout << “-i” << (-1)*cimag << endl;
 else
 cout << “+i”<< cimag << endl;
}

void complex :: sub(oat areal, oat aimag, oat breal, oat bimag)
{
 oat creal,cimag;
 creal = areal-breal;
 cimag = aimag-bimag;
 cout << “ Subtraction of two complex numbers \n”;
 cout << creal;
 if (cimag < 0)
 cout << “-i” << (-1)*cimag << endl;
 else
 cout << “+i”<< cimag << endl;
}

void complex :: mul(oat areal, oat aimag, oat breal, oat bimag)
{
 oat creal,cimag;
 creal = (areal*breal)-(aimag*bimag);
 cimag = (areal*bimag)+(aimag*breal);
 cout << “ Multiplication of two complex numbers \n”;
 cout << creal;

 Programming with C++420

 if (cimag < 0)
 cout << “-i” << (-1)*cimag << endl;
 else
 cout << “+i”<< cimag << endl;
}

void complex :: div(oat areal, oat aimag, oat breal, oat bimag)
{
 oat creal,cimag;
 oat temp;
 temp = (breal*breal)+(bimag*bimag);
 creal = ((areal*breal)+(aimag*bimag))/temp;
 cimag = ((breal*aimag)-(areal*bimag))/temp;
 cout << “ Division of two complex numbers \n”;
 cout << creal;
 if (cimag < 0)
 cout << “-i” << (-1)*cimag << endl;
 else
 cout << “+i”<< cimag << endl;
}

int main()
{
 complex comp;
 oat x,y,z,w;
 char ch;
 cout << “enter a rst complex number \n”;
 cin >> x >> y;
 cout << “ enter a second complex number \n”;
 cin >> z >> w;
 comp.getinfo(x,y,z,w);
 comp.display();
 comp.menu();
 while ((ch = getchar()) != ‘q’) {
 switch (ch) {
 case ‘a’ :
 comp.add(x,y,z,w);
 break;
 case ‘s’ :
 comp.sub (x,y,z,w);
 break;
 case ‘m’ :
 comp.mul (x,y,z,w);
 break;
 case ‘d’ :
 comp.div (x,y,z,w);
 break;
 } // end of switch
 }
 return 0;
} // end of main program

 Output of the above program
enter a rst complex number
1 1
enter a second complex number
2 2
 rst complex number
1+i1
second complex number
2+i2
complex number operations
menu ()

 Classes and Objects 421

a -> addition
s -> subtraction
m -> multiplication
d -> multiplication
q -> quit
option, please?

a
Addition of two complex numbers
3+i3

s
Subtraction of two complex numbers
-1-i1

m
Multiplication of two complex numbers
0+i4

d
Division of two complex numbers
0.5+i0a
q

 PROGRAM 10.11

A program to read a set of characters from the keyboard and store it in the character array and display its
contents onto the video screen using an OOP technique.

#include <iostream>
using namespace std;
class abc {
 public:
 char a[200];
 void getdata();
 void display();
};
void abc :: getdata()
{
 char ch;
 int i = 0;
 cout <<“enter a line of text and terminate with @\n”;
 while ((ch = cin.get()) != ‘@’) {
 a[i++] = ch;
 }
 a[i++] = ‘\0’;
}
void abc :: display()
{
 cout << “contents of a character array \n”;
 for (int i = 0; a[i] != ‘\0’; ++i)
 cout.put(a[i]);
}
int main()
{
 abc obj;
 obj.getdata();
 obj.display();
 return 0;
}

 Programming with C++422

Output of the above program
enter a line of text and terminate with @
this is
a test
program
by Ravich
@

contents of a character array
this is
a test
program
by Ravich

 PROGRAM 10.12

A program to read a set of characters from the keyboard and store it in the character array and fi nd out
the number of characters that are stored in the array; display its contents onto the video screen using an
OOP technique.

//counting number of characters
#include <iostream>
using namespace std;
char a[200];
class abc {
 public:
 void getdata();
 void display();
 int count(char a[]);
};
void abc :: getdata()
{
 char ch;
 int i = 0;
 cout <<“enter a line of text and terminate with @\n”;
 while ((ch = cin.get()) != ‘@’) {
 a[i++] = ch;
 }
 a[i++] = ‘\0’;
}
void abc :: display()
{
 cout << “contents of a character array \n”;
 for (int i = 0; a[i] != ‘\0’; ++i)
 cout.put(a[i]);
}
int abc :: count(char a[])
{
 int i = 0;
 while (a[i] != ‘\0’)
 ++i;
 return (i-1);
}
int main()
{
 abc obj;
 int total_ch;
 obj.getdata();
 obj.display();
 total_ch = obj.count(a);

 Classes and Objects 423

 cout <<“\n Number of characters = ” << total_ch;
 return 0;
}

Output of the above program

enter a line of text and terminate with @
this is
a test
@
contents of a character array
this is
a test
Number of characters = 15

10.7 ARRAY OF CLASS OBJECTS

An array is a user-defi ned data type whose members are homogeneous and stored in contiguous memory

locations. For practical applications such as designing a large size of data base, arrays are very essential. The

declaration of an array of class objects is very similar to the declaration of the array of structures in C++.

The general syntax of the array of class objects is:

 class user_de ned_name {
 private :
 // methods
 public :
 // methods
 protected :
 // methods
 };

 class user_de ned_name object[MAX];

where, MAX is a user defi ned size of the array of class objects.

The various types of declarations of an array of class objects are illustrated below:

(1)
 const int MAX = 200;
 class employee {
 private :

 public :

 };

 class employee obj[MAX];

The class employee has been declared as an object of size 200

(2)
 class library {
 private :

 public :

 Programming with C++424

 } object [100];

C++ permits to declare the array of class objects on the class declaration itself.

(3)

 A class can be declared without defi ning a user-defi ned name in the class tag.

 class {
 private :

 public :

 } library [100];

where library is an object of the class without tag name whose size is 100.

 PROGRAM 10.13

A program to read students’ particulars such as roll number, age, sex, height and weight from the
keyboard and display the contents of the class on the screen. The class ‘student_info’ is defi ned as an
array of class objects. This program shows how to create an array of class objects and how to access these
data member and member functions in C++.

// array of class objects
#include <iostream>
using namespace std;
const int MAX = 100;
class student_info
{
 private :
 long int rollno;
 int age;
 char sex;
 oat height, weight;
 public :
 void getinfo();
 void disinfo();
}; // end of class de nition

void student_info :: getinfo()
{
 cout << “ Roll no :”;
 cin >> rollno;
 cout <<“ Age :”;
 cin >> age;
 cout << “ Sex : ”;
 cin >> sex;
 cout << “ Height : ”;
 cin >> height;
 cout << “ Weight : ”;
 cin >> weight;
}

void student_info :: disinfo ()
{
 cout << endl;
 cout << “ Roll no = ” << rollno << endl;

 Classes and Objects 425

 cout << “ Age = ” << age << endl;
 cout << “ Sex = ” << sex << endl;
 cout << “ Height = ” << height << endl;
 cout << “ Weight = ” << weight << endl;
}

int main()
{
 student_info object[MAX]; // array of objects
 int i,n;
 cout << “ How many students ? \n” << endl;
 cin >> n;
 cout << “ enter the following imformation \n” << endl;
 for (i = 0; i <= n-1; ++i) {

 int j = i;
 cout << endl;
 cout << “ record = ” << j+1 << endl;
 object[i].getinfo();
 }
 cout << “ contents of class \n”;
 for (i = 0; i <= n-1; ++i) {
 object[i].disinfo();
 }

}

Output of the above program
How many students?
2

enter the following imformation
record = 1
Roll no : 20071
Age : 21
Sex : M
Height : 170
Weight : 56

record = 2
Roll no : 20072
Age : 20
Sex : F
Height : 160
Weight : 50

contents of class
Roll no = 20071
Age = 21
Sex = M
Height = 170
Weight = 56

Roll no = 20072
Age = 20
Sex = F
Height = 160
Weight = 50

 Programming with C++426

10.8 POINTERS AND CLASSES

In Chapter 6 on pointers it has already been stated that a pointer is a variable which holds the memory

address of another variable of any basic data types such as int, oat or sometimes an array. In the

previous chapter, it has also been illustrated how a pointer can be used to hold the address of a structure

variable too. The pointer variable is very much used to construct complex data bases using the data

structures such as linked lists, double linked lists and binary trees.

So far, it has been shown that a data member and a member function of a class could be an ordinary data

type such as int, fl oat, char and even a class also. In this section, how a pointer variable can be declared as a

member to a class is discussed.

The following declaration of creating an object is valid in C++.

 class sample {
 private :
 int x;
 oat y;
 char s;
 public :
 void getdata();
 void display();
 };
 sample *ptr;

where ptr is a pointer variable that holds the address of the class object sample and consists of the three

data members such as int x, fl oat y and char s, and also holds member functions such as getdata() and

display().

The pointer to an object of class variable will be accessed and processed in one of the following ways,

 (*object name).member name = variable;

The parentheses are essential since the member of class period (.) has a higher precedence over the

indirection operator (*). Or, the pointer to the member of a class can be expressed using dash (–) followed

by the greater than sign (>).

 object name -> member name = variable;

Following are valid declarations of using pointer to the member of a class.

Case 1 A member of class object can be accessed by the indirection operator which has been shown in the

following program segment:

class student {
 private :

 public :

 }; // end of class de nition

void main(void)
{
 student *ptr;

 Classes and Objects 427

 (*ptr).data_member;
 (*ptr).member_function();
}

Case 2 A member of class object can be accessed by the pointer of a class operator which has been shown

in the following program segment:

class student {
 private :

 public :

}; // end of class de nition

int main()
{
 student *ptr;

 ptr->data_member;
 ptr->member_function();
 return 0;
}

 PROGRAM 10.14

A program to assign some values to the member of class objects using a pointer structure operator (–>).

// pointers and classes 1.cpp
#include <iostream>
using namespace std;
class student_info {
 private :
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 public :
 void getinfo ();
 void disinfo ();
}; // end of class de nition

void student_info :: getinfo()
{
 cout << “ Roll no :”;
 cin >> rollno;
 cout <<“ Age :”;
 cin >> age;
 cout << “ Sex : ”;
 cin >> sex;
 cout << “ Height : ”;
 cin >> height;
 cout << “ Weight : ”;
 cin >> weight;
}

void student_info :: disinfo()

 Programming with C++428

{
 cout << endl;
 cout << “ Roll no = ” << rollno << endl;
 cout << “ Age = ” << age << endl;
 cout << “ Sex = ” << sex << endl;
 cout << “ Height = ” << height << endl;
 cout << “ Weight = ” << weight << endl;
}

int main()
{
 student_info *ptr; // ptr is an object of class student
 cout << “ enter the following information ” << endl;
 ptr->getinfo();
 cout << “ \n contents of class ” << endl;
 ptr->disinfo();
 return 0;
}

Output of the above program

enter the following information
Roll no : 200710
Age : 23
Sex : M
Height : 176
Weight: 67

contents of class
Roll no = 200710
Age = 23
Sex = M
Height = 176
Weight = 67

 PROGRAM 10.15

A program to assign some values to the member of class objects using an indirection operator.

// pointers and classes 2.cpp
#include <iostream>
using namespace std;
class student_info {
 private :
 long int rollno;
 int age;
 char sex;
 oat height;
 oat weight;
 public :
 void getinfo();
 void disinfo();
}; // end of class de nition

void student_info :: getinfo()
{
 cout << “ Roll no :”;
 cin >> rollno;
 cout <<“ Age :”;
 cin >> age;
 cout << “ Sex : ”;

 Classes and Objects 429

 cin >> sex;
 cout << “ Height : ”;
 cin >> height;
 cout << “ Weight : ”;
 cin >> weight;
}

void student_info :: disinfo()
{
 cout << endl;
 cout << “ Roll no = ” << rollno << endl;
 cout << “ Age = ” << age << endl;
 cout << “ Sex = ” << sex << endl;
 cout << “ Height = ” << height << endl;
 cout << “ Weight = ” << weight << endl;
}

int main()
{

 student_info *ptr; // ptr is an object of class student
 cout << “ enter the following information ” << endl;
 (*ptr).getinfo();
 cout << “ \n contents of class ” << endl;
 (*ptr).disinfo();
 return 0;
}

Output of the above program
enter the following information
Roll no : 200711
Age : 22
Sex : F
Height : 156
Weight : 71

contents of class
Roll no = 200711
Age = 22
Sex = F
Height = 156
Weight = 71

 PROGRAM 10.16

A program to fi nd the distance between the given two points using the pointer to class objects technique.

// classes and pointers
#include <iostream>
#include <cmath>
using namespace std;
class point {
 private :
 int x,y;
 public :
 point (int xnew,int ynew);
 inline int getx() {
 return(x);
 }
 inline int gety() {
 return(y);

 Programming with C++430

 }
 oat nddist(point a, point b);
}; // end of class de nition

point :: point (int xnew, int ynew)
{
 x = xnew;
 y = ynew;
}

 oat point :: nddist (point a, point b)
{
 oat temp;
 temp = ((b.y-a.y)*(b.y-a.y)) + ((b.x-a.x)*(b.x-a.x));
 return (sqrt(temp));
}
int main()
{
 point aobj(4,3),bobj(0,-1);
 point *aptr = &aobj;

 point *bptr = &bobj;
 aptr->getx();
 aptr->gety();
 bptr->getx();
 bptr->gety();
 oat value;
 value = aptr-> nddist(aobj,bobj);
 cout << “ distance between two points =” << value << endl;
 return 0;
}

Output of the above program
distance between two points = 5.65685

10.9 UNIONS AND CLASSES

In the previous chapter, a union has been defi ned as a user-defi ned data type whose size is suffi cient to

contain one of its members. At most, one of the members can be stored in a union at any time. A union is

also used for declaring classes in C++. The members of a union are public by default.

A union allows to store its members only one at a time. A union may have member functions including

constructors and destructors, but not virtual functions. A union may not have base class. An object of a class

with a constructor or a destructor or a user-defi ned assignment operator cannot be a member of a union. A

union can have no static data member. The virtual function, constructor, destructor and static members are

discussed in subsequent chapters.

The general syntax of a union declaration is:

 union user_de ned_name {
 private :
 //methods
 public :
 // methods
 protected :
 // methods
 };
 user_de ned_name object;

It is possible in C++ to declare a union without a user-defi ned name or a union tag that is called as an

anonymous union.

 Classes and Objects 431

The syntax of the anonymous union declaration is:

 union {
 // methods
 // methods
 };

The names of the members of an anonymous union must be distinct from other names. A global

anonymous union must be declared static. An anonymous union may not have protected or private

members. An anonymous union may not have a member function also.

For example, the following anonymous union declarations are invalid.

Case 1 An anonymous union may not have private member. Hence, the following declaration of union

gives compiler error message.

 union {
 private :
 int x;
 oat y;
 public :
 void getvalue();
 void display();
 };

Case 2 An anonymous union may not have a member function. Hence, the following declaration is invalid

and gives error message while compiling.
 union {
 public :
 int x;
 oat y;
 void getdata();
 void display();
 };

The following declaration is valid. A union with a name or union tag may have member functions.

 union sample {
 public :
 int a;
 char name;
 void display();
 void sum();
 };

Note that a union with name or union tag may have private members also. For example, the following

declaration is valid:

 union sample {
 private :
 int x;
 oat y;
 public :
 void get();
 void display();
 };

 Programming with C++432

 PROGRAM 10.17

A program to demonstrate how to defi ne a union as a class object data type. This program reads the
values of the data members from the keyboard and displays the contents of the union on the screen.

// unions and classes
#include <iostream>
using namespace std;
union sample {
 private :
 int x;
 oat y;
 public :
 void getinfo ();
 void disinfo ();
}; // end of class de nition

void sample :: getinfo ()
{
 cout << “ value of x (in integer) :”;
 cin >> x;

 cout <<“ value of y (in oat) :”;
 cin >> y;
}

void sample :: disinfo ()
{
 cout << endl;
 cout << “ x = ” << x << endl;
 cout << “ y = ” << y << endl;
}

int main()
{
 sample obj;
 cout << “ enter the following information ” << endl;
 obj.getinfo();
 cout << “ \n content of union ” << endl;
 obj.disinfo();
 return 0;
}

Output of the above program

enter the following information
value of x (in integer) : 34
value of y (in oat) : -12.45

content of union
x = 13107
y = -12.45

10.10 CLASSES WITHIN CLASSES NESTED CLASS

C++ permits declaration of a class within another class. A class declared as a member of another class is

called as a nested class or a class within another class. The name of a nested class is local to the enclosing

class. The nested class is in the scope of its enclosing class.

 Classes and Objects 433

The general syntax of the nested class declaration is shown below.

class outer_class_name {
 private :
 // data
 protected :
 //data
 // methods
 public :
 // methods
 class inner_class_name {
 private :
 // data of inner class
 public :
 // methods of inner class
 }; // end of inner class declaration
}; // end of outer class declaration

outer_class_name object1;
outer_class_name :: inner_class_name object2;

Note that simply declaring a class nested in another does not mean that the enclosing class contains an

object of the enclosed class. Nesting expresses scoping, not containment of such objects.

For example, a nested class declaration is shown in the following program segments.

Example 1

 class student_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 student_info(char *na,long int rn,char sx);
 void display();
 class date {
 private :
 int day;
 int month;
 int year;
 public :
 date (int dy, int mh, int yr);
 void show_date();
 }; // end of date class declaration
 };// end of student_info class declaration

Example 2

 class student_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 student_info(char *na,long int rn,char sx);
 void display();
 class date {

 Programming with C++434

 private :
 int day;
 int month;
 int year;
 public :
 date (int dy, int mh, int yr);
 void show_date();
 class age_class {
 private :
 int age;
 public :
 age_class (int age_value);
 void show_age();
 }; // end of age_class;
 }; // end of date class declaration
 };// end of student_info class declaration

Member functions of a nested class have no special access to members of an enclosing class; they object

the usual access rules. Member functions of an enclosing class have no special access to member of a nested

class; they obey the usual access rules.

The following program segment illustrates how the member functions of the nested classes are accessed.

class outer {
 int a;
 void outer_funt(int b);
 class inner {
 int x;
 void inner_funt(int y);
 };
 };
 outer obj1; // creating an object for the outer class
 outer::inner::obj2;//creating an object for the inner class
 obj1.outer_funt(); // accessing an outer class member function
 obj2.inner.funct(); // accessing of inner class member function

When a class is declared as a member of another class, it contains only the scoping of the outer class.

The object of an outer class does not contain the object of the inner class.

The member function of the outer class can be defi ned as.

void outer::outer_funt(int b);
{
 // methods
}
The member function of the inner class is de ned as.
void outer :: inner:: inner_funt(int y);
{
 // methods
}

The following declaration is an invalid way of calling an inner member function of the nested class.

outer obj1; // creating an object for the outer class
outer:: inner::obj2;//creating an object for the inner class
obj1::obj2::inner_funct(); // error

Nesting expresses only scoping for the inner class, not the containment of such object.

 Classes and Objects 435

 PROGRAM 10.18

A program to defi ne a nested class ‘student_info’ which contains data members such as name, roll number
and sex, and also consists of one more class ‘date’, whose data members are day, month and year. The
values of the student_info are to be read from the keyboard and the contents of the class have to be
displayed on the screen. This program shows how to create a nested class and their objects, and also how
to access these data members and member functions in C++.

// classes within classes (nested classes) demonstration
#include <iostream>
#include <string>
using namespace std;
class student_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 student_info(char *na, long int rn, char sx);
 void display();
 class date {
 private :
 int day,month,year;
 public :
 date (int dy,int mh, int yr);
 void show_date();

 }; // end of date class declaration
};// end of student_info class declaration

student_info :: student_info(char *na,long int rn,char sx)
{
 strcpy (name,na);
 rollno = rn;
 sex = sx;
}

student_info::date :: date(int dy, int mh, int yr)
{
 day = dy;
 month = mh;
 year = yr;
}

void student_info:: display()
{
 cout << “ student’s_name Rollno sex date_of_birth(dd-mm-yr) \n”;
 cout << “ -- ” << endl;
 cout << name << “ ” ;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}

void student_info::date::show_date()
{
 cout << day << ‘/’ << month << ‘/’ << year << endl;
 cout << “ -------------------------------” << endl;
}

int main()
{
 student_info obj1(“Sampath Reddy”,200710,‘M’);

 Programming with C++436

 student_info::date obj2(13,7,94);
 obj1.display();
 obj2.show_date();
 return 0;
}

Output of the above program

student’s_name Rollno sex date_of_birth(dd-mm-yr)

Sampath Reddy 200710 M 13/7/94

 PROGRAM 10.19

A program to defi ne a nested class ‘student_info’ which contains data members such as name,
roll number and sex, and also consists of one more class ‘date’, whose data members are day,
month and year. Again, the class is defi ned with one more class ‘age_class’ whose data member
is age. The values of the student_info are read from the keyboard and contents of the class have to be
displayed onto the screen. This program shows how to create a nested class and their objects and also
how to access these data members and member functions in C++.

// classes within classes (nested classes) demonstration
// program 2.cpp
#include <iostream>
#include <string>
using namespace std;
class student_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 student_info(char *na,long int rn,char sx);
 void display();
 class date {
 private :
 int day,month,year;
 public :
 date (int dy, int mh, int yr);
 void show_date();
 class age_class {
 private :
 int age;
 public :
 age_class (int age_value);

 void show_age();
 }; // end of age_class;
 }; // end of date class declaration
};// end of student_info class declaration

student_info :: student_info(char *na,long int rn,char sx)
{
 strcpy (name,na);
 rollno = rn;
 sex = sx;
}

student_info::date :: date(int dy, int mh,int yr)
{

 Classes and Objects 437

 day = dy;
 month = mh;
 year = yr;
}
student_info::date :: age_class::age_class (int age_value)
{
 age = age_value;
}

void student_info:: display()
{
 cout << “ student’s name Roll_no sex date of birth age \n”;
 cout << “ ---” << endl;
 cout << name << “ ”;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}

void student_info::date::show_date()
{
 cout << day << ‘/’ << month << ‘/’ << year << ‘\t’;
}

void student_info::date::age_class::show_age()
{
 cout << age << endl;
 cout << “ --------------------------------- ” << endl;
}

int main()
{
 student_info obj1(“Suhail Ahmed”,20071,‘M’);
 student_info::date obj2(31,9,1990);
 student_info::date::age_class obj3(17);
 obj1.display();
 obj2.show_date();
 obj3.show_age();
 return 0;

}

Output of the above program

Student’s name Roll_no sex date of birth age
--
Suhail Ahmed 20071 M 31/9/1990 17
--

 PROGRAM 10.20

A program to defi ne an array of nested class ‘student_info’ which contains data members such as name,
roll number and sex, and also consists of one more class ‘date’, whose data members are day, month and
year. Again, the class is defi ned with one more class ‘age_class’ whose data member is age. The values of
the student_info are read from the keyboard and contents of the class have to be displayed on the screen.
This program shows how to create an array of nested class and their objects, and also how to access these
data members and member functions in C++.

// array of nested classes objects
#include <iostream>
#include <string>

 Programming with C++438

using namespace std;
const int MAX = 100;
class student_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getbase();
 void display();
 class date {
 private :
 int day,month,year;
 public :
 void getdate();
 void show_date();
 class age_class {
 private :
 int age;
 public :
 void getage ();
 void show_age();
 }; // end of age_class;
 }; // end of date class declaration
};// end of student_info class declaration

void student_info :: getbase()
{
 cout << “ enter a name : ”;
 cin >> name;
 cout << “ roll no :”;

 cin >> rollno;
 cout << “ sex :”;
 cin >> sex;
}
void student_info::date :: getdate()
{
 cout << “ enter a date of birth (dd-mm-yr) ”;
 cin >> day >> month >> year;
}
void student_info::date ::age_class:: getage ()
{
 cout << “ enter an age :”;
 cin >>age;
}
void student_info:: display()
{
 cout << name << “ ” <<‘\t’;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}
void student_info::date::show_date()
{
 cout << day << ‘/’ << month << ‘/’ << year << ‘\t’;
}
void student_info::date::age_class::show_age()
{
 cout << age << endl;
}
int main()
{
 student_info obj1[MAX];
 student_info::date obj2[MAX];
 student_info::date::age_class obj3[MAX];
 int n,i;
 cout << “ how many students ?\n”;

 Classes and Objects 439

 cin >> n;
 cout << “ enter the following inoformation \n”;
 for (i=0; i<= n-1; ++i) {
 int j = i+1;
 cout << “ \n object : ” << j << endl;
 obj1[i].getbase();
 obj2[i].getdate();
 obj3[i].getage();
 }
 cout << “ Contents of the array of nested classes \n”;
 cout << “ --”;
 cout << endl;
 cout << “ student’s name Roll_no sex date of birth age”;
 cout << endl;
 cout << “ --”;
 cout << endl;
 for (i=0; i<= n-1; ++i) {
 obj1[i].display();
 obj2[i].show_date();
 obj3[i].show_age();
 }
 cout << “---”;
 cout << endl;
 return 0;

}

Output of the above program
how many students?
2
enter the following information

object : 1
enter a name: Suhail
roll no: 20071
sex: M
enter a date of birth (dd-mm-yr) 12 3 1990
enter an age: 17

object: 2
enter a name: Sudheer
roll no: 20072
sex: M
enter a date of birth (dd-mm-yr) 21 5 1991
enter an age: 16

Contents of the array of nested classes

student’s name roll_no sex date of birth age

Suhail 20071 M 12/3/1990 17
Sudheer 20072 M 21/5/1991 16

10.11 SUMMARY OF STRUCTURES, CLASSES AND UNIONS

The access control and constraints of structures, classes, and unions are summarised in Table 10.1.

 Programming with C++440

Table 10.1

Structures Classes Unions

class-key is struct class-key is class class-key is union

Default access is public Default access is private Default access is public

No usage constraints No usage constraints Use only one member at a time

 REVIEW QUESTIONS

 1. What is an object and how objects can be defi ned in C++?

 2. List the pros and cons of object-oriented programming over the structured programming.

 3. What are the salient features of the object-oriented design in software engineering?

 4. What is data hiding and data encapsulation?

 5. What is an inheritance? What are the few applications of inheritance?

 6. Defi ne polymorphism.

 7. What is a class? How is a class different from an object?

 8. What are the syntactic rules governing the defi nition of a class data type?

 9. Explain the following with respect to the object-oriented paradigm.

 (i) private

 (ii) public

 (iii) protected

 10. In what way a member function is different from a conventional user-defi ned function?

 11. What is a scope resolution operator? How is it useful for defi ning the data member and member

function of a class?

 12. Explain the difference between a data member of a class and the conventional variables in C++.

 13. How is the member function of a class accessed in C++?

 14. What is an array of class objects? How are the array of class objects defi ned in C++?

 15. In what way is a union data type useful for constructing a class object in C++?

 16. Explain the syntactic rules of defi ning the union data type using a class object.

 17. What is a nested class? How is a nested class is defi ned and declared in C++?

 18. List the merits and demerits of declaring a nested class in C++.

 19. How is a pointer variable used to declare a member function of a class?

 20. Explain the pointer techniques to access the member functions of a class objects.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
#include <iomanip>
using namespace std;
struct abc {
 void display();

 Classes and Objects 441

};

void abc :: display()
{
 for (int i = 1; i <= 5; ++i) {
 for (int j = 1; j <= i; ++j)
 cout << setw(3) << j;
 cout << endl;
 }
}

int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (b)
#include <iostream>
#include <iomanip>
using namespace std;
struct abc {
 void display();
};

void abc :: display()
{
 for (int i = 1; i <= 5; ++i) {
 for (int j = i; j >= 1; --j)
 cout << setw(3) << j;
 cout << endl;
 }
}

int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (c)
#include <iostream>
#include <iomanip>
using namespace std;
struct abc {
 void display();
};

void abc :: display()
{
 for (int i = 5; i >= 1; --i) {
 for (int j = i; j >= 1; --j)
 cout << setw(3) << j;
 cout << endl;
 }

 Programming with C++442

}

int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (d)
#include <iostream>
#include <iomanip>
using namespace std;
struct abc {
 void display();
};

void abc :: display()
{
 for (int i = 5; i >= 1; --i) {
 for (int j = 1; j <= i; ++j)
 cout << setw(3) << j;
 cout << endl;
 }
}

int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (e)
#include <iostream>
using namespace std;
const int n = 10;
class abc {
 public:
 int sum(int n);
};

int abc :: sum (int n)
{
 int temp = 0;
 for (int i = 0; i <= n; i += 2)
 temp += i;
 return (temp);
}

int main()
{
 abc obj;
 int total = obj.sum(n);
 cout << “total = ” << total << endl;
 return 0;
}

 Classes and Objects 443

 (f)
#include <iostream>
using namespace std;
const int n = 10;
class abc {
 public:
 int sum(int a[], int n);
};

int abc :: sum (int a[], int n)
{
 int temp = 0;
 for (int i = 0; i <= n-1; ++i) {
 if (a[i] % 2 == 0)
 temp += i;
 }
 return (temp);
}

int main()
{
 abc obj;
 int a[] = {1,2,3,4,5,6,7,8,9,10};
 int total = obj.sum(a,n);
 cout << “total = ” << total << endl;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
class abc{
 private:
 int a;
 public:
 int a;
 void display();
};
void abc::display()
{
 cout << “ value of a = ” << a <<“\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 2. What will be the output of each of the following programs when it is executed?

 (a)
#include <iostream>
using namespace std;
struct abc {
 public:
 void dispabc();

 Programming with C++444

 struct xyz {
 public:
 void dispxyz();
 };
};
void abc :: dispabc()
{
 cout << “Hello ”;
}
void abc :: xyz :: dispxyz()
{
 cout << “C++ world \n”;
}
int main()
{
 abc obj1;
 abc::xyz obj2;
 obj1.dispabc();
 obj2.dispxyz();
 return 0;
}

 (b)
#include <iostream>
using namespace std;
struct abc {
 public:
 void dispabc();
 struct xyz {
 public:
 void dispxyz();
 class pqr {
 public:
 void dispqr();
 };
 };
};
void abc :: dispabc()
{
 cout << “Hello \n”;
}
void abc :: xyz :: dispxyz()
{
 cout << “C++ \n”;
}
void abc :: xyz :: pqr :: dispqr()
{
 cout << “world \n”;
}
int main()
{
 abc obj1;
 abc::xyz obj2;
 abc::xyz::pqr obj3;
 obj1.dispabc();
 obj2.dispxyz();

 Classes and Objects 445

 obj3.dispqr();
 return 0;
}

 (c)
#include <iostream>
using namespace std;
struct abc {
 private:
 void dispabc();
 struct xyz {
 void dispxyz();
 };
};
void abc :: dispabc()
{
 cout << “Hello \n”;
}
void abc :: xyz :: dispxyz()
{
 cout << “C++ \n”;
}
int main()
{
 abc obj1;
 abc::xyz obj2;
 obj1.dispabc();
 obj2.dispxyz();
 return 0;
}

 (d)
#include <iostream>
using namespace std;
struct abc {
 void dispabc();
 private:
 struct xyz {
 void dispxyz();
 };
};
void abc :: dispabc()
{
 cout << “Hello \n”;
}
void abc :: xyz :: dispxyz()
{
 cout << “C++ \n”;
}
int main()
{
 abc obj1;
 abc::xyz obj2;
 obj1.dispabc();
 obj2.dispxyz();
 return 0;
}

 Programming with C++446

 (e)
#include <iostream>
using namespace std;
struct abc {
 void dispabc();
};
void abc :: dispabc()
{
 cout << “Hello \n”;
}
int main()
{
 abc obj1;
 obj1.dispabc();
 return 0;
}

 (f)
#include <iostream>
using namespace std;
struct abc {
 private:
 void dispabc();
};
void abc :: dispabc()
{
 cout << “Hello \n”;
}
int main()
{
 abc obj1;
 obj1.dispabc();
 return 0;
}

 (g)
#include <iostream>
using namespace std;
class abc{
 public:
 int a;
 void setdata(const int a);
 void display();
};
void abc::setdata(const int aa)
{
 a = aa;
}
void abc::display()
{
 cout << “ value of a = ” << ++a <<“\n”;
}
int main()
{
 abc obj;
 obj.setdata(10);

 Classes and Objects 447

 obj.display();
 return 0;
}

 (h)
#include <iostream>
using namespace std;
static class abc{
 public:
 int a;
 void display();
};
void abc::display()
{
 cout << “ value of a = ” << a <<“\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 3. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
static int i;
class abc
{
 public:
 void display();
};
void abc :: display()
{
 cout << “i = ” << i;
 cout << “\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (b)
#include <iostream>
using namespace std;
volatile int i;
class abc
{
 public:
 void display();
};
void abc :: display()
{

 Programming with C++448

 cout << “i = ” << i;
 cout << “\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (c)
#include <iostream>
using namespace std;
const int i = 10;
class abc
{
 public:
 void display();
};
void abc :: display()
{
 cout << “i = ” << ++i;
 cout << “\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (d)
#include <iostream>
using namespace std;
const int i;
class abc
{
 public:
 void display();
};
void abc :: display()
{
 cout << “i = ” << i;
 cout << “\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (e)
#include <iostream>
using namespace std;
class abc
{

 Classes and Objects 449

 private:
 int i;
 public:
 void display();
};
void abc :: display()
{
 cout << “i = ” << i;
 cout << “\n”;
}
int main()
{
 abc obj;
 obj.display();
 return 0;
}

 (f)
#include <iostream>
using namespace std;
class abc {
 public:
 void display()
 {
 cout << “class tag \n”;
 }
} obj;
int main()
{
 obj.display();
 return 0;
}

 PROGRAMMING EXERCISES

 1. Write an object-oriented program in C++ that prints the factorial of a given number.

 2. Write an object-oriented program in C++ that prints whether a given number is prime or not.

 3. Write an object-oriented program in C++ to read any fi ve real numbers and print the average.

 4. Write an object-oriented program in C++ to generate a Fibonacci series of ‘n’ numbers, where n is

defi ned by a programmer.

 (The series should be: 1 1 2 3 5 8 13 21 32 and so on.)

 5. Write an object-oriented program in C++ to fi nd the sum of the following series:

 (a) sum = 1 + 2 + 3 + + n

 (b) sum = 1 + 3 + 5 + + n

 (c) sum = 1 + 2 + 4 + + n

 (d) sum = 1
1

1

2

2

3

3
- + - +

! ! !
�

 (e) sum = x
x x x

n

n

+ +
2 4

2 4! ! !
�

 Programming with C++450

 (f) sum = x
x x x

n

n

- + +
3 5

3 5! ! !
�

 (g) sum = 12 + 22 + 32 + 32 + 42 + … + n2

 (h) sum = 13 + 23 + 33 + 43 + … + n3

 (i) sum = 1 + 22 + 42 + … + n2

 (j) sum = 1 + 32 + 52 + … + n2

 6. Write an object-oriented program in C++ to generate the following fi gures:

 (i) (ii)

 $ 9
 $ $ 9 8
 $ $ $ 9 8 7
 $ $ $ $ 9 8 7 6
 $ $ $ $ $ 9 8 7 6 5
 $ $ $ $ $ $ 9 8 7 6 5 4
 $ $ $ $ $ $ $ 9 8 7 6 5 4 3
 $ $ $ $ $ $ $ $ 9 8 7 6 5 4 3 1

 $ $ $ $ $ $ $ $ $ 9 8 7 6 5 4 3 2 1

 (iii) (iv)

* * * * * * * * * ! $! $! $! $!
* * * * * * * * $! $! $! $!
* * * * * * * ! $! $! $!
* * * * * * $! $! $!
* * * * * ! $! $!
* * * * $! $!
* * * ! $!
* * $!
* !

 7. Write an object-oriented program in C++ to generate the following pyramid of numbers.

 0

 1 0 1

 2 1 0 1 2

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

 6 5 4 3 2 1 0 1 2 3 4 5 6

 8. Write an object-oriented program in C++ to read an integer number and fi nd out the sum of all the

digits until it comes to a single digit. For example,

 (i) n = 1256
 sum = 1+2+5+6 = 14
 sum = 1+4 = 5

 (ii) n = 7896
 sum = 7+8+9+6 = 30

 sum = 3+0 = 3

 9. Write an object-oriented program in C++ to read a number n, and print it out digit by digit as a series
of words. For example, the number 756 should be printed as “Seven Five Six”.

 10. Write an object-oriented program in C++ to read a set of numbers up to n, where n is defi ned by the

programmer and print the contents of the array in the reverse order.

 Classes and Objects 451

 For example, for n = 4, the set
 26 56 51 123 would be as
 123 51 56 26

 11. Write an object program in C++ to read n numbers, where n is defi ned by the programmer and fi nd
the average of the non negative integer numbers and the deviation of the numbers.

 12. Write an object oriented program in C++ to read a set of numbers and store it as an one dimensional
array; again read a number ‘d’ and check whether the number ‘d’ is present in the array. If it is
so, print out how many times the number d is repeated in the array.

 13. Write an object oriented program in C++ to read a set of numbers and store it as a one-dimensional
array; again read a number n, and check whether it is present in the array. If it is so, print out the
position of n in the array and also check whether it repeats in the array.

 14. Write an object-oriented program in C++ to read a set of numbers and store it as a one-dimensional
array and fi nd out the largest and the smallest number. Find out the difference between the two
numbers. Using the difference, fi nd the deviation of the numbers of the array.

 15. Write an object-oriented program in C++ to read a set of numbers to store it as a one-dimensional
array; copy the elements in another array B in the reverse direction; fi nd the sum of the individual
elements of array A and array B; store the results in an another array C and display all the three arrays.

 16. Write an object-oriented program in C++ to read a four digit positive integer number n and generate
all the possible permutations of those numbers digit by digit.

 For example, for n = 7812 the permutations are
 7821
 8721
 8712

 2871

 2817

 (Hint: Read a number n and separate a number digit by digit and store it in an array, and then

generate a permutation).

 17. Write an object-oriented program in C++ to read a two-dimensional square matrix A, and display its

transpose.

 18. Write an object oriented-program in C++ to read a two-dimensional array and fi nd the sum of the

elements row wise and column wise separately, and display the sums of the rows and columns.

 19. Write an object-oriented program in C++ to generate a magic square A, where the sum of the

elements in the row wise and column wise are the same.

 20. Write an object-oriented program in C++ to read a set of lines and fi nd out the number of characters,

words, and lines in a given text.

 21. Write an object-oriented program in C++ to read a line and fi nd out the number of vowels (a, e, i, o,

u) and consonants present in the given line.

 22. Write an object-oriented program in C++ to read a set of lines from the stdin and print out the

longest line.

 23. Write an object-oriented program to read student’s name and his average marks. If a student gets

less than 40 then declare that he has failed or else he passed. Prepare a computer list to give the list

of names in alphabetical order separately for passed and failed students.

 24. Write an object-oriented program to perform trigonometric operations on the complex numbers.

 25. Write an object-oriented program to read a set of lines from stdin and store them in an array A; again

read a string S from the stdin and check whether the given string S is in the array A. If it is so, print

that line and also how many times it repeats in the array A.

 26. Write an object-oriented program to read a set of lines from stdin and store them in an array A;

 Programming with C++452

again read a string S from the stdin and check whether the given string S in the array A. If it is,

remove string S from the array A and print the updated array on the stdout. For example,
A = concatenate
S = cat

 The updated a is conenate.

 27. Write an object-oriented program to read a set of lines from stdin and store them in an array A;

again read strings S1 and S2 from the stdin and check whether the given string S1 is in the array

A. If it does, replace the string S1 with string S2 and print the updated array. For example,
A = concatenate
S1 = cat
S2 = 123

 The updated A is con123enate
 28.(a) Develop an object-oriented program in C++ to read the following information from the keyboard:

employee name

employee code

designation

years of experience

age

 (b) Construct an object-oriented data base to carry out the following methods:

 (i) Build a master table

 (ii) List a table

 (iii) Insert a new entry

 (iv) Delete old entry

 (v) Edit an entry

 (vi) Search for a record that to be printed

 (vii) Sort entries

 29. Develop an object-oriented program in C++ to create a data base of the following items.

 name of the patient

sex

age
ward number
bed number
nature of the illness
date of admission

 Your program should have the facilites as listed in 28(b).
 30. Develop an object-oriented program in C++ to create a pay roll system of an organisation. The

following information may be read from the keyboard.
employee name
employee code
designation
account number
date of joining
basic pay
DA, HRA and CCA
deductions like PPF, GPF, CPF, LIC, NSS, NSC, etc.

 Your program should have the facilities as listed in 28(b).
 31. Develop an object-oriented program in C++ to prepare the mark sheet of a University examination.

 Classes and Objects 453

The following items may be read from the keyboard:
name of the student
roll number
subject code
subject name
internal marks
external marks

 Your program should have the facilities as listed in 28(b).
 32. Develop an object-oriented program in C++ to create a library information system containing the

following for all books in the library:
accession number
name of the author
title of the book
year of publication
publisher’s name
cost of the book

 Your program should have the facilities as listed in 28(b).
 33. Develop an object-oriented program in C++ to create a data base of the personnel information

system having the following information:
name
date of birth
blood group
height
weight
insurance policy number
contact address
telephone number
driving licence number, etc.

 Your program should have the facilities as enumerated in 28(b).

Special Member
Functions

Chapter

11

11.1 INTRODUCTION

The special member functions are a set of functions that can be declared only as class members and invoked

automatically by the C++ compiler. These functions affect the way objects of a given class are created,

destroyed, copied, and converted into objects of other types. Another important property of many of these

functions is that they can be called implicitly (by the compiler). The following is a list of the special

member functions that are defi ned, declared and used in C++:

 (1) Constructors

 (2) Destructors

 (3) Conversion functions

 (4) Operator new function

 (5) Operator delete function

 (6) Assignment operator (operator=) function

(1) Constructors The constructors are the special member functions that are used in class objects to enable

automatic initialisation of objects.

(2) Destructors The destructors are used to perform clean up after objects are explicitly or implicitly destroyed.

(3) Conversion Functions Objects of a given class type can be converted to objects of another type. This is

done by constructing an object of the target class type from the source class type and copying the result to

This chapter mainly deals with the special member functions which are used for
initialising and destroying the objects of a class. The various topics of the special
member functions such as constructors, default constructors, copy constructors
and destructors are explained. This chapter also presents how a friend of a
class can be declared, defi ned and accessed in a program; how an object can be
created and destroyed dynamically using the memory allocation operators new
and delete.

 Special Member Functions 455

the target object. This process is called conversion by constructor. Objects can also be converted by user-

supplied conversion functions.

(4) Operator New Function C++ supports dynamic allocation and deallocation of objects using the new and

delete operators. These operators allocate memory for objects from a pool called the free store. The new

operator is the special member function which is used for dynamically allocates storage for class objects.

(5) Operator Delete Function The operator delete function is used to release storage allocated using the new

operator. The delete operator calls the operator delete function, which frees memory back to the available pool.

(6) Assignment Operator (Operator=) Function The assignment operator (operator=) function is used when

an assignment takes place between class objects.

11.2 CONSTRUCTORS

A constructor is a special member function for automatic initialisation of an object. Whenever an object is

created, the special member function, i.e., is the constructor will be executed automatically. A constructor

function is different from all other nonstatic member functions in a class because it is used to initialise

the variables of whatever instance being created. Note that a constructor function can be overloaded to

accommodate many different forms of initialisation.

Syntax rules for writing constructor functions The following rules are used for writing a constructor function:

 ∑ A constructor name must be the same as that of its class name.

 ∑ It is declared with no return type (not even void).

 ∑ It cannot be declared const or volatile but a constructor can be invoked for a const and

volatile objects.

 ∑ It may not be static.

 ∑ It may not be virtual.

 ∑ It should have public or protected access within the class and only in rare circumstances it should be

declared private.

The general syntax of the constructor function in C++ is,

 class class_name {
 private :

 protected :

 public :
 class_name(); // constructor

 };
 class_name :: class_name()
 {

 }

The following examples illustrate the constructor declaration in a class defi nition.

 Programming with C++456

 (1)

 class employee {
 private :
 char name[20];
 int ecode;
 char address[20];
 public :
 employee(); // constructor
 void getdata();
 void display ();
 };
 employee() :: employee(); // constructor
 {

 }

 (2)
 class account {
 private :
 oat balance;
 oat rate;
 public :
 account() //constructor
 {

 }
 void create_acct();
 };

When the constructor function is invoked Constructors and destructors can be explicitly called. A constructor

is automatically invoked when an object begins to live. Under the following circumstances, a constructor

function is invoked automatically by the C++ compiler.

 ∑ The constructor is called before main () starts for execution

 ∑ Whenever an object is created in any of the following ways

 – a global variable

 – a local variable

 – or as a static variable.

 ∑ An auto variable of class is defi ned within a block and the location of its defi nition is reached.

 ∑ A temporary instance of class needs to be created.

 ∑ During use of the dynamic memory allocation operator new.

The following is an invalid declaration of a constructor function:

(1)
 class account {
 private :
 oat balance;
 oat rate;
 public :
 account() //constructor
 {

 Special Member Functions 457

 }
 void create_acct();
 };
 void account :: account() { // error

 }

Note that a constructor member function should not be defi ned with return type or a void type.

 PROGRAM 11.1

A program to demonstrate how to use a special member function, namely, constructor in C++.

#include <iostream>
using namespace std;
class abc
{
 public:
 abc() {
 cout << “for class constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

Output of the above program

for class constructor

 PROGRAM 11.2

A program to generate a series of Fibonacci numbers using the constructor where the constructor
member function has been defi ned in the scope of class defi nition itself.

//generation of the bonacci series using
// constructor
#include <iostream>
using namespace std;
class bonacci {
 private :
 unsigned long int f0,f1, b;
 public :
 bonacci () // constructor
 {
 f0 = 0;
 f1 = 1;
 cout << “Fibonacci series of rst 10 numbers\n”;
 cout << f0 << ‘\t’ << f1 <<‘\t’;
 b = f0+f1;
 }
 void increment ()
 {
 f0 = f1;
 f1 = b;
 b = f0+f1;
 }

 Programming with C++458

 void display()
 {
 cout << b << ‘\t’;
 }
}; // end of class construction
int main()
{
 bonacci number;
 for (int i = 3; i <= 10; ++i) {
 number.display();
 number.increment();
 }
 return 0;
}

Output of the above program
Fibonacci series of rst 10 numbers
0 1 1 2 3 5 8 13 21 34

 PROGRAM 11.3

A program to display a series of Fibonacci numbers using the constructor where the constructor member
function has been defi ned out of the class defi nition using the scope resolution operator.

//generation of the bonacci series using
// constructor using scope resolution operator
#include <iostream>
using namespace std;
class bonacci {
 private :
 unsigned long int f0,f1, b;
 public :
 bonacci (); // constructor
 void increment ();
 void display() ;
}; // end of class construction
 bonacci :: bonacci() // constructor
{
 cout << “Fibonacci series of rst 10 terms\n”;
 f0 = 0;
 f1 = 1;
 b = f0+f1;
 cout << f0 << ‘\t’ << f1 << ‘\t’;
}

void bonacci :: increment ()
{
 f0 = f1;
 f1 = b;
 b = f0+f1;
}
void bonacci ::display()
{
 cout << b << ‘\t’;
}
int main()
{
 bonacci number;
 for (int i = 3; i <= 10; ++i) {
 number.display();
 number.increment();
 }
 return 0;
}

 Special Member Functions 459

Output of the above program

Fibonacci series of rst 10 terms
0 1 1 2 3 5 8 13 21 34

 PROGRAM 11.4

A program to simulate a simple banking system in which the initial balance and the rate of interest are
read from the keyboard and these values are initialised using the constructor member function. The
program consists of the following methods:

 ∑ To initialise the balance amount and the rate of interest using the constructor member function
 ∑ To make a deposit
 ∑ To withdraw an amount from the balance
 ∑ To fi nd the compound interest based on the rate of interest
 ∑ To know the balance amount
 ∑ To display the menu options

//demonstration of constructor
//simulation of simple banking system
#include <iostream>
using namespace std;
class account {
 private :
 oat balance ;
 oat rate;
 public :
 account(); // constructor
 void deposit ();
 void withdraw ();
 void compound();
 void getbalance();
 void menu();
}; //end of class de nition

account :: account() // constructor
{
 cout << “ enter the initial balance \n”;
 cin >> balance;
 cout << “ interest rate in decimal\n”;
 cin >> rate;
}

//deposit
void account :: deposit ()
{
 oat amount;
 cout << “ enter the amount : ”;
 cin >> amount;
 balance = balance+amount;
}

//attempt to withdraw
void account :: withdraw ()
{
 oat amount;
 cout << “ how much to withdraw ? \n”;
 cin >> amount;
 if (amount <= balance) {
 balance = balance-amount;
 cout << “ amount drawn = ” << amount << endl;

 Programming with C++460

 cout << “ current balance = ” << balance << endl;

 }
 else
 cout << 0;
}

void account :: compound ()
{
 oat interest;
 interest = balance*rate;
 balance = balance+interest;
 cout << “interest amount = ” << interest <<endl;
 cout << “ toal amount = ” << balance << endl;
}

void account :: getbalance()
{
 cout << “ Current balance = ” ;
 cout << balance << endl;
}

void account :: menu()
{

 cout << “ d -> deposit\n”;
 cout << “ w -> withdraw \n”;
 cout << “ c -> compound interest\n”;
 cout << “ g -> get balance \n”;
 cout << “ q -> quit\n”;
 cout << “ m -> menu\n”;
 cout << “ option, please ? \n”;
}

int main()
{
 class account acct;
 char ch;
 acct.menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘d’ :
 acct.deposit();
 break;
 case ‘w’ :
 acct.withdraw();
 break;
 case ‘c’ :
 acct.compound();
 break;
 case ‘g’ :
 acct.getbalance();
 break;
 case ‘m’:
 acct.menu();
 break;
 } // end of switch statement
 }
 return 0;
}

Output of the above program
enter the initial balance
1000
interest rate in decimal
0.2

 Special Member Functions 461

d -> deposit
w -> withdraw
c -> compound interest
g -> get balance
q -> quit
m -> menu
option, please?

g
Current balance = 1000
d
enter the amount : 1000
g
Current balance = 2000
w
how much to withdraw?
500
amount drawn = 500
current balance = 1500
c
interest amount = 300
toal amount = 1800
g
Current balance = 1800
q

11.2.1 Copy Constructors

Copy constructors are always used when the compiler has to create a temporary object of a class object.

The copy constructors are used in the following situations:

 ∑ The initialisation of an object by another object of the same class.

 ∑ Return of objects as a function value.

 ∑ Stating the object as by value parameters of a function.

The copy constructor can accept a single argument of reference to same class type. The purpose of the

copy constructor is copy objects of the class type. The general format of the copy constructor is,

 class_name :: class_name (class_name &ptr)

The symbolic representation of the above format is;

 X :: X (X &ptr)

where X is user-defi ned class name and ptr is pointer to a class object X.

The copy constructor may be used in the following format also using a const keyword.

 class_name :: class_name (const class_name &ptr)

The symbolic representation of the above format is,

 X :: X (const X &ptr)

where X is user-defi ned class name and ptr is pointer to a class object X.

Normally, the copy constructors take an object of their own class as arguments and produce such an

object. The copy constructor usually do not return a function value as constructors cannot return any

function values.

The following program segment demonstrates how to defi ne a copy constructor for fi nding a series of

Fibonacci numbers.

 Programming with C++462

 bonacci :: bonacci() // constructor
{
 f0 = 0;
 f1 = 1;
 b = f0+f1;
}

 bonacci :: bonacci(bonacci &ptr) //copy constructor
{
 f0 = ptr.f0;
 f1 = ptr.f1;
 b = ptr. b;
}

 PROGRAM 11.5

A program to generate a series of Fibonacci numbers using a copy constructor where the copy constructor
is defi ned within the class declaration itself.

//generation of the bonacci series using
// copy constructor
#include <iostream>
#include <iomanip>
using namespace std;
class bonacci {
 public :
 unsigned long int f0,f1, b;
 bonacci ()
 {
 f0 = 0;
 f1 = 1;
 b = f0+f1;
 }
 bonacci (bonacci &ptr) {
 f0 = ptr.f0;
 f1 = ptr.f1;
 b = ptr. b;
 }
 void increment ()
 {
 f0 = f1;
 f1 = b;
 b = f0+f1;
 }
 void display()
 {
 cout << setw(4) << b;
 }
}; // end of class construction
int main()
{
 int n;
 bonacci obj;
 cout << “ How many numbers are to be displayed \n”;
 cin >> n;
 cout << obj.f0 << setw(4) << obj.f1;
 for (int i = 2; i <= n-1; ++i) {
 obj.display();
 obj.increment();
 }
 cout << endl;
 return 0;
}

 Special Member Functions 463

Output of the above program

How many numbers are to be displayed
8
0 1 1 2 3 5 8 13

 PROGRAM 11.6

A program to generate a series of Fibonacci numbers using a copy constructor where the copy constructor
is defi ned out of the class declaration using scope resolution operator.

//generation of the bonacci series using
// copy constructor using scope resolution operator
#include <iostream>
#include <iomanip>
using namespace std;
struct bonacci {
 public :
 unsigned long int f0,f1, b;
 bonacci (); // constructor
 bonacci(bonacci &ptr);// copy constructor
 void increment ();
 void display() ;
}; // end of class construction

 bonacci :: bonacci() // constructor
{
 f0 = 0;
 f1 = 1;
 b = f0+f1;
}

 bonacci :: bonacci(bonacci &ptr) //copy constructor
{
 f0 = ptr.f0;
 f1 = ptr.f1;
 b = ptr. b;
}

void bonacci :: increment ()
{
 f0 = f1;
 f1 = b;
 b = f0+f1;
}
void bonacci :: display()
{
 cout << setw(4) << b;
}

int main()
{
 int n;
 bonacci obj;
 cout << “How many numbers are to be displayed ?\n”;
 cin >> n;
 cout << obj.f0 << setw(4) << obj.f1;
 for (int i = 2; i <= n-1; ++i) {
 obj.display();
 obj.increment();
 }
 cout << endl;
 return 0;
}

 Programming with C++464

Output of the above program

How many numbers are to be displayed?
6
0 1 1 2 3 5

11.2.2 Default Constructors

The default constructor is a special member function which is invoked by the C++ compiler without any

argument for initialising the objects of a class. In other words, a default constructor function initialises the

data members with no arguments. It can be explicitly written in a program. In case, a default destructor is

not defi ned in a program, the C++ compiler automatically generates it in a program. The purpose of the

default constructor is to construct a default object of the class type.

 The general syntax of the default constructor function is,

 class class_name {
 private :

 protected :

 public :
 class_name(); // default constructor

 };
 class_name :: class_name () {} // without any arguments

The typical form of the default constructor is:

 class_name :: class_name (int = 0) {} // without any arguments

Case 1 The default constructor can be declared in the following form:

 student() {} // default constructor

// demonstration of default constructor
#include <iostream>
class student {
 private :
 char name[20];
 long int rollno;
 char sex;
 oat height;
 oat weight;
 public:
 student() {} // default constructor
 void display();
 }; // end of class declaration

Case 2 The default constructor can be declared in the following form also:

 student(int = 0) {} // constructor

// demonstration of default constructor
#include <iostream>
class student {
 private :
 char name[20];

 Special Member Functions 465

 long int rollno;
 char sex;
 oat height;
 oat weight;
 public:
 student(int = 0) {} // constructor
 void display();
 }; // end of class declaration

Case 3 If the default constructor is not declared explicitly, then it will be created automatically by the

compiler.

#include <iostream>
class student {
 private :
 char name[20];
 long int rollno;
 char sex;
 oat height;
 oat weight;
 public:
 void display();
 }; // end of class declaration

 PROGRAM 11.7

A program to demonstrate the default initialisation of the constructor member function of a class object
of the students’ information system such as name, roll number, sex, height and weight.

// demonstration of default constructor
#include <iostream>
using namespace std;
class student {
 private :
 char name[20];
 long int rollno;
 char sex;
 oat height;
 oat weight;
 public :
 student(); // constructor
 void display();
};

student :: student()
{
 name[0] = ‘\0’;
 rollno = 0;
 sex = ‘\0’;
 height = 0;
 weight = 0;
}

void student :: display()
{
 cout << “ name = ” << name <<endl ;
 cout << “ rollno = ” << rollno <<endl;
 cout << “ sex = ” << sex << endl;
 cout << “ height = ” << height << endl;

 Programming with C++466

 cout << “ weight = ” << weight << endl;

}

int main()
{
 student a;
 cout << “ demonstration of default constructor \n”;
 a.display();
 return 0;
}

Output of the above program

demonstration of default constructor
name =
roll no = 0
sex =
height = 0
weight = 0

 PROGRAM 11.8

A program to demonstrate the default initialisation of the constructor member function of a class object
where the default constructor is defi ned within the scope of the class defi nition itself.

// demonstration of default constructor
#include <iostream>
#include <string>
using namespace std;
class student {
 private :
 char name[20];
 long int rollno;
 char sex;
 oat height;
 oat weight;
 public :
 student(char na[] =“\0”,long int rn = 0,char sx = ‘\0’,
 oat ht = 0, oat wt=0);// constructor
 void display();
};

student:: student(char na[],long int rn,char sx, oat ht, oat wt)
{
 strcpy(name, na);
 rollno = rn;
 sex = sx;
 height = ht;
 weight = wt;
}

void student :: display()
{
 cout << “ name = ” << name <<endl ;
 cout << “ rollno = ” << rollno <<endl;
 cout << “ sex = ” << sex << endl;
 cout << “ height = ” << height << endl;
 cout << “ weight = ” << weight << endl;
}

int main()
{

 Special Member Functions 467

 student a;
 cout << “ demonstration of default constructor \n”;
 a.display();
 return 0;
}

Output of the above program

demonstration of default constructor
name =
rollno = 0
sex =
height = 0
weight = 0

 PROGRAM 11.9

A program to demonstrate the default initialisation of the constructor member function of a class object
where the default constructor is created by the compiler automatically when the default constructor is
not defi ned by the user.

#include <iostream>
using namespace std;
class student {
 private :
 char name[20];
 long int rollno;
 char sex;
 oat height;
 oat weight;
 public :
 void display();
};

void student :: display()
{
 cout << “ name = ” << name <<endl ;
 cout << “ rollno = ” << rollno <<endl;
 cout << “ sex = ” << sex << endl;
 cout << “ height = ” << height << endl;
 cout << “ weight = ” << weight << endl;
}

int main()
{
 student a;
 a.display();
 return 0;
}

Output of the above program

name = �������
rollno = 1108544020
sex = X
height = 3.98791e-34
weight = 36.7598

Automatic variables are initialised with a garbage value if it is not initialised by the user explicitly.

 Programming with C++468

11.2.3 Overloading Constructors

The overloading constructor is a concept in OOPs in which the same constructor name is called with

different arguments. Depending upon the type of argument, the constructor will be invoked automatically

by the compiler to intialise the objects.

 PROGRAM 11.10

A program to demonstrate how to defi ne, declare and use the overloading of constructors to initialise the
objects for diff erent data types.

//overloading of constructor
#include <iostream>
using namespace std;
class abc {
 public:
 abc();
 abc(int);
 abc(oat);
 abc(int, oat);
};
abc :: abc()
{
 cout <<“calling default constructor \n”;
}

abc :: abc (int a)
{
 cout << “\n calling constructor with int \n”;
 cout << “ a = ” << a << endl;
}

abc :: abc (oat fa)
{
 cout <<“\n calling constructor with oating point number \n”;
 cout <<“ fa = ” << fa << endl;
}

abc :: abc(int a, oat fa)
{
 cout << “ \n calling constructor with int and oat \n”;
 cout << “ a = ” << a << endl;
 cout << “ fa = ” << fa << endl;
}

int main()
{
 abc obj;
 abc(10);
 abc(1.1f);
 abc(20,-2.2);
 return 0;
}

Output of the above program
calling default constructor

calling constructor with int
a = 10

calling constructor with oating point number

 Special Member Functions 469

fa = 1.1

calling constructor with int and oat
a = 20
fa = -2.2

11.2.4 Constructors in Nested Classes

It is well known that a constructor is a special member function which is used to initialise the class objects

whenever an object is created. The constructor member function can be used to initialise the class objects

of nested classes. The nested class is a technique in which a class is declared as a member of another class.

In other words, a class within a class is called as nested class. The scope rules to access the nested class

constructor is the same as that of the member functions of the nested classes. The scope resolution operator

(::) is used to identify the outer and inner class objects and the constructor member functions.

 PROGRAM 11.11

A program to demonstrate how to declare, defi ne and call a constructor member function in a nested class.

#include <iostream>
using namespace std;
class abc {
 public:
 abc();
 class x {
 public:
 x();
 };
};
abc:: abc()
{
 cout << “abc - class constructor \n”;
}
abc::x :: x()
{
 cout << “x - class constructor \n”;
}

int main()
{
 abc obj;
 abc::x obj2;
 return 0;
}

Output of the above program

abc - class constructor
x - class constructor

 PROGRAM 11.12

A program to demonstrate how to declare, defi ne and call a constructor member function in a nested
class. The fi ring order of the nested class constructor is illustrated in the following program.

#include <iostream>
using namespace std;
class abc {

 Programming with C++470

 public:
 abc();
 class x {
 public:
 x();
 class y {
 public:
 y();
 class z {
 public:
 z();
 };
 };
 };
};
abc:: abc()
{
 cout << “abc - class constructor \n”;
}
abc::x :: x()
{
 cout << “x - class constructor \n”;
}

abc::x :: y :: y()
{
 cout << “y - class constructor \n”;
}

abc::x ::y :: z :: z()
{
 cout << “z - class constructor \n”;
}

int main()
{
 abc obj1;
 abc::x obj2;
 abc::x::y obj3;
 abc::x::y::z obj4;
 return 0;
}

Output of the above program

abc - class constructor
x - class constructor
y - class constructor
z - class constructor

11.3 DESTRUCTORS

A destructor is a function that automatically executes when an object is destroyed. A destructor function gets

executed whenever an instance of the class to which it belongs goes out of existence. The primary usage of the

destructor function is to release space on the heap. A destructor function may be invoked explicitly.

Syntax Rules for Writing a Destructor Function The rules for writing a destructor function are:

 ∑ A destructor function name is the same as that of the class it belongs except that the fi rst character of

the name must be a tilde (~).

 ∑ It is declared with no return types (not even void) since it cannot ever return a value.

 ∑ It cannot be declared static, const or volatile.

 Special Member Functions 471

 ∑ It takes no arguments and therefore cannot be overloaded.

 ∑ It should have public access in the class declaration.

The general syntax of the destructor function in C++ is,

 class class_name {
 private :
 // data variables
 // methods
 protected :
 // data
 public :
 class_name(); // constructor
 ~class_name(); // destructor
 // other methods
 };

The following examples illustrate the destructor function declaration in a class defi nition:

(1)
 class employee {
 private :
 char name[20];
 int ecode;
 char address[20];
 public :
 employee(); // constructor
 ~employee(); // destructor
 void getdata();
 void display ();
 };

(2)
 class account {
 private :
 oat balance;
 oat rate;
 public :
 account(); //constructor
 ~account(); // destructor
 void create_acct();
 };

When the Destructor Function is Invoked Under the following circumstances, a destructor function is invoked:

 ∑ After the end of main () for all static, local to main () and global instances of class.

 ∑ At the end of each block containing the auto variable of class.

 ∑ At end of each function containing an argument of class.

 ∑ To destroy any unnamed temporaries of class after their use.

 ∑ When an instance of class allocated on the heap is destroyed via delete.

 PROGRAM 11.13

A program to simulate a simple banking system in which the initial balance and the rate of interest are
read from the keyboard and these values are initialised using the constructor member function. The
destructor member function is defi ned in this program to destroy the class objects created using the
constructor member function. The program consists of the following methods:

 Programming with C++472

 ∑ To initialise the balance and the rate of interest using the constructor member function.
 ∑ To make a deposit.
 ∑ To withdraw an amount from the balance.
 ∑ To fi nd the compound interest based on the rate of interest.
 ∑ To know the balance amount.
 ∑ To display the menu options.
 ∑ To destroy the object of class, the destructor member function is defi ned.

//program for class demonstration
// constructor and destructor
#include <iostream>
using namespace std;
class account {
 private :
 oat balance;
 oat rate;
 public :
 account(); // constructor
 ~account(); // destructor
 void deposit ();
 void withdraw ();
 void compound();
 void getbalance();
 void menu();
}; //end of class de nition

account :: account() // constructor
{
 cout << “ enter the initial balance \n”;
 cin >> balance;
 cout << “ interest rate \n”;
 cin >> rate;
}
account :: ~account() // constructor
{
 cout << “ data base has been deleted \n”;
}

//deposit
void account :: deposit ()
{
 oat amount;
 cout << “ enter the amount ”;
 cin >> amount;
 balance = balance+amount;
}

//attempt to withdraw
void account :: withdraw ()
{
 oat amount;
 cout << “ how much to withdraw ? \n”;
 cin >> amount;
 if (amount <= balance) {
 balance = balance-amount;
 cout << “ amount drawn = ” <<amount << endl;
 cout << “ current balance = ” << balance << endl;
 }
 else
 cout << 0;
}

void account :: compound ()
{

 Special Member Functions 473

 oat interest;
 interest = balance*rate;
 balance = balance+interest;
 cout << “interest amount = ” << interest <<endl;
 cout << “ toal amount = ” << balance << endl;
}

void account :: getbalance()
{
 cout << “ Current balance = ” ;
 cout << balance << endl;
}

void account :: menu()
{
 cout << “ d -> deposit\n”;
 cout << “ w -> withdraw\n”;
 cout << “ c -> compound interest\n”;
 cout << “ g -> get balance\n”;
 cout << “ m -> menu \n”;
 cout << “ q -> quit \n”;
 cout << “ option, please ? \n”;
}

int main()
{
 account acct;
 char ch;
 acct.menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘d’ :
 acct.deposit();
 break;
 case ‘w’ :
 acct.withdraw();
 break;
 case ‘c’ :
 acct.compound();
 break;
 case ‘g’ :
 acct.getbalance();
 break;
 case ‘m’:
 acct.menu();
 break;
 } // end of switch statement
 }
 cout << endl;
 return 0;
}

Output of the above program

enter the initial balance
1000
interest rate
0.2
d -> deposit
w -> withdraw
c -> compound interest
g -> get balance
m -> menu
q -> quit
option, please?

 Programming with C++474

d
enter the amount
500
g
Current balance = 1500

w
how much to withdraw?
1000
amount drawn = 1000
Current balance = 500
c
interest amount = 100
toal amount = 600
q

data base has been deleted

11.3.1 Destructors in Nested Classes

It is well known that a destructor is a special member function which is used to destroy the class objects

automatically whenever an object is released. The destructor member function can also be used to implement

the nested class objects. The fi ring order of destructor under nested class is that the innermost class object

will be released fi rst and so on. The scope rules to access the nested class destructor is the same as that of the

member functions of the nested classes. The scope resolution operator (::) is used to identify the outer and

inner class objects and the constructor/destructor member functions.

 PROGRAM 11.14

A program to demonstrate how to declare, defi ne and call a destructor member function in a nested class.

