
Python

Programming

About the Authors

 Ashok Namdev Kamthane is a retired Associate Professor of the Department
of Electronics and Telecommunication Engineering, S. G. G. S. Institute of
Engineering and Technology, Nanded, Maharashtra, India. An academic with
37 years of teaching experience, he has authored more than a dozen books and
presented several technical papers at national and international conferences.
He has earned a first class in ME (Electronics) from S. G. G. S. College of
Engineering and Technology. His ME dissertation work from Bhabha Atomic
Research Centre, Trombay, Mumbai, was on development of the hardware
and software using 8051 (8-bit microcontroller) Acoustic Transceiver System
required in submarines.

 Amit Ashok Kamthane is a Software Engineer (Python Developer) at HCL,
Pune. Recently in 2017, he worked as Research Assistant at National Centre for
Aerospace Innovation and Research, IIT Bombay. In the past, he was associated
as a lecturer with S. G. G. S. Institute of Engineering and Technology, Nanded and
as an Assistant Professor with P. E. S. Modern College, Pune. He completed his
ME (Computer Science and Engineering) from M. G. M. College of Engineering
and BE (Computer Science and Engineering) in first class from G. H. Raisoni
College of Engineering, Pune. A computer programming enthusiast, he also
imparts corporate training.

Python

Programming

McGraw Hill Education (India) Private Limited
Chennai

McGraw Hill Education Offices

Chennai new York St Louis San Francisco auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Ashok Namdev Kamthane

Retired Associate Professor
Department of Electronics and Telecommunication Engineering

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded
Maharashtra, India

Amit Ashok Kamthane

Software Engineer
(Python Developer)

HCL, Pune
Maharashtra, India

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai 600 116

Python Programming

Copyright © 2018 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited.

 1 2 3 4 5 6 7 8 9 22 21 20 19 18

Printed and bound in India.

Print Edition
ISBN (13): 978-93-5316-092-0
ISBN (10): 93-5316-092-8

E-Book Edition
ISBN (13): 978-93-5316-096-8
ISBN (10): 93-5316-096-0

Director—Science & Engineering Portfolio: Vibha Mahajan
Senior Portfolio Manager—Science & Engineering: Hemant K Jha
Associate Portfolio Manager: Vaishali Thapliyal

Production Head: Satinder S Baveja

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.
However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information
published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or
damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education
(India) and its authors are supplying information but are not attempting to render engineering or other professional services. If
such services are required, the assistance of an appropriate professional should be sought.

Typeset at NuWave eSolutions Pvt. Ltd., New Delhi-110019 and printed at

Cover Design: APSCompugraphics

Cover Image Source: Shutterstock

Cover Printer:

Visit us at: www.mheducation.co.in

Write to us at: info.india@mheducation.com

CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

Dedicated to

Sow Surekha Ashok Kamthane

(Mother of Amit Ashok Kamthane)

Preface

It gives us immense pleasure to bring the book ‘Python Programming’. The book is intended
for the students in initial years of engineering and mathematics who can use this high-level
programming language as an effective tool in mathematical problem solving. Python is used to
develop applications of any stream and it is not restricted only to computer science.

We believe that anyone who has basic knowledge of computer and ability of logical thinking can
learn programming. With this motivation, we have written this book in a lucid manner. Once you
go through the book, you will know how simple the programming language is and at the same
time you will learn the basics of Python programming. You will feel motivated enough to develop
applications using Python.

Since this book has been written with consideration that reader has no prior knowledge of
Python programming, before going through all the chapters, reader should know what are the
benefits of learning Python programming. Following are some of the reasons why one should
learn Python language.

 • Python language is simple and easy to learn. For example, it has simple syntax compared to
other programming languages.

 • Python is an object-oriented programming language. It is used to develop desktop, standalone
and scripting applications.

 • Python is also an example of free open-source software. Due to its open nature, one can write
programs and can deploy on any of platforms, i.e. (Windows, Linux, Ubuntu and Mac OS),
without changing the original program.

Thus, due to the features enlisted above, Python has become the most popular language and is
widely used among programmers.

Use of Python in Engineering Domains

Computer Engineering

Python is used in computer engineering.

 • To develop web applications

 • By data scientists to analyse large amount of data

Prefaceviii

 • In automation testing

 • To develop GUI-based applications, cryptography and network security and many more
applications

Electronics and Telecommunication Engineering and Electrical Engineering

 • Image processing applications can be developed by using Python’s ‘scikit-image’ library

 • Widely used in developing embedded applications

 • Develop IOT applications using Arduino and Raspberry pi

Python can also be used in other engineering streams such as mechanical, chemical, and
bioinformatics to perform complex calculations by making use of numpy, scipy and pandas library.

Thus, the end user of this book can be anyone who wants to learn basics of Python programming.
To learn the basics, the student can be of any stream/any engineering/Diploma/BCA/MCA
background and interested to develop applications using Python.

Organization of the Book

Unit 1 contains two chapters and gives the information on history of Python, Basics of Python
programming and installation of the software on different operating systems, such as, Windows
and Ubuntu. In Chapters 1 and 2, the keywords and variables are described as supported by
Python along with input and output functions, eval() function and so on.

Unit 2 comprises three chapters. Chapter 3 explains operators and expressions. Various operators
as supported by Python are narrated with programming examples in this chapter. Chapter 4 deals
with decision-making statements, such as, if, if-elif-else and others and Chapter 5 describes the
control-loop statements, such as, for, while, break, continue and others.

Unit 3 covers two chapters, i.e. Chapter 6 on Lists and Chapter 7 on Tuples, Sets and Dictionaries.
The processes of creating lists, slicing lists, the operators to be used in lists, various in-built
functions of the lists, comprehension etc. are illustrated with easy programming examples in
Chapter 6. Whereas in Chapter 7, it covers the methods of creating tuples, in-built functions for
tuples, creating sets and operations on sets and handling dictionaries etc.

Unit 4 consists two chapters, i.e. Chapter 8 dealing with functions and Chapter 9 dealing with
modules, packages and introduction to PIP Package Management System.

Unit 5 deals with the object-oriented programming concepts and the exception handling.
Chapter 10 explains class, objects and inheritance whereas the Chapter 11 discusses the errors and
exception and handling the exceptions with further detail.

Unit 6 contains three chapters. Chapter 12 narrates standard library, Chapter 13 contains
graphics and programming and Chapter 14 discusses the concept of unit-testing.

Preface ix

In the end, we would like to express gratitude to all our well-wishers and readers, whose
unstinted support and encouragement have kept us going as a teacher and author of this book.
Any suggestion regarding the improvement of the book will be highly appreciated.

Ashok NAmdev kAmthANe

Amit Ashok kAmthANe

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be
sent to info.india@mheducation.com (Kindly mention the title and author name in the subject line).
Piracy-related issues may also be reported.

Acknowledgements

We would like to express deep sense of gratitude to Professor B. M. Naik, former Principal of
S. G. G. S. College of Engineering and Technology, Nanded, who constantly praised and inspired
us to write books on technical subjects and whose enthusiasm and guidance led us to write this
book.

Special thanks are also due to Dr. Y. V. Joshi, Director, S. G. G. S. Institute of Engineering and
Technology, Professor Dr. U. V. Kulkarni, HOD, CSE of S. G. G. S. Institute of Engineering and
Technology, Nanded for encouraging us to write this book on Python. We are grateful to the Board
of Directors of Matoshri Group of Institutes, Kamaji Pawar, V. V. Chari and Dean Dr. Sadhna

Chidrawar who encouraged to write this book. We also acknowledge compliments offered by
Mr. Asrar Khan, Mr. Girish Mulke, Mr. Katakdound, Mr. Amol Patil and Mr. Satish Pawar
for authoring first book on Python Programming and that too through International Publisher
McGraw Hill Education, Noida.

We are grateful to Professor Dr. Mrs. S. A. Itkar, HOD, CSE and Professor Mrs. Deipali V. Gore of
P. E. S’s Modern College of Engineering, Pune, for supporting us while writing the book. We are also
thankful to the staff members (Santosh Nagargoje, Nilesh Deshmukh, Kunal Khadke, Digvijay Patil
and Sujeet Deshpande) of P. E. S’s Modern College of Engineering for their valuable suggestions.

Furthermore, we would like to thank our friends—ShriKumar P. Ugale and Navneet Agrawal—
for giving valuable inputs while writing the book. Also, we would like to thank our students—
Suraj K, Pranav C, and Prajyot Gurav—who offered comments, suggestions and praise while
writing the book.

We are thankful to the following reviewers for providing useful feedback and critical suggestions
during the development of the manuscript.

Vikram Goyal IIIT Delhi

Partha Pakray NIT, Mizoram

Harish Sharma RTU, Kota

Shreedhara K.S. University BDT College of Engineering, Karnataka

S. Rama Sree Aditya Engineering College, Andhra Pradesh

Sansar Singh Chauhan IEC-CET, Greater Noida

We are also thankful to A. Vanathi, Aditya Engineering College, Surampalem, Andhra Pradesh,
for reviewing sample chapter of this book.

Lastly, we are indebted to our family members—Mrs. Surekha Kamthane (mother of Amit
Kamthane), Amol, Swarupa, Aditya, Santosh Chidrawar, Sangita Chidrawar, Sakshi and Sartak for
their love, support and encouragement.

Ashok NAmdev kAmthANe

Amit Ashok kAmthANe

Introduction: History of Python, Need of Python Programming, Applications Basics of Python
Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords,
Input-Output, Indentation.

GO TO
Chapter 1: Introduction to Computer and Python Programming,

Chapter 2: Basics of Python Programming

Unit 1

Types, Operators and Expressions: Types—Integers, Strings, Booleans; Operators—Arithmetic Operators,
Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators,
Membership Operators, Identity Operators; Expressions and order of evaluations, Control Flow—if,

if-elif-else, for, while, break, continue, pass

GO TO
Chapter 3: Operators and Expressions, Chapter 4: Decision Statements,

Chapter 5: Loop Control Statements

Unit 2

Data Structures : Lists—Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences,
Comprehensions.

GO TO Chapter 6: Lists, Chapter 7: Tuples, Sets and Dictionaries

Unit 3

Functions: Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default
Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning
Values), Scope of the Variables in a Function—Global and Local Variables.
Modules: Creating modules, import statement, from. Import statement, name spacing
Python packages: Introduction to PIP, Installing Packages via PIP, Using Python Packages

GO TO Chapter 8: Functions, Chapter 9: Modules, Packages and Introduction to PIP

Unit 4

KAKINADA

PyTHON PROGRAMMING

Roadmap to the Syllabus

Roadmap to the Syllabus xiii

Object-Oriented Programming OOP in Python: Classes, ‘self variable’, Methods, Constructor Method,
Inheritance, Overriding Methods, Datahiding
Error and Exceptions: Difference between an Error and Exception, Handling Exception, try–except
block, Raising Exceptions, User-defined Exceptions

GO TO
Chapter 10: Object-Oriented Programming: Class, Objects and Inheritance,

Chapter 11: Errors and Exceptions

Unit 5

Brief Tour of the Standard Library: Operating System Interface—String Pattern Matching, Mathematics,
Internet Access, Dates and Times, Data Compression, Multithreading, GUI Programming, Turtle Graphics
Testing: Why testing is required?, Basic concepts of testing, Unit testing in Python, Writing Test cases,
Running Tests.

GO TO
Chapter 12: A Brief Tour of Standard Library, Chapter 13: Graphics Programming:

Drawing with Turtle Graphics, Chapter 14: Unit Testing

Unit 6

Contents

About the Authors ii

Preface vii

Acknowledgements xi

Roadmap to the Syllabus xii

UNIT 1 1

1. Introduction to Computer and Python Programming 2

 Chapter Outline 2

 Learning Outcomes 2

 1.1 Introduction 2

 1.2 What is a Computer? 3

 1.2.1 Input/Output (I/O) Unit 3

 1.2.2 Central Processing Unit (CPU) 3

 1.2.3 Memory Unit 3

 1.3 Overview of Programming Languages 4

 1.3.1 Machine Language 4

 1.3.2 Assembly Language 4

 1.3.3 High-level Language 5

 1.4 History of Python 6

 1.4.1 Why Python? 6

 1.4.2 Installing Python in Windows 7

 1.4.3 Starting Python in Different Execution Modes 10

 1.5 Installing Python in Ubuntu 15

 1.6 Executing Python Programs 16

 1.6.1 Writing the First Python Program in Script Mode 17

 1.7 Commenting in Python 19

 1.8 Internal Working of Python 20

Contentsxvi

 1.9 Python Implementations 20

 1.9.1 Jython 21

 1.9.2 IronPython 21

 1.9.3 Stackless Python 21

 1.9.4 PyPy 21

 Summary 21

 Key Terms 22

 Review Questions 22

 A. Multiple Choice Questions 22

 B. True or False 23

 C. Exercise Questions 23

 Programming Assignments 23

2. Basics of Python Programming 24

 Chapter Outline 24

 Learning Outcomes 24

 2.1 Introduction 25

 2.2 Python Character Set 25

 2.3 Token 25

 2.3.1 Literal 26

 2.3.2 Value and Type on Literals 26

 2.3.3 Keywords 27

 2.3.4 Operator 27

 2.3.5 Delimiter 27

 2.3.6 Identifier/Variable 27

 2.4 Python Core Data Type 28

 2.4.1 Integer 28

 2.4.2 Floating Point Number 30

 2.4.3 Complex Number 30

 2.4.4 Boolean Type 31

 2.4.5 String Type 31

 2.5 The print() Function 32

 2.5.1 The print()Function with end Argument 34

 2.6 Assigning Value to a Variable 35

 2.6.1 More on Assigning Values to Variables 35

 2.6.2 Scope of a Variable 36

 2.7 Multiple Assignments 36

 2.8 Writing Simple Programs in Python 38

 2.9 The input() Function 39

 2.9.1 Reading String from the Console 39

 2.10 The eval() Function 42

 2.10.1 Apply eval() to input() Function 43

Contents xvii

 2.11 Formatting Number and Strings 44

 2.11.1 Formatting Floating Point Numbers 45

 2.11.2 Justifying Format 46

 2.11.3 Integer Formatting 46

 2.11.4 Formatting String 47

 2.11.5 Formatting as a Percentage 47

 2.11.6 Formatting Scientific Notation 48

 2.12 Python Inbuilt Functions 48

 2.12.1 The ord and chr Functions 51

 Summary 52

 Key Terms 52

 Review Questions 53

 A. Multiple Choice Questions 53

 B. True or False 54

 C. Exercise Questions 54

 Programming Assignments 55

UNIT 2 56

3. Operators and Expressions 57

 Chapter Outline 57

 Learning Outcomes 57

 3.1 Introduction 57

 3.2 Operators and Expressions 58

 3.3 Arithmetic Operators 58

 3.3.1 Unary Operators 58

 3.3.2 Binary Operators 59

 3.4 Operator Precedence and Associativity 68

 3.4.1 Example of Operator Precedence 69

 3.4.2 Associativity 69

 3.5 Changing Precedence and Associativity

of Arithmetic Operators 70

 3.6 Translating Mathematical Formulae into Equivalent Python Expressions 72

 3.7 Bitwise Operator 73

 3.7.1 The Bitwise AND (&) Operator 74

 3.7.2 The Bitwise OR (|) Operator 75

 3.7.3 The Bitwise XOR (^) Operator 76

 3.7.4 The Right Shift (>>) Operator 78

 3.7.5 The Left Shift (<<) Operator 79

 3.8 The Compound Assignment Operator 80

 Mini Project: Goods Service Tax (GST) Calculator 81

 Summary 83

 Key Terms 83

Contentsxviii

 Review Questions 83

 A. Multiple Choice Questions 83

 B. True or False 84

 C. Exercise Questions 85

 Programming Assignments 87

4. Decision Statements 88

 Chapter Outline 88

 Learning Outcomes 88

 4.1 Introduction 88

 4.2 Boolean Type 89

 4.3 Boolean Operators 90

 4.3.1 The not Operator 90

 4.3.2 The and Operator 90

 4.3.3 The or Operator 91

 4.4 Using Numbers with Boolean Operators 91

 4.5 Using String with Boolean Operators 92

 4.6 Boolean Expressions and Relational Operators 92

 4.7 Decision Making Statements 94

 4.7.1 The if Statements 94

 4.7.2 The if-else Statement 96

 4.7.3 Nested if Statements 100

 4.7.4 Multi-way if-elif-else Statements 101

 4.8 Conditional Expressions 105

 Mini Project: Finding the Number of Days in a Month 107

 Summary 108

 Key Terms 109

 Review Questions 109

 A. Multiple Choice Questions 109

 B. True or False 111

 C. Exercise Questions 112

 Programming Assignments 112

5. Loop Control Statements 113

 Chapter Outline 113

 Learning Outcomes 113

 5.1 Introduction 113

 5.2 The while Loop 114

 5.2.1 Details of while Loop 114

 5.2.2 Flowchart for while Loop 115

 5.2.3 Some More Programs on while Loop 117

 5.3 The range() Function 119

 5.3.1 Examples of range() Function 119

Contents xix

 5.4 The for Loop 120

 5.4.1 Details of for Loop 120

 5.4.2 Some More Programs on for Loop 121

 5.5 Nested Loops 125

 5.5.1 Some More Programs on Nested Loops 126

 5.6 The break Statement 129

 5.7 The continue Statement 131

 Mini Project: Generate Prime Numbers using Charles Babbage Function 133

 Summary 135

 Key Terms 135

 Review Questions 135

 A. Multiple Choice Questions 135

 B. True or False 137

 C. Exercise Questions 138

 Programming Assignments 139

UNIT 3 140

6. Lists 141

 Chapter Outline 141

 Learning Outcomes 141

 6.1 Introduction 142

 6.2 Creating Lists 142

 6.3 Accessing the Elements of a List 143

 6.4 Negative List Indices 143

 6.5 List Slicing [Start: end] 144

 6.6 List Slicing with Step Size 145

 6.6.1 Some More Complex Examples of List Slicing 145

 6.7 Python Inbuilt Functions for Lists 145

 6.8 The List Operator 147

 6.9 List Comprehensions 150

 6.9.1 Some More Examples of List Comprehension 151

 6.10 List Methods 153

 6.11 List and Strings 157

 6.12 Splitting a String in List 157

 6.13 Passing List to a Function 158

 6.14 Returning List from a Function 160

 Summary 168

 Key Terms 168

 Review Questions 168

 A. Multiple Choice Questions 168

 B. True or False 170

 C. Exercise Questions 170

 Programming Assignments 171

Contentsxx

7. Tuples, Sets and Dictionaries 173

 Chapter Outline 173

 Learning Outcomes 173

 7.1 Introduction 173

 7.1.1 Creating Tuples 174

 7.1.2 The tuple()Function 174

 7.1.3 Inbuilt Functions for Tuples 175

 7.1.4 Indexing and Slicing 175

 7.1.5 Operations on Tuples 176

 7.1.6 Passing Variable Length Arguments to Tuples 176

 7.1.7 Lists and Tuples 177

 7.1.8 Sort Tuples 178

 7.1.9 Traverse Tuples from a List 178

 7.1.10 The zip() Function 178

 7.1.11 The Inverse zip(*) Function 180

 7.1.12 More Examples on zip(*) Function 180

 7.1.13 More Programs on Tuples 181

 7.2 Sets 181

 7.2.1 Creating Sets 181

 7.2.2 The Set in and not in Operator 182

 7.2.3 The Python Set Class 182

 7.2.4 Set Operations 184

 7.3 Dictionaries 185

 7.3.1 Need of Dictionaries 185

 7.3.2 Basics of Dictionaries 185

 7.3.3 Creating a Dictionary 186

 7.3.4 Adding and Replacing Values 187

 7.3.5 Retrieving Values 188

 7.3.6 Formatting Dictionaries 189

 7.3.7 Deleting Items 189

 7.3.8 Comparing Two Dictionaries 189

 7.3.9 The Methods of Dictionary Class 190

 7.3.10 Traversing Dictionaries 191

 7.3.11 Nested Dictionaries 192

 7.3.12 Traversing Nested Dictionaries 192

 7.3.13 Simple Programs on Dictionary 194

 7.3.14 Polynomials as Dictionaries 197

 Mini Project: Orange Cap Calculator 198

 Summary 200

 Key Terms 200

Contents xxi

 Review Questions 201

 A. Multiple Choice Questions 201

 B. True or False 202

 C. Exercise Questions 203

 Programming Assignments 204

UNIT 4 205

8. Functions 206

 Chapter Outline 206

 Learning Outcomes 206

 8.1 Introduction 206

 8.2 Syntax and Basics of a Function 207

 8.3 Use of a Function 208

 8.4 Parameters and Arguments in a Function 209

 8.4.1 Positional Arguments 211

 8.4.2 Keyword Arguments 212

 8.4.3 Parameter with Default Values 213

 8.5 The Local and Global Scope of a Variable 215

 8.5.1 Reading Global Variables from a Local Scope 216

 8.5.2 Local and Global Variables with the Same Name 217

 8.5.3 The Global Statement 217

 8.6 The return Statement 218

 8.6.1 Returning Multiple Values 221

 8.6.2 Assign Returned Multiple Values to Variable(s) 222

 8.7 Recursive Functions 222

 8.8 The Lambda Function 223

 Mini Project: Calculation of Compound Interest and Yearly Analysis

of Interest and Principal Amount 224

 Summary 227

 Key Terms 227

 Review Questions 227

 A. Multiple Choice Questions 227

 B. True or False 230

 C. Exercise Questions 230

 Programming Assignments 231

9. Modules, Packages and Introduction to PIP 232

 Chapter Outline 232

 Learning Outcomes 232

 9.1 Introduction to Modules 232

 9.2 Creating and Importing Modules 233

Contentsxxii

 9.3 Packages in Python 234

 9.3.1 Creating Package 234

 9.4 Introduction to PIP 235

 9.4.1 PIP Directory Structure 236

 9.4.2 Knowing the Version of PIP 236

 9.5 Installing and Uninstalling Packages via PIP 239

 9.5.1 The PIP Commands and Options 240

 9.6 Using Python Packages 241

 Summary 242

 Key Terms 243

 Review Questions 243

 A. Exercise Questions 243

 Programming Assignments 243

UNIT 5 244

10. Object-Oriented Programming: Class, Objects and Inheritance 245

 Chapter Outline 245

 Learning Outcomes 245

 10.1 Introduction 246

 10.2 Defining Classes 246

 10.2.1 Adding Attributes to a Class 247

 10.2.2 Accessing Attributes of a Class 248

 10.2.3 Assigning Value to an Attribute 248

 10.3 The Self-parameter and Adding Methods to a Class 249

 10.3.1 Adding Methods to a Class 249

 10.3.2 The Self-parameter 249

 10.3.3 Defining Self-parameter and Other Parameters in a Class Method 250

 10.3.4 The Self-parameter with Instance Variable 251

 10.3.5 The Self-parameter with Method 252

 10.4 Display Class Attributes and Methods 253

 10.5 Special Class Attributes 254

 10.6 Accessibility 255

 10.7 The __init__ Method (Constructor) 256

 10.7.1 Attributes and __init__ Method 257

 10.7.2 More Programs on __init__ Method 258

 10.8 Passing an Object as Parameter to a Method 258

 10.9 __del__() (Destructor Method) 260

 10.10 Class Membership Tests 262

 10.11 Method Overloading in Python 262

 10.12 Operator Overloading 264

 10.12.1 Special Methods 265

 10.12.2 Special Methods for Arithmetic Operations 265

Contents xxiii

 10.12.3 Special Methods for Comparing Types 266

 10.12.4 Reference Equality and Object Equality 267

 10.12.5 Special Methods for Overloading Inbuilt Functions 269

 10.13 Inheritance 269

 10.14 Types of Inheritance 270

 10.15 The Object Class 271

 10.16 Inheritance in Detail 271

 10.17 Subclass Accessing Attributes of Parent Class 273

 10.18 Multilevel Inheritance in Detail 274

 10.19 Multiple Inheritance in Detail 275

 10.19.1 More Practical Examples on Inheritance 276

 10.20 Using super() 278

 10.20.1 Super to Call Super Class Constructor 279

 10.21 Method Overriding 280

 10.22 Precaution: Overriding Methods in Multiple Inheritance 282

 Mini Project: Arithmetic Operations on Complex Numbers 283

 Summary 287

 Key Terms 287

 Review Questions 288

 A. Multiple Choice Questions 288

 B. True or False 290

 C. Exercise Questions 291

 Programming Assignments 292

11. Errors and Exceptions 294

 Chapter Outline 294

 Learning Outcomes 294

 11.1 Errors and Exceptions 294

 11.1.1 Exception 295

 11.2 Python Exception and its Hierarchy 295

 11.3 Handling Exception 297

 11.3.1 Executing the ‘Divide by Zero’ Program Without

Exception Handling 297

 11.3.2 The try and except Blocks to Handle Various

Exceptions 299

 11.4 Raising Exception 302

 Summary 302

 Key Terms 303

 Review Questions 303

 A. Multiple Choice Questions 303

 B. Exercise Questions 304

 Programming Assignments 304

Contentsxxiv

UNIT 6 305

12. A Brief Tour of Standard Library 306

 Chapter Outline 306

 Learning Outcomes 306

 12.1 Introduction 306

 12.2 Operating System Interface—The OS Module 307

 12.3 String Pattern Matching 309

 12.3.1 The re Module 310

 12.3.2 Regular Expression Containing Operators and Symbols 312

 12.3.3 Basic Example of Regular Expressions 313

 12.4 The Date and Time Module 314

 12.4.1 Date Formats 316

 12.4.2 Time Module 316

 12.5 Mathematics–The Maths Module 317

 12.6 Internet Access 319

 12.6.1 The urllib module 319

 12.7 Data Compression 321

 12.7.1 The zlib Library 321

 12.7.2 Compressing Large Data Streams 322

 Summary 325

 Key Terms 325

 Review Questions 326

 A. Multiple Choice Questions. 326

 B. Exercise Questions 326

 Programming Assignments 327

13. Graphics Programming: Drawing with Turtle Graphics 328

 Chapter Outline 328

 Learning Outcomes 328

 13.1 Introduction 328

 13.2 Getting Started with the Turtle Module 329

 13.3 Moving the Turtle in any Direction 330

 13.3.1 Programs to Draw Different Shapes 333

 13.4 Moving Turtle to Any Location 334

 13.5 The color, bgcolor, circle and Speed Method of Turtle 336

 13.6 Drawing with Colors 338

 13.7 Drawing Basic Shapes using Iterations 339

 13.8 Changing Color Dynamically Using List 342

 13.9 Turtles to Create Bar Charts 342

 Mini Project: Turtle Racing Game 344

 Summary 348

 Key Terms 348

Contents xxv

 Review Questions 348

 A. Multiple Choice Questions 348

 B. True or False 349

 C. Exercise Questions 349

 Programming Assignments 350

14. Unit Testing 351

 Chapter Outline 351

 Learning Outcomes 351

 14.1 Why Testing is Required? 351

 14.2 Types of Testing 352

 14.3 Identifying Units 352

 14.4 Unit Testing in Python—The Unittest Class 352

 14.5 List of assert Methods 355

 14.6 Writing and Running Multiple Test Cases 356

 Summary 359

 Key Terms 360

 Review Questions 360

 A. Exercise Questions 360

 Programming Assignments 360

Previous Year’s Solved JNTU Examination Questions 361

UNIT 1

 Introduction to Computer and Python
Programming

 Basics of Python Programming

1.1 IntroductIon

Nowadays computers have become an integral part of human lives. They are used in diverse sectors
to execute a range of everyday tasks such as reservation of tickets, payment of electricity bills, virtual
transfer of money, forecasting the weather, diagnosis of diseases and so on. In short, each one of
us—directly or indirectly—makes use of computers. So, before learning python programming
language, this chapter explains the basics of computers and different types of programming

1

Introduction to Computer
and Python Programming

LearnIng outcomes

After completing this chapter, students will be able to:

• Identify the functionalities of modern computer systems and various programming languages

• Explain the importance of Python and describe its need as a programming language

• Install Python in various operating systems and write and execute programs in Python

chapter outLIne

 1.1 Introduction

 1.2 What is a Computer?

 1.3 Overview of Programming Languages

 1.4 History of Python

 1.5 Installing Python in Ubuntu

 1.6 Executing Python Programs

 1.7 Commenting in Python

 1.8 Internal Working of Python

 1.9 Python Implementations

Introduction to Computer and Python Programming 3

languages for ease of beginners and then introduces Python in detail, covering installation and
execution of Python and Python programs.

1.2 What Is a computer?

The word computer is derived from ‘compute’, which means ‘to calculate’. A computer is an
electronic device which accepts data from a user, processes the data for calculations specified by
the user and generates an output. A computer performs these operations with speed and accuracy
using certain hardware and software. Hardware is visible physical element of a computer and
software consist of a written set of instructions used to control the hardware. Figure 1.1. shows the
various components of a modern computer system.

Figure 1.1 Block diagram of a modern computer system

The hardware of a computer system consists of three main components, viz. input/output (I/O)
unit, central processing unit and memory unit.

1.2.1 Input/output (I/o) unit

Users interact with a computer using various I/O units. Inputs can be given to a computer using
input devices, such as a keyboard. The input unit of a computer converts the data that it accepts
from a user into a form that is understandable by it. As soon as the computer receives the input, it
is processed and sent to its output device. Monitors, printers, etc., are examples of output devices
of a computer.

1.2.2 central processing unit (cpu)

The CPU is one of the most important parts of a computer. It handles processing of data and

consists of an arithmetic logic unit (ALU) and a control unit. The ALU performs all operations on
the input data and the control unit directs the computer memory and input and output devices
response to the instructions received from a program.

1.2.3 memory unit

The function of the memory unit is to store programs and data. The unit is a compilation of
numerous storage cells and each cell can store one bit of information. These cells are processed

Python Programming4

in a group of fixed sizes of units called words and they never read or write as individual cells. A
computer’s memory system can be divided into the following three groups:

 1. Internal memory: It refers to the set of registers confined to the CPU. These registers hold
temporary results when a computation is in progress.

 2. Primary memory: It is a storage area in which all the programs are executed. All programs
and data must be stored in the primary memory for speedy execution.

 3. Secondary memory: It is known as external memory or storage memory. Programs and data
are stored here for the long term. Hard disk, floppy disk, CDs, DVDs and magnetic tapes are
different forms of secondary memory.

1.3 overvIeW of programmIng Languages

A computer program is a set of instructions, which performs a specific task when executed by a
computer. Computer programs are commonly known as software. The instructions in a program
tell a computer what to do and these instructions can be written in three types of programming
languages described next.

1.3.1 machine Language

A computer is an electronic machine which can understand any instruction written in binary
form, i.e. using only 0s and 1s. A program written in 0s and 1s is called machine language. While
a computer easily understands this language, it is difficult for humans to write an instruction in
terms of 0’s and 1’s. Consider the following example.

Example

A series of numbers, such as 0011, 1000, 1010 is an instruction written in machine language. The
instruction implies addition of a number stored at location 8 (1000) and another number stored at
location 10 (1010) and storing the result at location 8 (1000). Here, the binary code 0011 stands for
addition.

1.3.2 assembly Language

From the above example, we know that it is difficult to write, read, communicate or change a
program written in machine language for humans. Hence, the need to create another more
convenient language arose. In assembly language, which was developed subsequently, machine
operations are represented by mnemonic codes (such as ADD and MUL) and symbolic names that
specify the memory address. Consider the following example.

Example

MOV X, 10

MOV Y, 20

ADD X, Y

Here the mnemonic MOV indicates an operation to store the value of variable X as 10. The
mnemonic ADD implies addition of the contents of variable X, Y and finally storing the result in
variable X itself.

Introduction to Computer and Python Programming 5

Since computers cannot understand the assembly language, a program called assembler is
used to translate assembly language programs into equivalent machine language programs.

1.3.3 high-level Language

High-level languages are much easier to write than low-level languages because programs written
in these are similar to instructions written in the English language. Here ‘high’ does not imply that
the language is complicated. It means that the language is more problem oriented. Generally, high-
level languages are platform independent. This means that one can write a program in a high-level
language and run it on different types of machines. Instructions written in high-level languages
are called statements.

For example, a statement to calculate the square of a number can be written in a high-level
language as

Square = number * number

There are many high-level languages and the selection of a language is based on the purpose
it is expected to fulfill. A program written in a high-level language is called source code or source
program. The process of executing programs written in high-level languages is given below.

 | Step 1: An interpreter or compiler is used to translate a program written in a high-level
language into its equivalent machine code for execution.

 | Step 2: A linker is used to combine the object code and the code stored in libraries into
machine language.

 | Step 3: Finally, the machine language code generated in Step 2 is executed.

Figure 1.2 depicts the steps on how to execute a program written in a high-level language.

Figure 1.2 Steps to execute a high-level language program

The next section describes compiler, interpreter, linker and loader in detail.

Compiler

It is a software that translates a program written in a high-level language into machine language.
This compiled program is called object code. The object code is an executable code which can
run as a standalone code, i.e. it does not need the compiler to be present during execution. Every
programming language, such as C, C++ and Java has its own compiler.

Python Programming6

Interpreter

While a compiler converts the whole source code into an equivalent object code or machine
code, the interpreter reads the source code line by line and converts it into object code (i.e. a code
understandable to the machine.

Linker

It is a program that links different program modules and libraries to form a single executable
program. A source code of a program is very large. It can consist of hundreds of lines of code.
Before the execution of a program, all the modules of the program and the required libraries are
linked together using a software called a linker. The compiled and linked program is called the
executable code.

Loader

This software is used to load and relocate an executable program in the main memory during
execution. The loader assigns a storage space to a program in the main memory for execution.

1.4 hIstory of python

Python was developed by Guido van Rossum at National Research Institute for Mathematics and
Computer Science in Netherlands in 1990. Rossum wanted the name of his new language to be
short, unique and mysterious. Inspired by Monty Python’s Flying Circus, a BBC comedy series, he
named the language Python.

Python became a popular programming language, widely used in both industry and academia
because of its simple, concise and extensive support of libraries. It is a general purpose, interpreted
and object-oriented programming language. Python source code is available under General Public
License (GPL) and maintained by a core development team at the same institute.

1.4.1 Why python?

COBOL, C#, C, C++ and Java are a few of the many programming languages available in information
and technology today. One common question that beginners in programming often ask is, ‘Why
use Python when there are so many programming languages?’ While on one hand it may just be a matter
of personal preference, there are some very well-known advantages of Python which make it a
popular programming language. These are given below.

 1. Readability: Developer’s readability of code is one of the most crucial factors in programming.
The longest part of any software’s life cycle is its maintenance. Therefore, if a software has
a highly readable code, then it is easier to maintain. Readability also helps a programmer
to reuse the existing code with ease to maintain and update a software. Python offers more
readability of code when compared to other programming languages.

 2. Portability: Python is platform independent, i.e. its programs run on all platforms. The
language is designed for portability.

 3. Vast support of libraries: Python has a large collection of in-built functionalities known as
standard library functions. Python also supports various third-party software like NumPy.
NumPy is an extension, i.e. it provides support for large, multidimensional arrays and matrices.

Introduction to Computer and Python Programming 7

 4. Software integration: An important aspect of Python is that it can easily extend, communicate
and integrate with several other languages. For example, Python code can easily invoke libraries
of C and C++ programming languages. It can also be used to communicate with Java and .net
components. Python can sometimes act as an intermediary or agent between two applications.

 5. Developer productivity: Compared to other programming languages, Python is a
dynamically typed language, which means there is no need to declare variables explicitly.
Again, there are various other features of Python due to which the size of code written is
typically smaller or half of the code written in some other languages, such as C, C++ or Java.

As the size of code is reduced quite a bit, there is less to type and debug. The amount of time
needed to compile and execute is also very less as compared to other programming languages.
Python programs run immediately, i.e. without taking much time to link and compile.

These benefits offered by Python make it the topmost choice for programmers to develop
application software or projects with Python.

1.4.2 Installing python in Windows

Python is available for almost all operating systems such as Windows, Mac, Linux/Unix, etc. The
complete list of different versions of Python can be found at http://www.Python.org/downloads.
Step-wise details for installing Python in Windows are given below.

 | Step 1: Open an Internet browser like Internet Browser, Mozilla Firefox or Chrome. Type
http://www.Python.org/ in the address bar and press Enter. Immediately, the
following page will appear (Figure 1.3).

Figure 1.3 Python home page

 | Step 2: Click on Downloads and you will see the latest version of Python. Since all programs
in this book are written and executed on Python 3.4, download Python 3.4 version by
clicking on All Releases under Downloads as shown in Figure 1.4.

Python Programming8

Figure 1.4 Python download page

 | Step 3: After clicking on All Releases under Downloads browse through the page to the
bottom. You will see a list of Python releases as shown in Figure 1.5.

Figure 1.5 Python release versions

 | Step 4: Click on Python 3.4.2 and download it.

 | Step 5: Open the folder where you have downloaded the Python 3.4 version pack and double
click on it to start the installation (Figure 1.6).

Figure 1.6 Python software

Introduction to Computer and Python Programming 9

 | Step 6: After clicking on it you will see the first window to set up Python 3.4.2 (Figure 1.7).

Figure 1.7 Python first setup window

 | Step 7: Click on Next and you will see a second window which tells you to specify the location
where you want to install Python (Figure 1.8).

Figure 1.8 Python second setup window

By default, Python will be installed in C:\. Then click on Next to continue the
installation. Just before completing the installation, it will show you the following two
windows (Figures 1.9 a and b).

Python Programming10

(a) (b)

Figures 1.9 a and b Python final setup window

 | Step 8: Click on Finish to complete the installation.

 | Step 9: To check if Python is installed successfully just press windows key on Windows 7 or
Windows 8 and then in the search bar type Python as shown in Figure 1.10.

Figure 1.10 Windows 8 showing successful installation of Python

1.4.3 starting python in different execution modes

After installing Python in Windows, you can start Python in two different modes, viz. Python
(Command Line) and Python (IDLE).

Starting Python (Command Line)

Python is an interpreted language. You can directly write the code into the Python interpreter or
you can write a sequence of instructions into a file and then run the file.

When you execute Python expressions or statements from the command line then you are in
interactive mode or interactive prompt.

Introduction to Computer and Python Programming 11

Steps for writing a Python command line in Windows 7 are given as follows:

 | Step 1: Press the Start button (Figure 1.11).

Figure 1.11

 | Step 2: Click on All programs and then Python 3.4. After clicking on Python 3.4 you will see
a list of options as shown in Figure 1.12.

Figure 1.12

Python Programming12

 | Step 3: In this list click on Python (Command Line—32 bit). After clicking on it, you will see
the Python interactive prompt in Python command line as shown in Figure 1.13.

Figure 1.13 Python interactive mode as Python command line window

In Figure 1.13, the Python command prompt contains an opening message >>>, called command

prompt. The cursor at the command prompt waits for you to enter a Python command. A complete
command is called a statement. Simple commands executed in the interactive mode of Python
command line are shown in Figure 1.14.

Figure 1.14 Simple commands executed in interactive mode of Python command prompt

We have written two simple commands or statements. The first statement, i.e. print(‘Hello

World’) when executed in the interactive mode of Python command prompt gives the output as
the entered command, i.e. ‘Hello World’ for this message. More details about print and its syntax
are explained in Chapter 2.

Precautions to be taken while executing commands in the interactive mode of Python with
command line are given as follows.

Introduction to Computer and Python Programming 13

If you try to put an extra space between Python prompt, i.e. >>> and the command, then
it will produce an error called Indentation Error: Unexpected Indent. A simple example to
demonstrate this error is given below.

Example:
>>> print(‘Hello World’)

 File “<stdin>”, line 1

 print(‘Hello World’)

 ^

IndentationError: unexpected indent

Thus, due to an extra space between >>> and command, i.e. print(‘Hello world’), the Python
interpreter raises an error.

To exit from the command line of Python 3.4, press Ctrl+Z followed by Enter.

Starting Python IDLE

Launching Python IDLE is another way to start executing Python statements or commands in the
interactive mode of Python IDLE. It is a graphical integrated development environment for Python.

Python statements or commands which run in the interactive mode of Python IDLE are called
shell. IDLE is downloaded by default while installing Python. Launching Python IDLE is the
simplest way to open a Python shell. The steps to launch Python IDLE are similar to those used to
start a Python command line and are detailed below.

 | Step 1: Press the Start button.

 | Step 2: Click on All Programs and then Python 3.4. After clicking on Python 3.4 you will see
a list of options as shown in Figure 1.15.

Figure 1.15

Python Programming14

 | Step 3: Click on IDLE (Python 3.4 GUI—32 bit) and you will see the Python interactive

prompt, i.e. an interactive shell as shown in Figure 1.16.

Figure 1.16 Python IDLE—Interactive shell

In Figure 1.16, a Python interactive shell prompt contains an opening message >>>, called ‘shell

prompt’. The cursor at the shell prompt waits for you to enter a Python command. A complete
command is called a statement. As soon as you write a command and press Enter, the Python

interpreter will immediately display the result.

Figure 1.17 shows simple commands which are executed in the interactive mode, i.e. the
interactive shell of Python IDLE.

Figure 1.17 Running commands in Python IDLE’s interactive shell

Note: Hereafter all commands given as examples in the forthcoming chapters of this book are executed
in Python 3.4 IDLE’s interactive mode, i.e. the interactive shell prompt.

Introduction to Computer and Python Programming 15

1.5 InstaLLIng python In ubuntu

Python 2.7 and Python 3.4 are installed by default on Ubuntu 15.0. The following steps can be used
to check their presence.

 | Step 1: Open Ubuntu 15.0.

 | Step 2: Press the Windows button on the keyboard and type ‘terminal’ or press the shortcut
Ctrl+Alt+T to open the terminal.

 | Step 3: Once the terminal is open, type Python3—version to check if it is installed.

Figure 1.18 Check default installation of Python

 | Step 4: From Figure 1.18 we can know that default Python3.X version has been installed
successfully.

 | Step 5: To launch the command line mode or interactive mode of Python 3.X version in
Ubuntu, type Python3 on the terminal.

Figure 1.19 Ubuntu Python3 command line mode

 From Figure 1.19 we can see the command line mode of Ubuntu has been started
and the programmer is ready to give instructions to Python. The following figure
(Figure 1.20) illustrates an example of printing ‘hello’ in the command line mode of
Ubuntu.

Python Programming16

Figure 1.20 Executing instructions of Python3 in Ubuntu command line mode

 | Step 6: A programmer can launch Python IDLE mode in Ubuntu in the same manner. To
launch the IDLE mode of Python, type the command given below on the terminal.

Python -m idlelib

Note: If IDLE is not installed then the programmer can install it by typing the command given below on
the terminal.

sudo apt-get install idle3

1.6 executIng python programs

The previous section explained the installation of Python3 in Windows and Ubuntu. This section
describes how to execute Python programs in script mode on Windows. All the programs written in
this book are written and executed on Windows. Once IDLE is launched in Ubuntu, a programmer
can write programs in script mode in the same manner as done in Windows.

Running Python programs from a script file is known as running Python in script mode. You
can write a sequence of instructions in one file and execute them. The steps required to write
Python programs in Python IDLE’s script mode are given as follows.

 | Step 1: In Python IDLE’s - Shell window, click on File and then on New File or just click

CTRL+N (Figure 1.21).

Figure 1.21 Python IDLE file menu bar

Introduction to Computer and Python Programming 17

As soon as you click on New File, the window shown below will open (Figure 1.22).

Figure 1.22 Python script mode

You can write a series of instructions in this window and then run it to view the output.

1.6.1 Writing the first python program in script mode

Use the following steps to create and run your first Python program.

 | Step 1: Writing Python code in script mode

Let us consider a simple program to print the messages “Hello Welcome to Python”,
“Awesome Python!” and “Bye” on the console. The statements needed to print these
are

 print(‘Hello Welcome to Python’)

 print(‘Awesome Python!”)

Once you write the above statements in Python script mode, they will look like as
given in Figure 1.23.

 Figure 1.23 Writing program in Python script mode

Enter Python Code Here

Series of

Python

Commands in

Script Mode

Python Programming18

 | Step 2: Save the above code written in script mode by some name.

In Figure 1.23 we can see the name *Untitled. If you don’t save the above code by some specific
name, then by default the Python interpreter will save it using the name Untitled.py. In this name,
py indicates that the code is written in Python. The * in front of Untitled indicates that the program
has not been saved. To identify the purpose of a program, you should give it a proper name. Follow
the steps given below to save the above program.

 | Step 1: Click on File and then click on Save or press Ctrl+S. Then you will see the default
installation folder (Python34) to save the file (Figure 1.24).

Figure 1.24 Saving a Python program

 | Step 2: Write the name of your Python program. As it is your first Python program, you can
save it as MyFirstProgram. Once you write the name of the file, click on Save. After the
name is saved, it will get displayed on title bar of the Python script window as shown
in Figure 1.25.

Figure 1.25 File name appearing on the title bar

Name of

Your First

Python

Program

Introduction to Computer and Python Programming 19

 | Step 3: Executing a Python program: A Python program is executed only after it is saved with
a specific file name. Thus, to run the above Python program, click on Run and then
Run Module as shown in Figure 1.26. Alternatively, you can also press Ctrl+F5 to run
the program.

Figure 1.26 Executing a Python program

 After clicking on Run Module you will see the output of the program if it is written
correctly (Figure 1.27).

Figure 1.27 Output of a Python program in Python IDLE’s interactive shell prompt

Note: Hereafter all the Python programs given as examples in the forthcoming chapters of this book are
executed in Python 3.4 IDLE’s script mode.

1.7 commentIng In python

Comments in Python are preceded by a hash symbol (#) on a line and called a line comment. Three
consecutive single quotation marks ‘’’ are used to give multiple comments or comments on several
lines at once and called paragraph comment.

When the Python interpreter sees #, it ignores all the text after # on the same line. Similarly,
when it sees the triple quotation marks ‘’’ it scans for the next ‘’’ and ignores any text in between
the triple quotation marks.

The following program demonstrates the use of comment statements in Python.

#Learn How to Comment in python

print(‘I Learnt How to Comment in Python’)

‘’’ Amazing tool

in Python called Comment’’’

print(‘Bye’)

Python Programming20

Output

I Learnt How to Comment in Python
Bye

explanation As explained above, Python ignores all the text in a statement if it is preceded by the
symbol. When the above program is executed, it ignores all the text followed by the # symbol and
triple quotation marks.