#include <iostream>
using namespace std;

class abc {
 public:
 ~abc();
 class x {
 public:
 ~x();
 class y{
 public:
 ~y();
 class z {
 public:
 ~z();
 };
 };
 };
};

abc:: ~abc()
{
 cout << “abc - class destructor \n”;
}

abc::x :: ~x()
{

 Special Member Functions 475

 cout << “x - class destructor \n”;
}

abc::x ::y :: ~y()
{
 cout << “y - class destructor \n”;
}

abc::x ::y :: z :: ~z()

{
 cout << “z - class destructor \n”;
}

int main()
{
 abc obj1;
 abc::x obj2;
 abc::x::y obj3;
 abc::x::y::z obj4;
 return 0;
}

Output of the above program

z - class destructor
y - class destructor
x - class destructor
abc - class destructor

 PROGRAM 11.15

A program to demonstrate how to declare, defi ne and call a constructor and a destructor member
function in a nested class. This program illustrates the fi ring order of constructor and destructor under
the nested class.

#include <iostream>
using namespace std;
class abc {
 public:
 abc();
 ~abc();
 class x {
 public:
 x();
 ~x();
 class y{
 public:
 y();
 ~y();
 class z {
 public:
 z();
 ~z();
 };
 };
 };
};

abc:: abc()
{
 cout << “abc - class constructor \n”;
}

 Programming with C++476

abc:: ~abc()
{
 cout << “abc - class destructor \n”;
}

abc::x :: x()
{
 cout << “x - class constructor \n”;

}

abc::x :: ~x()
{
 cout << “x - class destructor \n”;
}
abc::x ::y :: y()
{
 cout << “y - class constructor \n”;
}

abc::x ::y :: ~y()
{
 cout << “y - class destructor \n”;
}

abc::x ::y :: z :: z()
{
 cout << “z - class constructor \n”;
}

abc::x ::y :: z :: ~z()
{
 cout << “z - class destructor \n”;
}

int main()
{
 abc obj1;
 abc::x obj2;
 abc::x::y obj3;
 abc::x::y::z obj4;
 return 0;
}

Output of the above program

abc - class constructor
x - class constructor
y - class constructor
z - class constructor
z - class destructor
y - class destructor
x - class destructor
abc - class destructor

11.4 INLINE MEMBER FUNCTIONS

The keyword inline is used as a function specifi er only in function declarations. The inline specifi er is a

hint to the compiler that inline substitution of the function body is to be preferred to the usual function call

implementation.

 Special Member Functions 477

The advantages of using inline member functions are:

 ∑ the size of the object code is considerably reduced,

 ∑ it increases the execution speed, and

 ∑ the inline member functions are compact function calls.

The general format of the inline member function declaration is:

 class user_de ned_name {
 private :

 public :
 inline return_type function_name(parameters);
 inline return_type function_name(parameters);

 };

The syntax diagram of inline method declaration is given in Fig. 11.1.

Fig. 11.1 Syntax Diagram of Inline Method Declaration

Whenever a function is declared with the inline specifi er, the C++ compiler merely replaces it with the

code itself so the overhead of the transfer of control between the calling portion of a program and a function

is reduced. The inline specifi er can be used either as a member of a class or a global function.

To defi ne inline member specifi er is well suited whenever a function is small, straight forward and are

not called from too many different places.

 PROGRAM 11.16

A program to illustrate an inline member function to read a data member of a class from the keyboard
and to display it on the screen.

//inline demonstration
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 public :
 void getdata();
 void display();
};

 Programming with C++478

inline void sample:: getdata()
{
 cout << “ enter a number ? \n”;
 cin >> x;
}

inline void sample :: display()
{
 cout << “ entered number is = “ << x ;

 cout << endl;
}

int main()
{
 sample obj;
 obj.getdata();
 obj.display();
 return 0;
}

Output of the above program

enter a number?
10
entered number is = 10

 PROGRAM 11.17

A program to perform the simple arithmetic operations such as addition, subtraction, multiplication and
division using a member function and these functions are defi ned as an inline substitution.

//demonstration of inline member function
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 int y;
 public :
 inline void getinfo();
 inline void display();
 inline int sum();
 inline int diff();
 inline int mult();
 inline oat div();
}; // end of class declaration

inline void sample :: getinfo()
{
 cout << “ enter any two numbers ? “ << endl;
 cin >> x >> y ;
}

inline void sample :: display()
{
 cout << “ x = “ << x << endl;
 cout << “ y = “ << y << endl;
 cout << “ sum = “ << sum() << endl;
 cout << “ dif = “ << diff() << endl;
 cout << “ mul = “ << mult() << endl;
 cout << “ div = “ << div() << endl;
}

 Special Member Functions 479

inline int sample :: sum()
{
 return(x+y);
}

inline int sample :: diff()
{
 return(x-y);
}

inline int sample :: mult()
{
 return(x*y);
}

inline oat sample :: div()
{
 return((oat)x / (oat)y);
}

int main()
{
 sample obj1;
 obj1.getinfo();
 obj1.display();
 obj1.sum();
 obj1.diff();
 obj1.mult();
 obj1.div();
 return 0;
}

Output of the above program

enter any two numbers?
3 4
x = 3
y = 4
sum = 7
dif = -1
mul = 12
div = 0.75

 PROGRAM 11.18

A program to solve a quadratic equation using an object-oriented programming technique in which the
member functions are defi ned as an inline substitution.

//solution of quadratic equation using object oriented programming
// methods are de ned as inline substitution
#include <iostream>
#include <cmath>
using namespace std;
class equation {
 private :
 oat a;
 oat b;
 oat c;
 public :
 inline void getinfo(oat a, oat b, oat c);
 inline void display();

 Programming with C++480

 inline void equal(oat a, oat b);
 inline void imag();
 inline void real(oat a, oat b, oat det);
}; // end of class declaration

inline void equation ::getinfo(oat aa, oat bb, oat cc)
{
 a = aa;
 b = bb;
 c = cc;

}

inline void equation :: display()
{
 cout << endl;
 cout << “ a = “ << a << ‘\t’;
 cout << “ b = “ << b << ‘\t’;
 cout << “ c = “ << c << endl;
}

inline void equation :: equal(oat a , oat b)
{
 oat x;
 x = -b/(2*a);
 cout << “ roots are equal = “ << x << endl;
}

inline void equation :: imag()
{
 cout << “ roots are imaginary \n”;
}

inline void equation :: real(oat a , oat b, oat det)
{
 oat x1,x2,temp;
 temp = sqrt(det);
 x1 = (-b+temp)/(2*a);
 x2 = (-b-temp)/(2*a);
 cout << “ roots are real \n”;
 cout << “ x1 = “ << x1 << endl;
 cout << “ x2 = “ << x2 << endl;
}

int main()
{
 class equation equ;
 oat aa,bb,cc;
 cout << “ enter three numbers \n”;
 cin >> aa >> bb >> cc;
 equ.getinfo(aa,bb,cc);
 equ.display();
 if (aa == 0) {
 oat temp;
 temp = -cc/bb;
 cout << “ linear roots = “ << temp << endl;
 }
 else {
 oat det;
 det = bb*bb-4*aa*cc;
 if (det == 0)
 equ.equal(aa,bb);
 else if (det < 0)
 equ.imag();
 else
 equ.real(aa,bb,det);
 }

 Special Member Functions 481

 return 0;
} // end of main program

Output of the above program
enter three numbers
2 5 2
a = 2 b = 5 c = 2
roots are real
x1 = -0.5
x2 = -2

enter three numbers
0 2 1
a = 0 b = 2 c = 1
linear roots = -0.5

11.5 STATIC CLASS MEMBERS

The static data type is one of variables that has been discussed in Chapter 6 on “Functions and Program

Structures.” The main characteristic of the static variables is that the static variables are automatically

initialised to zero unless it has been initialised by some other value explicitly.

 In C++, static member of a class can be categorised into two types, static data member and static member

function. Whenever a data or function member is declared as a static type, it belongs to a class, not to the

instances or objects of the class. Both the data member and member function can have the keyword static.

11.5.1 Static Data Member

Static data members are data objects that are common to all the objects of a class. They exist only once in

all objects of this class. They are already created before the fi nite object of the respective class. The static

members are used in information that is commonly accessible.

This property of static data members, may lead a person to think that static members are basically global

variables. This is not true. Static members can be any one of the groups: public, private and protected, but

not global data. The normal access rules for class members are also valid for static member data. If static

member of a class is public, it can used as a normal variable.

The main advantage of using a static member is to declare the global data which should be updated

while the program lives in the memory.

A static data member of a class has the following properties;

 (1) The access rule of the data member of a class is same for the static data member also. For example,

if a static member is declared as a private category of a class, then non-member functions cannot

access these members. If a static member is declared as public, then any member of the class can

access.

 (2) Whenever a static data member is declared and it has only a single copy, it will be shared by all the

instance of class. That is, the static member becomes global instances of the class.

 (3) The static data member should be created and initialised before the main () function control block

begins.

The general syntax of the static data member declaration is:

 class user_de ned_name {
 private :
 static data_type variables;
 static data_type variables;

 Programming with C++482

 public :

 };

For example, the following program segment shows how to declare the static data type.

 class sample {
 private :
 static int sum; // static data declaration
 public :
 void display();
 };

 int sample:: sum = 0; // static data de nition
 int main()
 {

 }

The keyword static should not be repeated again in the static data member defi nition part.

 PROGRAM 11.19

A program to demonstrate how an automatic initialisation of a static member is carried out and the
contents of the variable displayed.

//automatic initialization of a static member
#include <iostream>
using namespace std;
class sample {
 private:
 static int counter;
 public:
 inline void display();
};
int sample :: counter;
inline void sample:: display()
{
 cout << “ content of the static data member = “ << counter;
 cout << endl;
}

int main()
{
 sample obj;
 obj.display();
 return 0;
}

Output of the above program

content of the static data member = 0

 Special Member Functions 483

 PROGRAM 11.20

A program to defi ne a static data member which has the initial value of 100 and to fi nd out the sum of the
following series:

 sum = 1+2+3...10

The summing of series is to be repeated fi ve times.
This program is to demonstrate how the compiler reserves the special storage allocation as a global

space so that the content of a variable lives from the start of the program to the end.

//static data member
#include <iostream>

using namespace std;
class sample {
 private :
 static int counter;
 public :
 void display();
};

int sample::counter = 100;

void sample:: display()
{
 int i;
 for (i = 0; i <= 10; ++i) {
 counter = counter+i;
 }
 cout << “ sum of the counter value = “ << counter;
 cout << endl;
}

int main()
{
 sample obj;
 int i;
 for (i = 0; i < 5; ++i) {
 cout << “ count = “ << i+1 << endl;
 obj.display();
 cout << endl;
 }
 return 0;
}

Output of the above program

count = 1
sum of the counter value = 155

count = 2
sum of the counter value = 210

count = 3
sum of the counter value = 265

count = 4
sum of the counter value = 320

count = 5
sum of the counter value = 375

 Programming with C++484

 PROGRAM 11.21

A program to display how many instantiation of a class object has been created using static data member
declaration. This program is to demonstrate how the static data member is used to keep track of the number
of instantiation of a class created. Whenever a new object of the class is made, the static counter updates
automatically.

//static data member
#include <iostream>
using namespace std;

class sample {
 private :
 static int count; // static data member declaration
 public :
 sample();
 void display();
};
 //static data de nition
int sample :: count = 0;
sample :: sample ()
{
 ++count;
}

void sample :: display()
{
 cout << “ counter value = “ << count << endl;
}
int main()
{
 sample obj1,obj2,obj3,obj4;
 obj4.display();
 return 0;
}

Output of the above program

counter value = 4

11.5.2 Static Member Functions

The keyword static is used to precede the member function to make a member function static. The static

function is a member function of class and the static member function can manipulate only on static data

member of the class. The static member function acts as global for members of its class without affecting

the rest of the program.

The purpose of static member is to reduce the need for global variables by providing alternatives that are

local to a class. A static member function is not part of objects of a class. Static members of a global class

have external linkage. A static member function does not have a this pointer so it can access nonstatic

members of its class only by using . or ->.

The static member function cannot be a virtual function. A static or nonstatic member function cannot

have the same name and the same arguments type. And further, it cannot be declared with the keyword

const. The static member function is instance dependent, it can be called directly by using the class name

and the scope resolution operator. If it is declared and defi ned in a class, the keyword static should be used

only on the declaration part.

 Special Member Functions 485

 PROGRAM 11.22

A program to check how many instances of the class object are created using the static member function.

//both static data member and static function member
#include <iostream>
using namespace std;
class sample {
 private :
 static int count; // static data member declaration
 public :
 sample();
 static void display(); // static member function
};

//static data de nition
int sample :: count = 0;
sample :: sample ()
{
 ++count;
}

void sample :: display()
{
 cout << “ counter value = “ << count << endl;
}
int main()
{
 cout << “ before instantiation of the object “ << endl;
 sample::display();
 sample obj1,obj2,obj3,obj4;
 cout << “ after instantiation of the object “ << endl;
 sample::display();
 return 0;
}

Output of the above program

before instantiation of the object
counter value = 0
after instantiation of the object
counter value = 4

 PROGRAM 11.23

A program to check how many instances of the class object are created using the static member function,
where static member function is defi ned with inline code substitution.

//using inline member function
#include <iostream>
using namespace std;
class sample {
 private :
 static int count; // static data member declaration
 public :
 sample();
 static void display(); // static member function
};
//static data de nition
int sample :: count = 0;
inline sample :: sample ()

 Programming with C++486

{
 ++count;
}

inline void sample :: display()
{
 cout << “ counter value = “ << count << endl;
}
int main()
{
 cout << “ before instantiation of the object\n”;
 sample::display();
 sample obj1,obj2,obj3,obj4;
 cout << “ after instantiation of the object\n”;
 sample::display();
 return 0;
}

Output of the above program

before instantiation of the object
counter value = 0
after instantiation of the object
counter value = 4

 PROGRAM 11.24

A program to demonstrate how a static data is accessed by a static member function.

//accessing static member function
#include <iostream>
using namespace std;
class alpha {
 private:
 static int x;
 public :
 alpha();
 static void display() // static member function
 {
 cout << “ content of x “;
 cout << “ after incrementd by one = “ << x << endl;
 }
};
class beta {
 private:
 int y;
 public :
 void getdata()
 {
 cout << “ enter a value for y \n”;
 cin >> y;
 }
 void display() //member function
 {
 cout << “ content of y = “ << this->y << endl;
 }
};

int alpha:: x = 10;
alpha :: alpha()
{
 ++x;
}

 Special Member Functions 487

int main()
{
 alpha objx;
 beta objy;
 objy.getdata();
 alpha::display();
 objy.display();
 return 0;
}

Output of the above program

enter a value for y
10
content of x after incremented by one = 11
content of y = 10

11.6 FRIEND FUNCTIONS

The main concepts of the object-oriented programming paradigm are data hiding and data encapsulation.

Whenever data variables are declared in a private category of a class, these members are restricted from

accessing by non-member functions. The private data values can be neither read nor written by non-

member functions. If any attempt is made directly to access these members, the compiler will display an

error message as “inaccessible data type”. The best way to access a private data member by a non-member

function is to change a private data member to a public group. When the private or protected data member

is changed to a public category, it violates the whole concept of data hiding and data encapsulation.

To solve this problem, a friend function can be declared to have access to these data members. Friend is

a special mechanism for letting non-member functions access private data. A friend function may be either

declared or defi ned within the scope of a class defi nition. The keyword friend inform the compiler that it

is not a member function of the class. If the friend function is declared within the class, it must be defi ned

outside the class, but should not be repeated the keyword friend. The general syntax of the friend function

is,

 friend return_type function_name (parameters);

 where friend is a keyword used as a function modifi er.

A friend declaration is valid only within or outside the class defi nition.

 (1) The following is a valid program segment shows how a friend function is defi ned within the scope

of a class defi nition

 class alpha {
 private:
 int x;
 public :
 void getdata();
 friend void display (alpha abc)
 {
 cout << “ value of x = ” << abc.x;
 cout << endl;
 }
 }; // end of class de nition

 (2) The following program segment shows how a friend function is defi ned out of the class defi nition

class alpha {
 private:

 Programming with C++488

 int x;
 public :
 void getdata();
 friend void display (alpha abc);
}; // end of class de nition

void display(alpha abc)//non-member function without scope::operator
{
 cout << “ value of x = ” << abc.x;
 cout << endl;
}

The following is an invalid declaration of the friend function. The keyword friend should not be repeated

in both the function declaration and defi nition.

class alpha {
 private:
 int x;
 public :
 void getdata();
 friend void display (alpha abc);
};
friend void display(alpha abc)//the keyword friend is repeated
{
 cout << “ value of x = ” << abc.x;
 cout << endl;
}

The friend declaration is unaffected by its location in the class. The C++ compiler permits the declaration

of a friend function either in a public or a private section, which does not affect its access right. The

following declarations of a friend function are valid:

 (1) The friend function disp () is declared in the public group
 class rst {
 private :
 int x;
 public :
 void getdata();
 friend void disp();
 };

 (2) The friend function disp () is declared in the private group

 class second {
 private :
 int x;
 friend void disp();
 public :
 void getdata();
 };

(a) Accessing Private Data by Non-Member Function through Friend The private data members are available

only to the particular class and not to any other part of the program. A non-member function cannot access

these private data. It is now understood that C++ language is not just an enhanced version of C or the one

which introduces only classes and objects.

In case, the keyword struct is used for declaring a class object, all its members are public by default.

There is no data hiding between data members and the outside world. The friend function is a special type

of function which is used to access the private data of any class. In other words, they are defi ned as non-

member functions with the ability to manipulate data members directly or to call function members that are

 Special Member Functions 489

not part of the public interface. The friend class has the right to access as many members of its class.

Each time a friend function accesses the private data, naturally the level of privacy of the data

encapsulation gets reduced. Only if it is necessary to access the private data by non-member functions, then

a class may have a friend function, otherwise it is not necessary.

 PROGRAM 11.25

A program to access the private data of a class by non-member function through friend, where the friend
function is declared in the location of public category.

//declaring friend function
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 public :
 void getdata();
 friend void display(class sample);
};

void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

void display(class sample abc)
{
 cout << “ Entered number is :” << abc.x;
 cout << endl;
}

int main()
{
 sample obj;
 obj.getdata();
 cout <<“ accessing the private data by non-member function \n”;
 display(obj);
 return 0;
}

Output of the above program

enter a value for x
100
accessing the private data by non-member function
Entered number is: 100

 PROGRAM 11.26

A program to access the private data of a class by non-member function through friend, where the friend
function is declared in the location of private category.

//declaring friend function
#include <iostream>
using namespace std;
class sample {
 private :

 Programming with C++490

 int x;
 friend void display(class sample);
 public :
 void getdata();

};

void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

void display(class sample abc)

{
 cout << “ Entered number is :” << abc.x;
 cout << endl;
}

int main()
{
 sample obj;
 obj.getdata();
 cout <<“ accessing the private data by non-member function \n”;
 display(obj);
 return 0;
}

Output of the above program

enter a value for x
20
accessing the private data by non-member function
Entered number is: 20

 PROGRAM 11.27

A program to access the private data of a class by non-member function through friend, where the friend
function is defi ned within the scope of a class defi nition itself.

// friend function is de ned within the scope of a class de nition
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 public :
 inline void getdata();
 friend void display(sample abc)
 {
 cout << “ Entered number is :” << abc.x;
 cout << endl;
 }
};

inline void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

int main()
{

 Special Member Functions 491

 sample obj;
 obj.getdata();
 cout <<“ accessing the private data by non-member function \n”;
 display(obj);
 return 0;
}

Output of the above program

enter a value for x
300
accessing the private data by non-member function
Entered number is: 300

(b) Friend Function with Inline Substitution Note that friend function may also have inline member functions.

If the friend function is defi ned within the scope of the class defi nition, then the inline code substitution is

automatically made. If it is defi ned outside the class defi nition, then it is required to precede the return type

with the keyword inline in order to make an inline code substitution.

 PROGRAM 11.28

A program to access the private data of a class by non-member function through a friend specifi er, where
the friend function is defi ned with inline code substitution.

//declaring friend function with inline code
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 public :
 inline void getdata();
 friend void display(class sample);
};

inline void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

inline void display(class sample abc)
{
 cout << “ Entered number is :” << abc.x;
 cout << endl;
}

int main()
{
 sample obj;
 obj.getdata();
 cout <<“ accessing the private data by non-member function \n”;
 display(obj);
 return 0;
}

Output of the above program

enter a value for x
10
accessing the private data by non-member function

 Programming with C++492

Entered number is: 10

The storage class modifi er inline is used in both places, friend function declaration and the function defi nition.

 PROGRAM 11.29

A program to access the private data of a class by non-member function through a friend specifi er, where
the friend function is defi ned with inline code substitution. The keyword inline is used in both the function
declaration and the function defi nition.

#include <iostream>
using namespace std;
class sample {
 private:
 int x;
 public :
 inline void getdata();
 inline friend void display(class sample);
};

inline void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

inline void display(class sample abc)
{
 cout << “ Entered number is :” << abc.x;
 cout << endl;
}
int main()
{
 sample obj;
 obj.getdata();
 cout <<“ accessing the private data by non-member function \n”;
 display(obj);
 return 0;
}

Output of the above program

enter a value for x
100
accessing the private data by non-member function
Entered number is: 100

(c) Granting Friendship to Another Class A class can have friendship with another class. For example, let

there be two classes, fi rst and second. If the class fi rst grants its friendship with the other class second,

then the private data members of the class fi rst are permitted to be accessed by the public members of the

class second. But on the other hand, the public member functions of the class fi rst cannot access the private

members of the class second.

 PROGRAM 11.30

A program to demonstrate how a class fi rst has granted its friendship to the class second to access the
private data of the class fi rst through the public member function of the class second.

 Special Member Functions 493

//granting friendship with another class
#include <iostream>
using namespace std;
class rst {
 friend class second;
 private :
 int x;
 public :
 void getdata();
};
class second {
 public :

 void disp(class rst temp);
};
inline void rst:: getdata()
{
 cout << “ enter a number ? \n”;
 cin >> x;
}

inline void second ::disp(class rst temp)
{
 cout << “ entered number is = “ << temp.x ;
 cout << endl;
}
int main()
{
 rst objx;
 second objy;
 objx.getdata();
 objy.disp(objx);
 return 0;
}

Output of the above program

enter a number?
10
entered number is = 10

A following program will not be compiled due to an error

//granting friendship with another class
#include <iostream>
using namespace std;
class rst {
 friend class second;
 public :
 void display(second objb)
 {
 cout << “ object of second = ” << objb.y << endl;
 }
};
class second {
 private:
 int y;
 public :
 void getdata()
 {
 cout << “ enter a value for y = \n”;
 cin >> y;
 }

 Programming with C++494

};
int main()
{
 rst objx;
 second objy;
 objy.getdata();
 objx.display(objy);
 return 0;
}

Compile time error

forward declaration of class second

Though the class fi rst has granted its friendship to the class second, it cannot access the private data of

the class second through its public member function display () of the class fi rst.

(d) Two Classes Having the Same Friend A non-member function may have friendship with one or more

classes. When a function has declared to have friendship with more than one class, the friend classes should

have forward declaration. It implies that it needs to access the private members of both classes.

The general syntax of declaring the same friend function with more than one class is,

 class second; //forward declaration
 class rst {
 private :

 public :
 friend return_type fname(class rst,class second...);
 };
 class rst {
 private :

 public :
 friend return_type fname(class rst,class second...);
 };

 PROGRAM 11.31

A program to calculate the sum of private data of the class fi rst with a private data of another class
second through the common friend function.

//friend function is same for both classes
#include <iostream>
using namespace std;
class second; //forward declaration
class rst {
 private :
 int x;
 public :
 inline void getdata();
 inline void display();
 friend int sum(rst,second);
};

class second {
 private :

 Special Member Functions 495

 int y;
 public :
 inline void getdata();
 inline void display();
 friend int sum(rst,second);
};

inline void rst :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

inline void second :: getdata()
{
 cout << “ enter a value for y \n”;
 cin >> y;
}

inline void rst :: display()
{
 cout << “ entered number is (x) = “;
 cout << x << endl;
}

inline void second :: display()
{
 cout << “ entered number is (y) = “;
 cout << y << endl;
}

int sum (rst one, second two)
{
 int temp;
 temp = one.x+two.y;
 return(temp);
}

int main()
{
 rst a;
 second b;
 a.getdata();
 b.getdata();
 a.display();
 b.display();
 int te = sum(a,b);
 cout << “ sum of the two private data variables (x+y)”;
 cout << “ = “ << te << endl;
 return 0;
}

Output of the above program

enter a value for x
10
enter a value for y
20
entered number is (x) = 10
entered number is (y) = 20
sum of the two private data variables (x+y) = 30

In the above example, the function sum () needs to have the right to access for fetching the private data

members of the both classes in order to add the contents together. Therefore, the function takes formal

arguments of the both classes.
 friend int sum(rst,second);

 Programming with C++496

11.7 DYNAMIC MEMORY ALLOCATIONS

Two operators, namely, new and delete are used in dynamic memory allocations which are described in

detail in this section.

(a) New The new operator is used to create a heap memory space for an object of a class. In C, there

are special functions used to create a memory space dynamically, viz. malloc(), calloc() and

alloc(). C++ provides a new way in which dynamic memory is allocated. In reality, the new keyword

calls upon the function operator new() to obtain storage.

Basically, an allocation expression must carry out the following three things:

 (i) Find storage for the object to be created,

 (ii) Initialise that object, and

 (iii) Return a suitable pointer type to the object.

The new operator returns a pointer to the object created. Functions cannot be allocated this way using

new operator but pointers to functions can be used for allocating memory space.

The general syntax of the new operator is,
 data_type pointer = new data_type;

 where data_type can be a short integer, fl oat, char, array or even class objects.

For example,
 new int; // an expression to allocate a single integer
 new oat; // an expression to allocate a oating value

If the call to the new operator is successful, it returns a pointer to the space that is allocated. Otherwise it

returns the address zero if the space could not be found or if some kind of error is detected.

(b) Delete The delete operator is used to destroy the variable space which has been created by using the

new operator dynamically. It is analogous to the function free() in C. In reality, the delete keyword calls

upon the function operator delete() to release storage which was created using the new operator.

The general syntax of the delete operator is:

 delete pointer ;

As the new operator returns a pointer to the object being created, the delete operator must defi ne a only

pointer name but not with data type. The delete operator takes no arguments for deleting a single instance

of a memory variable created by a new operator.

For example,

 char *ptr_ch = new char; // memory for a character is allocated
 int *ptr_i = new int; // memory for an integer is allocated
 delete ptr_ch; // delete memory space
 delete ptr_i; // delete

Note that the delete operator is used for only releasing the heap memory space which was allocated by

the new operator. If attempts are made to release memory space using delete operator that was not allocated

by the new operator, then it gives unpredictable results. The following usage of the delete operator is

invalid, as the delete operator should not be used twice to destroy the same pointer.
char *ptr_ch = new char; // allocating space for a character
delete ptr_ch;
delete ptr_ch; // error

 Special Member Functions 497

 PROGRAM 11.32

A program to create a dynamic memory allocation for the standard data types: integer, fl oating point,
character and double. The pointer variables are initialised with some data and the contents of the pointers
are displayed on the screen.

//using new and delete operators
#include <iostream>
using namespace std;

int main()
{
 int *ptr_i = new int (25);
 oat *ptr_f = new oat(-10.1234F);
 char *ptr_c = new char(‘a’);
 double *ptr_d = new double (1234.5667L);
 cout << “contents of the pointers “ << endl;
 cout << “integer = “ << *ptr_i << endl;
 cout << “ oating point value = “ << *ptr_f << endl;
 cout << “char = “ << *ptr_c << endl;
 cout << “double = “ << *ptr_d << endl;
 delete ptr_i;
 delete ptr_f;
 delete ptr_c;
 delete ptr_d;
 return 0;
}

Output of the above program
contents of the pointers
integer = 25
 oating point value = -10.1234
char = a
double = 1234.57

 PROGRAM 11.33

A program to read two integers from the keyboard and perform simple arithmetic operations using the
pointer technique. The memory space for the variables are allocated by the new operator.

//using new and delete operators
#include <iostream>
using namespace std;
int main()
{
 int *ptr_a = new int;
 int *ptr_b = new int;
 int *ptr_sum = new int;
 int *ptr_sub = new int;
 int *ptr_mult = new int;
 oat *ptr_div = new oat;
 cout << “ enter any two integers \n”;
 cin >> *ptr_a >> *ptr_b;
 *ptr_sum = *ptr_a + *ptr_b;
 *ptr_sub = *ptr_a - *ptr_b;
 *ptr_mult = *ptr_a * *ptr_b;
 *ptr_div = (oat)*ptr_a / (oat)*ptr_b;
 cout << “ Addition of (*ptr_a + *ptr_b) = “ << *ptr_sum;
 cout << endl;
 cout << “ Subtraction of (*ptr_a - *ptr_b) = “ << *ptr_sub;

 Programming with C++498

 cout << endl;
 cout << “ Multiplication of (*ptr_a * *ptr_b) = “ << *ptr_mult;
 cout << endl;
 cout << “ Division of (*ptr_a / *ptr_b) = “ << *ptr_div;
 cout << endl;
 delete ptr_a;
 delete ptr_b;
 delete ptr_sum;
 delete ptr_sub;
 delete ptr_mult;
 delete ptr_div;
 return 0;
}

Output of the above program

enter any two integers
1 2
Addition of (*ptr_a + *ptr_b) = 3
Subtraction of (*ptr_a - *ptr_b) = -1
Multiplication of (*ptr_a * *ptr_b) = 2
Division of (*ptr_a / *ptr_b) = 0.5

(c) Array Data Type When an object is an array data type, a pointer to its initial element is returned.

 new int;
 new int[20];

Both the expressions return a pointer to the fi rst element of the array as

 int *;

The general syntax of the new operator for the array data type is,

 data_type pointer = new data_type[size];

where data_type can be a short integer, fl oat, char, array or even class objects, and

size is the maximum number of elements that are to be accommodated.

For example,

 (1) An expression to allocate a memory space for 20 integers using new operator.

 int *ptr_a = new int[20];

 (2) An expression to create memory space for 100 characters using new operator.

 char *ptr_ch = new char[100];

(d) Use of New Operator to Allocate Memory for a Two-Dimensional Array A two-dimensional array can be

declared using the new operator as,

 new int [10][20];

 which returns
 int (*)[20];

The general syntax of the new operator for the two-dimensional array data type is,

 data_type (pointer)[size] = new data_type[size][size];

where data_type can be a short integer, fl oat, char, array or even class objects and

size is the maximum number of elements that are to be accommodated.

For example,

 (1) An expression to allocate memory space for of 5×5 integers using new operator.

 int (*ptr_a)[5] = new int [5][5];

 (2) An expression to create memory space for 10×10 characters using new operator.

 int (*ptr_c)[10] = new int [10][10];

 Special Member Functions 499

The following section shows how the delete operator is used to destroy the objects created by the new

operator for the array data type. The expression for the delete operator is same for both the one-dimensional

and multidimensional arrays.

The general syntax of the delete operator for an array data type is,

 delete [] ptr_a; //delete an array of pointer ptr_a;

For example, the following program segment shows how to use the delete operator in a one-dimensional

array.

int main()
{
 char *ptr_ch = new char[100];
 oat *ptr_f = new oat [20];

 delete [] ptr_ch;
 delete [] ptr_f;
}

For example, the following program segment shows how to use the delete operator in a two-dimensional

array.

int main()
{
 int (*ptr_c)[10] = new int [10][10];
 oat (*ptr_f)[20] = new oat [20][20];

 delete [] ptr_c;
 delete [] ptr_f;
}

 PROGRAM 11.34

A program to allocate contiguous memory space for an array of integers using the new operator and the
object of the array is destroyed by the delete operator. This program reads a set of numbers from the
keyboard and displays it on the screen.

//using new and delete operators for array data type
#include <iostream>
using namespace std;
int main()
{
 int *ptr_a = new int[20];
 int *ptr_n = new int;
 cout << “ how many numbers are there ? \n”;
 cin >> *ptr_n;
 for (int i = 0; i<= *ptr_n -1; ++i) {
 cout << “ element a[“ << i <<“] = “;
 cin >> ptr_a[i];
 }
 cout << “ contents of the array \n”;
 for (int i = 0; i<= *ptr_n -1; ++i) {
 cout << ptr_a[i] ;
 cout << ‘\t’;
 }
 delete ptr_n;
 delete [] ptr_a;

 Programming with C++500

 return 0;
}

Output of the above program

how many numbers are there?
5
element a[0] = 11
element a[1] = 22
element a[2] = 33
element a[3] = 44
element a[4] = 55

contents of the array
11 22 33 44 55

 PROGRAM 11.35

This program demonstrates how memory is allocated for a multidimensional array of data elements using
the new operator and destroying it using the delete operator. A program to read a two-dimensional matrices
A and B; perform the matrix addition of these matrices and display the added elements on the screen.

//using new and delete operators for two dimensional
//array data type
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int (*ptr_a)[5] = new int [5][5];
 int (*ptr_b)[5] = new int [5][5];
 int (*ptr_c)[5] = new int [5][5];
 int *ptr_n = new int;
 cout << “ order of the matrix ? \n”;
 cin >> *ptr_n;
 cout << “ enter the elements of A matrix \n”;
 for (int i = 0; i<= *ptr_n -1; ++i) {
 for (int j = 0; j<= *ptr_n -1; ++j)
 cin >> ptr_a[i][j];
 }
 cout << “ enter the elements of B matrix \n”;
 for (int i = 0; i<= *ptr_n -1; ++i) {
 for (int j = 0; j<= *ptr_n -1; ++j)
 cin >> ptr_b[i][j];
 }
 // matrix addition
 for (int i = 0; i<= *ptr_n -1; ++i) {
 for (int j = 0; j<= *ptr_n -1; ++j) {
 ptr_c[i][j] = ptr_a[i][j] + ptr_b[i][j];
 }
 }
 cout << “ Contents of the C matrix \n”;
 for (int i = 0; i<= *ptr_n -1; ++i) {
 for (int j = 0; j<= *ptr_n -1; ++j) {
 cout << setw(3) << ptr_c[i][j];
 }
 cout << endl;
 }
 delete ptr_n;
 delete [] ptr_a;
 delete [] ptr_b;

 Special Member Functions 501

 delete [] ptr_c;
 return 0;
}

Output of the above program

order of the matrix ?
3
enter the elements of A matrix
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
enter the elements of B matrix
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
Contents of the C matrix
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

 PROGRAM 11.36

A program to create memory space for a class object using the new operator and to destroy it using the
delete operator.

//using new and delete operators
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 oat y;
 public :
 void getdata();
 void display();
};
void sample :: getdata()
{
 cout << “ enter an integer value \n”;
 cin >> x;
 cout << “ enter a oating point number \n”;
 cin >> y;
}

void sample :: display()
{
 cout << “ entered numbers are \n”;
 cout << “ x = “ << x << ‘\t’ << “ y = “ << y << endl;
}

int main()
{
 sample *ptr;
 ptr = new sample;
 ptr->getdata();

 Programming with C++502

 ptr->display();
 delete ptr;
 return 0;
}

Output of the above program
enter an integer value
10
enter a oating point number
2.34
entered numbers are
x = 10 y = 2.34

11.8 THIS POINTER

It is well known that a pointer is a variable which holds the memory address of another variable. Using the

pointer technique, one can access the data of another variables indirectly. The this pointer is a variable

which is used to access the address of the class itself. Sometimes, the this pointer may have return data

items to the caller. In other words, the this pointer is a pointer accessible only within the non-static member

functions of a class, struct, or union type. It points to the object for which the member function is called.

Static member functions do not have a this pointer. The general syntax of the this pointer is:

this
this->class_member
(*this).class_member

For example, the following assignment statements are equivalent:

void Date::set Month(int mn) {
 month = mn; // These three statements are equivalent
 this->month = mn;
 (*this).month = mn;
}

 PROGRAM 11.37

A program to demonstrate how to use the this pointer for accessing the members of a class object.

#include <iostream>
using namespace std;
class date_info {
 public:
 int day,month,year;
 void setdate(int d,int m, int y);
 void display();
};

void date_info :: setdate(int d, int m, int y)
{
 //three assignment statements are equivalent
 day = d;
 this->month = m;
 (*this).year = y;
}

void date_info :: display()
{

 Special Member Functions 503

 cout << “Today’s date is : “ << this->day << “/”;
 cout << (*this).month << “/” << this->year << ‘\n’;
}
int main()
{
 date_info obj;
 obj.setdate(10,10,2007);
 obj.display();
 return 0;
}

Output of the above program

Today’s date is: 10/10/2007

An object’s this pointer is not part of the object itself; it is not refl ected in the result of a sizeof

statement on the object. Instead, when a non-static member function is called for an object, the address of

the object is passed by the compiler as a hidden argument to the function.

 PROGRAM 11.38

A program to display the object’s address of a class using this pointer.

//for accessing member data with this pointer
#include <iostream>
using namespace std;
class sample {
 private :
 int value;
 public :
 inline void display();
};

inline void sample ::display()
{
 this->value = 20;
 cout << “Contents of the value = “ << this->value ;
 cout << endl;
}

int main()
{
 sample obj1;
 obj1.display();
 obj2.display();
 obj3.display();
 return 0;
}

Output of the above program

Object’s address = 0x24e0fff2
Object’s address = 0x24e0fff0
Object’s address = 0x24e0ffee

The above program creates three objects, obj1, obj2, obj3 and displays each object’s address using this

pointer. The display () member function is used to give the address of the object. The this pointer can be

treated like any other pointer to an object. The following is a valid declaration of the class object in C++.

inline void sample ::display()
{
 this->value = 20;
 cout << “Contents of the value = ” << this->value ;

 Programming with C++504

 cout << endl;
}

The above program segment is same as the following:

inline void sample ::display()
{
 value = 20;
 cout << “Contents of the value = ” << value ;
 cout << endl;
}

 PROGRAM 11.39

A program to demonstrate how the this pointer is used to access the member data of a class.

//for accessing member data with this pointer
#include <iostream>
using namespace std;
class sample {
 private :
 int value;
 public :
 inline void display();
};

inline void sample ::display()
{
 this->value = 20;
 cout << “Contents of the value = ” << this->value ;
 cout << endl;
}

int main()
{
 sample obj1;
 obj1.display();
 return 0;
}

Output of the above program

Contents of the value = 20

The object’s address is available from within the member function as the this pointer. Most uses of this

are implicit. The expression *this is commonly used to return the current object from a member function:

return *this;

The this pointer is also used to guard against self-reference:

Type of this Pointer

(a) Const Whenever member data is declared as const, it is meant for read only purpose and it cannot be

modifi ed. The const member cannot invoke member functions that are not const.

(b) Volatile The volatile member data is loaded from memory each time it is accessed and it disables certain

optimisations.

It is an error to pass a const object to a member function that is not const. Similarly, it is an error to

pass a volatile object to a member function that is not volatile. Member functions declared as const cannot

change member data—in such functions, the this pointer is a pointer to a const object.

 Special Member Functions 505

Note that constructors and destructors cannot be declared as const or volatile. They can, however,

be invoked on const or volatile objects.

11.9 MUTABLE

The keyword mutable is used to access the const data member of a class. We have already seen that the

this keyword can only be applied to non-static and non-const data members of a class. If a data member

is declared mutable, then it is legal to assign a value to this data member from a const member function.

mutable member-variable-declaration;

For example, the following code will compile without error because m_accessCount has been declared

to be mutable, and therefore can be modifi ed by GetFlag even though GetFlag is a const member function.

 PROGRAM 11.40

A program to demonstrate how to use the mutable modifi er for accessing the const member data of a class.

// mutable.cpp
#include <iostream>
using namespace std;
class abc
{
 public:
 void setdata(int a);
 void display();
 void GetFlag() const
 {
 m_accessCount++;
 }
 private:
 mutable int m_accessCount;
};

void abc :: setdata(int a)
{
 m_accessCount = a;
}

void abc::display()
{
 cout << “AccessCount = ” << m_accessCount << “\n”;
}

int main()
{
 abc obj;
 obj.setdata(100);
 obj.display();
 obj.GetFlag();
 return 0;
}

Output of the above program

AccessCount = 100

 Programming with C++506

 REVIEW QUESTIONS

 1. Describe how the data member of a class can be initialised in C++.

 2. What is a constructor? What are the uses of declaring a constructor member function in a program?

 3. What are the rule governing the declaration of a constructor?

 4. When does a constructor member function is invoked in a class?

 5. In what way a constructor is different from an automatic initialisation?

 6. List the merits and demerits of copy constructor.

 7. What are the rules to be followed for declaring a copy constructor member function in C++

 8. What is a default constructor?

 9. Under what circumstances a default constructor is well suited for automatic initialisation of objects?

 10. Explain the pros and cons of default constructors.

 11. What is an inline substitution?

 12. Explain the difference between the inline code over the macro.

 13. Explain how an inline member function is defi ned in C++.

 14. What is a static class member?

 15. What are the merits and demerits of static data members over the global data variables?

 16. Explain how a static member is defi ned and declared in C++.

 17. What is a friend function?

 18. Explain the pros and cons of declaring a friend class in a program.

 19. How is a heap memory allocated in C++?

 20. What are dynamic allocations operators?

 21. What are the differences between the static and dynamic allocation of memory?

 22. What is meant by this operator?

 23. What are the places this pointer used?

 24. Explain how data member of a class can be destroyed in C++.

 25. What is a destructor and what are the uses of declaring a destructor member function in a program?

 26. What are the rules governing the declaration of a destructor member function?

 27. When does a destructor member function is invoked in a class?

 28. In what way a destructor is different from a delete operator?

 29. Explain the importance of mutable modifi er.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
class abc
{

 abc() {
 cout << “Calling constructor\n”;
 }
};
int main()

 Special Member Functions 507

{
 abc obj;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class abc
{
 protected:
 abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class abc
{
 public:
 void abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class abc
{
 public:
 abc() {
 cout << “Calling constructor\n”;
 return 0;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
class abc

 Programming with C++508

{
 public:
 abc() {
 cout << “Calling constructor\n”;
 return;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
class abc
{
 public:
 static abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
class abc
{
 public:
 extern abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 2. What will be the output of each of the following program when it is executed?

 (a)
#include <iostream>
using namespace std;
union abc
{
 abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{

 Special Member Functions 509

 abc obj;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
struct abc
{
 abc() {
 cout << “Calling constructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
struct abc
{
 ~abc() {
 cout << “Calling destructor\n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
struct abc
{
 ~abc() {
 cout << “Calling destructor\n”;
 return;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
struct abc
{
 virtual ~abc() {
 cout << “Calling destructor\n”;
 return;

 Programming with C++510

 }
};
int main()
{
 abc obj;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
struct abc
{
 virtual abc() {
 cout << “Calling constructor \n”;
 }
};
int main()
{
 abc obj;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
struct abc {
 abc();
};

abc :: abc()
{
 struct sample {
 sample() {
 cout << “ deep constructor \n”;
 }
 };
}
int main()
{
 abc obj;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
struct abc {
 abc();
};

abc :: abc()
{
 struct sample {
 sample();
 };
}
abc::sample :: sample()

 Special Member Functions 511

{
 cout << “ deep constructor \n”;
}
int main()
{
 abc obj;
 return 0;
}

 3. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
class abc {
 public:
 abc();
 class x {
 public:
 x();
 class y{
 public:
 y();
 };
 };
};
abc:: abc()
{
 cout << “abc - class constructor \n”;
}
abc::x :: x()
{
 cout << “x - class constructor \n”;
}
abc::x:: y:: y()
{
 cout << “ y - class constructor \n”;
}
int main()
{
 abc obj;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class abc {
 public:
 abc();
 class x {
 public:
 x();
 };
};
abc:: abc()
{

 Programming with C++512

 cout << “abc - class constructor \n”;
}
abc::x :: x()
{
 cout << “x - class constructor \n”;
}

int main()
{
 abc::x obj2;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
union abc {
 ~abc();
 union x {
 ~x();
 union y {
 ~y();
 union z {
 ~z();
 };
 };
 };
};

abc:: ~abc()
{
 cout << “abc - class destructor \n”;
}

abc::x :: ~x()
{
 cout << “x - class destructor \n”;
}

abc::x ::y :: ~y()
{
 cout << “y - class destructor \n”;
}

abc::x ::y :: z :: ~z()
{
 cout << “z - class destructor \n”;
}

int main()
{
 abc obj1;
 abc::x obj2;
 abc::x::y obj3;
 abc::x::y::z obj4;
 return 0;
}

 Special Member Functions 513

 (d)
#include <iostream>
using namespace std;
union abc {
 ~abc();
 struct x {
 ~x();
 union y {
 ~y();
 struct z {
 ~z();
 };
 };
 };
};

abc:: ~abc()
{
 cout << “abc - class destructor \n”;
}

abc::x :: ~x()
{
 cout << “x - class destructor \n”;
}

abc::x ::y :: ~y()
{
 cout << “y - class destructor \n”;
}

abc::x ::y :: z :: ~z()
{
 cout << “z - class destructor \n”;
}

int main()
{
 abc obj1;
 abc::x obj2;
 abc::x::y obj3;
 abc::x::y::z obj4;
 return 0;
}

 PROGRAMMING EXERCISES

 1. Write an object-oriented program in C++ that prints the factorial of a given number using a

constructor and a destructor member function.

 2. Write an object-oriented program in C++ that prints the factorial of a given number using a copy

constructor and a destructor member function.

 Programming with C++514

 3. Write an object-oriented program in C++ that determines whether a given number is a prime or not

and prints using default constructor and destructor member functions.

 4. Write an object-oriented program in C++ to read any fi ve real numbers and print the average using a

static member class.

 5. Write an object-oriented program in C++ to fi nd the sum of the following series using

 ∑ constructor member function

 ∑ copy constructor

 ∑ default constructor member function

 ∑ destructor member function

 ∑ inline member function

 (a) sum = 1 + 2 + 3 + ... + n

 (b) sum = 1 + 3 + 5 + ... + n

 (c) sum = 1 + 2 + 4 + ... + n

 (d) sum = 1-
1

1!
+
2

2!
-
3

3!
... n

n!

 (e) sum = x +
x

2!
+
x

4!
+...

x

n!

2 4 n

 (f) sum = x -
x

3!
+
x

5!
+...

x

n!

3 5 n

 (g) sum = 12 + 22 + 32 + 42 + ... + n2

 (h) sum = 13 + 23 + 33 + 43 + ... + n3

 (i) sum = 1 + 22 + 42 + ... + n2

 (j) sum = 1 + 32 + 52 + ... + n2

 6. Write an object-oriented program in C++ to generate the following series of numbers using

constructor, destructor and inline member functions.

 (i) (ii)

 1 1
 2 1 1 2
 3 2 1 1 2 3
 4 3 2 1 1 2 3 4
 5 4 3 2 1 1 2 3 4 5
 6 5 4 3 2 1 1 2 3 4 5 6
 7 6 5 4 3 2 1 1 2 3 4 5 6 7
 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9

 (iii) (iv)

 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9
 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8
 7 6 5 4 3 2 1 1 2 3 4 5 6 7
 6 5 4 3 2 1 1 2 3 4 5 6
 5 4 3 2 1 1 2 3 4 5
 4 3 2 1 1 2 3 4
 3 2 1 1 2 3

 2 1 1 2

 1 1

 Special Member Functions 515

 7. Write an object-oriented program in C++ to read an integer number and fi nd the sum of all the digits

until it reduces to a single digit using a constructor, destructor, default constructor and inline member

functions.

 For example,

 (i) n = 1256

 sum = 1+2+5+6 = 14

 sum = 1+4 = 5

 (ii) n = 7896

 sum = 7+8+9+6 = 30

 sum = 3+0 = 3

 8. Write an object-oriented program in C++ to read a number n and print it digit by digit in words using

inline member function. For example, consider the number 756, which should be printed as “Seven

Five Six”.

 9. Write an object-oriented program in C++ to read a set of numbers up to n (where n is defi ned by

the programmer) and print the contents of the array in the reverse order using dynamic memory

allocation operators new and delete.

 For example, for n = 4, let the set be

 26 56 51 123 should be printed as

 123 51 56 26

 10. Write an object-oriented program in C++ to read n numbers (where n is defi ned by the programmer)

and fi nd the average of the non-negative integer numbers. Also fi nd, the deviation of the numbers

using new and delete operators.

 11. Write an object-oriented program in C++ to read a set of numbers and store it in a one-dimensional

array; again read a number ‘d’ and check whether the number d is present in the array or not. If it is

so, print out how many times the number d is repeated in the array using new and delete operators.

 12. Write an object-oriented program in C++ to read a set of numbers and store it in a one-dimensional

array; again read a number n and check whether it is present in the array or not. If it is so, print out

the position of n in the array and also check whether it repeats in the array using new and delete

operators.

 13. Write an object-oriented program in C++ to read a set of numbers and store it in a one-dimensional

array; fi nd the largest and the smallest number and the difference of the two numbers. Using the

difference, fi nd the deviation of the numbers of the array, through new and delete operators.

 14. Write an object-oriented program in C++ to read a two-dimensional square matrix A and display its

transpose using new and delete operators.

 15. Write an object-oriented program in C++ to read a two-dimensional array; fi nd the sum of the

elements row-wise and column-wise separately, and display the sums using new and delete

operators.

 16. Write an object-oriented program in C++ to generate a magic square A (where the sum of the

elements along with the row-wise and column-wise is the same) using new and delete operators.

 17. Write an object-oriented program in C++ to read a set of lines and fi nd out the number of characters,

words, and lines in a given text using static member class.

 18. Write an object-oriented program in C++ to read a line and fi nd out the number of vowels (a, e, i, o,

u) and consonants present in the given line using static member functions.

 19. Write an object-oriented program to perform trigonometric operations on complex numbers using a

friend function.

 20. Write an object-oriented program with constructor, default constructor, copy constructor and

 Programming with C++516

destructor to read a set of lines from stdin and store them in an array A; again read a string S from

the stdin and check whether the given string S is in the array A. If it is, print that line and also

how many times it has been repeated in the array A.

 21. Write an object-oriented program with constructor, default constructor, copy constructor and

destructor to read a set of lines from stdin and store them in an array A; again read a string S from

the stdin and check whether the given string S is in the array A. If it is, remove the string S from

the array A and print the updated array on the stdout. For example,
 A = concatenate
 S = cat
 The updated a is conenate

 22. Write an object-oriented program with constructor, default constructor, copy constructor and

destructor to read a set of lines from stdin and store them in an array A; again read two strings S1

and S2 from the stdin and check whether the given string S1 is in the array A. If it is, replace the

string S1 with the string S2 and print the updated array.

 For example,
 A = concatenate
 S1 = cat
 S2 = 123

 The updated A is con123enate
 23. Develop an object-oriented program in C++ to read the following information from the keyboard:

 employee name

 employee code

 designation

 years of experience

 age

 Construct the data base with suitable member functions for initialising and for destroying the data,

viz. constructor, default constructor, copy constructor, destructor, static member functions, friend

class, this pointer, inline code and dynamic memory allocation operators—new and delete.

 24. Develop an object-oriented program in C++ to create a data base of the following items:

 name of the patient

 sex

 age

 ward number

 bed number

 nature of the illness

 date of admission

 Construct the data base with suitable member functions for initialising and destroying the data, viz.

constructor, default constructor, copy constructor, destructor, static member functions, friend class,

this pointer, inline code and dynamic memory allocation operators—new and delete.

 25. Develop an object-oriented program in C++ to create a pay roll system of an organisation assuming

that the following information can be read from the keyboard:

 employee name

 employee code

 designation

 account number

 date of joining

 basic pay

 Special Member Functions 517

 DA, HRA and CCA

 deductions like PPF, GPF, CPF, LIC, NSS, NSC, etc.

 Construct the data base with suitable member functions for initialising and destroying the data, viz.

constructor, default constructor, copy constructor, destructor, static member functions, friend class,

this pointer, inline code and dynamic memory allocation operators—new and delete.

 26. Develop an object-oriented program in C++ to prepare the mark sheet of a university examination

assuming that the following items can be read from the keyboard:

 name of the student

 roll number

 subject code

 subject name

 internal marks

 external marks

 Construct the data base with suitable member functions for initialising and destroying the data, viz.

constructor, default constructor, copy constructor, destructor, static member functions, friend class,

this pointer, inline code and dynamic memory allocation operators—new and delete.

 27. Develop an object-oriented program in C++ to create a library information system containing the

following for all books in the library:

 accession number

 name of the author

 title of the book

 year of publication

 publisher’s name

 cost of the book

 Construct the data base with suitable member functions for initialising and destroying the data, viz.

constructor, default constructor, copy constructor, destructor, static member functions, friend class,

this pointer, inline code and dynamic memory allocation operators—new and delete.

 28. Develop an object-oriented program in C++ to create a data base of the personnel information

system containing the following information:

 name

 date of birth

 blood group

 height

 weight

 insurance policy number

 contact address

 telephone number

 driving licence number, etc.

 Construct the data base with suitable member functions for initialising and destroying the data, viz.

constructor, default constructor, copy constructor, destructor, static member functions, friend class,

this pointer, inline code and dynamic memory allocation operators—new and delete.

Single and
Multiple
Inheritance

Chapter

12

12.1 INTRODUCTION

It is well known that the C++ is a tool for object-oriented programming that supports most of the OOP

features such as data hiding, data encapsulation, inheritance, polymorphism, virtual functions, etc. Data

hiding and encapsulation are important features of the object-oriented programming and how these concepts

are implemented using classes are explained in Chapter 10 on “Classes and objects”. The class alone is not

enough to support and design OOP. In order to maintain and reuse the class objects easily, it is required

to relate disperate classes into another. This chapter presents the salient features of the inheritance that

probably is the most powerful feature of the object-oriented programming. Inheritance is the process of

creating new classes from an existing class. The existing class is known as the base class and the newly

created class is called as a derived class.

The general representation of single and multiple inheritance is given in Fig. 12.1(a) and (b).

In some OOP languages such as Simula, the base and derived classes are called as super and subclasses

respectively. The derived class inherits all capabilities of the base class. It can also add some more features

to this class. The base class is unchanged by its process.

The main advantages of the inheritance are:

 ∑ reusability of the code,

 ∑ to increase the reliability of the code, and

 ∑ to add some enhancements to the base class.

Inheritance, one of the most powerful features of object-oriented programming
(OOP) is introduced and explained. The focus is on how a class can be defi ned
and declared as a base class and derived class for implementing the mechanism
of single inheritance and multiple inheritance. The syntax and semantic rules of
the class hierarchies and levels of inheritance are discussed and illustrated with
numerous examples.

 Single and Multiple Inheritance 519

Once the base class is written and debugged, it need not be changed again when there are circumstances

to add or modify the member of the class.

Fig. 12.1(a) Single Inheritance

Fig. 12.1(b) Multiple inheritance

 Programming with C++520

12.2 SINGLE INHERITANCE

Single inheritance is the process of creating new classes from an existing base class. The existing class is

known as the direct base class and the newly created class is called as a singly derived class.

Single inheritance is the ability of a derived class to inherit the member functions and variables of the

existing base class.

Defi ning the Derived Class The declaration of a singly derived class is as that same of an ordinary class. A

derived class consists of the following components:

 (i) the keyword class

 (ii) the name of the derived class

 (iii) a single colon

 (iv) the type of derivation (private, public or protected)

 (v) the name of the base or parent class

 (vi) the remainder of the class defi nition

The general syntax of the derived class declaration is as follows.
class derived_class_name : private/public/protected base_class_name

{
 private :
 // data members
 public :
 // data members
 // methods
 protected :
 // data members
 };

For example, the following program segment illustrates the declaration of the single inherited class.

The base class consists of two parts — data member and member function. The data member consists of

name, rollno and sex and are defi ned as a private group. The member functions getdata () and putdata ()

are declared in the base class. The members of a base class can be referred as if they were members of the

derived class.

class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
}; // end of class de nition
class physical_ t :public basic_info
{
 private :
 oat height;
 oat weight;
 public:
 void getd();
 void disp();
}; //end of class de nition

 Single and Multiple Inheritance 521

The derived class inherits the properties of its base classes, including its data member and member

functions. The physical_fi t is a derived class which has two components — private and public. In addition

to its new data members such as height and weight, it may inherit the data members of the base class. The

derived class contains not only the methods of its own but also of its base classes.

 PROGRAM 12.1

A program to read the data members of a basic class such as name, roll number and sex from the
keyboard and display the contents of the class on the screen. This program does not use any inheritance
concepts.

//program 1.cpp
#include <iostream>
#include <iomanip>
using namespace std;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
 }; // end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()
{
 cout << name << “ “;
 cout << rollno << “ “;
 cout << sex << “ “;
}

int main()
{
 basic_info a;
 cout << “enter the following information \n”;
 a.getdata();
 cout << “ ————————————— \n”;
 cout << “ Name Rollno Sex \n”;
 cout << “ ————————————— \n”;
 a.display();
 cout << endl;
 cout << “ ————————————— \n”;
 return 0;
}

Output of the above program
enter the following information
enter a name?
Ravich
roll no?

 Programming with C++522

20071
sex?
M

Name Rollno Sex

Ravich 20071 M

 PROGRAM 12.2

A program to read the derived class data members such as name, roll number, sex, height and weight
from the keyboard and display the contents of the class on the screen. This program demonstrates a
single inheritance concept which consists of a base class and a derived class.

The OMT of a class notation for single inheritance is given in Fig. 12.2.

Fig. 12.2 OMT of a Class Notation for Single Inheritance

//single inheritance
#include <iostream>
#include <iomanip>
using namespace std;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
 }; // end of class de nition

class physical_ t :public basic_info

 Single and Multiple Inheritance 523

{
 private :
 oat height;
 oat weight;
 public:
 void getdata();
 void display();
 }; //end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()
{
 cout << name << “ “;
 cout << rollno << “ “;
 cout << sex << “ “;
}

void physical_ t :: getdata()
{
 basic_info::getdata();
 cout << “ height ? \n”;
 cin >> height;

 cout << “ weight ?\n”;
 cin >> weight;
}

void physical_ t :: display()
{
 basic_info::display();
 cout << height << “ “;
 cout << weight << “ “;
}

int main()
{
 physical_ t a;
 cout << “enter the following information \n”;
 a.getdata();
 cout << “ ———————————————————— \n”;
 cout << “ Name Rollno Sex Height Weight \n”;
 cout << “ ———————————————————— \n”;
 a.display();
 cout << endl;
 cout << “ ———————————————————— \n”;
 return 0;
}

Output of the above program

enter the following information
enter a name?
Kandasamy
roll no?
27003
sex?
M
height?

 Programming with C++524

179
weight?
78

Name Rollno Sex Height Weight

Kandasamy 27003 M 179 78

12.3 TYPES OF BASE CLASSES

Any class can serve as a base class. A derived class may be defi ned as a base of another class. A base class

can be classifi ed into two types, direct base and indirect base. In this section, how these base classes are

realised in C++, are explained in detail.

12.3.1 Direct Base Classes

A base class is called a direct base if it is mentioned in the base list.

For example, following are valid derived class declarations:

(1)
 class baseA {

 };

 class derivedB : public baseA {

 };

where class baseA is a direct base.

Fig. 12.3(a) Direct Base Class

(2)
 class baseA {

 };

 class baseB {

 Single and Multiple Inheritance 525

 };

 class derivedC : public baseA, public baseB {

 };

where both classes baseA and baseB are the direct base.

(3) A class may be derived from any number of base classes. For example,
 class baseA {

 };

 class baseB {

 };

 class baseC {

 };

 class baseD {

 };

 class derivedE : public baseA, public baseB,

 public baseC, public baseD

 {

 };

Fig. 12.3(b) Direct Base Class

The following are invalid declarations:

Note that a class which has been named but not yet declared cannot be used as a base class.

(i)
 class baseA ;

 Programming with C++526

 class derivedB : public baseA {

 };

The base class baseA is undeclared and an error message will be displayed by the compiler.

(ii) A class may not be specifi ed as a direct base class of a derived class more than once.

 class baseA {

 };
 class derivedB :public baseA,public baseA {

 };

The base class baseA has been declared twice as the direct base of the derived class derivedB. It is an

invalid way of constructing a derived class in C++.

12.3.2 Indirect Base Classes

A derived class can itself serve as a base class subject to access control. When a derived class is declared as

a base of another class, the newly derived class inherits the properties of its base classes including its data

members and member functions. A class is called as an indirect base if it is not a direct base, but is a base

class of one of the classes mentioned in the base list.

Fig. 12.4(a) Indirect Base Class

For example, following are valid declarations:

(1)
 class baseA {

 };
 class derivedB : public baseA {

 Single and Multiple Inheritance 527

 };

 class derivedC : public derivedB {

 };

Note that the class derivedB is a base of the class derivedC that is called as an indirect base.

 (2) A class may be specifi ed as an indirect base more than once.

For example, the following declaration is also valid:

 class baseA {

 };

 class baseB : public baseA {

 };

 class baseC : public baseA {

 };

 class derivedD : public baseB,
 public baseC {

 };

The class baseA has inherited both the derived classes baseB and baseC, in the sense that inheritance

means building new abstractions from old ones, where one class inherits data and member functions from

another.

 Fig. 12.4(b) Indirect Base Class

 Programming with C++528

 PROGRAM 12.3

A program to get the information of a derived class data members via name, roll number, sex, height and
weight from the keyboard; again to read data for another derived class such as name, roll number, sex,
course, semester and rank and display the contents of the newly created class on the screen.

This program demonstrates a single inheritance concept which consists of a single base class and two

derived classes. The data members and member functions of the base class are independently accessed by

these two derived classes. The OMT of a class notation for single inheritance is given in Fig. 12.5.

Fig. 12.5 OMT of a Class Notation for Single Inheritance

// two derived classes access the same base class
//single inheritance
#include <iostream>
#include <iomanip>
using namespace std;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getbaseinfo();
 void dispbaseinfo();
}; // end of class de nition

class physical_ t :public basic_info
{
 private :
 oat height;
 oat weight;

 Single and Multiple Inheritance 529

 public:
 void getphy();
 void disphy();
}; //end of class de nition

class academic_ t : public basic_info
{
 private :
 char course[20];
 char semester[10];
 int rank;
 public :
 void getacd();
 void dispacd();
}; // end of class de nition

void basic_info :: getbaseinfo()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: dispbaseinfo()
{
 cout << name << “ “;
 cout << rollno << “ “;
 cout << sex << “ “;
}

void physical_ t :: getphy()
{
 basic_info::getbaseinfo();
 cout << “ height ? \n”;
 cin >> height;
 cout << “ weight ?\n”;
 cin >> weight;
}

void physical_ t :: disphy()
{
 basic_info::dispbaseinfo();
 cout << height << “ “;
 cout << weight << “ “;
}

void academic_ t :: getacd()
{

 basic_info::getbaseinfo();
 cout << “ course name (BTech/MCA/DCA etc) ?\n”;
 cin >> course;
 cout << “ semester (rst/second etc)? \n”;
 cin >> semester;
 cout << “ rank of the student \n”;
 cin >> rank;
}

void academic_ t :: dispacd()
{
 basic_info :: dispbaseinfo();
 cout << course << “ “ ;
 cout << semester << “ “;
 cout << rank << “ “;

 Programming with C++530

}
int main()
{

 physical_ t p;
 academic_ t a;
 cout << “enter the following information for physical tness\n”;
 p.getphy();
 cout << “enter the following information for academic tness\n”;
 a.getacd();
 cout << “ Physical Fitness of the student \n”;
 cout << “ ———————————————————— \n”;
 cout << “ Name Rollno Sex Height Weight \n”;
 cout << “ ———————————————————— \n”;
 p.disphy();
 cout << endl;

 cout << “ ———————————————————— \n”;
 cout << endl;
 cout << “ Academic performance of the student \n”;
 cout << “ ————————————————————————— \n”;
 cout << “ Name Rollno Sex Course Semester Rank \n”;
 cout << “ ————————————————-———————— \n”;
 a.dispacd();
 cout << endl;
 cout << “ ————————————————————————— \n”;
 return 0;
}

Output of the above program

enter the following information for physical tness
enter a name?
Velusamy.K
roll no?
27001
sex?
M
height?
175
weight?
90
enter the following information for academic tness
enter a name?
Velusamy.K
roll no?
27001
sex?
M
course name (BTech/MCA/DCA etc)?
B.Tech
semester (rst/second etc)?
I
rank of the student
2
Physical Fitness of the student
---–––

Name Rollno Sex Height Weight
---–––

Velusamy.K 27001 M 175 90
---–––

 Single and Multiple Inheritance 531

Academic performance of the student
---–––

Name Rollno Sex Course Semester Rank
---–––

Velusamy.K 27001 M B.Tech I 2
---–––

12.4 TYPES OF DERIVATION

Inheritance is a process of creating a new class from an existing class. While deriving the new classes, the

access control specifi er gives the total control over the data members and methods of the base classes. A

derived class can be defi ned with one of the access specifi ers, viz. private, public and protected.

12.4.1 Public Inheritance

The most important type of access specifi er is public. In a public derivation,

 ∑ each public member in the base class is public in the derived class.

 ∑ each protected member in the base class is protected in the derived class.

 ∑ each private member in the base class remains private in the base class.

The general syntax of the public derivation is:

 class base_class_name {

 }
 class derived_class_name : public base_class_name
 {

 }

For example, the following program segment illustrates how to access each member of the base class by

the derived class members:

 class baseA {
 private :
 int x;
 protected:
 int y;
 public :
 int z;
 };
 class derivedD : public baseA { // public base class
 private :
 int w;
 };

The class derivedD is derived from the base class baseA and the access specifi er is public. The data

members of the derived class derivedD is

 int x;
 int y;
 int z;
 int w;

The following table shows the access specifi er of the data member of the base class in the derived class:

 Programming with C++532

Member Access status in

derivedD

How obtained

x not accessible from class baseA

y protected from class baseA

z public from class baseA

w private added by class derivedD

12.4.2 Private Inheritance

In a private derivation,

 ∑ each public member in the base class is private in the derived class.

 ∑ each protected member in the base class is private in the derived class.

 ∑ each private member in the base class remains private in the base class and hence it is visible only in

the base class.

The general syntax of the private derivation is,

 class base_class_name {

 }
 class derived_class_name : private base_class_name
 {

 }

For example, the following program segment illustrates how to access each member of the base class by

the derived class members.

 class baseA {
 private :
 int x;
 protected:
 int y;
 public :
 int z;
 };
 class derivedD : private baseA { // private base class
 private :
 int w;
 };

The class derivedD is derived from the base class baseA and the access specifi er is private. The data

members of the derived class derivedD is
 int x;
 int y;
 int z;
 int w;

The following table shows the access specifi er of the data member of the base class in the derived class:

 Single and Multiple Inheritance 533

Member Access status in

derivedD

How obtained

x not accessible from class baseA

y private from class baseA

z private from class baseA

w private added by class derivedD

12.4.3 Protected Inheritance

In a protected inheritance,

 ∑ each public member in the base class is protected in the derived class.

 ∑ each protected member in the base class is protected in the derived class.

 ∑ each private member in the base class remains private in the base class and hence it is visible only in

the base class.

The general syntax of the protected derivation is,

 class base_class_name {

 }
 class derived_class_name : protected base_class_name
 {

 }

For example, the following program segment illustrates how to access each member of the base class by

the derived class members.

 class baseA {
 private :
 int x;
 protected:
 int y;
 public :
 int z;
 };
 class derivedD : protected baseA { //protected base class
 private :
 int w;
 };

The class derivedD is derived from the base class baseA and the access specifi er is protected. The data

members of the derived class derived is
 int x;
 int y;
 int z;
 int w;

The following table shows the access specifi er of the data member of the base class in the derived class:

 Programming with C++534

Member Access status in

derivedD

How obtained

x not accessible from class baseA

y protected from class baseA

z protected from class baseA

w private added by class derivedD

12.5 AMBIGUITY IN SINGLE INHERITANCE

Whenever a data member and member function are defi ned with the same name in both the base and the

derived classes, these names must be without ambiguity. The scope resolution operator (::) may be used

to refer to any base member explicitly. This allows access to a name that has been redefi ned in the derived

class.

For example, the following program segment illustrates how ambiguity occurs when the getdata ()

member function is accessed from the main () program.

 class baseA {
 public :
 int i;
 getdata();
 };
 class baseB {
 public :
 int i;
 getdata();
 };
 class derivedC : public baseA, public baseB {
 public :
 int i;
 getdata();
 }
 int main()
 {
 derivedC obj;
 obj.getdata();
 return 0;
 }

The members are ambiguous without scope operators. When the member function getdata () is

accessed by the class object, naturally, the compiler cannot distinguish between the member function of the

class baseA and the class baseB. Therefore it is essential to declare the scope operator explicitly to call a

base class member as illustrated below:
 obj.baseA::getdata();
 obj.baseB::getdata();

 PROGRAM 12.4

A program to demonstrate how ambiguity is avoided in single inheritance using scope resolution
operator.

 Single and Multiple Inheritance 535

// ambiguty in the single inheritance
#include <iostream>
using namespace std;
class baseA {
 private :
 int i;
 public :
 void getdata(int x);
 void display();
};
class baseB {
 private :
 int j;
 public :
 void getdata(int y);
 void display();
};
class derivedC : public baseA,public baseB
{
};

void baseA :: getdata(int x)
{
 i = x;

}
void baseA :: display()
{
 cout << “ value of i = “ << i << endl;
}

void baseB :: getdata(int y)
{
 j = y;
}

void baseB :: display()
{
 cout << “ value of j = “ << j << endl;
}

int main()
{
 derivedC objc;
 int x,y;
 cout << “ enter a value for i ?\n”;
 cin >> x;
 objc.baseA::getdata(x); // member is ambiguous without scope
 cout << “ enter a value for j ?\n”;
 cin >> y;
 objc.baseB::getdata(y);
 objc.baseA::display();
 objc.baseB::display();
 return 0;
}

Output of the above program

enter a value for i?
10
enter a value for j?
20
value of i = 10
value of j = 20

 Programming with C++536

12.6 ARRAY OF CLASS OBJECTS AND SINGLE INHERITANCE

This section emphasises on how an array of class objects can be inherited from a base class. Once a derived

class has been defi ned, the way of accessing a class member of the array of class objects are same as the

ordinary class types. The general syntax of the array of class objects in a singly derived class is:

class baseA {
 private :

 public :

};
class derivedB : public baseA {
 private :

 public :

};
int main()
{
 derivedB obj[100];//array of class objects of the derived class

 return 0;
}

 PROGRAM 12.5

A program consists of a base class and a derived class. The base class data members are name, roll number
and sex. The derived class data members are height and weight. The derived class has been declared as an
array of class objects. The member functions are used to get information on the derived class from the
keyboard and display the contents of the array of class objects on the screen.

This program illustrates how to defi ne an array of class objects using a single inheritance.

//single inheritance using array of objects
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 100;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
}; // end of class de nition
class physical_ t :public basic_info
{

 Single and Multiple Inheritance 537

 private :
 oat height;
 oat weight;
 public:
 void getdata();
 void display();
}; //end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()
{
 cout << name << “ ”;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}

void physical_ t :: getdata()

{
 basic_info::getdata();
 cout << “ height ? \n”;
 cin >> height;
 cout << “ weight ?\n”;
 cin >> weight;
}

void physical_ t :: display()
{
 basic_info::display();
 cout << height << “ ”;
 cout << weight << “ ”;
}

int main()
{
 physical_ t a[MAX];
 int i,n;
 cout << “ How many students ? \n”;
 cin >> n;
 cout << “enter the following information \n”;
 for (i = 0; i <= n-1; ++i) {
 cout << “record : ” << i+1 << endl;
 a[i].getdata();
 }
 cout << endl;
 cout << “ ------------------------------------- \n”;
 cout << “ Name Rollno Sex Height Weight \n”;
 cout << “ ------------------------------------ \n”;
 for (i = 0; i <= n-1; ++i) {
 a[i].display();
 cout << endl;
 }
 cout << endl;
 cout << “ ------------------------------------- \n”;
 return 0;
}

 Programming with C++538

Output of the above program

How many students?
3
enter the following information
record: 1

enter a name?
Antony
roll no?
20071
sex?
M
height?
167
weight?
65

record: 2
enter a name?
Sulaiman
roll no?
20073
sex?
M
height?
179
weight?
90

record: 3
enter a name?
Sandeep
roll no?
20076
sex?
M
height?
187
weight?
78

 Name Rollno Sex Height Weight

 Antony 20071 M 167 65
 Sulaiman 20073 M 179 90
 Sandeep 20076 M 187 78

12.7 MULTIPLE INHERITANCE

In the previous section, we have seen how a derived class could inherit more enhancements and additional

features from the base class. In the original implementation of C++, a derived class could inherit from

only one base class. Even with this restriction, the object-oriented paradigm is a fl exible and powerful

 Single and Multiple Inheritance 539

programming tool. The latest version of the C++ compiler implements the multiple inheritance. In this

section, how a class can be derived from more than one base class is explained.

Multiple inheritance is the process of creating a new class from more than one base classes. The syntax

for multiple inheritance is similar to that of single inheritance. For example, the following program segment

shows how a multiple inheritance is defi ned:

 class baseA {

 };
 class baseB {

 };

 class C : public baseA,public baseB
 {

 };

The class C is derived from both classes baseA and baseB.

Multiple inheritance is a derived class declared to inherit properties of two or more parent classes (base

classes). Multiple inheritance can combine the behaviour of multiple base classes in a single derived class.

Multiple inheritance has many advantages over the single inheritance such as rich semantics and the ability

to directly express complex structures. In C++, derived classes must be declared during the compilation of

all possible combinations of derivations and the program can choose the appropriate class at run time and

create object for the application.

The abstract class representation of single and multiple inheritance is given in Fig. 12.6(a) and (b).

Fig. 12.6(a) Abstract Class Representation of Single Inheritance

 Programming with C++540

Fig. 12.6(b) Abstract Class Representation of Multiple Inheritance

In a single inheritance, a derived class has a single base class. In multiple inheritance, a derived class has

multiple base classes. In a single inheritance hierarchy, a derived class typically represents a specialisation

of its base class. In a multiple inheritance hierarchy, a derived class typically represents a combination of its

base classes.

The rules of inheritance and access do not change from a single to a multiple inheritance hierarchy.

A derived class inherits data members and methods from all its base classes, regardless of whether the

inheritance links are private, protected or public.

 (1) Multiple inheritance with all public derivation.

 class baseA { // base class 1

 };
 class baseB { // base class 2

 };
 class baseC { // base class 3

 };
 class derivedD : public baseA,public baseB,public baseC
 {

 };

 (2) Multiple inheritance with all private derivation.

 class baseA { // base class 1

 };
 class baseB { // base class 2

 };
 class baseC { // base class 3

 };
 class derivedD : private baseA,private baseB,private baseC
 {

 };

 Single and Multiple Inheritance 541

 (3) Multiple inheritance with all mixed derivation.

 class baseA { // base class 1

 };
 class baseB { // base class 2

 };
 class baseC { // base class 3

 };
 class derivedD : private baseA,public baseB,private baseC
 {

 };

 PROGRAM 12.6

A program to illustrate how a multiple inheritance can be declared and defi ned in a program. This program
consists of two base classes and one derived class. The base class basic_info contains the data members:
name, roll number and sex. Another base class academic_fi t contains the data members: course, semester and
rank. The derived class fi nancial_assit contains the data member amount besides the data members of the
base classes. The derived class has been declared as public inheritance. The member functions are used to get
information of the derived class from the keyboard and display the contents of class objects on the screen.

The OMT of a class notation for multiple inheritance is given in Fig. 12.7.

Fig. 12.7 OMT of a Class Notation for Multiple Inheritance

 Programming with C++542

//multiple inheritance
#include <iostream>
using namespace std;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
 }; // end of class de nition

class academic_ t {
 private :
 char course[20];
 char semester[10];
 int rank;

 public :
 void getdata();
 void display();
}; // end of class de nition

class nancial_assit : private basic_info, private academic_ t
{
 private :
 oat amount ;
 public :
 void getdata();
 void display();
}; // end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()
{
 cout << name << “ “;
 cout << rollno << “ “;
 cout << sex << “ “;
}

void academic_ t :: getdata()
{

 cout << “ course name (BTech/MCA/DCA etc) ?\n”;
 cin >> course;
 cout << “ semester (rst/second etc)? \n”;
 cin >> semester;
 cout << “ rank of the student \n”;
 cin >> rank;
}

void academic_ t :: display()
{
 cout << course << “ “ ;
 cout << semester << “ “;
 cout << rank << “ “;
}

 Single and Multiple Inheritance 543

void nancial_assit :: getdata()
{
 basic_info:: getdata();
 academic_ t::getdata();
 cout << “ amount in rupees ?\n”;
 cin >> amount;
}

void nancial_assit :: display()
{
 basic_info:: display();
 academic_ t::display();
 cout << amount << “ “;
}

int main()
{
 nancial_assit f;

 cout << “enter the following information for nancial assistance\n”;
 f.getdata();
 cout << endl;
 cout << “ Academic Performance for Financial Assistance \n”;
 cout << “ ———————————————————————————— \n”;
 cout << “ Name Rollno Sex Course Semester Rank Amount \n”;
 cout << “ ———————————————————————————— \n”;
 f.display();
 cout << endl;
 cout << “ ———————————————————————————— \n”;
 return 0;
}

Output of the above program

enter the following information for nancial assistance
enter a name?
AjitKumar
roll no?
20071
sex?
M
course name (BTech/MCA/DCA etc)?
MCA
semester (rst/second etc)?
First
rank of the student
3
amount in rupees?
10000

Academic Performance for Financial Assistance
--
 Name Rollno Sex Course Semester Rank Amount
--
 AjitKumar 20071 M MCA First 3 10000
--

12.7.1 Array of Class Objects and Multiple Inheritance

This section deals mainly with, how an array of class objects can be inherited from the multiple base

classes. Once a derived class has been defi ned, the way of accessing class members of the array of class

objects are same as the ordinary class types.

 Programming with C++544

The general syntax of the array of class objects in a multiple inheritance is:

class baseA {

};
class baseB {

};
class derivedC : public baseA, public baseB {

};
int main()
{
 derivedB obj[100];//array of class objects of the derived class

 return 0;
}

 PROGRAM 12.7

A program consists of two base classes and one derived class. The base class basic_info contains the
data members: name, roll number and sex. Another base class academic_fi t contains the data members:
course, semester and rank. The derived class fi nancial_assit contains the data member amount besides
the data members of the base classes. The derived class has been declared as an array of class objects.
The member functions are used to get information of the derived class from the keyboard and display the
contents of the array of class objects on the screen.

//multiple inheritance using array of objects
#include <iostream>
using namespace std;
const int MAX = 100;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
}; // end of class de nition

class academic_ t {
 private :
 char course[20];
 char semester[10];
 int rank;
 public :
 void getdata();
 void display();
}; // end of class de nition

class nancial_assit : private basic_info, private academic_ t
{

 Single and Multiple Inheritance 545

 private :
 oat amount ;
 public :
 void getdata();
 void display();
}; // end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;
 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()

{
 cout << name << “ “;
 cout << rollno << “ “;
 cout << sex << “ “;
}

void academic_ t :: getdata()
{
 cout << “ course name (BTech/MCA/DCA etc) ?\n”;
 cin >> course;
 cout << “ semester (rst/second etc)? \n”;
 cin >> semester;
 cout << “ rank of the student \n”;
 cin >> rank;
}

void academic_ t :: display()
{
 cout << course << “ “ ;
 cout << semester << “ “;
 cout << rank << “ “;
}

void nancial_assit :: getdata()
{
 basic_info:: getdata();
 academic_ t::getdata();
 cout << “ amount in rupees ?\n”;
 cin >> amount;
}

void nancial_assit :: display()
{
 basic_info:: display();
 academic_ t::display();
 cout << amount << “ “;
}

int main()
{
 nancial_assit f[MAX];
 int n;
 cout << “ How many students ?\n”;
 cin >> n;
 cout << “enter the following information for nancial assistance\n”;
 for (int i = 0; i <= n-1; ++i) {
 cout << “ Record No : “ << i+1 << endl;
 f[i].getdata();
 cout << endl;

 Programming with C++546

 }
 cout << endl;
 cout << “ Academic Performance for Financial Assistance \n”;
 cout << “ ———————————————————————————— \n”;
 cout << “ Name Rollno Sex Course Semester Rank Amount \n”;
 cout << “ ———————————————————————————— \n”;
 for (int i = 0; i <= n-1; ++i) {
 f[i].display();
 cout << endl;
 }
 cout << “ ———————————————————————————— \n”;
 return 0;
}

Output of the above program
How many students?
3
enter the following information for nancial assistance
Record No: 1
enter a name?
Fateema
roll no?
20071
sex?
F
course name (BTech/MCA/DCA etc)?
DCA
semester (rst/second etc)?
Second
rank of the student
1
amount in rupees?
20000

Record No: 2
enter a name?
ArulRaj
roll no?
20072
sex?
M
course name (BTech/MCA/DCA etc)?
DCA
semester (rst/second etc)?
First
rank of the student
3
amount in rupees?
15000

Record No: 3
enter a name?
Sampath
roll no?
20075
sex?
M
course name (BTech/MCA/DCA etc)?

 Single and Multiple Inheritance 547

DCA
semester (rst/second etc)?
First
rank of the student
2
amount in rupees?
22000
 Academic Performance for Financial Assistance
--
 Name Rollno Sex Course Semester Rank Amount
--
 Fateema 20071 F DCA Second 1 20000
 ArulRaj 20072 M DCA First 3 15000
 Sampath 20075 M DCA First 2 22000
--

12.7.2 Ambiguity in the Multiple Inheritance

To avoid ambiguity between the derived class and one of the base classes or between the base class

themselves, it is better to use the scope resolution operator :: along with the data members and methods.

For example, the following program segment illustrates how ambiguity occurs in both base classes and

the derived class.

//ambiguity in multiple inheritance
#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
};
class baseB {
 public:
 int a;
};
class baseC {
 public :
 int a;
};

class derivedD : public baseA,public baseB,public baseC
{
 public :
 int a;
};

int main()
{
 derivedD objd;
 objd.a = 10; //local to the derived class
 return 0;
}

Suppose one intends to access the data members of the base classes, then confl ict occurs between the

base classes themselves and the compiler cannot distinguish between the calls. It is up to the programmer

to avoid such confl icts and ambiguities. Therefore, it is better to use the scope operator to avoid such

ambiguities.

 Programming with C++548

int main()
{
 derivedD objd;
 objd.a = 10;
 objd.baseA::a = 20; //accessing the base class A member
 objd.baseB::a = 30; //accessing the base class B member
 objd.baseC::a = 40; // accessing the base class C member
 return 0;
}

 PROGRAM 12.8

A program to demonstrate how ambiguity is avoided in multiple inheritance using scope resolution
operator.

#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
};
class baseB {
 public:
 int a;
};
class baseC {
 public :
 int a;
};

class derivedD : public baseA,public baseB,public baseC
{
 public :
 int a;
};

int main()
{
 derivedD objd;
 objd.a = 10;
 objd.baseA::a = 20;
 objd.baseB::a = 30;
 objd.baseC::a = 40;
 cout << “ value of a in the derived class = ” << objd.a << endl;
 cout << “ value of a in baseA = ” << objd.baseA::a << endl;
 cout << “ value of a in baseB = ” << objd.baseB::a << endl;
 cout << “ value of a in baseC = ” << objd.baseC::a << endl;
 cout << endl;
 return 0;
}

Output of the above program

value of a in the derived class = 10
value of a in baseA = 20
value of a in baseB = 30
value of a in baseC = 40

 Single and Multiple Inheritance 549

12.8 CONTAINER CLASSES

In Chapter 10, how a class could be declared as a member of another class has been explained. When a

class is declared and defi ned as a member of another class, it is known as a nested class. In this section, how

a container class can be declared and defi ned in a program is explained. C++ allows to declare an object of

a class as a member of another class. When an object of a class is declared as a member of another class, it

is called as a container class. Some of the examples for container classes are arrays, linked lists, stacks and

queues.

The general syntax for the declaration of container class is,

 class user_de ned_name_1 {

 };
 class user_de ned_name_2 {

 };
 class user_de ned_name_n {

 };
 class derived_class :public/protected/private
 {
 user_de ned_name_1 obj1; //object of the class one
 user_de ned_name_2 obj2; //object of the class two

 user_de ned_name_n objn; //object of the class n
 };

For example, the following program segment illustrates how to declare the container class.
class basic_info {
 private :
 char name[20];
 public :
 void getdata();
}; // end of class de nition

class academic_ t {
 private :
 int rank;
 public :
 void getdata();
}; // end of class de nition

class nancial_assit
{
 private :
 basic_info bdata; //object of class basic_info
 academic_ t acd; // object of class academic_ t
 oat amount ;
 public :

 Programming with C++550

 void getdata();
 void display();
}; // end of class de nition

int main()
{
 nancial_assit objf;

 return 0;
}

 PROGRAM 12.9

A program to demonstrate how a container class is declared and defi ned in a program. The program
consists of two base classes and one derived class. The base class basic_info contains the data members:
name, roll number and sex. Another base class academic_fi t contains the data members: course, semester
and rank. The derived class fi nancial_assit contains the data member amount, besides the data members
of the base classes. The objects of these two base classes are defi ned as members of the derived class. The
member functions are used to get information on the derived class from the keyboard and display the
contents of the class objects on the screen.

//demonstration of container class
#include <iostream>
using namespace std;
class basic_info {
 private :
 char name[20];
 long int rollno;
 char sex;
 public :
 void getdata();
 void display();
}; // end of class de nition

class academic_ t {
 private :
 char course[20];
 char semester[10];
 int rank;
 public :
 void getdata();
 void display();
}; // end of class de nition

class nancial_assit
{
 private :
 basic_info bdata; //object of class basic_info
 academic_ t acd; // object of class academic_ t
 oat amount ;
 public :
 void getdata();
 void display();
}; // end of class de nition

void basic_info :: getdata()
{
 cout << “ enter a name ? \n”;

 Single and Multiple Inheritance 551

 cin >> name;
 cout << “ roll no ? \n”;
 cin >> rollno;
 cout << “ sex ? \n”;
 cin >> sex;
}
void basic_info :: display()
{
 cout << name << “ ”;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}

void academic_ t :: getdata()
{
 cout << “ course name (BTech/MCA/DCA etc) ?\n”;
 cin >> course;
 cout << “ semester (rst/second etc)? \n”;
 cin >> semester;
 cout << “ rank of the student \n”;
 cin >> rank;
}

void academic_ t :: display()
{
 cout << course << “ ” ;
 cout << semester << “ ”;
 cout << rank << “ ”;
}

void nancial_assit :: getdata()
{
 bdata.getdata();
 acd.getdata();
 cout << “ amount in rupees ?\n”;
 cin >> amount;
}

void nancial_assit :: display()
{
 bdata.display();
 acd.display();
 cout << amount << “ ”;
}

int main()
{
 nancial_assit f;
 cout << “enter the following information \n”;
 f.getdata();
 cout << endl;
 cout << “ Academic Performance for Financial Assistance \n”;
 cout << “ -- \n”;
 cout << “ Name Rollno Sex Course Semester Rank Amount \n”;
 cout << “ -- \n”;
 f.display();
 cout << endl;
 cout << “ -- \n”;
 return 0;
}

Output of the above program

enter the following information
enter a name?
Suseekaran

 Programming with C++552

roll no?
20071
sex?
M
course name (BTech/MCA/DCA etc)?
B.Tech(CSE)
semester (rst/second etc)?
First
rank of the student
1
amount in rupees?
30000

 Academic Performance for Financial Assistance
--
 Name Rollno Sex Course Semester Rank Amount
--
 Suseekaran 20071 M B.Tech(CSE) First 1 30000
--

12.9 MEMBER ACCESS CONTROL

It is well known that the C++ class is more than an enhanced version of the C structure. The class sets

up an environment in which the software designer not only can create objects that contain their own

methods in the form of member functions, but also can exercise almost total control over the access of class

implementations. In this section, access control and its mechanism to access the individual members of a

class as well as the derived class are explained. It has already been stated that the access mechanism of the

individual members of a class is based on the use of the keywords public, private and protected.

12.9.1 Accessing the Public Data

The public members of a class can be accessed by the following:

 ∑ Member functions of the class

 ∑ Nonmember functions of the class

 ∑ Member function of a friend class

 ∑ Member function of a derived class if it has been derived publicly.

For example, the following are valid declarations for accessing the public data member of a class:

 (1) The member function of the class can access the public data.

 class sample {
 public :
 int value;
 void getdata();
 void display()
 {
 ++ value; // valid
 }
 };

 (2) The nonmember function of the class can access the public data.

 class sample {
 public :
 int a;
 };

 Single and Multiple Inheritance 553

 int main()
 {
 sample obj;
 obj.a++; // valid
 }

 (3) The member function of the derived class can access the public data of the base class if it has been

derived publicly.

 class base {
 public :
 int value;
 void getdata()
 };
 class derived : public base {
 public :
 void display()
 {
 ++value; // valid
 }
 };

 The following declaration for accessing the public data member is invalid as it has been declared as

private inheritance.

 (1)
 class base {
 public :
 int value;
 void getdata()
 };
 class derived : private base {
 public :
 void display()
 {
 ++value; // invalid
 }
 };

Note that the member function of the derived class cannot access the public data of the base class if it

has been derived privately.

 PROGRAM 12.10

A program to illustrate how a data member of a class is accessed by the member function.

#include <iostream>
using namespace std;
class sample {
 public:
 int a;
 void setdata();
 void display();
};
void sample :: setdata()
{
 a = 10;
}
void sample :: display()

 Programming with C++554

{
 cout << “ ++a = ” << ++a << endl;
}
int main()
{
 sample obj;
 obj.setdata();
 obj.display();
 return 0;
}

Output of the above program

++a = 11

 PROGRAM 12.11

A program to show how a public data member is accessed by a nonmember function of the class.

#include <iostream>
using namespace std;
class sample {

 public:
 int a;
 void setdata();
};
void sample :: setdata()
{
 a = 10;
}
int main()
{
 sample obj;
 obj.setdata();
 cout << “++a = ” << ++(obj.a) << endl;
 return 0;
}

Output of the above program

++a = 11

 PROGRAM 12.12

A program to demonstrate how a member function of a derived class can access the public data of a base
class in which a derived class has been derived publicly.

//accessing public data by derived class
#include <iostream>
using namespace std;
class base {
 public :
 int value;
 inline void getdata()
 {
 cout << “ enter a number ” << endl;
 cin >> value;
 }
}; // end of class de nition
class derived : public base {

 Single and Multiple Inheritance 555

 public :
 void display()
 {
 ++value;
 }
};// end of class de nition

int main()
{
 derived obj;
 obj.getdata();
 obj.display();
 cout << “ value in derived class = ” << obj.value;
 return 0;
}

Output of the above program

enter a number
10
value in derived class = 11

The following program will not be compiled as the member function of the derived class tries to access

the public data of the base class, where the derived class has been inherited privately.

//accessing public data by derived class
//private derivation
#include <iostream>
using namespace std;
class base {
 public :
 int value;
 inline void getdata()
 {
 cout << “ enter a number ” << endl;
 cin >> value;
 }
 }; // end of class de nition
class derived : private base {
 public :
 void display()
 {
 ++value;
 }
 };// end of class de nition

int main()
{
 derived obj;
 obj.getdata(); // base::getdata() is not accessible
 obj.display(); // base::value is not accessible
 cout << “ value in derived class = ” << obj.value;
 return 0;
}

12.9.2 Accessing the Private Data

The private members of a class can be accessed only by the following:

 ∑ The member function of the class, and

 ∑ The member functions of the friend class in which it is declared.

 Programming with C++556

In other words, the public member function of a derived class cannot access the private data member of

the base class irrespective of whether the derived class has been inherited publicly or privately.

For example, in the following program the declaration for accessing the private data members of base

class by the public members of the derived class is invalid:

 (1) A derived class with private derivation.

 class baseA {
 private :
 int value;
 };
 class derivedB : private baseA {
 public :
 void f()
 {
 ++ value; // error, baseA:: value is not accessible
 }
 };

 (2) Even if the derived class has been derived publicly from the base class, the public member of a

derived class cannot access the private member of the base class.

 class baseA {
 private :
 int value;
 };
 class derivedB : public baseA {
 public :
 void f()
 {
 ++ value; // error, baseA:: value is not accessible
 }
 };

Note that a derived class public member function cannot access the private member of a base class

irrespective of whether the derived class has been derived publicly or privately.

The following program shows an error message indicating that baseA::value is not accessible.

//accessing public data by derived class
//private derivation
#include <iostream>
using namespace std;
class base {
 public :
 int value;
 inline void getdata()
 {
 cout << “ enter a number ” << endl;
 cin >> value;
 }
}; // end of class de nition
class derived : private base {
 public :
 void display()
 {
 ++value;
 }

 Single and Multiple Inheritance 557

};// end of class de nition

int main()
{
 derived obj;
 obj.getdata();
 obj.display();
 cout << “ value in derived class = ” << obj.value;
 return 0;
}

Compile time error

void base :: getdata() is inaccessible due to private inheritance
int base :: value is inaccessible due to private inheritance.

 PROGRAM 12.13

A program to demonstrate how the private data member cannot be accessed by the public member
function of the derived class, even though the derived class has been inherited publicly.

//demonstration of private member
#include <iostream>
using namespace std;
class baseA{
 private :
 int value;
 public :
 baseA ()
 {
 cout << “ enter a number : ”;
 cin >> value;
 }
}; // end of base declaration
class derivedB: public baseA {
 public :
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition
int main()
{
 derivedB objB;
 objB.display();
 return 0;
}

Compile time error

void baseA :: value is a private category and inaccessible.

12.9.3 Accessing the Protected Data

The protected data members of a class can be accessed by the following:

 ∑ The member function,

 ∑ The friends of the class in which it is declared, and

 ∑ The member functions of the derived class irrespective of whether the derived class has been derived

privately or publicly.

 Programming with C++558

For example, the following program segments illustrate how a protected data member of a base is

accessed by the public member function of the derived class:

 (1) The protected data member of a class can be accessed by the public member function even if it has

been derived privately, provided the derived class have a direct base.

 class baseA {
 protected :
 int value;
 };
 class derivedB : private baseA {
 public :
 void f()
 {
 ++ value; // valid
 }
 };

 (2) The protected data member of a class cannot be accessed by the public member function of the

derivedD because the derivedD has not been derived from the direct base of baseA.
 class baseA {
 protected :
 int value;
 };
 class derivedB : private baseA {

 };
 class derivedC : private derivedB {

 };
 class derivedD : private derivedC {
 public :
 void f()
 {
 ++ value; // error, baseA::value is not accessible
 }
 };

 (3) The protected data of the base class can access the public member function of a derived class via

public derivation.

 class baseA {
 protected :
 int value;
 };
 class derivedB : public baseA {
 public :
 void f()
 {
 ++ value; // valid
 }
 };

 (4) The protected data member of the base class can be accessed by the public member functions of the

derived class, even if it has a direct base or indirect base, provided it has been derived via public

derivation.

 Single and Multiple Inheritance 559

 class baseA {
 protected:
 int value;
 };
 class derivedB: public baseA {

 };
 class derivedC: public derivedB {

 };
 class derivedD: public derivedC {
 public :
 void f()
 {
 ++ value; // valid
 }
 };

 PROGRAM 12.14

A program to demonstrate how the protected data member of a base class is accessed by the public
member function of the derived class if it has been derived privately.

//demonstration of accessing a protected member
#include <iostream>
using namespace std;
class baseA{
 protected:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number : ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: private baseA {
 public:
 void display ()
 {
 ++value;
 cout << “ content of value = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedB obj1;
 obj1.display();
 return 0;
}

Output of the above program

enter a number : 100
content of value = 101

 Programming with C++560

 PROGRAM 12.15

A program to demonstrate how the protected data member of a base class is accessed by the public
member function of the derived class irrespective of whether the derived class has a direct base or indirect
base and has been derived publicly.

//demonstration of accessing a protected data
#include <iostream>
using namespace std;
class baseA{
 protected :
 int value;

 public :
 baseA ()
 {
 cout << “ enter a number : ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: public baseA {
 public :
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: public derivedB {
 public :
 void display ()
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;
 }
}; // end of derived class de nition

class derivedD: public derivedC {
 public :
 void display ()
 {
 ++value;
 cout << “ value in derivedD = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedD objD;
 objD.display();
 return 0;
}

Output of the above program

enter a number: 200
value in derivedD = 201

The following program shows an error message and will not be compiled. The protected data of a base

class cannot access the member function of the derived class due to indirect base via private derivation.

 Single and Multiple Inheritance 561

//demonstration of public access
#include <iostream>
using namespace std;
class baseA{
 protected:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number: ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: private baseA {
 public :
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: private derivedB {
 public:
 void display () // error, baseA::value is not accessible
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedC objC;
 objC.display();
 return 0;
}

Compile time error

int derivedB :: value is a protected
int derivedC :: value is a protected

In private inheritance, the protected data cannot be accessed by the public member functions of the

derived class and hence, it gives compile time error.

12.9.4 Accessing Private Member by Friend Class

A public member function of a friend class can access the private member of the base class irrespective of

whether a friend function has been derived privately or publicly.

 (1) A friend class derived privately.

 class baseA {

 friend class derivedB;

 private:

 int value ;

 Programming with C++562

 };

 class derivedB: private baseA {

 public:

 void f()

 {

 ++value; // valid

 }

 };

 (2) A friend class derived publicly.

 class baseA {

 friend class derivedB;

 private:

 int value ;

 };

 class derivedB: public baseA {

 public:

 void f()

 {

 ++value; // valid

 }

 };

 (3) A friend class derived publicly.

 class baseA {

 friend class derivedB;

 private:

 int value ;

 };

 class derivedB: private baseA {

 public:

 void g()

 {

 ++value; // valid

 }

 };

 class derivedC: public baseA {

 public:

 void f()

 {

 ++value; // error, baseA:: value is not accessible

 }

 };

No other public member function can access the private member of the base class other than the friend

class public member function. Note that the derived class derivedC is not a friend of baseA and hence, it

cannot access the private data of the base class, even though it has been derived publicly.

 (4) A friend class derived publicly.

 class baseA {
 friend class derivedB;

 Single and Multiple Inheritance 563

 private:
 int value ;
 };
 class derivedB: private baseA {

 };
 class derivedC: private derivedB {
 public:
 void f()
 {
 ++value; // error, baseA:: value is not accessible
 }
 };

Note that the derived class derivedC cannot access the private data of the base class baseA even

though it has been derived indirectly via derivedB. It is because, baseA extends its friendship only with

derivedB but not with other classes.

 (5) No other public member function can access the private member of the base class other than the

friend class public member function, even though the friend class has been inherited publicly.

 class baseA{
 friend class derivedB;
 private:
 int value;
 };
 class derivedB: public baseA {

 };
 class derivedC: public derivedB {
 public:
 void g()
 {
 ++value; //error,baseA:: value is not accessible
 }
 };

 PROGRAM 12.16

A program to demonstrate how a private data of a base class is accessed by the public member function of
the derived class through friend class declaration. The derived class has been inherited via public inheritance.

//demonstration of friend class
// public inheritance
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 private:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number: ”;
 cin >> value;

 Programming with C++564

 }
}; // end of base declaration

class derivedB: public baseA {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedB objB;
 objB.display();
 return 0;
}

Output of the above program

enter a number: 10
value in derivedB = 11

 PROGRAM 12.17

A program to demonstrate how a private data of a base class is accessed by the public member function
of the derived class through friend class declaration. The derived class has been inherited via private
inheritance.

//demonstration of friend class
//private inheritance
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 private:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number: ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: private baseA {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedB objB;
 objB.display();
 return 0;
}

 Single and Multiple Inheritance 565

Output of the above program
enter a number: 5
value in derivedB = 6

 PROGRAM 12.18

The following program shows an error message due to accessing a private data of the base class by the
public member function of the derived class via private inheritance. Because of the private derivation, the
base class members cannot be accessed by the public members of the derived class.

//error baseA:: value is not accessible
//demonstration of friend class
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 private:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number: ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: private baseA {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: private derivedB {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedC objC;
 objC.display();
 return 0;
}

Compile time error

int baseA :: value is a private data member and it cannot be accessed by the public member

functions of a derived class and hence it gives error.

 PROGRAM 12.19

The following program tries to access the private data of the base class by the public member function of
the derived class via public inheritance through friendship.

 Programming with C++566

//demonstration of friend class
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 private:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number: ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: public baseA {
 public:
 void display ()

 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: public derivedB {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedC objC;
 objC.display();
 return 0;
}

Compile time error

int baseA :: value is a private data member and it cannot be accessed by the public member

functions of a derived class and hence it gives error.

 PROGRAM 12.20

A program to demonstrate how a protected data of a base class is accessed by the public member
function of the derived class through friend class declaration. The derived class has been inherited via
public inheritance.

//demonstration of friend class
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 protected:
 int value;
 public:
 baseA ()
 {

 Single and Multiple Inheritance 567

 cout << “ enter a number: ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: public baseA {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: public derivedB {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;

 }
}; // end of derived class de nition

int main()
{
 derivedC objC;
 objC.display();
 return 0;
}

Output of the above program

enter a number: 10
value in derivedC = 11

 PROGRAM 12.21

The following program shows that an error is encountered as a result of an attempt to access the
protected data of the base class by the public member function of the derived class via private inheritance.
Because of the private derivation, the base class members cannot be accessed by the public members of
the derived class even though it has a friendship with base class.

//demonstration of friend class
#include <iostream>
using namespace std;
class baseA{
 friend class derivedB;
 protected:
 int value;
 public:
 baseA ()
 {
 cout << “ enter a number : ”;
 cin >> value;
 }
}; // end of base declaration

class derivedB: private baseA {
 public:
 void display ()
 {
 ++value;

 Programming with C++568

 cout << “ value in derivedB = ” << value << endl;
 }
}; // end of derived class de nition

class derivedC: private derivedB {
 public:
 void display ()
 {
 ++value;
 cout << “ value in derivedC = ” << value << endl;
 }
}; // end of derived class de nition

int main()
{
 derivedC objC;
 objC.display();
 return 0;
}

Compile time error

int baseA:: value is protected data member and it cannot be accessed by the public member

functions of the derived class. Hence it gives error.

12.10 SUMMARY OF THE INHERITANCE ACCESS SPECIFIER

Access specifi er Accessible from

own class

Accessible from

derived calss

Accessible from objects

outside class

public yes yes yes

protected yes yes no

private yes no no

 REVIEW QUESTIONS

 1. What is meant by “inheritance” in the OOP paradigm?

 2. What are the advantages and disadvantages of declaring inheritance?

 3. What is the difference between the base and derived classes?

 4. How is a direct base class different from the indirect base class declaration in C++?

 5. Explain how a data member and member functions of a base class can be accessed by the derived

class member functions.

 6. What are the rules governing the declaration of a class of single inheritance?

 7. Defi ne multiple inheritance.

 8. List the merits and demerits of single inheritance over multiple inheritance.

 9. What are the rules to be followed to declare a multiple inheritance class data type?

 10. In what way a container class is different from a nested class object?

 11. Explain how a private data of a base class can be accessed by a publicly derived class.

 12. Explain the merits and demerits of private derivation over the public derivation.

 13. What is a friend class? What are the access control a friend class has over the member function?

 14. What is a public derivation? Explain how a private member of a base class can be accessed by the

public member function of the derived class through public inheritance?

 Single and Multiple Inheritance 569

 15. What is a private inheritance? What are the merits and demerits of private inheritance.

 16. What is a protected inheritance? Explain how a protected data of the base class can be accessed by

the public member function of the derived class.

 17. What is a container class? List the pros and cons of declaring container classes.

 18. How does an array of class objects declared with single inheritance?

 19. How does an array of class objects declared with multiple inheritance?

 20. What are the syntactic rules to be followed to avoid ambiguity in single inheritance?

 21. What are the syntactic rules to be followed to avoid ambiguity in multiple inheritance?

 22. Explain the relationship among the terms superclass, subclass, base class and derived class.

 23. Explain a class hierarchy in which a base class has multiple base classes.

 24. Explain a class hierarchy in which a derived class has multiple base classes.

 25. Explain the following with syntactic rules:

 (i) Public inheritance

 (ii) Protected inheritance

 (iii) Private inheritance

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following programs when it is executed.

 (a)
#include <iostream>
using namespace std;
class abc {

 public:
 void display();
};
class derivedB: public abc
{
 public:
 void display();
};

void abc :: display()
{
 cout << “members of abc \n”;
}
void derivedB :: display()
{
 abc::display();
 cout << “members of derivedB \n”;
}
int main()
{
 abc *obj;
 obj->display();
 return 0;
}

 (b)
#include <iostream>

 Programming with C++570

using namespace std;
class abc {
 public:
 void display();
};
class derivedB: public abc
{
 public:
 void display();
};
void abc :: display()
{
 cout << “members of abc \n”;
}
void derivedB :: display()
{
 cout << “members of derivedB \n”;
}
int main()
{
 abc *obj;
 obj->display();
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class abc {
 public:
 void display();
};
class derivedB: public abc
{
 public:
 void display();
};
class derivedC: public derivedB
{
 public:
 void display();
};
void abc :: display()
{
 cout << “members of abc \n”;
}
void derivedB :: display()
{
 cout << “members of derivedB \n”;
}
void derivedC :: display()
{
 abc::display();
 cout << “members of derivedC \n”;
}
int main()

 Single and Multiple Inheritance 571

{
 abc *obj;
 obj->display();
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class abc {
 public:
 void display();
};
class derivedB: public abc
{
 public:
 void display();
};
void abc :: display()
{
 cout << “members of abc \n”;
}
void derivedB :: display()
{
 abc::display();
 cout << “members of derivedB \n”;
}
int main()
{
 derivedB *obj;
 obj->display();
 return 0;
}

 (e)
#include <iostream>
using namespace std;
class abc {

 public:
 void display();
};
class derivedB: public abc
{
 public:
 void display();
};

class derivedC: public derivedB
{
 public:
 void display();
};
class derivedD: public derivedC
{
 public:
 void display();
};

 Programming with C++572

void abc :: display()
{
 cout << “members of abc \n”;
}
void derivedB :: display()
{
 abc::display();
 cout << “members of derivedB \n”;
}
void derivedC :: display()
{
 derivedB::display();
 cout << “members of derivedC \n”;
}
void derivedD :: display()
{
 derivedC::display();
 cout << “members of derivedD \n”;
}

int main()
{
 derivedD *obj;
 obj->display();
 return 0;
}

 (f)
#include <iostream>
using namespace std;
class abc {
 public:
 void dispabc();
};
class xyz {
 public:
 void dispxyz();
};

class derivedC: abc,xyz
{
 public:
 void display();
};
class derivedD: derivedC
{
 public:
 void display();
};
void abc :: dispabc()
{
 cout << “members of abc \n”;
}
void xyz :: dispxyz()
{
 cout << “members of xyz \n”;

 Single and Multiple Inheritance 573

}
void derivedC :: display()
{
 abc::dispabc();
 xyz::dispxyz();
 cout << “members of derivedC \n”;
}
void derivedD :: display()
{
 derivedC::display();
 cout << “members of derivedD \n”;
}

int main()
{
 derivedD *obj;
 obj->display();
 return 0;
}

 2. What will be the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
class abc {};
class xyz: public abc
{
 public:
 int i;
 void display(int a);
};
void xyz :: display(int a)
{
 cout << “a = ” << a << “\n”;
}

int main()
{
 xyz obj;
 obj.display(10);
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class abc;
class xyz: public abc
{
 public:
 int i;
 void display(int a);
};
void xyz :: display(int a)
{
 cout << “a = ” << a << “\n”;

 Programming with C++574

}

int main()
{
 xyz obj;
 obj.display(10);
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class abc { };
class xyz { };
class nalC: public abc,public xyz
{
 public:
 int i;
 void display(int a);
};
void nalC :: display(int a)
{
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display(10);
 return 0;
}

 (d)
#include <iostream>
using namespace std;
struct abc { };
union xyz { };
class nalC: public abc,public xyz
{
 public:
 int i;
 void display(int a);
};
void nalC :: display(int a)
{
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display(10);
 return 0;
}

 (e)
#include <iostream>
using namespace std;

 Single and Multiple Inheritance 575

struct abc {
 public:
 int a;
};
class nalC: public abc
{
 public:
 void display();
};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display();
 return 0;
}

 (f)
#include <iostream>
using namespace std;
struct abc {
 protected:
 int a;
};
class nalC: public abc
{
 public:
 void display();
};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display();
 return 0;
}

 (g)
#include <iostream>
using namespace std;
union abc {
 int a;
};
class nalC: public abc
{
 public:
 void display();

 Programming with C++576

};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display();
 return 0;
}

 (h)
#include <iostream>
using namespace std;
struct abc {
 int a;
};
union nalC: public abc
{
 public:
 void display();
};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display();
 return 0;
}

 (i)
#include <iostream>
using namespace std;
struct abc {
 int a;
};
struct nalC: abc
{
 public:
 void display();
};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{

 Single and Multiple Inheritance 577

 nalC obj;
 obj.display();
 return 0;
}

 (j)
#include <iostream>
using namespace std;
class abc {
 int a;
};
struct nalC: abc
{
 public:
 void display();
};
void nalC :: display()
{
 a = 10;
 cout << “a = ” << a << “\n”;
}

int main()
{
 nalC obj;
 obj.display();
 return 0;
}

 3. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
class A {
 public:
 int a;
 void displayA(int a);
};

class B: public A
{
 public:
 int b;
 void displayB(int b);
};

class C: public B
{
 public:
 int c;
 void displayC(int c);
};

void A :: displayA(int a)
{
 ++a;
 cout << “ value of a = ” << a << endl;

 Programming with C++578

}

void B :: displayB(int b)
{
 A::displayA(10);
 ++b;
 cout << “ value of b = ” << b << endl;
}

void C :: displayC(int c)
{
 B::displayB(20);
 ++c;
 cout << “ value of c = ” << c << endl;
}
int main()
{
 C cobj;
 cobj.displayC(30);
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class A {
 public:
 int a;
 void displayA(int a);
};

class B: private A
{
 public:
 int b;
 void displayB(int b);
};

class C: private B
{
 public:
 int c;
 void displayC(int c);
};

void A :: displayA(int a)
{
 ++a;
 cout << “ value of a = ” << a << endl;
}

void B :: displayB(int b)
{
 A::displayA(10);
 ++b;
 cout << “ value of b = ” << b << endl;

 Single and Multiple Inheritance 579

}

void C :: displayC(int c)
{
 B::displayB(20);
 ++c;
 cout << “ value of c = ” << c << endl;
}
int main()
{
 C cobj;
 cobj.displayC(30);
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class A {
 public:
 int a;
 void displayA(int a);
};

class B: A
{
 public:
 int b;
 void displayB(int b);
};

class C: B
{
 public:
 int c;
 void displayC(int c);
};

void A :: displayA(int a)
{
 ++a;
 cout << “ value of a = ” << a << endl;
}

void B :: displayB(int b)
{
 A::displayA(10);
 ++b;
 cout << “ value of b = ” << b << endl;
}

void C :: displayC(int c)
{
 B::displayB(20);
 ++c;
 cout << “ value of c = ” << c << endl;

 Programming with C++580

}
int main()
{
 C cobj;
 cobj.displayC(30);
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class A {
 public:
 int a;
 void displayA(int a);
};

class B: protected A
{
 public:
 int b;
 void displayB(int b);
};

class C: protected B
{
 public:
 int c;
 void displayC(int c);
};

void A :: displayA(int a)
{
 ++a;
 cout << “ value of a = ” << a << endl;
}

void B :: displayB(int b)
{
 A::displayA(10);
 ++b;
 cout << “ value of b = ” << b << endl;
}

void C :: displayC(int c)
{
 B::displayB(20);
 ++c;
 cout << “ value of c = ” << c << endl;
}
int main()
{
 C cobj;
 cobj.displayC(30);
 return 0;
}

 Single and Multiple Inheritance 581

 (e)
#include <iostream>
using namespace std;
class A {
 private:
 int a;
 public:
 void displayA(int a);
};

class B : public A
{
 private:
 int b;
 public:
 void displayB(int b);
};

void A :: displayA(int a)
{
 ++a;
 cout << “ value of a = ” << a << endl;
}

void B :: displayB(int b)
{
 A::displayA(100);
 ++b;
 cout << “ value of b = ” << b << endl;
}
int main()
{
 B bobj;
 bobj.displayB(300);
 return 0;
}

 PROGRAMMING EXERCISES

 1.(a) Develop an object-oriented program in C++ to read the following information from the keyboard in

which the base class consists of: employee name, code and designation. The derived class contains

the data members, viz. years of experience and age.

 Employee name

 Employee code

 Designation

 Years of experience

 Age

 (b). Construct an object-oriented data base to carry out the following methods:

 (i) Build a master table

 (ii) List a table

 Programming with C++582

 (iii) Insert a new entry

 (iv) Delete old entry

 (v) Edit entry

 (vi) Search for a record that is to be printed

 (vii) Sort entries

 2. Develop an object-oriented program in C++ to create a data base of the following items of the

derived class.

 Name of the patient

 Sex

 Age

 Ward number

 Bed number

 Nature of the illness

 Date of admission

 Design a base class consisting of the data members, viz. name of the patient, sex and age and

another base class consisting of ward number, bed number and nature of the illness. The derived

class consists of the data member viz. date of admission.

 Your program should have the facilites as mentioned in 1(b).

 3. Develop an object-oriented program in C++ to create a pay roll system of an organisation with the

following information read from the keyboard:

 Employee name

 Employee code

 Designation

 Account number

 Date of joining

 Basic pay

 DA, HRA and CCA

 Deductions like PPF, GPF, CPF, LIC, NSS, NSC, etc.

 Design a base class consisting of employee name, employee code and designation and another base

class consisting of the data member, such as account number and date of joining. The derived class

consists of the data member of basic pay plus other earnings and deductions.

 Your program should have the facilities as enumerated in 1(b).

 4. Develop an object-oriented program in C++ to prepare the mark sheet of an university examination

with the following items read from the keyboard:

 Name of the student

 Roll number

 Subject name

 Subject code

 Internal marks

 External marks

 Design a base class consisting of the data members such as name of the student, roll number and

subject name. The derived class consists of the data members, viz. subject code, internal marks and

external marks.

 Your program should have the facilities as listed in 1(b).

 5. Develop an object-oriented program in C++ to create a library information system containing the

following for all books in the library:

 Single and Multiple Inheritance 583

 Accession number

 Name of the author

 Title of the book

 Year of publication

 Publisher’s name

 Cost of the book

 Design a base class with the data members, accession number, name of the author and title of the

book, and another base class consisting of year of publication and publisher’s name. The derived

class consists of the data member viz., cost of the book.

 Your program should have the facilities as listed in 1(b).

 6. Develop an object-oriented program in C++ to create a data base of the personnel information

system containing the following information:

 Name

 Date of birth

 Blood group

 Height

 Weight

 Insurance policy number

 Contact address

 Telephone number

 Driving licence number, etc.

 Design a base class with name, date of birth, blood group, and another base class consisting of the

data members such as height and weight. Design one more base class consisting of the insurance

policy number and contact address. The derived class contains the data members viz. telephone

number and driving licence number.

 Your program should have the facilities as mentioned in 1(b).

Overloading
Functions and
Operators

Chapter

13

13.1 FUNCTION OVERLOADING

Other than the concept of classes and objects, overloading of functions and operators are the most

noteworthy features of C++. The C++ language allows the user to create new abstract data types, which is

one of the major advantages of the OOP.

Function overloading is a logical method of calling several functions with different arguments and data

types that perform basically identical things by the same name. The main advantages of using function

overloading are:

 ∑ eliminating the use of different function names for the same operation.

 ∑ helps to understand, debug and grasp easily.

 ∑ easy maintainability of the code.

 ∑ better understanding of the relation between the program and the outside world.

Function overloading is an easy concept in C++ and generally it is used within the class concept for

member functions and constructors. The compiler classifi es the overloaded function by its name and

the number and type of arguments in the function declaration. The function declaration and defi nition is

essential for each function with the same function name but with different arguments and data types.

For example, consider the following swap() function which is used to swap the different data types

such as int, oat and char. In order to carry out the swapping of these data types, it is required to write

This chapter presents how the concepts of overloading of an object-oriented
programming (OOP) can be incorporated in C++. In addition to data hiding, data
encapsulation and inheritance, ‘overloading’ is a noteworthy feature of object
oriented programming paradigm. Focus is on how overloading of functions and
operators can be declared, defi ned and called in a user-defi ned program.

 Overloading Functions and Operators 585

three distinct functions with different names, i.e., one function for swapping integer values, one for fl oating

point numbers and another one for character data types. The function declaration, defi nition and calling of

each function is also different. Each function swap () must have a different defi nition such that the compiler

can choose the correct function.

 (1)

A function for swapping two integers is,

void swap_int (int &a,int &b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

 (2)

A function for swapping two fl oating point numbers is,

void swap_ oat (oat &a, oat &b)
{
 oat temp;
 temp = a;
 a = b;
 b = temp;
}

(3)
A function for swapping two character data types is,

void swap_char (char &a,char &b)
{
 char temp;
 temp = a;
 a = b;
 b = temp;
}

The following program segment shows how various swapping functions can be declared and called with

parameters.

#include <iostream>
using namespace std;
int main()
{
 void swap_int (int &ix , int &iy);
 void swap_ oat (oat &fx, oat &fy);
 void swap_char (char &cx,char &cy); // function declaration

 swap_int(x,y);
 swap_ oat(fx,fy);
 swap_char(cx,cy);
 return 0;
}

 Programming with C++586

 PROGRAM 13.1

A program to perform the swapping of two data items of integer, fl oating point numbers and character
types without function overloading.

// functions without overloading
//swapping two items
#include <iostream>
#include <string>
using namespace std;
int main()
{
 void swap_int (int &ix , int &iy);
 void swap_ oat (oat &fx, oat &fy);
 void swap_char (char &cx,char &cy); // function declaration
 void swap_string (string &str1, string &str2);
 void menu();
 int ix,iy;
 oat fx,fy;
 char cx,cy,ch;
 string str1,str2;
 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch(ch) {
 case ‘i’:
 // swapping on integers
 cout << “ enter any two integers \n”;
 cin >> ix >> iy ;
 cout << “ swapping of integers \n”;
 cout << “ ix = ” << ix << “ iy = ” << iy << endl;
 swap_int(ix,iy);
 cout << “ after swapping \n”;
 cout << “ ix = ” << ix << “ iy = ” << iy << endl;
 break;
 case ‘f’:
 // oating point numbers
 cout << “ enter any two oating point numbers\n”;
 cin >> fx >> fy;
 cout << “ swapping of oating point numbers \n”;
 cout << “ fx = ” << fx << “ fy = ” << fy << endl;
 swap_ oat(fx,fy);
 cout << “ after swapping \n”;
 cout << “ fx = ” << fx << “ fy = ” << fy << endl;
 break;
 case ‘c’:
 //swapping characters
 cout << “ enter any two characters\n”;
 cin >> cx >> cy;
 cout << “ swapping of characters \n”;
 cout << “ cx = ” << cx << “ cy = ” << cy << endl;
 swap_char(cx,cy);
 cout << “ after swapping \n”;

 cout << “ cx = ” << cx << “ cy = ” << cy << endl;
 break;
 case ‘s’:
 //swapping strings
 cout << “ enter any two strings\n”;
 cin >> str1 >> str2;
 cout << “ swapping of characters \n”;
 cout << “ str1 = ” << str1 << “ str2 = ” << str2;
 cout << endl;
 swap_string(str1,str2);
 cout << “ after swapping \n”;

 Overloading Functions and Operators 587

 cout << “ str1 = ” << str1 << “ str2 = ” << str2;
 cout << endl;
 break;
 case ‘m’:
 menu();
 break;
 }
 } //end of while statement
 return 0;
}

void menu()
{
 cout << “Swapping two data without function overloading\n”;
 cout << “ i -> integer swapping \n”;
 cout << “ f -> real number swapping \n”;
 cout << “ c -> character swapping \n”;
 cout << “ s -> string swapping \n”;
 cout << “ m -> menu \n”;
 cout << “ q -> quit \n”;
}

void swap_int (int &a,int &b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

void swap_ oat (oat &a, oat &b)
{
 oat temp;
 temp = a;
 a = b;
 b = temp;
}

void swap_char (char &a,char &b)
{
 char temp;
 temp = a;
 a = b;
 b = temp;
}

void swap_string (string &a,string &b)
{
 string temp;
 temp = a;
 a = b;
 b = temp;
}

Output of the above program
Swapping two data without function overloading

i -> integer swapping
f -> real number swapping
c -> character swapping
s -> string swapping
m -> menu
q -> quit

i

 Programming with C++588

enter any two integers
10 20
swapping of integers
ix = 10 iy = 20
after swapping
ix = 20 iy = 10

f
enter any two oating point numbers
1.1 -2.2
swapping of oating point numbers
fx = 1.1 fy = -2.2
after swapping
fx = -2.2 fy = 1.1

c
enter any two characters
a b
swapping of characters
cx = a cy = b
after swapping
cx = b cy = a

s
enter any two strings
Windows Linux
swapping of characters
str1 = Windows str2 = Linux
after swapping
str1 = Linux str2 = Windows

q

13.1.1 Function Overloading with Various Data Types

The function overloading allows to use the same function name for the various data types. The function

declaration, defi nition and calling of these functions are done with the same function name but with

different data arguments. By function overloading, one can achieve greater fl exibility in program.

The following program segment illustrates how the function declaration is done and called for swapping

two data items for the various arguments using the concept of function overloading.

#include <iostream>
using namespace std;
int main()
{
 void swap (int &ix , int &iy);
 void swap (oat &fx, oat &fy);
 void swap (char &cx,char &cy); // functions are declared

 swap(ix,iy); // functions are called with same name
 swap(fx,fy);
 swap(cx,xy);
 return 0;
}

 Overloading Functions and Operators 589

The following functions are defi ned with the same name for the various data and arguments for

performing the swapping of two quantities.

 (1)
A function defi nition for swapping two integers.
void swap (int &a,int &b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

 (2)

 A function defi nition for swapping two fl oating point numbers with the same function name.
void swap (oat &a, oat &b)
{
 oat temp;
 temp = a;
 a = b;
 b = temp;
}

 (3) A function defi nition for swapping two characters of the same function name.
void swap (char &a,char &b)
{
 char temp;
 temp = a;
 a = b;
 b = temp;
 }

When the same name is used, the correct function will be selected by the C++ compiler by comparing

the types of actual arguments with the types of formal arguments.

For example, the following program segment illustrates how to declare, defi ne and call the same function

name with different data items.

#include <iostream>
using namespace std;
int main()
{
 void swap (int &ix , int &iy);
 void swap (oat &fx, oat &fy);
 void swap (char &cx,char &cy); // functions are declared

 swap(ix,iy); // actual arguments being compared with formal arguments
 return 0;
}

void swap (char &a,char &b) // formal arguments
{

}
void swap (int &a,int &b)
{

 Programming with C++590

}
void swap (oat &a, oat &b)
{

}

 PROGRAM 13.2

A program to demonstrate how function overloading is carried out for swapping of two variables of the
various data types, namely integers, fl oating point numbers and character types.

// functions overloading
//swapping two items
#include <iostream>
#include <string>
using namespace std;
int main()
{
 void swap (int &ix , int &iy);
 void swap (oat &fx, oat &fy);
 void swap (char &cx,char &cy); // function declaration
 void swap (string &str1, string &str2);
 void menu();
 int ix,iy;
 oat fx,fy;
 char cx,cy,ch;
 string str1,str2;
 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch(ch) {
 case ‘i’:
 // swapping on integers
 cout << “ enter any two integers \n”;
 cin >> ix >> iy ;
 cout << “ swapping of integers \n”;
 cout << “ ix = ” << ix << “ iy = ” << iy << endl;
 swap(ix,iy);
 cout << “ after swapping \n”;
 cout << “ ix = ” << ix << “ iy = ” << iy << endl;
 break;
 case ‘f’:
 // oating point numbers
 cout << “ enter any two oating point numbers\n”;
 cin >> fx >> fy;
 cout << “ swapping of oating point numbers \n”;
 cout << “ fx = ” << fx << “ fy = ” << fy << endl;
 swap(fx,fy);
 cout << “ after swapping \n”;
 cout << “ fx = ” << fx << “ fy = ” << fy << endl;
 break;
 case ‘c’:
 //swapping characters
 cout << “ enter any two characters\n”;
 cin >> cx >> cy;
 cout << “ swapping of characters \n”;
 cout << “ cx = ” << cx << “ cy = ” << cy << endl;
 swap(cx,cy);
 cout << “ after swapping \n”;
 cout << “ cx = ” << cx << “ cy = ” << cy << endl;
 break;
 case ‘s’:
 //swapping strings

 Overloading Functions and Operators 591

 cout << “ enter any two strings\n”;
 cin >> str1 >> str2;
 cout << “ swapping of characters \n”;
 cout << “ str1 = ” << str1 << “ str2 = ” << str2;
 cout << endl;
 swap(str1,str2);
 cout << “ after swapping \n”;
 cout << “ str1 = ” << str1 << “ str2 = ” << str2;
 cout << endl;
 break;
 case ‘m’:
 menu();
 break;
 }
 } //end of while statement
 return 0;
}

void menu()
{
 cout << “Swapping two data using function overloading\n”;
 cout << “ i -> integer swapping \n”;
 cout << “ f -> real number swapping \n”;
 cout << “ c -> character swapping \n”;
 cout << “ s -> string swapping \n”;
 cout << “ m -> menu \n”;
 cout << “ q -> quit \n”;
 cout << “ code, please ?\n”;
}

void swap (int &a,int &b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

void swap (oat &a, oat &b)
{
 oat temp;
 temp = a;
 a = b;
 b = temp;
}

void swap (char &a,char &b)
{
 char temp;
 temp = a;
 a = b;
 b = temp;
}

void swap (string &a,string &b)
{
 string temp;
 temp = a;
 a = b;
 b = temp;
}

Output of the above program
Swapping two data using function overloading

 i -> integer swapping
 f -> real number swapping

 Programming with C++592

 c -> character swapping
 s -> string swapping
 m -> menu
 q -> quit
 code, please?

 i
 enter any two integers
 100 200
 swapping of integers
 ix = 100 iy = 200
 after swapping
 ix = 200 iy = 100

 f
 enter any two oating point numbers
 3.3 -5.6
 swapping of oating point numbers
 fx = 3.3 fy = -5.6
 after swapping
 fx = -5.6 fy = 3.3

 c
 enter any two characters
 x y
 swapping of characters
 cx = x cy = y
 after swapping
 cx = y cy = x

 s
 enter any two strings
 C++ Java
 swapping of characters
 str1 = C++ str2 = Java
 after swapping
 str1 = Java str2 = C++

 q

 PROGRAM 13.3

A program to demonstrate how to use the function overloading for displaying diff erent parameters of the
member functions.

#include <iostream>
#include <string>
using namespace std;
class abc {
 private:
 int a,b;
 oat fa,fb;
 string str;
 public:
 void display();
 void display (int a);

 Overloading Functions and Operators 593

 void display (int a,int b);
 void display (oat fa, oat fb);
 void display (string msg);
 void menu();
};
void abc :: display()
{
 cout <<“Calling function without arguments\n”;
}
void abc :: display(int a)
{
 cout <<“Calling function with one int argument \n”;
 cout << “a = ” << a;
}
void abc :: display(int a, int b)
{
 cout <<“Calling function with two int arguments \n”;
 cout << “a = ” << a << “ b = ” << b << endl;
}
void abc :: display(oat fa, oat fb)
{
 cout <<“Calling function with oating arguments \n”;
 cout << “fa = ” << fa << “ fb = ” << fb << endl;
}
void abc :: display(string msg)
{
 cout <<“Calling function with string argument\n”;
 cout << “Message = ” << msg << endl;
}
void abc :: menu()
{
 cout <<“Function overloading\n”;
 cout <<“ 1 -> calling display()\n”;
 cout <<“ 2 -> calling display(int a) \n”;
 cout <<“ 3 -> calling display(int a, int b) \n”;
 cout <<“ 4 -> calling display(oat fa, oat fb) \n”;
 cout <<“ 5 -> calling display (string msg) \n”;
 cout <<“ m -> menu() \n”;
 cout <<“ q -> quit \n”;
}
int main()
{
 abc obj;
 void menu();
 int n1,n2;
 oat x,y;
 string str;
 char ch;
 obj.menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘1’:
 obj.display();
 break;
 case ‘2’:
 cout <<“enter an integer \n”;
 cin >> n1;
 obj.display(n1);
 break;
 case ‘3’:
 cout <<“enter any two integers \n”;
 cin >> n1 >> n2;
 obj.display(n1,n2);
 break;
 case ‘4’:
 cout <<“enter any two real numbers \n”;
 cin >> x >> y;

 Programming with C++594

 obj.display(x,y);
 break;
 case ‘5’:
 cout <<“enter a string \n”;
 cin >> str;
 obj.display(str);
 break;
 case ‘m’:
 obj.menu();
 break;
 }
 }
 return 0;
}

Output of the above program

Function overloading

1 -> calling display ()
2 -> calling display (int a)
3 -> calling display (int a, int b)
4 -> calling display (oat fa, oat fb)
5 -> calling display (string msg)
m -> menu()
q -> quit

1
Calling function without arguments

2
enter an integer
10
Calling function with one int argument
a = 10

3
enter any two integers
100 200
Calling function with two int arguments
a = 100 b = 200

4
enter any two real numbers
1.1 2.2
Calling function with oating arguments
fa = 1.1 fb = 2.2

5
enter a string
Hello,C++
Calling function with string argument
Message = Hello,C++
q

 PROGRAM 13.4

A program to fi nd the square of a given number belonging to the three data types, namely integers,
fl oating point and double precision numbers without overloading of functions.

 Overloading Functions and Operators 595

// function without overloading
#include <iostream>
using namespace std;
class abc {
 public:
 int square_int (int);
 oat square_ oat (oat);
 double square_double (double);
 void menu();
};

int abc :: square_int (int a)
{
 return(a*a);
}

 oat abc :: square_ oat (oat a)
{
 return(a*a);
}

double abc :: square_double (double a)
{
 return(a*a);
}
void abc :: menu()
{
 cout << “Finding the square of a given number\n”;
 cout << “ i -> integers\n”;
 cout << “ f -> real numbers \n”;
 cout << “ d -> double precision numbers\n”;
 cout << “ m -> menu \n”;
 cout << “ q -> quit \n”;
 cout << “ code, please ?\n”;
}

int main()
{
 abc obj;
 int x,xsq;
 oat y,ysq;
 double z,zsq;
 char ch;
 obj.menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘i’:
 cout << “ enter an integer ” << endl;
 cin >> x;
 xsq = obj.square_int (x);
 cout << “ x = ” << x;
 cout << “ and its square = ” << xsq << endl;
 break;
 case ‘f’:
 cout << “ enter a oating point number\n”;
 cin >> y;
 ysq = obj.square_ oat (y);
 cout << “ y = ” << y ;
 cout << “ and its square = ” << ysq <<endl;
 break;
 case ‘d’:
 cout << “ enter a double ” << endl;
 cin >> z;
 zsq = obj.square_double (z);
 cout << “ z = ” << z;
 cout << “ and its square = ” << zsq << endl;
 break;

 Programming with C++596

 case ‘m’:
 obj.menu();
 break;
 }
 }
 return 0;
}

Output of the above program

Finding the square of a given number
i -> integers
f -> real numbers
d -> double precision numbers
m -> menu
q -> quit
code, please?

i
enter an integer
12
x = 12 and its square = 144

f
enter a oating point number
3.4
y = 3.4 and its square = 11.56

d
enter a double
100.34
z = 100.34 and its square = 10068.1
q

 PROGRAM 13.5

A program to fi nd the square of a given number belonging to the three data types, namely integers,
fl oating point and double precision numbers using overloading of functions.

// function overloading
#include <iostream>
using namespace std;
class abc {
 public:
 int square (int);
 oat square (oat);
 double square (double);
 void menu();
};

int abc :: square (int a)
{
 return(a*a);
}

 oat abc :: square (oat a)
{
 return(a*a);
}

 Overloading Functions and Operators 597

double abc :: square (double a)
{
 return(a*a);
}
void abc :: menu()
{
 cout << “Finding the square of a given number\n”;
 cout << “ i -> integers\n”;
 cout << “ f -> real numbers \n”;
 cout << “ d -> double precision numbers\n”;
 cout << “ m -> menu \n”;
 cout << “ q -> quit \n”;
 cout << “ code, please ?\n”;
}

int main()
{
 abc obj;
 int x,xsq;
 oat y,ysq;
 double z,zsq;
 char ch;
 obj.menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘i’:
 cout << “ enter an integer ” << endl;
 cin >> x;
 xsq = obj.square (x);
 cout << “ x = ” << x;
 cout << “ and its square = ” << xsq << endl;
 break;
 case ‘f’:
 cout << “ enter a oating point number\n”;
 cin >> y;
 ysq = obj.square (y);
 cout << “ y = ” << y ;
 cout << “ and its square = ” << ysq <<endl;
 break;
 case ‘d’:
 cout << “ enter a double ” << endl;
 cin >> z;
 zsq = obj.square (z);
 cout << “ z = ” << z;
 cout << “ and its square = ” << zsq << endl;
 break;
 case ‘m’:
 obj.menu();
 break;
 }
 }
 return 0;
}

Output of the above program

Finding the square of a given number
 i -> integers
 f -> real numbers
 d -> double precision numbers
 m -> menu
 q -> quit
 code, please?

 i
 enter an integer

 Programming with C++598

 2
 x = 2 and its square = 4

 f
 enter a oating point number
 4.4
 y = 4.4 and its square = 19.36

 d
 enter a double
 6.6
 z = 6.6 and its square = 43.56

 q

13.1.2 Function Overloading with Arguments

So far, we have seen how a function could be overloaded for the various data types. The functions can be

overloaded not only for the different data types but also for a number of arguments in the function call.

The following program segment shows how a function can be declared, defi ned and called for different

arguments for overloading of functions.

#include <iostream>
using namespace std;
int main()
{

 int square (int);
 int square (int, int,int);

 asq = square (a); // function call with a single argument
 bsq = square (x,y,z); //function call with various arguments

 return 0;
}

 (1) A function defi nition to fi nd the square of a single argument is,
 int square (int a)
 {
 return(a*a);
 }

 (2) A function defi nition to fi nd the square of three arguments is,
 int square (int a,int b, int c)
 {
 int temp;
 temp = a+b+c; // sum of three numbers
 return(temp*temp);
 }

 PROGRAM 13.6

A program to fi nd the square of a given number with diff erent arguments using function overloading.