1.8 InternaL WorkIng of python

When a programmer tries to run a Python code as a script or instructions in an interactive manner
in a Python shell, then Python performs various operations internally. All such internal operations
can be broken down into a series of steps as shown in Figure 1.28.

Figure 1.28 Internal working of Python

The Python interpreter performs the following steps to execute a Python program or run a set
of instructions in interactive mode.

 | Step 1: The interpreter reads a Python code or instruction. Then it verifies that the instruction
is well formatted, i.e. it checks the syntax of each line. If it encounters any error, it
immediately halts the translation and shows an error message.

 | Step 2: If there is no error, i.e. if the Python instruction or code is well formatted then the
interpreter translates it into its equivalent form in low level language called “Byte

Code”. Thus, after successful execution of Python script or code, it is completely
translated into byte code.

 | Step 3: Byte code is sent to the Python Virtual Machine (PVM). Here again the byte code is
executed on PVM. If an error occurs during this execution then the execution is halted
with an error message.

1.9 python ImpLementatIons

The standard implementation of Python is usually called “CPython”. It is the default and widely
used implementation of the Python programming language. It is written in C. Besides C, there are
different implementation alternatives of Python, such as Jython, IronPython, Stackless and PypY.
All these Python implementations have specific purposes and roles. All of them make use of simple

Introduction to Computer and Python Programming 21

Python language but execute programs in different ways. Different Python implementations are
briefly explained ahead.

1.9.1 Jython

Originally, Jython was known as “JPython”. JPython takes Python programming language syntax
and enables it to run on the Java platform. In short, it is used to run Python programs on Java
platforms. More details about JPython can be found at http://jPython.org.

1.9.2 Ironpython

IronPython is an open source implementation of Python for the .NET framework. It uses dynamic
language runtime (DLR), which is a framework for writing dynamic languages for .net. A major
use of IronPython is to embed .net applications. More details about IronPython can be found at
http://ironpythonPython.net.

1.9.3 stackless python

It is a Python programming language interpreter. If you run a program on Stackless Python
environment then the running program is split into multithreads. The best thing about
mutilthreads in Stackless Python is the handling of multithreads, which are managed by the
language interpreter itself and not by the operating system. More details about Stackless Python
can be found at http://www.stackless.com.

1.9.4 pypy

The PyPy is a reimplementation of Python in Python. In short, the Python interpreter is itself
written in Python. It focuses on speed, efficiency and compatibility. It makes use of Just-in-Time

compiler (JIT) to run the code more quickly as compared to running the same code in regular
Python language. More details about PyPy Python can be found at http://pypy.org.

 Summary

  A computer is an electronic device which accepts data from a user, processes it for calculations specified
by the user and generates an output.

  The hardware of a computer system consists of three main components, viz. input/output (I/O) unit,
central processing unit (CPU) and memory unit.

  A program written in 1s and 0s is called machine language.

  In assembly languages, machine operations are represented by mnemonic codes such as ADD, MUL,
etc. and symbolic names that specify the memory address.

  Programs written in high-level languages are similar to instructions written in English language.

  An assembler is used to translate an assembly language program into an equivalent machine
language program.

  An interpreter or compiler is used to translate a program written in a high-level language into an
equivalent machine code for execution.

  An interpreter reads the source code line by line and converts it into object code.

Python Programming22

  A compiler is a software which translates an entire program written in a high-level language into
machine language at one go.

  A loader is a software used to load and relocate the executable program in the main memory during
execution.

  Python is a general purpose, interpreted and objects oriented programming language.

  You can enter Python statements interactively from the Python prompt >>>.

  Python source programs are case sensitive.

  The # symbol is used to comment a single line in Python.

  Triple single quotation ‘’’ marks are used to comment multiple lines in Python.

  Python programs can be executed on any operating system like Windows, Linux or Ubntu.

 Key termS

 � Assembly Language: Machine operations are represented by mnemonic code

 � Byte Code: The Python interpreter translates Python codes/instructions into their equivalent low level
language

 � Central Processing Unit (CPU): It consists of Arithmetic Logical Unit and Control Unit

 � High-level Language: Programs are written in a manner similar to writing instructions in English
language

 � Jython, IronPython, Stackless, PyPy: Different implementation alternatives of Python

 � Machine Language: Instructions are written in binary form, i.e. 0s and 1s

 � Python Virtual Machine (PVM): Used to check if the object code contains errors

 review QueStiOnS

a. multiple Choice Questions

 1. Which of the following memory is used to store temporary results in registers when the computation
is in progress?

 a. Primary Memory b. Secondary Memory

 c. Internal Memory d. None of the above

 2. Secondary memory is also called _________.

 a. Storage Memory b. External Memory

 c. Only b d. Both a and b

 3. ______ is used to translate a program written in a high-level language into its equivalent machine
code.

 a. Compiler b. Linker

 c. Loader d. Both a and b

 4. ______ is used to relocate executable programs to the main memory during execution.

 a. Linker b. Compiler

 c. Interpreter d. Loader

 5. What is the correct syntax for the print statement in Python 3.0?

 a. print() b. print

 c. print() d. None of the above

Introduction to Computer and Python Programming 23

 1. Write a program to display the statement given below in two different lines.

“I am using Python” and “It’s my First Assignment”

 2. Write a program to display the statements given below.

 ohhh!!!

 What a Python language is!!!

 It’s Easy!Get Started

 3. Write a program to display the pattern given below.
 A

 A A

 A A

 A A

 4. Write a program to display the pattern given below.
 00000

 0 0

 0 0

 0 0

 00000

prOgramming aSSignmentS

 6. Which of the following symbols is used to make single line comments in Python?

 a. # b. ‘

 c. ‘’’ d. &

B. true or False

 1. Python is not case sensitive.

 2. We can execute Python on Windows.

 3. We cannot comment on multiple lines in a Python program.

 4. An assembler is used to translate an assembly language program into its equivalent machine language
program.

 5. Python is an interpreted language.

C. exercise Questions

 1. Explain the classification of programming languages in brief.

 2. What is a compiler?

 3. What is an interpreter?

 4. Differentiate between a compiler and an interpreter.

 5. What is a linker?

 6. What is a loader?

 7. Explain the internal working of Python in brief.

 8. Describe the memory unit of a computer system in brief.

2

Basics of Python
Programming

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe keywords, delimiters, literals, operators and identifiers supported by Python

• Read data from the console using input function

• Assign value or data to a variable and multiple values to multiple variables at a time

• Use ord function to obtain a numeric code for a given character value, chr function to convert numeric
value to a character and str function to convert numbers to a string

• Format strings and numbers using the format function

• Identify and use various in-built math functions supported by Python

chapter OutLine

 2.1 Introduction

 2.2 Python Character Set

 2.3 Token

 2.4 Python Core Data Type

 2.5 The print() Function

 2.6 Assigning Value to a Variable

 2.7 Multiple Assignments

 2.8 Writing Simple Programs in Python

 2.9 The input() Function

 2.10 The eval() Function

 2.11 Formatting Number and Strings

 2.12 Python Inbuilt Functions

Basics of Python Programming 25

2.1 intrOductiOn

Computer programming languages are designed to process different kinds of data, viz. numbers,
characters and strings in the form of digits, alphabets, symbols etc. to get a meaningful output
known as result or information. Thus, program written in any programming language consists of
a set of instructions or statements which executes a specific task in a sequential form. Whereas all
these instructions are written using specific words and symbols according to syntax rules or the
grammar of a language. Hence, every programmer should know the rules, i.e. syntax supported by
language for the proper execution of a program.

This chapter describes basics of python programming, i.e. syntax, data types, identifiers, tokens,
and how to read values from the user using input function, etc.

2.2 pythOn character set

Any program written in Python contains words or statements which follow a sequence of
characters. When these characters are submitted to the Python interpreter, they are interpreted or
uniquely identified in various contexts, such as characters, identifiers, names or constants. Python
uses the following character set:

 · Letters: Upper case and lower case letters

 · Digits: 0,1,2,3,4,5,6,7,8,9

 · Special Symbols: Underscore (_), (,), [,], {,}, +, -, *, &, ̂ , %, $, #, !, Single quote(‘), Double quotes(“),
Back slash(\), Colon(:), and Semi Colon (;)

 · White Spaces: (‘\t\n\x0b\x0c\r’), Space, Tab.

2.3 tOken

A program in Python contains a sequence of instructions. Python breaks each statement into a
sequence of lexical components known as tokens. Each token corresponds to a substring of a
statement. Python contains various types of tokens. Figure 2.1 shows the list of tokens supported
by Python.

Figure 2.1 Tokens in Python

Details for all the tokens are given next.

Python Programming26

2.3.1 Literal

Literals are numbers or strings or characters that appear directly in a program. A list of some
literals in Python is as follows:

Example

78 #Integer Literal

2l.98 #Floating Point Literal

‘Q’ #Character Literal

“Hello” #String Literal

Python also contains other literals, such as lists, tuple and dictionary. Details of all such literals
are given in the forthcoming chapters.

Display Literals in Interactive Mode

Let us consider a simple example. Print the message “Hello World” as a string literal in Python
interactive mode.

Example

>>> ‘Hello World’

‘Hello World’

As shown above, type Hello World in interactive mode and press enter. Immediately after
pressing enter you will see the required message.

2.3.2 Value and type on Literals

Programming languages contain data in terms of input and output and any kind of data can
be presented in terms of value. Here value can be of any form like literals containing numbers,
characters and strings.

You may have noticed that in the previous example we wrote ‘Hello World’ in single quotes.
However, we don’t know the type of value in it. To know the exact type of any value, Python offers
an in-built method called type.

The syntax to know the type of any value is type (value)

Example

>>> type(‘Hello World’)

<class ‘str’>

>>> type(123)

<class ‘int’>

Thus, when the above examples are executed in Python interactive mode, return type of value
is passed to the in-built function type().

Basics of Python Programming 27

2.3.3 keywords

Keywords are reserved words with fixed meanings assigned to them. Keywords cannot be used as
identifiers or variables. Table 2.1. shows the complete list of keywords supported by Python.

Table 2.1 List of Python keywords for Python version 3.0

and del from None True

as elif global nonlocal try

assert else if not while

break except import or with

class False in pass yield

continue finally is raise

def for lambda return

2.3.4 Operator

Python contains various operators, viz. arithmetic, relational, logical and bitwise operators, as
shown in Table 2.2.

Table 2.2 Operators in Python

Operator Type Operators

+ - * / // % ** Arithmetic Operator

== != <> <= >= Relational Operator

and not or Logical Operator

& | ~ ^ << >> Bitwise Operator

Details about Python operators like operators and expressions are given in Chapter 3.

2.3.5 delimiter

Delimiters are symbols that perform a special role in Python like grouping, punctuation and
assignment. Python uses the following symbols and symbol combinations as delimiters.

() [] { }

, : . ‘ = ;

+= -= *= /= //= %=

&= |= ^= >>= <<= **=

2.3.6 identifier/Variable

Identifier is the name used to find a variable, function, class or other objects. All identifiers must
obey the following rules.

An identifier:

 · Is a sequence of characters that consists of letters, digits and underscore

Python Programming28

 · Can be of any length

 · Starts with a letter which can be either lower or upper case

 · Can start with an underscore ‘_’

 · Cannot start with a digit

 · Cannot be a keyword.

Some examples of valid identifiers are Name, Roll_NO, A1, _Address etc.

Python gives a syntax error if a programmer writes an invalid identifier. Some examples of
invalid identifiers are First Name, 12Name, for, Salary@

If we type the invalid identifiers given above in Python interactive shell, it will show an error
as these are invalid.

Example

>>> First Name

SyntaxError: invalid syntax

>>> 12Name

SyntaxError: invalid syntax

>>> for

SyntaxError: invalid syntax

2.4 pythOn cOre data type

All features in Python are associated with an object. It is one of the primitive elements of Python.
Further, all kinds of objects are classified into types. One of the easiest types to work with is
numbers, and the native data types supported by Python are string, integer, floating point numbers
and complex numbers.

The following section details the basic data types supported by Python.

2.4.1 integer

From simple Mathematics, we know that an integer is a combination of positive and negative
numbers including (zero) 0. In a program, integer literals are written without commas and a
leading minus sign to indicate a negative value. Following is an example of simple integer literals
displayed in Python interactive mode.

Example

>>> 10

10

>>> 1220303

1220303

>>> -87

-87

Basics of Python Programming 29

Integer literals can be octal or hexadecimal in format. All the above examples are of decimal
type integers. Decimal integers or literals are represented by a sequence of digits in which the first
digit is non-zero. To represent an octal, 0o, i.e. a zero and a lower or upper case letter O followed by
a sequence of digits from 0 to 7 is used. An example of octal literals is given as follows.

Example

>>> 0o12

10

>>> 0o100

64

 Note: In Python version 2.6 or earlier, octal literals were represented by the leading letter O, followed
by a sequence of digits. In Python 3.0, octal literals have to be accompanied by a leading 0o, i.e. a
zero and a lower or upper case letter O.

In the previous section, we have learnt about representation of numbers as default decimal

(base 10) notation and octal (base 8) notation. Similarly, numbers can also be represented as
hexadecimal (base 16) notation using 0x (zero and the letter X) followed by a sequence of digits.
Simple examples of hexadecimal literals displayed in Python interactive mode are given as follows:

Example

>>> 0x20

32

>>> 0x33

51

 Note: Integer in Python 2.6 (int and long)—In Python 2.6 there are two types of integers. One of
32 bits and another having unlimited precession. Python 2.6 automatically converts integers to long
integers if the value of the integer overflows 32 bits.

Integers in Python 3.0 (Only int type)—In Python 3.0 the normal int and long integer have been
merged. Hence, there is only one type called integer.

The int Function

The int function converts a string or a number into a whole number to integer. The int function
removes everything after the decimal point. Consider the following example.

Example

>>> int(12.456)

12

The following example converts a string to an integer.

Example

>>> int(‘123’)

123

Python Programming30

2.4.2 Floating point number

The value of π (3.14) is an example of a real number in mathematics. It consists of a whole number,
decimal point and fractional part. The length of real numbers has infinite precession, i.e. the digits
in the fractional part can continue forever. Thus, Python uses floating point numbers to represent
real numbers. A floating-point number can be written using a decimal notation or scientific

notation. Some examples of floating point numbers displayed in Python interactive mode are
given as follows:

Example

>>> 3.7e1

37.0

>>> 3.7

3.7

>>> 3.7*10

37.0

The above example shows the representation of floating point number 37.0 in both decimal and
scientific manner. Scientific notations are very helpful because they help programmers to represent
very large numbers. Table 2.3 shows decimal notations in scientific notation format.

Table 2.3 Example of floating point numbers

Decimal Notation Scientific Notation Meaning

 2.34 2.34e0 2.34 * 100

 23.4 2.34e1 2.34 * 101

 234.0 2.34e2 2.34 * 102

The float Function

The float function converts a string into a floating-point number. A programmer can make use
of float to convert string into float. Consider the following example.

Example

>>>float(‘10.23’)

10.23

2.4.3 complex number

A complex number is a number that can be expressed in the form a+bj, where a and b are real
numbers and j is an imaginary unit. Simple example of complex numbers displayed in Python
interactive mode is given as follows:

Example

>>> 2+4j

(2+4j)

Basics of Python Programming 31

>>> type(2+4j)

<class ‘complex’>

>>> 9j

9j

>>> type(9j)

<class ‘complex’>

Here we have written a simple kind of complex number and using type we have checked the type
of the number.

2.4.4 Boolean type

The Boolean data type is represented in Python as type bool. It is a primitive data type having one
of the two values, viz. True or False. Internally, the True value is represented as 1 and False as 0. In
the following example check the type of True and False value in Python interactive mode.

>>> type(True)

<class ‘bool’>

>>> False

False

>>> type(False)

<class ‘bool’>

The Boolean type is used to compare the two values. For example, when relational operators,
such as == , != , <= , >= are used in between two operands then it returns the value as True or False.

Example

>>> 5 == 4

False

>>> 5 == 5

True

>>> 4 < 6

True

>>> 6> 3

True

2.4.5 string type

A string literal or string in Python can be created using single, double and triple quotes. A simple
example of type as string is given as follows:

Example

>>> D = ‘Hello World’

>>> D

‘Hello World’

>>> D=”Good Bye”

Python Programming32

>>> D

‘Good Bye’

>>> Sentence

 ‘Hello, How are you? Welcome to the world of Python Programming. It is just the
beginning. Let us move on to the next topic.’

>>> Sentence

 ‘Hello, How are you? Welcome to the world of Python Programming. It is just the
beginning. Let us move on to the next topic.’

In the previous examples, we presented string literals in three different formats, viz. single
quote, double quote and triple single quotes. The triple single quotes are used to write a multiline
string.

The str Function

The str function is used to convert a number into a string. The following example illustrates the
same.

>>> 12.5 #Floating Point Number

12.5

>>> type(12.5)

<class ‘float’>

>>> str(12.5) #Convert floating point number to string

‘12.5’

the string concatenation (+) Operator In both mathematics and programming, we make use
of ‘+’ operator to add two numbers. Similarly, ‘+’ operator is used to concatenate two different
strings. The following example illustrates the use of + operator on strings.

>>> “Woooow” + “Python Programming”

‘WoooowPython Programming’ #Concatenates two different strings

2.5 the print() FunctiOn

In Python, a function is a group of statements that are put together to perform a specific task. The

task of print function is to display the contents on the screen. The syntax of print function is:

Syntax of print() function:

 print(argument)

The argument of the print function can be a value of any type int, str, float etc. It can also be
a value stored in a variable. Simple examples of print() function executed in interactive mode of
Python are given as follows:

Example

Display messages using print()

>>> print(‘Hello Welcome to Python Programming’)

Hello Welcome to Python Programming

Basics of Python Programming 33

>>> print(10000)

10000

>>>print(“Display String Demo”)

Display String Demo

Suppose you want to print a message with quotation marks in the output as

print(“The flight attendant asked, “May I see your boarding pass?”)

If you try to run the above statement as is, Python will show an error. For Python, the second
quotation mark is the end of the string and hence it does not know what to do with the rest of the
characters. To overcome this problem Python has a special notation to represent a special character.
This special notation consists of a backslash (\) followed by a letter or a combination of digits and
is called an escape sequence. Using backslash, the special characters within print can be written
as shown below.

Example

>>> print(“The flight attendant asked,\”May I see your boarding pass?\” “)

The flight attendant asked, “May I see your boarding pass?”

In the above example, we have used backslash before the quotation marks to display the
quotation marks in the output.

Table 2.4 illustrates a list of escape sequences used in Python.

Table 2.4 Python escape sequences

Character Escape Sequence Name

\’ Single Quote

\” Double Quote

\n Linefeed

\f Formfeed

\r Carriage return

\t Tab

\\ Backslash

\b Backspace

Note: The syntax of print function is different in Python 2.X. It is
 print arguments

 Python 2.X does not use an additional parenthesis. If you try to execute the print statement without
parenthesis, unlike Python 3, it will raise a syntax error.

 Example:
 >>> print ‘Hello World’

 Syntax Error: Missing parentheses in call to ‘print’
(Contd.)

Python Programming34

 Python programs are case sensitive. Python raises an error if a programmer tries to replace print by
Print.

 Example:
 >>> Print(‘hi’)

 Traceback (most recent call last):

 File “<pyshell#3>”, line 1, in <module>

 Print(‘hi’)

 NameError: name ‘Print’ is not defined

2.5.1 the print()Function with end argument

Consider a simple program of a print statement.

Program 2.1
 Write a program to display the messages “Hello”, “World” and “good Bye”. Each of the three
messages should get displayed on a different line.

print(‘Hello’)

print(‘World’)

print(‘Good Bye’)

output

Hello

World

Good Bye

In the above program, we have displayed each message in a different line. In short, the print
function automatically prints a linefeed (\n) to cause the output to advance to the next line.
However, if you want to display the messages “Hello” “World” and “Good Bye” in one line
without using a single print statement, then you can invoke the print function by passing a special
argument named end=’ ‘. The following program illustrates the use of the end argument within
the print function.

Program 2.2
 Write a basic program to make use of the end key and display the messages “Hello” “World”
and “Good Bye” in one line.

print(‘ Hello’,end=’ ‘)

print(‘ World’,end=’ ‘)

print(‘ Good Bye’)

output

Hello World Good Bye

Basics of Python Programming 35

2.6 assigning VaLue tO a VariaBLe

In Python, the equal sign (=) is used as the assignment operator. The statement for assigning a
value to a variable is called an assignment statement. The syntax used to assign value to a variable
or identifier is:

Variable = expression

In the above syntax, expression may contain information in terms of values, even some time
expression may contain operands with operators which evaluates to a value.

Let us consider the following example of assigning and displaying the value of a variable in
Python interactive mode.

Example

>>> Z = 1 # Assign value 1 to variable Z

>>> Z # Display value of Z

1

>>> radius = 5 #Assign value 5 to the variable radius

>>> radius #Display value of variable radius

5

>>> R = radius + Z #Assign the addition of radius and Z to R

>>> R #Display value of Variable R

6

>>> E =(5 + 10 * (10 + 5)) #Assign the value of the expression to E

>>> E

155

This example explains how a variable can be used to assign a value and how a variable can be
used on both the sides of = operator. As given in the above example:

 R = radius + Z

In the above assignment statement, the result of radius+Z is assigned to R. Initially the value
assigned to Z is 1. Once Python executes the above statement, it adds the most recent value of Z and
assigns the final value to a variable R.

Note: To assign a value to a variable, you must place the variable name to the left of the assignment
operator. If you write in the following manner, Python will display an error.

>>> 10 = X
Syntax Error: can’t assign to literal

 In Mathematics, E = (5 + 10 * (10 + 5)), denotes an equation, but in Python E = (5 + 10 * (10 + 5)) is
an assignment statement that evaluates the expression and assigns the result to E.

2.6.1 more on assigning Values to Variables

Consider the following example where a value has been assigned to multiple variables.

Python Programming36

Example

>>> P = Q = R = 100 #Assign 100 to P, Q and R

>>> P #Display value of Variable P

100

>>> Q #Display value of Variable Q

100

>>> R #Display Value of Variable R

100

In the above example, we have assigned value 100 to P, Q and R. The statement P = Q = R = 100
is equivalent to

 P = 100

 Q = 100

 R = 100

2.6.2 scope of a Variable

Each variable has a scope. The scope of a variable is a part of the program where a variable can
be referenced. More details on scope of variables are given in Chapter 6. Consider the following
simple example and run it on Python interpreter.

>>> C = Count + 1

Traceback (most recent call last):

 File “<pyshell#9>”, line 1, in <module>

 C = Count + 1

NameError: name ‘Count’ is not defined

In the above example, we have written a statement as C = Count + 1, but when Python tries to
execute the above statement it raises an error, viz. “Count is not defined”. To fix the above error
in Python the variable must be assigned some value before it is used in an expression. Thus, the
correct version of the above code written in Python interactive mode is as given as follows:

>>> Count = 1

>>> C = Count + 1

>>> C

2

Note: A variable must be assigned a value before it can be used in an expression.

2.7 muLtipLe assignments

Python supports simultaneous assignment to multiple variables. The syntax of multiple
assignments is

Var1, Var2, Var3, ………… = Exp1, Exp2, Exp3, …………… ExpN

Basics of Python Programming 37

In the above syntax, Python simultaneously evaluates all the expressions on the right and
assigns them to a corresponding variable on the left.

Consider the following statements to swap the values of the two variables P and Q. The common
approach to swap the contents of the two variables is shown as follows:

Example

>>> P = 20

>>> Q = 30

>>> Temp = P #Save value of variable P into a variable Temp

>>> P = Q #Assign value of Q to P

>>> Q = Temp #Assign the value of Temp to Q

#After Swapping the value of P, and Q are as follows.

>>> P

30

>>>

>>> Q

20

In the above code, we have used the following statements to swap the values of the two variables
P and Q.

 Temp = P

 P = Q

 Q = Temp

However, by using the concept of multiple assignment, you can simplify the task of swapping
two numbers.

>>> P, Q = Q, P #Swap P with Q & Q with P

Thus, the entire code to swap two numbers using multiple assignment is as follows:

>>> P = 20 #Initial Values of P and Q

>>> Q = 30

>>> P

20

>>> Q

30

>>> P, Q = Q, P #Swap values of P and Q

>>> P #Display value of P

30

>>> Q #Display Value of Q

20

Python Programming38

2.8 Writing simpLe prOgrams in pythOn

How can a simple program to calculate the area of a rectangle be written in Python?

We know that a program is written in a step-wise manner. Consider the initial steps given as
follows:.

 | STeP 1: Design an algorithm for the given problem.

An algorithm describes how a problem is to be solved by listing all the actions that
need to be taken. It also describes the order in which the series of actions need to be
carried out. An algorithm helps a programmer to plan for the program before actually
writing it in a programming language. Algorithms are written in simple English
language along with some programming code.

 | STeP 2: Translate an algorithm to programming instructions or code.

Let us now write an algorithm to calculate the area of a rectangle.

Algorithm to Calculate the Area of a Rectangle

 a. Get the length and breadth of the rectangle from the user.

 b. Use the relevant formula to calculate the area

Area = Length * Breadth

 c. Finally display the area of the rectangle.

This algorithm can be written as code as shown in program 2.3.

Program 2.3 Write a program to calculate the area of a rectangle.

Length = 10

breadth = 20

print(‘ Length = ‘,length,’ Breadth = ‘,breadth)

area = length * breadth

print(‘ Area of Rectangle is = ‘,area)

output

Length = 10 Breadth = 20

Area of Rectangle is = 200

explanation In the above program, two variables, viz. length and breadth are initialized with
values 10 and 20, respectively. The statement area = length x breadth is used to compute the area
of the rectangle.

Here the values of the variables are fixed. However, a user may want to calculate the area of
different rectangles with different dimensions in future. In order to get the values according to
the user’s choice, a programmer must know how to read the input values from the console. This is
described in the next section.

Basics of Python Programming 39

2.9 the input() FunctiOn

The input() function is used to accept an input from a user. A programmer can ask a user to input
a value by making use of input().

input() function is used to assign a value to a variable.

Syntax

Variable_Name = input()

 OR

Variable_Name = input(‘String’)

2.9.1 reading string from the console

A simple program of input() function to read strings from the keyboard is given in Program 2.4.

Program 2.4 Write a program to read strings from the keyboard.

Str1 = input(‘Enter String1:’)

Str2 = input(‘Enter String2: ‘)

print(‘ String1 = ‘,Str1)

print(‘ String2 = ‘,Str2)

output

Enter String1:Hello

Enter String2: Welcome to Python Programming

 String1 = Hello

 String2 = Welcome to Python Programming

explanation The input() function is used to read the string from the user. The string values
entered from the user are stored in two separate variables, viz. Str1 and Str2. Finally all the values
are printed by making use of print() function.

Let us also check what happens if by mistake the user enters digits instead of characters.
Program 2.5 illustrates the same.

Program 2.5 Write a program to enter digits instead of characters.

print(‘ Please Enter the Number:’)

X = input()

print(‘ Entered Number is: ‘,X)

print(‘ Type of X is:’)

print(type(X))

(Contd.)

Python Programming40

output

Please Enter the number:

60

Entered Number is: 60

Type of X is:

<class ‘str’>

explanation We know that Python executes statements sequentially. Hence, in the above program
the first print statement is printed, i.e. ‘Please Enter the Number.’ But when it runs the second
statement, i.e. X = input() the programming execution stops and waits for the user to type the
text using the keyboard. The text that the user types is not committed until he/she presses Enter.
Once the user enters some text from the keyboard, the value gets stored in an associated variable.
Finally, the entered value is printed on the console. The last statement is used to check the type of
value entered.

Note: The input function produces only string. Therefore, in the above program even if the user enters a
numeric, i.e. integer value, Python returns the type of input value as string.

In the above program, how does a programmer read integer values using the input function?

Python has provided an alternative mechanism to convert existing string to int. A programmer
can use int to convert a string of digits into an integer. Program 2.6 illustrates the use of int and
input ().

Program 2.6 Write a program to demonstrate the use of int and input function.

print(‘ Please Enter Number’)

Num1 = input() #Get input from user

print(‘ Num1 = ‘,Num1) #Print value of Num1

print(type(Num1)) #Check type of Num1

print(‘ Converting type of Num1 to int ‘)

Num1 = int(Num1) #Convert type of Num1 from str to int

print(Num1) #print the value of Num1

print(type(Num1)) #Check type of Num1

output

Please Enter Number

12

 Num1 = 12

<class ‘str’>

 Converting type of Num1 to int

12

<class ‘int’>

Basics of Python Programming 41

explanation The above program asks the user for input. The user has entered the input as 12 but
it is of type str. By making use of int, i.e. the statement Num1 = int(Num1), it converts the existing
type to int.

 We can minimise the number of lines in a program directly by making use of int before input
function. A shorter version of the above program is given in Program 2.7.

Program 2.7 Write a program to demonstrate the use of int before input.

Num1 = int(input(‘ Please Enter Number:’))

print(‘ Num1 = ‘,Num1) #Print the value of Num1

print(type(Num1)) #Check type of Num1

output

Please Enter Number:

20

Num1 = 20

<class ‘int’>

Program 2.8
 Write a program to read the length and breadth of a rectangle from a user and display the area
of the rectangle.

print(‘ Enter Length of Rectangle:’, end=’ ‘)

Length = int(input()) #Read Length of Rectangle

print(‘ Enter Breadth of Rectangle:’, end=’ ‘)

Breadth = int(input()) #Read Breadth of Rectangle

Area = Length * Breadth #Compute Area of Rectangle

print(‘-----Details of Rectangle------’)

print(‘ Length = ‘,Length) #Display Length

print(‘ Breadth = ‘,Breadth) #Display Breadth

print(‘ Area of rectangle is :’,Area)

output

Enter Length of Rectangle: 10

Enter Breadth of Rectangle: 20

-----Details of Rectangle------

Length = 10

Breadth = 20

Area of rectangle is: 200

Python Programming42

Note: A programmer can make use of any type to convert the string into a specific type.
Example:
X = int(input()) #Convert it to int

X = float(input()) #Convert it to float

Program 2.9 Write a program to add one integer and floating type number.

print(‘Enter integer number: ‘,end=’’)

Num1 = int(input()) # Read Num1

print(‘Enter Floating type number:’,end=’’)

Num2 = float(input()) #Read Num2

print(‘ Number1 = ‘,Num1) #Print Num1

print(‘ Number2 =’,Num2) #Print Num2

sum = Num1 + Num2 #Calculate Sum

print(‘ sum = ‘,sum) #Display Sum

output

Enter integer number: 2

Enter Floating type number:2.5

Number1 = 2

Number2 = 2.5

sum = 4.5

Note: Python 3 uses input() method to read the input from the user.
Python 2 uses raw _ input() method to read the input from the user.
In subsequent programs in this chapter we are going to use input() method only as all programs are
executed in Python 3.

2.10 the eval() FunctiOn

The full form of eval function is to evaluate. It takes a string as parameter and returns it as if it
is a Python expression. For example, if we try to run the statement eval(‘print(“Hello”)’) in
Python interactive mode, it will actually run the statement print(“Hello”).

Example

>>> eval(‘print(“Hello”)’)

Hello

The eval function takes a string and returns it in the type it is expected. The following example
illustrates this concept.

Basics of Python Programming 43

Example

>>> X = eval(‘123’)

>>> X

123

>>> print(type(X))

<class ‘int’>

2.10.1 apply eval() to input() Function

In the previous section we learnt about the input() function in detail. We know that the input()
function returns every input by the user as string, including numbers. And this problem was
solved by making use of type before input() function.

Example

X = int (input(‘Enter the Number’))

Once the above statement is executed, Python returns it into its respective type.

By making use of eval() function, we can avoid specifying a particular type in front of input()
function. Thus, the above statement,

X = int (input(‘Enter the Number’))

can be written as:

X = eval(input(‘Enter the Number’))

With respective to the above statement, a programmer does not know what values a user can
enter. He/she may enter a value of any type, i.e. int, float, string, complex etc. By making
use of eval, Python automatically determines the type of value entered by the user. Program 2.10
demonstrates the use of eval().

Program 2.10 Write a program to display details entered by a user, i.e. name, age, gender and height.

Name = (input(‘Enter Name :’))

Age = eval(input(‘Enter Age :’)) #eval() determine input type

Gender = (input(‘Enter gender:’))

Height = eval(input(‘Enter Height:’)) #eval() determine input type

print(‘ User Details are as follows: ‘)

print(‘ Name: ‘,Name)

print(‘ Age: ‘,Age)

print(‘ Gender: ‘,Gender)

print(‘ Height ‘,Height)

output

Enter Name: Donald Trump

(Contd.)

Python Programming44

Enter Age: 60

Enter Gender: M

Enter Height:5.9

User details are as follows:

Name: Donald Trump

Age: 60

Gender: M

Height: 5.9

explanation In the above program we have used eval() in front of input() function as:

Age = eval(input(‘Enter Age :’))

The above statement reads the input as a string and converts a string into a number. After the
user enters a number and presses Enter, the number is read and assigned to a variable name.

2.11 FOrmatting numBer and strings

A formatting string helps make string look presentable to the user for printing. A programmer
can make use of format function to return a formatted string. Consider the following example to
calculate the area of a circle before using this function.

Program 2.11 Write a program to calculate the area of a circle.

radius = int(input(‘Please Enter the Radius of Circle: ‘))

print(‘ Radius = ‘, radius) #Print Radius

PI = 3.1428 #Initialize value of PI

Area = PI * radius * radius #Calculate Area

print(‘ Area of Circle is: ‘,Area) #Print Area

output

Please Enter the Radius of Circle: 4

Radius = 4

Area of Circle is: 50.2848

In the above program, the user entered the radius as 4. Thus, for a circle having radius 4, it has
displayed the area as 50.2848. To display only two digits after the decimal point, make use of
format() function. The syntax of format function is

format(item, format-specifier)

item is the number or string and format-specifier is a string that specifies how the item is formatted.
A simple example of format() function executed in Python interactive mode is given as follows:

Basics of Python Programming 45

Example

>>> x = 12.3897 #Assign value to variable x

>>> print(x) # print x

12.3897

>>> format(x,” .2f”) #Return formatted string

‘12.39’

Program 2.12 Make use of format() function and display the area of a circle.

radius = int(input(‘Please Enter the Radius of Circle: ‘))

print(‘ Radius = ‘, radius)

PI = 3.1428

Area = PI * radius * radius

print(‘ Area of Circle is: ‘,format(Area,’.2f’))

output

Please Enter the Radius of Circle: 4

Radius = 4

Area of Circle is: 50.28

In the above program, the statement, print (‘Area of Circle is: ‘,format(Area,’.2f’)) is used to display
the area of the circle. Within format function, Area is an item and ‘.2f’ is the format specifier which
tells the Python interpreter to display only two digits after the decimal point.

2.11.1 Formatting Floating point numbers

If the item is a float value, we can make use of specifiers to give the width and precision. We can
use format function in the form width.precisionf. Precision specifies the number of digits after
the decimal point and width specifies the width of the resultant string. In width.precisionf ‘f’ is
called conversion code. ‘f’ indicates the formatting for floating point numbers. Examples of floating
point numbers are

print(format(10.345,”10.2f”))

print(format(10,”10.2f”))

print(format(10.32245,”10.2f”))

displays the output as follows:

10.35

10.00

10.32

In above example, print statement uses 10.2f as the format specifier. 10.2f is explained in detail
in Fig. 2.2.

Python Programming46

Figure 2.2 Format specifier details

The actual representation of the above output is:

| 10 |

1 0 . 3 5

1 0 . 0 0

1 0 . 3 2

The gray box denotes a blank space. The decimal point is also counted as 1.

2.11.2 Justifying Format

By default, the integer number is right justified. You can insert < in the format specifier to specify
an item to be left justified. The following example illustrates the use of right and left justification.

Example

>>>print(format(10.234566,”10.2f”)) #Right Justification Example

 10.23

>>> print(format(10.234566,”<10.2f”)) #Left Justification Example

10.23

The actual representation of the above output for left justification is:

1 0 . 2 3

| 10 |

2.11.3 integer Formatting

In case of integer formatting, you can make use of conversion code d and x. d indicates that the
integer is to be formatted, whereas x specifies that the integer is formatted into a hexadecimal
integer. The following example illustrates integer formatting.

Example

>>>print(format(20,”10x”)) #Integer formatted to Hexadecimal Integer

 14

>>> print(format(20,”<10x”))

14

Basics of Python Programming 47

>>> print(format(1234,”10d”)) #Right Justification

 1234

In the above example the statement print(format(20,”10x”)) converts the number 20 into a
hexadecimal, i.e. 14.

2.11.4 Formatting string

A programmer can make use of conversion code s to format a string with a specified width.
However, by default, string is left justified. Following are some examples of string formatting.

Example

>>> print(format(“Hello World!”,”25s”) #Left Justification Example

Hello World!

>>>print(format(“HELLO WORLD!”,”>20s”)) #String Right Justification

 HELLO WORLD!

In the above example, the statement (format(“HELLO WORLD!”,”>20s”)) displays the output
as:

H E L L O W O R L D !

| 20 |

In print function 20 specifies the string to be formatted with a width of 20. In the second print
statement, “>” is used for right justification of the given string.

2.11.5 Formatting as a percentage

The conversion code % is used to format a number as a percentage. The following example
illustrates the same.

Example

>>> print(format(0.31456,”10.2%”))

 31.46%

>>> print(format(3.1,”10.2%”))

 310.00%

>>> print(format(1.765,”10.2%”))

 176.50%

In the above example, the statement print(format(0.31456,”10.2%”)), contains the format
specifier 10.2%. It causes the number to be multiplied by 100. The 10.2% denotes the integer to be
formatted with a width of 10. In width, % is counted as one space.

Python Programming48

2.11.6 Formatting scientific notation

While formatting floating point numbers we have used the conversion code f. However, if we want
to format a given floating point number in scientific notation then the conversion code e will be
used. An example of formatting floating point numbers is given as follows:

Example

>>> print(format(31.2345,”10.2e”))

 3.12e+01

>>> print(format(131.2345,”10.2e”))

 1.31e+02

Most frequently used specifiers are shown in Table 2.5.

Table 2.5 Frequently used specifiers

Specifier Format

 10.2f Format floating point number with precision 2 and width 10.

 <10.2f Left Justify the floating point number.

 >10.2f Right Justify the formatted item.

 10X Format integer in hexadecimal with width 10

 20s Format String with width 20

 10.2% Format the number in decimal

2.12 pythOn inBuiLt FunctiOns

In the previous sections of this chapter we have learnt how to use the functions print, eval, input
and int. We know that a function is a group of statements that performs a specific task. Apart from
the above functions, Python supports various inbuilt functions as well. A list of all inbuilt functions
supported by Python is given in Table 2.6. It provides the name of a function, its description and
examples executed in Python interactive mode.

Table 2.6 Inbuilt functions in Python

Function Description

abs(x) Returns absolute value of x

Example

>>> abs(-2)

2

>>> abs(4)

4

(Contd.)

Basics of Python Programming 49

max(x1, X2, X3,…………,XN) Returns largest value among X1, X2, X3, X4,… , XN

Example:

>>> max(10,20,30,40)

40

max(x1, X2, X3,…………,XN) Returns minimum value among X1, X2, X3, X4,… , XN.

pow(X, Y) Return the XY

Example:

>>> pow(2,3)

8

round(x) Returns an integer nearest to the value of x.

Example:

>>> round(10.34)

10

>>> round(10.89)

11

Functions given in Table 2.6 are not enough to solve mathematical calculations. Thus, Python
has an additional list of functions defined under Python’s math module to solve problems related
to mathematical calculations. List of functions under the math module is given in Table 2.7.

Table 2.7 Inbuilt mathematical functions in Python

Function Example Description

ceil(X) >>> math.ceil(10.23)
11

Round X to nearest integer and returns that integer.

floor(X) >>> math.floor(18.9)
18

Returns the largest value not greater than X

exp(X) >>> math.exp(1)
2.718281828459045

Returns the exponential value for ex

log(X) >>> math.log(2.71828)
0.999999327347282

Returns the natural logarithmic of x (to base e)

log(x,base) >>> math.log(8,2)
3.0

Returns the logarithmic of x to the given base

sqrt(X) >>>math.sqrt(9)
3.0

Return the square root of x

Sin(X) >>> math.sin(3.14159/2)
0.9999999999991198

Return the sin of X, where X is the value in radians

asin(X) >>> math.asin(1)
1.5707963267948966

Return the angle in radians for the inverse of sine

cos(X) >>> math.cos(0)
1.0

Return the sin of X, where X is the value in radians

aCos(X) >>> math.acos(1)
0.0

Return the angle in radians for the inverse of cosine

(Contd.)

Python Programming50

tan(X) >>> math.tan(3.14/4)
0.9992039901050427

Return the tangent of X, where X is the value in radians

degrees(X) >>> math.degrees(1.57)
89.95437383553924

Convert angle X from to radians to degrees

Radians(X) >>> math.
radians(89.99999)
1.5707961522619713

Convert angle x from degrees to radians

Program 2.13 Write a program to calculate the hypotenuse of the right-angled triangle given as follows:

?

3

4

Hypotenuse = Square_Root {(Base)2 + (Height)2}

 = Square_Root {(3)2 + (4)2}

 = 5

import math #Import Math Module

Base = int(input(‘Enter the base of a right-angled triangle:’))

Height = int(input(‘Enter the height of a right-angled triangle:’))

print(‘ Triangle details are as follows: ‘)

print(‘ Base = ‘,Base)

print(‘ Height = ‘,Height)

Hypotenuse = math.sqrt(Base * Base + Height * Height)

print(‘ Hypotenuse =’,Hypotenuse)

output

Enter the base of a right-angled triangle:3

Enter the height of a right-angled triangle:4

Triangle details are as follows:

Base = 3

Height = 4

Hypotenuse = 5.0

explanation In the above program, the first line ‘import math’ is used to include all in-built
functions supported by Python under the math module. The input function is used to read the

Basics of Python Programming 51

base and height of the right-angled triangle. The statement math.sqrt is executed to find the square
root of the number. Finally, print for the hypotenuse of the right-angled triangle is given.

2.12.1 the ord and chr Functions

As we know, a string is a sequence of characters. It can include both text and numbers. All these
characters are stored in a computer as a sequence of 0s and 1s. Therefore, a process of mapping a
character to its binary representation is called character encoding.

There are different ways to encode a character. The encoding scheme decides the manner in which
characters are encoded. The American Standard Code for Information Interchangeable (ASCII) is
one of the most popular encoding schemes. It is a 7-bit encoding scheme for representation of all
lower and upper case letters, digits and punctuation marks. The ASCII uses numbers from 0 to 127
to represent all characters. Python uses the in-built function ord(ch) to return the ASCII value
for a given character. The following example demonstrates the use of the in-built function ord().

Example

>>> ord(‘A’) #Returns ASCII value of Character ‘A’

65

>>> ord(‘Z’) #Returns ASCII Value of Character of ‘Z’

90

>>> ord(‘a’) #Returns ASCII Value of Character of ‘a’

97

>>> ord(‘z’) #Returns ASCII Value of Character of ‘z’

122

The chr(Code) returns the character corresponding to its code, i.e. the ASCII value. The
following example demonstrates the use of in-built function chr().

Example

>>> chr(90)

‘Z’

>>> chr(65)

‘A’

>>> chr(97)

‘a’

>>> chr(122)

‘z’

Program 2.14
 Write a program to find the difference between the ASCII code of any lower case letter and its
corresponding upper case letter.

Char1 = ‘b’

Char2 = ‘B’

print(‘Letter\tASCII Value’)

(Contd.)

Python Programming52

print(Char1,’\t’,ord(Char1))

print(Char2,’\t’,ord(Char2))

print(‘ Difference between ASCII value of two Letters:’)

print(ord(Char1),’-’,ord(Char2),’=’, end=’ ‘)

print(ord(Char1)-ord(Char2))

output

Letter ASCII Value

b 98

B 66

Difference between ASCII value of two Letters:

98 - 66 = 32

explanation In the above program, the letter ‘b’ is stored in variable Char1 and the letter ‘B’ is
stored in variable Char2. The ord() function is used to find the ASCII value of the letters. Finally,
the statement ord(Char1)- ord(Char2) is used to find the difference between the ASCII values of
the two letters Char1 and Char2.

 Summary

  Python breaks each statement into a sequence of lexical components called tokens.

  Literals are numbers, strings or characters that appear directly in a program.

  Python offers an inbuilt method called type to know the exact type of any value.

  Keywords are reserved words.

  Keywords cannot be used as identifiers or variables.

  An identifier is a name used to identify a variable, function, class or other objects.

  Everything in Python is an object.

  The int function converts a string or a number into a whole number or integer.

  The float function converts a string into a floating-point number.

  The Boolean data type is represented in Python as of type bool.

  print function is used to display contents on the screen.

  input() function is used to accept input from the user.

  format() function can be used to return a formatted string.

 Key TermS

 � chr(): Returns a character for a given ASCII value

 � end(): Used as argument with print() function

 � format(): Formats string and integer

 � Identifier: Name to identify a variable

Basics of Python Programming 53

 � Inbuilt Math Functions: abs(), max(), round(), ceil(), log(), exp(),sqrt(), sin(),
asin(), acos(), atan(),cos(), degrees(), radians() and floor().