 Overloading Functions and Operators 599

// overloading of functions
// nding the square of the numbers
// number of arguments are also a factor
#include <iostream>
using namespace std;
int square (int);
int square (int, int,int);
int main()
{
 int a,x,y,z,asq,bsq;
 cout << “ enter an integer ” << endl;
 cin >> a;
 cout << “ enter any three numbers \n”;
 cin >> x >> y >> z;
 asq = square (a);
 cout << “ a = ” << a << “ and its square = ” <<asq << endl;
 bsq = square (x,y,z);
 cout << “ x = ” << x;
 cout << “ ,y = ” << y;
 cout << “ ,z = ” << z ;
 cout << “ and its sum of square = ” << bsq <<endl;
 return 0;
}

int square (int a)
{
 return(a*a);
}

int square (int a,int b , int c)
{
 int temp;
 temp = a+b+c; // sum of three numbers
 return(temp*temp);
}

Output of the above program
enter an integer
2
enter any three numbers
1 2 3
a = 2 and its square = 4
x = 1, y = 2, z = 3 and its sum of square = 36

 PROGRAM 13.7

A program to fi nd the sum of the elements of a two-dimensional array of integers and fl oating point
numbers without function overloading.

#include <iostream>
using namespace std;
int main()
{
 int sum_funct1 (int a[3][3],int n);
 oat sum_funct2 (oat b[3][3], int n);
 int n = 3, sum1;
 oat sum2;
 static int a[3][3] = {
 {1,2,3},
 {4,5,6},
 {7,8,9}
 };

 Programming with C++600

 static oat b[3][3] = {
 {1.1,2.2,3.3},
 {4.4,5.5,6.6},
 {7.7,8.8,9.9}
 };
 sum1 = sum_funct1(a,n);
 cout << “ sum of integers = ” << sum1;
 cout << endl;
 sum2 = sum_funct2(b,n);
 cout << “ sum of oating point numbers = ” << sum2;
 cout << endl;
 return 0;
}

int sum_funct1 (int a[3][3], int n)
{
 int temp = 0;
 for (int i =0; i<= n-1; ++i) {
 for (int j = 0; j<=n-1; ++j)
 temp = temp+a[i][j];
 }
 return(temp);
}

 oat sum_funct2 (oat b[3][3], int n)
{
 oat temp = 0.0;
 for (int i = 0; i<= n-1; ++i) {
 for (int j = 0 ; j<=n-1; ++j)
 temp = temp+b[i][j];
 }
 return(temp);
}

Output of the above program

sum of integers = 45
sum of oating point numbers = 49.5

 PROGRAM 13.8

A program to fi nd the sum of the elements of a two-dimensional array of integers and fl oating point
numbers with function overloading.

//function overloading
#include <iostream>
using namespace std;
int sum (int a[3][3],int n);
double sum (double b[3][3], int n);
int main()
{
 int n = 3, sum1;
 double sum2;
 static int a[3][3] = {
 {1,2,3},
 {4,5,6},
 {7,8,9}
 };
 static double b[3][3] = {
 {1.1,2.2,3.3},
 {4.4,5.5,6.6},
 {7.7,8.8,9.9}
 };
 sum1 = sum(a,n);
 cout << “ sum of integers = ” << sum1;

 Overloading Functions and Operators 601

 cout << endl;
 sum2 = sum(b,n);
 cout << “ sum of oating point numbers = ” << sum2;
 cout << endl;
 return 0;
}

int sum (int a[3][3], int n)
{
 int temp = 0;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0; j<=n-1; ++j)
 temp = temp+a[i][j];
 }
 return(temp);
}

double sum (double b[3][3], int n)
{
 double temp = 0.0;
 for (int i = 0; i <= n-1; ++i) {
 for (int j = 0 ; j<=n-1; ++j)
 temp = temp+b[i][j];
 }
 return(temp);
}

Output of the above program

sum of integers = 45
sum of oating point numbers = 49.5

13.1.3 Scoping Rules for Function Overloading

By defi nition, overloading is a process of defi ning the same function name to carry out similar types of

activities with various data items or with different arguments. The overloading mechanism is acceptable

only within the same scope of the function declaration. Sometimes, one can declare the same function

name for different scopes of the classes or with global and local declaration, but it does not come under the

technique of function overloading.

For example, the following program segment illustrates how a function cannot be considered under the

mechanism of function overloading since it is being declared for a different scope.
#include <iostream>
using namespace std;
class rst {
 public:
 void display();

};
class second {
 public :
 void display();

};
int main()
{
 rst obj1;
 second obj2;

 Programming with C++602

 obj1.display(); // no function overloading takes place
 obj2.display();
 return 0;
}

 PROGRAM 13.9

A program to demonstrate how function overloading is not incorporated though the same name has been
used to declare the member functions in diff erent classes.

#include <iostream>
using namespace std;
class rst {
 private :
 int x;
 public :
 void getdata();
 void display();
};

class second {
 private :
 int y;
 public :
 void getdata();
 void display();
};

void rst :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

void rst :: display()
{
 cout << “ Entered number is x = ” << x;
 cout << endl;
}

void second :: getdata()
{
 cout << “ enter a value for y \n”;
 cin >> y;
}

void second :: display()
{
 cout << “ Entered number is y = ” << y;
 cout << endl;
}

int main()
{
 rst obj1;
 second obj2;
 obj1.getdata();
 Obj2.getdata();
 obj1.display();
 obj2.display();
 return 0;
}

 Overloading Functions and Operators 603

Output of the above program

enter a value for x
10
enter a value for y
20
Entered number is x = 10
Entered number is y = 20

 PROGRAM 13.10

A program to demonstrate how to defi ne the same function name within a global declaration and a
class. Even though the same name is used to defi ne the functions, in the diff erent scopes, no function
overloading takes place in the program.

#include <iostream>
using namespace std;
void display ()
{
 cout << “ global display \n”;
 cout << endl;
}

class sample {
 private :
 int x;
 public :
 void getdata();
 void display();
};

void sample :: getdata()
{
 cout << “ enter a value for x \n”;
 cin >> x;
}

void sample :: display()
{
 cout << “ Entered number is :” << x;
 cout << endl;
}

int main()
{
 sample obj;
 obj.getdata();
 cout << “ calling a member function display()\n”;
 obj.display();
 cout << “ calling a non-member function display()\n”;
 ::display();
 return 0;
}

Output of the above program

enter a value for x
10
calling a member function display()
Entered number is: 10
calling a non-member function display()
global display

 Programming with C++604

13.1.4 Special Features of Function Overloading

It is known that function overloading is the process of defi ning two or more functions with the same name,

which differ only by return type and parameters. Some of the special features of the function overloading

are discussed in this section.

 (1) The function arguments must be suffi ciently different since the compiler cannot distinguish which

function to be called when and where.

 The following program segement is invalid usage of function overloading because the arguments

declared in the functions are the same.
#include <iostream>
using namespace std;
int main()
{
 int funct1 (int);
 int funct1 (int &a);
 int x;

 funct1(x);
 return 0;
}

int funct1 (int)
{

}

int funct1 (int &a) //error,both the arguments are same int and int&
{

}

The above function arguments are not suffi ciently different unabling the compiler to distinguish between

these functions, and hence displays an error message.

 (2) While typedef is used for declaring a user-defi ned name for functions and variables, it is not a

separate type but only a synonym for another type.

 For example, the following function declaration cannot be used for function overloading.
#include <iostream>
using namespace std;
int main()
{
 typedef oat real;
 void funct1(real);
 void funct1(oat);

 funt1(x);
 return 0;
}

void funct1(real) // error
{

 Overloading Functions and Operators 605

}
void funct1(oat) // error, function arguments are same
{

}

 (3) Even though the values of enumerated data types are integers, they are distinguished from the

standard data type of int. So, whenever a function is declared with a function argument of int

and an enumerated data type, it is valid in C++ for function overloading.

 For example, the following function declaration is valid:
#include <iostream>
using namespace std;
int main()
{
 enum day {mon,tue,wed};
 void funct1(int i);
 void funct1(day);

 return 0;
}
void funct1(int)
{

}

void funct1(day) // valid, even the value of day is integer quantity
{

}

 (4) The pointer arguments of a pointer variable and an array type are identical.

 funct1(char *);
 funct1(char []); // both are same

 For example, the following function declaration for overloading is invalid:

#include <iostream>
using namespace std;
int main()
{
 void funct1(char *, char *);
 void funct1 (char [], char []);

 funct1(a,b);
 return 0;
}

void funct1(char *a, char *b)
{

 Programming with C++606

}

void funct1(char a[], char b[]) // error,
{

}

The compiler will display the error message as ‘redeclaration of the function funct1 ()’.

For example, the following function declaration of a character array is invalid for function overloading

even though the array sizes are different.

 funct1(char [20]); // same as funct1(char *);
 funct1(char [10]); // same as funct1(char *);

The following program segments are illegal construction of the function overloading.

#include <iostream>
using namespace std;
int main()
{
 void funct1(char [20], char [20]);
 void funct1(char [10], char [10]);

 funct1(a,b);
 return 0;
}

void funct1(char a[20], char b[20])
{

}

void funct1(char a[10], char b[10]) // error,
{

}

The compiler will display the error message as ‘redeclaration of the function funct1 ()’.

The following function declarations are valid even though the character data types are different.

 funct1(char);
 funct1(unsigned char);
 funct1(signed char);
 funct1(char *);
 funct1(unsigned char *);
 funct1(signed char *);

13.1.5 Function Overloading Considerations

Although functions can be distinguished on the basis of return type, they cannot be overloaded on this basis.

The following Table 13.1 is a partial list of considerations for function overloading in C++.

 Overloading Functions and Operators 607

Table 13.1

Function Declaration Element Used for Overloading

Function return type No

Number of arguments Yes

Type of arguments Yes

Presence or absence of ellipsis Yes

Use of typedef names No

Unspecifi ed array bounds No

const or volatile Yes

13.2 OPERATOR OVERLOADING

In the previous section, we have seen how C++ enables one to defi ne several functions having the
same name as long as they have different argument lists, known as function overloading or functional
polymorphism. Its purpose is to use the same function for the basic operation.

This section explores how operators can be redefi ned and used in a program. Operator overloading is
another example of C++ polymorphism. In fact, some form of operator overloading is available in all high
level languages. For example, in BASIC the + operator can be used to carry out three different operations
such as adding integers, adding two real numbers and concatenating two strings. Operator overloading
is one of the most challenging and exciting features of C++. The main advantages of using overloading
operators in a program are that it is much easier to read and debug.

Operators which already exist in the language, can only be overloaded. Overloading cannot alter either
the basic template of an operator, nor its place in the order of precedence. It seems that the main idea of
using operator overloading in a C++ program is to make it more natural to read and write. Even debugging
such codes are much easier. As C++ is mostly used to develop a large software package in an easy way,
due care must be taken while implementing the operator overloading in a program, otherwise, it leads to
confusion while debugging and testing the codes. Operator overloading is accomplished by means of a
special kind of function. Operator overloading can be carried out by means of either member functions or
friend functions.

The general syntax of operator overloading is,

 return_type operator operator_to_be_overloaded (parameters);

The keyword ‘operator’ must be preceded by the return type of a function which gives information to
the compiler that overloading of operator is to be carried out. Only those operators that are predefi ned in the
C++ compiler are allowed to be overloaded.

Following are some examples for operator overloading of functions, their declaration and their
equivalent conventional declaration.

 (1)
 void operator++ (); is equal to

 void increment();

 (2)
 int sum (int x,int y); is equal to

 int operator+ (int x,int y);

Rules for overloading operators

Rule 1 Only those operators that are predefi ned in the C++ compiler can be used. Users cannot create new
operators such as $, @ etc.

The following method of declaring an operator overloading is invalid.

 Programming with C++608

class newoperator {
 private :
 int x;
 int y;
 public :
 int operator $(); // error
 int operator @[]; // error
 int operator ::(); // error
};

Rule 2 Users cannot change operator templates. Each operator in C++ comes with its own template which

defi nes certain aspects of its use, such as whether it is a binary operator or a unary operator and its order of

precedence. This template is fi xed and cannot be altered by overloading.

For example, ++ and – – cannot be used except in unary operators. During overloading, the prefi xed

incrementer/decrementer and the postfi x incrementer/decrementer are not distinguished.

For an example,
 ++ operator ()
 operator ++()

There is no difference between writing either prefi x incrementer or postfi x incrementer.

Rule 3 Overloading an operator never gives a meaning which is radically different from its natural

meaning.

For example, the operator * may be overloaded to add the objects of two classes but the code becomes

unreadable.

// error
class sample {
 private :
 int x;
 int y;
 public :
 int operator *(); // adding two objects
 int operator /(); // subtracting two objects
 };

int sample :: operator *() // the code becomes unreadable
{
 return (x+y);
}

void main (void)
{

}

Rule 4 Unary operators overloaded by means of a member function take no explicit arguments and

return no explicit values. When they are overloaded by means of a friend function, they take no reference

argument, namely, the name of the relevant class.

13.2.1 Overloading Assignment Operator

The assignment operator is a unary operator because it is connected only to the entity on the right, which

is the operand. Whenever an assignment operator is overloaded in a base class, it cannot be inherited in

 Overloading Functions and Operators 609

a derived class. Hence the assignment operator which is to be overloaded must be either a method (or a

member function) or a class object with arguments.

The following program segment illustrates the overloading of an assignment operator in a class.

//overloading an assignment operator
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 oat y;
 public :
 sample(int, oat);
 void operator= (sample abc);
 void display();
};

void sample :: operator= (sample abc)
{
 x = abc.x;
 y = abc.y;
}

int main()
{
 sample obj1;
 sample obj2;

 obj1 = obj2;
 obj2.display();
 return 0;
}

 PROGRAM 13.11

A program to create a class of objects, namely, obja and objb. The contents of object obja is assigned
to the object objb using the conventional assignment technique.

//using an assignment operator
//without overloading
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 oat y;
 public :
 sample(int, oat);
 void display();
};
sample :: sample (int one, oat two)
{
 x = one;
 y = two;
}
void sample :: display()

 Programming with C++610

{
 cout << “ integer number (x) = ” << x << endl;
 cout << “ oating value (y) = ” << y << endl;
 cout << endl;
}

int main()
{
 sample obj1(10,-22.55);
 sample obj2(20,-33.44);
 obj2 = obj1;
 cout << “ contents of the rst object \n”;
 obj1.display();
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

Output of the above program

contents of the rst object
integer number (x) = 10
 oating value (y) = -22.55

contents of the second object
integer number (x) = 10
 oating value (y) = -22.55

 PROGRAM 13.12

A program to create a class of objects, namely, obja and objb. The contents of object obja is assigned to
the object objb using the operator overloading technique.

//overloading an assignment operator
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 oat y;
 public :
 sample(int, oat);
 //overloading assignment operator
 void operator= (sample abc);
 void display();
};

sample :: sample (int one, oat two)
{
 x = one;
 y = two;
}

void sample :: operator= (sample abc)
{
 x = abc.x;
 y = abc.y;
}

void sample :: display()
{
 cout << “ integer number (x) = :” << x << endl;
 cout << “ oating value (y) = :” << y << endl;

 Overloading Functions and Operators 611

 cout << endl;
}

int main()
{
 sample obj1(10,-22.55);
 sample obj2(20,-33.44);
 obj1.operator =(obj2);
 cout << “ contents of the rst object \n”;
 obj1.display();
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

Output of the above program

contents of the rst object
integer number (x) = :20
 oating value (y) = :-33.44

contents of the second object
integer number (x) = :20
 oating value (y) = :-33.44

 PROGRAM 13.13

A program to create a class of objects, namely, obja and objb. The contents of object obja is assigned to
the object objb using the operator overloading technique and the conventional method to access the
overloaded operator function.

//overloading an assignment operator
#include <iostream>
using namespace std;
class sample {
 private :
 int x;
 oat y;
 public :
 sample(int, oat);
 void operator= (sample abc);
 void display();
};

sample :: sample (int one, oat two)
{
 x = one;
 y = two;
}
void sample :: operator= (sample abc)
{
 x = abc.x;
 y = abc.y;
}

void sample :: display()
{
 cout << “ integer number (x) = :” << x << endl;
 cout << “ oating value (y) = :” << y << endl;
 cout << endl;
}

 Programming with C++612

int main()
{
 sample obj1(10,-22.55);
 sample obj2(20,-33.44);
 obj1 = obj2;
 cout << “ contents of the rst object \n”;
 obj1.display();
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

Output of the above program

contents of the rst object
integer number (x) = :20
 oating value (y) = :-33.44

contents of the second object
integer number (x) = :20
 oating value (y) = :-33.44

13.3 OVERLOADING OF BINARY OPERATORS

Binary operators overloaded by means of member functions take one formal argument which is the value to

the right of the operator. Binary operators, overloaded by means of friend functions take two arguments.

13.3.1 Overloading Arithmetic Operators

As arithmetic operators are binary operators, they require two operands to perform the operation. Whenever

an arithmetic operator is used for overloading, the operator overloading function is invoked with single

class objects.

 PROGRAM 13.14

A program to perform overloading of a plus operator for fi nding the sum of the two given class objects.

//overloading arithmetic operators
#include <iostream>
using namespace std;
class sample {
 private :
 int value;
 public :
 sample ();
 sample (int one);
 sample operator+ (sample objb);
 void display();
};
sample ::sample ()
{
 value = 0;
}

sample :: sample (int one)
{
 value = one;
}

 Overloading Functions and Operators 613

sample sample :: operator+ (sample objb)
{
 sample objsum;
 objsum.value = value+objb.value;
 return(objsum);
}

void sample :: display()
{
 cout << “value = ” << value << endl;
}

int main()
{
 sample obj1(10);
 sample obj2(20);
 sample objsum;
 objsum = obj1 + obj2;
 obj1.display();
 obj2.display();
 objsum.display();
 return 0;
}

Output of the above program

value = 10
value = 20
value = 30

 PROGRAM 13.15

A program to perform simple arithmetic operations of two complex numbers using operator overloading.

// complex number operations
//using operator overloading
struct complex {
 oat real;
 oat imag;
};
complex operator + (complex a, complex b);
complex operator - (complex a, complex b);
complex operator * (complex a, complex b);
complex operator / (complex a, complex b);
#include <iostream>
using namespace std;
#include <stdio.h>
int main()
{
 complex a,b,c;
 int ch;
 void menu(void);
 cout << “enter a rst complex number \n”;
 cin >> a.real >> a.imag;
 cout << “ enter a second complex number \n”;
 cin >> b.real >> b.imag;
 cout << “ rst complex number \n”;
 cout << a.real;
 if (a.imag < 0)
 cout << “-i” << (-1)*a.imag << endl;
 else
 cout << “+i”<< a.imag << endl;
 cout << “ second complex number \n”;
 cout << b.real;

 Programming with C++614

 if (b.imag < 0)
 cout << “-i” << (-1)*b.imag << endl;
 else
 cout << “+i”<< b.imag << endl;
 menu();
 while ((ch = getchar()) != ‘q’) {
 switch (ch) {
 case ‘a’ :
 c = a+b;
 cout << “ Addition of two complex numbers \n”;
 cout << c.real;
 if (c.imag < 0)
 cout << “-i” << (-1)*c.imag << endl;
 else
 cout << “+i”<< c.imag << endl;
 break;
 case ‘s’ :
 c =a-b;
 cout << “ Subtraction of two complex numbers \n”;
 cout << c.real;
 if (c.imag < 0)
 cout << “-i” << (-1)*c.imag << endl;
 else
 cout << “+i”<< c.imag << endl;
 break;
 case ‘m’ :
 c = a*b;
 cout << “ Multiplication of two complex numbers \n”;
 cout << c.real;
 if (c.imag < 0)
 cout << “-i” << (-1)*c.imag << endl;
 else
 cout << “+i”<< c.imag << endl;
 break;
 case ‘d’ :
 c = a/b;
 cout << “ Division of two complex numbers \n”;
 cout << c.real;
 if (c.imag < 0)
 cout << “-i” << (-1)*c.imag << endl;
 else
 cout << “+i”<< c.imag << endl;
 break;
 case ‘t’:
 menu();
 break;
 } // end of switch
 }
 return 0;
} // end of main program

void menu(void)
{
 cout << “ complex number operations \n”;
 cout << “ t -> menu () \n”;
 cout << “ a -> addition \n”;
 cout << “ s -> subtraction \n”;
 cout << “ m -> multiplication \n”;
 cout << “ d -> division \n”;
 cout << “ q -> quit \n”;
 cout << “ option, please ? \n”;
}

complex operator + (struct complex a, struct complex b)
{
 complex c;

 Overloading Functions and Operators 615

 c.real = a.real+b.real;
 c.imag = a.imag+b.imag;
 return(c);
}

complex operator - (struct complex a, struct complex b)
{
 complex c;

 c.real = a.real-b.real;
 c.imag = a.imag-b.imag;
 return(c);
}

complex operator * (struct complex a, struct complex b)
{
 complex c;

 c.real = (a.real*b.real)-(a.imag*b.imag);
 c.imag = (a.real*b.imag)+(a.imag*b.real);
 return(c);
}
complex operator / (struct complex a, struct complex b)
{
 complex c;
 oat temp;
 temp = (b.real*b.real)+(b.imag*b.imag);
 c.real = ((a.real*b.real)+(a.imag*b.imag))/temp;
 c.imag = ((b.real*a.imag)-(a.real*b.imag))/temp;
 return(c);
}

Output of the above program
enter a rst complex number
1 1
enter a second complex number
2 2
 rst complex number
1+i1
second complex number
2+i2
complex number operations
t -> menu ()
a -> addition
s -> subtraction
m -> multiplication
d -> division
q -> quit
option, please?

a
Addition of two complex numbers
3+i3

s
Subtraction of two complex numbers
-1-i1

m
Multiplication of two complex numbers
0+i4

 Programming with C++616

d
Division of two complex numbers
 0.5+i0

 q

13.3.2 Overloading of Comparison Operators

Comparison and logical operators are binary operators that require two objects to be compared and hence

the result will be one of these: (Table 13.2)

Table 13.2

Operator Meaning

< Less than

< = Less than or equal to

> Greater than

> = Greater than or equal to

= = Equal to

! = Not equal to

The return value of the operator function is an integer. Operator overloading accepts an object on its

right as a parameter and the object on the left is passed by the this pointer.

 PROGRAM 13.16

A program to demonstrate how to overload a less than operator in a program to compare two classes of
objects. The operator overloading returns either 1 or 0 as the case may be.

//overloading comparison operators
#include <iostream>
using namespace std;
class sample {
 private:
 int value;
 public :
 sample();
 sample(int one);
 void display();
 int operator < (sample obj);
};

sample :: sample ()
{
 value = 0;
}
sample :: sample (int one)
{
 value = one;
}

void sample :: display()
{
 cout << “ value ” << value << endl;
}
int sample :: operator < (sample obja)
{
 return (value < obja.value);
}

 Overloading Functions and Operators 617

int main()
{
 sample obja(20);
 sample objb(100);
 cout << (obja < objb) << endl;
 cout << (objb < obja) << endl;
 return 0;
}

Output of the above program
1
0

13.4 OVERLOADING OF UNARY OPERATORS

Unary operators overloaded by member functions take no formal arguments, whereas when they are

overloaded by friend functions they take a single argument.

Overloading of incrementer and decrementer It is well known that C++ supports very unusual notation or

operator that is used for incrementing and decrementing by 1. These operators can be used as either perfi x

or postfi x. In general, overloading of these operators cannot be distinguished between prefi x or postfi x

operation. However, whenever a postfi x operation is overloaded, it takes a single argument along a member

function of a class object.

The following program segment illustrates the overloading of an incrementer operator with prefi x

operation.
//overloading pre x ++ incrementer operator
#include <iostream>
using namespace std;
class bonacci {
 public:
 void operator++();

};

void bonacci :: operator++()
{

}
int main()
{
 bonacci obj;

 ++obj;
 return 0;
}

 PROGRAM 13.17

A program to generate a Fibonacci series by overloading a prefi x operator.

 Programming with C++618

//overloading pre x ++ incrementer operator
#include <iostream>
#include <iomanip>
using namespace std;
struct bonacci {
 public:
 unsigned long int f0,f1, b;
 bonacci(); // constructor
 void operator++();
 void display();
};

 bonacci :: bonacci ()
{
 f0 = 0;
 f1 = 1;
 b = f0+f1;
}

void bonacci :: display()
{
 cout << setw(4) << b;
}

void bonacci :: operator++()
{
 f0 = f1;
 f1 = b;
 b = f0+f1;
}

int main()
{
 bonacci obj;
 int n;
 cout << “ How many bonacci numbers are to be displayed ? \n”;
 cin >>n;
 cout << obj.f0 << setw(4) << obj.f1;
 for (int i = 2; i <= n-1; ++i) {
 obj.display();
 ++obj;
 }
 cout << endl;
 return 0;
}

Output of the above program
How many bonacci numbers are to be displayed?
8
0 1 1 2 3 5 8 13

Postfi x incrementer Unlike overloading a prefi x operator, overloading a postfi x operator always takes a

single argument so as to distinguish between the prefi x and the postfi x operations.

The following program segment illustrates the overloading of an incrementer operator with postfi x

operation.

//using operator overloading of post x incrementer
#include <iostream>
using namespace std;
class bonacci {
 public :
 bonacci operator++(int);
};

 Overloading Functions and Operators 619

 bonacci bonacci :: operator++ (int x)
{

 return *this;
}
int main()
{
 bonacci obj;

 obj++;
 return 0;
}

 PROGRAM 13.18

A program to generate a Fibonacci series by overloading a postfi x operator.

//generation of bonacci numbers
//using operator overloading of post x incrementer
#include <iostream>
#include <iomanip>
using namespace std;
class bonacci {
 public :
 unsigned long int f0,f1, b;
 bonacci(); // constructor
 bonacci operator++(int);
 void display();
};

 bonacci :: bonacci ()
{
 f0 = 0;
 f1 = 1;
 b = f0+f1;
}

void bonacci :: display()
{
 cout << setw(4) << b;
}

 bonacci bonacci :: operator++ (int x)
{
 f0 = f1;
 f1 = b;
 b = f0+f1;
 return *this;
}
int main()
{
 bonacci obj;
 int n;
 cout << “ How many bonacci numbers are to be displayed ? \n”;
 cin >>n;
 cout << obj.f0 << setw(4) << obj.f1;
 for (int i = 2; i<= n-1; ++i) {
 obj.display();
 obj++;

 Programming with C++620

 }
 cout << endl;
 return 0;
}

Output of the above program

How many bonacci numbers are to be displayed?
9
0 1 1 2 3 5 8 13 21

A summary of C++ operators that can be overloaded are given below.

Type 1 Binary operators The following binary operators can be overloaded. (Table 13.3)

Table 13.3

Operator Meaning

[] Array element reference

() Function call

new New operator

delete Delete operator

* Multiplication

/ Division

% Modulus

+ Addition

- Subtraction

<< Left shift

>> Right shift

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality

!= Inequality

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

= Assignment

*= Mulitply and assign

/= Divide and assign

%= Modulus and assign

+= Add and assign

-= Subtract and assign

<<= Shift left and assign

>>= Shift right and assign

&= Bitwise AND and assign

|= Bitwise OR and assign

^= Bitwise one’s complement and assign

, Comma

 Overloading Functions and Operators 621

Type 2 Unary operators Unary operators that can be overloaded are: (Table 13.4)

Table 13.4

 Operator Meaning

 -> Indirect member operator

 ! Logical negation

 * Pointer reference (indirection)

 & Address

 ~ Ones complement

 ->* Indirect pointer to member

 + Addition

 - Subtraction

 ++ Incrementer

 -- Decrementer

 - Unary minus

Type 3 Operators common to unary and binary forms The following operators are used both for unary and

binary forms: (Table 13.5)

Table 13.5

Operator Meaning

+ addition
- subtraction and unary minus
* multiplication and pointer reference

(indirection)
& bitwise AND and address of

Type 4 Operators that cannot be overloaded The following operators cannot be used for overloading

purposes: (Table 13.6)

Table 13.6

Operator Meaning

. Direct member or class member operator

.* Direct pointer to member (Class member dereference)

:: Scope resolution operator

?: Conditional operator

sizeof Size in bytes operator

#, ## Preprocessing symbols

 REVIEW QUESTIONS

 1. What is meant by overloading in object-oriented programming paradigm?

 2. What is function overloading?

 3. What are the syntactic rules governing the defi nition of a function overloading?

 4. List the merits and demerits of function overloading over the conventional functional usages.

 Programming with C++622

 5. What are the scope rules governing the function overloading?
 6. What is meant by operator overloading?
 7. What are the C++ operators that cannot be overloaded? Explain.
 8. List the C++ operators that can be overloaded for binary usages.
 9. List the C++ operators that can be overloaded for unary usages.
 10. What are the C++ operators that can be used both for binary and unary applications?
 11. Can the operator precedence and syntax be changed through overloading? Explain.
 12. What are the operators that may not require to be defi ned either in a method or a class object among

arguments in overloading?
 13. Explain how memory management operators are used for overloading in C++.
 14. Explain the syntax rules that govern the overloading of increment or decrement operators.
 15. Explain how the preincrementer and postincrementer are taken care of while declaring operator

overloading.
 16. Explain the operation of overloading of an assignment operator.
 17. Explain how logical operators can be used for overloading in C++?
 18. Explain how the predecrementer and postdecrementer are taken care of while declaring operator

overloading.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int main()
{
 int min(int, int);
 oat min(oat, oat);
 double min(double,double);
 int a = 10,b = 20;
 oat fa = 1.1, fb = -2.2;
 double da = 100,db = 300;
 cout << “\n Minimum = ” << min(a,b);
 cout << “\n Minimum = ” << min(fa,fb);
 cout << “\n Minimum = ” << min(da,db);
 return 0;
}

int min(int a,int b)
{
 return (a < b ? a : b);
}

 oat min(oat a, oat b)
{
 return (a < b ? a : b);
}

double min(double a, double b)
{

 Overloading Functions and Operators 623

 return (a < b ? a : b);
}

 (b)
#include <iostream>
using namespace std;
int main()
{
 void display();
 void display (int);
 void display(int, int);
 void display(int, int, int);
 int a = 10, b = 20, c = 30;
 if (a++ > ++b)
 display(a);
 else if (b++ > ++c)
 display(b,c);
 else if (b > ++c || a > c)
 display(a,b,c);
 else
 display();
 return 0;
}

void display(int a)
{
 cout << “ a = ” << a << endl;
}

void display(int b, int c)
{
 cout << “ b = ” << b << endl;
 cout << “ c = ” << c << endl;
}

void display(int a, int b, int c)
{
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;
 cout << “ c = ” << c << endl;
}

void display()
{
 cout << “ Hello, C++ world \n”;
}

 (c)
#include <iostream>
using namespace std;
int main()
{
 void display();
 void display (int);
 void display(int, int);
 void display(int, int, int);
 int a = 10, b = 20, c = 30;
 if (a++ > ++b)

 Programming with C++624

 display(a);
 else if (b++ > ++c)
 display(b,c);
 else if ((b < ++c) && (++a < ++c))
 display(a,b,c);
 else
 display();
 return 0;
}

void display(int a)
{
 cout << “ a = ” << a << endl;
}

void display(int b, int c)
{
 cout << “ b = ” << b << endl;
 cout << “ c = ” << c << endl;
}

void display(int a, int b, int c)
{
 cout << “ a = ” << a << endl;
 cout << “ b = ” << b << endl;
 cout << “ c = ” << c << endl;
}

void display()
{
 cout << “ Hello, C++ world \n”;
}

 (d)
#include <iostream>
#include <string>
using namespace std;
int main()
{
 void display();
 void display (string);
 void display(string, string);
 void display(string, string, string);
 string str1 = “Hello”;
 string str2 = “C++”;
 string str3 = “world”;
 int x = 10, y = 3;
 int temp = ++x % ++y;
 switch (temp) {
 case 10:
 display();
 break;
 case 3:
 display(str1,str2,str3);
 break;
 case 4:
 display(str1);

 Overloading Functions and Operators 625

 break;
 case 11:
 display (str1,str2);
 break;
 }
 return 0;
}

void display()
{
 cout << “Nothing to display \n”;
}

void display(string a)
{
 cout << “ str1 = ” << a << endl;
}

void display(string b, string c)
{
 cout << “ str1 = ” << b << endl;
 cout << “ str2 = ” << c << endl;
}

void display(string a, string b, string c)
{
 cout << “ str1 = ” << a << endl;
 cout << “ str2 = ” << b << endl;
 cout << “ str3 = ” << c << endl;
}

 (e)
#include <iostream>
#include <string>
using namespace std;
class abc {
 public:
 void display();
 void display (string);
 void display(string, string);
 void display(string, string, string);
};
int main()
{
 abc obj;
 string str1 = “Hello”;
 string str2 = “C++”;
 string str3 = “world”;
 int x = 11, y = 3;
 int temp = ++x % y++;
 switch (temp) {
 case 10:
 obj.display();
 break;
 case 3:
 obj.display(str1,str2,str3);

 Programming with C++626

 break;
 case 4:
 obj.display(str1);
 break;
 case 0:
 obj.display (str1,str2);
 break;
 }
 return 0;
}

void abc :: display()
{
 cout << “Nothing to display \n”;
}

void abc :: display(string a)
{
 cout << “ str1 = ” << a << endl;
}

void abc :: display(string b, string c)
{
 cout << “ str1 = ” << b << endl;
 cout << “ str2 = ” << c << endl;
}

void abc :: display(string a, string b, string c)
{
 cout << “ str1 = ” << a << endl;
 cout << “ str2 = ” << b << endl;
 cout << “ str3 = ” << c << endl;
}

 (f)
#include <iostream>
#include <string>
using namespace std;
class abc {
 public:
 void seta(int a[]);
 void setfa(oat fa[]);
 int sum(int a[]);
 oat sum (oat fa[]);
};

void abc :: seta(int a[])
{
 for (int i = 0; i <= 9; ++i)
 a[i] = i;
}

void abc :: setfa(oat fa[])
{
 for (int i = 0; i <= 9; ++i)
 fa[i] = i+0.1;

 Overloading Functions and Operators 627

}

int abc :: sum(int a[])
{
 int temp = 0;
 for (int i = 0; i <= 9; ++i)
 temp += a[i];
 return (temp);
}

 oat abc :: sum(oat a[])
{
 oat temp = 0;
 for (int i = 0; i <= 9; ++i)
 temp += a[i];
 return (temp);
}

int main()
{
 abc obj;
 int a[10];
 oat fa[10];
 obj.seta(a);
 obj.setfa(fa);
 cout << “ sum a[] = ” << obj.sum(a) << endl;
 cout << “ sum fa[] = ” << obj.sum(fa) << endl;
 return 0;
}

 2. What will be the output of each of the following program when it is executed?

 (a)
#include <iostream>
using namespace std;
class abc {
 private :
 int x;
 public :
 abc(int);
 void display();
};
abc :: abc (int value)
{
 x = value;
}
void abc :: display()
{
 cout << “ x = ” << x << endl;
}

int main()
{
 abc obj1(10);
 abc obj2(20);
 obj2 = obj1;
 cout << “ contents of the rst object \n”;

 Programming with C++628

 obj1.display();
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class abc {
 private :
 int x;
 public :
 abc(int);
 void operator= (abc operabc);
 void display();
};

abc :: abc(int value)
{
 x = value;
}

void abc :: operator= (abc operabc)
{
 x = ++(operabc.x);
}

void abc :: display()
{
 cout << “ x = ” << x << endl;
}

int main()
{
 abc obj1(100);
 abc obj2(20);
 obj1.operator= (obj2);
 cout << “ contents of the rst object \n”;
 obj1.display();
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class abc {
 private :
 int x;
 public :
 abc(int);
 void operator= (abc operabc);
 void display();
};

 Overloading Functions and Operators 629

abc :: abc(int value)
{
 x = value;
}

void abc :: operator= (abc operabc)
{
 x = ++(operabc.x);
}

void abc :: display()
{
 cout << “ x = ” << x << endl;
}

int main()
{
 abc obj1(100);
 abc obj2(20);
 obj1.operator= (obj2);
 cout << “ contents of the rst object \n”;
 obj1.display();
 obj2.operator= (obj2);
 cout << “ contents of the second object \n”;
 obj2.display();
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class abc{
 private:
 int x;
 public:
 abc();
 void operator++ (int);
 void display();
};
abc :: abc()
{
 x = 0;
}
void abc ::operator ++(int x)
{
 x++;
}
void abc ::display()
{
 cout << “ x = ” << x << endl;
}
int main()
{
 abc obj;
 obj.display();
 obj.operator ++(10);

 Programming with C++630

 obj.display();
 return 0;
}

 (e)
#include <iostream>

using namespace std;

class abc{

 private:

 int x;

 public:

 abc();

 abc operator++();

 void display();

};

abc :: abc()

{

 x = 0;

}

abc abc ::operator ++()

{

 ++x;

 return *this;

}

void abc ::display()

{

 cout << “ x = ” << x << endl;

}

int main()

{

 abc obj;

 obj.display();

 obj++;

 obj.display();

 return 0;

}

 (f)
#include <iostream>

using namespace std;

class abc{

 private:

 int x;

 public:

 abc();

 abc operator++();

 void display();

};

abc :: abc()

{

 x = 0;

}

 Overloading Functions and Operators 631

abc abc ::operator ++()
{
 x++;
 return *this;
}
void abc ::display()
{
 cout << “ x = ” << x << endl;
}
int main()
{
 abc obj;
 obj.display();
 obj++;
 obj.display();
 return 0;
}

 (g)
#include <iostream>
using namespace std;
class abc {
 private:
 int value;
 public :
 abc();
 abc(int);
 int operator >= (abc obj);
};

abc :: abc()
{
 value = 0;
}
abc :: abc(int one)
{
 value = one;
}

int abc :: operator >= (abc obja)
{
 return (value >= obja.value);
}

int main()
{
 abc obja(20);
 abc objb(100);
 cout << (obja >= objb) << endl;
 cout << (objb >= obja) << endl;
 return 0;
}

 Programming with C++632

 PROGRAMMING EXERCISES

 1. Write a program in C++ to read a set of integers up to n, where n is defi ned by the user and stored in

a one-dimensional array. Also, read a set of fl oating point numbers of the same size and store it into

another array and print the contents of these two arrays separately, using the function overloading

technique.

 2. Write a program in C++ to perform the following using function overloading concepts:

 (i) To read a set of integers,

 (ii) To read a set of fl oating point numbers,

 (iii) To read a set of double numbers individually, and fi nd out the average of the non-negative inte-

ger and also to calculate the deviation of the numbers.

 3. Write a program in C++ using function overloading method to read a set of integers and fl oating

point numbers separately and to store it in the corresponding arrays. Again read a number ‘d’ from

the keyboard and check whether the number ‘d’ is present in the arrays. If it is so, print out how

many times the number ‘d’ is repeated in the array.

 4. Write a program in C++ using function overloading to read two matrices of different data types such

as integers and fl oating point numbers. Find out the sum of the above two matrices separately and

display the total sums of these arrays individually.

 5. Develop a program in C++ using function overloading for adding two given integer matrices; two

fl oating point number matrices and double precision value matrices, separately.

 6. Develop a program in C++ using function overloading for subtracting two given integer matrices;

two fl oating point number matrices and double precision value matrices separately.

 7. Develop a program in C++ using function overloading for multiplying two given integer matrices;

two fl oating point number matrices and double precision value matrices separately.

 8. Write a program in C++ using operator overloading for the binary numbers to perform simple

arithmetic operations that has the functions to add, subtract, multiply and divide.

 9. Write a program in C++ using operator overloading to fi nd a factorial of a given number.

 10. Write a program in C++ to check whether a given number is prime or not, using operator

overloading.

 11. Write a program in C++ to perform the following using operator overloading:

 (i) Area of a circle

 (ii) Circumference of a circle

 (iii) Area of a rectangle

 (iv) Area of a triangle

 (v) Perimeter of a square

 12. Write a program in C++ to fi nd the simple and compound interest (I) of a given principal (P), rate of

interest (R) and number of years (N), using operator overloading.

Polymorphism
and Virtual
Functions

Chapter

14

14.1 POLYMORPHISM

A true object-oriented programming paradigm must consist of three items: data abstraction and en-

capsulation, inheritance and polymorphism. Data abstraction and encapsulation are the processes

of defi ning some new data types. This involves the internal representation of the data members and the

methods of declaration, defi nition and uses in a program. Inheritance involves the creation of a new type

from an existing type in some hierarchical fashion. Data hiding, encapsulation and inheritance are explained

in the earlier chapters.

The word ‘poly’ originated from a Greek word meaning many and ‘morphism’ from a Greek

word meaning form, and thus ‘polymorphism’ means many forms. In object-oriented programming,

polymorphism refers to identically named methods (member functions) that have different behaviour

depending on the type of object they refer.

Polymorphism is the process of defi ning a number of objects of different classes into a group and

call the methods to carry out the operation of the objects using different function calls. In other words,

polymorphism means ‘to carry out different processing steps by functions having same messages’. It treats

objects of related classes in a generic manner. The keyword virtual is used to perform the polymorphism

concept in C++. Polymorphism refers to the run-time binding to a pointer to a method.

This chapter focusses on the implementation of the concept of polymorphism
using the keyword ‘virtual’. The emphasis is on how to realise the virtual
functions; pure virtual functions; virtual destructors; and virtual base classes
in C++. The early binding and the late binding of compilers are discussed with
suitable examples.

 Programming with C++634

14.2 EARLY BINDING

Choosing a function in normal way, during compilation time is called as early binding or static binding

or static linkage. During compilation time, the C++ compiler determines which function is used based

on the parameters passed to the function or the function’s return type. The compiler then substitutes the

correct function for each invocation. Such compiler-based substitutions are called static linkage. Whatever

functions discussed so far in the earlier chapters, are based on static binding only.

By default, C++ follows early binding. With early binding, one can achieve greater effi ciency. Function

calls are faster in this case because all the information necessary to call the function are hard coded.

The purest object-oriented programming language like Small talk permits only run-time binding of the

methods, whereas C++ allows both compile-time binding and run-time binding. In that sense, C++ is a

hybrid language as it generates the code of both procedural and object-oriented programming paradigm.

 PROGRAM 14.1

A program to demonstrate the operation of the static binding. In this program, a message is given to
access the methods of the derived class from the base class members through pointer techniques.

//demonstration of static binding
#include <iostream>
using namespace std;
class square {
 protected:
 int x;
 public:
 void getdata();
 void display();
 int area();
};

class rectangle : public square
{
 protected:
 int y;
 public:
 void getdata();
 void display();
 int area();
};

void square:: getdata()
{
 cout << “ enter the value of side x? \n”;
 cin >> x;
}
void square:: display()
{
 cout << “ value of x = y = ” << x << endl;
 cout << “ Area of the square = ” << area();
 cout << endl;
}
int square :: area()
{
 int temp = x*x;
 return(temp);
}
void rectangle :: getdata()
{

 Polymorphism and Virtual Functions 635

 cout << “ enter the value of sides x and y ? \n”;
 cin >> x >> y;
}

void rectangle:: display()
{ cout << “ value of x = ” << x << “ and y = ” << y << endl;
 cout << “ Area of the rectangle = ” << area();
 cout << endl;
}
int rectangle :: area()
{
 int temp = x*y;
 return(temp);
}

int main()
{
 square sqobj;
 rectangle rectobj;
 square *ptr;
 ptr = &sqobj;
 ptr = &rectobj;
 ptr->getdata();
 ptr->area();
 ptr->display();
 return 0;
}

Output of the above program

enter the value of side x?
10
value of x = y = 10
Area of the square = 100

The derived class rectangle is inherited from the base class square through public derivation. It is

known that an object of a derived class not only inherits characteristics from the base class but also has

characteristics that are specifi c to the derived class.

For example, the following program segment illustrates the use of message calling from the derived

class objects to the base class objects.

 int main()
 {
 square sqobj;
 rectangle rectobj;
 square *ptr;
 ptr = &sqobj;
 ptr = &rectobj;
 ptr->getdata();
 ptr->area();
 ptr->display();
 return 0;
 }

An object of the derived can be accessed by the pointer of a base class. The following way of declaration

and assignment of the pointer to the base class is permitted in C++.

 square *ptr; //pointer to base class object
 rectangle rectobj; //object of the derived class is created
 ptr = &rectobj; //indirect reference to the pointer base

 Programming with C++636

Through the pointer of the base class, the derived class data members and member functions can be

accessed. Therefore, the following member reference statement is valid.

 ptr->getdata();
 ptr->area();
 ptr->display();

The function call is made from the

base class pointer to access members

of the derived class. Even though the

specifi c function call is made to access the

members of the derived class, the function

call (message) has not reached the derived

class members. So the base class members

have been displayed but not the derived

class members. It is because the member

functions of the base class and the derived

class are declared non-virtual and C++

compiler takes by default only a static binding. The function call through static binding is shown in Fig.

14.1.

C++ supports polymorphism through virtual methods and pointers. In the previous example, the

following methods have been declared as virtual in the base class.

 virtual void getdata();
 virtual void area();
 virtual void display();

The derived class contains the same methods with non-virtual members.

 void getdata();
 void area();
 void display();

For non-virtual functions with the same name, the system determines at compile time the function to be

invoked. For virtual methods with the same name, the system determines at run time the methods to invoke.

The invoked methods are determined by the type of object to which the pointer points.

For example, if ptr currently points to an object of a class square, then the members of the virtual

methods of class square are invoked by

 ptr->getdata(); // virtual methods of the base class
 ptr->area(); // virtual methods of the base class
 ptr->display(); // virtual methods of the base class

If ptr currently points to objects of a class rectangle, then the members of the class rectangle are

invoked by the same message of the function call.

 ptr->getdata(); // methods of the derived class
 ptr->area(); // methods of the derived class
 ptr->display(); // methods of the derived class

By now, one can understand that polymorphism defi nes identically named methods (member functions)

that have different behaviours by the same message (function call). In other words, polymorphism refers to

the run-time binding of a pointer to a method. The keyword virtual is used to carry out the run-time binding

of a pointer which points to a member function of an object.

Fig. 14.1 Function Call through Static Binding

 Polymorphism and Virtual Functions 637

The function call through dynamic binding is shown in Fig.14.2.

Fig. 14.2 Function Call through Dynamic Binding

 PROGRAM 14.2

A program to demonstrate the compile time binding of the member functions of the class. The same
message is given to access the derived class member functions from the array of pointers. As functions
are declared as non-virtual, the C++ compiler invokes only the static binding.

//nonvirtual function
//demonstration of compile time binding using
//array of pointers
#include <iostream>
using namespace std;
class baseA {
 public :
 void display() {
 cout << “One \n”;
 }
};
class derivedB: public baseA
{
 public:
 void display(){
 cout << “ Two \n”;
 }
};
class derivedC: public derivedB
{
 public:
 void display(){
 cout << “ Three \n”;
 }
};
int main()
{
 //defi ne three objects
 baseA obja;
 derivedB objb;
 derivedC objc;
 baseA *ptr[3]; //defi ne an array of pointers to baseA
 ptr[0] = &obja;
 ptr[1] = &objb;
 ptr[2] = &objc;
 for (int i = 0; i<=2; i++)

 Programming with C++638

 ptr[i]->display(); //same message for all objects
 return 0;
}

Output of the above program

One
One
One

The function call through static binding is shown in Fig. 14.3.

Fig. 14.3 Function Call through Static Binding

14.3 POLYMORPHISM WITH POINTERS

Pointers are also central to polymorphism in C++. To enable polymorphism, C++ allows a pointer in a base

class to point to either a base class object or to any derived class object. The following program segment

illustrates how a pointer is assigned to point to the object of the derived class.
 class baseA {

 };
 class derivedD : public baseA
 { -------

 };
 int main()
 {
 baseA *ptr;// pointer to baseA
 derivedD objd;
 ptr = &objd; //indirect reference objd to the pointer

 return 0;
 }

The pointer ptr points to an object of the derived class objd.

 Polymorphism and Virtual Functions 639

By contrast, a pointer to a derived class object may not point to a base class object without explicit

casting. For example, the following assignment statements are invalid:

 int main()
 {
 baseA obja
 derivedD *ptr;
 ptr = &obja; // invalid

 return 0;
 }

Note that a derived class pointer cannot point to base class objects. But, the above code can be corrected

by using explicit casting.

 int main()
 {
 square sqobj;
 rectangle *ptr; //pointer of the derived class
 ptr = (rectangle*) &sqobj; //explicit casting
 ptr->display();

 return 0;
 }

The following program segment illustrates how a different assignment of a pointer to an object of a base

class be given to an object of a derived class.

 (1) A base class pointer can point to the object of the same class or a derived class.
 class baseA {

 };
 class derivedD: public baseA
 {

 };
 int main()
 {
 baseA obja;
 derivedD objd;
 baseA *ptr;
 ptr = &obja; //valid, pointer to a same class
 ptr = &objd; //valid, pointer to a derived class

 return 0;
 }

 (2) A derived class pointer cannot point to an object of a base class but it can point to the same class

object.

 class baseA {

 };

 Programming with C++640

 class derivedD: public baseA
 {

 };
 int main()
 {
 baseA obja;
 derivedD objd;
 derivedD *ptr;
 ptr = &obja; //error, cannot point to base class object
 ptr = &objd; //valid,pointer to a same class object

 return 0;
 }

 Note that a derived class pointer cannot point to an object of a base class.

 PROGRAM 14.3

A program to illustrate how to assign the pointer of the derived class to the object of a base class using
explicit casting.

//demonstration of run time binding
//pointer of the derived class points to a base class object
//using explicit casting
#include <iostream>
using namespace std;
class square {
 protected:
 int x;
 public:
 virtual void getdata();
 virtual void display();
 virtual int area();
};
class rectangle: public square
{
 protected:
 int y;
 public :
 void getdata();
 void display();
 int area();
};
void square:: getdata()
{
 cout << “ enter the value of side x? \n”;
 cin >> x;
}
void square:: display()
{
 cout << “ value of x = y = ” << x << endl;
 cout << “ Area of the square = ” << area();
 cout << endl;
}
int square :: area()
{
 int temp = x*x;
 return(temp);

 Polymorphism and Virtual Functions 641

}
void rectangle :: getdata()
{
 cout << “ enter the value of sides x and y ? \n”;
 cin >> x >> y;
}
void rectangle:: display()
{

 cout << “ value of x = ” << x << “ and y = ” << y << endl;
 cout << “ Area of the rectangle = ” << area();
 cout << endl;
}
int rectangle :: area()
{
 int temp = x*y;
 return(temp);
}

int main()
{
 square sqobj;
 rectangle *ptr; //pointer of the derived class
 ptr = (rectangle*)&sqobj; //explicit casting
 ptr->getdata();
 ptr->area();
 ptr->display();
 return 0;
}

Output of the above program

enter the value of side x?
value of x = y = 12
Area of the square = 144

14.4 VIRTUAL FUNCTIONS

A virtual function is one that does not really exist but it appears real in some parts of a program. Virtual

functions are advanced features of the object-oriented programming concept and they are not necessary for

each C++ program. This section presents how the polymorphic features are incorporated using the virtual

functions.

 The general syntax of the virtual function declaration is:

 class user_defi ned_name {
 private:

 public:
 virtual return_type function_name1(arguments);
 virtual return_type function_name2(arguments);
 virtual return_type function_name3(arguments);

 };

 To make a member function virtual, the keyword virtual is used in the methods while it is declared

in the class defi nition but not in the member function defi nition. The keyword virtual should be preceded

by a return type of the function name. The compiler gets information from the keyword virtual that it is a

virtual function and not a conventional function declaration.

 Programming with C++642

The syntax diagram of the virtual method declaration is given in Fig. 14.4.

Fig. 14.4 Syntax Diagram of Virtual Method Declaration

For example, the following declaration of the virtual function is valid.
 class sample {
 private:
 int x;
 fl oat y;
 public:
 virtual void display();
 virtual int sum();
 };

Some of the invalid declarations of the virtual functions in C++ are given below:

 (1) The keyword virtual should not be repeated in the defi nition if the defi nition occurs outside the class

declaration. The use of a function specifi er virtual in the function defi nition is invalid.

 class sample {
 private :
 int x;
 fl oat y;
 public :
 virtual void display();
 };
 virtual void sample:: display() //error
 {

 }

 (2) A virtual function cannot be a static member because a virtual member is always a member of a

particular object in a class rather than a member of the class as a whole.
 class sample {
 private:
 int x;
 fl oat y;
 public:
 virtual static int sum(); //error, due to static
 };
 int sample:: sum()
 {

 Polymorphism and Virtual Functions 643

 }

 (3) A virtual function cannot have a constructor member function but it can have the destructor member

function.

 class sample {
 private:
 int x;
 fl oat y;
 public:
 virtual sample (int xx, fl oat yy); //constructor
 void getdata();
 void display();
 };

 Note that it is an error to make a constructor virtual type.

 (4) A destructor member function does not take any argument and no return type can be specifi ed for it

not even void.

 class sample {
 private :
 int x;
 fl oat y;
 public :
 virtual ~ sample (int xx, fl oat yy); //invalid
 void getdata();
 void display();
 };

 Note that the destructor member function can be virtual even though it does not take any argument.

 (5) It is an error to redefi ne a virtual method with a change of return data type in the derived class with

the same parameter types as those of a virtual method in the base class.

 class baseA {
 private :
 int x;
 fl oat y;
 public:
 virtual int sum (int xx,fl oat yy); //error
 };
 class derivedD: public baseA {
 private:
 int z;
 public:
 virtual fl oat sum (int xx,fl oat yy);
 };

 The above declarations of two virtual functions are invalid due to the different type of return

value. Even though these functions take identical arguments, the return data types are different.

 The following manner, one can correct the above said error

 virtual fl oat sum (int xx,fl oat yy); // base class
 virtual fl oat sum (int xx,fl oat yy); // derived class

 Both the above functions can be written with int data types in the base class as well as in the

derived class as

 Programming with C++644

 virtual int sum (int xx,fl oat yy); // base class
 virtual int sum (int xx,fl oat yy); // derived class

 (6) Only a member function of a class can be declared as virtual. It is an error to declare a non-member

function (non-method) of a class virtual.

 virtual void display() //error, nonmember function
 {

 }

14.5 LATE BINDING

Choosing functions during execution time is called late binding or dynamic binding or dynamic linkage.

Late binding requires some overhead but provides increased power and fl exibility. The late binding is

implemented through virtual functions. An object of a class must be declared either as a pointer to a class or

a reference to a class.

For example, the following declaration of the virtual function shows how a late binding or run-time

binding can be carried out:
 class sample {
 private:
 int x;
 fl oat y;
 public:
 virtual void display();
 int sum();
 };
 class derivedD: public baseA
 {
 private:
 int x;
 fl oat y;
 public:
 void display(); //virtual
 int sum();
 };
 int main()
 {
 baseA *ptr;
 derivedD objd;
 ptr = &objd;

 ptr-> display(); //run time binding
 ptr-> sum(); // compile time binding
 return 0;
 }

The keyword virtual must be followed by a return type of a member function if a run time is to be

bound. Otherwise the compile time binding will be effected as usual. In the above program segment, only

the display() function has been declared as virtual in the base class, whereas the sum() is non-virtual.

 Polymorphism and Virtual Functions 645

Even though the message is given from the pointer of the base class to the objects of the derived class, it

will not access the sum() function of the derived class as it has been declared as non-virtual. The sum()

function compiles only the static binding.

 PROGRAM 14.4

A program to demonstrate the run-time binding of the member functions of a class. The same message is
given to access the derived class member functions from the array of pointers. As functions are declared
as virtual, the C++ compiler invokes the dynamic binding.

//virtual function
//demonstration of run time binding using
//array of pointers
#include <iostream>
using namespace std;
class baseA {
 public:
 virtual void display() {
 cout << “ One \n”;
 }
};

class derivedB : public baseA
{
 public:
 virtual void display(){
 cout << “ Two \n”;
 }
};

class derivedC : public derivedB
{
 public:
 virtual void display(){
 cout << “ Three \n”;
 }
};

int main()
{
 //defi ne three objects
 baseA obja;
 derivedB objb;
 derivedC objc;
 baseA *ptr[3]; //defi ne an array of pointers to baseA
 ptr[0] = &obja;
 ptr[1] = &objb;
 ptr[2] = &objc;
 for (int i = 0; i<=2; i++)
 ptr[i]->display(); //same message for all objects
 return 0;
}

Output of the above program

One
Two
Three

The function call through dynamic binding is shown in the following Fig. 14.5.

 Programming with C++646

Fig. 14.5 Function Call through Dynamic Binding

 PROGRAM 14.5

A program to illustrate the static binding of the member functions of a class.

//accessing member functions with pointers
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 void getdata();
 void display();
};
class derivedB : public base {
 private :
 int rollno;
 char name[20];
 public :
 void getdata();
 void display();
};

void base :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
 cout << “ enter a real number \n”;
 cin >> y;
}
void base :: display()
{
 cout << “ entered numbers are x = ” << x << “ and y = ” << y;
 cout << endl;
}

void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;

 Polymorphism and Virtual Functions 647

 cin >> name;
}

void derivedB:: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}

int main()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->getdata();
 ptr->display();
 return 0;
}

Output of the above program

enter an integer
10
enter a real number
2.2
entered numbers are x = 10 and y = 2.2

 PROGRAM 14.6

A program to illustrate the dynamic binding of member functions of a class.

//accessing member functions with pointers
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB : public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};

void base :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
 cout << “ enter a real number \n”;
 cin >> y;
}
void base :: display()
{
 cout << “ entered numbers are x = ” << x << “ and y = ” << y;
 cout << endl;
}
void derivedB :: getdata()
{

 Programming with C++648

 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}

void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}

int main()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->getdata();
 ptr->display();
 return 0;
}

Output of the above program

enter roll number of a student?
20071
enter name of a student?
Suhail
Roll number student’s name
20071 Suhail

Virtual function with inline code substitution Though virtual functions can be declared as an inline code,

being the run-time binding of the compiler, the inline code does not affect much of the programming

effi ciency. For inline code subtitution, the compiler must get information about the functions, like from

where they have to be invoked etc. These must be defi ned during the compilation time.

The general syntax of the virtual function with inline code substitution is:

 class base {
 private:

 public:
 virtual inline void getdata();
 virtual inline void display();
 };
 int main()
 {
 base obja;
 obja->getdata();
 obja->display();
 return 0;
 }

 PROGRAM 14.7

A program to demonstrate how to defi ne virtual functions with inline code substitution for run-time
binding of the member functions of a class.

 Polymorphism and Virtual Functions 649

//accessing member functions with pointers
// virtual functions with inline code
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual inline void getdata();
 virtual inline void display();
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};

inline void base :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
 cout << “ enter a real number \n”;
 cin >> y;
}
inline void base :: display()
{
 cout << “ entered numbers are x = ” << x << “ and y = ” << y;
 cout << endl;
}

void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}

void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}

int main()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->getdata();
 ptr->display();
 return 0;
}

Output of the above program

enter roll number of a student?
20072
enter name of a student?
Ahmed
Roll number student’s name
20072 Ahmed

 Programming with C++650

 PROGRAM 14.8

A program to access the members of the derived class objects through an array of pointers. In this
program, only the base class member functions are preceded by the keyword virtual.

//accessing member functions with array of pointers
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};

class derivedC: public base {
 private:
 fl oat height;
 fl oat weight;
 public:
 void getdata();
 void display();
};

void base :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
 cout << “ enter a real number \n”;
 cin >> y;
}
void base :: display()
{
 cout << “ entered numbers are x = ” << x << “ and y = ” << y;
 cout << endl;
}

void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}

void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}

void derivedC :: getdata()
{
 cout << “ enter height of student ? \n”;

 Polymorphism and Virtual Functions 651

 cin >> height;
 cout << “ enter weight of student ? \n”;
 cin >> weight;
}

void derivedC :: display()
{
 cout << “ Height and weight of the student’s \n”;
 cout << height << ‘\t’ << weight << endl;
}

int main()
{
 base *ptr[3];
 derivedB objb;
 derivedC objc;
 ptr[0] = &objb;
 ptr[1] = &objc;
 ptr[0]->getdata();
 ptr[1]->getdata();
 ptr[0]->display();
 ptr[1]->display();
 return 0;
}

Output of the above program

enter roll number of a student?
20073
enter name of a student?
Kandasamy
enter height of student?
173
enter weight of student?
78
Roll number student’s name
20073 Kandasamy
Height and weight of the student’s
173 78

 PROGRAM 14.9

A program to access the members of the derived class objects through an array of pointers. In this program,
both the base class and the derived class member functions are preceded by the keyword virtual.

//accessing member functions with array of pointers
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:

 Programming with C++652

 virtual void getdata();
 virtual void display();
};

class derivedC: public base {
 private:
 fl oat height;
 fl oat weight;
 public:
 virtual void getdata();
 virtual void display();
};

void base :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
 cout << “ enter a real number \n”;
 cin >> y;
}
void base :: display()
{
 cout << “ entered numbers are x = ” << x << “ and y = ” << y;
 cout << endl;
}

void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}

void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}

void derivedC :: getdata()
{
 cout << “ enter height of student ? \n”;
 cin >> height;
 cout << “ enter weight of student ? \n”;
 cin >> weight;
}

void derivedC :: display()
{
 cout << “ Height and weight of the student’s \n”;
 cout << height << ‘\t’ << weight << endl;
}

int main()
{
 base *ptr[3];
 derivedB objb;
 derivedC objc;
 ptr[0] = &objb;
 ptr[1] = &objc;
 ptr[0]->getdata();
 ptr[1]->getdata();
 ptr[0]->display();
 ptr[1]->display();
 return 0;
}

 Polymorphism and Virtual Functions 653

Output of the above program

enter roll number of a student?
20074
enter name of a student?
Suhail
enter height of student?
167
enter weight of student?
87.5
Roll number student’s name
20074 Suhail
Height and weight of the student’s
167 87.5

14.6 PURE VIRTUAL FUNCTIONS

A pure virtual function is a type of function which has only a function declaration. It does not have the

function defi nition. The following program segment illustrates how to declare a pure virtual function:

Case 1
 //pure virtual functions
 #include <iostream>
 using namespace std;
 class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
 };
 class derivedB: public base {

 };
 void base :: getdata() //pure virtual function defi nition
 {
 // empty statements
 }
 void base :: display() //pure virtual function defi nition
 {
 // empty statements
 }

The syntax diagram of

the pure virtual method

declaration is given in

Fig. 14.6.

Fig. 14.6 Syntax Diagram of Pure Virtual Method Declaration

 Programming with C++654

 PROGRAM 14.10

A program to demonstrate how a pure virtual function is defi ned, declared and invoked from the object
of a derived class through the pointer of the base class.

//pure virtual functions
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};
void base :: getdata() { } //pure virtual function
void base :: display() { } //pure virtual function

void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}
void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}
int main()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->getdata();
 ptr->display();
 return 0;
}

Output of the above program

enter roll number of a student?
20075
enter name of a student?
Antony
Roll number student’s name
20075 Antony

Case 2 A pure virtual function can also have the following format, when a virtual function is declared

within the class declaration itself. The virtual function may be equated to zero if it does not have a function

defi nition.

 Polymorphism and Virtual Functions 655

 //pure virtual functions
 #include <iostream> using namespace std;
 class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata() = 0;
 virtual void display() = 0;
 };
 class derivedB: public base {

 };

 PROGRAM 14.11

A program to illustrate how to declare a pure virtual function and equate it to zero as it does not have any
function parts.

//pure virtual functions
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual inline void getdata() = 0;
 virtual inline void display() = 0;
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};
void derivedB :: getdata()
{
 cout << “ enter roll number of a student ? \n”;
 cin >> rollno;
 cout << “ enter name of a student ? \n”;
 cin >> name;
}
void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}
int main()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->getdata();
 ptr->display();
 return 0;
}

 Programming with C++656

Output of the above program

enter roll number of a student?
20076
enter name of a student?
Ratanakumar
Roll number student’s name
20076 Ratanakumar

When an object of the derived class tries to access through the pointer of the base class members, the

function invoking message will reach only the derived class members but not to the base class members as

the base class member function may not have a function defi nition.

14.7 ABSTRACT BASE CLASSES

A class which consists of pure virtual functions is called an abstract base class. In the previous section, it

has been discussed that a function may be defi ned without any statement or the function declaration may be

equated to zero if it does not have the function defi nition part.

 PROGRAM 14.12

A program to demonstrate how to defi ne an abstract base class with pure virtual functions in which
the function defi nition part has been defi ned without any statement. The members of the derived class
objects are accessed through the base class objects through pointer technique.

//demonstration of abstract base classes
#include <iostream>
using namespace std;
class base {
 private:
 int x;
 fl oat y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};
class derivedC: public base {
 private:
 fl oat height;
 fl oat weight;
 public:
 void getdata();
 void display();
};
void base :: getdata() {} //pure virtual function
void base :: display() {} // pure virtual function
void derivedB :: getdata()
{
 cout << “ enter a roll number of student ? \n”;
 cin >> rollno;

 Polymorphism and Virtual Functions 657

 cout << “ enter a name of student ? \n”;
 cin >> name;
}
void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}
void derivedC :: getdata()
{
 cout << “ enter height of student ? \n”;
 cin >> height;
 cout << “ enter weight of student ? \n”;
 cin >> weight;
}
void derivedC :: display()
{
 cout << “ Height and weight of the student’s \n”;
 cout << height << ‘\t’ << weight << endl;
}
int main()
{
 base *ptr[3];
 derivedB objb;
 derivedC objc;
 ptr[0] = &objb;
 ptr[1] = &objc;
 ptr[0]->getdata();
 ptr[1]->getdata();
 ptr[0]->display();
 ptr[1]->display();
 return 0;
}

Output of the above program

enter a roll number of student?
20075
enter a name of student?
Ramu
enter height of student?
167.56
enter weight of student?
64
Roll number student’s name
20075 Ramu
Height and weight of the student’s
167.56 64

 PROGRAM 14.13

A program to demonstrate how to defi ne an abstract base class with pure virtual functions in which the
function declaration is equated to zero as it does not have the function defi nition part.

//demonstration of abstract base classes
//case -2
#include <iostream>
using namespace std;
class base {
 private:
 int x;

 Programming with C++658

 fl oat y;
 public:
 virtual inline void getdata() = 0;
 virtual inline void display() = 0;
};
class derivedB: public base {
 private:
 long int rollno;
 char name[20];
 public:
 void getdata();
 void display();
};
class derivedC: public base {
 private:
 fl oat height;
 fl oat weight;
 public:
 void getdata();
 void display();
};
void derivedB :: getdata()
{
 cout << “ enter a roll number of student ? \n”;
 cin >> rollno;
 cout << “ enter a name of student ? \n”;
 cin >> name;
}
void derivedB :: display()
{
 cout << “ Roll number student’s name \n”;
 cout << rollno << ‘\t’ << name << endl;
}
void derivedC :: getdata()
{
 cout << “ enter height of student ? \n”;
 cin >> height;
 cout << “ enter weight of student ? \n”;
 cin >> weight;
}
void derivedC :: display()
{
 cout << “ Height and weight of the student’s \n”;
 cout << height << ‘\t’ << weight << endl;
}
int main()
{
 base *ptr[3];
 derivedB objb;
 derivedC objc;
 ptr[0] = &objb;
 ptr[1] = &objc;
 ptr[0]->getdata();
 ptr[1]->getdata();
 ptr[0]->display();
 ptr[1]->display();
 return 0;
}

Output of the above program

enter a roll number of student?
20071
enter a name of student?
Velusamy.K
enter height of student?