 � input(): Used to accept data from the user

 � int(): Used to convert string or float into integer

 � ord(): Returns ASCII value of a character

 � print(): Prints contents on the screen

 � str(): Used to convert a number into string

 � type(): Used to know the exact type of any value

 � Tokens: Breaks each statement into a sequence of lexical components

 revieW QueSTionS

a. multiple Choice Questions

 1. Which of the following is not a valid identifier?

 a. A_ b. _A

 c. 1a d. _1

 2. Which of the following is an invalid statement?

 a. w,X,Y,Z = 1,00,000,0000 b. WXYZ = 1,0,00,000

 c. W X Y Z =10 10 11 10 d. W_X_Y = 1,100,1000

 3. Which of the following is not a complex number?

 a. A = 1+2j b. B = complex(1,2)

 c. C = 2+2i d. None of the above

 4. What is the output of the following statement?

 round(1.5)-round(-1.5)

 a. 1 b. 2

 c. 3 d. 4

 5. What is the output of the following statement?

 print(‘{:,}’.format(‘100000’))

 a. 1,00,000 b. 1,0,0,0,0,0

 c. 10,00,00,0 d. Error

 6. Which type of error will occur on executing the following statement?

 Name = MyName

 a. Syntax Error b. Name Error

 c. Type Error d. Value Error

 7. What is the output of following statement?

 Sum = 10 + ‘10’

 a. 1010 b. 20

 c. TypeError d. None of the above

 8. What will be printed if we write print() statement as

 PriNt(“Hello Python!”)

 a. Hello Python b. Syntax Error

 c. Name Error d. Both a and b

Python Programming54

 9. Which of the following is a valid input() statement?

 a. x = input(Enter number:) b. X = Input(Enter number:)

 c. X = input(‘Enter number:’) d. X = Input(‘Enter Number:’)

 10. What will be the output of the following statement if the user has entered 20 as the value of x.

 x = input(‘Enter Number:’)

 print(10+x)

 a. 1010 b. 20

 c. 30 d. Error

B. True or False

 1. Python breaks each statement into a sequence of lexical components known as tokens.

 2. Keywords are tokens of Python.

 3. Operators are not a part of tokens.

 4. Python keywords do not have fixed meaning.

 5. Keywords can be used as identifiers or variables.

 6. Strings are part of literals.

 7. An identifier is a name used to identify a variable, function etc.

 8. Python classifies different kinds of objects into types.

 9. The float function converts a string into a whole integer number.

 10. The str function is used to convert a number into a string.

C. exercise Questions

 1. Which of the following identifiers are valid?

 Name, Roll_No , Sr.No, Roll-No, break, elif, DoB

 2. What will be the output of the following statements if all of them are executed in Python interactive
mode?

 a. abs(-2) b. min(102,220,130)

 c. max(-1,-4,-10) d. max(‘A’,’B’,’Z’)

 e. max(‘a’,’B’,’Z’) f. round(1.6)

 g. math.ceil(1.2) h. math.floor(1.8)

 i. math.log(16,2) j. math.exp(1)

 k. math. l. cos(math.pi)

 m. math.cos(math.pi)

 3. What will be the output of the following statements if all of them are executed in Python interactive
mode?

 a. ord(‘a’) b. ord(‘F’)

 c. ord(‘f’) d. chr(97)

 e. chr(100)

 4. Identify the error in the following piece of code. Explain how you will fix it.

 num1 = ‘10’

 num2 = 20.65

 sum = num1 + num2

Basics of Python Programming 55

 print(sum)

 5. State the output of following statements.

 a. print(format(16,’x’)) b. print(format(10,’x’))

 c. print(format(10+10,’x’)) d. print(format(10+ord(‘a’),’x’))

 e. print(format(20,’o’)) f. print(format(100,’b’))

 g. print(format(10,’b’))

 6. State the output of the following statements.

 a. print(format(‘Hello’,’>2’)) b. print(format(‘Hello’,’<2’))

 c. print(format(‘Hello’,’>4’)) d. print(format(‘Hello’,’>20’))

 7. State the output of the following statements.

 a. print(format(10,’>20’)) b. print(format(‘10’,’<20’))

 c. print(format(10.76121421431,’.2f’)) d. print(format(10.76121421431,’f’))

 8. Explain the use of end keyword with a suitable example.

 9. Explain character set supported by Python in detail.

 10. How are complex numbers displayed in interactive mode? Give an example.

 11. State the output of the following code.

 num1 = ‘10’

 num2 = ‘20’

 sum = num1 + num2

 print(sum)

 1. Write a program to print ‘F’ to ‘A’ in five different lines.

 2. Write a program to read and store the name of three different cities in three different
variables and print all the contents of variables on the console.

 3. Write a program to prompt the user to enter and display their personal details, such as
name, address and mobile number.

 4. By making use of five different print statements, write a program to print ‘A’ to ‘F’ in one
single line.

 5. Write a program to read an integer as string. Convert the string into integer and display the
type of value before and after converting to int.

 6. Write a program initialize the string “hello world” to a variable Str1 and convert the string
into upper case.

 7. Translate the following algorithm into Python code.

 Step 1: Initialize variable named Pounds with value 10.

 Step 2: Multiply Pounds by 0.45 and assign it to a variable Kilogram.

 Step 3: Display the value of variable Pounds and Variable.

 8. Write a program to read the radius of a circle and print the area of the circle.

Programming aSSignmenTS

UNIT 2

 Operators and Expressions

 Decision Statements

 Loop Control Statements

3

Operators and Expressions

Learning OutcOmes

After completing this chapter, students will be able to:

• Perform simple arithmetic operations

• Explain the difference between division and floor division operators

• Use unary, binary and bitwise operators, and perform multiplication and division operations using
bitwise left and right shift operators

• Evaluate numeric expressions and translate mathematical formulae into expressions

• Recognise the importance of associativity and operator precedence in programming languages

chapter OutLine

 3.1 Introduction

 3.2 Operators and Expressions

 3.3 Arithmetic Operators

 3.4 Operator Precedence and Associativity

 3.5 Changing Precedence and Associativity
of Arithmetic Operators

 3.6 Translating Mathematical Formulae
into Equivalent Python Expressions

 3.7 Bitwise Operator

 3.8 The Compound Assignment Operator

3.1 intrOductiOn

An operator indicates an operation to be performed on data to yield a result. In our day to day life,
we use various kinds of operators to perform diverse data operations. Python supports different

Python Programming58

operators which can be used to link variables and constants. These include arithmetic operators,
Boolean operators, bitwise operators, relational operators and simple assignment and compound
assignment operators.

Table 3.1 lists basic operators in Python with their symbolic representation

Table 3.1 Types of operators

Type of Operator Symbolic Representation

Arithmetic Operators +, - , / ,// *, %, %%

Boolean Operators and, or, not

Relational Operators >, <, <=, >= ,!=

Bitwise Operators &, | , ,̂ >> , << , ~

Simple Assignment and Compound Assignment Operators = , +=,*=,/=,%=,**=

3.2 OperatOrs and expressiOns

Most statements contain expressions. An expression in Python is a block of code that produces
a result or value upon evaluation. A simple example of an expression is 6 + 3. An expression
can be broken down into operators and operands. Operators are symbols which help the user or
command computer to perform mathematical or logical operations. In the expression 6 + 3, the ‘+’
acts as the operator. An operator requires data to operate and this data is called operand. In this
example, 6 and 3 are the operands.

The following sections describe the various kinds of operators and their usage. The expressions
given in the examples are executed in Python interactive mode.

3.3 arithmetic OperatOrs

There are two types of arithmetic operators in Python, viz. binary and unary (as shown in Fig. 3.1).

Figure 3.1 Types of arithmetic operators

3.3.1 unary Operators

Unary arithmetic operators perform mathematical operations on one operand only. The ‘+’ and
‘-’ are two unary operators. The unary operator minus (-) produces the negation of its numeric

Operators and Expressions 59

operand. The unary operator plus (+) returns the numeric operand without change. Table 3.2 gives
the details of unary operators.

Table 3.2 Unary operators

Unary Operator Example Description

+ +X
(+X returns the same value, i.e. X)

Returns the same value that is provided as input

- -X
(-x returns the negation of x)

Negates the original value so that the positive
value becomes negative and vice versa

Examples of Unary Operators

>>> x=-5 #Negates the value of X

>>> x

-5

>>> x=+6 #Returns the numeric operand, i.e. 6, without any change

>>> x

6

Some More Complex Examples of Unary Operators

>>> +-5

-5

In the above expression +-5, the first ‘+’ operator represents the unary plus operation and the
second ‘-’ operator represents the unary minus operation. The expression +-5 is equivalent to
+(-(5)), which is equal to -5.

>>> 1--3 #Equivalent to 1-(-3)

4

>>> 2---3 #Equivalent to 2-(-(-3))

-1

>>> 3+--2 #Equivalent to 3+(-(-2))

5

3.3.2 Binary Operators

Binary operators are operators which require two operands. They are written in infix form, i.e. the
operator is written in between two operands.

The Addition (+) Operator

The ‘+’ operator in Python can be used with binary and unary form. If the addition operator is
applied in between two operands, it returns the result as the arithmetic sum of the operands. Some
examples of addition operators executed in Python interactive mode are given as follows:

Python Programming60

Example

>>> 4+7 #Addition

11

>>>5+5 Addition

10

Table 3.3. explains the syntax and semantics of the addition operator in Python, using its three
numeric types, viz. int, float and complex.

Table 3.3 Addition operator

Syntax Example

(int, int)-> int 2+4 returns 6

(float, float)->float 1.0+4.0 returns 5.0

(int, float)->float 1+2.0 returns 3.0

(float, int)->float 2.0+1 returns 3.0

(complex, complex)->complex 3j+2j returns 5j

The Subtraction (-) Operator

The ‘-’ operator in Python can be used with binary and unary form. If the subtraction operator
is applied in between two operands, the result is returned as the arithmetic difference of the
operands. Some examples of subtraction operators executed in Python interactive mode are given
as follows:

Example

>>> 7-4 #Subtraction

3

>>>5-2 #Subtraction

3

Table 3.4 explains the syntax and semantics of the subtraction operator in Python, using its three
numeric types, viz. int, float and complex.

Table 3.4 Subtraction operator

Syntax Example

(int, int)-> int 4-2 returns 2

(float, float)->float 3.5-1.5 returns 2.0

(int, float)->float 4-1.5 returns 2.5

(float, int)->float 4.0-2 returns 2.0

(complex, complex)->complex 3j-2j returns 1j

Operators and Expressions 61

Program 3.1
 Read the cost and selling price of an object and write a program to find the profit earned by a
seller (in rupees). The selling price is greater than the cost price.

SP=eval(input(‘Enter the Selling Price of an Object:’))

CP=eval(input(‘Enter the Cost Price of an Object:’))

print(‘--’)

print(‘ Selling Price = ‘,SP)

print(‘ Cost Price =’,CP)

print(‘--’)

Profit=SP – CP #Formula to Calculate Profit

print(‘ Profit Earned by Selling = ‘,Profit)

output

Enter the Selling Price of an Object: 45

Enter the Cost Price of an Object: 20

--

 Selling Price = 45

 Cost Price = 20

--

 Profit Earned by Selling = 25

Explanation At the start of the program, the selling price and cost price of the object is read using
eval. The statement, Profit = SP - CP is executed to calculate the profit earned by the seller.

The Multiplication (*) Operator

The ‘*’ operator in Python can be used only with binary form. If the multiplication operator is
applied in between two operands, it returns the result as the arithmetic product of the operands.
Some examples of multiplication operators executed in Python interactive mode are given as
follows:

Example

>>> 7*4 #Multiplication

28

>>>5*2 #Multiplication

10

Table 3.5 explains the syntax and semantics of the multiplication operator in Python, using its
three numeric types, viz. int, float and complex.

Python Programming62

Table 3.5 Multiplication operator

Syntax Example

(int, int)-> int 4*2 returns 8

(float, float)->float 1.5*3.0 returns 4.5

(int, float)->float 2*1.5 returns 3.0

(float, int)->float 1.5* 5 returns 7.5

(complex, complex)->complex 2j*2j returns -4+0j

Program 3.2 Write a program to calculate the square and cube of a number using * operator.

num=eval(input(‘Enter the number:’)) # Read Number

print(‘Number = ‘,num)

Square=num* num #Calculate Square

Cube = num * num * num #Calculate Cube

print(‘Square of a Number = ‘,num,’ is ‘,Square)

print(‘Cube of a Number = ‘,num,’ is ‘,Cube)

output

Enter the number: 5

Number = 5

Square of a Number = 5 is 25

Cube of a Number = 5 is 125

The Division (/) Operator

The ‘/’ operator in Python can be used only with binary form. If the division operator is applied
in between two operands, it returns the result as the arithmetic quotient of the operands. Some
examples of division operators executed in Python interactive mode are given as follows:

Example

>>> 4/2 #Division

2.0

>>> 10/3

3.3333333333333335 #Division

Table 3.6 explains the syntax and semantics of the division operator in Python, using its three
numeric types, viz. int, float and complex.

Operators and Expressions 63

Table 3.6 Division (/) operator

Syntax Example

(int, int)-> float 25/5 returns 5.0

(float, float)->float 0.6/2.0 returns 0.3

(int, float)->float 4/0.2 returns 20.0

(float, int)->float 1.5/2 returns 0.75

(complex, complex)->complex 6j/2j returns 3+0j

Note: When the division (/) operator is applied on two int operands, Python returns a float result.

Program 3.3
 Write a program to calculate simple interest (SI). Read the principle, rate of interest and number
of years from the user.

P=eval(input(‘Enter principle Amount in Rs = ‘)) #Read P

ROI=eval(input(‘Enter Rate of Interest = ‘)) #Read ROI

years=eval(input(‘Enter the Number of years =’))#Read years

print(‘ Principle = ‘,P)

print(‘ Rate of Interest = ‘,ROI)

print(‘ Number of Years = ‘,years)

SI = P*ROI*Years/100 #Calculate SI

print(‘Simple Interest = ‘,SI)

output

Enter Principle Amount in Rs = 1000

Enter Rate of Interest = 8.5

Enter the Number of Years = 3

Principle = 1000

Rate of Interest = 8.5

Number of Years = 3

Simple Interest = 255.0

Program 3.4 Write a program to read a temperature in Celsius from the user and convert it into Fahrenheit.

Celsius =eval(input(‘Enter Degree is Celsius:’))#Read Celsius from User

print(‘Celsius = ‘, Celsius) #Print Celsius

Fahrenheit = (9 / 5) * Celsius + 32 # Convert Celsius to Fahrenheit

print(‘ Fahrenheit = ‘, Fahrenheit) # Print Fahrenheit

(Contd.)

Python Programming64

output

Enter Degree is Celsius: 23

Celsius = 23

Fahrenheit = 73.4

Note: Formula to convert Celsius into Fahrenheit is:
Fahrenheit = (9/5)*Celsius + 32

The Floor Division (//) Operator

The ‘//’ operator in Python can be used only with binary form. If the floor division operator is
applied in between two operands, it returns the result as the arithmetic quotient of the operands.
Some examples of floor division operators executed in Python interactive mode are given as follows:

Example

>>> 4//2 # Floor Division

2

>>> 10//3

3 #Floor Division

Table 3.7 explains the syntax and semantics of the floor division operator in Python, using its
numeric types, viz. int and float.

Table 3.7 Floor division (//) operator

Syntax Example

(int, int)-> int 25//5 returns 5

(float, float)->float 10.5//5.0 returns 2.0

(int, float)->float 11//2.5 returns 4.0

(float, int)->float 4.0//3 returns 1.0

Note: a. From the above example, it is clear that when the floor division (//) operator is applied on
two int operands, Python returns an int result.

b. In the second example 10.5//5.0, the result returned is 2.0. However, if 10.5/5.0 returns 2.1, it
means the floor division operator has been applied on two float operands. Hence, it returns the
result in float but ignores the decimal number after the decimal point.

The Modulo (%) Operator

When the second number divides the first number, the modulo operator returns the remainder.
The % modulo operator is also known as the remainder operator. If the remainder of x divided by
y is zero then we can say that x is divisible by y or x is a multiple of y.

Operators and Expressions 65

Consider the following example.

 3 Quotient

 Divisor 4 14 Dividend

 - 12

 2 Remainder

In the above example, 14 % 4 returns 3 as the remainder. Thus, the left-side operand, i.e. 14 is
the dividend and the right-side operand, i.e. 4 is the divisor. Some more examples of the modulo
operator executed in Python interactive mode are given below.

Example

>>> 10 % 4 # 10 is divided by 4 returns remainder as 2

2

>>> 13%5

3

Table 3.8 explains the syntax and semantics of the modulo (%) operator in Python, using its
numeric types, viz. int and float.

Table 3.8 Modulo (%) operator

Syntax Example

(int, int)-> int 25%4 returns 1

(float, float)->float 2.5 % 1.2 returns 0.10

(int, float)->float 13%2.0 returns 1.0

(float, int)->float 1.5 % 2 returns 1.5

Note: Mathematically, X%Y is equivalent to X – Y * (x//Y)

Example: 14%5 returns 4
 Therefore,
 14 % 5 = 14 – 5*(14//5)
 = 14 – 5* (2)
 = 14 – 10
 = 4

use of % modulo Operator in programming The modulo operator, i.e. the remainder operator
is very useful in programming. It is used to check if a number is even or odd, i.e. if number % 2
returns zero then it is an even number and if number % 2 == 1 then it is an odd number.

Program 3.5
 Write a program to read the weight of an object in grams and display its weight in kilograms
and grams, respectively.

Python Programming66

Example

Input: Enter the weight of the object in grams: 2,500

Output: Weight of the object (kilograms and grams): 2 kg and 500 g

Note: 1 kilogram = 1,000 grams

W1 = eval(input(‘Enter the Weight of Object in grams:’)) #Input Weight

print(‘ Weight of Object = ‘,W1,’ grams’) # Print Weight

W2 = W1 // 1000 #Calculate No of kg

W3 = W1 % 1000 #Calculate No of g

print(‘ Weight of Object = ‘,W2,’ kg and ‘,W3,’ g’)

output

Enter the Weight of Object in g : 1250

Weight of Object = 1250 g

Weight of Object = 1 kg and 250 g

Program 3.6 Write a program to reverse a four-digit number using % and // operators.

Num=eval(input(‘Enter four-digit number: ‘))

print(‘Entered number is:’,num)

r1=num%10

q1=num//10

r2=q1%10

q2=q1//10

r3=q2%10

q3=q2//10

r4=q3%10

print(‘Reverse of ‘,num,’is:’,r1,r2,r3,r4)

output

Enter four-digit number: 8763

Entered number is: 8763

Reverse of 8763 is: 3 6 7 8

Explanation In the above program, initially the number is read from the user. For instance, the
number read through the user is 8763. To reverse the contents of the number, initially the operation
(8763 % 10) gives a remainder 3. To display the second digit 6, the number has to be divided by 10.
Hence, (8763//10) gives 876. After obtaining the quotient as 876, the modulus operation (876%10) is
performed again to obtain the digit 6. This process is continued three times to obtain the reverse
of the four-digit number entered by the user.

Operators and Expressions 67

The Exponent ** Operator

The ‘**’ exponent operator is used to calculate the power or exponent of a number. To compute xY (X
raised to Y), the expression is written as X**Y. The exponent operator is also called power operator.

Example

>>> 4**2 #Calculate Square of a Number 4

16

>>> 2**3 #Calculate Cube of a Number 2

8

Table 3.9 explains the syntax and semantics of the exponent (**) operator in Python, using its
numeric types, viz. int and float.

Table 3.9 Exponent(**) operator

Syntax Example

(int, int)-> int 2**4 returns 16

(float, float)->float 2.0**3.0 returns 8.0

(int, float)->float 5**2.0 returns 25.0

(float, int)->float 4.0 **3 returns 64.0

Program 3.7
 Write a program to calculate the distance between two points. The formula for computing
distance is

- + -2 2(2 1) (2 1)X X Y Y

We can use Z**0.5 to compute the square root of the expression Z . The program below prompts the user to read
the coordinates of the two points and compute the distance between them.

print(‘Point1’)

X1 = eval(input(‘Enter X1 coordinate:’)) #Read X1

Y1 = eval(input(‘Enter Y1 coordinate:’)) #Read Y1

print(‘point2’)

X2 = eval(input(‘Enter X2 coordinate: ‘)) #Read X2

Y2 = eval(input(‘Enter Y2 coordinate: ‘)) #Read Y2

L1=(X2-X1)**2 + (Y2-Y1)**2 #Computer inner expression

Distance = L1**0.5 #Compute Square root.

print(‘Distance between two point is as follows’)

print(‘(‘,X1,Y1,’)’,’(‘,X2,Y2,’)=’, Distance)

output

Point1

Enter X1 Coordinate :4

Enter Y1 Coordinate :6

(Contd.)

Python Programming68

point2

Enter X2 Coordinate: 8

Enter Y2 Coordinate: 10

Distance between the two points is as follows

(4 6) (8 10)= 5.656854249492381

Program 3.8 Write a program to display the following table.

 X Y X**Y

 10 2 100

 10 3 1000

 10 4 10000

 10 5 100000

print(‘X \t Y \t X**Y’)

print(‘10 \t 2 \t ‘,10**2)

print(‘10 \t 3 \t ‘,10**3)

print(‘10 \t 4 \t ‘,10**4)

print(‘10 \t 5 \t ‘,10**5)

output

X Y X**Y

10 2 100

10 3 1000

10 4 10000

10 5 100000

3.4 OperatOr precedence and assOciativity

Operator precedence determines the order in which the Python interpreter evaluates the operators
in an expression.

Consider the expression 4+5*3.

Now, you may ask so how does Python know which operation to perform first? In the above
example 4+5*3, it is important to know whether 4+5*3 evaluates to 19 (where the multiplication is
done first) or 27 (where the addition is done first).

The default order of precedence determines that multiplication is computed first so the result
is 19. As an expression may contain a lot of operators, operations on the operands are carried out
according to the priority, also called the precedence of the operator. The operator having higher
priority is evaluated first.

Table 3.10 gives the list of operator precedence in the descending order. The operators on
the top rows have higher precedence and the operators on the bottom rows have lower
precedence. If a row contains multiple operators, it means all the operators are of equal priority or
precedence.

Operators and Expressions 69

Table 3.10 Operator precedence

Precedence Operator Name

** Exponential

+,-,~ Plus, Minus, Bitwise not

*,/,//,% Multiplication, division, integer division, and remainder

+, - Binary Addition, Subtraction

<< , >> Left and Right Shift

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

<,<=,>,>= Comparison

==, != Equality

=,%=,/=,//=,-=,+=,,*=,**= Assignment Operators

is, is not Identity Operators

in, not in Membership Operator

Not Boolean Not

And Boolean and

Or Boolean or

3.4.1 example of Operator precedence

Consider arithmetic operators *, /, // and %, which have higher precedence as compared to
operators + and -.

Example

4+5*3-10

As compared to + and * operators, the * operator has higher priority. Hence, the multiplication
operation is performed first. Therefore, above expression becomes,

4+15-10

Now in above expression, + and – have the same priority. In such a situation, the leftmost operation
is evaluated first. Hence, the above expression becomes

19 - 10

Consequentially, subtraction is performed last and the final answer of the expression will be 9.

3.4.2 associativity

When an expression contains operators with equal precedence then the associativity property
decides which operation is to be performed first. Associativity implies the direction of execution
and is of two types, viz. left to right and right to left.

Python Programming70

(i) Left to Right: In this type of expression, the evaluation is executed from the left to right.

 4 + 6 – 3 + 2

 In the above example, all operators have the same precedence. Therefore, associativity rule is
followed (i.e. the direction of execution is from the left to right).

 The evaluation of the expression 4+6-3+2 is equivalent to
=((4+6)-3)+ 2

= ((10)-3)+ 2
=(7)+2

= 9

 (ii) Right to Left: In this type of expression, the evaluation is executed from the right to left.

 X = Y = Z = Value

 In the above example, assignment operators are used. The value of Z is assigned to Y and then
to X. Thus, the evaluation starts from the right.

Example of Associativity

 (i) When operators of the same priority are found in an expression, precedence is given to the
leftmost operator.

Z = 4 * 6 + 8 // 2

24 4

28

 In the above expression * is evaluated first, even though * and // have the same priorities. The
operator * occurs before // and hence the evaluation starts from the left. Therefore, the final
answer for the above expression is 28.

The examples so far illustrated how Python uses associativity rules for evaluating expressions.
Table 3.11 shows the precedence and associativity for arithmetic operators.

Table 3.11 Associativity table for arithmetic operators

Precedence Operators Associativity

Highest () Innermost to Outermost

** Highest

*,/,//,% Left to Right

Lowest + - Left to Right

3.5 changing precedence and assOciativity
Of arithmetic OperatOrs

One can change the precedence and associativity of arithmetic operators by using (), i.e. the
parentheses operator. The () operator has the highest precedence among all other arithmetic

Operators and Expressions 71

operators. It can be used to force an expression to evaluate in any order. Parentheses operator ()
also makes an expression more readable.

Some examples of parentheses operator executed in Python interactive mode are given as
follows:

Example

>>> z=(5+6)*10

>>> z

110

Explanation

In the above example, z is initialized with one expression (5+6)*10. The sub expression (5 + 6) is
evaluated first, followed by the multiplication operation.

Some More Complex Examples

>>> A= 100 / (2*5)

>>> A

10.0

>>> B= 4 + (5 * (4/2) + (4 + 3))

>>> B

21.0

Program 3.9
 Write a program to find the area and perimeter of a rectangle using (), i.e. the parenthesis
operator.

Length = eval(input(‘Enter the Length of Rectangle:’))

Breadth = eval(input(‘Enter the Breadth of Rectangle:’))

print(‘- - - - - - - - - - - - ‘)

print(‘ Length = ‘,Length)

print(‘ Breadth = ‘,Breadth)

print(‘- - - - - - - - - - - - ‘)

print(‘ Area = ‘, Length * Breadth)

print(‘ Perimeter = ‘,2 * (Length + Breadth))

output

Enter the Length of Rectangle: 10

Enter the Breadth of Rectangle: 20

- - - - - - - - - - - -

 Length = 10

 Breadth = 20

- - - - - - - - - - - -

Area = 200

Perimeter = 60

Python Programming72

Explanation In the above program, the values of variables length and breadth of the rectangle
are initially read from the user. Then using the multiplication * operator, the area of the rectangle
is computed. Finally, in order to compute the perimeter, the addition of length and breadth is
performed and the result is multiplied by 2.

Note: Area of Rectangle = Length * Breadth
Perimeter of Rectangle = 2 * (Length + Breadth)

3.6 transLating mathematicaL fOrmuLae intO equivaLent
pythOn expressiOns

Consider the following quadratic equation written in normal arithmetic manner.

- ± -2 4

2

b b ac

a

The steps required to convert this quadratic equation into its equivalent Python expression are
given as follows:

 | STEP 1: The numerator and denominator are computed first to find the roots of the quadratic
equation. Division between the numerator and denominator is performed as the last
step. Hence, we can write the above expression as:

 Numerator/Denominator

 | STEP 2: The denominator is just 2a, so we can rewrite the formula as:

 Numerator/((2 *a))

 | STEP 3: Now we can split the numerator into two parts, i.e. left and right as follows:

 (Left+Right)/((2 *a))

 | STEP 4: Substitute –b for left. There is no need to put parenthesis for –b because unary operator
has higher precedence than binary addition. Hence, the above equation becomes:

 (-b+Right)/((2 *a))

 | STEP 5: The right contains the expression inside the square root. Therefore, the above equation
can be rewritten as:

 (-b+sqrt(expression)/((2 *a))

 | STEP 6: But the expression inside the square root contains two parts left and right. Hence, the
above equation is further rewritten as

 (-b+sqrt(left-right)/((2 *a))

 | STEP 7: Now the left part contains the expression b**2 and the right part contains the expression
4*a*c. There is no need to put parenthesis for b**2 because the exponent operator has

Operators and Expressions 73

higher precedence than the * operator since the expression 4*a*c is present on the right
side. The above equation can be rewritten as

 (-b+sqrt(b**2-4*a*c)/((2 *a))

Thus, we have converted the mathematical expression into a Python expression. While
converting an equation into a Python expression, one needs to only remember the rules of operator
precedence and associativity.

Program 3.10 Write the following numeric expression in Python and evaluate it.

 + - + +
- +

2 8 ()() ()
4 *

2 2 2

P P Q P Q P Q

 Consider the value of variables P and Q as 4 and 2, respectively.

P = 4

Q = 2

Z =(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)

print(‘(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)’)

print(‘ Where P = ‘,P,’ and Q = ‘, Q)

print(‘ Answer of above expression = ‘,Z)

output

(2 + 8 * P) / 2 - ((P-Q)*(P+Q))/2 + 4 * ((P+Q)/2)

 Where P = 4 and Q = 2

 Answer of above expression = 23.0

Explanation In the above program, initially the equation

2 8 ()() ()
4 *

2 2 2

P P Q P Q P Q+ - + +
- +

is translated into a Python expression as

(2 + 8 * P) / 2 - ((P - Q) * (P + Q))/2 + 4 * ((P + Q)/2).

Once the expression is converted into a Python expression, the values of P and Q are substituted
by the Python interpreter and finally the expression is evaluated considering Python precedence
and associativity rules.

3.7 Bitwise OperatOr

Python has six bitwise operators for bitwise manipulation. The bitwise operator permits a
programmer to access and manipulate individual bits within a piece of data. Table 3.12. shows
various bitwise operators supported by Python.

Python Programming74

Table 3.12 Bitwise operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

>> Right Shift

<< Left Shift

~ Bitwise NOT

3.7.1 the Bitwise and (&) Operator

This operator performs AND operation on input bits of numbers. The Bitwise AND operator is
represented as ‘&’. The ‘&’ operator operates on two operands bit-by-bit. Table 3.13. explains the
AND operator.

Table 3.13 AND operator

Input Output

X Y X & Y

0 0 0

0 1 0

1 0 0

1 1 1

We can conclude from this table that the output is obtained by multiplying the input bits.

Example of AND Operator

>>> 1 & 3

1 # The bitwise & operator on 1 and 3 returns 1

>>> 5 & 4

4 # The bitwise & operator on 5 and 4 returns 4

Working of the bitwise operator is given as follows:

1 and 3 are converted into their equivalent binary format

 0 0 0 1 (one)

 &

 0 0 1 1 (Three)

Bitwise operation (0 & 0) (0 & 0) (0 & 1) (1 & 1)

 Result 0 0 0 1 (One)

 Decimal equivalent of (0 0 0 1) = 1

 Therefore, 1 & 3 = 1

Operators and Expressions 75

Program 3.11
 Write a program to read two numbers from the user. Display the result using bitwise & operator
on the numbers.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ & ‘,num2,’ = ‘, num1 & num2)

output

#Test Case 1

Enter First Number: 1

Enter Second Number: 3

 1 & 3 = 1

#Test Case 2

Enter First Number: 5

Enter Second Number: 6

5 & 6 = 4

3.7.2 the Bitwise Or (|) Operator

This operator performs bitwise OR operation on the numbers. The bitwise OR operator is
represented as ‘|’. It also operates on two operands and the two operands are compared bit-by-bit.
Table 3.14 explains the ‘|’ (OR) operator.

Table 3.14 Bitwise OR operator

Input Output

X Y X | Y

0 0 0

0 1 1

1 0 1

1 1 1

We can conclude from this table that the output is obtained by adding the input bits.

Examples of Bitwise ‘|’ (OR) Operator

>>> 3 | 5

7 # The bitwise | operator on 3 and 5 returns 7

>>> 1 | 5

5 # The bitwise | operator on 1 and 5 returns 5

Python Programming76

Working of the bitwise OR (‘|’) operator is given as follows:

Working of expression 3 | 5 is as below.

Initially 3 and 5 are converted into their equivalent binary format

 0 0 1 1 (Three)

 |

 0 1 0 1 (Five)

Bitwise operation (0 | 0) (0 | 1) (1 | 0) (1 | 1)

 Result 0 1 1 1 (seven)

 Decimal Equivalent of (0 1 1 1) = 7

 Therefore 3 | 5 = 7

Program 3.12
 Write a program to read two numbers from the user. Display the result using bitwise | operator
on the numbers.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ | ‘,num2,’ = ‘, num1 | num2)

output

#Test Case 1

Enter First Number: 3

Enter Second Number: 5

3 | 5 = 7

#Test Case 2

Enter First Number: 6

Enter Second Number: 1

6 | 1 = 7

3.7.3 the Bitwise xOr (^) Operator

 This operator performs bitwise exclusive or XOR operation on the numbers. It is represented as ‘̂ ’.
The ‘̂ ’ operator also operates on two operands and these two operands are compared bit-by-bit.
Table 3.15. explains the ‘̂ ’ (XOR) operator.

Operators and Expressions 77

Table 3.15 The Table for Bitwise XOR Operator

Input Output

X Y X ^ Y

0 0 0

0 1 1

1 0 1

1 1 0

We can conclude from this table that the output is logic one when one of the input bits is logic
one.

Examples of Bitwise XOR (^) Operator

>>> 3 ^ 5

6 # The bitwise ^ operator on 3 and 5 returns 6

>>> 1 ^ 5

4 # The bitwise ^ operator on 1 and 5 returns 4

Working of the bitwise XOR (‘̂ ’) operator is given as follows:

Working of expression 3 ^ 5 is as below.

Initially 3 and 5 are converted into their equivalent binary format

 0 0 1 1 (Three)

 ^

 0 1 0 1 (Five)

Bitwise operation (0 ^ 0) (0 ^ 1) (1 ^ 0) (1 ^ 1)

 Result 0 1 1 0 (Six)

 Decimal Equivalent of (0 1 1 0) = 6

 Therefore 3 ^ 1 = 6

Program 3.13
 Write a program to read two numbers from the user. Operate bitwise ^ operator on them and
display the result.

num1 = int(input(‘Enter First Number: ‘))

num2 = int(input(‘Enter Second Number: ‘))

print(num1,’ ^ ‘,num2,’ = ‘, num1 ^ num2)

output

#Test Case 1

Enter First Number: 3

(Contd.)

Python Programming78

Enter Second Number: 5

3 ^ 5 = 6

#Test Case 2

Enter First Number: 1

Enter Second Number: 2

1 ^ 2 = 3

3.7.4 the right shift (>>) Operator

The right shift operator is represented as >>. It also needs two operands. It is used to shift bits to
the right by n position. Working of the right shift operator (>>) is explained as follows:

Example

>>>4 >> 2 # The input data 4 is to be shifted by 2 bits towards the right side

1

>>>8>>2

2

Explanation

Consider the expression 4 >> 2.

Initially, the number 4 is converted into its corresponding binary format, i.e. 0 1 0 0

 0 0 0 0 0 0 1 0 0 Binary 4

 8 7 6 5 4 3 2 1 0 Bit Index

The input data 4 is to be shifted by 2 bits towards the right side.

The answer in binary bits would be

 0 0 0 0 0 0 0 0 1 Binary 1

 8 7 6 5 4 3 2 1 0 Bit Index

Note: Shifting the input number by N bits towards the right means the number is divided by 2s.
In short, it means Y = N/2s.
Where,
 N = The Number
 S = The Number of Bit Positions to Shift

Consider the above example 4 >> 2. Let us solve this using the above formula, i.e. y = N /2s

 = 4 / 22
 = 4 / 4
 = 1
Therefore, 4 >> 2 returns 1 in Python interactive mode.

Operators and Expressions 79

Program 3.14 Write a program to shift input data by 2 bits towards the right.

N = int(input(‘Enter Number: ‘))

S = int(input(‘Enter Number of Bits to be shift Right: ‘))

print(N,’ >> ‘,S,’ = ‘, N >> S)

output

Enter Number: 8

Enter Number of Bits to be shift Right: 2

8 >> 2 = 2

3.7.5 the Left shift (<<) Operator

The left shift operator is represented as <<. It also needs two operands. It is used to shift bits to the
left by N position. The working of the left shift operator is given as follows:

Example

>>> 4 << 2 # The input data 4 is to be shifted by 2 bits towards the left side

16

>>> 8 << 2 # The input data 8 is to be shifted by 2 bits towards the left side

32

Explanation

Consider the expression 4 << 2.

Initially, the number 4 is converted into its corresponding binary

format, i.e. 0 1 0 0

 0 0 0 0 0 0 1 0 0 Binary 4

 8 7 6 5 4 3 2 1 0 Bit Index

The input data 4 is to be shifted by 2 bits towards the left side.

The answer in binary bits would be

 0 0 0 0 1 0 0 0 0 Binary 16

 8 7 6 5 4 3 2 1 0 Bit Index

Python Programming80

Note: Shifting the input number by N bits towards the left side means the number is multiplied by 2s.
In short, it means Y = N*2s.
Where,
 N = The Number
 S = The Number of Bit Positions to Shift

Consider the above example 4 << 2. Let us solve this using the above formula, i.e.

 y = N * 2s

 = 4 * 22
 = 4 * 4
 = 16
Therefore, 4 << 2 returns 16 in Python interactive mode.

Program 3.15 Write a program to shift input data by four bits towards the left.

N = int(input(‘Enter Number: ‘))

S = int(input(‘Enter Number of Bits to be shift Left: ‘))

print(N,’ << ‘,S,’ = ‘, N << S)

output

Enter Number: 4

Enter Number of Bits to be shift Left: 2

4 << 2 = 16

3.8 the cOmpOund assignment OperatOr

The operators +, *, //, /, % and ** are used with the assignment operator (=) to form the compound
or augmented assignment operator.

Example

Consider the following example, where the value of a variable X is increased by 1.

X = X + 1

Python allows a programmer to combine the assignment and addition operator. Thus, the above
statement X = X + 1 can also be written as

X + = 1

The += operator is called the addition operator. A list of all other compound assignment
operators is given in Table 3.16.

Operators and Expressions 81

Table 3.16 Compound assignment operators

Operator Example Equivalent Explanation

+= Z+=X Z=Z+X Add the value of Z to X

-= Z-=X Z=Z-X Subtract X from Z

= Z=X Z=Z*X Multiplies the value of X, Y and stores the result in Z

/= Z/=X Z=Z/X Performs floating point division operation and stores the result in Z

//= Z//=X Z=Z//X Performs normal integer floor division and stores the result in Z

= Z=X Z=Z**X The value of variable X is raised to Z and the result is stored in
variable Z

%= Z%=X Z=Z%X The Z modulo X operation is performed.

Program 3.16 Write a program using compound assignment operators to calculate the area of a circle.

radius = eval(input(‘Enter the Radius of Circle: ‘)) #Read Radius

print(‘ Radius = ‘,radius) #Display Radius

area = 3.14

radius **=2 #Radius = Radius ** 2

area*=radius #Area=Area*Radius

print(‘ Radius of Circle is = ‘,area) #Print area

output

Enter the Radius of Circle: 2

Radius = 2

Radius of Circle is = 12.56

Thus, to perform various operations in the above program we have to make use of compound
assignment operators such as **=, and *=.

mini prOject goods service tax (gst) calculator

What is gST?

Goods and services tax is a comprehensive tax levied on the manufacture, sale and consumption
of goods and services at a national level. This tax has substituted all indirect taxes levied on
goods and services earlier by the central and state governments in India.

Problem Statement

We all buy various goods from a store. Along with the price of the goods we wish to buy, we also
have to pay an additional tax, which is calculated as a specific percentage on the total price of the
goods. This is called GST on the products.

Python Programming82

model of gST Using an Example

The GST has two components, viz. one which is levied by the central government (referred to as
central GST or CGST), and one levied by the state government (referred to as state GST or SGST).
The rates for central GST and state GST are given as follows:

Type of Tax Tax Rate

CGST @9%

SGST @9%

Example

Invoice of a product

Particulars GST on Particulars

Cost of Production 5,000

Add: CGST @ 9% 450

Add: SGST @ 9% 450

Total Cost of Product: `5,900

Formula to Calculate Total Cost

(CGST Tax Rate on product) + (SGST Tax Rate on product)

Note: Make use of proper operators to solve the above problem.

algorithm

 | STEP 1: Read Cost of Production

 | STEP 2: Input the CGST tax rate

 | STEP 3: Input the SGST tax rate

 | STEP 4: Calculate and print the total cost of the product.

Program

CP = float(input(‘Enter the Cost of Product:’))

CGST = float(input(‘Enter tax % imposed by Centre, i.e. CGST:’))

SGST = float(input(‘Enter tax % imposed by State, i.e. SGST:’))

total = 0

Amount_CGST = ((CGST/100) * CP)

Amount_SGST = ((SGST/100) * CP)

total = CP + Amount_CGST + Amount_SGST

print(‘Total Cost of Product: Rs ‘,total)

(Contd.)

Operators and Expressions 83

output

Enter the Cost of Product: 5000

Enter tax % imposed by Centre, i.e. CGST: 9

Enter tax % imposed by State, i.e. SGST: 9

Total Cost of Product: Rs. 5900.0

In the above example, we have calculated final cost of the product based on the tax rate.

 SUmmary

  Python supports various operators such as Arithmetic, Boolean, Relational, Bitwise and compound
Assignment Operator.

  Unary Operator perform operation on one operand only whereas Binary operator requires two
operands.

  The Divison(\) operator applied on two operands returns a float value.

  Modulo (%) operator return s remainder when first number is divided by the second.

  Exponent (**) operator calculates power of number.

  Operator precedence determines the order in which python evaluates the operators in an expression.

  Associativity gives direction of execution, i.e. left to right or right to left.

 KEy TErmS

 � Arithmetic Operators: Binary and Unary Operators

 � Bitwise Operators: and (&), or (|), xor (̂), left shift (<<) and right shift (>>)

 � Augmented Assignment Operator: Operators used with the assignment operator

 � Operator Precedence: Determines the order in which the Python interpreter evaluates an expression

 � Associativity: Determines which operation is to be performed first.

 rEviEW QUESTionS

a. multiple Choice Questions

 1. What will be the output of the following expression if it is executed in Python interactive mode?

 16 % 3

 a. 5 b. 1

 c. 0 d. -1

 2. What will be the output of the following program?

 X=5

 Y=5

 print(X/Y)

Python Programming84

 a. 1 b. 1.0

 c. 0.1 d. None of the above

 3. What will be the output of the following statement?

 print(15 + 20 / 5 + 3 * 2 - 1)

 a. 19.0 b. 19

 c. 12.0 d. 24.0

 4. What will be the output of the following program?

 A=7

 B=4

 C=2

 print(a//b/c)

 a. 0.85 b. 0

 c. 0.5 d. 0.0

 5. Which one of the following operators belongs to floor division?

 a. % b. /

 c. // d. None of the above

 6. What will be the output of the following expression?

 4*1**2

 a. 16 b. 4

 c. 8 d. 1

 7. What will be the output of the following program?

 X=4.6

 Y=15

 Z=X//Y

 print(Z)

 a. 0 b. 0.0

 c. 0.30 d. None of the above

 8. Operators with the same precedence are evaluated in which of the following orders?

 a. Left to Right b. Right to Left

 c. Unpredictable d. None of the above

 9. What will be the output, if the input data 5 is shifted towards the left by 2 bits?

 a. 20 b. 10

 c. 1 d. 25

 10. Which of the following have the highest precedence in an expression?

 a. Addition b. Multiplication

 c. Exponent d. parenthesis

B. True or False

 1. Operators operate on operands.

 2. Binary operators operate on at least two operators.

 3. The ‘-’ operator in Python can be used with binary and unary form.

 4. 4.5-1.5 returns 3.0.

Operators and Expressions 85

 5. The unary arithmetic operator performs mathematical operations on more than one operand.

 6. The operator precedence determines the order in which the Python interpreter operates the operators
in an expression.

 7. Associativity implies the direction of execution of an expression.

 8. Shifting the input number by N bits towards the left means the number is divided by 2s.

 9. Shifting the input number by N bits towards the right means the number is divided by 2s.

 10. The right shift operator is represented as >>.

 11. The () operator has the highest precedence among all other arithmetic operators.

C. Exercise Questions

 1. State the results of the following expressions.

Expression Results

40/8

40//8

50%5

3%2

3**3

 2. State the output of each of the following expression, if each expression is independent. Assume the
value of X as 4.

Expression Output

 X +=10

X -=4

X *=6

 X **=2

X %=2

X /=2

 3. Values assigned to different variables are

 A = 10

 B = 20

 C = 40

 D = 4

 E = 5

 Evaluate each of the following Python expression.

 (i) (A + B) * C

 (ii) A + (B - E)

 (iii) A*B/E

 (iv) C/B//5

 (v) C+(A*E)/(B-A)

Python Programming86

 4. Convert the following expressions into their shortest form.

Expression Equivalent Expression

Z = Z* 10 + 4

A = A % 20

B = B ** 10 + 2

C = C / 3

 5. Find the output of each expression given below if Python executes each expression separately.

 Initially the value of X = 4

Expression Output

X=X<<2

X=X>>2

X=x>>3

X=X<<3

 6. Determine the hierarchy of operations and evaluate the following expressions.

 X = 4/2*2+16/8+5

 Y = 3*4/2+2/2+6-4+4/2

 7. Convert the following equations into their corresponding Python expressions.

 (a)
2

10 4()

XY X

C Z D
-

+ +
 (b)

10 ()
0.8 2

1
()

Y ab C
b

dZ

x a
z

+
- +

=
Ê ˆ+ Á ˜Ë ¯

 8. The programmer has to find out the area of a rectangle but he/she has one constraint, viz. he/she has
to take the value of the length and breadth of the rectangle from the user. The programmer has written
the following program but he/she is unable to detect the bug in the program. Go through the following
program to find the bug and then rewrite the whole program.

 area=0

 length = 0

 breadth = 0

 area= length * breadth

 length=eval(input(‘Enter the Length of Rectange:’))

 breadth=eval(input(‘Enter the Breadth of Rectangle:’))

 print(‘Area of Rectange = ‘,area)

 9. Evaluate the expression, (X + Y – abs(X – Y))//2, when

 X = 4 and Y = 6

 X = 5 and Y = 4

Operators and Expressions 87

 1. Write a program to read the marks of 5 subjects through the keyboard. Find out the
aggregate and percentage of marks obtained by the student. Assume maximum marks that
can be obtained by a student in each subject as 100.

 2. Write a program to read a four-digit number through the keyboard and calculate the sum
of its digits.

 3. Write a program to read the distance between any two cities in kilometer (km) and print the
distances in meters (m), centimeters (cm)and miles.

 Note: 1 km = 1000 meter

 1 km = 100000 centimeter

 1 km = 0.6213 miles

 4. Write a program to read the weight of an object in kilogram and print its weight in pound
and tonne.

 Note: 1 kg = 2.20 pound

 1 kg = 0.001 tonne

 5. Read a distance in meters and a time in seconds through the keyboard. Write a program to
calculate the speed of a car in meter/second.

 Note: Speed =
Distance

Time

 6. Write a program to read the radius of a sphere from the user and calculate the volume of the
sphere.

 Note: Volume of sphere = 4/3*3.14*r3

 7. An ATM contains Indian currency notes of 100, 500 and 1000. To withdraw cash from this
ATM, the user has to enter the number of notes he/she wants of each currency, i.e. of 100,
500 and 1000. Write a program to calculate the total amount withdrawn by the person from
the ATM in rupees.