 Polymorphism and Virtual Functions 659

175.6
enter weight of student?
78
Roll number student’s name
20071 Velusamy.K
Height and weight of the student’s
175.6 78

14.8 CONSTRUCTORS UNDER INHERITANCE

It has already been pointed out that whenever an object of a class is created, a constructor member function

is invoked automatically and when an object of the derived class is created, the constructor for that object

is called. This is due to the object of the derived class which contains the members of the base class also.

Since the base class is also part of the derived class, it is not logical to call the constructors of the base

class.

The fi ring order of constructors under inheritance is shown in Fig. 14.7.

Fig. 14.7 Firing Order of Constructors under Inheritance

 PROGRAM 14.14

A program to demonstrate how to defi ne and declare a constructor member function in the base class as
well as in the derived class under the inheritance mechanism.

//constructors under inheritance
#include <iostream>
using namespace std;
class baseA {
 public:
 baseA(); //constructor
};
class derivedB: public baseA {
 public :

 Programming with C++660

 derivedB(); //constructor
};
baseA :: baseA()
{
 cout << “ base class constructor \n”;
}
derivedB :: derivedB()
{
 cout << “ derived class constructor \n”;
}
int main()
{
 derivedB objb;
 return 0;
}

Output of the above program

base class constructor
derived class constructor

The above program consists of two constructors baseA() and derivedB(). Whenever an object objb

is created, the constructors of the base classes are automatically invoked. C++ fi res the constructor from the

lowest to the highest class. Before creating derivedB(), C++ executes baseA(). The constructor of

base class is therefore executed before the constructor of the derived class.

 PROGRAM 14.15

A program to illustrate how to defi ne and declare a constructor member function under multiple
inheritance technique.

//constructors under inheritance
#include <iostream>
using namespace std;
class baseA {
 public:
 baseA(); //constructor
};
class derivedB: public baseA {
 public:
 derivedB(); //constructor
};
class derivedC: public derivedB {
 public :
 derivedC(); //constructor
};
class derivedD: public derivedC{
 public:
 derivedD(); //constructor
};
baseA :: baseA()
{
 cout << “ base class\n”;
}
derivedB :: derivedB()
{
 cout << “ derivedB class \n”;

}
derivedC :: derivedC()
{
 cout << “ derivedC class \n”;

 Polymorphism and Virtual Functions 661

}
derivedD :: derivedD()
{
 cout << “ derivedD class \n”;
}
int main()
{
 derivedD objd;
 return 0;
}

Output of the above program

base class
derivedB class
derivedC class
derivedD class

14.9 DESTRUCTORS UNDER INHERITANCE

It has been seen that destructor is a special

member function. It is invoked automatically to

free the memory space which was allocated by

the constructor functions. Whenever an object

of the class is getting destroyed, the destructors

are used to free the heap area so that the free

memory space may be used subsequently. In

the previous section, it has been demonstrated

that constructors in an inheritance hierarchy fi re

from a base class to a derived class. Destructors

in an inheritance hierarchy fi re from a derived

class to a base class order, i.e., they fi re in the

reverse order of that of the constructors.

The fi ring order of destructors under

inheritance is shown in Fig. 14.8.

 PROGRAM 14.16

A program to demonstrate how the destructor member function gets fi red from the derived class objects
to the base class objects through pointers.

//destructors under inheritance
#include <iostream>
using namespace std;
class baseA {
 public:
 ~baseA(); //destructor
};
class derivedB: public baseA {
 public:
 ~derivedB(); //destructor
};
baseA :: ~baseA()
{

Fig. 14.8 Firing Order of Destructors under Inheritance

 Programming with C++662

 cout << “ base class destructor\n”;
}
derivedB :: ~derivedB()
{
 cout << “ derivedB class destructor \n”;
}
int main()
{
 derivedB objb;
 return 0;
}

Output of the above program

derivedB class destructor
base class destructor

 PROGRAM 14.17

A program to demonstrate how to defi ne, declare and invoke the destructor member functions under
multiple inheritance.

//destructors under inheritance
#include <iostream>
using namespace std;
class baseA {
 public :
 ~baseA(); //destructor
};
class derivedB: public baseA {
 public:
 ~derivedB(); //destructor
};
class derivedC: public derivedB {
 public:
 ~derivedC(); //destructor
};
class derivedD: public derivedC{
 public:
 ~derivedD(); //destructor
};
baseA :: ~baseA()
{
 cout << “ base class\n”;
}
derivedB :: ~derivedB()
{
 cout << “ derivedB class \n”;
}
derivedC :: ~derivedC()
{
 cout << “ derivedC class \n”;
}
derivedD :: ~derivedD()
{
 cout << “ derivedD class \n”;
}
int main()
{
 derivedD objd;
 return 0;
}

 Polymorphism and Virtual Functions 663

Output of the above program

derivedD class
derivedC class
derivedB class
base class

 PROGRAM 14.18

A program to display the message of both constructors and destructors of a base class and a derived class.

//destructor under inheritance
#include <iostream>
using namespace std;
class baseA {
 public:
 baseA() { //baseA’s constructor
 cout << “ base class constructor\n”;
 }
 ~baseA() { //baseA’s destructor
 cout << “ base class destructor\n”;
 }
};
class derivedD: public baseA {
 public:
 derivedD() { //derivedD’s constructor
 cout << “ derived class constructor\n”;
 }
 ~derivedD() { //derivedD’s destructor
 cout << “ derived class destructor\n”;
 }
};
int main()
{
 derivedD obj;
 return 0;
}

Output of the above program

base class constructor
derived class constructor
derived class destructor
base class destructor

A destructor’s main job is to free the storage a computer dynamically allocates. By fi ring in the reverse

order of constructors, destructors ensure that the most recently allocated storage is the fi rst storage to be

freed. The following program explains how destructror member functions free the memory space which

was allocated by the new operator.

 PROGRAM 14.19

A program to allocate the heap memory area using a constructor member function and to free the
memory storage by the destructors under multiple inheritance system.

// destructor member function under inheritance
#include <iostream>
using namespace std;
class baseA {

 Programming with C++664

 private:
 char *ptrbase;
 public:
 baseA();
 ~baseA();
};
class derivedD: public baseA {
 private:
 char *ptrderived;
 public:
 derivedD();
 ~derivedD();
};
baseA:: baseA() //baseA’s constructor
{
 ptrbase = new char[5];
 cout << “ Base class allocates 5 bytes \n”;
}
baseA :: ~baseA() //baseA’s destructor
{
 delete[] ptrbase;
 cout << “ base class frees 5 bytes \n”;
}
derivedD::derivedD() //derivedD’s constructor
{
 ptrderived = new char[100];
 cout << “ Derived class allocates 100 bytes \n”;
}
derivedD :: ~derivedD()
{
 delete[] ptrderived;
 cout << “ Derived class frees 100 bytes \n”;
}
int main()
{
 baseA *ptr = new derivedD;
 delete ptr;
 return 0;
}

Output of the above program

Base class allocates 5 bytes
Derived class allocates 100 bytes
base class frees 5 bytes

14.10 VIRTUAL DESTRUCTORS

It is known that the destructor member function is invoked to free the memory storage by the C++ compiler

automatically. But the destructor member function of the derived class is not invoked to free the memory

storage which was allocated by the constructor member function of the derived class. It is because the

destructor member functions are non-virtual and the message will not reach the destructor member

functions under late binding. So it is better to have a destructor member function as virtual and the virtual

destructors are essential in a program to free the memory space effectively under late binding method.

The following program segment illustrates how to defi ne a virtual destructor in a program.

 // virtual destructor
 class baseA {
 public:
 baseA();
 //constructor cannot have virtual

 Polymorphism and Virtual Functions 665

 virtual ~baseA();
 };
 class derivedD: public baseA {

 };
 baseA :: ~baseA() //baseA’s destructor
 {
 delete[] ptrbase;
 cout << “ base class frees 5 bytes \n”;
 }
 int main()
 {
 baseA *ptr = new derivedD;
 delete ptr;
 }

Note that whenever instances are created at run time on the heap through the new operator, constructor

member functions are called automatically. When the delete operator is used, the destructors are

automatically called to release the space occupied by the instance itself. As a derived class instance always

contains a base class instance, it is necessary to invoke destructors of both the classes in order to ensure that

all the space on the heap is released.

 PROGRAM 14.20

A program to illustrate how a block of memory space which are allocated by new operators and released
when destructor member functions are called.

// virtual destructor
#include <iostream>
using namespace std;
class baseA {
 private:
 char *ptrbase;
 public:
 baseA(); //constructor cannot have virtual
 virtual ~baseA();
};
class derivedD: public baseA {
 private:
 char *ptrderived;
 public:
 derivedD();
 ~derivedD();
};
baseA:: baseA() //baseA’s constructor
{
 ptrbase = new char[5];
 cout << “ Base class allocates 5 bytes \n”;
}
baseA :: ~baseA() //baseA’s destructor
{
 delete[] ptrbase;
 cout << “ base class frees 5 bytes \n”;
}
derivedD::derivedD() //derivedD’s constructor
{
 ptrderived = new char[100];

 Programming with C++666

 cout << “ Derived class allocates 100 bytes \n”;
}
derivedD :: ~derivedD()
{
 delete[] ptrderived;
 cout << “ Derived class frees 100 bytes \n”;
}
int main()
{
 baseA *ptr = new derivedD;
 delete ptr;
 return 0;
}

Output of the above program

Base class allocates 5 bytes
Derived class allocates 100 bytes
Derived class frees 100 bytes
base class frees 5 bytes

 PROGRAM 14.21

A program to demonstrate how to defi ne, declare and invoke the virtual destructor member function in
multiple inheritance using the polymorphic technique.

//non-virtual destructor function
#include <iostream>
using namespace std;
class base {
 public:
 void display();
 ~base();
};
class derived: public base
{
 public:
 void display();
 ~derived();
};
void base :: display()
{
 cout << “ Base class member function”;
 cout << endl;
}
base :: ~base()
{
 cout << “ base class destructor is called ”;
 cout << endl;
}
void derived :: display()
{
 cout << “ Derived class member function”;
 cout << endl;
}
derived :: ~derived()
{
 cout << “ derived class destructor is called ”;
 cout << endl;
}
int main()
{
 base *ptr = new derived;

 Polymorphism and Virtual Functions 667

 ptr->display(); // same method is called for both base class
 // and derived class
 delete ptr;
 return 0;
}

Output of the above program

Base class member function
base class destructor is called

 PROGRAM 14.22

A program to illustrate how to defi ne and declare a class which consists of both virtual members and
virtual destructors under multiple inheritance.

//virtual destructor function
#include <iostream>
using namespace std;
class base {
 public:
 virtual void display ();
 virtual ~base(); //destructor member function
};
class derived: public base
{
 public:
 virtual void display ();
 virtual ~derived(); //destructor member function
};
void base :: display()
{
 cout << “ Base class member function”;
 cout << endl;
}
base :: ~base()
{
 cout << “ base class destructor is called ”;
 cout << endl;
}
void derived :: display()
{
 cout << “ Derived class member function”;
 cout << endl;
}
derived :: ~derived()
{
 cout << “ derived class destructor is called ”;
 cout << endl;
}
int main()
{
 base *ptr = new derived;
 ptr->display(); // same method is called for both base class
 // and derived class
 delete ptr;
 return 0;
}

Output of the above program

Derived class member function
derived class destructor is called
base class destructor is called

 Programming with C++668

14.11 VIRTUAL BASE CLASSES

We have already learned in Chapter 12 on “Single and Multiple Inheritance” that inheritance is a process of

creating a new class which is derived from more than one base classes. Multiple inheritance hierarchies can

be complex, which may lead to a situation in which a derived class inherits multiple times from the same

indirect base class.

For example, the following program segment illustrates how a base class can be derived twice from the

derived class in different way.
 class baseA {
 protected:
 int x;

 };
 class derivedB: public baseA { //path 1, through derivedB
 protected:

 };
 class derivedD: public baseA { //path 2, through derivedD
 protected:

 };
 class abc : public derivedB,public derivedD
 {
 //the data member x comes twice

 };

The data member x is inherited twice in the derived class abc, once through the derived class

derivedB and again through derivedC. This is wasteful and confusing.

The multiple repetition of base class under multiple inheritance is shown in Fig. 14.9.

Fig. 14.9 Repetition of Base Class under Multiple Inheritance

 Polymorphism and Virtual Functions 669

The above multiple repetition of the data member can be corrected by changing the derived class

DerivedB and DerivedD into virtual base classes. Any base class which is declared using the keyword

virtual is called a virtual base class. Virtual base classes are useful method to avoid unnecessary repetition

of the same data member in the multiple inheritance hierarchies. For example, the following program

segment illustrates how a base class is derived only once from the derived classes via virtual base classes.

 class baseA {
 protected:
 int x;

 };
 class derivedB: public virtual baseA { //path 1, through derivedB
 protected:

 };
 class derivedD: public virtual baseA { //path 2, through derivedD
 protected:

 };
 class abc : public derivedB,public derivedD
 {
 //the data member x comes only once

 };

By making derivedB and derivedD into virtual base classes for abc, a copy of the data member x

is available only once.

A class may be both an ordinary and a virtual base in the same inheritance structure. For example,

the following program segment illustrates how to defi ne a derived class with virtual and nonvirtual class

objects.

 class baseA {
 protected:
 int x;

 };
 class derivedB: public virtual baseA { //path 1, through derivedB

 protected:

 };
 class derivedC : public virtual baseA { //path 2, through derivedD

 protected:

 };
 class derivedD : public derivedB,public derivedD
 {

 Programming with C++670

 protected:

 };
 class derivedE : public baseA
 {

 protected:

 };
 class abc : public derivedE,public derivedD
 {

 };

From the above illustration, it can be inferred that an object of derived class abc will contain two baseA

class objects, one virtual and another nonvirtual.

 PROGRAM 14.23

A program to defi ne multiple derived classes which are accessing the same base class data members
through indirect base references.

//using nonvirtual base classes
#include <iostream>
using namespace std;
class baseA {
 protected:
 int x;
 public:
 void getdata();
 void display();
};
class derivedB : public baseA { //path 1, through derivedB
 protected:
 fl oat y;
 public:
 void getdata();
 void display();
};
class derivedD : public baseA { //path 2, through derivedD
 protected:
 char name[20];
 public:
 void getdata();
 void display();
};
class abc : public derivedB,public derivedD
{
 public:
 void getdata();
 void display();
};
void baseA :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
}
void baseA :: display()

 Polymorphism and Virtual Functions 671

{
 cout << “ integer : ” << x << endl;
}
void derivedB :: getdata()
{
 baseA::getdata();
 cout << “ enter a fl oating point value \n”;
 cin >> y;
}
void derivedB :: display()
{
 baseA :: display();
 cout << “ real number :” << y << endl;
}
void derivedD :: getdata()
{
 baseA :: getdata();
 cout << “ enter a string \n”;
 cin >> name;
}
void derivedD :: display()
{
 baseA:: display();
 cout << “ string : ” << name << endl;
}
void abc:: getdata()
{
 derivedB :: getdata();
 derivedD :: getdata();
}
void abc:: display()
{
 derivedB :: display();
 derivedD :: display();
}
int main()
{
 abc obj;
 obj.getdata();
 obj.display();
 return 0;

}

Output of the above program

enter an integer
10
enter a fl oating point value
-2.2
enter an integer
20
enter a string
C++, world

integer : 10
real number :-2.2
integer : 20
string : C++,world

The protected data member x is accessed twice by the two derived classes through derivedB and

derivedD. The content of the data variable is copied into two memory variables in the heap. It is certainly

a repetition with different data and confusing if it is intended to process the same item of the base class.

 Programming with C++672

 PROGRAM 14.24

A program to defi ne multiple derived classes which is accessing the same base class data members
through indirect base references using virtual base class.

//using virtual base classes
#include <iostream>
using namespace std;
class baseA {
 protected:
 int x;
 public:
 void getdata();
 void display();
};
class derivedB : public virtual baseA { //path 1, through derivedB
 protected:
 fl oat y;
 public:
 void getdata();
 void display();
};
class derivedD : public virtual baseA { //path 2, through derivedD
 protected:
 char name[20];
 public:
 void getdata();
 void display();
};
class abc : public derivedB,public derivedD
{
 public:
 void getdata();
 void display();
};
void baseA :: getdata()
{
 cout << “ enter an integer \n”;
 cin >> x;
}
void baseA :: display()
{
 cout << “ integer : ” << x << endl;
}
void derivedB :: getdata()
{
 baseA::getdata();
 cout << “ enter a fl oating point value \n”;
 cin >> y;
}
void derivedB :: display()
{
 baseA :: display();
 cout << “ real number :” << y << endl;
}
void derivedD :: getdata()
{
 baseA :: getdata();
 cout << “ enter a string \n”;
 cin >> name;
}
void derivedD :: display()
{

 Polymorphism and Virtual Functions 673

 baseA:: display();
 cout << “ string : ” << name << endl;
}
void abc:: getdata()
{
 derivedB :: getdata();
 derivedD :: getdata();
}
void abc:: display()
{
 derivedB :: display();
 derivedD :: display();
}
int main()
{
 abc obj;
 obj.getdata();
 obj.display();
 return 0;
}

Output of the above program

enter an integer
20
enter a fl oating point value
3.3
enter an integer
55
enter a string
Hello, C++

integer: 55
real number: 3.3
integer: 55
string: Hello,C++

Even though the protected data member x is accessed by two derived classes through derivedB and

derivedD, the content of the variable x is the same.

 REVIEW QUESTIONS

 1. What is polymorphism? List the pros and cons of using polymorphism in object-oriented

programming.

 2. In what way a polymorphic technique increases the effi ciency of the software design in the modern

world?

 3. Explain the concept of static binding, compile linkage or early binding.

 4. Explain the technique of dynamic binding, run-time linkage or dynamic binding.

 5. What is a virtual function and what are the advantages of declaring a virtual function in a program?

 6. What are the syntactic rules to be observed while for defi ning the keyword virtual?

 7. Explain how polymorphism can be incorporated using the keyword virtual.

 8. Explain how the message call is given to member functions of the derived classes.

 9. Explain the merits and demerits of the run-time binding over the compile time binding.

 10. Explain how the data members of a base class can be initialised under multiple inheritance.

 Programming with C++674

 11. Explain how the data members of a derived class can be initialised under multiple inheritance.

 12. Explain why a constructor member function cannot be a virtual method (member function).

 13. What are the pros and cons of declaring destructor member functions under multiple inheritance?

 14. Explain how a destructor member function can be invoked in the derived class from the base class

objects.

 15. What is the fi ring order of the constructors under multiple inheritance?

 16. What is the fi ring order of the destructors under multiple inheritance?

 17. What is a virtual destructor? Give a few of its applications in real-time applications.

 18. What is the use of declaring the virtual destructor under multiple inheritance?

 19. Explain how the virtual base class is different from the conventional base classes of the OOPs.

 20. Explain the syntactic rules of the virtual base class in C++.

 21. What is an abstract base class and what are the advantages of using it in a program?

 22. What is a pure virtual function? What are the merits and demerits of defi ning and declaring a pure

virtual function in a program?

 23. Explain the various techniques of defi ning a pure virtual function.

 CONCEPT REVIEW PROBLEMS

 1. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
 void setdata();
 void display();
};
class derivedB : baseA
{
 public:
 int b;
 void setdata();
 void display();
};
void baseA :: setdata()
{
 a = 10;
}
void baseA :: display()
{
 cout << “++a = ” << ++a;
 cout << endl;
}

void derivedB :: setdata()
{
 b = 20;
}

 Polymorphism and Virtual Functions 675

void derivedB :: display()
{
 cout << “++b = ” << ++b;
 cout << endl;
}
int main()
{
 derivedB obj;
 obj.setdata();
 obj.display();
 return 0;
}

 (b)
#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
 virtual void setdata();
 virtual void display();
};
class derivedB : baseA
{
 public:
 int b;
 virtual void setdata();
 virtual void display();
};
void baseA :: setdata()
{
 a = 10;
}
void baseA :: display()
{
 cout << “++a = ” << ++a;
 cout << endl;
}

void derivedB :: setdata()
{
 b = 20;
}
void derivedB :: display()
{
 cout << “++b = ” << ++b;
 cout << endl;
}
int main()
{
 derivedB obj;
 obj.setdata();
 obj.display();
 return 0;
}

 Programming with C++676

 (c)
#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
 virtual void setdata();
 virtual void display();
};
class derivedB : public baseA
{
 public:
 int b;
 void setdata();
 void display();
};
void baseA :: setdata()
{
 a = 10;
}
void baseA :: display()
{
 cout << “++a = ” << ++a;
 cout << endl;
}
void derivedB :: setdata()
{
 b = 20;
}
void derivedB :: display()
{
 cout << “++b = ” << ++b;
 cout << endl;
}
int main()
{
 baseA *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->setdata();
 ptr->display();
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class baseA {
 public:
 int a;
 void setdata();
 void display();
};
class derivedB : public baseA
{

 Polymorphism and Virtual Functions 677

 public:
 int b;
 void setdata();
 void display();
};
void baseA :: setdata()
{
 a = 10;
}
void baseA :: display()
{
 cout << “++a = ” << ++a;
 cout << endl;
}

void derivedB :: setdata()
{
 b = 20;
}
void derivedB :: display()
{
 cout << “++b = ” << ++b;
 cout << endl;
}
int main()
{
 baseA *ptr;
 derivedB obj;
 ptr = &obj;
 ptr->setdata();
 ptr->display();
 return 0;
}

 (e)
#include <iostream>
using namespace std;
struct A {
 void display()
 {
 cout << “A” << endl;
 }
};
struct B : A
{
 void display()
 {
 cout << “B” << endl;
 }
};

struct C : B
{
 void display()
 {

 Programming with C++678

 cout << “C” << endl;
 }
};

struct D : C
{
 void display()
 {
 cout << “D” << endl;
 }
};
int main()
{
 A objA;
 B objB;
 C objC;
 D objD;
 A *ptr[3];
 ptr[0] = &objA;
 ptr[1] = &objB;
 ptr[2] = &objC;
 ptr[3] = &objD;
 for (int i = 0; i <= 3; ++i) {
 ptr[i]->display();
 }
 return 0;
}

 (f)
#include <iostream>
using namespace std;
struct A {
 virtual void display()
 {
 cout << “A” << endl;
 }
};
struct B : A
{
 virtual void display()
 {
 cout << “B” << endl;
 }
};

struct C : B
{
 virtual void display()
 {
 cout << “C” << endl;
 }
};

struct D : C
{

 Polymorphism and Virtual Functions 679

 virtual void display()
 {
 cout << “D” << endl;
 }
};
int main()
{
 A objA;
 B objB;
 C objC;
 D objD;
 A *ptr[3];
 ptr[0] = &objA;
 ptr[1] = &objB;
 ptr[2] = &objC;
 ptr[3] = &objD;
 for (int i = 0; i <= 3; ++i) {
 ptr[i]->display();
 }
 return 0;
}

 2. What will be the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
struct A {
 A()
 {
 cout << “A” << endl;
 }
};
struct B : A
{
 B()
 {
 cout << “B” << endl;
 }
};

struct C : B
{
 C()
 {
 cout << “C” << endl;
 }
};

struct D : C
{
 D()
 {
 cout << “D” << endl;
 }
};

 Programming with C++680

int main()
{
 D obj;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
struct A {
 ~A()
 {
 cout << “~A” << endl;
 }
};
struct B : A
{
 ~B()
 {
 cout << “~B” << endl;
 }
};

struct C : B
{
 ~C()
 {
 cout << “~C” << endl;
 }
};

struct D : C
{
 ~D()
 {
 cout << “~D” << endl;
 }
};
int main()
{
 D obj;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
struct A {
 A();
 ~A();
};
struct B : A
{
 B();
 ~B();
};

 Polymorphism and Virtual Functions 681

struct C : B
{
 C();
 ~C();
};

struct D : C
{
 D();
 ~D();
};

A :: A()
{
 cout << “A” << endl;
}
A :: ~A()
{
 cout << “~A” << endl;
}
B :: B()
{
 cout << “B” << endl;
}
B :: ~B()
{
 cout << “~B” << endl;
}
C :: C()
{
 cout << “C” << endl;
}
C :: ~C()
{
 cout << “~C” << endl;
}
D :: D()
{
 cout << “D” << endl;
}
D :: ~D()
{
 cout << “~D” << endl;
}
int main()
{
 D obj;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
class A {

 Programming with C++682

 public:
 void display()
 {
 cout << “A” << endl;
 }
};
class B : public A
{
 public:
 void display()
 {
 A::display();
 cout << “B” << endl;
 }
};
class C : public A
{
 public:
 void display()
 {
 A::display();
 cout << “C” << endl;
 }
};
class D : public B, public C
{
 public:
 void display()
 {
 B::display();
 C::display();
 cout << “D” << endl;
 }
};
int main()
{
 D *obj;
 obj->display();
 return 0;
}

 (e)
#include <iostream>
using namespace std;
class A {
 public:
 virtual void display()
 {
 cout << “A” << endl;
 }
};
class B : public virtual A
{
 public:
 void display()

 Polymorphism and Virtual Functions 683

 {
 A::display();
 cout << “B” << endl;
 }
};
class C : public virtual A
{
 public:
 void display()
 {
 A::display();
 cout << “C” << endl;
 }
};
class D : public B, public C
{
 public:
 void display()
 {
 B::display();
 C::display();
 cout << “D” << endl;
 }
};
int main()
{
 D obj;
 obj.display();
 return 0;
}

 (f)
#include <iostream>
using namespace std;
struct A {
 virtual A();
 virtual ~A();
};
struct B : A
{
 virtual B();
 virtual ~B();
};
A :: A()
{
 cout << “A” << endl;
}
A :: ~A()
{
 cout << “~A” << endl;
}
B :: B()
{
 cout << “B” << endl;
}
B :: ~B()

 Programming with C++684

{
 cout << “~B” << endl;
}
int main()
{
 B obj;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
struct A {
 inline A();
 inline virtual ~A();
};
struct B : A
{
 inline B();
 inline virtual ~B();
};
A :: A()
{
 cout << “A” << endl;
}
A :: ~A()
{
 cout << “~A” << endl;
}
B :: B()
{
 cout << “B” << endl;
}
B :: ~B()
{
 cout << “~B” << endl;
}
int main()
{
 B obj;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
struct A {
 inline A();
 inline virtual ~A();
};
struct B : virtual A
{
 inline B();
 inline virtual ~B();
};
A :: A()
{
 cout << “A” << endl;
}

 Polymorphism and Virtual Functions 685

A :: ~A()
{
 cout << “~A” << endl;
}
B :: B()
{
 cout << “B” << endl;
}
B :: ~B()
{
 cout << “~B” << endl;
}
int main()
{
 B obj;
 return 0;
}

 PROGRAMMING EXERCISES

 1. Write an object-oriented program in C++ using polymorphic technique that prints either the number

and its square or the number and its cube from 0 to 100.

 2. Modify the above program so that it prints the number, square and cubes of only even numbers from

0 to 100 with the same output.

 3. Write a program in C++ to generate the following series of numbers using polymorphism.

(i) (ii)

 1 1

 2 1 1 2

 3 2 1 1 2 3

 4 3 2 1 1 2 3 4

 5 4 3 2 1 1 2 3 4 5

 6 5 4 3 2 1 1 2 3 4 5 6

 7 6 5 4 3 2 1 1 2 3 4 5 6 7

 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9

 (iii) (iv)

 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9

 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

 7 6 5 4 3 2 1 1 2 3 4 5 6 7

 6 5 4 3 2 1 1 2 3 4 5 6

 5 4 3 2 1 1 2 3 4 5

 4 3 2 1 1 2 3 4

 3 2 1 1 2 3

 2 1 1 2

 1 1

 Programming with C++686

 4. Write a program in C++ that prints the factorial of a given number using dynamic binding.

 5. Write a program in C++ that determines whether a given number is a prime number or not and then

prints the result, using polymorphism.

 (Hint: Prime number is a number which is divisible only by 1 and by itself. 3 is a prime number

since it is divisible by 1 and 3. Whereras 6 is not a prime number as it is divisible by 1, 2 and 3.)

 6. Write a program in C++ to solve the general quadratic equation.

 ax2 + bx + c = 0

 using the polymorphic technique.

 7. Write a program in C++ to generate a Fibonacci series of ‘n’ numbers (where n is defi ned by the

user) using run time binding.

 (The series should be: 1 1 2 3 5 8 13 21 32, and so on.)

 8. (a) Develop an object-oriented program in C++ to read the following information from the keyboard

in which the base class consists of employee name, code and designation, and the derived class

containing the data members, viz. years of experience and age.

 Employee name
 Employee code
 Designation
 Years of experience
 Age
 Design a virtual base class for the item employee name and code.

 (b) Construct an object-oriented data base to carry out the following:

 (i) build a master table

 (ii) list a table

 (iii) insert a new entry

 (iv) delete old entry

 (v) edit an entry

 (vi) search for a record that is to be printed

 (vii) sort entries

 9. Develop an object-oriented program in C++ to create a data base of the following items of the

derived class.

 Name of the patient
 Sex
 Age
 Ward number
 Bed number
 Nature of the illness
 Date of admission
 Design a base class consisting of the data members namely, name of the patient, sex and age.

Another base class consists of ward number, bed number and nature of the illness. The derived class

consists of the data member date of admission.

 Design a virtual base class for the data member, namely, name of the patient, sex and age.

 The program should have the facilities as mentioned in 8(b).

 10. Develop an object-oriented program in C++ to create a pay roll system of an organisation with the

following information read from the keyboard:

 Polymorphism and Virtual Functions 687

 Employee name
 Employee code
 Designation
 Account number
 Date of joining
 Basic pay
 DA, HRA and CCA
 Deductions like PPF, GPF, CPF, LIC, NSS, NSC, etc
 Design a base class consisting of employee name, employee code and designation. Another

base class consists of data member, such as account number and date of joining. The derived class

consists of the data member basic pay plus other earnings and deductions. Construct a base class for

the item account number and date of joining.

 The program should have the facilities as listed in 8(b).

 11. Develop an object-oriented program in C++ to prepare the mark sheet of a university examination

with the following items read from the keyboard:

 Name of the student
 Roll number
 Subject name
 Subject code
 Internal assessment (IA) marks
 University examination (UE) marks
 Design a base class consisting of the data members such as name of the student, roll number and

subject name. The derived class consists of the data members, subject code, internal assessment and

university examination marks. Construct a virtual base class for the item name of the student and

roll number.

 The program should have the facilities as mentioned in 8(b).

 12. Develop an object-oriented program in C++ to create a library information system containing the

following for all the books in the library:

 Accession number
 Name of the author
 Title of the book
 Year of publication
 Publisher’s name
 Cost of the book
 Design a base class with the data members accession number, name of the author and title of

the book. Another base class consists of year of publication and publisher’s name. The derived

class consists of the data member cost of the book. Construct a virtual base class for the accession

number.

 The program should have the facilities as mentioned in 8(b).

 13. Develop an object-oriented program in C++ to create a data base for a personnel information system

containing the following information:

 Name
 Date of birth
 Blood group
 Height
 Weight
 Insurance policy number

 Programming with C++688

 Contact address
 Telephone number
 Driving licence number, etc
 Design a base class with name, date of birth and blood group. Another base class consists of

the data members such as height and weight. One more base class consists of the insurance policy

number, contact address. The derived class contains the data members, telephone number and the

driving licence number.

 Construct a virtual base class for the name and blood group.

 The program should have the facilities as listed in 8(b).

Templates,
Namespace and
Exception Handling

Chapter

15

15.1 FUNCTION TEMPLATE

Template is a method for writing a single function or class for a family of similar functions or classes in a

generic manner. When a single function is written for a family of similar functions, it is called as a ‘function

template’. In this function at least one formal argument is generic.

In the previous chapter, it has been explained how a function can be overloaded for a similar type

of operation to be executed and how these functions are defi ned and called in a program. In function

overloading, though the same name is used for all functions which are defi ned as overloading, yet the codes

are to be repeated for every function. Only the function names are same, but the function defi nition and

declaration are repeated.

For example,

swap (char *, char *) // swapping two character data types
{

}

swap (int, int) // swapping two integer quantities
{

This chapter presents the most recent features of the object-oriented
programming such as function templates, class templates and exception
handling with suitable illustrative examples. This chapter also covers the
importance of namespace which is one of the additions to the ANSI/ISO C++
standard.

 Programming with C++690

}

swap (oat, oat) // swapping two oating point numbers
{

}

C++ provides certain features with the capability to defi ne a single function for a group of similar

functions. When a single function is written for a family of similar functions, they are called as function

templates. The main advantage of using function template is avoiding unnecessary repetition of the source

code. The object code becomes more compact and effi cient than the conventional way of declaring and

defi ning the functions. Secondly, full data type checking is carried out.

The function template does not specify the actual data types of the arguments that a function accepts but

it uses a generic or parameterised data type. In a function template at least one formal argument is generic.

The general syntax for declaring a function template in C++ is,

template<class T> T function_name (T formal arguments)
{

 return(T);
}

where the template and class are keywords in C++ and the function template must start with

‘template’ and the T is a parameterized data type.

The above declaration of a function template may be written in the following format also.

template<class T>
T function_name (T formal arguments)
{

 return(T);
}

Users may be anxious to know how the argument type is determined. The return type of the function

is never considered for the actual parameterized data types to be processed. The actual data type of the

function matches with the formal arguments of the function declaration whenever parameterized arguments

are inferred in the function template.

Few examples high lighting the declaration of a function template are given below:

 (1) A function template is defi ned to fi nd the sum of the given array of elements such as int, fl oat or

double etc.

 template<class T>
 T sum (T array [], int n)
 {
 T temp = 0;
 for (int i = 0; i<= n-1; ++i)
 temp = temp+array[i];
 return(temp);
 }

 (2) A function template is defi ned to swap two given items of different data like int, fl oat, double or a

character.

 Templates, Namespace and Exception Handling 691

 template<class T>
 T swap (T & rst, T &second)
 {
 T temp;
 temp = rst;
 rst = second;
 second = temp;
 return(0);
 }

 PROGRAM 15.1

A program to defi ne a function template for summing an array of integers and an array of fl oating point
numbers.

//using function template
#include <iostream>
using namespace std;
template<class T> T sum (T array[], int n)
{
 T temp = 0;
 for (int i = 0; i<= n-1; ++i)
 temp = temp+array[i];
 return(temp);
}
int main()
{
 int n = 3, sum1;
 oat sum2;
 static int a[3] = {1,2,3};
 static double b[3] = {1.1,2.2,3.3};
 sum1 = sum(a,n);
 cout << “ sum of the integers = ” << sum1 << endl;
 sum2 = sum(b,n);
 cout << “ sum of the oating point numbers = ” << sum2;
 cout << endl;
 return 0;
}

Output of the above program

sum of the integers = 6
sum of the oating point numbers = 6.6

In the above program, the function template sum () has been defi ned as a generic function for summing

an array of values of the size up to n elements where the number of elements are passed by the function call

from the calling portion of the program. The sum () function template is called twice — once to fi nd the

sum of the integer array and again to fi nd the sum of fl oating point numbers.

 PROGRAM 15.2

A program to defi ne the function template for swapping two items of the various data types, namely,
integers, fl oating point numbers, characters and string based on object oriented programming approach.

//swapping based on OOPs
#include <iostream>
#include <string>

 Programming with C++692

using namespace std;
class sample {
 public:
 int a,b;
 oat fa,fb;
 char ch1,ch2;
 string str1,str2;
 template <class T> void swap (T &a, T &b);
 void menu();
};

template <class T>
void sample :: swap(T &a, T &b)
{
 T temp = a;
 a = b;
 b = temp;
}
void sample :: menu()
{
 cout <<“Welcome to parameterized template programming \n”;
 cout <<“ i -> integer swapping \n”;
 cout <<“ f -> oating point number swapping\n”;
 cout <<“ c -> character swapping \n”;
 cout <<“ s -> string swapping \n”;
 cout <<“ m -> menu() \n”;
 cout <<“ q -> quit \n”;
 cout <<“ option, please ? \n”;
}
int main()
{
 sample obj;
 char code;
 obj.menu();
 while ((code = cin.get()) != ‘q’) {
 switch (code) {
 case ‘i’:
 cout <<“enter any two integers\n”;
 cin >> obj.a >> obj.b;
 cout <<“ Before swapping \n”;
 cout << “a = ” << obj.a << “ ,b = ” << obj.b << endl;
 obj.swap(obj.a,obj.b);
 cout <<“ After swapping \n”;
 cout << “a = ” << obj.a << “ ,b = ” << obj.b << endl;
 break;
 case ‘f’:
 cout <<“enter two oating point numbers\n”;
 cin >> obj.fa >> obj.fb;
 cout <<“ Before swapping \n”;
 cout << “fa = ” << obj.fa << “ ,fb = ” << obj.fb << endl;
 obj.swap(obj.fa,obj.fb);
 cout <<“ After swapping \n”;
 cout << “fa = ” << obj.fa << “ ,fb = ” << obj.fb << endl;
 break;
 case ‘c’:
 cout <<“enter any two characters\n”;
 cin.ignore();
 obj.ch1 = cin.get();
 cin.ignore(); //skip any whitespace like new line
 obj.ch2 = cin.get();
 cout <<“ Before swapping \n”;
 cout << “ ch1 = ” << obj.ch1;
 cout << “ ,ch2 = ” << obj.ch2;
 cout << endl;
 obj.swap(obj.ch1,obj.ch2);
 cout <<“ After swapping \n”;
 cout << “ ch1 = ” << obj.ch1;

 Templates, Namespace and Exception Handling 693

 cout << “ ,ch2 = ” << obj.ch2;
 cout << endl;
 break;
 case ‘s’:
 cout <<“enter any two words\n”;
 cin >> obj.str1;
 cin.ignore(); //skip whitespace, if any
 cin >> obj.str2;
 cout <<“ Before swapping \n”;
 cout << “str1 = ” << obj.str1 << “ ,str2 = ” << obj.str2;
 cout << endl;
 obj.swap(obj.str1,obj.str2);
 cout <<“ After swapping \n”;
 cout << “str1 = ” << obj.str1 << “ ,str2 = ” << obj.str2;
 cout << endl;
 break;
 case ‘m’:
 obj.menu();
 break;
 } // end of switch-case structure
 } //end of while statement
 return 0;
}

Output of the above program

Welcome to parameterised template programming
i -> integer swapping
f -> oating point number swapping
c -> character swapping
s -> string swapping
m -> menu()
q -> quit
option, please?

i
enter any two integers
10 20
Before swapping
a = 10, b = 20
After swapping
a = 20, b = 10

f
enter two oating point numbers
1.1 2.2
Before swapping
fa = 1.1, fb = 2.2
After swapping
fa = 2.2, fb = 1.1

c
enter any two characters
a b
Before swapping
ch1 = a, ch2 = b
After swapping
ch1 = b, ch2 = a

s

 Programming with C++694

enter any two words
Hyderabad Bangalore
Before swapping
str1 = Hyderabad, str2 = Bangalore
After swapping
str1 = Bangalore, str2 = Hyderabad
q

 PROGRAM 15.3

A program to demonstrate how a function template is constructed to fi nd square of a given number with
diff erent data types such as integers, fl oating point numbers and double.

//using function template
#include <iostream>
using namespace std;
template<class T> T square (T n)
{
 return(n*n);
}

int main()
{
 int x,xsq;
 oat y,ysq;
 double z,zsq;
 cout << “enter an integer \n”;
 cin >> x;
 cout << “ enter a oating point number ? \n”;
 cin >> y;
 cout << “ enter a double precision number \n”;
 cin >> z;
 xsq = square (x);
 cout << “ x = ” << x << “ and its square = ” << xsq << endl;
 ysq = square (y);
 cout << “ y = ” << y << “ and its square = ” << ysq << endl;
 zsq = square (z);
 cout << “ z = ” << z << “ and its square = ” << zsq << endl;
 return 0;
}

Output of the above program

enter an integer
2
enter a oating point number?
2.2
enter a double precision number
2.34544
x = 2 and its square = 4
y = 2.2 and its square = 4.84
z = 2.34544 and its square = 5.50111

15.2 CLASS TEMPLATE

In addition to function templates, C++ also supports the concept of class templates. By defi nition, a class

template is a class defi nition that describes a family of related classes. C++ offers the user the ability to

create a class that contains one or more data types that are generic or parameterised.

 Templates, Namespace and Exception Handling 695

The manner of declaring the class template is the same as that of a function template. The keyword

template must be inserted as a fi rst word for defi ning a class template.

The general syntax of the class template is,

template <class T>
class user_de ned_name
{
 private:

 public:

};

The following program segment illustrates how to defi ne and declare a class template in C++.

#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T value, value1, value2;
 public:
 void getdata();
 void sum();
};
int main()
{
 sample <int> obj1;
 sample < oat> obj2;

 return 0;
}

Once the class template has been defi ned, it is required to instantiate a class object using a specifi c

primitive or user-defi ned type to replace the parameterised types.

A member function of a class template also contains the keyword template whenever it is declared

outside the scope of a class defi nition. For example, the following program segment shows how to declare a

member function for the class template.

#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T value,value1,value2;
 public:
 void getdata();
 void sum();
};
template <class T>
void sample <T> :: getdata()
{
 cin >> value1 >> value2;
}

 Programming with C++696

template <class T>
void sample <T> :: sum()
{
 T value;
 value = value1+value2;
 cout << “ sum of = ” << value << endl;
}

 PROGRAM 15.4

A program to illustrate how to defi ne and declare a class template to fi nd the sum of the given two data
items.

//adding two parameterised data types
#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T value, value1, value2;
 public:
 void getdata();
 void sum();
};

template <class T>
void sample <T> :: getdata()
{
 cin >> value1 >> value2;
}

template <class T>
void sample <T> :: sum()
{
 T value;
 value = value1+value2;
 cout << “ sum = ” << value << endl;
}

int main()
{
 sample <int> obj1;
 sample < oat> obj2;
 cout << “ enter any two integers :” << endl;
 obj1.getdata();
 obj1.sum();
 cout << “ enter any two oating point numbers :” << endl;
 obj2.getdata();
 obj2.sum();
 return 0;
}

Output of the above program
enter any two integers:
10 20
sum = 30

enter any two oating point numbers:
10.11 20.22
sum = 30.33

 Templates, Namespace and Exception Handling 697

 PROGRAM 15.5

A program to read a set of numbers from the user input and fi nd the sum and average of given numbers
using a class template.

// nding sum and average of given numbers
#include <iostream>
using namespace std;
template <class T>
class sample{
 private:
 T a;
 public:
 void sum (int n);
};

template <class T>
void sample <T> :: sum(int n)
{
 T temp = 0;
 for (int i = 0; i <= n-1; ++i) {
 cout << “enter a value \n”;
 cin >> a;
 temp += a;
 }
 cout << “sum = ” << temp;
 T ave = temp/ n;
 cout << “ ,and Average = ” << ave << endl;
}

int main()
{
 int n;
 cout << “How many numbers ?\n”;
 cin >> n;
 cout <<“ for integers \n”;
 sample <int> obj1;
 obj1.sum(n);
 cout << “ oating point numbers\n”;
 sample <double> obj2;
 obj2.sum(n);
 return 0;
}

Output of the above program

How many numbers?
5
for integers
enter a value
1
enter a value
2
enter a value
3
enter a value
4
enter a value
5
sum = 15, and Average = 3

 Programming with C++698

 oating point numbers
enter a value
1.1
enter a value
2.2
enter a value
3.3
enter a value
4.4
enter a value
5.5
sum = 16.5, and Average = 3.3

15.3 OVERLOADING OF FUNCTION TEMPLATE

We have already seen that a function can be overloaded in C++. It is well known that function templates are

used for constructing a generic and parameterised data types. C++ also supports to construct a program for

overloading these function templates. One can implement the function templates for overloading either as a

stand alone function template or member functions of a class.

 PROGRAM 15.6

A program to demonstrate how to perform the function overloading using a function template.

//overloading of function template
#include <iostream>
using namespace std;
template <class T>
void display(T a)
{
 cout << “calling function template \n”;
 cout << “ a = ” << a << endl;
}

void display(int n)
{
 cout << “calling conventional display \n”;
 cout << “ n = ” << n << endl;
}

int main()
{
 display(10);
 display(1.1);
 return 0;
}

Output of the above program

calling conventional display
n = 10
calling function template
a = 1.1

 Templates, Namespace and Exception Handling 699

 PROGRAM 15.7

A program to demonstrate how to perform the function overloading using a function template. The
function templates are defi ned as the member functions of a class.

//overloading of template methods
#include <iostream>
using namespace std;
template <class T>
class sample {
 public:
 void display (T a);
 void display (T a, T b);
 void display (T a, T b, T c);
};

template <class T>
void sample <T> :: display (T a)
{
 cout << “ a = ” << a << endl;
}

template <class T>
void sample <T> :: display (T a, T b)
{
 cout << “ a = ” << a << “ b = ” << b << endl;
}

template <class T>
void sample <T> :: display (T a, T b, T c)
{
 cout << “ a = ” << a << “ b = ” << b << “ c = ” << c;
 cout << endl;
}

int main()
{
 sample <int> obj1;
 obj1.display(10);
 obj1.display(10,20);
 obj1.display(10,20,30);
 sample <double> obj2;
 obj2.display(1.1);
 obj2.display(1.1,2.2);
 obj2.display(1.1,2.2,3.3);
 return 0;
}

Output of the above program

a = 10
a = 10 b = 20
a = 10 b = 20 c = 30
a = 1.1
a = 1.1 b = 2.2
a = 1.1 b = 2.2 c = 3.3

 PROGRAM 15.8

A program to demonstrate how to defi ne and declare a class template with default constructor.

 Programming with C++700

//using class template
#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T value;
 public:
 sample (T = 0) //default constructor
 {
 cout << “ default constructor is called \n”;
 cout << “ value = ” << value << endl;
 }
};
int main()
{
 sample <int> obj1;
 sample < oat> obj2;
 return 0;
}

Output of the above program

default constructor is called
value = 1073828704
default constructor is called
value = 36.7598

Since automatic variable is not initialised by the programmer, compiler displays a garbage value. Hence

the above output.

 PROGRAM 15.9

A program to demonstrate how to defi ne and declare a class template with a constructor and a member
function.

//using class template
#include <iostream>
using namespace std;
template <class T>
class sample {
 public :
 sample ();
 inline void display();
};

template <class T>
sample<T> :: sample()
{
 cout <<“class template - constructor \n”;
}

template <class T>
void sample<T> :: display()
{
 cout << “this is a member function \n”;
}

int main()
{
 sample <int> obj1;
 obj1.display();

 Templates, Namespace and Exception Handling 701

 sample < oat> obj2;
 obj2.display();
 return 0;
}

Output of the above program

class template - constructor
this is a member function
class template - constructor
this is a member function

 PROGRAM 15.10

A program to demonstrate how to defi ne and declare a class template with a special member function,
constructor and destructor.

//using class template
//de ning constructor and destructor
#include <iostream>
using namespace std;
template < class T>
class sample {
 private :
 T value;
 public :
 sample ();
 ~sample ();
 inline void display ();
};
template <class T>
sample <T> :: sample()
{
 cout <<“constructor \n”;
}

template <class T>
sample <T> :: ~sample()
{
 cout << “destructor \n”;
}

template < class T>
void sample <T> :: display()
{ cout <<“member function \n”;
}

int main()
{
 cout << “Calling class object for integer \n”;
 sample <int> obj1;
 obj1.display();
 cout << “Calling class object for oating point \n”;
 sample < oat> obj2;
 obj2.display();
 return 0;
}

Output of the above program

Calling class object for integer
constructor
member function

 Programming with C++702

Calling class object for oating point
constructor
member function
destructor
destructor

 PROGRAM 15.11

A program to demonstrate how to defi ne and declare a class template with a special member function,
constructor and destructor. The constructor contains a single argument.

// constructor with single argument
// and destructor of class template
#include <iostream>
using namespace std;
template <class T>
class sample {
 private :
 T value;
 public :
 sample (T n) : value (n) {}; // constructor
 ~sample (){} // destructor
 void display ()
 {
 cout << “ content of the value = ” << value << endl;
 }
};

int main()
{
 sample <int> obj1(10);
 cout << “ integer :” << endl;
 obj1.display();
 sample < oat> obj2(-22.12345);
 cout << “ Floating point number :” << endl;
 obj2.display();
 return 0;
}

Output of the above program

integer:
content of the value = 10
Floating point number:
content of the value = -22.1234

 PROGRAM 15.12

A program to demonstrate how to defi ne and declare a class template with a special member function,
constructor and destructor. The constructor contains a single argument with a diff erent format.

// constructor with single argument
// and destructor of class template
#include <iostream>
using namespace std;
template <class T>
class sample {
 private:

 Templates, Namespace and Exception Handling 703

 T value;
 public:
 sample (T n) ; // constructor
 ~sample (); // destructor
 void display ();
};
template <class T>
sample <T> :: sample (T n) : value (n) { }

template <class T>
sample <T> :: ~sample(){}

template <class T>
void sample <T> :: display()
{
 cout << “ content of the value = ” << value << endl;
}

int main()
{
 sample <int> obj1(10);
 cout << “ integer :” << endl;
 obj1.display();
 sample < oat> obj2(-22.12345);
 cout << “ Floating point number :” << endl;
 obj2.display();
 sample <double> obj3(12345678L);
 cout << “ Double precision number :” << endl;
 obj3.display();
 return 0;
}

Output of the above program

integer:
content of the value = 10
Floating point number:
content of the value = -22.1234
Double precision number:
content of the value = 1.23457e+07

15.4 EXCEPTION HANDLING

This section describes the C++ error handling mechanism which is generally referred to as exception

handling. This section covers not only the syntax and semantics of the exception handling keywords but it

also presents how to defi ne, declare and implement those keywords in a program.

15.4.1 An Overview

An exception is an error or an unexpected event. The exception handler is a set of codes that executes when

an exception occurs. Exception handling is one of the most recently added features and perhaps it may

not be supported by much earlier versions of the C++ compilers. The main purpose of exception handling

used in a program is to detect and manage runtime errors. The word exception comes from the exceptional

program fl ow that occurs during a runtime error. C++ makes use of classes and objects in handling

exceptions.

Whenever a caller of a function detects an error without exception handling, it is very diffi cult to trace,

check and handle it in a complex and big software. The program must be developed with exception handling

in such a way that it determines the possible errors the program might encounter and then include codes to

handle them. For example, in the program which performs the input/output operation in fi le processing, it

 Programming with C++704

is essential to check whether a fi le has been opened successfully or not and to display the appropriate error

message if any unexpected event occurs.

The ANSI/ISO C++ language defi nes a standard for exception handling. An exception handling is a type

of error handling mechanism whenever a program encounters an abnormal situation or runtime errors. In

order to implement and realise the exception handling, the following keywords are used in C++:

try
catch
throw

15.4.2 The Try Block

A try block protects any code within the block either directly or indirectly. A try block is like a sentinel

that guards some section of code, shielding it from errors. Only the code inside a try block can detect or

handle exceptions. The try block can also be nested like any other C++ code.

The general syntax of the try block is,
 try
 {
 /* the C++ code one wants to protect or
 shielding it from errors */
 }

If an exception occurs, the program fl ow is interrupted.

15.4.3 The Throw Expression

The throw statement actually throws an exception of the specifi ed type. When an exception occurs, the

throw expression initialises a temporary object which is to match the type of argument it used in throw

statement.

The general syntax of the throw statement is,

 throw argument;

 where argument is sent to the corresponding catch handler.

Different types of throw expression are given below:

 (1) throw “ An error occurred ”;
 This example specifi es that an error message is to be displayed.

 (2) throw object;
 This example specifi es that object is to be passed on to a handler.

 (3) throw;
 This example simply specifi es that the last exception thrown is to be thrown again.

15.4.4 The Catch Block

The catch block receives the thrown exception. The exception handler is indicated by the catch keyword.

The general syntax of the catch block is as follows:

 catch (parameter)
 {
 //handles error here
 }

The parameter, which can be named or unnamed, denotes the type of exception the clause handles. This

parameter can be any valid C++ data type including a structure or a class. The catch handler is known by

the data type given in the parameter. A catch handler is used to catch any type of exception object.

 Templates, Namespace and Exception Handling 705

15.4.5 The Layout of Exception Handling

The general structure and layout of an exception handling is presented in this section. Usually, a program

will have exception handlers defi ned for several types of errors that might occur. For example, the layout of

a typical try block and its associated catch clause is:

 try
 {
 // code to protect
 }

 catch (int x)
 {
 // handler int errors
 }

 catch (char *str)
 {
 // handler char * errors
 }

 catch (oat dx)
 {
 // handler oat errors
 }

This try block has three catch handlers. The fi rst one that catches integer exceptions, the second one for

character pointer and the third one catches fl oat exceptions. One can defi ne as many catch handlers as one

wants to cover all the bases.

 PROGRAM 15.13

A program to demonstrate how to detect a divide by zero error using the exception handling technique.

#include <iostream>
#include <string>
using namespace std;
class sample {
 private:
 oat a,b;
 public:
 void getdata();
 void divide();
};
void sample ::getdata()
{
 cout<< “enter any two oating point numbers\n”;
 cin >> a >> b;
}
void sample :: divide()
{
 string str;
 try {
 if (b == 0)
 throw str;
 else
 {
 oat temp = a/b;
 cout << “Quotient = ” << temp << endl;

 Programming with C++706

 }
 }
 catch (string str) {
 cout << “ Exception - Divide by zero \n”;
 }
}
int main()
{
 sample obj;
 obj.getdata();
 obj.divide();
 return 0;
}

Output of the above program

enter any two oating point numbers
1 2
Quotient = 0.5

1 0
enter any two oating point numbers
Exception - Divide by zero

 PROGRAM 15.14

A program to demonstrate how to defi ne, declare and use an exception handling technique for detecting
a memory out of range check error.

//memory out of range check
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
class sample {
 private:
 int a[10];
 string str;
 public:
 void getdata();
 void display();
};
void sample :: getdata()
{
 try {
 for (int i = 0; i < 9; ++i) {
 if (i > 5)
 throw str;
 else
 {
 cout <<“enter an element \n”;
 cin >> a[i];
 }
 }
 }
 catch (string str) {
 cout << “\n Exception - Memory out of range”;
 }
}

void sample ::display ()
{

 Templates, Namespace and Exception Handling 707

 cout << “\n entered elements are \n”;
 for (int i = 0; i <= 5; ++i)
 cout << setw(4) << a[i];
}
int main()
{
 sample obj;
 obj.getdata();
 obj.display();
 return 0;
}

Output of the above program

enter an element
10
enter an element
20
enter an element
30
enter an element
40
enter an element
50
enter an element
60
Exception - Memory out of range
entered elements are
10 20 30 40 50 60

 PROGRAM 15.15

A program to illustrate how to use the multiple catch statements for throwing the diff erent types of data
for handling exception.

//using multiple catch
#include <iostream>
using namespace std;
class sample {
 private:
 int a;
 public:
 void getdata();
 void display();
};
void sample :: getdata()
{
 cout << “enter anyone (0,1 or -1) \n”;
 cin >> a;
}
void sample :: display()
{
 int n;
 char ch;
 string str_name;
 try {
 if (a == 0) throw n;
 else if (a == 1) throw ch;
 else if (a == -1) throw str_name;
 }
 catch (int n) {

 Programming with C++708

 cout << “Exception - integer \n”;
 }
 catch (char ch) {
 cout << “Exception - Character \n”;
 }
 catch (string str_name) {
 cout << “Exception - String \n”;
 }
}
int main()
{
 sample obj;
 obj.getdata();
 obj.display();
 return 0;
}

Output of the above program

enter anyone (0,1 or -1)
0
Exception - integer

enter anyone (0,1 or -1)
1
Exception - Character

enter anyone (0,1 or -1)
-1
Exception - String

 PROGRAM 15.16

A program to demonstrate how to implement catch all exceptions using the catch (...) statement.

//catch all exceptions
#include <iostream>
using namespace std;
class abc {
 public:
 void display(int x);
};
void abc :: display(int x)
{
 try
 {
 if (x == 0) throw ‘x’; // handling char
 if (x == 1) throw x; // handling int
 if (x == 2) throw 1.1f; // handling oat
 if (x == 3) throw 1000L; // handling long
 }
 catch (...)
 {
 cout << “Exception occurred \n”;
 }
}
int main()
{
 abc obj;
 obj.display(0);
 obj.display(1);

 Templates, Namespace and Exception Handling 709

 obj.display(2);
 obj.display(3);
 return 0;
}

Output of the above program

Exception occurred
Exception occurred
Exception occurred
Exception occurred

 PROGRAM 15.17

A program to illustrate how to realise rethrowing an exception in C++ using throw statement without any
argument.

// rethrowing an exception
#include <iostream>
using namespace std;
class abc {
 public:
 void display(int x, int y);
};
void abc :: display(int x, int y)
{
 try
 {
 if (y == 0)
 throw y;
 else
 cout << “ x/y = ” << (double) x/ (double) y << endl;
 }
 catch (int)
 {
 cout << “Exception occurred \n”;
 throw;
 }
}
int main()
{
 abc obj;
 try {
 obj.display(1,0);
 }
 catch (int)
 {
 cout <<“Exception occurred in main \n”;
 }
 return 0;
}

Output of the above program

Exception occurred
Exception occurred in main

15.4.6 Standard Exceptions

The C++ library defi nes a number of common exceptions. The standard exceptions are defi ned in the

following header fi le.

#include <stdexcept>

 Programming with C++710

In general, exception handling mechanism can be classifi ed into two categories, namely, logic error and

runtime error.

(a) Logic Error The abnormal program termination can be caused due to the following error states:

 ∑ domain_error

 ∑ invalid_argument

 ∑ length_error

 ∑ out_of_range

(b) Runtime_error The run-time error can be occurred due to the following conditions.

 ∑ range_error

 ∑ overfl ow_error

 ∑ underfl ow_error

15.5 NAMESPACE

This section deals with the importance of namespace which is one of the salient features added in the

ANSI/ISO C++ standard. This section also explains how to use and implement a standard namespace; how

to realise a namespace alias; how to accomplish and construct a program using unnamed namespace and

nested namespace in C++.

15.5.1 Namespace Declaration

A namespace is a technique of expressing logical grouping of all elements into a single translation unit in

order to avoid the name collision or confl ict. A namespace is a scope. In general, local scopes, global scopes

and classes are namespaces.

There is a possibility that a global object or function uses the same identifi er as another one, causing

redefi nition of identifi ers. Name collision is a common thing in a big and bulky software systems. The main

objective and purpose of using the namespace declaration in a program is to avoid the redefi nition errors

caused by the name collision.

A namespace declaration identifi es and assigns a unique name to a user-declared namespace. Such

namespaces are used to solve the problem of name collision in large programs and libraries. Programmers

can use namespaces to develop new software components and libraries without causing naming confl icts

with existing components. Namespaces allow to group entities like classes, objects and functions under a

name. This way the global scope can be divided in “sub-scopes”, each one with its own name.

The general syntax of namespace declaration is,

namespace identi er
{
 // entities
}

where identi er is any valid identifi er and entities is the set of classes, objects and functions that are

included within the namespace.

For example,

namespace X
{
 int a;
}
namespace Y
{
 double a;

 Templates, Namespace and Exception Handling 711

}

In this case, the variable int a is normal variable declared within a namespace called X and double
a is within a namespace called Y. In order to access these variables from outside the X and Y namespace,

one has to use the scope resolution operator ::. The variables int a and double a can be accessed in

the following manner.

X :: a;
Y :: a;

A namespace declaration, whether it involves a new namespace, an unnamed namespace, or an extended

namespace defi nition, must be accompanied by a namespace body enclosed within curly braces. The

namespace body may contain declarations or defi nitions of variables, functions, objects, templates, and

nested namespaces. A list of these declarations are said to be members of the namespace.

The following namespace declaration statement causes syntax error and that is an invalid form of

declaration.

namespace X; //invalid

One can declare namespace statement without any members. Even though the following namespace

declaration is a valid statement, it is meaningless.

namespace X //valid, but meaningless
{
}

For example, the following program illustrates how the namespace declaration avoids the name collision

of the identifi ers of the same names.
//namespace
#include <iostream>
using namespace std;
namespace rst
{
 int abc = 5;
}
namespace second
{
 double abc = 3.1416;
}
int main ()
{
 cout << rst::abc << endl;
 cout << second::abc << endl;
 return 0;
}

Output of the above program

5
3.1416

In the above program, there are two global variables with the same name, abc. One is defi ned within the

namespace fi rst and the other one in second. No redefi nition errors happen due to namespace declaration.

 PROGRAM 15.18

A program to illustrate how to declare, defi ne and realise a namespace mechanism.

 Programming with C++712

#include <iostream>
using namespace std;
namespace A {
 int a = 10;
 void display();
}
namespace B {
 int a = 100;
 void display();
}
void A:: display()
{
 cout << “A :: display \n”;
 cout << A::a << endl;
}

void B :: display()
{
 cout << “B :: display\n”;
 cout << B::a << endl;
}

int main()
{
 A::display();
 B::display();
 return 0;
}

Output of the above program

A :: display
10
B :: display
100

15.5.2 Defi ning Namespace Members

Members of a namespace may be defi ned within that namespace. A namespace member can contain not

only the simple data types but also the functions and aggregated data types. Members of a namespace can

be declared and introduced in the following form:

namespace identi er
{
 //declarations and de nitions of members
}

The members can be declared within a namespace defi nition. These members can be referred and

accessed using the scope resolution operator in the following form:

 namespace_name :: members_name;

For example the following namespace declaration shows how members of a namespace can be defi ned.

namespace X
{
 int i = 10;
 void f()
}
namespace Y
{
 int i = 20;
 oat a = 1.1f;
 void g();

 Templates, Namespace and Exception Handling 713

}
namespace Z
{
 int i = 30;
 double dx = 2.2;
 void d();
}

Unlike other declarative regions, the defi nition of a namespace can be split over several parts of a

single translation unit. For example, the following program segment shows how to perform and realise the

extension of namespace declaration:

namespace A
{
 // declare namespace A variables
 int i;
 int j;
}
namespace B
{
}
namespace C
{
}
namespace D
{
}
namespace A
{
 // declare namespace A functions
 void func(void);
 int int_func(int i);
}
namespace B
{
 //add some members for B
}
int main()
{
}

When a namespace is continued in this manner, after its initial defi nition, the continuation is called an

extension namespace defi nition.

 PROGRAM 15.19

A program to show how to construct an extension namespace defi nition.

#include <iostream>
using namespace std;
namespace A
{
 // declare namespace A variables
 int i = 10;
}
namespace B

 Programming with C++714

{
 int i = 100;
}
namespace A
{
 // declare namespace A functions
 void func();
}
void A::func()
{
 cout << “++A::i = ” << ++A::i << endl;
}
namespace B
{
 int j = 200;
 void func();
}

void B::func()
{
 cout << “++B::i = ” << ++B::i << endl;
 cout << “ B::j = ” << B::j << endl;
}
int main()
{
 A::func();
 B::func();
 return 0;
}

Output of the above program

++A::i = 11
++B::i = 101
B::j = 200

Members of a named namespace can be defi ned outside the namespace in which they are declared by

explicit qualifi cation of the name being defi ned. However, the entity being defi ned must already be declared

in the namespace. In addition, the defi nition must appear after the point of declaration in a namespace that

encloses the declaration’s namespace.

The following program segment shows how an error is caused due to improper defi nition of namespace

members where the entities are defi ned before namespace declaration.

namespace X
{
 void f();
}
void X::f() { } //ok

void Y::g() { } //error, the entity must be declared in the
 // namespace before it is de ned.
namespace Y
{
 void g();
}

The corrected form of the above member defi nition is given below:

namespace X
{
 void f();
}

 Templates, Namespace and Exception Handling 715

void X::f() { }

namespace Y
{
 void g();
}
void Y::g() { }

 PROGRAM 15.20

A program to demonstrate how an error is caused due to improper defi nition of namespace members.

#include <iostream>
using namespace std;
namespace A
{
 int i = 10;
 void f();
}
void A::f()
{
 cout << “++i = ” << ++i << endl;
}
void V::g()
{
 cout << “ ++j = ” << ++j << endl;
}
namespace V
{
 int j = 20;
 void g();
}
int main()
{
 A::f();
 V::g();
 return 0;
}

Compile time error The function V::g() and the int j are undefi ned. Member functions of namespace

V are defi ned before the namespace declaration.

15.5.3 Namespace Alias

A namespace alias is a mechanism or technique in which one can declare alternate names for existing

namespaces. In other words, a namespace alias defi nition substitutes a short name for a long and lengthy

namespace name. The identifi er is a synonym for the qualifi ed namespace specifi er and becomes a

namespace alias.

The namespace alias is declared in the following format:
 namespace new_name = current_name;

For example,
namespace Very_Long_Namespace_Name
{
 int a;
 double x;
 void f();
}

 Programming with C++716

namespace ABC = Very_Long_Namespace_Name

Now ABC is a namespace alias for Very_Long_Namespace_Name. A namespace name cannot be

identical to any other entity in the same declarative region. In addition, a global namespace name cannot be

the same as any other global entity name in a given program.

 PROGRAM 15.21

A program to demonstrate how to declare, defi ne and construct a namespace alias.

//namespace alias
#include <iostream>
using namespace std;
namespace Indian_Institute_of_Technology_Kharagpur {
 string cse = “Prof Ghosh”;
 string ece = “Prof Banerjee”;
}
namespace IIT_KGP = Indian_Institute_of_Technology_Kharagpur;
int main()
{
 cout << “ Name 1 = ” << IIT_KGP::cse << endl;
 cout << “ Name 2 = ” << IIT_KGP::ece << endl;
 return 0;
}

Output of the above program

Name 1 = Prof Ghosh
Name 2 = Prof Banerjee

15.5.4 Nested Namespace

A namespace defi nition can be nested within another namespace defi nition. Every namespace defi nition

must appear either at fi le scope or immediately within another namespace defi nition.

namespace outer
{
 entities_of_outer
 namespace inner
 {
 entities_of_inner
 namespace innermost
 {
 entities_of_innermost
 }
 }
}

The scope resolution operator is used to access the entities of each of the namespace items. For example,

the following program segment shows how to construct and realise a nested namespace:

namespace A
{
 int i = 10;
 void f();
 namespace B
 {

 Templates, Namespace and Exception Handling 717

 int j = 20;
 void g();
 namespace C
 {
 int k = 30;
 void h();
 }
 }
}

Each items of the namespace can be accessed using the scope resolution operator in the following

manner:

 (1) To access the members of the namespace A,
 A::i;
 A::f();

 (2) To access the members of the namespace B,
 A::B::j;
 A::B::g();

 (3) To access the members of the namespace C,
 A::B::C::k;
 A::B::C::h();

 PROGRAM 15.22

A program to declare, defi ne and perform the nested namespace.

#include <iostream>
using namespace std;
namespace X {
 int a = 10;
 namespace Y {
 oat a = 20.2f;
 namespace Z {
 char a = ‘a’;
 }
 }
}
int main()
{
 cout << “X::a = ” << X::a << ‘\n’;
 cout << “X::Y::a = ” << X::Y::a << ‘\n’;
 cout << “X::Y::Z::a = ” << X::Y::Z::a << ‘\n’;
 return 0;
}

Output of the above program

X::a = 10
X::Y::a = 20.2
X::Y::Z::a = a

 PROGRAM 15.23

A program to demonstrate how a nested namespace is realised.

//using nested namespace
#include <iostream>

 Programming with C++718

using namespace std;
namespace A {
 int a = 10;
 void display();
 namespace B {
 int a = 100;
 void display();
 }
}
void A:: display()
{
 cout << “A :: display \n”;
 cout << ++(A::a) << endl;
}

void A::B:: display()
{

 cout << “A::B :: display\n”;
 cout << ++A::B::a << endl;
}

int main()
{
 A::display();
 A::B::display();
 return 0;
}

Output of the above program

A:: display
11
A::B :: display
101

The following program segment shows how an error is caused due to improper defi nition of namespace

members where the entities are defi ned before namespace declaration.

namespace Q {
 namespace V {
 void f();
 }
 void V::f() { } // ok
 void V::g() { } // g() is not yet a member of V

 namespace V {
 void g();
 }
}

 PROGRAM 15.24

A program to illustrate how to declare, defi ne and accomplish the extension of namespace within a nested
namespace.

#include <iostream>
using namespace std;
namespace Q {
 namespace V {
 int i = 10;

 Templates, Namespace and Exception Handling 719

 void f();
 }
 void V::f()
 {
 cout << “++i = ” << ++i << endl;
 }
 namespace V {
 int j = 20;
 void g();
 }
 void V::g()
 {
 cout << “++j = ” << ++j << endl;
 }
}

int main()
{
 Q::V::f();
 Q::V::g();
 return 0;
}

Output of the above program

++i = 11
++j = 21

15.5.5 Unnamed namespace

It is often useful to wrap a set of declarations in a namespace simply to protect against the possibility of

name clashes without using any namespace name. A namespace is declared without a user-defi ned name is

known as an unnamed namespace. An unnamed namespace has an implied using directive. One can declare

an unnamed namespace as a superior alternative to the use of global static variable declarations.

The general syntax of the unnamed namespace is given below:

namespace
{
 // namespace body
}

An unnamed namespace defi nition having the syntax shown above behaves as if it were replaced by:

namespace unique
{
 // namespace body
}
using namespace unique;

Each unnamed namespace has an identifi er, assigned and maintained by the program and represented

here by unique, that differs from all other identifi ers in the entire program.

For example, the following program segment shows how to declare an unnamed namespace:

namespace
{
 int i;
 void f();
 void g();
}

Unnamed namespaces are a superior replacement for the static declaration of variables. They allow

variables and functions to be visible within an entire translation unit, yet not visible externally. Although

 Programming with C++720

entities in an unnamed namespace might have external linkage, they are effectively qualifi ed by a name

unique to their translation unit and therefore can never be seen from any other translation unit.

 PROGRAM 15.25

A program to show how to use the unnamed namespace declaration.

//using unnamed namespace
#include <iostream>
using namespace std;
namespace {
 int a = 10;
}
namespace {
 int b = 100;
}
void display1()
{
 cout << “display1 = ”;
 cout << a++ << endl;
}

void display2()
{
 cout << “display2 = ”;
 cout << ++b << endl;
}

int main()
{
 display1();
 display2();
 return 0;
}

Output of the above program

display1 = 10
display2 = 101

 PROGRAM 15.26

A program to illustrate how to declare and perform the unnamed namespace in a nested namespace
declaration.

//using unnamed namespace
#include <iostream>
using namespace std;
namespace {
 int a = 10;
 namespace {
 int b = 20;
 namespace {
 int c = 30;
 namespace {
 int d = 40;
 }
 }
 }
}

 Templates, Namespace and Exception Handling 721

void display()
{
 cout << “ ++a = ” << ++a << endl;
 cout << “ ++b = ” << ++b << endl;
 cout << “ ++c = ” << ++c << endl;
 cout << “ ++d = ” << ++d << endl;

}
int main()
{
 display();
 return 0;
}

Output of the above program

++a = 11
++b = 21
++c = 31
++d = 41

15.5.6 The Keyword Using

The keyword using is used to introduce a name from a namespace into the current declarative region. The

general syntax of the keyword using is given below:

 using userde ned_name :: member;

The following program segment shows how to use the keyword using:

namespace A

{
 int x = 5;
}
int main ()
{
 using A::x;
 cout << ++x << endl;
}

 PROGRAM 15.27

A program to illustrate how to use the keyword using for namespace declaration.

// The keyword using
#include <iostream>
using namespace std;
namespace rst
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main ()
{

 Programming with C++722

 using rst::x;
 using second::y
 cout << x << endl;
 cout << y << endl;
 cout << rst::y << endl;
 cout << second::x << endl;
 return 0;
}

Output of the above program

5
2.7183
10
3.1416

Notice how in this code, x (without any name qualifi er) refers to rst::x whereas y refers to

second::y, exactly as our using declarations have specifi ed. We still have access to rst::y and
second::x using their fully qualifi ed names. The keyword using can also be used as a directive to

introduce an entire namespace:

// The keyword using
#include <iostream>
using namespace std;
namespace rst
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main ()
{
 using namespace rst;
 cout << x << endl;
 cout << y << endl;
 cout << second::x << endl;
 cout << second::y << endl;
 return 0;
}

Output of the above program

5
10
3.1416
2.7183

In this case, since we have declared that we were using namespace fi rst, all direct uses of x and y

without name qualifi ers were referring to their declarations in namespace fi rst.

The keyword ‘using’ and ‘using namespace’ have validity only in the same block in which they are

stated or in the entire code if they are used directly in the global scope. For example, if we had the intention

to fi rst use the objects of one namespace and then those of another one, we could do something like:

 Templates, Namespace and Exception Handling 723

// using namespace example
#include <iostream>
using namespace std;

namespace rst
{
 int x = 5;
}

namespace second
{
 double x = 3.1416;
}

int main ()
{
 {
 using namespace rst;
 cout << x << endl;
 }
 {
 using namespace second;
 cout << x << endl;
 }
 return 0;
}

Output of the above program

5
3.1416

15.5.7 The Using Directive

The using directive allows the names in a namespace to be used without the namespace name as an

explicit qualifi er. Of course, the complete, qualifi ed name can still be used to improve readability.

Note the difference between the using directive and the using declaration: the using declaration allows

an individual name to be used without qualifi cation, the using directive allows all the names in a namespace

to be used without qualifi cation.

#include <iostream>
int main()
{
 std::cout << “Hello ”;
 using namespace std;
 cout << “C++ World” << endl;
}

Output of the above program

Hello C++ World

If a local variable has the same name as a namespace variable, the namespace variable is hidden. It is an

error to have a namespace variable with the same name as a global variable.

15.5.8 Namespace std

All the fi les in the C++ standard library declare all of its entities within the std namespace. That is

why we have generally included the using namespace std; statement in all programs that used any

 Programming with C++724

entity defi ned in iostream. The ANSI/ISO C++ standard requires to explicitly declare the namespace in the

standard library.

Whenever the header fi le <iostream> is used in a program, one has to specify the namespace of cout in

one of the following ways:
 std::cout (explicitly)
 using std::cout (using declaration)
 using namespace std (using directive)

15.5.9 Explicit Qualifi cation

Namespace members can be accessed using an explicit qualifi er and the scope resolution operator. The

following program demonstrates how to access the global identifi er using explicit qualifi cation:

int i;
namespace A
{
 int a, b, c;
 namespace B
 {
 int i, j, k;
 }
}

int main()
{
 A::a++;
 A::B::i++; // B’s i
 ::i++; // the global i
}

The statement ::i++ accesses the i that is declared in the fi rst statement of the example. Such usage of

the scope resolution operator without a preceding qualifi er invokes the global namespace.

Usage of explicit qualifi cation might be cumbersome with longer names or in large programs. The

using declaration, using directive, and namespace aliases provide more straightforward ways to reference

namespace members.

 REVIEW QUESTIONS

 1. What is a template? List the merits and demerits of using a template in C++.

 2. In what way a template increases the effi ciency of designing a program?

 3. What are the disadvantages of using a function template in C++?

 4. Defi ne a function template.

 5. Explain how a function template is defi ned and declared in a program.

 6. What are the rules to be followed while defi ning the defi nition of a function template?

 7. What is a class template? List a few applications of defi ning a class with a parameterised data type.

 8. Explain the syntactic rules of declaring the following with class templates:

 (i) constructor

 (ii) destructor

 (iii) default constructor

 9. What is exception handler? What are the keywords used to handle the exception in C++?

 Templates, Namespace and Exception Handling 725

 10. Explain how an exception handler is defi ned and invoked in a program.

 11. List the merits and demerits of defi ning an exception handler in an object-oriented programming.

 12. Explain the importance of namespace declaration in C++.

 13. What is meant by namespace std?

 14. Explain how a nested namespace is used in C++.

 15. What are the advantages of using unnamed namespace?

 CONCEPT REVIEW PROBLEMS

 1. What will be the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
template<class T > T sum (T array[3][3], int n)
{
 T temp = 0;
 for (int i =0; i<= n-1; ++i)
 for (int j = 0; j <= n-1; ++j)
 temp = temp+array[i][j];
 return(temp);
}

int main()
{
 int n = 3, sum1;
 oat sum2;
 static int a[3][3] = {{1,2,3},
 {4,5,6},
 {7,8,9}
 };
 static double b[3][3] = {{1.1,2.2,3.3},
 {4.4,5.5,6.6},
 {7.7,8.8,9.9}
 };
 sum1 = sum(a,n);
 cout << “ sum of the integers = ” << sum1 << endl;
 sum2 = sum(b,n);
 cout << “ sum of the oating point numbers = ” << sum2;
 cout << endl;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T a,b;
 public:
 T nd_min (T a, T b);
};

 Programming with C++726

template <class T>
T sample <T> :: nd_min (T a, T b)
{
 return (a < b ? a : b);
}

int main()
{
 int a = 10, b = 20;
 sample <int> obj1;
 int temp1 = obj1. nd_min(a,b);
 cout << “a = ” << a << “ b = ” << b;
 cout << “ minimum = ” << temp1 << endl;
 double x = 1.1, y = 2.2;
 sample <double> obj2;
 double temp2 = obj2. nd_min(x,y);
 cout << “x = ” << x << “ y = ” << y;
 cout << “ minimum = ” << temp2 << endl;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
template <class T>
class abc {
 private:
 T value;
 public:
 abc() {
 cout << “default constructor \n”;
 }
 abc (int a) {
 cout << “constructor with int argument \n”;
 }
 abc (oat af) {
 cout << “constructor with oating point \n”;
 }
};
int main()
{
 abc<int> obj1(10);
 abc< oat> obj2(-21.22f);
 return 0;
}

 (d)
//using class template
#include <iostream>
using namespace std;
template <class T>
class sample {
 public :
 sample ();
 inline void display();
};

 Templates, Namespace and Exception Handling 727

template <class T>
sample<T> :: sample()
{
 cout <<“class template - constructor \n”;
}

template <class T>
void sample<T> :: display()
{
 cout << “this is a member function \n”;
}

int main()
{
 sample <long int> obj1;
 sample < oat> obj2;
 sample <double> obj3;
 sample <signed char> obj4;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
template <class T>
class sample {
 private:
 T value;
 public:
 sample (T n) : value (n)
 {
 cout << “constructor\n”;
 };
 ~sample ()
 {
 cout << “destructor \n”;
 }
 void display ()
 {
 cout << “ content of the value = ” << value << endl;
 }
};

int main()
{
 sample <int> obj1(10);
 cout << “ integer :” << endl;
 obj1.display();
 return 0;
}

 2. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
#include <string>

 Programming with C++728

using namespace std;
int main()
{
 string str;
 oat a = 1,b = 0.0001,quotient;
 try {
 if (b == 0)
 throw str;
 else
 {
 quotient = a/b;
 cout << “a = ” << a << “ b = ” << b;
 cout <<“ Quotient = ” << quotient << endl;
 }
 }
 catch (string str) {
 cout << “divide by zero”;
 }
 return 0;
}

 (b)
#include <iostream>
#include <string>
using namespace std;
int a[10] = {1,2,3,4,5,6,7,8,9,10};
int main()
{
 string str;
 int sum = 0;
 try {
 for (int i = 0; i <= 9; ++i) {
 if (i >= 5)
 throw str;
 else
 {
 cout <<“element[” << i << “] = ” << a[i];
 cout << endl;
 sum += a[i];
 }
 }
 }
 catch (string str) {
 cout << “Memory out of range\n”;
 }
 cout << “sum = ” << sum << endl;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
class abc {
 public:
 void display(int x, int y);
};

 Templates, Namespace and Exception Handling 729

void abc :: display(int x, int y)
{
 try
 {
 if (y == 0)
 throw y;
 else
 cout << “ x/y = ” << (double) x/ (double) y << endl;
 }
 catch (int)
 {
 cout << “Exception occurred \n”;
 throw;
 }
}
int main()
{
 abc obj;
 try {
 obj.display(1,2);
 }
 catch (int)
 {
 cout <<“Exception occurred in main \n”;
 }
 return 0;
}

 3. What will be the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
int a = 10;
namespace X {
 int a = 20;
}
namespace Y {
 int a = 30;
}
int main()
{
 ++::a;
 ++X::a;
 ++Y::a;
 cout << “::a = ” << ::a << ‘\n’;
 cout << “X::a = ” << X::a << ‘\n’;
 cout << “Y::a = ” << Y::a << ‘\n’;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
int a = 10;
namespace X {
 int a = 20;

 Programming with C++730

}
namespace Y {
 int a = 30;
}
int main()
{
 cout << “::a = ” << ::a-- << ‘\n’;
 cout << “X::a = ” << X::a-- << ‘\n’;
 cout << “Y::a = ” << Y::a-- << ‘\n’;
 return 0;
}

 (c)
#include <iostream>
using namespace std;
int a = 10;
namespace X {
 int a = 20;
}
namespace Y {
 int a = 30;
}
int main()
{
 cout << “::a = ” << --::a << ‘\n’;
 cout << “X::a = ” << ++X::a << ‘\n’;
 cout << “Y::a = ” << Y::a++ << ‘\n’;
 return 0;
}

 (d)
#include <iostream>
using namespace std;
namespace {
 int a = 20;
}
namespace {
 int *ptr;
}
int main()
{
 ptr = &a;
 cout << “*ptr = ” << *ptr << ‘\n’;
 return 0;
}

 (e)
#include <iostream>
using namespace std;
namespace {
 int a = 20;
}
namespace {
 int *ptr;
}
int main()
{

 Templates, Namespace and Exception Handling 731

 ptr = &a;
 cout << “++*ptr = ” << ++(*ptr) << ‘\n’;
 return 0;
}

 (f)
#include <iostream>
using namespace std;
namespace X {
 int a = 20;
}
namespace Y {
 int *ptr;
}
int main()
{
 Y::ptr = &(++X::a);
 cout << “++*ptr = ” << *(Y::ptr) << ‘\n’;
 return 0;
}

 (g)
#include <iostream>
using namespace std;
namespace X {
 int a;
 namespace Y {
 int a;
 }
}
int main()
{
 X::a = 10;
 Y::a = 20;
 cout << “X::a = ” << X::a << ‘\n’;
 cout << “Y::a = ” << Y::a << ‘\n’;
 return 0;
}

 (h)
#include <iostream>
using namespace std;
namespace {
 int a;
 namespace {
 int b;
 }
}
int main()
{
 a = 10;
 b = 20;
 cout << “a = ” << a << ‘\n’;
 cout << “b = ” << b << ‘\n’;
 return 0;
}

 Programming with C++732

 4. Determine the output of each of the following program when it is executed.

 (a)
#include <iostream>
using namespace std;
namespace {
 int a;
 namespace {
 int a;
 }
}
int main()
{
 a = 10;
 cout << “a = ” << a << ‘\n’;
 return 0;
}

 (b)
#include <iostream>
using namespace std;
namespace A {
 int a = 10;
 void display();
}
namespace B {
 int a = 100;
 void display();
}
void A:: display()
{
 cout << “A :: display \n”;
 cout << ++(A::a) << endl;
}

void B:: display()
{
 cout << “B :: display\n”;
 cout << B::a++ << endl;
}

int main()
{
 A::display();
 B::display();
 return 0;
}

 (c)
#include <iostream>
using namespace std;
namespace X {
 int a = 10;
 namespace Y {
 int a = 20;
 }
}

 Templates, Namespace and Exception Handling 733

int main()
{
 cout << “X::a = ” << ++X::a << ‘\n’;
 cout << “X::Y::a = ” << ++X::Y::a << ‘\n’;
 return 0;
}

 (d)
//using unnamed namespace
#include <iostream>
using namespace std;
namespace {
 int a = 10;
}
namespace {
 int b = 100;
}
void display1()
{
 cout << “display1 = ”;
 cout << ++a << endl;
}

void display2()
{
 cout << “display2 = ”;
 cout << ++b << endl;
}

int main()
{
 display1();
 display2();
 return 0;
}

 (e)

//using unnamed namespace
#include <iostream>
using namespace std;
namespace {
 int a = 10;
 namespace {
 int a = 20;
 namespace {
 int a = 30;
 namespace {
 int a = 40;
 }
 }
 }
}
void display()
{
 cout << “ ++a = ” << ++a << endl;

 Programming with C++734

}
int main()
{
 display();
 return 0;
}

 (f)
// using
#include <iostream>
using namespace std;
namespace rst
{
 int x = 5;
 int y = 10;
}
namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}
int main ()
{
 using rst::x;
 using second::y
 cout << x << endl;
 cout << y << endl;
 cout << rst::y << endl;
 cout << second::x << endl;
 return 0;
}

 (g)
// using namespace
#include <iostream>
using namespace std;
namespace rst
{
 int x = 5;
}
namespace second
{
 double x = 3.1416;
}
int main ()
{
 {
 using namespace rst;
 cout << x << endl;
 }
 {
 using namespace second;
 cout << x << endl;
 }
 return 0;
}

 Templates, Namespace and Exception Handling 735

 PROGRAMMING EXERCISES

 1. Write a program in C++ to read a set of integers up to n, where n is defi ned by the user and store

it in a one-dimensional array. Also read a set of fl oating point numbers of the same size and store

it into another array and print the contents of these arrays separately using the function template

technique.

 2. Write a program in C++ to perform the following using the function template concepts:

 (i) to read a set of integers

 (ii) to read a set of fl oating point numbers

 (iii) to read a set of double numbers individually.

 Find out the average of the nonnegative integers and also calculate the deviation of the numbers.

 3. Write a program in C++ using the function template concept to read a set of integers and fl oating

point numbers separately and store it in the corresponding arrays. Again read a number ‘d’ from the

keyboard and check whether the number ‘d’ is present in the arrays. If it is so, print how many times

the number d is repeated in the array.

 4. Write a program in C++ using function template to read two matrices of different data types such

as integers and fl oating point values and fi nd the sum of the matrices of integers and fl oating point

numbers separately, and display the total sums of these arrays individually.

 5. Develop a program in C++ using function template to perform matrix addition of two given integer

matrices, two fl oating point number matrices and double precision value matrices separately.

 6. Develop a program in C++ using function template to perform matrix subtraction of two given

integer matrices, two fl oating point number matrices and double precision value matrices separately.

 7. Develop a program in C++ using function template to perform matrix multiplication of two given

integer matrices, two fl oating point number matrices and double precision value matrices separately.

 8. Write a program in C++ using operator template for the binary numbers to perform a simple

arithmetic operations such as add, subtract, multiply and divide.

 9. Write an object-oriented program in C++ using a class template to read any fi ve parameterised data

type such as fl oat and integer, and print the average.

 10. Write an object-oriented program in C++ to read a set of numbers up to n, where n is defi ned by the

user and print the contents of the array in the reverse order using a class template.

Data File
Operations

Chapter

16

16.1 OPENING AND CLOSING OF FILES

File is a collection of data or a set of characters or may be a text or a program. Basically, there are two types

of fi les in the C++: sequential fi les and random access fi les. The sequential fi les are very easy to create than

random access fi les. In sequential fi les the data or text will be stored or read back sequentially. In random

access fi les, data can be accessed and processed randomly.

The header fi le, <fstream> supports the highly sophisticated input/output stream processing techniques

and to implement input/output for the advanced language features such as classes, derived classes, function

overloading, virtual function and multiple inheritance.

This section describes how to open and close a data fi le using the header fi le <fstream>. The C++

Input and Output (I/O) class package handles fi le I/O as much as it handles standard input and output. The

following methods are used in C++ to read and write fi les:

ifstream - to read a stream of object from a specifi ed fi le

ofstream - to write a stream of object on a specifi ed fi le

fstream - both to read and write a stream of objects on a specifi ed fi le

The header fi le <fstream> is a new class which consists of basic fi le operation routines and functions.

The fstream, ifstream and ofstream are called as derived class as these class objects are already defi ned in

the basic input and output class namely <iostream>.

In this chapter, creation and accession of fi les from secondary storage devices
using the C++ language are explained. C++ supports diff erent types of levels to
access a fi le from the diske e, depending upon the nature of data. This chapter
gives the complete information on fi le operations using C++.

 Data File Operations 737

16.1.1 Opening a File

The following examples illustrate how fi les can be opened for reading and writing in C++. The member

function open () is used to create a fi le pointer for opening a fi le in the disk.

(a) ifstream The header fi le <ifstream> is a derived class from the base class of istream and is used to

read a stream of objects from a fi le. The following program segment shows how a fi le is opened to read a

class of stream objects from a specifi ed fi le:

#include <fstream>
using namespace std;
int main()
{
 ifstream in le;
 in le.open(“data_ le”); // opening a le

 return 0;
}

(b) ofstream The header fi le <ofstream> is derived from the base class of ostream and is used to write a

stream of objects in a fi le. The following program segment illustrates how a fi le is opened to write a class of

stream objects on a specifi ed fi le:

#include <fstream>
using namespace std;
int main()
{
 ofstream in le;
 in le.open(“data_ le”);

 return 0;
}

(c) fstream The header fi le <fstream> is a derived class from the base class of iostream and is used for

both reading and writing a stream of objects on a fi le. The include <fstream> automatically includes the

header fi le <iostream>. The following program segement shows how a fi le is opened for both reading and

writing a class of stream objects from a specifi ed fi le.

#include <fstream>
using namespace std;
int main()
{
 fstream in le;
 in le.open(“data_ le”, ios::in | ios::out);

 return 0;
}

When a fi le is opened for both reading and writing, the I/O streams keep track of two fi le pointers — one

for input operation and the other for output operation.

Note that for an instance istream (input), the default mode is ios:: in; for ofstream instance, the default

mode is ios:: out. However, for an fstream (input/output) instance, there is no default mode. The bitwise

OR operator is used to declare more than one mode. Following table 16.1 is the list of member functions

used as fi le attributes for the various kinds of fi le opening operation:

 Programming with C++738

Table 16.1

Name of the

member function

Meaning

ios:: in open a fi le for reading

ios:: out open a fi le for writing

ios:: app append at the end of a fi le

ios:: ate seek to the end of a fi le upon opening instead of

beginning

ios:: trunc delete a fi le if it exists and recreate it

ios:: nocreate open a fi le if a fi le does not exist

ios:: replace open a fi le if a fi le does exist

ios:: binary open a fi le for binary mode; default is text

16.1.2 Closing a File

The member function close () is used to close a fi le which has been opened for fi le processing such as to

read, to write and for both to read and write. The close () member function is called automatically by the

destructor functions. However, one may call this member function to close the fi le explicitly. The close

member function will not contain any arguments. The general syntax of the close () member function is:

#include <fstream>
using namespace std;
int main()
{
 fstream in le;
 in le.open(“data_ le”, ios::in | ios::out);

 in le.close (); // calling to close the le
 return 0;
}

16.2 STREAM STATE MEMBER FUNCTIONS

In C++, fi le stream classes inherit a stream state member from the ios class. The stream state member

functions give the information status like end of fi le has been reached or fi le open failure and so on. The

following stream state member functions are used for checking the open failure if any, when one attempts

to open a fi le from the diskette.
eof()
fail()
bad()
good()

(a) eof() The eof() stream state member function is used to check whether a fi le pointer has reached the

end of a fi le character or not. If it is successful, eof() member function returns a nonzero, otherwise returns

0. The general syntax of the eof() stream state member function is:

#include <fstream>
using namespace std;

 Data File Operations 739

int main()
{
 ifstream in le;
 in le.open(“text”);
 while (!in le.eof()) {

 }
 return 0;
}

(b) fail() The fail() stream state member function is used to check whether a fi le has been opened for

input or output successfully, or any invalid operations are attempted or there is an unrecoverable error. If it

fails, it returns a nonzero character. The general syntax of the fail () stream state member function is:

#include <fstream>
using namespace std;
int main()
{
 ifstream in le;
 in le.open(“text”);
 while (!in le.fail()) {
 cout << “ couldn’t open a le ” << endl;
 continue;

 }
 return 0;
}

(c) bad() The bad() stream state member function is used to check whether any invalid fi le operations

has been attempted or there is an unrecoverable error. The bad() member function returns a nonzero if it is

true; otherwise returns a zero. The general syntax of the bad() stream state member function is:

#include <fstream>
#include <cstdlib>
using namespace std;
int main()
{
 ifstream in le;
 in le.open(“text”);
 if (in le.bad()) {
 cerr << “ open failure ” << endl;
 exit(1);
 }

}

(d) good() The good() stream state member function is used to check whether the previous fi le

operation has been successful or not. The good() returns a nonzero if all stream state bits are zero. The

general syntax of the good() stream state member function is:

#include <fstream>
#include <cstdlib>
using namespace std;
int main()

 Programming with C++740

{
 ifstream in le;
 in le.open(“text”);
 if (in le.good()) {

 }
}

16.3 READING/WRITING A CHARACTER FROM A FILE

The following member functions are used for reading and writing a character from a specifi ed fi le.
get()
put()

(a) get() The get() member function is used to read an alphanumeric character from a specifi ed fi le. The

general syntax of the get() function is:

#include <fstream>
using namespace std;
int main()
{
 ifstream in le;
 char ch;
 in le.open (“text”);

 while ((!in le.eof()) {
 ch = in le.get()

 } // end of while loop
}

(b) put() The put() member function is used to write a character to a specifi ed fi le or a specifi ed output

stream. The general syntax of the put() member function is:

#include <fstream>
using namespace std;
int main()
{
 ofstream out le;
 char ch;
 out le.open (“text”);

 while ((!iout le.eof()) {
 ch = out le.get()
 cout.put(ch) // display a character onto a screen

 }
}

 Data File Operations 741

 PROGRAM 16.1

A program to demonstrate the writing of a set of lines to a specifi ed fi le, namely, “text.dat”.

//storing a text on a le
#include <fstream>
using namespace std;
int main()
{
 ofstream out le;
 out le.open(“text.dat”);
 out le << “ this is a test \n”;
 out le << “ program to store \n”;
 out le << “ a set of lines onto a le \n”;
 out le.close();
 return 0;
}

The contents of the “text.dat” fi le

this is a test
program to store
a set of lines onto a le

 PROGRAM 16.2

A program to illustrate the writing of a set of lines to a user-defi ned fi le where name of the fi le is specifi ed
in the user-defi ned mode.

//storing a text on a speci ed le
#include <iostream>
#include <fstream>
using namespace std;
int main()
{
 ofstream out le;
 char fname[10];
 cout << “ enter a le name to be opened ?\n”;
 cin >> fname;
 out le.open(fname);
 out le << “ this is a test \n”;
 out le << “ program to store \n”;
 out le << “ a set of lines onto a le \n”;
 out le.close();
 return 0;
}

Output of the above program

enter a le name to be opened
data

The contents of the le called “data”
this is a test
program to store
a set of lines onto a le

 Programming with C++742

 PROGRAM 16.3

A program to read a set of lines from the keyboard and to store it on a specifi ed fi le.

//reading a text and store it on a speci ed le
#include <iostream>
#include <fstream>
using namespace std;
const int MAX = 2000;
int main()
{
 ofstream out le;
 char fname[10],line[MAX];
 cout << “ enter a le name to be opened ?\n”;
 cin >> fname;
 out le.open(fname);
 cout << “ enter a set of lines and terminate with @\n”;
 cin.get(line,MAX,’@’);
 cout << “ given input \n”;
 cout << line;
 cout << “ storing onto a le\n”;
 out le << line;
 out le.close();
 return 0;
}

Output of the above program

enter a le name to be opened?
 data
enter a set of lines and terminate with @
 this
 is a
 test program
 by Ravich
 @
given input
 this
 is a
 test program
 by Ravich
storing onto a le

 PROGRAM 16.4

A program to demonstrate how to read a text fi le and to display the contents on the screen.

// reading and displaying a text le
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
int main()
{
 ifstream in le;
 char fname1[10];
 char ch;
 cout << “ enter a le name ? \n”;

 Data File Operations 743

 cin >> fname1;
 in le.open(fname1);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 while (!in le.eof()) {
 ch = (char)in le.get();
 cout.put(ch);
 }
 in le.close();
 return 0;
}

 PROGRAM 16.5

A program to copy the contents of a text fi le into another.

// le copy
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
int main()
{
 ofstream out le;
 ifstream in le;
 char fname1[10],fname2[10];
 char ch;
 cout << “ enter a le name to be copied ? \n”;
 cin >> fname1;
 cout << “ new le name ? \n”;
 cin >> fname2;
 in le.open(fname1);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 out le.open(fname2);
 if (out le.fail()) {
 cerr << “ unable to create a le \n”;
 exit(1);
 }
 while (!in le.eof()) {
 ch = (char)in le.get();
 out le.put(ch);
 }
 in le.close();
 out le.close();
 return 0;
}

Output of the above program

enter a le name to be copied?
data
new le name?
tempdata

 Programming with C++744

 PROGRAM 16.6

A program to perform the deletion of white spaces such as horizontal tab, vertical tab, space, line feed,
new line and carriage return, from a text fi le and to store the contents of the fi le without white spaces on
another fi le.

// deleting white spaces from a text le
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
int main()

{
 ofstream out le;
 ifstream in le;
 char fname1[10],fname2[10];
 char ch;
 cout << “ enter a le name to be copied ? \n”;
 cin >> fname1;
 cout << “ new le name ? \n”;
 cin >> fname2;
 in le.open(fname1);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 out le.open(fname2);
 if (out le.fail()) {
 cerr << “ unable to create a le \n”;
 exit(1);
 }
 while (!in le.eof()) {
 ch = (char)in le.get();
 if (ch == ‘ ’ || ch == ‘\t’ || ch == ‘\n’)
 ;
 else
 out le.put(ch);
 }
 in le.close();
 out le.close();
 return 0;
}

Output of the above program

content of the input le
this is a
test program
by Sampath K Reddy

content of the output le

thisisatestprogrambySampathKReddy

 PROGRAM 16.7

A program to convert a lower case character to an upper case character of a text fi le.

 Data File Operations 745

// converting a lower case to upper case letters
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
#include <cctype>
using namespace std;
int main()
{
 ofstream out le;
 ifstream in le;
 char fname1[10],fname2[10];
 char ch,uch;
 cout << “ enter a le name to be copied ? \n”;
 cin >> fname1;
 cout << “ new le name ? \n”;
 cin >> fname2;
 in le.open(fname1);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 out le.open(fname2);
 if (out le.fail()) {
 cerr << “ unable to create a le \n”;
 exit(1);
 }
 while (!in le.eof()) {
 ch = (char)in le.get();
 uch = toupper(ch);
 out le.put(uch);
 }
 in le.close();
 out le.close();
 return 0;
}

Input fi le

this is a
test program
by Sampath K Reddy

Output fi le

THIS IS A
TEST PROGRAM
BY SAMPATH K REDDY

16.4 BINARY FILE OPERATIONS

In C++, by default the fi le stream operations are performed in text mode but supports binary fi le operations

also. A binary fi le is a sequential access fi le in which data are stored and read back one after another in

the binary format instead of ASCII characters. For example, a binary fi le contains integer, fl oating point

number, array of structures, etc. Binary fi le processing is well suited for the design and development of a

complex data base or to read and write a binary information.

The text fi le created by C++ can be edited by an ordinary editor or by a word processor. The text fi le can

easily be transferred from one computer system to another. On the other hand, a binary fi le is more accurate

for numbers because it stores the exact internal representation of a value. There are no conversion errors

or round off errors. Saving data in binary format can be faster as there is no conversion taking place while

storing data to a fi le. The binary format data fi le normally takes less space.

 Programming with C++746

However, binary format data fi le cannot be easily transferred from one computer system to another due

to variations in the internal representation of the data from one computer to another. In order to open a

binary fi le, it is required to use the following mode:

 in le (“data”, ios:: binary);

The following program segment shows how to open a binary fi le in C++:

#include <fstream>
using namespace std;
int main()
{
 ofstream out le;
 out le (“data”, ios:;binary);

}

 PROGRAM 16.8

A program to open a binary fi le for storing a set of numbers on a specifi ed fi le.

// storing data on a le
// using binary le operations
#include <fstream>
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 ofstream out le;
 char fname[10];
 oat x,y,temp;
 cout << “ enter a le name ? \n”;
 cin >> fname;
 out le.open(fname,ios::out | ios::binary);
 x = 1.5;
 y = 10.5;
 cout << “x temp ” << endl;
 while (x <= y) {
 temp = x*x;
 out le << x << ‘\t’ << temp << endl;
 cout << x << ‘\t’ << temp << endl;
 x = x+1.5;
 }
 out le.close();
 return 0;
}

Output of the above program

enter a le name?
data
The content of the le called “data”
1.5 2.25
3 9
4.5 20.25
6 36
7.5 56.25
9 81
10.5 110.25

 Data File Operations 747

16.5 CLASSES AND FILE OPERATIONS

Since C++ is an OOP language, it is reasonable to study how objects can be read and written onto a fi le.

This section presents how objects can be written to and read from the external device, normally a disk.

The header fi le <fstream> must be included for handling the fi le input and output operations. The mode

of fi le operations such as to read, to write and both to read and write should be defi ned. The binary fi le

operations required to handle the input and output are carried out using the member functions get() and

put() for insertion and extraction operators. The member functions read() and write() are used to

read and write a stream of objects from a specifi ed fi le respectively.

(a) Reading an Object from a File The read() member function is used to get data for the stream of object

from a specifi ed fi le. The general syntax of the read() member function is

 in le.read((char *) &obj, sizeof(obj));

The following program segment shows how to read a class of objects from a fi le using read () member

function:

// reading an object from a le
#include <fstream>
using namespace std;
class student_info {
 protected:
 char name[20];
 int age;
 char sex;
 public:
 void getdata();
 void display();
};
int main()
{
 student_info obj;
 fstream in le;
 in le.open(“data”, ios:: in);
 in le.read ((char*) &obj,sizeof(obj));

 in le.close();
}

(b) Writing an Object to a File The write() member function is used to save the stream of objects on a

specifi ed fi le. The general syntax of the write() member function is:

 in le.write((char *) &obj, sizeof(obj));

The following program segment illustrates how to write an object to a fi le using write() member

function.

//writing an object on a le
#include <fstream>
using namespace std;
class student_info {
 protected:
 char name[20];
 int age;

 Programming with C++748

 char sex;
 public:
 void getdata();
 void display();
};
int main()
{
 student_info obj;
 fstream out le;
 out le.open(“data”, ios::out);
 out le.write ((char*) &obj,sizeof(obj));

 out le.close();
}

 PROGRAM 16.9

A program to read the class object of student_info such as name, age, sex, height and weight from
the keyboard and to store them on a specifi ed fi le using read() and write() member functions. Again,
the same fi le is opened for reading and displaying the contents of the fi le on the screen.

// classes and le operations using read and write
#include <fstream>
#include <iostream>
#include <iomanip>
using namespace std;
class student_info {
 protected :
 char name[20];
 int age;
 char sex;
 oat height;
 oat weight;
 public :
 void getdata();
 void display();
};
void student_info :: getdata()
{
 cout << “ Enter the following information \n”;
 cout << “ name :”;
 cin >> name;
 cout << “ age :”;
 cin >> age;
 cout << “ sex :”;
 cin >> sex;
 cout << “ Height :”;
 cin >> height ;
 cout << “ Weight :”;
 cin >> weight;
}
void student_info :: display()
{
 cout << name << setw(5) << age << setw(10) << sex
 << setw(5) << height << setw(5) << weight << endl;
}

int main()
{

 Data File Operations 749

 student_info obj;
 fstream in le;
 char fname[10];
 cout << “ enter a le name to be stored ? \n”;
 cin >> fname;
 in le.open(fname, ios:: in | ios::out);
 // reading from the keyboard
 obj.getdata();
 // storing onto the le
 in le.open(fname, ios::out);
 cout << “ storing onto the le......\n”;
 in le.write ((char*) &obj,sizeof(obj));
 in le.close();
 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 in le.read ((char*) &obj,sizeof(obj));
 obj.display();
 in le.close();
 return 0;
}

Output of the above program

enter a le name to be stored?
data
Enter the following information
name: Ahmed.K
age: 19
sex: M
Height: 156
Weight: 50

storing onto the le......
reading from the le......
Ahmed.K 19 M 156 50

 PROGRAM 16.10

A program to read a set of text from a specifi ed fi le using OOPs technique.

// read and display a text le
// using OOPs technique
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
class abc {
 public:
 void leread();
};

void abc:: leread()
{
 ifstream in le;
 char fname[10];
 char ch;
 cout << “ enter a le name to be opened ?\n”;
 cin >> fname;
 in le.open(fname);

 Programming with C++750

 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 cout << “ reading from the le ...\n”;
 while (!in le.eof()) {
 ch = (char)in le.get();
 cout.put(ch);
 }
 in le.close();
}

int main()
{
 abc obj;
 obj. leread();
 return 0;
}

Output of the above program

enter a le name to be opened?
data.txt
reading from the le ...
this is a test
program by Ahmed

 PROGRAM 16.11

A program to read a set of lines from the keyboard and to store it on a specifi ed fi le using OOPs technique.
The same fi le is used to read and display its contents on the video screen.

// read and display a text le
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
class abc {
 public:
 char a[2000];
 void getdata();
 void display();
 void leread();
 void lesave();
};
void abc :: getdata()
{
 char ch;
 int i = 0;
 cout <<“enter a line of text and terminate with @\n”;
 while ((ch = cin.get()) != ‘@’) {
 a[i++] = ch;
 }
 a[i++] = ‘\0’;
}
void abc :: display()
{
 cout << “contents of a character array \n”;
 for (int i = 0; a[i] != ‘\0’; ++i)
 cout.put(a[i]);
}

 Data File Operations 751

void abc:: leread()
{
 ifstream in le;
 char fname[10];
 char ch;
 cout << “ enter a le name to be opened ?\n”;
 cin >> fname;
 in le.open(fname);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 cout << “ reading from the le ...\n”;
 while (!in le.eof()) {
 ch = (char)in le.get();
 cout.put(ch);
 }
 in le.close();
}

void abc:: lesave()
{
 ofstream out le;
 char fname[10],ch;
 cout << “ enter a le name to be saved ?\n”;
 cin >> fname;
 out le.open(fname);
 if (out le.fail()) {
 cerr << “ unable to create a le \n”;
 exit(1);
 }
 cout << “ saving onto the le ...\n”;
 for (int i = 0; a[i] != ‘\0’; ++i) {
 ch = (char)a[i];
 out le.put(ch);
 }
 out le.close();
}

int main()
{
 abc obj;
 obj.getdata();
 obj.display();
 obj. lesave();
 obj. leread();
 return 0;
}

Output of the above program

enter a line of text and terminate with @
this is
a test
program by
Sampath K Reddy
@

contents of a character array
this is
a test
program by
Sampath K Reddy

 Programming with C++752

enter a le name to be saved?
data

saving onto the le ...
enter a le name to be opened?
data

reading from the le ...
this is
a test
program by
Sampath K Reddy

 PROGRAM 16.12

A program to read a text fi le and fi nd out the number of characters and lines that are stored in the given
fi le using OOPs technique.

// nding number of characters and lines
// of a given text le
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cstdlib>
using namespace std;
class abc {
 public:
 void leread();
};

void abc:: leread()
{
 ifstream in le;
 char fname[10];
 char ch;
 int nch,nln;
 cout << “ enter a le name to be opened ?\n”;
 cin >> fname;
 in le.open(fname);
 if (in le.fail()) {
 cerr << “ No such a le exists \n”;
 exit(1);
 }
 nch = 0; nln = 0;
 cout << “ reading from the le ...\n”;
 while (!in le.eof()) {
 ch = (char)in le.get();
 if (ch == ‘\n’)
 nln++;
 ++nch;
 cout.put(ch);
 }
 cout << “Characters = ” << nch-1 << “, Lines = ” << nln-1;
 cout << ‘\n’;
 in le.close();
}

int main()
{
 abc obj;
 obj. leread();

 Data File Operations 753

 return 0;
}

Output of the above program

enter a le name to be opened?
data

reading from the le ...
this is
a test

Characters = 16, Lines = 2

16.6 STRUCTURES AND FILE OPERATIONS

It has already been stated that a structure is a user-defi ned data type whose elements are heterogeneous

types. This section lays emphasis on how a structure data can be read and written from a specifi ed fi le. An

array of structures can be stored and accessed using fi le handling commands. Sometimes, it may be required

to store collective structure elements and retrieve them in the similar format. The following program

segment illustrates how a fi le is opened for reading and writing a structure data type.

 PROGRAM 16.13

A program to read a data for the structure elements such as name, age, sex, height and weight from the
keyboard and to store them on a specifi ed fi le using read () and write () member functions. Again, the
same fi le is opened for reading and displaying the contents of the fi le on the screen.

// structures and le operations
#include <iostream>
#include <iomanip>
#include <fstream>
const int MAX = 200;
using namespace std;
struct school {
 char name[20];
 int age;
 char sex;
 oat height;
 oat weight;
};
int main()
{
 struct school student[MAX];
 fstream in le;
 char fname[10];
 int i,n;
 cout << “ enter a le name to be stored ? \n”;
 cin >> fname;
 in le.open(fname, ios:: in | ios::out);
 // reading from the keyboard
 cout << “ How many records are to be stored ? \n”;
 cin >> n;
 cout << “ enter the following information \n”;
 for (i=0; i<= n-1; ++i) {
 cout << “ name : ” ;
 cin >> student[i].name;
 cout << “ age : ”;

 Programming with C++754

 cin >> student[i].age;
 cout << “ sex : ”;
 cin >> student[i].sex;
 cout << “ height : ”;
 cin >> student[i].height;
 cout << “ weight : ”;
 cin >> student[i].weight;
 }
 // storing onto the le
 in le.open(fname, ios::out);
 cout << “ storing onto the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.write ((char*) &student[i],sizeof(student[i]));
 }
 in le.close();
 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.read ((char*) &student[i],sizeof(student[i]));
 cout << student[i].name << setw(5) << student[i].age
 << setw(10) << student[i].sex << setw(5) <<
 student[i].height << setw(5) << student[i].weight
 << endl;
 }
 in le.close();
 return 0;
}

Output of the above program
enter a le name to be stored?
data

How many records are to be stored?
2
enter the following information
name: Antony
age: 23
sex: M
height: 167
weight: 56

name: Velusamy
age: 22
sex: M
height: 178
weight: 67
storing onto the le......
reading from the le......
Antony 23 M 167 56
Velusamy 22 M 178 67

16.7 ARRAY OF CLASS OBJECTS AND FILE OPERATIONS

In Chapter 10 on “Classes and Objects”, how to defi ne and declare an array of class objects in C++ has

been explained. In this section, how to read and write a class of objects from a specifi ed fi le is detailed.

It is well known that an array is a user-defi ned data type whose elements are homogeneous and stored in

consecutive memory locations. For practical applications, an array of class objects are essential to construct

 Data File Operations 755

complex data base systems and hence it is meaningful to study how an array of class objects are read and

written on a fi le.

The following program segment illustrates how to read and write an array of class objects from a fi le.

#include <fstream>
using namespace std;
int const max = 200;
class employee_info {
 protected:
 char name[20];
 int age;
 public:
 void getdata();
 void display();
};

int main()
{
 student_info obj[max];
 fstream in le;
 in le.open(“data”, ios:: in | ios::out);
 // storing onto the le
 in le.open(fname, ios::out);

 cout << “ storing onto the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.write ((char*) &obj[i],sizeof(obj[i]));
 }

 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.read ((char*) &obj[i],sizeof(obj[i]));
 obj[i].display();
 }
 in le.close();
}

 PROGRAM 16.14

A program to read an array of class object of student_info such as name, age, sex, height and weight from
the keyboard and to store them on a specifi ed fi le using read () and write () member functions. Again, the
same fi le is opened for reading and displaying the contents of the fi le on the screen.

// array of class objects and le operations
#include <fstream>
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 200;
class student_info {

 Programming with C++756

 protected:
 char name[20];
 int age;
 char sex;
 oat height;
 oat weight;
 public:
 void getdata();
 void display();
};
void student_info :: getdata()
{
 cout << “ name:”;
 cin >> name;
 cout << “ age:”;
 cin >> age;
 cout << “ sex:”;
 cin >> sex;
 cout << “ Height:”;
 cin >> height ;
 cout << “ Weight:”;
 cin >> weight;
}

void student_info :: display()
{
 cout << name << setw(5) << age << setw(10) << sex
 << setw(5) << height << setw(5) << weight << endl;
}
int main()
{
 student_info obj[MAX];
 fstream in le;
 char fname[10];
 int i,n;
 cout << “ enter a le name to be stored ? \n”;
 cin >> fname;
 in le.open(fname, ios:: in | ios::out);
 cout << “ How many objects are to be stored ? \n”;
 cin >>n;
 // reading from the keyboard
 cout << “ Enter the following information \n”;
 for (i =0; i <= n-1; ++i) {
 int j = i;
 cout << endl;
 cout << “ object = ” << j+1 << endl;
 obj[i].getdata();
 }
 // storing onto the le
 in le.open(fname, ios::out);
 cout << “ storing onto the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.write ((char*) &obj[i],sizeof(obj[i]));
 }
 in le.close();
 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.read ((char*) &obj[i],sizeof(obj[i]));
 obj[i].display();
 }
 in le.close();
 return 0;

}

 Data File Operations 757

 Output of the above program

enter a le name to be stored?
data
How many objects are to be stored?
2
Enter the following information

object = 1
name: Madasamy.K
age: 24
sex: M
Height: 189
Weight: 90

object = 2
name: Mary.L
age: 22
sex: F
Height: 156
Weight: 45

storing onto the le......
reading from the le......
Madasamy.K 24 M 189 90
Mary.L 22 F 156 45

16.8 NESTED CLASSES AND FILE OPERATIONS

In Chapter 10 on “ Classes and Objects ”, it has already been stated that a class can be a member of another

class. When a class is declared as a member of another class, then it is called as a nested class or a class

within class. When a class is declared as a member of another class, it contains only the scoping of another

class. The object of the outer class does not contain the object of the inner class. In this section, the reading

and writing of the nested class objects from a fi le is described in detail.

The following program segment illustrates how to read and write a nested class of objects from a fi le.

// array of nested class objects using le operations
#include <fstream>
using namespace std;
class student_info {
 private:
 char name[20];
 public:
 void getbase();
 void display();
 class date {
 private:
 int year;
 public:
 void getdate();
 void show_date();
 class age_class {
 private:
 int age;

 Programming with C++758

 public:
 void getage ();
 void show_age();
 }; // end of age_class;
 }; // end of date class
};// end of student_info class declaration

int main()
{
 student_info obj1;
 student_info::date obj2;
 student_info::date::age_class obj3;
 fstream in le;
 in le.open(fname, ios:: in | ios::out);

 // storing onto the le
 in le.open(fname, ios::out);
 cout << “ storing onto the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.write ((char*) &obj1,sizeof(obj1));
 in le.write ((char*) &obj2,sizeof(obj2));
 in le.write ((char*) &obj3,sizeof(obj3));
 }
 in le.close();

 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.read ((char*) &obj1,sizeof(obj1));
 in le.read ((char*) &obj2,sizeof(obj2));
 in le.read ((char*) &obj3,sizeof(obj3));
 obj1.display();
 obj2.show_date();
 obj3.show_age();
 }
 in le.close();
}

 PROGRAM 16.15

A program to demonstrate how to read data from an array of nested class objects from the keyboard and
to write it in a specifi ed fi le.

// array of nested class objects using le operations
#include <fstream>
#include <iostream>
#include <iomanip>
using namespace std;
const int MAX = 100;
class student_info {
 private:
 char name[20];

 Data File Operations 759

 long int rollno;
 char sex;
 public:
 void getbase();
 void display();
 class date {
 private:
 int day;
 int month;
 int year;
 public:
 void getdate();
 void show_date();
 class age_class {
 private:
 int age;
 public:
 void getage ();
 void show_age();
 }; // end of age_class;
 }; // end of date class declaration
};// end of student_info class declaration

void student_info :: getbase()
{
 cout << “ enter a name: ”;
 cin >> name;
 cout << “ roll no:”;
 cin >> rollno;
 cout << “ sex:”;
 cin >> sex;
}
void student_info::date :: getdate()
{
 cout << “ enter a date of birth\n”;
 cout << “ day:”;
 cin >> day;
 cout << “ month:”;
 cin >> month;
 cout << “ year:”;
 cin >> year;
}
void student_info::date ::age_class:: getage ()
{
 cout << “ enter an age:”;
 cin >>age;
}
void student_info:: display()
{
 cout << name << “ ” <<‘\t’;
 cout << rollno << “ ”;
 cout << sex << “ ”;
}
void student_info::date::show_date()
{
 cout << day << ‘/’ << month << ‘/’ << year << ‘\t’;
}
void student_info::date::age_class::show_age()
{
 cout << ‘\t’<< age << endl;
}

int main()
{
 student_info obj1[MAX];
 student_info::date obj2[MAX];

 Programming with C++760

 student_info::date::age_class obj3[MAX];
 int n,i;
 fstream in le;
 char fname[10];
 cout << “ enter a le name to be stored ? \n”;
 cin >> fname;
 in le.open(fname, ios:: in | ios::out);
 cout << “ how many students ?\n”;
 cin >> n;
 // reading from the keyboard
 cout << “ enter the following information \n”;
 for (i=0; i<= n-1; ++i) {
 int j = i+1;
 cout << “ \n object : ” << j << endl;
 obj1[i].getbase();
 obj2[i].getdate();
 obj3[i].getage();
 }
 // storing onto the le
 in le.open(fname, ios::out);
 cout << “ storing onto the le......\n”;
 for (i=0; i<=n-1; ++i){
 in le.write ((char*) &obj1[i],sizeof(obj1[i]));
 in le.write ((char*) &obj2[i],sizeof(obj2[i]));
 in le.write ((char*) &obj3[i],sizeof(obj3[i]));
 }
 in le.close();
 // reading from the le
 in le.open(fname, ios::in);
 cout << “ reading from the le......\n”;
 cout << “\n\n\n” << endl;
 cout << “ Contents of the array of nested classes \n”;
 cout << “ ---\n”;
 cout << “ student’s_name Roll_no sex date_of_birth age \n”;
 cout << “ ---\n”;
 for (i=0; i<=n-1; ++i){
 in le.read ((char*) &obj1[i],sizeof(obj1[i]));
 in le.read ((char*) &obj2[i],sizeof(obj2[i]));
 in le.read ((char*) &obj3[i],sizeof(obj3[i]));
 obj1[i].display();
 obj2[i].show_date();
 obj3[i].show_age();
 }
 cout << “ ---\n”;
 in le.close();
 return 0;
}

Output of the above program

enter a le name to be stored?
data
how many students?
3
enter the following information

object: 1
enter a name: Antony
roll no: 27001
sex: M
enter a date of birth
day: 21
month: 12
year: 1980

 Data File Operations 761

enter an age: 26

object: 2
enter a name: Ahmed.M
roll no: 27002
sex: M
enter a date of birth
day: 12
month: 11
year: 1981
enter an age: 25

object: 3
enter a name: Kuppusamy
roll no: 27004
sex: M
enter a date of birth
day: 10
month: 7
year: 1981
enter an age: 25

storing onto the le......
reading from the le......

Contents of the array of nested classes

--––

student’s_name Roll_no sex date_of_birth age

--––

Antony 27001 M 21/12/1980 26
Ahmed.M 27002 M 12/11/1981 25
Kuppusamy 27004 M 10/7/1981 25

--––

16.9 RANDOM ACCESS FILE PROCESSING

So far, how a sequential fi le could be declared and accessed in C++ has been explained. A sequential

access fi le is very easy to create than a random access fi le. In the sequential access fi le, data are stored

and retrieved one after another. The fi le pointer always move from the starting of the fi le to the end of fi le.

On the other hand, a random access fi le need not necessarily start from the beginning of the fi le and move

towards end of the fi le. Random access means moving the fi le pointer directly to any location in the fi le

instead of moving it sequentially. The random access approach is often used with data base fi les.

In order to perform both reading and modifying an object of a data base, a fi le should be opened with

mode of access for both to read and to write. The header fi le < fstream> is required to declare a random

access fi le. As stated in the previous section that fstream is a class which is based on both the classes

of ifstream and ofstream. The fstream inherits two fi le pointers, one for the input buffer and the

other for the output buffer for handling a random access fi le both for reading and writing.

Declaring a Random Access File The random access fi le must be opened with the following mode of access

(Table 16.2):

 Programming with C++762

Table 16.2

Mode of Access Meaning

ios:: in in order to read a fi le

ios:: out in order to write a fi le

ios:: ate in order to append

ios:: binary binary format

The following program segment shows how a random access fi le is opened for both reading and writing.

#include <fstream>
using namespace std;
int main()
{
 fstream le;
 le.open(fname, ios:: in | ios:: out | ios:: ate | ios:: binary);

}

It is essential to open a random access fi le with the following mode of access in order to perform read,

write and append. The fi le should be declared as a binary status as the data members of a class is stored in a

binary format. The fstream inherits the following member functions in order to move the fi le pointer in

and around the data base (Table 16.3).

Table 16.3

Enumerated Value File Position

ios::beg from the beginning of the fi le

ios::cur from the current fi le pointer position

ios::end from the end of the fi le

The following member functions are used to process a random access fi le.

(a) seekg() The seekg() member function is used to position fi le operations for random input operations.

For example, the following program segment shows the positioning of the fi le operation for a random

access fi le
#include <fstream>
using namespace std;
int main()
{
 fstream in le;

 in le.seekg(40); // goto byte number 40

 in le.seekg(40,ios::beg); // same as the above

 in le.seekg(0,ios::end); // goto the end of le

 in le.seekg(0); // goto start of the le

 in le.seekg(-1, ios::cur); // the le pointer is moved

 // back end by one byte
}

(b) seekp() The seekp() member function is used to position fi le operations for random output operations.

(c) tellg() The tellg() member function is used to check the current position of the input stream.

(d) tellp() The tellp() member function is used to check the current position of the output stream.

 Data File Operations 763

 PROGRAM 16.16

A program to demonstrate how to read a character from a random access fi le using seekg() method.

//reading from the le
#include <iostream>
#include <fstream>
using namespace std;
int main()
{
 fstream in le;
 char fname[20];
 char ch;
 cout << “enter a le name ?\n”;
 cin >> fname;
 in le.open(fname, ios::in | ios :: out);
 in le.seekg(5L,ios::beg);
 in le.get(ch);
 cout << “after 5 characters from beginning = ” << ch;
 cout << ‘\n’;
 in le.seekg(-10L,ios::end);
 in le.get(ch);
 cout << “10 characters before end = ” << ch;
 cout << ‘\n’;
 in le.seekg(0,ios::cur);
 in le.get(ch);
 cout << “current character = ” << ch;
 in le.close();
 return 0;
}

Output of the above program

The fi le called “data.txt” consists of the following contents:

abcdefghijklmnopqrstuvwxyz

enter a le name?
data.txt
after 5 characters from beginning = f
10 characters before end = r
current character = s

 PROGRAM 16.17

A program to read a class object of student_info such as name, roll number, sex, age, height and weight
from the keyboard and to store them on a specifi ed fi le using write() member functions.

//storing records into the random access le
#include <iostream>
#include <fstream>
using namespace std;
struct student_info {
 char name[25];
 long int rollnumber;
 char sex;
 int age;
 oat height;
 oat weight;

 Programming with C++764

};
int main()
{
 fstream in le;
 student_info obj[100];
 char fname[20];
 int n;
 cout << “enter a le name ?\n”;
 cin >> fname;
 in le.open(fname, ios::out | ios :: binary);
 if (!in le)
 {
 cout << “Error in opening le \n”;
 return 0;
 }
 cout << “ How many records ? \n”;
 cin >> n;
 for (int i = 0; i <= n-1; ++i) {
 cout << “ Name : \n”;
 cin >> obj[i].name;
 cout << “ Roll Number : \n”;
 cin >> obj[i].rollnumber;
 cout << “ Sex : \n”;
 cin >> obj[i].sex;
 cout << “ Age : \n”;
 cin >> obj[i].age;
 cout << “ Height : \n”;
 cin >> obj[i].height;
 cout << “ Weight : \n”;
 cin >> obj[i].weight;
 }
 cout << “ storing data onto the le ...\n”;
 for (int i = 0; i <= n-1; ++ i) {
 in le.write((char *) &obj[i],sizeof(obj[i]));
 }
 in le.close();
 return 0;
}

Output of the above program

enter a le name?
data
How many records?
1
Name : Velusamy
Roll Number : 27001
Sex : M
Age : 24
Height : 167
Weight : 65

storing data onto the le ...

 PROGRAM 16.18

A program to demonstrate how to read a class object of student_info such as name, roll number, sex, age,
height and weight from a random access fi le using seekg() method.

//reading records from the random access le
#include <iostream>
#include <fstream>
using namespace std;

 Data File Operations 765

struct student_info {
 char name[25];
 long int rollnumber;
 char sex;
 int age;
 oat height;
 oat weight;
};
//function prototype
long bytesize(int recordnumber);
void display (student_info obj);

int main()
{
 fstream in le;
 student_info obj;
 char fname[20];
 char ch;
 cout << “enter a le name ?\n”;
 cin >> fname;
 in le.open(fname, ios::in | ios :: binary);
 if (!in le)
 {
 cout << “Error in opening le \n”;
 return 0;
 }
 cout << “The rst Record : ” << ‘\n’;
 in le.seekg(bytesize(0),ios::beg);
 in le.read((char *) &obj,sizeof(obj));
 display(obj);
 cout << “The second Record : ” << ‘\n’;
 in le.seekg(bytesize(1),ios::beg);
 in le.read((char *) &obj,sizeof(obj));
 display(obj);

 cout << “The Last Record : ” << ‘\n’;
 in le.seekg(bytesize(-1),ios::end);
 in le.read((char *) &obj,sizeof(obj));
 display(obj);
 in le.close();
 return 0;
}

long bytesize(int recordnumber)
{
 return (sizeof(student_info) *recordnumber);
}

void display(student_info obj)
{
 cout << “Name :” << obj.name << ‘\n’;
 cout << “Roll Number:” << obj.rollnumber;
 cout << ‘\n’;
 cout << “Sex :” << obj.sex << ‘\n’;
 cout << “Age :” << obj.age << ‘\n’;
 cout << “Height :” << obj.height << ‘\n’;

 cout << “Weight :” << obj.weight << ‘\n’;
}

Output of the above program

enter a le name?
data

The rst Record:
Name : Ravich

 Programming with C++766

Roll Number : 27001
Sex : M
Age : 21
Height : 167
Weight : 78

The second Record:
Name : Ahmed
Roll Number : 27002
Sex : M
Age : 23
Height : 145
Weight : 67

The Last Record:
Name : Antony
Roll Number : 27004
Sex : M
Age : 22
Height : 182
Weight : 89

 REVIEW QUESTIONS

 1. Explain the salient features of the <fstream> header fi le in C++.

 2. Explain the various functions involved in opening and closing a sequential fi le in C++.

 3. Explain the following character input and output fi le functions.

 (i) get() (ii) put()
 4. How are the string handling features supported in the <fstream> header fi le in C++?

 5. Explain the syntactic rules for the following functions.

 (i) fstream (ii) ofstream (iii) ifstream
 6. Explain the following member functions.

 (i) eof() (ii) fail()
 (iii) bad() (iv) good()
 7. Explain the syntactic rules for the following functions.

 (i) open() (ii) close()
 (iii) read() (iv) write()
 8. Explain the merits and demerits of random access fi le processing in C++.

 9. Explain the syntactic rules for the following random access fi le member functions.

 (i) tellg() (ii) teelp()
 (iii) seekp() (iv) seekg();
 10. What is a binary fi le? List the merits and demerits of the binary fi le usage in C++.

 11. Explain how a random access fi le is defi ned and processed.

 12. Explain how an array of class objects can be stored and retrieved from a fi le.

 13. Describe how a class object can be written on a fi le.

 14. What are the syntactic rules for reading an object from the fi le?

 15. Explain how nested class objects can be defi ned and accessed using fi le commands.

 16. What are the scoping rules for the nested class objects when using a fi le?

 Data File Operations 767

 PROGRAMMING EXERCISES

 1. Write a program in C++ to read a fi le and to (i) display the contents of the fi le on to the screen,

(ii) display the number of characters; and (iii) the number of lines in the fi le.

 2. Write a program in C++ to read a fi le and to display the contents of the fi le on the screen with line

numbers.

 For example,
 1 this is a test
 2 program
 3 -------
 4 -------

 3. Write a program in C++ to merge two fi les into a one fi le heading.

 4. Write a program in C++ to read a fi le and to transfer the contents of the fi le to the printer with the

line numbers.

 For example,
 1 this is a test
 2 program
 3 -------
 4 -------

 5. Write a program in C++ to read students’ record such as name, sex, roll number, height, and weight

from the specifi ed fi le and to display in a sorted order (name is the key for sorting).

 6. Write a program in C++ using a random access fi le function to create a database of the student’s

information such as name, roll number, sex, address and the program should have the following

facilities:

 (i) to list the entire data base

 (ii) to display only a particular record

 (iii) to update a record

 (iv) to delete a record

 (v) to sort a record (name is a key reference)

 7. Write a program in C++ using a random access fi le function to create a data base for a reservation

system (bus/railway/air) using the information such as

 name of the passenger

 sex

 age

 starting place of the journey

 destination etc.

 The program should have the following facilities:

 (i) to display an entire passenger’s list

 (ii) to display only a particular record

 (iii) to update a record

 (iv) to delete a record

 (v) to sort a record (name is a key for sorting)

STL–Containers
Library

Chapter

17

17.1 INTRODUCTION

A container is a holder object that stores a collection other objects (its elements). They are implemented as

class templates, which allows a great fl exibility in the types supported as elements. The container manages

the storage space for its elements and provides member functions to access them, either directly or through

iterators (reference objects with similar properties to pointers). The STL containers are classifi ed into three

major categories:

 ∑ Sequence containers

 ∑ Associative containers

 ∑ Container adapters

(a) Sequence Containers A sequence container is one of the STL-containers that organises a fi nite set of

objects of the same type. The elements of the sequence containers are arranged into a strictly linear fashion.

STL provides three basic kinds of sequence containers: Vectors, Lists and Deques where Deque is an

abbreviation for Double Ended Queue.

A vector provides a sequence of items implemented as an array that can automatically grow as needed

during program execution. A deque provides a sequence of items that has a front and back: items can be

effi ciently added or removed from the front and back. A list gives a sequence of items that allows quick

additions and removals from any position.

This chapter deals with the C++ Standard Template Library (STL) which is now a
built-in part of ANSI C++ compilers. The STL represents a main thrust of generic
programming in C++. This chapter focusses mainly on dynamic arrays (vector),
queues (queue), stacks (stack), heaps (priority-queue), linked lists (list), trees
(set), associative arrays (map) which are very commonly used in programming.

 STL—Containers Library 769

 Types of
Sequence containers
 -|-- vector
 |
 |-- deque
 |
 |-- list

(b) Container Adaptors Container adaptors are not full container classes because they do not provide the

actual data structure implementation in which elements can be stored. The STL container adaptors do

not support iterators. The container adaptors can be classifi ed into three types, namely, stack, queue and

priority_queue.

A stack provides a last-in-fi rst-out (LIFO) data structure. A queue is a fi rst-in-fi rst-out (FIFO) data

structure. A priority_queue gives a fi rst-in-fi rst-out (FIFO) data structure with the highest priority item

always at the front of the priority_queue.

 Types of
Container adaptors
 -|-- stack
 |
 |-- queue
 |
 |-- priority_queue

(c) Associative Containers An associative container is non-sequential but uses a key to access elements. The

keys, typically a number or a string, are used by the container to arrange the stored elements in a specifi c

order. For example in a dictionary the entries are ordered alphabetically.

The associative containers can be classifi ed into fi ve types such as set, multiset, map, multimap and

bitset. A map supports a collection of keys and values associated with the keys. The key and values can be

of different types. A multimap is also a map that can support multiple values for each key. A set supports a

sorted set of unique members. A multilist is also a set that can support multiple values per key. A bitset is a

data construct that allows the user to set, reset, and check individual bits.

 Types of
Associative containers
 -|-- set
 |
 |-- multiset
 |
 |-- map
 |
 |-- multimap
 |
 |-- bitset

17.2 VECTOR CLASS

The STL vector class is a template class of sequence containers that arrange elements of a given type in a

linear arrangement and allow fast random access to any element. They should be the preferred container for

a sequence when random-access performance is at a premium. Vectors allow constant time insertions and

deletions at the end of the sequence. Inserting or deleting elements in the middle of a vector requires linear

time.

 Programming with C++770

The following header fi le must be included to use class vector.

 Header: #include <vector>

The following program segment shows how to create a vector class object for an integer elements.

#include <iostream>
#include <vector>
using namespace std;
int main()
{
 vector <int> v1; // v1 is an empty vector class object

 vector <int> v2(10); // v2 is a vector class object which consists of 10
 integer
 // elements and default with 0

 vector <int> v3(10,2); // v3 is a vector class object which contains the
 // elements of 10 integers and is initialized with 2

 return 0;
}

The following examples illustrate how to create a vector class objects for different data types.

 vector <double> v1,v2,v3;
 vector <string> str1;
 vector <char> a;
 vector < oat> coordinate(2);

The following statements are equal in C++:

vector <int> a(10); // STL form of vector declaration for storing 10 integers

int a[10]; // C++ form of creating an array for storing 10 integer elements.

 PROGRAM 17.1

A program to demonstrate how to create a vector class objects and fi ll it and display its contents on the
screen.

//using vector class
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std;
int main()
{
 vector <int> a(10); // create a 10 element vector
 for (int i = 0; i <= 9; ++i)
 a[i] = i*i;
 cout << “contents of the vector class objects \n”;
 for (int i = 0; i <= 9; ++i)
 cout << setw(4) << a[i];
 cout << endl;
 return 0;
}

Output of the above program

contents of the vector class objects

0 1 4 9 16 25 36 49 64 81

 STL—Containers Library 771

 PROGRAM 17.2

A program to illustrate how to create a vector class object and intialize with a certain value during the
vector declaration.