Programming aSSignmEnTS

4

Decision Statements

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe Boolean expressions and bool data type

• Perform operations on numbers and strings using Boolean and Relational operators (>, <,>=, <= and !=)

• Write a simple decision making statement and its implementation with if statement, two-way decision
making statements and their implementation with if else statement, nested statements and their
implementation with if statements and multi-way decision making statements and their implementation
with if-elif-else statements

• Explain and use conditional expressions to write programs

• Write non-sequential programs using Boolean expressions

chapter OutLine

 4.1 Introduction

 4.2 Boolean Type

 4.3 Boolean Operators

 4.4 Using Numbers with Boolean Operators

 4.5 Using String with Boolean Operators

 4.6 Boolean Expressions and Relational
Operators

 4.7 Decision Making Statements

 4.8 Conditional Expressions

4.1 intrOductiOn

So far, we have seen programs that contain a sequence of instructions. These programs are
executed by the compiler line by line, in the way the program line appears. The control flow in

Decision Statements 89

such programs is sequential. Control flow refers to the order in which program statements are
executed, i.e. when the execution of one statement is complete, the computer control passes to the
next statement in the code. This process is similar to reading the text, figures and tables on a page
of a book.

In monolithic programs, instructions are executed sequentially one by one in the order in which
they come into sight in the program. Of course, this is a fundamental programming concept for
beginners to develop simple programs. It is not advisable to have a sequential program writing
style for solving every problem. Quite often, it is advantageous in a program to alter the sequence
of the flow of statements depending upon the circumstances. In real-time applications, there are a
number of situations where a programmer has to change the order of execution of statements based
on certain conditions. Therefore, when a programmer desires the control flow to be non-sequential
then he/she may use control structures or decision statements. Thus, decision making statements
help a programmer in transferring the control from one statement to another in the program. In
short, a programmer decides which statement is to be executed based on a condition. Decision
making statements use conditions which are similar to Boolean expressions.

After reading this chapter, a programmer is expected to take up real life problems/applications
and implement with Python programming containing conditional statements. Programmer
may think the programming pattern for preparation of mark sheet, grade sheet, preparation of
electricity bill for residential and commercial consumers, Railway tariff based on distances, simple
calculations of interest on deposits for banking problems, etc. Of course, unlimited problems are
existing in the nature for which a programmer is expected to give programming solution.

4.2 BOOLean type

Python has a type called ‘bool’. The bool has only two values, viz. true and false. The term,
‘Boolean’ comes from the name of the British mathematician, George Boole. In the 1840s, Boole
showed that the classical rules of logic could be expressed in purely mathematical form using
only two values, viz. true and false. The simplest Boolean expression in Python is True and False.
In Python interactive shell, a programmer can check if the type of two values, viz. true and false
belong to the type ‘bool’ in the following manner:

>>> True

True

>>> False

False

>>> type(True)

<class ‘bool’> #The Value True belongs to the class type bool

>>> type(False)

<class ‘bool’> #The Value False belongs to the class type bool

 Note: There are only two Boolean values, True and False. Capitalisation of the first letter is important
for these values and so true and false are not considered Boolean values in Python. As illustrated, the
Python interpreter will show an error if a programmer checks the type of ‘true’ or ‘false’.

(Contd.)

Python Programming90

>>> type(true)

Traceback (most recent call last):

File “<pyshell#10>”, line 1, in <module>

type(true)

NameError: name ‘true’ is not defined

4.3 BOOLean OperatOrs

The and, or and not are the only three basic Boolean operators. Boolean operators are also called
logical operators. The not operator has the highest precedence, followed by and and then or.

4.3.1 the not Operator

The not operator is a unary operator. It is applied to just one value. The not operator takes a single
operand and negates or inverts its Boolean value. If we apply the not operator on an expression
having false value then it returns it as true. Similarly, if we apply the not operator on an expression
having true value then it returns it as false.

Example

Use of the not operator on a simple Boolean expression in Python, i.e. true and false.

>>> True

True

>>> not True

False

>>> False

False

>>> not False

True

4.3.2 the and Operator

The and is a binary operator. The and operator takes two operands and performs left to right
evaluation to determine whether both the operands are true. Thus, and of Boolean operand is true
if and only if both operands are true. Table 4.1 explains the add operator.

Table 4.1 The and operator

X Y X and Y

True True True

True False False

False True False

False False False

Decision Statements 91

Example

Evaluation of the and operator in Python interactive mode.

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

4.3.3 the or Operator

The or of two Boolean operands is true if at least one of the operands is true. Table 4.2 explains the
or operator.

Table 4.2 The or operator

X Y X or Y

True True True

True False True

False True True

False False False

Example

Evaluation of the or operator in Python interactive mode.

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False

False

4.4 using numBers with BOOLean OperatOrs

A programmer can use numbers with Boolean operators in Python. One such example is given as
follows:

Example

>>> not 1

False

Python Programming92

>>> 5

5

>>> not 5

False

>>> not 0

True

>>> not 0.0

True

Explanation Here, Python uses the Boolean operator not on the numbers and treats all numbers
as True. Therefore, by writing not 1, Python substitutes 1 as True and evaluates not True, which
returns False. Similarly, not is used before 5 and Python substitute True in place of 5 and it again
evaluates the expression not True, which returns False. But in case of the numbers 0 and 0.0,
Python treats them as False. Therefore, while evaluating not 0, it substitutes False in place of 0 and
again evaluates the expression not False, which returns True.

4.5 using string with BOOLean OperatOrs

Like numbers, a programmer can use strings with Boolean operators in Python. One such example
is given as follows:

Example

>>> not ‘hello’

False

>>> not ‘’

True

Explanation Here, Python uses the Boolean operator not on string. The expression not hello

returns True since Python treats all strings as True. Therefore, it substitutes True in place of ‘hello’
and again reevaluates the expression not True, which returns False. However, if it is an empty
string, Python will treat it as False. Therefore, it substitutes False in place of an empty string ‘’and
reevaluates the expression not False, which in turn returns True.

4.6 BOOLean expressiOns and reLatiOnaL OperatOrs

A Boolean expression is an expression that is either true or false. The following example compares
the value of two operands using the == operator and produces the result true if the values of both
the operands are equal.

Example

The == operator compares two values and produces a Boolean value.

>>> 2==2

True

Decision Statements 93

>>> a=2

>>> b=2

>>> a==b

True

Note: The comparison operator == contains two equal signs. Whereas the assignment operator =
contains only one equal sign.

From the above example, it is clear how we can compare two values or two operands. Thus, ==
is one of the Python relational operators. Other relational operators supported in Python are given
in Table 4.3.

Table 4.3 Relational operators

Operator Meaning Example Python Return Value

> Greater than 4>1 True

< Less than 4<9 True

>= Greater than or equal to 4>=4 True

<= Less than or equal to 4<=3 True

!= Not equal to 5!=4 True

Program 4.1
 Write a program to prompt a user to enter the values of the three different variables and display
the output of the following expressions.

 a. p>q>r

 b. p<q<r

 c. p<q and q<z

 d. p<q or q<z

p,q,r=eval(input(‘Enter Three Numbers:’))

print(‘ p =’,p,’ q = ‘,q,’ r = ‘,r)

print(‘(p > q > r) is ‘, p > q >r)

print(‘(p < q < r) is ‘, p < q <r)

print(‘ (p < q) and (q < r) is ‘, (p < q) and (q < r))

print(‘ (p < q) or (q < r) is ‘, (p < q) or (q < r))

output

Enter Three Numbers:1,2,3

 p = 1 q = 2 r = 3

(p > q > r) is False

(p < q < r) is True

(p < q) and (q < r) is True

(p < q) or (q < r) is True

Python Programming94

Note: An expression always returns a value and a statement does not return any value. A statement
may include one or more than one expression.

4.7 decisiOn making statements

Python supports various decision-making statements. These are:

 1. if statements

 2. if-else statements

 3. Nested if statements

 4. Multi-way if-elif-else statements

4.7.1 the if statements

The if statement executes a statement if a condition is true. The syntax for if statement is shown in
Figure 4.1.

if condition:

 statement(s)
OR

if condition:

 Block

Figure 4.1 Syntax for if statement

Details of the if Statement

The keyword if begins the if statement. The condition is a Boolean expression which determines
whether or not the body of if block will be executed. A colon (:) must always be followed by the
condition. The block may contain one or more statements. The statement or statements are executed
if and only if the condition within the if statement is true. The flow chart for if statement is given
in Figure 4.2.

Figure 4.2 Flowchart for if statement

Decision Statements 95

Points to Remember

 (a) The statement(s) must be indented at least one space right of the if statement.

 (b) In case there is more than one statement after the if condition, then each statement must be
indented using the same number of spaces to avoid indentation errors.

The statement(s) within the if block are executed if the Boolean expression evaluates to true.

Program 4.2
 Write a program that prompts a user to enter two integer values. Print the message ‘Equals’ if
both the entered values are equal.

Flow Chart

True

print('Both the numbers

entered are equal')

num1-num2 == 0

Read two numbers num1

and num2 from User

num1=eval(input(“Enter First Number: “))

num2=eval(input(“Enter Second Number: “))

if num1-num2==0:

 print(“Both the numbers entered are Equal”)

output

Enter First Number: 12

Enter Second Number: 12

Both the numbers entered are Equal

Explanation In the above program, the two numbers are provided by a user. The statement within
the if block is executed if and only if the Boolean expression num1 – num2 evaluates to True.

Python Programming96

Precautions Sometimes a program may contain only one statement within the if block. In this
case a programmer can write the block of code in two different ways.

 (a) Consider the code given as:

Number=eval(input(“Enter the Number: “))

if Number>0:

 Number = Number * Number

 This code can also be written as:

Number=eval(input(“Enter the Number: “))

if Number>0:Number = Number * Number

 (b) The above code cannot be written as:

Number=eval(input(“Enter the Number: “))

if Number>0:

Number = Number * Number

The above code does not run and displays an error called indentation error. Thus, Python
determines which statement makes a block using indentation.

Program 4.3
 Write a program which prompts a user to enter the radius of a circle. If the radius is greater than
zero then calculate and print the area and circumference of the circle.

from math import pi

Radius=eval(input(“Enter Radius of Circle: “))

if Radius>0:

 Area=Radius*Radius*pi

 print(“ Area of Circle is = “,format(Area,”.2f”))

 Circumference=2*pi*Radius

 print(“Circumference of Circle is = “,format(Circumference,”.2f”))

output

Enter Radius of Circle: 5

 Area of Circle is = 78.54

Circumference of Circle is = 31.42

4.7.2 the if-else statement

The execution of the if statement has been explained in the previous programs. We know, the if
statement executes when the condition following if is true and it does nothing when the condition
is false. The if-else statement takes care of a true as well a false condition. The syntax for if-else
statement is given in Figure 4.3.

Decision Statements 97

if condition:

 statement(s)

else:

 statement(s)

OR

if condition:

 if_Block

else:

 else_Block

Figure 4.3 Syntax for if-else statement

Details of if-else Statement

The if-else statement takes care of both true and false conditions. It has two blocks. One block is for
if and it may contain one or more than one statements. The block is executed when the condition
is true. The other block is for else. The else block may also have one or more than one statements.
It is executed when the condition is false. A colon (:) must always be followed by the condition. The
keyword else should also be followed by a colon (:) The flow chart for if-else statement is given in
Figure 4.4.

Figure 4.4 Flow chart for if-else statement

Program 4.4 Write a program to prompt a user to enter two numbers. Find the greater number.

num1=int(input(“Enter the First Number:”))

num2=int(input(“Enter the Second Number:”))

if num1>num2:

 print(num1,”is greater than “,num2)

else:

 print(num2,”is greater than “,num1)

(Contd.)

Python Programming98

output

Enter the First Number:100

Enter the Second Number:43

100 is greater than 43

Explanation The above program prompts a user to read any two numbers. The two numbers
entered are stored in variables num1 and num2, respectively. If the value of num1 is greater than
num2 is checked using the if condition. If the value of num1 is greater then the message ‘num1 is
greater than num2’ is displayed. Otherwise, the message ‘num2 is greater than num1’ is displayed.

Program 4.5
 Write a program to calculate the salary of a medical representative considering the sales
bonus and incentives offered to him are based on the total sales. If the sales exceed or equal to
`1,00,000 follow the particulars of Column 1, else follow Column 2.

Column 1 Column 2

Basic = 4̀000 Basic = 4̀000

HRA = 20% of Basic HRA = 10% of Basic

DA = 110 % of Basic DA = 110 % of Basic

Conveyance = 5̀00 Conveyance = 5̀00

Incentive = 10% of Sales Incentive = 4% of Sales

Bonus = 1̀000 Bonus = 5̀00

Sales=float(input(‘Enter Total Sales of the Month:’))

if Sales >= 100000:

 basic = 4000

 hra = 20 * basic/100

 da = 110 * basic/100

 incentive = Sales * 10/100

 bonus = 1000

 conveyance = 500

else:

 basic = 4000

 hra = 10 * basic/100

 da = 110 * basic/100

 incentive = Sales * 4/100

 bonus = 500

 conveyance = 500

salary= basic+hra+da+incentive+bonus+conveyance

print(‘Salary Receipt of Employee ‘)

(Contd.)

Decision Statements 99

print(‘ Total Sales = ‘,Sales)

print(‘ Basic = ‘,basic)

print(‘ HRA = ‘,hra)

print(‘ DA = ‘,da)

print(‘ Incentive = ‘,incentive)

print(‘ Bonus = ‘,bonus)

print(‘ Conveyance = ‘,conveyance)

print(‘ Gross Salary = ‘,salary)

output

Enter Total Sales of the Month:100000

Salary Receipt of Employee

 Total Sales = 100000.0

 Basic = 4000

 HRA = 800.0

 DA = 4400.0

 Incentive = 10000.0

 Bonus = 1000

 Conveyance = 500

 Gross Salary = 20700.0

Explanation The program calculates the salary of a medical representative according to the total
sale of products. The basic salary is the same but other allowances and incentives change according
to the total sales. If the total sale is more than `1,00,000 the rate of allowances and incentive is
calculated as per Column 1, else as per Column 2. The if condition checks the given figure of total
sale. If the total sale is more than `1,00,000 the first block following the if statement is executed,
otherwise the else block is executed.

Points to remember

 (a) Indentation is very important in Python. The else keyword must properly line up with the if
statement.

 (b) If a programmer does not line up if and else in exactly the same columns then Python will
not know that if and else will go together. Consequentially, it will show an indentation error.

 (c) Both statements within the if block and else block must be indented and must be indented the
same amount.

Program 4.6 Write a program to test whether a number is divisible by 5 and 10 or by 5 or 10.

num=int(input(‘Enter the number:’))

print(‘Entered Number is: ‘,num)

(Contd.)

Python Programming100

if(num % 5 == 0 and num % 10==0):

 print(num,’ is divisible by both 5 and 10’)

if(num % 5 == 0 or num % 10 == 0):

 print(num,’is divisible by 5 or 10’)

else:

 print(num,’ is not divisible either by 5 or 10’)

output

#Test Case 1:

 Enter the number:45

Entered Number is: 45

45 is divisible by 5 or 10

#Test Case 2:

Enter the number:100

Entered Number is: 100

100 is divisible by both 5 and 10

100 is divisible by 5 or 10

Explanation In the above program, the number is read from the user. The Boolean expression
num % 5 == 0 and num % 10==0 checks whether the number is divisible by both 5 and 10. Again
the Boolean expression num % 5 == 0 or num % 10 == 0 is used to check if the number entered is
divisible either by 5 or by 10.

 Note: Conditional or Short Circuit AND Operator: If one of the operands of an AND operator is
false, the expression is false. Consider two operands OP1 and OP2. When evaluating OP1 and OP2,
Python first evaluates OP1 and if OP1 is True then Python evaluates the second operand OP2. Python
improves the performance of the AND operator, i.e. if the operand OP1 is False, it does not evaluate
the value of the second operand OP2. The AND operator is also referred to as conditional or short
circuit AND operator.

Conditional or Short Circuit OR Operator: We have seen in Table 4.2 that even if one of the operands
of an OR operator is True, the expression is True. Python improves the performance of the OR operator.
Consider two operands OP1 and OP2 and the expression OP1 or OP2. While evaluating the expression
OP1 or OP2, Python first evaluates OP1. If OP1 is False, it evaluates OP2. If OP1 is True, it does not
evaluate OP2. The OR operator is also referred to as conditional or short circuit OR operator.

4.7.3 nested if statements

When a programmer writes one if statement inside another if statement then it is called a nested

if statement. A general syntax for nested if statements is given as follows:

if Boolean-expression1:

 if Boolean-expression2:

 statement1

Decision Statements 101

 else:

 statement2

else:

statement3

In the above syntax, if the Boolean-expression1 and Boolean-expression2 are correct then
statement1 will execute. If the Boolean-expression1 is correct and Boolean-expression2 is incorrect
then statement2 will execute. And if both Boolean-expression1 and Boolean-expression2 are
incorrect then statement3 will execute.

A program to demonstrate the use of nested if statements is given as follows:

Program 4.7
 Write a program to read three numbers from a user and check if the first number is greater or
less than the other two numbers.

num1=int(input(“Enter the number:”))

num2=int(input(“Enter the number:”))

num3=int(input(“Enter the number:”))

if num1>num2:

 if num2>num3:

 print(num1,”is greater than “,num2,”and “,num3)

else:

 print(num1,” is less than “,num2,”and”,num3)

print(“End of Nested if”)

output

Enter the number:12

Enter the number:34

Enter the number:56

12 is less than 34 and 56

End of Nested if

Explanation In the above program, three numbers—num1, num2 and num3—are provided from
the user through a keyboard. Initially, the if condition with Boolean expression num1>num2 is
checked if it is true and the then other nested if condition with Boolean expression num2>num3
is checked. If both the if conditions are true then the statements following the second if statement
are executed.

4.7.4 multi-way if-elif-else statements

The syntax for if-elif-else statements is given as follows:

If Boolean-expression1:

 statement1

 elif Boolean-expression2 :

Python Programming102

 statement2

 elif Boolean-expression3 :

 statement3

- - - - - - - - - - - - - -

- - - - - - - - - - - -- -

elif Boolean-expression n :

 statement N

else :

 Statement(s)

In this kind of statements, the number of conditions, i.e. Boolean expressions are checked from
top to bottom. When a true condition is found, the statement associated with it is executed and the
rest of the conditional statements are skipped. If none of the conditions are found true then the
last else statement is executed. If all other conditions are false and if the final else statement is not
present then no action takes place.

Program 4.8
 Write a program to prompt a user to read the marks of five different subjects. Calculate the
total marks and percentage of the marks and display the message according to the range of
percentage given in table.

Percentage message

per > = 90 Distinction

per > = 80 && per < 90 First Class

per > = 70 && per < 80 Second Class

per > = 60 && per < 70 First Class

per <60 Fail

Subject1=float(input(“Enter the Marks of Data-Structure:”))

Subject2=float(input(“Enter the Marks of Python:”))

Subject3=float(input(“Enter the Marks of Java:”))

Subject4=float(input(“Enter the Marks of C Programming:”))

Subject5=float(input(“Enter the Marks of HTML:”))

sum=Subject1+Subject1+Subject3+Subject4+Subject5

per=sum/5

print(“Total Marks Obtained”, sum, “Out of 500”)

print(“Percentage = “,per)

if per>=90:

 print(“Distinction”)

else:

 if per>=80:

 print(“ First Class”)

(Contd.)

Decision Statements 103

 else:

 if per>=70:

 print(“Second Class”)

 else:

 if per>=60:

 print(“Pass”)

 else:

 print(“Fail”)

output

Enter the Marks of Data-Structure: 60

Enter the Marks of Python: 70

Enter the Marks of Java: 80

Enter the Marks of C Programming: 90

Enter the Marks of HTML: 95

Total Marks Obtained 385.0 out of 500

Percentage = 77.0

Second Class

Explanation In the above program, the marks of five subjects are entered through a keyboard.
Their sum and average is calculated. The percentage obtained is stored in the variable ‘per’. The
obtained percentages are checked with different conditions using if-else blocks and the statements
are executed according to the conditions.

Note: The above program consists of if-else-if statements. It can also be written in if-elif-else form
as shown in Figure 4.5(b).

if per>=90:

 print(“Distinction”)

else:

 if per>=80:

 print(“ First Class”)

 else:

 if per>=70:

 print(“Second Class”)

 else:

 if per>=60:

 print(“Pass”)

 else:

 print(“Fail”)

Equivalent

if per>=90:

 print(“Distinction”)

elif per>=80:

 print(“ First Class”)

elif per>=70:

 print(“Second Class”)

elif per>=60:

 print(“Pass”)

else:

 print(“Fail”)

(a) (b)

Figure 4.5 (a) if-else-if-else (b) if-elif-else

Python Programming104

The flowchart for multi-way if-else-if statements for the above program is given in Figure 4.6.

Figure 4.6 Flowchart for multi-way if-else-if statements

Program 4.9
 Write a program to prompt a user to enter a day of the week. If the entered day of the week is
between 1 and 7 then display the respective name of the day.

Day=int(input(“Enter the day of week:”))

if day==1:

 print(“ Its Monday”)

elif day==2:

 print(“Its Tuesday”)

elif day==3:

 print(“Its Wednesday”)

elif day==4:

 print(“Its Thursday”)

elif day==5:

 print(“Its Friday”)

elif day==6:

 print(“Its Saturday”)

elif day==7:

 print(“ Its Sunday”)

else:

 print(“Sorry!!! Week contains only 7 days”)

(Contd.)

Decision Statements 105

output

Enter the day of week: 7

Its Sunday

Program 4.10
 Write a program that prompts a user to enter two different numbers. Perform basic arithmetic
operations based on the choices.

num1=float(input(“Enter the first number:”))

num2=float(input(“Enter the Second number:”))

print(“1) Addition “)

print(“2) Subtraction “)

print(“3) Multiplication “)

print(“4) Division “)

choice = int(input(“Please Enter the Choice:”))

if choice==1:

 print(“ Addition of “,num1,”and”,num2,”is:”,num1+num2)

elif choice==2:

 print(“ Subtraction of “,num1,”and”,num2,”is:”,num1-num2)

elif choice==3:

 print(“ Multiplication of “,num1,”and”,num2,”is:”,num1*num2)

elif choice==4:

 print(“ Division of “,num1,”and”,num2,”is:”,num1/num2)

else:

 print(“Sorry!!! Invalid Choice”)

output

Enter the first number:15

Enter the Second number:10

1) Addition

2) Subtraction

3) Multiplication

4) Division

Please Enter the Choice:3

 Multiplication of 15.0 and 10.0 is: 150.0

4.8 cOnditiOnaL expressiOns

Consider the following piece of code.

if x%2==0:

 x = x*x

Python Programming106

else:

 x = x*x*x

In the above code, initially, x is divided by 2. If x is divisible by 2 then the square of the number
is assigned to variable x, else the cube of the number is assigned. To improve the performance
of simple if-else statements, Python provides a conditional expression. Using this conditional
expression, the code above can be rewritten as:

 x=x*x if x % 2 == 0 else x*x*x

Therefore, the general form of conditional expression is:

Expression1 if condition else Expression2

Expression1 is the value of the conditional expression if the condition is true.