//using vector class
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std;
int main()
{
 vector <int> a(10,2); // create a 10 element vector and ll it with 2
 cout << “contents of the vector class objects \n”;
 for (int i = 0; i <= 9; ++i)
 cout << setw(4) << a[i];
 cout << endl;
 return 0;
}

 PROGRAM 17.3

A program to illustrate how to use an iterator in a vector class object.

//using vector class and iterator
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std;
int main()
{
 vector <int> a(10,2); // create a 10 element vector and ll it with 2
 vector <int> ::iterator i;
 cout << “contents of the vector class objects \n”;
 for (i = a.begin(); i != a.end(); i++)
 cout << setw(4) << *i;
 cout << endl;
 return 0;
}

Output of the above program

contents of the vector class objects
2 2 2 2 2 2 2 2 2 2

17.2.1 Vector Member Functions

(a) Special Member functions

(constructor) Construct vector
(destructor) Vector destructor
operator= Copy vector content

(b) Iterators

begin Return iterator to beginning
end Return iterator to end
rbegin Return reverse iterator to reverse beginning
rend Return reverse iterator to reverse end

 Programming with C++772

(c) Capacity

size Return size
max_size Return maximum size
resize Change size
capacity Return size of allocated storage capacity
empty Test whether vector is empty
reserve Request a change in capacity

(d) Element Access

operator[] Access element
at Access element
front Access fi rst element
back Access last element

(e) Modifi ers

assign Assign vector content
push_back Add element at the end
pop_back Delete last element
insert Insert elements
erase Erase elements
swap Swap content
clear Clear content

(f) Allocator

get_allocator Get allocator (public member function)

17.3 DOUBLE ENDED QUEUE DEQUE CLASS

The deque is one of the sequence containers of STL that arranges elements of a given type in a linear

arrangement. It also allows fast random access to any element and effi cient insertion and deletion at the

back of the container. However, unlike a vector, the deque class also supports effi cient insertion and

deletion at the front of the container. The deque (usually pronounced “deck”) is an irregular acronym of a

double-ended queue. Deque sequences have the following properties:

 ∑ Individual elements can be accessed by their position index.

 ∑ Iteration over the elements can be performed in any order.

 ∑ Elements can be effi ciently added and removed from any of its ends (either the beginning or the end of

the sequence).

The following header fi le must be included to use class deque.

 Header: #include <deque>

For example, the following program illustration shows how to declare the various forms of deque class

objects in STL.

#include <iostream>
#include <deque>
using namespace std;
int main()
{
 deque <int> d1; // creates an empty deque class object d1

 deque <int> d2(10); // creates deque class object d2 which stores 10]
 // integers with default value of 0

 STL—Containers Library 773

 deque <int> d3(10,30); // creates deque class object d3 which stores 10
 // integers with the initial value of 30

 return 0;
}

The following declaration shows how to create a deque class object for the various data types:

 deque < oat> f1;
 deque <char> ch1,ch2;
 deque <string> str1(100);

 PROGRAM 17.4

A program to demonstrate how to create a deque class objects and fi ll it and display its contents on the
screen.

#include <iostream>
#include <iomanip>
#include <deque>
using namespace std;
int main()
{
 deque <int> d1(10,20);
 cout <<“contents of the deque\n”;
 for (int i = 0; i <= 9; ++i)
 cout << setw(4) << d1[i];
 cout << endl;
 return 0;
}

Output of the above program

20 20 20 20 20 20 20 20 20 20

 PROGRAM 17.5

A program to illustrate how to use the diff erent member functions in the deque class object.

//using assign() member function
#include <deque>
#include <iostream>
using namespace std;
int main()
{

 deque <int> d1,d2;
 deque <int>::const_iterator ptr;
 d1.push_back(10);
 d1.push_back(20);
 d1.push_back(30);
 d2.push_back(40);
 d2.push_back(50);
 d2.push_back(60);

 cout << “\n contents of deque d1 = ”;
 for (ptr = d1.begin(); ptr != d1.end(); ptr++)
 cout << “ ” << *ptr;

 Programming with C++774

 cout << endl;

 d1.assign(d2.begin(), d2.end());
 cout << “\n contents of d1 (after copy from d2) = ”;
 for (ptr = d1.begin(); ptr != d1.end(); ptr++)
 cout << “ ” << *ptr;
 cout << endl;

 d1.assign(6,3);
 cout << “\n contents of d1 = ”;
 for (ptr = d1.begin(); ptr != d1.end(); ptr++)
 cout << “ ” << *ptr;
 cout << endl;
 return 0;
}

Output of the above program

contents of deque d1 = 10 20 30
contents of d1 (after copy from d2) = 40 50 60
contents of d1 = 3 3 3 3 3 3

17.3.1 Deque Member Functions

(a) Special Member Functions

(constructor) Construct deque container

(destructor) Deque destructor

operator= Copy container content

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

size Return size

max_size Return maximum size

resize Change size

empty Test whether container is empty

(d) Element Access

operator[] Access element

at Access element

front Access fi rst element

back Access last element

(e) Modifi ers

assign Assign container content

push_back Add element at the end

push_front Insert element at beginning

pop_back Delete last element

pop_front Delete fi rst element

insert Insert elements

 STL—Containers Library 775

erase Erase elements

swap Swap content

clear Clear content

(f) Allocator

get_allocator Get allocator

17.4 LIST CLASS

The list class is one of sequence containers that maintain their elements in a linear arrangement and

allows effi cient insertions and deletions at any location within the sequence. The sequence is stored as

a bidirectional linked list of elements, each containing a member of some type Type. List containers are

implemented as doubly-linked lists. Doubly linked lists can store each of the elements they contain in

different and unrelated storage locations. The ordering is kept by the association to each element of a link

to the element preceding it and a link to the element following it.

The list container provides the following advantages over vector or deque classes:

 ∑ Insertion and removal of elements can be done anywhere in the container (constant time).

 ∑ Moving elements and block of elements within the container or even between different containers

(constant time).

 ∑ Iterating over the elements in forward or reverse order (linear time).

The main drawback of lists compared to these other sequence containers is that they lack direct access

to the elements by their position; For example, to access the sixth element in a list one has to iterate from

a known position (like the beginning or the end) to that position, which takes linear time in the distance

between them. They also consume some extra memory to keep the linking information associated to each

element (which may be an important factor for large lists of small-sized elements).

The following header fi le must be included to use class list.

Header: #include <list>

For example, the following program segment illustrates how to create a list objects in different ways:

//using list class object
#include <iostream>
#include <iomanip>
#include <list>
using namespace std;
int main()
{
 list <int> abc; //creates an empty list class object abc

 list <int> xy(10);// creates a list class object that contains 10
 integers.
 // by default all of its elements are initialized to zero

 list <int> ab(10,3); // creates a list class object that contains 10
 // integers and that all elements are initialized by 3

 return 0;
}

 Programming with C++776

 PROGRAM 17.6

A program to demonstrate how to create a list class objects and fi ll it and display its contents on the
screen.

//using list class object
#include <iostream>
#include <iomanip>
#include <list>
using namespace std;
int main()
{
 list <int> a(10,3);
 cout <<“contents of the list \n”;
 for (int i = 0; i <= 9; ++i)

 cout << setw(4) << a.back();
 cout << endl;
 return 0;
}

Output of the above program

3 3 3 3 3 3 3 3 3 3

 PROGRAM 17.7

A program to illustrate how to use the diff erent member functions in the list class object.

//using list class object
#include <iostream>
#include <iomanip>
#include <list>
using namespace std;
int main()
{
 list <int> a;
 a.push_back(10);
 a.push_back(20);
 cout << “contents of the list \n”;
 cout << a.back() << setw(4);
 cout << a.front() << endl;

 return 0;

}

Output of the above program

20 10

17.4.1 List Member Functions

(a) Special Member Functions

(constructor) Construct list

(destructor) List destructor

operator= Copy container content

 STL—Containers Library 777

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

empty Test whether container is empty

size Return size

max_size Return maximum size

resize Change size

(d) Element access

front Access fi rst element

back Access last element

(d) Modifi ers

assign Assign new content to container

push_front Insert element at beginning

pop_front Delete fi rst element

push_back Add element at the end

pop_back Delete last element

insert Insert elements

erase Erase elements

swap Swap content

clear Clear content

(e) Operations

splice Move elements from list to list

remove Remove elements with specifi c value

remove_if Remove elements fulfi lling condition

unique Remove duplicate values

merge Merge sorted lists

sort Sort elements in container

reverse Reverse the order of elements

(f) Allocator

get_allocator Get allocator

17.5 STACK CLASS

The stack class is one of the types of a template container adaptor class that provides a restriction of

functionality limiting access to the element most recently added to some underlying container type. In other

words, the stack class is a standard template library which supports a last-in, fi rst-out (LIFO) data structure.

Elements may be inserted, inspected, or removed only from the top of the stack, which is the last element

at the end of the base container. The restriction to accessing only the top element is the reason for using the

stack class.

 Programming with C++778

The following header fi le is to be included whenever one uses the template class stack member functions

or their operators in STL.

Header: #include <stack>

For example, the following ways the stack () constructor is used in STL.

#include <stack>
#include <vector>
#include <list>
#include <iostream>
using namespace std;
int main()
{

 stack <int> s1; // s1 is an empty stack class object for int data
 stack < oat> f1; // stack manipulation with oat data
 stack <char> ch1;
 stack <bool> b1;

 return 0;
}

 Different types of stack() construction

 (1) To create a stack with deque base container, the stack() constructor is declared in the following

form:

 stack <char, deque<char> > abc;

 (2) To declare a stack with vector base containers, the stack() constructor is used in the following

form:

 stack <int, vector<int> > va;

 (3) To declare a stack with list base container, the stack() constructor is used in the following form:

 stack <int, list<int> > lsi;

 (4) To copy elements from a container of the base class object at the time of stack() declaration:

 vector<int> v1;
 v1.push_back(10);
 stack <int, vector<int> > vs (v1);

 where vs is the stack object which copies all elements that are stored in the vector class object v1.

17.5.1 Stack Member Functions

The following member functions of a stack class are used to handle the different types of operations.
 empty()

size()
pop()
stack()
push()
top()

(a) stack::push() The push() member function of a stack class object is used to add an element to the

top end of the stack. The top of the stack is the position occupied by the most recently added element and is

the last element at the end of the container.

The general syntax of the push() member function is:
 void push(val);

 STL—Containers Library 779

where val is the element added to the top of the stack.

For example,

 stack <int> s1;
 s1.push(10);
 s1.push(20);
 s1.push(30);

(b) stack::pop() The pop() member function of a stack class object is used to remove the element from

the top of the stack. The stack must be nonempty to apply the member function. The top of the stack is the

position occupied by the most recently added element and is the last element at the end of the container.

The general syntax of the pop () member function is:
 void pop();

For example,

 stack <int> s1;
 int temp;
 s1.push(10);
 s1.push(20);
 s1.push(30);
 temp = s1.pop();

where the content of the temp is 30 because the stack class performs based on the LIFO (Last In First Out)

method.

(c) stack::empty() The empty() member function is used to test if a stack is empty. The return value of

the empty() member function of a stack class is true if the stack is empty; false if the stack is nonempty.

The general syntax of the empty() member function is:

 bool empty() const;

(d) stack::size() The size() member function is used to return the number of elements in the stack.

The return value of the size() member function is the current length of the stack. The general syntax of the

size() member function is:

 size_type size() const;

For example,

 stack <int> s1;
 stack <int>::size_type i;
 s1.push(10);
 s1.push(20);
 s1.push(30);
 i = s1.size();

 The size() member returns the number of elements that are stored in the stack and hence the value of

i is 3.

(e) stack::top() The top() member function is used to return a reference to an element at the top of the

stack. The return value of a reference to the last element in the container at the top of the stack. The stack

must be nonempty to apply the member function. The top of the stack is the position occupied by the most

recently added element and is the last element at the end of the container.

If the return value of top() member function is assigned to a const_reference, the stack object cannot be

modifi ed. If the return value of top() member function is assigned to a reference, the stack object can be

modifi ed.

 Programming with C++780

The general syntax of the top() member function is:

value_type& top();

or
const value_type& top()const;

(f) stack::stack() The stack() constructor is used to construct a stack that is empty or that is a copy of

a base container class. The general syntax of the stack () constructor is:
stack();

or
explicit stack(const container_type value);

where value is the container of which the constructed stack is to be a copy.

 PROGRAM 17.8

A program to illustrate how to construct the stack class and use the various member functions for
handling stack operations.

#include <stack>
#include <iostream>
using namespace std;
stack <int> s1;
stack <int> ::size_type tmp;
int main()
{
 void menu();
 void disp_top();
 int temp;
 char ch;
 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {
 case ‘a’:
 cout << “\n enter an integer to push into the stack = ”;
 cin >> temp;
 s1.push(temp);
 break;
 case ‘d’:
 if (s1.empty())
 cout <<“\n stack is empty and nothing can be popped \n”;
 else
 {
 cout <<“\n popped item from the stack =” << s1.top();
 s1.pop();
 }
 break;
 case ‘s’:
 tmp = s1.size();
 cout <<“\n number of elements in the stack = ” << tmp;
 break;
 case ‘e’:
 if (s1.empty())
 cout << “\n stack is empty \n”;
 else
 cout << “\n stack is not empty \n”;
 break;
 case ‘t’:
 disp_top();
 break;
 case ‘m’:

 STL—Containers Library 781

 menu();
 break;
 }
 }
}

void disp_top()
{
 if (s1.empty())
 cout << “stack is empty \n”;
 else
 {
 int& i = s1.top();
 cout << “\n Top element of the stack = ” << i;
 cout << “\n modi ed value of ++i = ” << ++i;
 const int& j = s1.top();
 cout<< “\n Top element of the stack = ” << j;
 cout << “\n ++j is not permitted due to const\n”;
 s1.pop();
 }
}

void menu()
{
 cout <<“stack implementation using STL\n”;
 cout << “ a -> push() element into the stack \n”;
 cout << “ d -> pop() element from the stack \n”;
 cout << “ s -> nd the number of elements in the stack\n”;
 cout << “ e -> check whether the stack is empty \n”;
 cout << “ t -> display the top element from the stack \n”;
 cout << “ m -> menu() \n”;
 cout << “ q -> quit \n”;
 cout << “ option, please ?\n”;
}

17.5.2 Summary of Stack Member Functions

(constructor) Construct stack

empty Test whether container is empty

size Return size

top Access next element

push Add element

pop Remove element

17.6 QUEUE CLASS

The queue class is a template container adaptor class that provides a restriction of functionality limiting

access to the front and back elements of some underlying container type. In other words, the queue class

supports a fi rst-in, fi rst-out (FIFO) data structure. A good analogue to keep in mind would be people lining

up for a bank teller. Elements (people) may be added to the back of the line and are removed from the front

of the line. Both the front and the back of a line may be inspected. The restriction to accessing only the

front and back elements in this way is the reason for using the queue class.

The following header fi le is to be included whenever one uses the template class queue member

functions or their operators in STL.

Header: #include <queue>

For example, the following ways the queue() constructor is used in STL.

 Programming with C++782

#include <queue>
using namespace std;
int main()
{

 queue <int> s1; // s1 is an empty queue class object for int data
 queue < oat> f1; // for oat data
 queue <char> ch1;
 queue <bool> b1;

 return 0;
}

17.6.1 Queue Member Functions

The following are the queue member functions which are used to handle the different operations on the

queue container class object.

back() push()
empty() queue()
front() size()
pop()

(a) queue::back() The back() member function of a queue container class is used to return a reference

to the last and most recently added element at the back of the queue. The return value of the back() member

function of a queue container is the last element of the queue. If the queue is empty, the return value is

undefi ned.

If the return value of back is assigned to a const_reference, the queue object cannot be modifi ed. If the

return value of back is assigned to a reference, the queue object can be modifi ed. The general syntax of the

back() member function is:

value_type& back();

or
const value_type& back() const;

For example, the following program segment illustrates how to use the back() member function of a

queue container class.

 queue <int> q1;
 q1.push(10);
 q1.push(11);
 int& i = q1.back();

(b) queue::empty() The empty() member function of a queue container class is used to test if a queue

is empty. The return value of the empty() member function is true if the queue is empty; false if the queue is

nonempty. The general syntax of the empty() member function is:

 bool empty() const;

For example, the following program segment illustrates how to use the empty() member function of a

queue container class.
queue <int> q1
q1.push(10);
if (q1.empty())
 cout << “The queue q1 is empty\n”;
else

 STL—Containers Library 783

 cout << “The queue q1 is not empty\n”;

(c) queue::front() The front() member function of a queue container class is used to return a reference

to the fi rst element at the front of the queue. The return value of the front() member function is the last

element of the queue. If the queue is empty, the return value is undefi ned.

If the return value of front() member function is assigned to a const_reference, the queue object cannot

be modifi ed. If the return value of front() member function is assigned to a reference, the queue object can

be modifi ed. The member function returns a reference to the fi rst element of the controlled sequence, which

must be nonempty. The general syntax of the front() member function is:

value_type& front();

or
const value_type& front() const;

For example, the following program segment illustrates how to use the front() member function of a

queue container class.
 queue <int> q1;
 queue <int>::size_type i;
 q1.push(10);
 q1.push(20);
 q1.push(30);
 int& i = q1.front();
 cout << “Element at the front of queue ” << i;

(d) queue::pop The pop() member function of a queue container class is used to remove an element

from the front of the queue.

The queue must be nonempty to apply the member function. The top of the queue is the position

occupied by the most recently added element and is the last element at the end of the container. The general

syntax of the pop() member function is:

 void pop();

For example, the following program segment illustrates how to use the pop() member function of a

queue container class.
 queue <int> q1;
 queue <int>::size_type i;
 q1.push(10);
 q1.push(20);
 q1.push(30);
 i = q1.size();
 cout << “The queue length ” << i << endl;
 q1.pop();
 i = q1.size();
 cout << “After a pop, the queue length is ” << i;

(e) queue::push The push() member function of a queue container class is used to add an element to

the back of the queue. The top of the queue is the position occupied by the most recently added element and

is the last element at the end of the container.

The general syntax of the push () member function is:

 void push(val)

where val is the element added to the top of the queue.

For example, the following program segment illustrates how to use the push() member function of a

queue container class.

 Programming with C++784

 queue <int> q1;
 queue <int>::size_type i;
 q1.push(10);
 i = q1.size();
 cout << “The queue length is ” << i << endl;
 q1.push(20);
 q1.push(30);
 i = q1.size();
 cout << “The queue length is ” << i << endl;

(f) queue::queue The queue constructor is used to construct a queue that is empty or that is a copy of

a base container object.

queue();

or
explicit queue(const container_type& value);

where value is the const container of which the constructed queue is to be a copy.

The default base container for queue is deque. To declare a queue with default deque base container is

given in the following form:

 queue <char> q1;

(g) queue::size The size() member function of a queue container class is used to return the number

of elements in the queue. The return value of the size member function of a queue container class is the

current length of the queue. The general syntax of the size() member function is:

size_type size() const;

For example, the following program segment illustrates how to use the size() member function of a

queue container class.

queue <int> q1;
queue <int>::size_type i;
q1.push(10);
q1.push(20);
q1.push(30);
i = q1.size();
cout << “The queue length is ” << i << endl;

 PROGRAM 17.9

A program to illustrate how to construct the queue class and use the various member functions for
handling queue operations.

#include <queue>
#include <iostream>
using namespace std;
queue <int> q1;
queue <int> ::size_type tmp;
int main()
{
 void menu();
 int temp;
 char ch;
 menu();
 while ((ch = cin.get()) != ‘q’) {
 switch (ch) {

 STL—Containers Library 785

 case ‘a’:

 cout << “\n enter an integer to push into the queue = ”;
 cin >> temp;
 q1.push(temp);
 break;
 case ‘f’:
 if (q1.empty())
 cout <<“\n queue is empty and nothing can be popped \n”;
 else
 {
 cout <<“\n element at the front of the queue =” << q1.front();
 q1.pop();
 }
 break;
 case ‘b’:
 if (q1.empty())
 cout <<“\n queue is empty and nothing can be popped \n”;
 else
 cout <<“\n element at the back of the queue =” << q1.back();
 break;
 case ‘s’:
 tmp = q1.size();
 cout <<“\n number of elements in the queue = ” << tmp;
 break;
 case ‘e’:
 if (q1.empty())
 cout << “\n queue is empty \n”;
 else
 cout << “\n queue is not empty \n”;
 break;
 case ‘m’:
 menu();
 break;
 }
 }
 return 0;
}

void menu()
{
 cout <<“queue implementation using STL\n”;
 cout << “ a -> push() element into the queue \n”;
 cout << “ f -> pop() element at front of the queue \n”;
 cout << “ b -> pop() element at back of the queue \n”;
 cout << “ s -> nd the number of elements in the queue\n”;
 cout << “ e -> check whether the queue is empty \n”;
 cout << “ m -> menu() \n”;
 cout << “ q -> quit \n”;
 cout << “ option, please?\n”;
}

17.6.2 Summary of Queue Member Functions

(constructor) Construct queue

empty Test whether container is empty

size Return size

front Access next element

back Access last element

push Insert element

pop Delete next element

 Programming with C++786

17.7 PRIORITY_QUEUE CLASS

The priority_queue class orders its elements so that the largest element is always at the top position.

It supports insertion of an element and the inspection and removal of the top element. A good analogue to

keep in mind would be people lining up where they are arranged by age, height, or some other criterion.

A template container adaptor class that provides a restriction of functionality limiting access to the top

element of some underlying container type, which is always the largest or of the highest priority. New

elements can be added to the priority_queue and the top element of the priority_queue can be inspected or

removed. The only requirement is that it must be accessible through random access iterators and it must

support the following operations:

front()
push_back()
pop_back()

Therefore, the standard container class templates vector and deque can be used. By default, if no

container class is specifi ed for a particular priority_queue class, the standard container class template vector

is used.

This context is similar to a heap where only the max heap element can be retrieved (the one at the top in

the priority queue) and elements can be inserted indefi nitely.

Header: #include <queue>

17.7.1 Priority_queue Member Functions

The following are the priority_queue member functions which are used to handle the different operations

on the priority_queue container class object.

empty() push()
pop() size()
priority_queue() top()

(a) Priority_queue::empty() The empty() member function of a priority_queue container class is used to test

if a priority_queue is empty. The return value of the empty() member function is true if the priority_queue

is empty; false if the priority_queue is nonempty.

The general syntax of the empty() member function is:

 bool empty() const;

For example, the following program segment illustrates how to use the empty () member function of a

priority_queue container class.

 priority_queue <int> q1;
 q1.push(10);
 if (q1.empty())
 cout << “The priority_queue q1 is empty” << endl;
 else
 cout << “The priority_queue q1 is not empty” << endl;

(b) Priority_queue::pop() The pop() member function of a priority_queue container class is used to remove

the largest element of the priority_queue from the top position. The priority_queue must be nonempty to

apply the member function. The top of the priority_queue is always occupied by the largest element in the

container.

The general syntax of the pop() member function is:

 void pop();

 STL—Containers Library 787

For example, the following program segment illustrates how to use the pop() member function of a

priority_queue container class.

 priority_queue <int> q1;
 priority_queue <int>::size_type i;
 q1.push(10);
 q1.push(20);
 q1.push(30);
 i = q1.size();
 cout << “The priority_queue length is ” << i;
 q1.pop();
 i = q1.size();
 cout << “After a pop, the priority_queue length is ” << i << endl;

(c) Priority_queue::priority_queue() The priority_queue() is used to construct a priority_queue that is empty

or that is a copy of a range of a base container object or of another priority_queue.

The general syntax of the priority_queue() member function is:

 priority_queue();

For example, the following program segment illustrates how to use the priority_queue() constructor in a

container class.
 priority_queue <int> q2;
 q2.push(5);
 q2.push(15);
 q2.push(10);

(d) Priority_queue::size() The size() member function of a priority_queue container class is used to return

the number of elements in the priority_queue. In other words, the return value of the size () member

function is the current length of the priority_queue. The general syntax of the size () member function is:

 size_type size() const;

For example, the following program segment illustrates how to use the size() member function of a

priority_queue container class.

 priority_queue <int> q1, q2;
 priority_queue <int>::size_type i;
 q1.push(10);
 i = q1.size();
 cout << “The priority_queue length is ” << i << endl;
 q1.push(20);
 i = q1.size();
 cout << “The priority_queue length is now ” << i << endl;

(e) Priority_queue::top() The top() member function of a priority_queue container class is used to return the

largest element at the top of the priority_queue. The priority_queue must be nonempty to apply the member

function. The return value is A const reference to the largest element, as determined by the Traits function,

object of the priority_queue.

The general syntax of the top () member function is:

const value_type& top() const;

For example, the following program segment illustrates how to use the top() member function of a

priority_queue container class.

 priority_queue<int> q1;
 priority_queue<int>::size_type i;
 q1.push(10);

 Programming with C++788

 q1.push(30);
 q1.push(20);
 i = q1.size();
 cout << “The priority_queue length is ” << i << endl;
 const int& j = q1.top();
 cout << “The element at the top of the priority_queue is ” << j << endl;

(f) Priority_queue::push() The push() member function of a priority_queue container class is used to add

an element to the top of the priority_queue. The top of the priority_queue is the position occupied by the

largest element in the container. The general syntax of the push() member function is:

 void push(val);

where val is the element added to the top of the priority_queue.

For example, the following program segment illustrates how to use the push() member function of a

priority_queue container class.

 priority_queue<int> q1;
 priority_queue<int>::size_type i;
 q1.push(10);
 q1.push(30);
 q1.push(20);
 i = q1.size();
 cout << “The priority_queue length is ” << i << endl;
 q1.push(-10);
 const int& j = q1.top();
 cout << “The element at the top of the priority_queue is ” << ii << endl;

17.7.2 Summary of priority_queue Member Functions

(constructor) Construct priority queue

empty Test whether container is empty

size Return size

top Access top element

push Insert element

pop Remove top element

17.8 SET

Set is one of the associative container classes which is used to associate a key with each item stored and

then use the key to retrieve the stored item. Sets are a kind of associative containers that stores unique

elements, and in which the elements themselves are the keys. In other words, a set is used to store a set

of keys as elements but no duplicate values are allowed.

Associative containers are containers especially designed to be effi cient accessing its elements by their

key (unlike sequence containers, which are more effi cient accessing elements by their relative or absolute

position). Internally, the elements in a set are always sorted from lower to higher following a specifi c strict

weak ordering criterion set on container construction. Sets are typically implemented as binary search trees.

Therefore, the main characteristics of set as an associative container are:

 ∑ Unique element values

 ∑ The element value is the key itself

 ∑ Elements follow a strict weak ordering at all times.

 ∑ This container class supports bidirectional iterators.

The set class template is defi ned in header <set>.

 STL—Containers Library 789

17.8.1 Set Member Functions

(a) Special Member Functions

(constructor) Construct set

(destructor) Set destructor

operator= Copy container content

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

empty Test whether container is empty

size Return container size

max_size Return maximum size

(d) Modifi ers

insert Insert element

erase Erase elements

swap Swap content

clear Clear content

(e) Observers

key_comp Return comparison object

value_comp Return comparison object

(f) Operations

 nd Get iterator to element

count Count elements with a specifi c key

lower_bound Return iterator to lower bound

upper_bound Return iterator to upper bound

equal_range Get range of equal elements

(g) Allocator

get_allocator Get allocator

17.9 MULTISET

Multisets are associative containers with the same properties as set containers, but allowing for multiple

keys with equal values. In other words, multiset is used to store a set of keys as elements and duplicates of

elements are also allowed.

The multiset object uses this expression to determine the position of the elements in the container. All

elements in a multiset container are ordered following this rule at all times. The multiset class template is

defi ned in header <set>.

 Programming with C++790

17.9.1 Multiset Member Functions

(a) Special Member Functions

(constructor) Construct multiset

(destructor) Multiset destructor

operator= Copy container content

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

empty Test whether container is empty

size Return container size

max_size Return maximum size

(d) Modifi ers

insert Insert element

erase Erase elements

swap Swap content

clear Clear content

(e) Observers

key_comp Return comparison object

value_comp Return comparison object

(f) Operations

 nd Get iterator to element

count Count elements with a specifi c key

lower_bound Return iterator to lower bound

upper_bound Return iterator to upper bound

equal_range Get range of equal elements

(g) Allocator

get_allocator Get allocator

17.10 MAP

Maps are a kind of associative containers that store elements formed by the combination of a key value

and a mapped value. In a map, the key value is generally used to uniquely identify the element, while the

mapped value is some sort of value associated to this key. Types of key and mapped value may differ. In

other words, map is used to store a set of keys to data elements. Each key is associated with a unique data

element and duplicate keys are not permitted.

For example, a typical example of a map is a telephone guide where the name is the key and the

telephone number is the mapped value. Internally, the elements in the map are sorted from lower to higher

key value following a specifi c strict weak ordering criterion set on construction.

 STL—Containers Library 791

The map class template is defi ned in header <map>.
The main characteristics of a map as an associative container are given below:

 ∑ Unique key values: no two elements in the map have keys that compare equal to each other.

 ∑ Each element is composed of a key and a mapped value.

 ∑ Elements follow a strict weak ordering at all times.

 ∑ Maps are also unique among associative containers in that these implement the direct access operator

(operator[]) which allows for direct access of the mapped value.

17.10.1 Map Member Functions

(a) Special Member Functions

(constructor) Construct map

(destructor) Map destructor

operator= Copy container content

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

empty Test whether container is empty

size Return container size

max_size Return maximum size

(d) Element access

operator[] Access element

(e) Modifi ers

insert Insert element

erase Erase elements

swap Swap content

clear Clear content

(f) Observers

key_comp Return key comparison object

value_comp Return value comparison object

(g) Operations

 nd Get iterator to element

count Count elements with a specifi c key

lower_bound Return iterator to lower bound

upper_bound Return iterator to upper bound

equal_range Get range of equal elements

(h) Allocator

get_allocator Get allocator

 Programming with C++792

17.11 MULTIMAP

The multimap is meant for multiple-key map. We have already seen that maps are a kind of associative

containers that store elements formed by the combination of a key value and a mapped value, much like

map containers, but allowing different elements to have the same key value.

In other words, multimap is used to map a set of keys to data elements. The same key may be associated

with multiple values.

The multimap class template is defi ned in header <map>.

17.11.1 Multimap Member Functions

(a) Special Member Functions

(constructor) Construct multimap

(destructor) Multimap destructor

operator= Copy container content

(b) Iterators

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

(c) Capacity

empty Test whether container is empty

size Return container size

max_size Return maximum size

(d) Modifi ers

insert Insert element

erase Erase elements

swap Swap content

clear Clear content

(e) Observers

key_comp Return key comparison object

value_comp Return value comparison object

(f) Operations

 nd Get iterator to element

count Count elements with a specifi c key

lower_bound Return iterator to lower bound

upper_bound Return iterator to upper bound

equal_range Get range of equal elements

(g) Allocator

get_allocator Get allocator

 STL—Containers Library 793

17.12 BITSET

A bitset is a special container class that is designed to store bits (elements with only two possible values:

0 or 1, true or false). The class is very similar to a regular array, but optimizing for space allocation: each

element occupies only one bit (which is eight times less than the smallest elemental type in C++: char).

Each element (each bit) can be accessed individually:

 For example, for a given bitset named mybitset, the expression mybitset[3] accesses its fourth bit, just

like a regular array accesses its elements.

17.12.1 Bitset Member Functions

(a) Special Member Functions

(constructor) Construct bitset

applicable operators Bitset operators

(b) Bit access

operator[] Access bit

(c) Bit operations

set Set bits

reset Reset bits

 ip Flip bits

(d) Bitset operations

to_ulong Convert to unsigned long integer

to_string Convert to string

count Count bits set

size Return size

test Return bit value

any Test if any bit is set

none Test if no bit is set

 REVIEW QUESTIONS

 1. What is a container? What are the different types of containers used in STL?

 2. Explain the different types of sequence containers used in C++.

 3. What is a container adaptor? What are the different types of container adaptors used in STL?

 4. Elucidate the different types of associative containers used in C++.

 5. Discuss how a vector class object for an integer elements is created.

 6. Summarise the vector member functions used in STL.

 7. Explain how a deque class object is constructed in C++.

 8. Discuss the various deque member functions used in STL.

 9. What is a list container? Explain how a list container is constructed in C++.

 10. Summarise the list member functions used in STL.

 11. What is a stack? Explain how a stack is simulated in STL.

 Programming with C++794

 12. Explain the following stack member functions used in C++.

 (a) empty() (b) size() (c) pop()
 (d) stack() (e) push() (f) top()
 13. What is a queue? Explain how a queue is simulated in STL.

 14. Discuss the following queue member functions used in C++.

 (a) back() (b) push() (c) empty()
 (d) queue() (e) front() (f) size()
 (g) pop()

 15. Explain how a priority_queue class is realised in STL.

 16. Summarise the various priority_queue member functions used in C++.

 17. What is a set? Explain how a set class is accomplished in STL.

 18. Explain the various set member functions used in C++.

 19. What is a multiset? Explain how a multiset associative container is used in C++.

 20. Elucidate the various multiset member functions used in STL.

 21. What is a map? Explain how a map container is used in STL.

 22. Summarise the map member functions used in C++.

 23. What is a multimap? Explain how a multimap container is accomplished in C++.

 24. Discuss the multimap member functions used in STL.

 25. What is a bitset? What are the advantages of using a bitset in a program?

 26. Explain the various bitset member functions used in STL.

STL–Iterators
and Allocators

Chapter

18

18.1 INTRODUCTION

The ANSI C++ provides STL iterators and allocators which are mainly used to construct a generic

algorithm. Elements of the containers can be accessed easily and effi ciently through iterators. Iterators are

objects that behave a lot like pointers. A typical iterator is an object of a class declared inside of a container

class. The iterator overloads pointer operators such as the increment operator ++, the decrement operator

– –, and the dereferencing operator * in order to provide pointer-like behaviour. The STL provides fi ve

iterator types, namely, forward, bidirectional, random-access, input and output.

Types of
iterators --|-- Forward iterator
 |
 |-- Bidirectional iterator
 |
 |-- Random-access iterator
 |
 |-- Input iterator
 |

 |-- Output iterator

This chapter deals with the functions and characteristics of STL, namely iterators
and allocators which are used to access items stored in containers.

 Programming with C++796

Header: #include <iterator> The header <iterator> fi le defi nes the iterator primitives, predefi ned

iterators and streamiterators, as well as several supporting templates. The predefi ned iterators include insert

and reverse adaptors. There are three classes of insert iterator adaptors: front, back, and general.

18.2 TYPES OF ITERATORS

(1) Output Output iterators are iterators especially designed for sequential output operations, where each

element pointed by the iterator is written a value only once and then the iterator is incremented. The output

iterator is used forward moving and may store but not retrieve values. It is provided by ostream and

inserter.

(2) Input Input iterators are iterators especially designed for sequential input operations, where each value

pointed by the iterator is read only once and then the iterator is incremented. The input iterator is used

forward moving and may retrieve but not store values. It is provided by istream.

(3) Forward Forward iterators are iterators especially designed for sequential access, where the algorithm

passes through all the elements in the range from the beginning to the end. The forward iterator is used not

only forward moving but also may store and retrieve values.

(4) Bidirectional Bidirectional iterators are iterators especially designed for sequential access in both

directions — towards the end and towards the beginning. The bidirectional iterator is used not only forward

and backward moving but also may store and retrieve values. It is provided by list, set, multiset,

map, and multimap.

(5) Random Access Random access iterators are the most complete iterators in terms of functionality.

Elements can be accessed in any order. The random access iterator is used both for storing and retrieving

values. It is provided by vector, deque, string, and array.

18.3 <ITERATOR> MEMBER FUNCTIONS

The <iterator> member function provides the same functionality as standard pointers in C++. The STL

iterator member functions are given below:

 advance()
 back_inserter()
 distance()
 front_inserter()
 inserter()

18.3.1 advance ()

The advance() member function is used to increment an iterator by a specifi ed number of positions. The

function template of the advance() member function is given below:

 template<class InputIterator, class Distance>
 void advance(InputIterator& LPOS, incr);

where LPOS is the iterator that is to be incremented and that must satisfy the requirements for an

input iterator; incr is an integral type that is convertible to the iterator’s difference type and that

specifi es the number of increments the position of the iterator is to be advanced.

 STL—Iterators and Allocators 797

 PROGRAM 18.1

A program to illustrate how to use the advance() member function of the iterator class in a list
operations.

//using advance() member function
#include <iterator>
#include <list>
#include <iostream>
using namespace std;
int main()
{
 list<int> L;
 list <int>::iterator j, LPOS = L.begin();
 for (int i = 1; i < 9; ++i)
 {
 L.push_back (i*10);
 }

 cout << “Contents of the list L \n”;
 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “ ”;

 advance (LPOS, 5); //point to the 5th element
 cout << “\nAdvanced 5 steps forward to point to the fi fth element = ”
 << *LPOS << endl;

 return 0;
}

Output of the above program

Contents of the list L
10 20 30 40 50 60 70 80
Advanced 5 steps forward to point to the fi fth element = 50

18.3.2 Back_inserter()

The back_inserter() member function is used to create an iterator that can insert elements at the back

of a specifi ed container. The function template of the back_inserter() member function is given below:
template<class Container>
 back_insert_iterator<Container>

 back_inserter(Container& v);

where v is the container into which the back insertion is to be executed.

 PROGRAM 18.2

A program to demonstrate how to insert elements at the back of a vector container using the back_
inserter() member function of the iterator class.

//using back_inserter() member function
#include <iterator>
#include <vector>
#include <iostream>
using namespace std;
int main()
{

 Programming with C++798

 vector<int> v;
 vector <int>::iterator j;
 for (int i = 1; i <= 3; ++i)
 {
 v.push_back (i);
 }

 cout << “The initial vector v \n”;
 for (j = v.begin(); j != v.end(); j++)
 cout << *j << “\t”;
 back_inserter (v) = -40;
 back_inserter (v) = -50;
 back_inserter (v) = -60;
 cout << “\n After the back insertions, the vector v \n”;
 for (j = v.begin(); j != v.end(); j++)
 cout << *j << “\t”;
}

Output of the above program

The initial vector v
1 2 3
After the back insertions, the vector v
1 2 3 -40 -50 -60

18.3.3 Distance()

The distance() member function is used to determine the number of increments between the positions

addressed by two iterators. The function template of the distance() member function is given below:
template<class InputIterator>
 typename iterator_traits<InputIterator>::difference_type
 distance(
 InputIterator _First,
 InputIterator _Last
);

where _First is the fi rst iterator whose distance from the second is to be determined; _Last is

the second iterator whose distance from the fi rst is to be determined. The return value is the number

of times that _First must be incremented until it equals _Last.

 PROGRAM 18.3

A program to demonstrate how to use the distance() member function of the iterator class in a list
operations.

//using distance() member function
#include <iterator>
#include <list>
#include <iostream>
using namespace std;
int main()
{

 list<int> L;
 list <int>::iterator j;
 for (int i = 1; i < 9; ++i)
 {
 L.push_back (i*10);
 }
 cout << “Content of the list L \n”;

 STL—Iterators and Allocators 799

 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “\t”;

 list<int>::difference_type Ldiff ;

 Ldiff = distance (L.begin(), L.end());
 cout << “\n The distance from L.begin() to L.end()= ”
 << Ldiff << endl;
}

Output of the above program

Content of the list L
10 20 30 40 50 60 70 80
The distance from L.begin() to L.end() = 8

18.3.4 Front_inserter()

The front_inserter() member function is used to create an iterator that can insert elements at the

front of a specifi ed container. The function template of the front_inserter() member function is given below:

template<class Container>

 front_insert_iterator<Container>

 front_inserter(Container& v);

where v is the container object whose front is having an element inserted.

 PROGRAM 18.4

A program to demonstrate how to insert elements at the front of a list container using the front_
inserter() member function of the iterator class.

//using front_inserter() member function
#include <iterator>
#include <list>
#include <iostream>
using namespace std;
int main()
{
 list<int> L;
 list <int>::iterator j;
 for (int i = 1; i <= 5; ++i)
 {
 L.push_back (i*10);
 }
 cout << “Contents of the list L \n”;
 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “\t”;

 front_inserter (L) = -11;
 front_inserter (L) = -22;
 front_inserter (L) = -33;

 cout << “\nAfter the front insertions, the list L \n”;
 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “\t”;
}

Output of the above program

Contents of the list L

 Programming with C++800

10 20 30 40 50
After the front insertions, the list L
-33 -22 -11 10 20 30 40 50

18.3.5 Inserter ()

The inserter() member function is an iterator adaptor that is used to add a new element to a container

at a specifi ed point of insertion. The function template of the inserter () member function is given below:

template<class Container, class Itererator>
 insert_iterator<Container>
 inserter(Container& v,Iterator ptr);

where v is the container to which new elements are to be added; ptr is an iterator locating the point

of insertion.

 PROGRAM 18.5

A program to demonstrate how to add a new element to a container at a specifi ed point of insertion using
inserter () member function of the iterator class.

//using inserter() member function
#include <iterator>
#include <list>
#include <iostream>
using namespace std;
int main()
{

 list<int> L;
 list <int>::iterator j;

 for (int i = 1; i <= 5; ++i)
 {
 L.push_back (i);
 }

 cout << “Contents of the list L \n”;
 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “\t”;

 inserter (L, L.begin()) = -60;

 cout << “\nAfter the insertions, the list L \n”;
 for (j = L.begin(); j != L.end(); j++)
 cout << *j << “\t”;
}

Output of the above program

Contents of the list L
1 2 3 4 5
After the insertions, the list L
-60 1 2 3 4 5

18.4 OPERATORS

(a) operator!= operator!= is used to test if the iterator object on the left side of the operator is not equal

to the iterator object on the right side.

 STL—Iterators and Allocators 801

(b) operator= = operator = = is used to test if the iterator object on the left side of the operator is equal to

the iterator object on the right side.

(c) operator< operator< is used to test if the iterator object on the left side of the operator is less than the

iterator object on the right side.

(d) operator<= operator<= is used to test if the iterator object on the left side of the operator is less than

or equal to the iterator object on the right side.

(e) operator> operator> is used to test if the iterator object on the left side of the operator is greater than

the iterator object on the right side.

(f) operator>= operator>= is used to test if the iterator object on the left side of the operator is greater

than or equal to the iterator object on the right side.

(g) operator+ operator+ is used to add an offset to an iterator and return the new reverse_iterator

addressing the inserted element at the new offset position.

(h) operator- operator– is used to subtract one iterator from another and return the difference.

18.5 TYPES OF ITERATOR CLASSES

(a) back_insert_iterator The back_insert_iterator class is the template class which describes an

output iterator object. It inserts elements into a container of type container, which it accesses through the

protected pointer object it stores called container.

(b) bidirectional_iterator_tag A class that provides a return type for an iterator_category function

that represents a bidirectional iterator.

(c) front_insert_iterator The front_insert_iterator class is the template class which describes an

output iterator object. It inserts elements into a container of type container, which it accesses through the

protected pointer object it stores called container.

(d) forward_iterator_tag A class that provides a return type for an iterator_category function that

represents a forward iterator.

(e) input_iterator_tag A class that provides a return type for an iterator_category function that

represents a bidirectional iterator.

(f) insert_iterator The insert_iterator class is the template class which describes an output iterator

object. It inserts elements into a container of type container, which it accesses through the protected pointer

object it stores called container.

(g) istream_iterator The istream_iterator is the template class which describes an input iterator

object. It extracts objects of class from an input stream, which it accesses through an object it stores, of type

pointer to basic_istream.

(h) istreambuf_iterator The istreambuf_iterator is the template class which describes an output

iterator object. It inserts elements of class into an output stream buffer, which it accesses through an object

it stores, of type pointer to basic_streambuf.

(i) iterator The iterator is the template class that is used as a base type for all iterators.

 Programming with C++802

(j) iterator_traits A template helper class providing critical types that are associated with different

iterator types so that they can be referred to in the same way.

(k) ostream_iterator The ostream_iterator is the template class which describes an output iterator

object. It inserts objects of class into an output stream, which it accesses through an object it stores, of

type pointer to basic_ostream.

(l) ostreambuf_iterator The ostreambuf_iterator is the template class which describes an output

iterator object. It inserts elements of class into an output stream buffer, which it accesses through an object

it stores, of type pointer to basic_streambuf.

(m) output_iterator_tag A class that provides a return type for iterator_category function that

represents an output iterator.

(n) random_access_iterator_tag A class that provides a return type for iterator_category function

that represents a random-access iterator.

(o) reverse_iterator The template class describes an object that behaves like a random-access

iterator, only in reverse.

18.6 SUMMARY OF ITERATOR CLASSES

(a) Base Class

iterator Iterator base class

iterator_traits Iterator traits

(b) Iterator Operations

advance Advance iterator

distance Return distance between iterators

(c) Inserters

back_inserter Construct a back insert iterator

front_inserter Construct a front insert iterator

inserter Construct an insert iterator

(d) Predefi ned iterators

reverse_iterator Reverse iterator

(e) Inserter iterators

back_insert_iterator Back insert iterator

front_insert_iterator Front insert iterator

insert_iterator Insert iterator

(f) Input/Output iterators

istream_iterator Istream iterator

ostream_iterator Ostream iterator

istreambuf_iterator Input stream buffer iterator

ostreambuf_iterator Output stream buffer iterator

 STL—Iterators and Allocators 803

 REVIEW QUESTIONS

 1. What is an iterator? Explain how an iterator is defi ned and used in C++.

 2. What are the different types of iterators used in STL?

 3. Explain the various iterator member functions used in C++.

 4. Elucidate how an advance () member function is accomplished in C++.

 5. Explain how a back_inserter() member function is defi ned and used in STL.

 6. Explain how a distance () member function is used in STL.

 7. Discuss how a front_inserter() member function is defi ned and used in STL.

 8. Elucidate how a inserter() member function is used in STL.

 9. What is a forward iterator?

 10. What is a bidirectional iterator?

 11. What is a random-access iterator? Give a suitable example.

 12. Explain how an input iterator is defi ned in C++.

 13. Explain how an output iterator is used in STL.

 14. Explain the different types of iterator operators used in STL.

 15. Summarise the various types of iterator classes used in C++.

STL–Algorithms
and Function
Objects

Chapter

19

19.1 INTRODUCTION

The algorithms provided by the STL are implemented as function templates and perform various operations

on elements of containers. There are many algorithms already implemented and tested in the STL. These

algorithms use iterators to perform the tasks. The main purpose of using these STL-algorithms can cut not

only the programming time but also by providing plug-in solutions.

The header <algorithm> defi nes a collection of functions especially designed to be used on ranges of

elements. A range is any sequence of objects that can be accessed through iterators or pointers, such as an

array or an instance of some of the STL containers.

Types of STL

Algorithms –––|––– Non-mutating algorithms
 |

|––– Mutating algorithms
 |

|––– Sorting algorithms
 |

|––– Set algorithms
 |

|––– Heap operations
 |

|––– Relational algorithms
 |

|––– Permutations algorithms
 |

|––– Numeric algorithms

This chapter presents an overview of complete STL, such as algorithms and
functional objects that are implemented in ANSI C++ compiler. The Standard
C++ Library provides a wide assortment of generic algorithms designed to be
effi cient and work with a wide variety of data types.

 STL—Algorithms and Function Objects 805

(a) Non-mutating Algorithms The non-mutating algorithms are also called non-modifying sequence

operations. These algorithms operate on a container without changing its contents.

(b) Mutating Algorithms The mutating algorithms are also called modifying sequence operations. These

algorithms operate on a container and modify its contents.

(c) Sorted Sequence Algorithms These algorithms include sorting and merging, binary searches and

operations on sorted container sequences.

(d) Heap Operation Algorithms These algorithms make it easy to sort a sequence when needed.

(e) Comparison Algorithms These algorithms allow element selection based on comparisons.

(f) Permutation Algorithms These algorithms provide ways of permutating a sequence.

(g) Generalised Numeric Algorithms One can explore these kinds of algorithms for numerics.

The following header fi le must be included in order to perform various operations on STL algorithms.

 Header: #include <algorithm>

19.2 NON MODIFYING SEQUENCE ALGORITHMS

The Standard C++ Library provides generic non-modifying algorithms that search for specifi c container

elements, count container elements meeting certain criteria and check container elements for equality—all

activities that do not modify the container itself. Table 19.1 gives the summary of non-modifying sequence

alogorithms.

Table 19.1

Algorithm Description

for_each Apply function to range

fi nd Find value in range

fi nd_if Find element in range

fi nd_end Find last subsequence in range

fi nd_fi rst_of Find element from set in range

adjacent_fi nd Find equal adjacent elements in range

count Count appearances of value in range

count_if Return number of elements in range satisfying condition

mismatch Return fi rst position where two ranges differ

equal Test whether the elements in two ranges are equal

search Find subsequence in range

search_n Find succession of equal values in range

The non-modifying algorithms can be classifi ed into the following subcategories:

 ∑ counting algorithms

 ∑ fi nd algorithms

 ∑ search algorithms

 ∑ sequence comparison algorithms

19.2.1 Counting Algorithms

The counting algorithms provide generic counting of elements meeting specifi ed values. The counting

algorithms are:

 Programming with C++806

count()
count_if()

(a) count() The count () algorithm counts the number of times a value appears in a sequence.

(b) count_if() The count_if() algorithm counts the number of times a value appears in a sequence for

which the given predicate is true.

19.2.2 Find Algorithms There are several fi nd algorithms, each targeting a certain method of fi nding

elements in a sequence. The fi nd algorithms are:
adjacent_fi nd()
fi nd()
fi nd_fi rst_of()
fi nd_if()
for_each()

(a) adjacent_find() The adjacent_fi nd() algorithm searches a sequence for adjacent pairs of equal elements.

(b) fi nd() The fi nd() algorithm searches a container for the fi rst occurrence of an element.

(c) fi nd_fi rst_of() The fi nd_fi rst_of() algorithm fi nds a value from one sequence in another sequence.

(d) fi nd_if() The fi nd_if() algorithm searchs a container for the fi rst occurrence of an element for

which the given predicate is true.

(e) for_each() The for_each() algorithm applies a function object to each element in a sequence.

19.2.3 Search Algorithms

The Standard library includes three search algorithms:

fi nd_end()
search()
search_n()

(a) fi nd_end() The fi nd_end() algorithm fi nds the last occurrence of a specifi ed sequence as a sequence.

(b) search() The search () algorithm fi nds the fi rst occurrence of a specifi ed sequence as a subsequence.

(c) search_n() The search_n() fi nds the nth occurrence of an element in a sequence.

19.2.4 Sequence Comparison Algorithm

The Standard library includes two sequence comparison algorithms:
equal()
mismatch()

(a) equal() The equal() algorithm compares two ranges of elements. It returns true only the a corres-

ponding pairs of elements in both ranges are equal.

(b) mismatch() The mismatch() algorithm compares two ranges of elements. It returns a pair of iterators

that are the fi rst corresponding positions at which unequal elements occur in a pair of sequences.

19.3 MODIFYING SEQUENCE ALGORITHMS

The Standard C++ library provides generic modifying algorithms that copy, paste, remove, rotate and

transform specifi c container elements—all activities that modify the container’s contents. Table 19.2

presents the summary of modifying sequence algorthms that are supported by STL.

 STL—Algorithms and Function Objects 807

Table 19.2

Algorithm Description

copy Copy range of elements

copy_backward Copy range of elements backwards

swap Exchange values of two objects

swap_ranges Exchange values of two ranges

iter_swap Exchange values of objects pointed by two iterators

transform Apply function to range

replace Replace value in range

replace_if Replace values in range

replace_copy Copy range replacing value

replace_copy_if Copy range replacing value

fi ll Fill range with value

fi ll_n Fill sequence with value

generate Generate values for range with function

generate_n Generate values for sequence with function

remove Remove value from range

remove_if Remove elements from range

remove_copy Copy range removing value

remove_copy_if Copy range removing values

unique Remove consecutive duplicates in range

unique_copy Copy range removing duplicates

reverse Reverse range

reverse_copy Copy range reversed

rotate Rotate elements in range

rotate_copy Copy rotated range

random_shuffl e Rearrange elements in range randomly

partition Partition range in two

stable_partition Partition range in two - stable ordering

With one exception (transform), one can further categorise the modifying algorithms by operation,

giving the following subcategories:

 ∑ copy algorithms

 ∑ fi ll and generate algorithms

 ∑ replace algorithms

 ∑ remove algorithms

 ∑ reverse and rotate algorithms

 ∑ swap algorithms

19.3.1 Copy Algorithms

The copy algorithm copy elements from one sequence to another. Each algorithm performs a different

function based on different criteria. The standard C++ supports the following two functions to perform copy

algorithms.

copy()
copy_backward()

(a) copy() The copy() algorithm is used to copy elements from one sequence to another.

 Programming with C++808

(b) copy_backward() The copy_backward() algorithm is used to copy elements from one sequence to

another sequence starting with the last element.

19.3.2 Fill and Generate Algorithms

The fi ll and generate algorithms are used to systematically assign values to sequence elements. These

algorithms include the following:

fi ll()
fi ll_n()
generate()
generate_n()

(a) fi ll() The fi ll() algorithm is used to replace each element in a sequence with a given value.

(b) fi ll_n() The fi ll_n() algorithm is used to replace the fi rst n elements in a sequence with a given value.

(c) generate() The generate() algorithm is used to replace each element in a sequence with the value

returned by an operation.

(d) generate_n() The generate_n() algorithm is used to replace the fi rst n elements in a sequence with

the value returned by an operation.

19.3.3 Replace Algorithms

The replace algorithms are used to replace values in existing sequence elements. These algorithms include

the following:

replace()
replace_copy()
replace_copy_if()
replace_if()

(a) replace() The replace() algorithm replaces with another value each element in a sequence that

matches some specifi ed value.

(b) replace_copy() The replace_copy() algorithm copies a sequence to another sequence, replacing

with another value each element in the sequence that matches some specifi ed value.

(c) replace_copy_if() The replace_copy_if() algorithm copies a sequence to another sequence,

replacing with another value each element in the sequence that matches some specifi ed value only if a

predicate returns true.

(d) replace_if() The replace_if() algorithm replaces with another value each element in a sequence

that matches some specifi ed value only if a predicate returns true.

19.3.4 Remove Algorithms

The remove algorithms are used to remove existing elements from a sequence. These algorithms include

the following:

remove()
remove_copy()
remove_copy_if()
remove_if()

(a) remove() The remove() algorithm removes elements equal to a specifi ed value.

 STL—Algorithms and Function Objects 809

(b) remove_copy() The remove_copy() copies a sequence, removing elements equal to a specifi ed value

in the new sequence.

(c) remove_copy_if() The remove_copy_if() copies a sequence, removing elements equal to a specifi ed

value in the new sequence if a predicate returns true.

(d) remove_if() The remove_if() removes elements equal to a specifi ed value if a predicate returns true.

19.3.5 Reverse and Rotate Algorithms

The reverse and rotate algorithms are used to reord the sequence of elements in a container.

random_shuffl e()
reverse()
reverse_copy()
rotate()
rotate_copy()

(a) random_shuffl e() The random_shuffl e() reorders elements into a uniformly pseudo-random order.

(b) reverse() The reverse() reverses the order of the elements in a sequence.

(c) reverse_copy() The reverse_copy() copies one sequence into another, reversing the order of the

elements in the new sequence.

(d) rotate() The rotate() performs a circular shift of all elements in a sequence.

(e) rotate_copy() The rotate_copy() copies one sequence into another, performing a circular shift of all

elements in the new sequence.

19.3.6 Swap Algorithms

The swap algorithms move elements from one location to another in a container. These algorithms include

the following:

iter_swap()
swap()
swap_ranges()

(a) iter_swap() The iter_swap() algorithm swaps two elements using iterators.

(b) swap() The swap() algorithm exchanges two sequence elements.

(c) swap_ranges() The swap_ranges() algorithm exchanges elements of one sequence with those of

another sequence using a specifi ed range.

19.3.7 The transform Algorithm

The transform()algorithm performs a specifi ed operation on every element in a sequence. This

algorithm is implemented in the transform() function declared in the standard header <algorithm>.

19.3.8 Unique Algorithms

The unique algorithms remove duplicate adjacent elements within a sequence. These algorithms include the

following:

unique()
unique_copy()

 Programming with C++810

(a) unique() The unique() algorithm removes duplicate elements of a sequence if they are adjacent.

(b) unique_copy() The unique_copy() copies a sequence, removing duplicate elements from the new

sequence if they are adjacent.

19.4 SORTED SEQUENCE ALGORITHMS

The standard C++ library provides several generic algorithms related to sorted sequences and sort

operations. The following Table 19.3 briefl y describes each of the sorting and searching algorithms.

Table 19.3

Algorithm Description

binary_search fi nds a value in a sorted sequence using repeated bisection.

equal_range searches a sorted sequence for a subsequence having a specifi ed value.

inplace_merge merges two consecutive sorted sequences.

lower_bound fi nds the fi rst occurence of a value in a sorted sequence.

includes returns true if a specifi ed subsequence is present in a sequence.

merge merges two sorted sequences.

nth_element places a sequence element into the position it would occupy if the sequence

were sorted.

partial_sort sorts the fi rst part of a sequence

partial_sort_copy makes a copy of a sequence, sorting the fi rst part of the new sequence.

partition places elements matching a predicate fi rst in the sort order.

set_difference compares two sequences, creating a sorted third sequence that contains

elements found in the fi rst sequence but not in the second.

set_intersection compares two sequences, creating a sorted third sequence that contains

elements found in both of the fi rst two sequences.

set_symmetric_difference compares two sequences, creating a sorted third sequence that contains all

elements found in the fi rst but not the second, and all elements found in the

second but not the fi rst.

set_union creates a new sequence that contains elements found in two sequences,

eliminating duplicates.

sort sorts a sequence

stable_partition sorts a sequence, placing elements that match a predicate fi rst while

maintaining relative order.

stable_sort sorts a sequence, maintaining relative order of equal elements.

upper_bound fi nds the last occurrence of a value in a sorted sequence.

We can further categorise the sorted sequence algorithms by operation, giving the following

subcategories:

 ∑ Binary search algorithms

 ∑ Merge algorithms

 ∑ Partition algorithms

 ∑ Set operation algorithms

 ∑ Sorting algorithms

 STL—Algorithms and Function Objects 811

19.4.1 Binary Search Algorithms

The binary search algorithms make searching sorted sequences orders of magnitude faster than linear

searches on unsorted sequences. These algorithms include the following:

binary_search()
equal_range()
lower_bound()
upper_bound()

(a) binary_search() The binary_search() algorithm fi nds a value in a sorted sequence using repeated

bisection.

(b) equal_range() The equal_range() algorithm searches a sorted sequence for a subsequence having a

specifi ed value.

(c) lower_bound() The lower_bound() algorithm fi nds the fi rst occurrence of a value in a sorted sequence.

(d) upper_bound() The upper_bound() algorithm fi nds the last occurrence of a value in a sorted sequence.

19.4.2 Merge Algorithms

The merge algorithms combine sequences in various ways. These algorithms include inplace_merge()

and merge().

(a) inplace_merge The inplace_merge() algorithm merges two consecutive sorted sequences.

(b) merge() The merge() algorithm merges two sorted sequences.

19.4.3 partition Algorithms

Partition algorithms place every element that satisfi es a predicate requirement before every element that

does not satisfy that requirement, rearranging a sequence as needed. The partition algorithm includes

partition() and stable_partition()

(a) partition The partition() algorithm places elements matching a predicate fi rst in the sort order.

(b) stable_partition The stable_partition() algorithm sorts a sequence, placing elements that match a

predicate fi rst while maintaining relative order.

19.4.4 set Operation Algorithms

The algorithms that operate on sets work only with sorted sequences because typical set operations such as

intersect and difference are terribly slow on unsorted sequences. The set algorithms include the following:

includes()
set_difference()
set_intersection()
set_symmetric_difference()
set_union()

(a) includes() The includes() algorithm returns true if a specifi ed subsequence is present in a sequence.

(b) set_difference() The set_difference() algorithm compares two sequences, creating a sorted third

sequence that contains elements found in the fi rst sequence but not in the second.

(c) set_intersection() The set_intersection() algorithm compares two sequences, creating a sorted

third sequence that contains elements found in both of the fi rst two sequences.

 Programming with C++812

(d) set_symmetric_difference() The set_symmetric_difference() algorithm compares two

sequences, creating a sorted third sequence that contains all elements found in fi rst the but not the second,

and all elements found in the second but not the fi rst.

(e) set_union() The set_union() algorithm creates a new sequence that contains elements found in two

sequences, eliminating duplicates.

19.4.5 Sorting Algorithms

The algorithms that actually sort sequences include the following:

nth_element()
partial_sort()
partial_sort_copy()
sort()
stable_sort()

(a) nth_element() The nth_element() algorithm places a sequence element into the position it would

occupy if the sequence were sorted.

(b) partial_sort() The partial_sort() algorithm sorts the fi rst part of a sequence

(c) partial_sort_copy() The partial_sort_copy() makes a copy of a sequence, sorting the fi rst part of

the new sequence.

(d) sort() The sort() algorithm sorts a sequence.

(e) stable_sort() The stable_sort() algorithm sorts a sequence, maintaining relative order of equal elements.

19.5 HEAP OPERATION ALGORITHMS

The standard C++ library provides generic heap operation algorithms to work with heaps. The following

Table 19.4 briefl y describes each of the heap operation algorithms.

Table 19.4

Algorithm Description

push_heap Push element into heap range

pop_heap Pop element from heap range

make_heap Make heap from range

sort_heap Sort elements of heap

(a) make_heap() The make_heap() algorithm creates a sequence to be used as a heap.

(b) pop_heap() The pop_heap() algorithm removes an element from a heap.

(c) push_heap() The push_heap() algorithm adds an element to a heap.

(d) sort_heap() The sort_heap() algorithm sorts a heap.

19.6 COMPARISON ALGORITHMS

The standard C++ library provides generic algorithms to compare sequences and elements. The following

Table 19.5 briefl y describes each of the comparison algorithms.

 STL—Algorithms and Function Objects 813

Table 19.5

Algorithm Description

min Return the lesser of two arguments

max Return the greater of two arguments

min_element Return smallest element in range

max_element Return largest element in range

lexicographical_
compare

Performs a lexicographical comparison of two

sequences to determine which is fi rst

(a) lexicographical_compare() The lexicographical_compare() algorithm performs a lexicographical

comparison of two sequences to determine which is fi rst.

(b) max() The max() algorithm returns the larger of two arguments.

(c) max_element() The max_element() algorithm returns an iterator to the largest value in a sequence.

(d) min() The min() algorithm returns the smaller of two arguments.

(e) min_element() The min_element() algorithm returns an iterator to the smallest value in a sequence.

19.7 PERMUTATION ALGORITHM

The standard C++ library provides two generic algorithms to perform permutations on sequences. The

following Table 19.6 briefl y describes both of these algorithms:

Table 19.6

Algorithm Description

next_permutation permutes a sequence into the next lexicographical ordering of

permutations

prev_permutation permutes a sequence into the previous lexicographical ordering

of permutations

(a) next_permutation() The next_permutation() algorithm permutes a sequence into the next

lexicographical ordering of permutations.

(b) prev_permutation() The prev_permutation() algorithm permutes a sequence into the previous

lexicographical ordering of permutations.

19.8 NUMERIC ALGORITHMS

Numeric algorithms are special types of container template functions that perform algorithms provided for

numerical processing. The algorithms are similar to the Standard Template Library (STL) algorithms and

are fully compatible with the STL but are part of the C++ Standard Library rather than the STL. Like the

STL algorithms, they are generic because they can operate on a variety of data structures.

The following header fi le must be included in order to perform various operations on numeric

algorithms.

 Header: #include <numeric>

 Programming with C++814

19.8.1 The Numeric Members Functions

The standard C++ library provides four generic algorithms to perform numeric operation on sequences. The

following Table 19.7 briefl y describes these algorithms.

Table 19.7

Algorithm Description

accumulate() Accumulate values in range

adjacent_difference() Compute adjacent difference of range

inner_product() Compute cumulative inner product of range

partial_sum() Compute partial sums of range

(a) accumulate() The accumulate() member function is used to compute the sum of all the elements in a

specifi ed range including some initial value by computing successive partial sums or compute the result of

successive partial results similarly obtained from using a specifi ed binary operation other than the sum.

(b) adjacent_difference() The adjacent_difference() member function is used to compute the

successive differences between each element and its predecessor in an input range and outputs the results

to a destination range or compute the result of a generalised procedure where the difference operation is

replaced by another, specifi ed binary operation.

(c) inner_product() The inner_product() member function is used to compute the sum of the element-

wise product of two ranges and adds it to a specifi ed initial value or compute the result of a generalized

procedure where the sum and product binary operations are replaced by other specifi ed binary operations.

(d) partial_sum() The partial_sum() member function is used to compute a series of sums in an input

range from the fi rst element through the ith element and stores the result of each such sum in ith element of

a destination range or compute the result of a generalised procedure where the sum operation is replaced by

another specifi ed binary operation.

19.9 FUNCTION OBJECTS

Header: #include <functional>

The header fi le <functional> defi nes Standard Template Library (STL) functions that help construct function

objects, also known as functors, and their binders. In other words, function objects are objects specifi cally

designed to be used with a syntax similar to that of functions. In C++, this is achieved by defi ning member

function operator () in their class.

A function object and function pointers can be passed as a predicate to an algorithm, but function objects

are also adaptable and increase the scope, fl exibility, and effi ciency of the STL.

19.10 THE FUNCTIONAL MEMBERS

(a) Base Classes Algorithms require two types of function objects: unary and binary. Unary function

objects require one argument, and binary function objects require two arguments. The Table 19.8 gives the

summary of the functional members.

 STL—Algorithms and Function Objects 815

Table 19.8

Function Objects Description

unary_function Unary function object base class

binary_function Binary function object base class

19.10.1 Operator Classes

The function objects of the operator classes can be classifi ed into three groups, namely, (a) arithmetic

operations, (b) Comparison operations, and (c) Logical operations.

(a) Arithmetic Operations (Table 19.9)

 (i) plus() The class provides a predefi ned function object that performs the arithmetic operation of

addition on elements of a specifi ed value type.

 (ii) minus() The class provides a predefi ned function object that performs the arithmetic operation of

subtraction on elements of a specifi ed value type.

 (iii) multiplies() The class provides a predefi ned function object that performs the arithmetic

operation of multiplication on elements of a specifi ed value type.

 (iv) divides() The class provides a predefi ned function object that performs the arithmetic operation

of division on elements of a specifi ed value type.

 (v) modulus() The class provides a predefi ned function object that performs the arithmetic operation

of modulus on elements of a specifi ed value type.

 (vi) negate() The class provides a predefi ned function object that returns the negative of an element

value.

Table 19.9

Function Objects Description

plus Addition function object class

minus Subtraction function object class

multiplies Multiplication function object class

divides Division function object class

modulus Modulus function object class

negate Negative function object class

(b) Comparison Operations (Table 19.10)

 (i) equal_to()A binary predicate that tests whether a value of a specifi ed type is equal to another

value of that type.

 (ii) not_equal_to() A binary predicate that tests whether a value of a specifi ed type is not equal to

another value of that type.

 (iii) greater() A binary predicate that tests whether a value of a specifi ed type is greater than another

value of that type.

 (iv) less() A binary predicate that tests whether a value of a specifi ed type is less than another value

of that type.

 (v) greater_equal() A binary predicate that tests whether a value of a specifi ed type is greater

than or equal to another value of that type.

 (vi) less_equal() A binary predicate that tests whether a value of a specifi ed type is less than or

equal to another value of that type.

 Programming with C++816

Table 19.10

Function Objects Description

equal_to Function object class for equality comparison

not_equal_to Function object class for non-equality comparison

greater Function object class for greater-than inequality comparison

less Function object class for less-than inequality comparison

greater_equal Function object class for greater-than-or-equal-to comparison

less_equal Function object class for less-than-or-equal-to comparison

(c) Logical Operations (Table 19.11)

 (i) logical_and() The class provides a predefi ned function object that performs the logical

operation of conjunction on elements of a specifi ed value type and tests for the truth or falsity of the

result.

 (ii) logical_or() The class provides a predefi ned function object that performs the logical operation

of disjunction on elements of a specifi ed value type and tests for the truth or falsity of the result.

 (iii) logical_not() The class provides a predefi ned function object that performs the logical operation

of negation on elements of a specifi ed value type and tests for the truth or falsity of the result.

Table 19.11

Function Objects Description

logical_and Logical AND function object class

logical_or Logical OR function object class

logical_not Logical NOT function object class

19.10.2 Adaptor and Conversion Functions

(a) Negators (Table 19.12)

 (i) not1() The not1() negator is used to return the complement of a unary predicate.

 (ii) not2() The not2() negator is used to return the complement of a binary predicate.

Table 19.12

Function Objects Description

not1 Return negation of unary function object

not2 Return negation of binary function object

(b) Parameter Binders (Table 19.13)

 (i) binder1st A template class providing a constructor that converts a binary function object into a

unary function object by binding the fi rst argument of the binary function to a specifi ed value.

 (ii) binder2nd A template class providing a constructor that converts a binary function object into a

unary function object by binding the second argument of the binary function to a specifi ed value.

Table 19.13

Function Objects Description

bind1st Return function object with fi rst parameter binded

bind2nd Return function object with second parameter binded

 STL—Algorithms and Function Objects 817

(c) Conversors (Table 19.14)
 (i) ptr_fun() The ptr_fun() is a helper template function that is used to convert unary and binary

function pointers, respectively, into unary and binary adaptable functions.

 (ii) mem_fun_ref() The mem_fun_ref() is a helper template function that is used to construct

function object adaptors for member functions when initialised with reference arguments.

 (iii) mem_fun() The mem_fun() is a helper template function that is used to construct function object

adaptors for member functions when initialised with pointer arguments.

Table 19.14

Function Objects Description

ptr_fun Convert function pointer to function object

mem_fun Convert member function to function object (pointer version)

mem_fun_ref Convert member function to function object (reference version)

(d) Instrumental Types (Table 19.15)

 (i) unary_negate() A template class providing a member function that negates the return value

of a specifi ed unary function.

 (ii) binary_negate() A template class providing a member function that negates the return value

of a specifi ed binary function.

 (iii) bind1st() A helper template function that creates an adaptor to convert a binary function object

into a unary function object by binding the fi rst argument of the binary function to a specifi ed value.

 (iv) bind2nd() A helper template function that creates an adaptor to convert a binary function object

into a unary function object by binding the second argument of the binary function to a specifi ed value.

 (v) pointer_to_unary_function() The pointer_to_unary_function() is used to to convert a

unary function pointer into an adaptable unary function.

 (vi) pointer_to_binary_function() The pointer_to_binary_function() is used to convert a

binary function pointer into an adaptable binary function.

 (vii) mem_fun_t() The mem_fun_t() is an adapter class that allows a non_const member function

and that takes no arguments to be called as a unary function object when initialised with a pointer

argument.

 (viii) mem_fun1_t() The mem_fun1_t () is an adapter class that allows a non_const member

function and that takes a single argument to be called as a binary function object when initialised

with a pointer argument.

 (ix) const_mem_fun_t() The const_mem_fun_t() is an adapter class that allows a const member

function and that takes no arguments to be called as a unary function object when initialised with a

pointer argument.

 (x) const_mem_fun1_t() The const_mem_fun1_t() is an adapter class that allows a const

member function and that takes a single argument to be called as a binary function object when

initialised with a pointer argument.

 (xi) mem_fun_ref_t() The mem_fun_ref_t() is an adapter class that allows a non_const

member function and that takes no arguments to be called as a unary function object when initialised

with a reference argument.

 (xii) mem_fun1_ref_t() The mem_fun1_ref_t() is an adapter class that allows a non_const

member function and that takes a single argument to be called as a binary function object when

initialised with a reference argument.

 Programming with C++818

 (xiii) const_mem_fun_ref_t() The const_mem_fun_ref_t() is an adapter class that allows a

const member function and that takes no arguments to be called as a unary function object when

initialised with a reference argument.

 (xiv) const_mem_fun1_ref_t() The const_mem_fun1_ref_t() is an adapter class that allows a

const member function and that takes a single argument to be called as a binary function object

when initialised with a reference argument.

Table 19.15

Instrumental types Description

unary_negate Generate negation of unary function object class

binary_negate Generate negation of binary function object class

binder1st Generate function object class with 1st parameter binded

binder2nd Generate function object class with 2nd parameter binded

pointer_to_unary_function Generate unary function object class from pointer

pointer_to_binary_function Generate binary function object class from pointer

mem_fun_t Generate function object class from parameterless member (pointer version)

mem_fun1_t Generate function object class from single-parameter member (pointer version)

const_mem_fun_t Generate function object class from const parameterless member (pointer

version)

const_mem_fun1_t Generate function object class from single-parameter const member

(pointer version)

mem_fun_ref_t Generate function object class from parameterless member (reference version)

mem_fun1_ref_t Generate function object class from single-parameter member (reference

version)

const_mem_fun_ref_t Generate function object class from const parameterless member (reference

version)

const_mem_fun1_ref_t Generate function object class from single-parameter const member

(reference version)

 REVIEW QUESTIONS

 1. Explain how the STL-algorithms are useful for constructing a generic programming.

 2. What are the different types of STL-algorithms used in C++?

 3. Explain the importance of non-mutating algorithms.

 4. Explain the following counting algorithm with a suitable example.

 (a) count() (b) count_if()
 5. Elucidate how the following STL-algorithm is used in C++.

 (a) adjacent_fi nd() (b) fi nd() (c) fi nd_fi rst_of()
 (e) fi nd_if() (f) for_each()
 6. Discuss the importance of the following algorithms.

 (a) fi nd_end() (b) search() (c) search_n()

 7. Explain how a sequence comparison algorithm is constructed in C++.

 8. Summarise the list of mutating algorithms used in STL.

 9. Explain the following copy algorithm with a suitable example.

 (a) copy() (b) copy_backward()

 STL—Algorithms and Function Objects 819

 10. Explain how the following algorithm is accomplished in STL.

 (a) fi ll() (b) fi ll_n()
 (c) generate() (d) generate_n()
 11. Discuss the importance of the following replace algorithms.

 (a) replace() (b) replace_copy()
 (c) replace_copy_if() (d) replace_if()
 12. Explain the following remove algorithms with a suitable example.

 (a) remove() (b) remove_copy()
 (c) remove_copy_if() (d) remove_if()
 13. Elucidate how the reverse and rotate algorithms are used to reorder the sequence of elements in a

container.

 14. Summarise the list of swap algorithms used in STL.

 15. Discuss the following unique algorithms with a suitable example.

 (a) unique() (b) unique_copy()
 16. Explain how the following algorithm is accomplished in STL.

 (a) binary_search() (b) equal_range()
 (c) lower_bound() (d) upper_bound()
 17. Summarise the list of set operation algorithms used in STL.

 18. Explain the following sort algorithms with a suitable example.

 (a) nth_element() (b) partial_sort() (c) partial_sort_copy()

 (d) sort() (e) stable_sort()

 19. Describe how the heap operation algorithms are constructed in C++.

 20. Summarise the list of comparison algorithms used in STL.

 21. Explain the following numeric algorithm with a suitable example.

 (a) accumulate() (b) adjacent_difference()

 (c) inner_product() (d) partial_sum()

 22. Explain the importance of function objects in C++.

Appendix

A 1 SOLUTIONS TO THE CONCEPT REVIEW PROBLEMS

Chapter 3

(1) (a) invalid (no space between identifi ers)

 (b) invalid (special character ‘+’)

 (c) invalid (special character ‘’)

 (d) valid

 (e) invalid (fi rst character should be an alphabet)

 (f) invalid (keywords cannot be used as a user-defi ned identifi er)

 (g) invalid (keywords cannot be used as a user-defi ned identifi er)

 (h) invalid (special character “ ”)

 (i) valid

 (j) invalid (no space between identifi ers)

 (k) valid (in ANSI/ISO C++)

 (l) valid

(2) (a) invalid (comma is not allowed) (b) invalid (decimal point not permitted)

 (c) invalid (special symbols not allowed) (d) invalid (usage of e is for real number)

 (e) invalid (usage of e is for real number) (f) valid

 (g) invalid (not numeral)

 (h) valid (i) valid

 (j) valid (k) valid

 (l) valid (m) valid

 (n) valid (o) invalid (usage of f is for real number)

 (p) invalid (usage of e is for real number)

(3) (a) invalid (letter ‘o’ is not allowed for a radix representation)

 (b) valid

 (c) invalid (0X missing) (d) valid

 (e) invalid (not a numeral) (f) valid

 (g) valid (h) invalid (88 is not an octal number)

 (i) invalid (0X missing) (j) invalid (LU is not a radix representation)

 (k) valid (l) valid

 (m) valid (n) valid

 (o) invalid (not a numeral) (p) invalid (not a numeral)

 Appendix 821

(4) (a) invalid (special characters Rs are not permitted)

 (b) valid

 (c) valid (d) invalid (comma is not allowed with numerals)

 (e) valid (f) valid

 (g) valid (h) invalid (decimal point is not permitted after E)

 (i) valid (j) valid

 (k) valid (l) valid

 (m) valid (n) invalid (both f and l is not permitted for real

 numbers)

 (o) valid (p) valid

(5) (a) valid (b) invalid (multicharacters)

 (c) invalid (string) (d) invalid (missing single quote)

 (e) invalid (string) (f) invalid (muticharacters)

 (g) invalid (only a single character with ‘’) (h) invalid (only a single character with ‘’)

 (i) invalid (string) (j) invalid (string)

 (k) valid (l) valid

(6) (a) a/b +10 (b) (5/9) * (f-32)

 (c) (a/b)* (c/d) (d) a * (a+v)/(b–1)

(7) (a) no space between pay bill (single identifi er) (b) left hand side cannot have an expression

 (c) two operators (/-2.5) appearing together (d) special symbols prefi x 100

 (e) operator is missing => s* (s–a) *(s–b)*(s–c) (f) missing assignment operator and semicolon

 (g) missing lvalue

(8) (a) g =
x x y

x y

()

()

2 2

2 2 2

+

- +
 (b) sum =

x

a b

2

(/)

 (c) y = x +
x

y
x+ - 2 0. (d) root =

b ac

a

2 4

2

-

 (e) interest =
pnr

100

(9) (a) v1 = 1.5 (b) v2 = 60 (c) v3 = 13.5 (d) v4 = 53

 (e) v5 = –10 (f) v6 = –55 (g) v7 = –2.875

(10) (a) sum1 = –14 (b) sum2 = 1 (c) sum3 = 10 (d) sum4 = –5

 (e) sum5 = –2 (f) sum6 = 4 (g) sum7 = –7

(11) (a) exp1 = 0 (b) exp2 = 1 (c) exp3 = 0 (d) exp4 = 0

 (e) exp5 = 1 (f) exp6 = 0 (g) exp7 = 1 (h) exp8 = 1

 (i) exp9 = 0 (j) exp10 = 0 (k) exp11 = 1

(12) (a) f1 = 1 (b) f2 = 1 (c) f3 = 0 (d) f4 = 0

 (e) f5 = 1 (f) f6 = 0 (g) f7 = 1 (h) f8 = 1

(13) (a) a = 3 (b) b = 2 (c) c = 28 (d) d = 0

 (e) a = 4 (f) b = 12

Chapter 4

(1) (a) value of x = 10 (b) x = 10 y = 20 sum = 30

 (c) x = 10 y = 20 sum = 30 (d) 0

 (e) 1.23e+100

 1.23E+100

 822 Programming with C++

 a

 A

 (f) 100

 0×64

 0144

 100

 64

 144

 (g) 1

 true

 1

 true

 (h) 0

 (i) 1

(2) (a) 0 (b) 2 (c) 0 (d) 2

 (e) a = 0

 b = 1

 c = a + b = 1

 (f) a = 1

 b = 1

 c = a + b = 2

 (g) a = 1

 b = 1

 c = a + b = 1

 (h) a = 0

 b = 1

 c = a + b = 1

 (i) a = 1

 b = 0

 x = a–b = 1

 (j) ABC

 (k) A

 B

 C

 (l) Hello

 C++

 program

Chapter 5

(1) (a) b = 20 c = 30

 In a short circuit evaluation, the logical AND (&&) will not evaluate the second condition, if the

fi rst condition is false, due to the result will be false. Hence the above output.

 (b) a = 10 b = 21

 In a short circuit evaluation, the logical AND (&&) will evaluate the second condition only if the

fi rst condition is true. Hence the above output.

 (c) b = 20 c = 30

 Appendix 823

 In a short circuit evaluation, the logical OR (||) will not evaluate the second condition if the fi rst

condition is true, due to the result will be true. Hence the above output.

 (d) b = 21 c = 31

 In a short circuit evaluation, the logical OR (||) will evaluate the second condition only if the fi rst

condition is false. Hence the above output.

 (e) a + b + c = 60

 a = 10, b = 20, c = 30 and hence a + b + c = 60

 (f) a + b + c = 62

 a = 11, b = 20, c = 31 and hence a + b + c = 62

 (g) value of a*b = 210

 a = 10, b = 21 and hence a*b = 210

 (h) value of a+b = 34

 a = 13, b = 21 and hence a+b = 34

(2) (a) default case (b) inner case 2

 (c) inner case 3 (d) x = 4

 x = 9

 No break statement is used in the case ‘4’ and hence the program is executed even after the

case ‘4’.

 (e) x = 4

 x = 10

 No break statement is used within the case labels and hence the program is executed from case

‘4’ to case ‘3’.

 (f) y = 1

 x = 32

 x = 2 i = 1 (x += x that is x = x + x, 1+1 = 2)

 x = 4 i = 2 (x += x , 2 + 2 = 4), and so on

 x = 8 i = 3

 x = 16 i = 4

 x = 32 i = 5

 (g) a = 7

 grade - C

 For an integer division, the digits will be dropped after a decimal point. (Here, only 7 is assigned

and 0.5 is dropped).

(3)
#include <iostream>
using namespace std;
int main()
{
 int a = 75;
 a = a % 10;
 cout <<“a = ” << a;
 if (a == 9)
 cout <<“grade - A \n”;
 else if (a == 8)
 cout <<“grade - B \n”;
 else if (a == 7)
 cout <<“grade - C \n”;

 824 Programming with C++

 else if (a == 6)
 cout <<“grade - D \n”;
 else

 cout <<“ grade - fail \n”;
 return 0;
}

(4)
#include <iostream>
using namespace std;
int main()
{
 char grade;
 grade = ‘E’;
 switch (grade) {
 case ‘A’:
 cout <<“ Excellent \n”;
 break;
 case ‘B’:
 case ‘C’:
 cout <<“ Good \n”;
 break;
 case ‘D’:
 case ‘E’:
 cout <<“ Poor \n”;
 break;
 default:
 cout <<“ Grade - Fail \n”;
 break;
 }
}

(5) (a) r = 2

 p = (10 % 2) /3, that is 10 % 2 = 0 and 0/3 gives 0.

 (b) r = 2

 p = (10 % 2) /3, that is 10 % 2 = 0 and 0/3 gives 0.

 In the post incrementation, the value of p is assigned for comparison before increment. Hence the

above output.

 (c) s = 3

 if (++p == 0), here p is incremented and compared with 0. Hence the value of p = 1, the if state-

ment fails to execute the if-block. Then it checks for another else-if statement.

 else if (p++ == 1), the value of p is compared with 1 before incrementation due to the post

increment. Hence the above output.

 (d) p = 6

 if ((++p)++ == 0), here p is incremented and compared with 0 due to parenthese which is

higher precedence. Hence the value of p = 1, the if statement fails to execute the if-block.

However, the value of p is incremented again that is p = 2, due to post increment operator.

 It checks for another else-if statement.

 else if (p++ == 1), the value of p = 2, is compared with 1 before incrementation due to the

post increment. else if satement blocks also fail to execute but the value of p is incremented

by 1.

 Appendix 825

 Now p = 3

 It checks for another else-if statement.
 else if ((p++ == 2) || (p++ == 3) || (p++ == 4))

 The value of p is not matched with any of the conditions above.

 However, each ++ operation, the value is incremented by one.

 Hence the above output.

(6) (a) No Output

 As the test condition of the for statement checks whether the given condition is 0 or 1. In this

case, the given test condition is 0 and hence the for statement will not be repeated at all.

 (b) The test condition of the for statement checks whether the given condition is 0 or 1. In this case,

the given test condition is 1 and the for statement will be repeated. There is no provision to

change of the test condition from 1 to 0 and the for statement will be repeated for ever.

 (c) –6 –5 –4 –3 –2 –1

 In C++, the for statement checks whether the given test condition is 0 or 1. The value of j incre-

ments from –6 by 1. When it reaches the value to 0, the for statement fails to repeat.

 (d) No output as the for loop terminates with semicolon.

 (e) The for loop repeats indefi nitely as there is no provision to check for the test condition within the

for statement. Hence the value of j will be incremented from –6 by one, to indefi nitely.

 (f) The for loop repeats indefi nitely as there is no provision to check for the test condition within the

for statement. Hence the value of j will be incremented from –6 by one, to indefi nitely.

 (g) ABCDEFGHIJKLMNOPQRSTUVWXYZ
 (h) j = 1 j = 3 j = 5 j = 7 j = 9

 (i) j = 0 j = 3 j = 6 j = 9

 (j) j = 0 j = 0.2 j = 0.4 j = 0.6 j = 0.8 j = 1

(7) (a) i = 1

 i = 2

 i = 3

 and so on

 The given test condition is true and there is no provision to change the given test condition from

true to false within the for statement. Hence, the for loop iterates for ever until the user termi-

nates from external command like prss Cntrl + C keys together.

 (b) No output will be displayed.

 The given test condition is false. Therefore the for statement will not be repeated at all.

 (c) No output.

 The for statement is repeated for ever due to the given condition for (;;). The for ();

is known for the null statement. Hence, cout << “ i = ” << i << “\n” will not be

executed.

 (d) The for statement will be repeated for ever.

 i = 1
 i = 2
 and so on until the user terminates through external command like pressing Cntrl + C keys.

 (e) The given test condition is true and hence the for statement will be repeated for ever until the user

terminates through external command like pressing Cntrl + keys.

 a = -1.1
 a = -0.6
 a = -0.1
 a = 0.4

 826 Programming with C++

 a = 0.9
and so on.

 (f) The for statement will be repeated for ever and displaying all the ASCII characters from 0 to

255.

 ch = A
 ch = B
 and so on.

 (g) i = 1

 i = 2

 i = 3 and so on.

 There is no test condition to terminate the for statement and therefore the for statement will be

executed for ever displaying the value of i incrementing by one.

 (h) There is no test condition to terminate the for statement and therefore the for statement will be

executed for ever displaying the value of i = 0.

(8) (a) i = 0

 i = 1

 i = 2 and so on.

The given test condition for the while tatement is true and hence the while statement will be

repeated for ever displaying the following contents. Due to the post increment operator, the value

of i starts from 0.

 (b) i = 1

 i = 2

 i = 3 and so on.

 The given test condition for the while statement is true and hence the while statement will be

repeated for ever displaying the following contents. Due to the preincrement operator, the value of

i starts from 1.

 (c) No output due to the given test condition value is false. Hence the while statement will not be

repeated.

 (d) No output due to the test condition value is zero. As long as the test condition value is true (non-

zero), the while loop will repeat. The given test condition value is zero (false) and hence the while

loop is not entered.

 (e) Compile time error.

 ISO C++ forbids an empty while statement.

 (f) The while loop repeats for ever displaying the values from 1 2 3 and so on due to the test condition

value is one (nonzero). There is no provision to change the given test condition in this program.

Hence it repeats for ever until the user terminates through external commands like pressing Cntrl

+C.

 (g) –6 –5 –4 –3 –2 –1

 (h)

Komputer

 Komputer

 i = 2

 Komputer

 Komputer

 i = 4

 Komputer

 Appendix 827

 Komputer

 i = 6

 Komputer

 Komputer

 i = 8

 Komputer

 Komputer

 i = 10

 No of iterations = 5

 (i)

 Komputer

 Hello world

 Komputer

 Hello world

 Komputer

 Hello world

 No of iterations of the inner loop = 3

 No of iterations of the outer loop = 3

(9) (a) The do-while statement repeats for ever displaying the fl ag = 1 until the user terminates

through external command like pressing Cntrl + C. As long as the test condition value is true (one),

the do-while statement repeats for ever.

 (b) fl ag = 1
 (c) The do-while statement repeats for ever displaying the fl ag = 1. The new value of the fl ag that

is !(fl ag), is not stored into the variable fl ag.

 (d) “Hello C++ world” will be displayed 5 times

 (e) “Hello C++ world” will be displayed 3 times

 (f) “Hello C++ world” will be displayed 6 times

 (g) “Hello C++ world” will be displayed 2 times and i = 2

Chapter 6

(1) (a) 1 5 1 (b) 1 5 1 10 1 (c) 1 5 10 5 1

 (d) 1 6 6 (e) 1 6 16 6 (f) 10 11 11

 (g) 10 11 11 (h) 10 2 2 (i) 10 2 10

(2) (a) i = 10 j = 20 total = 200

 (b) Compile time error. The return statement with no value is defi ned but in function declaration, a

non-void return type is defi ned. Hence, it gives error.

 (c) total = 40 (d) sum = 10 (e) sum = 10

 (f) sum = 13 (g) sum = 0 (h) sum = 0

(3) (a) Innermost ...

 now inside the function 2

 Within a function 1

 In main ...

 (b) j = 11 b = 12

 (c) i = 10 a = 10 (returned value is not assigned (in the function call)

 (d) i = 11 a = 12

 (e) i = 10 a = 10 (due to post-increment operation)

 828 Programming with C++

 (f) sum = 1108544021. An automatic variable will be initialised with a garbage value by default, if

it is uninitialised by the user.

 (g) sum = 1. A static variable is initialised to zero by default, if it is uninitialised. Hence above the

output.

 (h) sum = 0

 (i) sum = 3

 (j) value of a (in main) = 10

 value of a (inside function) = 10

 value of a (after function call) = 10

 (k) a = 10

Chapter 7

(1) (a) 1 2 3 4 0 0 (b) 0 1 4 9 16

 (c) Compilation time error. Array is declared as a const data type. Whenever any items are declared

with const modifi er, it is meant for read only purpose. Altering the const data items is illegal.

Hence it gives error.

 (d) contents of the array in main

 0 1 4 9 16

 contents of the array in function

 0 1 4 9 16

 (e) contents of the array in main

 1 0 1 0 1

 contents of the array in function

 0 1 0 1 0

 (f) Contents of the array

 a[0] = 1

 a[1] = 2

 a[2] = 3

 a[3] = 4

 a[4] = 5

(2) (a) Contents of the array

 1 0 0

 0 1 0

 0 0 1

 (b) Contents of the array

 1 0 0

 0 1 0

 0 0 1

 Sum of all elements in the array = 3

 (c) Contents of the array

 1 2 13

 4 15 6

 17 8 9

 Sum of all diagonal elements in the array = 45

 (d) Contents of the array

 1 2 13

 Appendix 829

 4 15 6

 17 8 9

 Sum of all diagonal elements in the array = 25

 (e) contents of the array in main

 1 2 3 4 0

 sum of all elements = 10

Chapter 8

(1) (a) ++(*ptr1) = 11 (b) (*ptr1)++ = 10

 (c) *ptr1++ = 10 (d) ++*ptr1 = 11

 (e) *ptr1 = 11

 (f) &(a++)—it is an illegal form of declaring unary (&) operator. The compiler displays the error

message as “non-lvalue in unary (&)”

 (g) *ptr1 = 0 (h) *ptr1 = 1

 (i) *ptr = 10

(2) (a) 10 10 11

 (b) 10 11 11

 (c) 10 11 12 12

 (d) 10 11 12 12 12

 (e) 10 11 11 12 12

 (f) 10 11 10 10 10

 (g) Compilation error, In the case of call by reference, the actual parameter list must have only the

variables. It cannot have constants.

(3) (a) New Delhi

 Chennai

 Mumbai

 Hyderabad

 (b) Hyderabad

 Mumbai

 Chennai

 New Delhi

 (c) contents of ptr1 = 101

 contents of ptr2 = 101

 (d) contents of ptr1 = 10

 contents of ptr2 = 10

 contents of ptr3 = 10

 (e) 2 3 5

 10 20 30

 (f) *ptr = 10

 *ptr = 11

 (g) *ptr1 = 10

 *ptr1 = 11

 *ptr2 = 11

Chapter 9

(1) (a) Contents of x = 101

 830 Programming with C++

 Contents of y = -199

 (b) Contents of x = 10

 Contents of y = -20

 (c) Contents of x = 11

 Contents of y = -19

 (d) Contents of x = 11

 Contents of y = -19

 (e) Contents of x = 11

 Contents of y = -19

(2) (a) Contents of x = 11

 Contents of y = -19

 (b) Contents of x = 11

 Contents of y = -19

 (c) Contents of x = -1073748600

 Contents of y = 1107383668

 (ptr++)->x; /* pointer is incremented,not its contents */

 (ptr++)->y; /* pointer is incremented,not its contents */

 Hence, garbage values are displayed due to the random address selection

 (d) Contents of x = 10

 Contents of y = -20

 (e) Contents of x = -1073747112

 Contents of y = 10

 abc->ptr1++; /* address is incremented but not its contents */

 abc->ptr2++; /* address is incremented but not its contents */

 Hence, garbage values are displayed due to the random address selection

 (f) Contents of x = -1073745960

 Contents of y = 10

 ++(obj->ptr1); /* address is incremented but not its contents */

 ++(obj->ptr2); /* address is incremented but not its contents */

 Hence, garbage values are displayed due to the random address selection

Chapter 10

(1) (a) 1 (b) 1 (c) 5 4 3 2 1 (d) 1 2 3 4 5
 1 2 2 1 4 3 2 1 1 2 3 4
 1 2 3 3 2 1 3 2 1 1 2 3
 1 2 3 4 4 3 2 1 2 1 1 2
 1 2 3 4 5 5 4 3 2 1 1 1

 (e) total = 30 (f) total = 25

 (g) Compile time error due to confl icts with declaration of variables. The ‘int a’ has been declared

in both places as a private and a public category. Hence, it gives error.

(2) (a) Hello C++ world

 (b) Hello

 C++

 world

 (c) Compile time error due to member functions of struct::abc is private.

 Appendix 831

 Nested class members should be defi ned in a public category.

 (d) Compile time error due to member functions of struct abc :: xyz is private.

 (e) Hello

 (f) Compile time error due to void abc:: dispabc() is private category. Member functions of

a class object should be declared as public category.

 (g) value of a = 11

 (h) Compile time error due to the storage class modifi er ‘static’. The keyword ‘static’ can only be

applied for objects and functions. The storage class modifi er ‘static’ cannot be declared for class

declaration. Hence it gives error.

(3) (a) i = 0. The static variable will be initialised to zero automatically by the compiler, if it is unini-

tialised.

 (b) i = 0. The volatile variable will be initialised to zero automatically by the compiler, if it is unini-

tialised.

 (c) Compile time error due to the variable ‘i’ is declared as a const data type that is read only pur-

pose. The const value cannot be changed in a program. Hence it gives compilation error stating

that the variable i is read only.

 (d) Compile time error due to uninitialisation of the ‘const int i’. Whenever a const data type

is declared, it should be initialised with data. Therefore, it gives error.

 (e) i = 1073828704 (garbage). An auto variable will be initialised automatically by the C++ compiler

with some garbage if it is uninitialised explicitly.

 (f) class tag

Chapter 11

(1) (a) Compile time error due to all of its members in a class are private.

 When a constructor is defi ned in a class, it should be a public type.

 Constructor cannot be defi ned as a private or protected type.

 (b) Compile time error due to a constructor is defi ned as a protected type.

 Constructor cannot be defi ned as a private or protected type.

 (c) Compile time error due return type specifi cation for a constructor is defi ned.

 Constructor cannot be defi ned with return data type and not even as a void category.

 (d) Compile time error due to return 0 from a constructor.

 (e) Calling constructor

 The return statement does not return any data type and not even void type.

 The C++ compiler just skips this statement and does not display any error message or warning.

 Hence the above output will be displayed.

 (f) Compile time error due to a constructor is defi ned as a static modifi er.

 (g) Compile time error. The storage type, namely, static, register, extern, const and voltaile are not

used to defi ne a constructor. Hence it gives error.

(2) (a) Calling constructor
 By default, all of its members in a union or struct are public. Hence the above output.

 (b) Calling constructor
 By default, all of its members in a union or struct are public.

 (c) Calling destructor
 (d) Calling destructor
 The return statement does not return any data type and not even void type.

 The C++ compiler just skips this statement and does not display any error message or warning.

 832 Programming with C++

 Hence the above output will be displayed.

 (e) Calling destructor
 Destructor can be declared as virtual whereas the contructor cannot be declared.

 (f) Compile time error due to a constructor is declared as virtual.

 (g) It will not display any specifi c error during compile time or run-time error. But no output will be

displayed due to the struct sample object is not instantiated.

 (h) Compile time error due to abc::sample:: sample() is not permitted in ISO standard de

laration.

(3) (a) abc - class constructor

 (b) x - class constructor

 (c) z - class destructor

 y - class destructor

 x - class destructor

 abc - class destructor

 (d) z - class destructor

 y - class destructor

 x - class destructor

 abc - class destructor

Chapter 12

(1) (a) members of abc

 (b) members of abc

 (c) members of abc

 (d) members of abc

 members of derivedB

 (e) members of abc

 members of derivedB

 members of derivedC

 members of derivedD

 (f) members of abc

 members of xyz

 members of derivedC

 members of derivedD

(2) (a) a = 10

 (b) Compile time error. A class has been named but not declared. This type of class is not permitted

to use as a base class in a derived class. The C++ compiler gives error message stating that a base

class ‘abc’ has incomplete type.

 (c) a = 10

 (d) Compile time error. A class ‘xyz’ fails to be a struct or class type.

 (e) a = 10 (f) a = 10

 (g) Compile time error. A base class cannot be declared with union type. Base class is supposed to be

a struct or class type. Hence it gives error.

 (h) Compile time error. A union type cannot be specifi ed as a derived class. Hence it gives error.

 (i) a = 10

 (j) Compile time error. int abc::a is a private data type. The members of a derived class cannot access

the private data member of a base class. Hence it gives error.

 Appendix 833

(3) (a) value of a = 11

 value of b = 21

 value of c = 31

 (b) value of a = 11

 value of b = 21

 value of c = 31

 (c) value of a = 11

 value of b = 21

 value of c = 31

 (d) value of a = 11

 value of b = 21

 value of c = 31

 (e) value of a = 101

 value of b = 301

Chapter 13

(1) (a) Minimum = 10

 Minimum = -2.2

 Minimum = 100

 (b) Hello, C++ world

 (c) a = 12

 b = 22

 c = 33

 (d) str1 = Hello

 str2 = C++

 str3 = world

 (e) str1 = Hello

 str2 = C++

 (f) sum a[] = 45

 sum fa[] = 46

(2) (a) contents of the fi rst object

 x = 10

 contents of the second object

 x = 10

 (b) contents of the fi rst object

 x = 21

 contents of the second object

 x = 20

 (c) contents of the fi rst object

 x = 21

 contents of the second object

 x = 21

 (d) x = 0

 x = 0

 (e) x = 0

 x = 1

 834 Programming with C++

 (f) x = 0

 x = 1

 (g) 0

 1

Chapter 14

(1) (a) ++b = 21 (b) ++b = 21 (c) ++b = 21 (d) ++a = 11

 (e) A (f) A

 A B

 A C

 A D

(2) (a) A (b) ~D

 B ~C

 C ~B

 D ~A

 (c) A

 B

 C

 D

 ~D

 ~C

 ~B

 ~A

 (d) A (e) A

 B B

 A A

 C C

 D D

 (f) Compile time error. Constructors cannot be declared as virtual whereas destructors can be declared

as virtual. Hence it gives error.

 (g) A (h) A

 B B

 ~B ~B

 ~A ~A

Chapter 15

(1) (a) sum of the integers = 45

 sum of the fl oating point numbers = 49.5

 (b) a = 10 b = 20 minimum = 10

 x = 1.1 y = 2.2 minimum = 1.1

 (c) constructor with int argument

 constructor with fl oating point

 (d) class template - constructor

 class template - constructor

 class template - constructor

 class template - constructor

 Appendix 835

 (e) constructor

 integer:

 content of the value = 10

 destructor

(2) (a) a = 1 b = 1e-04 Quotient = 10000

 (b) element[0] = 1

 element[1] = 2

 element[2] = 3

 element[3] = 4

 element[4] = 5

 Memory out of range

 sum = 15

 (c) x/y = 0.5

(3) (a) ::a = 11

 X::a = 21

 Y::a = 31

 (b) ::a = 10

 X::a = 20

 Y::a = 30

 (c) ::a = 9

 X::a = 21

 Y::a = 30

 (d) *ptr = 20 (e) ++*ptr = 21 (f) ++*ptr = 21

 (g) Compile time error. The scope of Y::a is undefi ned.

 Hence it gives error.

 (h) a = 10
 b = 20
(4) (a) Compile time error. In a unanimous namespace, each variable should be distinct. The int a is

ambiguous and hence, it gives error.

 (b) A :: display

 11

 B :: display

 100

 (c) X::a = 11

 X::Y::a = 21

 (d) display1 = 11

 display2 = 101

 (e) Compile time error. The identifi er ‘a’ is an ambiguous in the unnamed namespace declaration.

 Hence, compile time error is displayed.

 (f) 5

 2.7183

 10

 3.14 1 16

 (g) 5

 3.1416

Bibliography

 1. Borland, C++ User’s manual, ver. 3.0, Scotts Valley, California, 1992.

 2. Borland Inc, Turbo C++ ver. 3.1, User’s Guide, Scotts Valley, California, 1992.

 3. Andrews, M., Visual C++ Object Oriented Programming, SAMS, A Division of Prentice Hall Publ

Inc., 1993.

 4. Barton, J.J. and Nackman, L.R., Scientifi c and Engineering C++, An Introduction with Advanced

Techniques and examples, Addison Wesley Publishing Co., Reading, Mass, 1994.

 5. Berry, J.T., C++ Programming, The Waite group’s, Prentice Hall of India, New Delhi, 1994.

 6. Budd, T.A., Classic Data Structures in C++, Addison Wesley Publishing Co., Reading, Mass, 1994.

 7. Cargill, T., C++ Programming Style, Addison Wesley Publishing Co., Reading, Mass, 1992.

 8. Chriatian, K., Microsoft Guide to C++ Programming, Microsoft, 1992.

 9. Chirlian, P.M., Programming in C++, CBS Publishers and Distributors, New Delhi, 1992.

 10. Cline, M.P., and Lomow, G.A., C++ FAGS - Frequently Asked Questions, Addison Wesley

Publishing Co., Reading, Mass, 1995.

 11. Coplien, J.O., Advanced C++, Programming Styles and Idioms, Addison Wesley Publishing Co.,

Reading, Mass, 1992.

 12. Ellis, M.A., and Stroustrup, B., The Annotated C++ Reference Manual, Addison Wesley Publishing

Co., Reading, Mass, 1990.

 13. Faison, T., Borland C++ version 3, Object Oriented Programming, SAMS, A Division of Prentice

Hall Publishing Inc., 1992.

 14. Graham, N., Learning C++, McGraw Hill Inc., New York, 1991.

 15. Gray, N.A.B., Programming with Class, John Wiley and Sons. Inc., Chichester, 1994.

 16. Gurewich, N. and Gurewich,O., Master C++ from C to C++ in 2 weeks, BPB Publications, New

Delhi, 1994.

 17. Hansen, T.L., The C++ Answer Book, Addison Wesley Publishing Co., Reading, Mass, 1990.

 18. Holmes, M and Flanders, B., PC Magazines, C++ Communications Utilities, BPB Publications,

New Delhi, 1994.

 19. Huckert, E., Programming in C++, Galgotia Publications, New Delhi, 1992.

 20. Hughes, J.M., Programming in Zortech C++ with ver. 2.0, Galgotia Publications, New Delhi, 1990.

 21. Jamsa, K., C/C++ Tips, Galgotia Publications, New Delhi, 1994.

 22. ----------, Rescued by C++, The easiest way to learn C++, Galgotia Publications, New Delhi, 1994.

 23. ----------, Success with C++, Galgotia Publications, New Delhi, 1994.

 24. Johnsonbaugh, R. and Kalin, M., Object Oriented Programming in C++, Prentice Hall Inc.,

Englewood Cliffs, NJ, 1995.

 Bibliography 837

 25. Ladd, S.R., C++ Techniques and Applications, M&T Books, A Division of M&T Publishing Inc,

Redwood city, CA, 1990.

 26. ----------, Turbo C++, Techniques and Applications, BPB Publications, New Delhi, 1993.

 27. ----------, Applying C++, BPB Publications, New Delhi, 1993.

 28. ----------, C++ Components and Algorithms, BPB Publications, New Delhi, 1993.

 29. Lafore, R., Object Oriented Programming in Microsoft C++, Galgotia Publications, New Delhi,

1993.

 30. ----------, Object Oriented Programming in Turbo C++, Galgotia Publications, New Delhi, 1992.

 31. Lippman, S.B., C++ Primer, Addison Wesley Publishing Co., Reading, Mass, 1995, 2 edn.

 32. Masters, T., Advanced Algorithms for Neural Networks – A C++ source book, John Wiley & Sons,

Inc., New York, 1995.

 33. Mayers, S., Effective C++: 50 specifi c ways to improve your programs and designs, Addison Wesley

Publishing Co., Reading, Mass, 1993.

 34. ----------, Effective C++, Addison Wesley Publishing Co., Reading, Mass, 1992.

 35. McCord, J.W., Developing Window Applications with Borland C++ 3.1, SAMS, A Division of

Prentice Hall Computer Publishing, Indiana, USA, 1994.

 36. Murray, R.B., C++ Strategies and Tactics, Addison Wesley Publishing Co., Reading, Mass,1993.

 37. Nagler, E., Learning C++ A Hands on Approach, Jaico Publishing House, Bombay, 1994.

 38. Ouallive, S., Windows Programming with Borland C++ Covers Through Version 4.0, BPB

Publications, New Delhi, 1994.

 39. Prata, S., The Waite Group’s, C++ Primer Plus, Galgotia Publications, New Delhi, 1992.

 40. Peterson, M., Borland C++, Developer’s Bible, Galgotia Publications, New Delhi, 1993.

 41. Riley, C., Programming online Help with C++, BPB Publications, New Delhi, 1994.

 42. Schildt, H., Using Turbo C++, Osborne McGraw Hill Publishing Co., New York, 1992.

 43. Sengupta, S., and Korobkin, C.P., C++ Object Oriented Data structures, Springer-Verlag, New

York, 1994.

 44. Shammas, N.O., What Every Borland C++ version 4.0 Programmers Should Know, SAMS, A

Divison of Prentice Hall publishing Inc., 1994.

 45. Smith, N.E., Illustrated Borland C++ BPB Publications, New Delhi, 1993.

 46. ----------, Object Oriented Programming Using Turbo C++, BPB Publications, New Delhi, 1992.

 47. Stroustrup, B., The C++ Programming Language, Addison Wesley Publishing Co., Reading, Mass,

1986.

 48. Traister, R.J., Clean Coding in Borland C++, BPB Publications, New Delhi, 1993.

 49. Vijay Mukhi’s, Dyanmic Data Exchange Under Windows 3.1 Using Borland C++ 3.1, Vision

Books, New Delhi, 1994.

 50. ----------, The C Odyssey C++ Graphics, BPB Publications, New Delhi, 1992.

 51. ----------, Last Word on C++, Vision Books, New Delhi, 1994.

 52. Weiner, R.S., and Pinson. L.J., An Introduction to Object Oriented Programming and C++, Addison

Wesley, Reading, Mass, 1988.

 53. Weiss, M.A., Data structures and Algorithms and Analysis in C++, The Benjamin/Cummings

Publishing Co., Inc., Redwood city,1994.

 54. Wilson, D.A., Rossenstein, L.S. and Shafer, D., C++ Programming with MacAPP, Addison Wesley

Publishing Co., Reading, Mass, 1991.

 55. Young, M.J., Mastering Microsoft Visual C++ Programming, Sybix, USA, 1993.

Index

A

Abstract class, 656

Abstraction data, 5, 398–405

Access declaration, 5–6, 398–400

Access specifi er, 5–6, 398–405

Address operator, 66, 294, 295

Adjustfi eld, 102

Advance(), 796

Anonymous union, 431–432

ANSI C++,

 alternate punctuation tokens, 71

 bool, 15,

 exception handling, 15, 704–709

 header fi les, 15

 iostream, 15, 736–738

 new additions, 15

 STL, 15, 804–811

 type casting, 15

Argument,

 actual, 198

 default, 202

 formal, 199

 global, 202

Arithmetic operators,

 arithmetic assignment, 46

 integer, 46

 mixed, 48

 parentheses, 49

 precedence, 49

 overloading, 612

 real, 47

 sub–expression, 50

Array,

 character, 276–280

 classes, 423–426

 declaration, 249

 fi les, 754–757

 functions, 259–260

 initialisation, 250–252

 multidimensional, 266–276,
316–317

 notation, 249

 pointers, 316–327

 reading an array, 256

 structures, 357–360

 writing an array, 253

Assembler, 18

Assignment operators, 50

Associativity, 4–51, 69

Auto, 33, 218–219

B

bad(), 738, 739

back_inserter(), 797

Base class, 5, 518

Binary operator, 69,

Binary fi le, 745–747

Binding,

 early, 6, 7, 634–640

 late, 6, 7, 644

Bitfi eld, 383–386

Bitset class, 786, 793

bitiwise operators, 58–62

 assignment, 59

 complement, 59

 logical, 59

 shift, 61–62

Boolean literal, 43, 44, 45

Boolean operators, 54–57

Bool, 15, 34–35

Break, 33, 123–130, 157

Built–in Libraries, 180, 235,

320–327

Building C++,

 Linux gcc/g++, 20–21

 Unix C/C++, 21

 Visual C++ .Net, 22–30

C

Calloc, 496–501

Case, 33, 123–132

Cast, 66–71

Catch, 33, 704–709

Cerr, 81–83, 85

Char,

 plain char, 35, 41, 44

 wchar_t 35, 41, 44

 signed char, 35, 41, 44

 unsigned char, 35, 41, 44

Character array, 276–286, 320–327

Cin, 81–82, 84

Class,

 abstract, 656

 declaration, 401

 defi nition, 398

 derived, 518–568

 fi le input/output, 747–757

 function members, 405

 hierarchy, 5, 518

 inherited, 518

 method, 15, 518

 message passing, 5, 399

 multiple inheritance, 6–7,
659–661

 object, 2–11, 398–430

 polymorphism, 2–11, 633–668

 private, 6–7, 33, 398–493, 531,
555

 Index 839

 protected, 6–7, 33, 398–493,
533, 557

 public, 6–7, 33, 398–493, 531,
552

 single, 5–7, 518–534

 subclass, 5, 518

 superclass, 5, 518

Clog, 81–83, 85

Close(), 738

Comma operator, 66

Comments, 75

Common Lisp Object, 11

Compilation commands, 20–31

Compile time errors, 18

Concurrency, 16

Conditional compilation, 234

Const, 15, 45

Constructor,

 copy, 461

 declaration, 454–474

 default, 464

 fi ring order, 659–661

 inheritance, 659–661

 nested, 469

 overloading, 468

 virtual, 664

Cout, 81–82, 84

Cctype, 15, 235

Cstring, 15, 235, 320

Cmath, 15, 235

Cstdio, 15, 235

C#, 11

D

Data abstraction, 5, 398

Data encapsulation, 5, 398, 399

Data member,

 static, 481–484

 initialization, 481

Data types,

 bool, 35

 char, 35

 fl oat, 37

 int, 36

 long, 36

 short, 36

 signed, 36

 unsigned, 36

Dec, 93, 95

Decrementer, 66, 617

Declaration,

 array, 249–250

 class, 401–402

 function, 180–183

 pointer, 293–294

 struct, 341–342

 typedef, 386

 unions, 381–383

 variable, 43, 76, 83–84

Default argument, 202

Default constructors, 464

Delete operator, 496–502

Delete[], 496–502, 618

Derived class,

constructors, 659

destructors, 661

Destructors,

 under inheritance, 661

 virtual, 664

Distance(), 798

Division, 46, 47

Do–while, 33, 132, 147–153

Double, 37, 40

Double ended queue (deque), 768,
772–774

Dynamic,

 storage, 496–50

 binding, 6–7, 644–653

Dynamically Linked Libraries, 16

E

Early binding, 6–7, 644–653

Elif, 234–235

Endif, 234–235

Endl, 86, 87

Ends, 86, 87

Enum, 389–390

Errors, 18

Equailty operator, 53, 616

Escape sequence, 42

Evaluation order, 49–50

Exception handling,

 catch, 15, 33, 704–709

 throw, 15, 33, 704–709

 try, 15, 33, 704–709

Extern, 33, 223

F

Fail(), 738, 739

File,

 array of class, 754–755

 binary fi le, 745–748

 class, 747–749

 close, 738

 get, 740

 nested classes, 757–758

 open, 737

 put, 740

 random access, 736, 761–765

 read, 740, 747

 sequential fi le, 736, 737

 stream state functions, 738–740

 struct, 753–754

 write, 740, 747

Fill, 103

Fill and generate, 808

Find algorithm, 806

Float

 double, 37, 40

 long double, 37

Flush, 86, 88

Free, 496–502

Friend functions, 487–496

Front_inserter(), 799

Fstream, 736–738, 761, 762

Function,

 actual arguments, 198

 declaration, 180–183

 default arguments, 202

 defi nition, 180–183

 formal arguments, 199–200

 function overloading, 584–606

 global variables, 200–202

 header fi le, 15, 235

 inline function, 476

 local variables, 200

 mutual invocation, 211

 nested functions, 212–213

 order of function declaration,
208–210

 preprocessors, 229–234

 840 Index

 recursion, 226–229

 return, 33, 182

 scope rules, 214–216

 side effects, 216–217

 types of functions, 179–180

 virtual function, 633–668

G

Garbage collection, 16

Generic, 689–698

Get, 740

Global variables, 200–202

Good(), 738, 739

Goto, 33, 154–156

H

Header fi les, 15, 180, 235, 320–327

Hexdecimal, 39, 93, 95

Hierarchy, 5, 518

I

Identifi er, 32–34

If, 33, 112–114

If–else, 33, 112–123

Ifdef, 234

Ifndef, 234

Ifstream, 82, 736–737, 7612, 762

#include, 77, 80–83, 235, 736–738

Information Hiding, 5, 399

Inheritance,

 ambiguity, 534, 547

 arrays, 536, 543

 access specifi er, 568

 container, 549

 declaration, 518–540

 direct base, 524–525

 friend class, 561–563, 568

 indirect base, 526–528

 member access, 552–568

 multiple, 5, 6, 547–560

 private, 531, 555

 protected, 533, 557

 public, 531, 552

 single, 5–7, 518–534

 subclass, 5, 518

 superclass, 5, 518

 types of derivation, 531–533

Inline, 33, 476–481

Int,

 plain int, 36, 44, 46

 signed int, 36, 44, 46

 unsigned int, 36, 44, 36

Input Streams,

 ifstream, 82–83, 736–738

 istream, 82–83

 istrstream, 82–83

Inserter(), 800

Iomanip, 80–83

Ios, 81–82

Iostream, 80–85, 736–738

Istream, 80–85, 736–738

Istrstream, 82

IOstream,

 ANSI/ISO C++ Standard, 15,

80–83

 fstream, 80–83

 ios, 81–82

 iomanip, 80–83

 iostream, 80–83

 istream, 80–83

 iosfwd, 80–83

 ostream, 80–83

 sstream, 80–83

 streambuf, 80–83

 strstream, 80–83

 Types of IOStreams, 81–82

I/O Stream fl ags,

 adjustfi eld, 102

 boolalpha, 93, 94

 dec, 93, 95

 fi ll, 103

 fi xed, 93, 101

 hex, 93, 95

 internal, 102

 left, 102

 noboolalpha,

 noshowbase, 93, 96

 noshowpoint, 93, 99

 noshowpos, 93, 97

 noskipws, 93, 104

 nounitbuf, 93, 105

 nouppercase, 93, 98

 oct, 93, 95

 precision, 100

 right, 102

 scientifi c, 93, 101

 showbase, 93, 96

 showpoint, 93, 99

 showpos, 93, 97

 skipws, 93, 104

 stdio, 103

 unitbuf, 93, 105

 uppercase, 93, 98

 width, 103

J

Java, 11

Justifi cation, 102

K

Keyword, 32–34

L

Label, 33, 153–154

Linker, 18

Linux gcc/g++, 20–21

List class, 768, 775–776

Literals,

 Boolean, 43

 character, 41

 integer, 39

 fl oating point, 39

 string literals, 43

Logical(Boolean) operators, 54–58

Long int,

 signed long, 37, 39

 unsigned long, 37, 39

Loop,

 do–while, 33, 132, 147–153

 for loop, 33, 132–141

 while loop, 33, 132, 141–147

Loop terminating statements,

 break, 33, 123–132, 157

 continue, 33, 158

 goto, 33, 153–156

 Index 841

M

Macro,

 defi nition, 230

 parameters, 232

 preprocessors, 233

 conditional compilation, 234

Main(), 77–79

Manipulator functions,

 endl, 86, 87

 ends, 86, 87

 fl ush, 86, 88

 hex, dec, oct, 93

 resetiosfl ags, 86, 93

 setbase, 86, 88

 setfi ll, 86, 91

 setiosfl ags, 86, 93

 setprecision, 86, 91

 setw, 86, 89, 90

 ws, 86, 92

Malloc, 496–502

Map class, 786, 790–791

Member functions,

 accessor, 405

 implementor, 405

 manager functions, 405

 Membership operator, 66–67,
343, 405

Memory management operators,

 new, 33, 496–502

 delete, 33, 496–502

Message passing, 5, 399

Methods, 6–7, 398–405

Microsoft, 17, 22–31

modulus, 46, 47, 618

Multidimensional, 266–275,
317–318, 496–502

Multifunction, 205–211

Multimap class, 786, 792

Multiple inheritance, 6–7, 659–661

Multiset class, 769, 789–790

Multithread, 16

Mutual invocation, 211

N

Namespace,

 alias, 715

 declaration, 710

 members, 712

 nested, 716

 qualifi cation, 724

 std, 80–82, 723

 unnamed, 719

 using, 723

Nested,

 classes, 432–439

 namespace, 716

 fi les, 757

 functions, 212

 loop, 151–153

 struct, 368–375

New, 33, 496–502

Newline, 78

NULL, 33, 320–324

Numbers,

 decimal, 39, 93, 93

 octal, 39, 93, 93

 hexadecimal, 39, 93, 95

 long, 39

 fl oating point, 37, 44, 100–102

O

Object Oriented Programming

(OOPs)

 objects, 4, 398

 class, 5, 33, 398–439

 data abstraction, 5, 398, 399

 data encapsulation, 5, 398, 399

 information hiding, 5, 399

 message passing, 5, 398–401

 inheritance, 6–7, 659–661

 polymorphism, 6–7, 633–668

 overloading, 6–7, 584–617

 templates, 15, 689–698

Object C, 11

Object Pascal, 11

Object persistence, 16

Octal, 39

Ofstream, 82, 736–737, 761–762

Open(), 737

Operators,

 ANSI C++, 69

 alternate punctuation tokens, 77

 arithmetic, 50–51, 612

 arithmetic assignment, 51–52,

612

 arithmetic operator precedence,

49

 assignment, 50, 608

 bitiwise operators, 58–62, 618

 casting, 67

 comma, 66

 comparison, 52, 616

 decrementer, 66, 617

 delete[], 496–502, 618

 division, 46, 47

 equality, 53, 616

 incrementer, 66

 logical (Boolean), 54–55, 618

 membership operator, 66–67,

343, 405

 modulus, 46, 47, 618

 new, 33, 496–502

 relational, 52, 616

 scope resolution, 406

 sizeof, 33, 64–65

 special operators, 63–71, 618

 ternary, 65–66, 618

 unary, 63, 617, 617

Ostream, 80–85, 736–738

Ostrstream, 82

Output Streams,

 ofstream, 82–83, 736–738

 ostream, 82–83

 ostrstream, 82–83

Overloading,

 function, 6–7, 584–606

 operators, 607–617

P

Parameterized, 689–698

Polymorphism,

 defi nition, 6–7, 633

 early binding, 634

 late binding, 6–7, 644

 virtual, 641

Pointers,

 address, 294–295

 arithmetic, 299–305

 842 Index

 arrays, 316–320, 327–329

 array of pointers, 319–320

 call by reference, 307–311

 call by value, 305–307

 class, 426–430

 complex pointer, 329

 declaration, 293

 expressions, 295

 functions, 307–315

 multidimensional, 317–318

 one dimensional, 316

 operator, 294

 passing a function, 314

 pointer to pointer, 327

 pointer to functions, 311–312

 strings, 320–327

 struct, 375–378

 union, 381–383

Precedence,

 arithmetic, 49

 bitiwise, 58–62

 equality, 53

 logical (Boolean), 54–55

 relationaal, 52

Preprocessors,

 conditional compilation,
234–235

 macro, 230

 parameters, 232

 preprocessing techniques, 233

Printf(), 80

Program development stages, 18–19

Priority_queue class, 768, 786–788

Private,

 derivation, 555–556, 568

 inheritance, 532

Program termination,

 exit(), 79

 abort(), 79

 return, 79

Protected,

 derivation, 557–561, 568

 inheritance, 533

Public,

 derivation, 552–555, 568

 inheritance, 531

Pure virtual function, 653

Put, 740

Q

Queue class, 768, 781–785

Quotient, 46–48

R

Random access fi le, 736, 761–765

Read, 740, 747

Recursive, 226–228

Reference,

 pass by, 305–307

 return by, 305–314

Register, 33, 220

Relational operator, 52, 616

Reserved word, 33–34

Resetiosfl ags, 86, 93

Resolution operator, 406

Return, 33, 79, 182–183

Rule based programming, 16

Runtime binding, 6–7, 644–653

Run time errors, 18

S

Scanf(), 80

Scientifi c, 93, 101

Scope rules, 214–216

Seekg, 762

Seekp, 762

Semicolon, 78

Sequential fi le, 736, 737

Set class, 769, 788–789

Setbase, 86, 88

Setfi ll, 86, 91

Setiosfl ags, 86, 93

Setprecision, 86, 91

Setw, 86, 89, 90

Short,

 short int, 36

 signed short, 36

 unsigned short, 36

Showbase, 93, 96

Showpoint, 93, 99

Showpos, 93, 97

Skipws, 93, 104

Side effects, 216, 217

Simula, 14, 518

Single inheritance, 5–7, 518–534

Sizeof, 33, 64–65

Skipws, 93, 104

Smalltalk, 11, 14

Special member functions,

 constructors, 454–469

 destructors, 470–474

 dynamic memory allocations,

496–502

 inline member functions,

476–481

 friend functions, 487–496

 mutable, 505

Special opertors,

 pointer, 63, 294–329

 address, 63, 294–329

 incrementer, 63, 132, 141, 142

 decrementer, 63, 132, 141–142

 sizeof, 64, 64, 70

Stack class, 768, 777–778

Standard Libraries, 15, 736–738

Static,

 data members, 481–484

 functions, 481–484

 variables, 33, 221

Stdio, 103

STL–algorithm and function

objects,

 binary search, 804–806

 comparison, 811

 copy, 807

 counting algorithm, 805–806

 fi ll and generate, 808

 fi nd algorithm, 806

 heap operation, 812–813

 merge, 811

 numeric algorithm, 813

 partition, 812

 permutation, 813

 remove, 808

 replace, 808

 reverse and rotate, 809

 search algorithm, 806

 set operation, 812

 sequence comparison, 806

 Index 843

 sorting, 812

 swap, 809

 transform, 809

 unique, 809

STL–containers libraries,

 bit set, 793–794

 deque, 772–774

 list, 775

 map, 790–791

 mulitmap, 792–793

 multiset, 789–790

 priority–queue, 786–788

 queue, 781–785

 set, 788–789

 stack, 777–780

 vector, 769–772

STL–iterators and allocators,

 advance, 796

 back_inserter, 797

 distance, 798

 front_inserter, 799

 inserter, 800

 member function, 796

 operators, 800–801

 types of iterator class, 796

storage class,

 auto, 218

 const, 224

 extern, 223

 mutable, 505

 register, 220

 static, 221, 481–485

 volatile, 226

Strcmp, 277–278, 320, 325

Strcpy, 277–276, 320, 325

String literals,

 narrow string, 43

 wide string, 43

Structure,

 arrays of structures, 357

 bitfi elds, 383

 classes, 399–400, 439

 declaration, 341–342

 enumerations, 389

 initialization, 350–351

 functions, 352–356

 nested structures, 368–374

 pointers, 375–379

 typedef , 386–387

 unions, 379–382, 399–400, 430,

439

Stream classes,

 iostream, 80–83

 istream, 80–82

 ostream, 80–83

 wiostream, 81–83

 wistream, 81–83

 wostream, 81–83

Stream state functions, 738–740

Subclass, 5, 518

Subprograms, 179–190

Subroutines, 179–180

Superclass, 5, 518

Switch, 33, 123–132

T

Tellg, 762

Tellp, 762

Templates,

 class, 694–698

 function, 689–694

 overloading, 698

Ternary operators, 65–66

This, 15, 502

Throw, 15, 33, 704–709

Trigraph sequence, 42

Try, 15, 33, 704–709

Type cast operators,

 static_cast, 15, 68–69

 dynamic_cast, 15, 68–69

 const_cast, 15, 68–69

 reinterpret_cast, 15, 68–69

Type conversion, 68–69

Typedef, 386, 606

U

Unary operator, 63, 617

Union,

 anonymous, 382

 classes, 430–431

 initialization, 381–382

 tag, 380

Unique algorithm, 809

Unitbuf, 93, 105

Unix C/C++, 21

Unnamed namespace, 719

Unsigned, 33, 36, 39

Uppercase, 93, 98

Using namespace std, 723

V

Variables,

 automatic, 43, 76

 declarations, 43, 83–84

 extern, 223

 global, 202

 local, 200

 register, 220

 static, 221, 481–484

 void, 185

Vector class, 768, 769–771

Virtual,

 base class, 668

 destructors, 664

 pure virtual function, 653

Visual C++ .Net, 22–30

Void, 185

Volatile, 226

W

Warnings, 18

Wcerr, 81–83, 86

Wcin, 81–83

Wclog, 81–83, 86

Wcout, 81–85

Wide Char, 85–86

Width, 103

Wistream, 82

Wiostream, 82

While loop, 33, 141–143

White space, 41–43, 83, 740

Wostream, 82

Write, 740, 747

X

XOR, 60–62, 69–70

	Cover
	Half Title
	About the Author
	Title Page
	Copyright
	Dedication
	Contents
	Preface to the Third Edition
	Acknowledgements
	Chapter 1. Introduction to Object Oriented Programming
	1.1 Introduction
	1.2 What is Object Oriented Programming (OOP)?
	1.3 Structured Procedural Programming (SPP)
	1.4 Object Oriented Programming OPP
	1.5 Characteristics of OOPs
	1.6 Advantages of OOPs
	1.7 Disadvantages of OOPs
	1.8 Comparison of Structured Procedural Programming (SPP) and Object Oriented Programming (OOP)
	1.9 Steps in Developing OOP Programs
	1.10 Structure of Object Oriented Programs
	1.11 Object Oriented Languages
	1.12 Importance of C++
	Review Questions

	Chapter 2. Building ANSI C++ Program
	2.1 Introduction
	2.2 History of C++
	2.3 The Latest Addenda to ANSI/ISO C++
	2.4 Possible Future Additions to C++
	2.5 C++ versus C
	2.6 Versions of C++
	2.7 Source Program Names
	2.8 Compiling and Debugging C++ Programs
	2.9 Stages of Program Development
	2.10 Compiling GNU GCC/G++ in Linux
	2.11 Compiling C/C++ Program in UNIX
	2.12 Building C++ Under Microsoft .NET Platform
	Review Questions

	Chapter 3. Data Types, Operators and Expressions
	3.1 Identifiers and Keywords
	3.2 Data Types
	3.3 C++ Simple Data Types
	3.4 Literals
	3.5 Variables
	3.6 The Const Datatype
	3.7 C++ Operators
	3.8 Arithmetic Operators
	3.9 Assignment Operators
	3.10 Arithmetic Assignment Operators
	3.11 Comparison and Logical Operators
	3.12 Bitwise Operators
	3.13 Bitwise Assignment Operators
	3.14 Special Operators
	3.15 Type Conversion
	3.16 ANSI C++ Type Casting
	3.17 Summary of ANSI C++ Operators
	3.18 ANSI C++ Alternate Punctuation Tokens
	Review Questions
	Concept Review Questions

	Chapter 4. Input and Output Streams
	4.1 Comments
	4.2 Declaration of Variables
	4.3 The Main () Function
	4.4 Simple C++ Programs
	4.5 Program Termination
	4.6 Features of Iostream
	4.7 Keyboard and Screen I/O
	4.8 Manipulator Functions
	4.9 Input and Output (I/O) Stream Flags
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 5. Control Statements
	5.1 Conditional Expressions
	5.2 Loop Statements
	5.3 Nested Control Structures
	5.4 Breaking Control Statements
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 6. Functions and Program Structures
	6.1 Introduction
	6.2 Defining a Function
	6.3 The Return Statement
	6.4 Function Prototypes
	6.5 Types of User Defined Functions
	6.6 Actual and Formal Arguments
	6.7 Local VS Global Variables
	6.8 Default Arguments
	6.9 Structure of the C++ Program
	6.10 Order of the Function Declaration
	6.11 Mutually Invocated Functions
	6.12 Nested Functions
	6.13 Scope Rules
	6.14 Side Effects
	6.15 Storage Class Specifiers
	6.16 Recursive Functions
	6.17 Preprocessors
	6.18 Header Files
	6.19 Standard Functions
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 7. Arrays
	7.1 Introduction
	7.2 Array Notation
	7.3 Array Declaration
	7.4 Array Initialisation
	7.5 Processing with Arrays
	7.6 Arrays and Functions
	7.7 Multidimensional Arrays
	7.8 Character Array
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 8. Pointers and Strings
	8.1 Introduction
	8.2 Pointer Arithmetic
	8.3 Pointers and Functions
	8.4 Pointers to Functions
	8.5 Passing a Function to Another Function
	8.6 Pointers and Arrays
	8.7 Arrays of Pointers
	8.8 Pointers and Strings
	8.9 Pointers to Pointers
	8.10 Deciphering Complex Declarations
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 9. Structures, Unions and Bit Fields
	9.1 Introduction
	9.2 Declaration of a Structure
	9.3 Processing with Structures
	9.4 Initialisation of Structure
	9.5 Functions and Structures
	9.6 Arrays of Structures
	9.7 Arrays within a Structure
	9.8 Structures within a Structure (Nested Structure)
	9.9 Pointers and Structures
	9.10 Unions
	9.11 Bit Fields
	9.12 Typedef
	9.13 Enumerations
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 10. Classes and Objects
	10.1 Introduction
	10.2 Structures and Classes
	10.3 Declaration of a Class
	10.4 Member Functions
	10.5 Defining the Object of a Class
	10.6 Accessing a Member of Class
	10.7 Array of Class Objects
	10.8 Pointers and Classes
	10.9 Unions and Classes
	10.10 Classes within Classes (Nested Class)
	10.11 Summary of Structures, Classes and Unions
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 11. Special Member Functions
	11.1 Introduction
	11.2 Constructors
	11.3 Destructors
	11.4 Inline Member Functions
	11.5 Static Class Members
	11.6 Friend Functions
	11.7 Dynamic Memory Allocations
	11.8 This Pointer
	11.9 Mutable
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 12. Single and Multiple Inheritance
	12.1 Introduction
	12.2 Single Inheritance
	12.3 Types of Base Classes
	12.4 Types of Derivation
	12.5 Ambiguity in Single Inheritance
	12.6 Array of Class Objects and Single Inheritance
	12.7 Multiple Inheritance
	12.8 Container Classes
	12.9 Member Access Control
	12.10 Summary of the Inheritance Access Specifi er
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 13. Overloading Functions and Operators
	13.1 Function Overloading
	13.2 Operator Overloading
	13.3 Overloading of Binary Operators
	13.4 Overloading of Unary Operators
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 14. Polymorphism and Virtual Functions
	14.1 Polymorphism
	14.2 Early Binding
	14.3 Polymorphism with Pointers
	14.4 Virtual Functions
	14.5 Late Binding
	14.6 Pure Virtual Functions
	14.7 Abstract Base Classes
	14.8 Constructors Under Inheritance
	14.9 Destructors Under Inheritance
	14.10 Virtual Destructors
	14.11 Virtual Base Classes
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 15. Templates, Namespace and Exception Handling
	15.1 Function Template
	15.2 Class Template
	15.3 Overloading of Function Template
	15.4 Exception Handling
	15.5 Namespace
	Review Questions
	Concept Review Problems
	Programming Exercises

	Chapter 16. Data File Operations
	16.1 Opening and Closing of Files
	16.2 Stream State Member Functions
	16.3 Reading/Writing a Character from a File
	16.4 Binary File Operations
	16.5 Classes and File Operations
	16.6 Structures and File Operations
	16.7 Array of Class Objects and File Operations
	16.8 Nested Classes and File Operations
	16.9 Random Access File Processing
	Review Questions
	Programming Exercises

	Chapter 17. STL–Containers Library
	17.1 Introduction
	17.2 Vector Class
	17.3 Double Ended Queue (Deque) Class
	17.4 List Class
	17.5 Stack Class
	17.6 Queue Class
	17.7 Priority_queue Class
	17.8 Set
	17.9 Multiset
	17.10 Map
	17.11 Multimap
	17.12 Bitset
	Review Questions

	Chapter 18. STL–Iterators and Allocators
	18.1 Introduction
	18.2 Types of Iterators
	18.3 <Iterator> Member Functions
	18.4 Operators
	18.5 Types of Iterator Classes
	18.6 Summary of Iterator Classes
	Review Questions

	Chapter 19. STL–Algorithms and Function Objects
	19.1 Introduction
	19.2 Non-modifying Sequence Algorithms
	19.3 Modifying Sequence Algorithms
	19.4 Sorted Sequence Algorithms
	19.5 Heap Operation Algorithms
	19.6 Comparison Algorithms
	19.7 Permutation Algorithm
	19.8 Numeric Algorithms
	19.9 Function Objects
	19.10 The Functional Members
	Review Questions

	Appendix
	Bibliography
	Index