Condition is a normal Boolean expression that generally appears in front of an if statement.

Expression2 is the value of the conditional expression if the condition is false.

Consider the program without conditional expression given as follows:

Program 4.11 Write a program to find the smaller number among the two numbers.

num1=int(input(‘Enter two Numbers:’))

num2=int(input(‘Enter two Numbers:’))

if num1 < num2:

 min=num1

 print(‘min = ‘,min)

else:

 min=num2

 print(‘min = ‘,min)

output

Enter two Numbers: 20

Enter two Numbers: 30

min = 20

The same program can be written using conditional expression as follows:

num1=int(input(‘Enter two Numbers:’))

num2=int(input(‘Enter two Numbers:’))

min = print(‘min = ‘,num1) if num1 < num2 else print(‘min = ‘,num2)

output

Enter two Numbers: 45

Enter two Numbers: 60

min = 45

Decision Statements 107

Note: Many programming languages, such as Java, C++ have a ‘?:’, i.e. ternary operator. This is a
conditional operator. The syntax for the ‘?:’ ternary operator is:

Boolean expression? if_true_return_value1: if_false_return_value2

The ternary operator works like if-else. If the Boolean expression is true, it returns value1 and if the
Boolean expression is false, it returns the second value.
Python does not have a ternary operator. It uses a conditional expression.

mini prOject Finding the number of days in a month

This mini project will make use of programming features such as if statement and elif statements.
It will help a programmer to know the number of days in a month.

Hint: If entered the month is 2 then read the corresponding year. To know the number of days
in month 2 check if the entered year is a leap year. If leap then num_days = 29 or not leap then
num_days = 28 for month 2, respectively.

Leap year: A leap year is divisible by 4 but not by 100 or divisible by 400.

algorithm

 | STEP 1: Prompt the month from the user.

 | STEP 2: Check if the entered month is 2, i.e. February. If so then go to Step 3, else go to Step 4.

 | STEP 3: If the entered month is 2 then check if the year is a leap year. If it is a leap year then
store num_days = 29, else num_days = 28.

 | STEP 4: If the entered month is one of the following from the list (1, 3, 5, 7, 8, 12) then store
num_days = 31. Or if the entered month is from the list (4, 6, 9, 11) then store num_days
= 29. If the entered month is different from the range (1 to 12) then display message
“Invalid Month”.

 | STEP 5: If the input is valid then display the message as “there are N number of days in the
month M”.

Program

#Number of Days in a Month

print(‘Program will print number of days in a given month’)

#init

flag = 1 # Assumes user enters valid input

#Get month from the user

month = (int(input(‘Enter the month(1-12):’)))

(Contd.)

Python Programming108

Check if entered month = 2 i.e. February

if month == 2:

 year = int(input(‘Enter year:’))

 if (year % 4 == 0) and (not(year % 100 == 0)) or (year % 400 == 0):

 num_days = 29

 else:

 num_days = 28

if entered month is one from (jan, march, may, july, august, october, or

december)

elif month in (1,3,5,7,8,10,12):

 num_days = 31

if entered month is one from (April, June, September November,)

elif month in (4, 6, 9, 11):

 num_days = 30

else:

 print(‘Please Enter Valid Month’)

 flag = 0

#Finally print num_days

if flag == 1:

 print(‘There are ‘,num_days, ‘days in’, month,’ month’)

output (Case 1)

Program will print number of days in a given month

Enter the month(1-12):2

Enter year: 2020

There are 29 days in 2 month

output (Case 2)

Program will print number of days in a given month

Enter the month(1-12):4

There are 30 days in 4 month

Thus, the above case study helps the user to know the number of days for the entered year.

 Summary

  A Boolean expression contains two values, viz. True and False.

  True and False are of type ‘bool’.

  The and, or and not are the three basic Boolean operators.

Decision Statements 109

  The not operator has highest precedence, followed by and and then or.

  A programmer can use strings with Boolean operators.

  The == operator compares two values and produces a Boolean value.

  Python supports various relational Operators such as, >, <, >=, <= and !=.

  Applying relational operators on numbers and characters yields a Boolean value.

  Python Supports various decision statements, such as if, if-else and multi-way if-elif-else statements.

  Python does not have a ternary operator. It uses a a conditional expression instead.

 KEy TErmS

 � Boolean Expressions: An expression whose value is either True or False.

 � Logical Operators: Comprise the and, or and not operators.

 � Relational Operators: Comparison of two values with relational operators, such as <, <=, >, >=, != and
== operators. One of the operators among them is used while comparing two operands.

 � Conditional Expression: Evaluates expression based on condition.

 � Conditional or Short Circuit AND Operator: Improves performance. Python avoids executing the
second operand in case the first operand is false.

 � Conditional or Short circuit OR Operator: Improves performance. Python avoids executing the
second operand in case the first operand is true.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. What will be the output of following program after the execution of the following code?

 x = 0

 y = 0

 if x > 0:

 y = y + 1

 else:

 if x < 0 :

 y = y + 2

 else:

 y = y + 5

 print(‘ Y =’,y)

 a. 1 b. 0

 c. 2 d. 5

 2. What will be stored in num after the execution of the following code?

 i=10

 j=20

 k=30

Python Programming110

 if j>k:

 if i > j:

 num = i

 else:

 num = j

 else:

 if i > k:

 num = i

 else:

 num = k

 print(‘Num = ‘,num)

 a. 10 b. 20

 c. 30 d. None of the above

 3. Which of the following Python logical expressions can determine whether x and y are greater than z?

 a. x & y > z b. (x > z) &(y > z)

 c. (y > z) & (x > y) d. Both b and c

 e. All of the above

 4. Evaluate the following Python expression and tell the value in terms of true and false.

 a. i=5

j=10

k=15

print(i == k / j)

 b. i=5

k=15

print(k % i < k / i)

 5. What will be the output of the following code fragment assuming num is 10?

 num=10

 if num == 20:

 print(‘Apple’)

 print(‘Grapes’)

 print(‘No Output’)

 a. Apple b. Grapes

 c. Apple Grapes d. No Output

 6. What will be the output of the following program?

 P=int(True)

 q=int(False)

 print(‘P = ‘,p)

 print(‘q = ‘,q)

 a. Error b. p=0 q=1

 c. p=True q=False d. p = 1 and q = 0

 7. Evaluate the following Boolean expressions. Consider the value of P, Q and R as 4, 5 and 6, respectively.

 a. P > 7 b. P < 7 and Q > 2

 c. P == 1 d. P > 2 || Q > 6

Decision Statements 111

 8. What will be the output of the following program if the value stored in variable num is 19?

 if num % 2 == 1:

 print(num,’ is odd number’)

 print(num,’ is even number ‘)

 9. Consider the two different blocks of codes a) and b) given as follows. State which of the following codes
is better and why.

 a.

weight = 10

if weight>=55:

 print(‘ The person is eligible for Blood Donation ‘)

if weight<55:

 print(‘ The person is not eligible for Blood Donation’)

 b.

weight = 10

if weight>=55:

 print(‘ The person is eligible for Blood Donation ‘)

else:

 print(‘ The person is not eligible for Blood Donation’)

 10. What will be the output of the following program?

 if (20 < 1) and (1 < -1):

 print(“Hello”)

 elif (20>10) or False:

 print(‘Hii’)

 else:

 print(‘Bye’)

 a. Hello b. Hii

 c. Bye d. Error

B. True or False

 1. In monolithic programs, the instructions are executed sequentially one by one.

 2. There are only three Boolean values.

 3. The and, or and not are only three basic Boolean operators.

 4. The not operator is a binary operator.

 5. In Python, a programmer cannot use numbers along with Boolean operators.

 6. A Python programmer can use strings with Boolean operators.

 7. The if statement executes a statement if the condition is true.

 8. The == operator compares two values and produces a Boolean value.

 9. With if-elif-else statements, the number of Boolean expressions is checked from top to bottom. When a
true condition is found, the statement associated with it is executed.

 10. Integer equivalent of True is 0.

Python Programming112

C. Exercise Questions

 1. Write the following statement in terms of if-else statement in Python.

 a. If temperature is greater than 50 then temperature is hot, otherwise temperature is cold.

 b. If age is greater than 18 then fare is $400, otherwise fare is $200.

 2. Write the Boolean expressions for the following statements.

 a. If age is greater than 5 and less than 10.

 b. If age is less than 3 and greater than 70, display the message “No Air Fare”.

 3. What are Boolean operators? Explain each operator.

 4. Is it necessary to change the flow control in a program?

 5. What are the different ways in which the flow control can be changed in Python?

 6. List few Boolean expressions with relational operators.

 7. Give the syntax for if_else statement.

 8. Illustrate the nested if statements with a suitable example.

 9. What is a conditional expression?

 10. Draw and explain multi-way if-elif-else statements.

 1. Write a program to prompt (input) year and check if it is a leap year.

 2. Write a program to calculate an Internet browsing bill. Use the conditions specified as follows:

 a. 1 Hour – `20

 b. ½ Hour – `10

 c. Unlimited hours in a day – `100

 The owner should enter the number of hours spent on browsing.

 3. Write nested if statements to print the appropriate message depending on the value of the
variables temperature and humidity as given as follows. Assume that the temperature can
only be warm and cold and the humidity can only be dry and humid.

if temperature is if humidity is Print this activity

Warm Dry Play Basketball

Warm Humid Play Tennis

Cold Dry Play Cricket

Cold Humid Swim

 4. Write a program to calculate the square of only those numbers whose least significant digit is
5.

 Example: Enter the number: 25

 Square: 25*25 = 625

 5. Consider a college cricket club in which a student can enroll only if he/she is less than 18 and
greater than 15 years old. Write a program using the not operator.

Programming aSSignmEnTS

5

Loop Control Statements

Learning OutcOmes

After completing this chapter, students will be able to:

• Write programs using for and while loop to repeat a sequence of instructions

• Write a program and perform a task until a condition is satisfied

• Use loops to traverse the sequence of characters in string or traverse the sequence of integers

• Apply the syntax and working of range() function

• Control the execution of programs using break or continue statement

chapter OutLine

 5.1 Introduction

 5.2 The while Loop

 5.3 The range() Function

 5.4 The for Loop

 5.5 Nested Loops

 5.6 The break Statement

 5.7 The continue Statement

5.1 intrOductiOn

In our day-to-day life, we perform certain tasks repeatedly. It can be tedious to perform such tasks
using pen and paper. For instance, teaching multiplication tables to multiple classes can become
easier if the teacher uses a simple computer program with loop instructions instead of pen and
paper.

Python Programming114

Let us try to understand the concept of control statements in this context. Suppose a programmer
wants to display the message, “I Love Python” 50 times. It would be tedious for him/her to
write the statement 50 times on a computer screen or even on paper. This task can become very
easy, quick and accurate if the programmer completes it using loop instructions in a computer
programming language. Almost all computer programming languages facilitate the use of control
loop statements to repeatedly execute a block of code until a condition is satisfied.

Consider the example to print the statement, “I Love Python” 50 times. Assume that the
programmer doesn’t know the concept of control statements and writes the code in the following
manner.

Example

print(“I Love Python”)

print(“I Love Python”)

print(“I Love Python”)

.

.

¸
Ô
Ô
Ô
Ô
˝
Ô
Ô
Ô
Ô
˛

 print “I Love Python” for 50 times

.

.

.

print(‘I Love Python’)

In the above example, the print statement is written for displaying the message 50 times. This
can be done more easily using loop in Python. Loops are used to repeat the same code multiple
times. Python provides two types of loop statements, viz. while and for loops. The while loop
is a condition controlled loop. It is controlled by true or false conditions. The for loop is a count

controlled loop which repeats for a specific number of times.

After understanding the concept of loop, a programmer can take up any challenging application
in which statements/actions are to be repeated several times.

5.2 the while LOOp

The while loop is a loop control statement in Python and frequently used in programming for
repeated execution of statement(s) in a loop. It executes a sequence of statements repeatedly as long
as a condition remains true. The syntax for while loop is given as follows:

 while test-condition:

 #Loop Body

 statement(s)

5.2.1 details of while Loop

The reserved keyword while begins with the while statement. The test condition is a Boolean
expression. The colon (:) must follow the test condition, i.e. the while statement be terminated with
a colon (:). The statement(s) within the while loop will be executed till the condition is true, i.e. the
condition is evaluated and if the condition is true then the body of the loop is executed. When the

Loop Control Statements 115

condition is false, the execution will be completed out of the loop or in other words, the control
goes out of the loop. The flowchart in Fig. 5.2 shows the execution of the while loop.

5.2.2 Flowchart for while Loop

Figure 5.1 Flowchart of while loop

Program 5.1 Write a program to print the numbers from one to five using the while loop.

count=0 #initialize the counter

while count<=5: # Test condition

 print(“Count = “,count) # print the value of count

 count=count+1 # Increment the value of count by 1

output

Count = 0

Count = 1

Count = 2

Count = 3

Count = 4

Count = 5

Explanation In the above program, initially the value of a variable count is initialised to 0. The
loop checks whether the value of the count is less than 5 (count<=5). If the condition is true, it
executes the part of the loop that contains the statements to be repeated in order to display the
value of count and it increments the value of count by 1. It repeatedly executes the statements
within the loop until count<=5. The loop terminates when the value of count reaches 6.

Note: Precaution is to be taken while writing statements within the while loop.

Python Programming116

Consider the program as shown in Figure 5.2.

count=0

while count<=5:

 print(“Count = “,count)

count=count+1

count=0

while count<=5:

 print(“Count = “,count)

 count=count+1

(a) Good Code (b) Bad Code

Figure 5.2 Precautions regarding the while loop

In Figure 5.2 (a) the value of count is initially set to 0. Then it increments to 2, 3, 4 and 5. When
the value of count becomes 6, the condition count<=5 is false and the loop exits.

Consider the Figure 5.2 (b) where the loop is mistakenly written as:

count=0

while count<=5:

 print(“Count = “,count)

count=count+1

The above code is called bad code because the entire loop body must be indented inside the loop.
Since the statement count=count+1 is not in the loop body, the loop executes for infinite number of
times. And because the value of count is always 0, the condition count <=5 is always true.

Note: All statements within the while block must be indented with the same number of spaces.

Program 5.2 Write a program to add 10 consecutive numbers starting from 1 using the while loop.

count=0 #initialize the counter

sum=0 #initialize sum to zero

while count<=10: #test condition if true

 sum= sum +count #add sum + count

 count=count+1 #increase the value of count by
1

print(“Sum of First 10 Numbers = “,sum) #print sum

output

Sum of First 10 Numbers = 55

Program 5.3 Write a program to find the sum of the digits of a given number.

For example, if a user enters 123. The program should return (3+2+1), i.e. 6 as the sum of all the digits in a number.

num=int(input(“Please Enter the number:”))#Read Number from User

x=num #Assign value of num to x

(Contd.)

Loop Control Statements 117

sum=0

rem=0

while num>0:

 rem=num % 10

 num=num // 10

 sum=sum + rem

print(“Sum of the digits of an entered number “,x,” is = “,sum)

output

Please Enter the number: 12345

Sum of the digits of an entered number 12345 is = 15

Explanation The integer number is read from the user through the keyboard and it is stored in
variable num. Initially, the value of sum and rem are initialised to 0. Unless and until the value of
num>0 the statements within the loop continue to be executed. The modulus operator, i.e. num%10
and the division operator, i.e. num//10 are used frequently to obtain the sum of the numbers
entered.

5.2.3 some more programs on while Loop

Program 5.4 Write a program to display the reverse of the number entered.

For example, if a user enters 12345. The program should return (54321), i.e. the reverse of the number entered.

num =int(input(“Please Enter the number: “))

x=num

rev=0

while num>0:

 rem=num % 10

 num=num // 10

 rev=rev*10+rem

print(“Reverse of a entered number “,x,” is = “,rev)

output

Please Enter the number: 8759

Reverse of a entered number 8759 is = 9578

Program 5.5
 Write a program to print the sum of the numbers from 1 to 20 (1 and 20 are included) that are
divisible by 5 using the while loop.

count=1

sum=0

(Contd.)

Python Programming118

while count<=20:

 if count%5 == 0:

 sum=sum+count

 count=count+1

print(“The Sum of Numbers from 1 to 20 divisible by 5 is: “,sum)

output

The Sum of Numbers from 1 to 20 divisible by 5 is: 50

Program 5.6 Write a program using the while loop to print the factorial of a number.

 Factorial of 6 = 6*5*4*3*2*1 = 720

Num=int(input(“Enter the number:”))

fact=1

ans=1

while fact<=num:

 ans=ans*fact

 fact=fact+1

print(“Factorial of”,num,” is: “,ans)

output

Enter the number:6

Factorial of 6 is: 720

Note: The factorial of a number is defined as the product of all the numbers from 1 to n.

Program 5.7 Write a program to check whether the number entered is an Armstrong number or not.

 153 = 13 + 53 + 33 = 153

num=int(input(“Please enter the number: “))

sum=0

x=num

while num>0:

 d=num%10

 num=num // 10

 sum=sum+(d*d*d)

(Contd.)

Loop Control Statements 119

if(x==sum):

 print(“The number “, x ,”is Armstrong Number”)

else:

 print(“ The number “, x ,”is not Armstrong Number”)

output

Please enter the number: 153

The number 153 is Armstrong Number

Note: An Armstrong number is a number which is equal to the sum of the cube of its digits.

5.3 the range() FunctiOn

There is a inbuilt function in Python called range(), which is used to generate a list of integers.
The range function has one, two or three parameters. The last two parameters in range() are
optional.

The general form of the range function is:

 range(begin, end, step)

The ‘begin’ is the first beginning number in the sequence at which the list starts.

The ‘end’ is the limit, i.e. the last number in the sequence.

The ‘step’ is the difference between each number in the sequence.

5.3.1 examples of range() Function

Example 1

Create a list of integers from 1 to 5.

>>> list(range(1,6))

 [1,2,3,4,5]

range(1,6) function is used in the above example. It generates a list of integers starting from 1 to
5. Note that the second number, i.e. 6 is not included in the elements of this list. By default, the
difference between the two successive numbers is one.

Note: The above range (1,6) is equivalent to range(6). The output of both the range functions will be
the same.

Example 2

Create a list of integers from 1 to 20 with a difference of 2 between two successive integers.

>>> list(range(1,20,2))

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Python Programming120

range(1,20,2) function is used in the above example. It generates a list of integers starting from 1
with a difference of two between two successive integers up to 20.

Table 5.1 shows different examples of the range() function with relevant outputs.

Table 5.1 Examples of range() function

Example of Range Function Output

 range(5) [0, 1, 2, 3, 4]

 range(1,5) [1, 2, 3, 4]

 range(1,10,2) [1, 3, 5, 7, 9]

 range(5,0,-1) [5, 4, 3, 2, 1]

 range(5,0,-2) [5, 3, 1]

 range (-4,4) [-4, -3, -2, -1, 0, 1, 2, 3]

 range (-4,4,2) [-4, -2, 0, 2]

 range(0,1) [0]

 range(1,1) Empty

 range(0) Empty

5.4 the for LOOp

The for loops in Python are slightly different from the for loops in other programming languages.
The Python for loop iterates through a sequence of objects, i.e. it iterates through each value in a
sequence, where the sequence of object holds multiple items of data stored one after another.

In the forthcoming chapters, we will study various sequence type objects of Python, such as
string, list and tuples. The syntax of for loop is given as follows:

for var in sequence:

 statement(s)

 ………………………………

 ……………………………

 ………………………………

5.4.1 details of for Loop

The for loop is a Python statement which repeats a group of statements for a specified number
of times. As described in the syntax, the keywords for and in are essential keywords to iterate
the sequence of values. The variable var takes on each consecutive value in the sequence and the
statements in the body of the loop are executed once for each value. A simple example of for loop is:

 for var in range(m,n):

 print var

As discussed in Section 5.3, the function range(m, n) returns the sequence of integers starting
from m, m+1, m+2, m+3…………… n-1.

Loop Control Statements 121

Program 5.8 Use for loop to print numbers from 1 to 5.

for i in range(1,6):

 print(i)

print(“End of The Program”)

output

1

2

3

4

5

End of The Program

Explanation In the above program, the sequence of numbers from 1 to 5 is printed. These numbers
are generated using the inbuilt range() function. The expression range(1, 6) creates an object
known as an iterable. This allows the for loop to assign the values 1, 2, 3, 4 and 5 to the iteration
variable i. During the first iteration of the loop, the value of i is 1 within the block. During the
second iteration, the value of i is 2 and so on.

Program 5.9 Display capital letters from A to Z.

print(“ The Capital Letters A to Z are as follows:”)

for i in range(65,91,1):

 print(chr(i),end=” “)

output

The Capital Letters A to Z are as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Explanation The range() function contains three different parameters, viz. (begin, end, step_

size). As in the above program, the range function contains the values 65, 90 and 1. It indicates
to print the characters whose ASCII value starts from 65 and ends at 90. Therefore, the statement
print(chr(i),end=” “) is used to print equivalent character value of ASCII value.

5.4.2 some more programs on for Loop

Program 5.10 Use for loop to print numbers from 1 to 10 in the reverse order.

print(“Numbers from 1 to 10 in Reverse Order: “)

for i in range(10,0,-1):

 print(i,end=” “)

print(“\n End of Program”)

(Contd.)

Python Programming122

output

Numbers from 1 to 10 in Reverse Order:

10 9 8 7 6 5 4 3 2 1

End of Program

Program 5.11 Write a program to print squares of the first five numbers.

for i in range(1,6):

 square=i*i

 print(“Square of “,i,” is: “,square)

print(“End of Program”)

output

Square of 1 is: 1

Square of 2 is: 4

Square of 3 is: 9

Square of 4 is: 16

Square of 5 is: 25

End of Program

Program 5.12 Write a program to print even numbers from 0 to 10 and find their sum.

sum=0

print(“Even numbers from 0 to 10 are as follows”)

for i in range(0,11,1):

 if i%2==0:

 print(i)

 sum=sum+i

print(“Sum of Even numbers from 0 to 10 is = ”,sum)

output

Even numbers from 0 to 10 are as follows

0

2

4

6

8

10

Sum of Even numbers from 0 to 10 is = 30

Loop Control Statements 123

Program 5.13 Write a program to calculate the sum of numbers from 1 to 20 which are not divisible 2, 3 or 5.

Sum=0

print(“Numbers from 1 to 20 which are not divisible by 2,3,or 5”)

for i in range(1,20):

 if i%2==0 or i%3==0 or i%5==0:

 print(“”)

 else:

 print(i)

 sum=sum+i

print(“Sum of Even numbers from 1 to 10 is = ”,sum)

output

Numbers from 1 to 20 which are not divisible by 2, 3, and 5

1

7

11

13

17

19

Sum of Even numbers from 1 to 10 is = 68

Program 5.14
 Write a program that prompts a user to enter four numbers and find the greatest number
among the four numbers entered.

Num1=int(input(“Enter the first Number:”))

num2=int(input(“Enter the first Number:”))

num3=int(input(“Enter the first Number:”))

num4=int(input(“Enter the first Number:”))

sum=num1+num2+num3+num4

print(“The sum of Entered 5 Numbers is = “,sum)

for i in range(sum):

 if i==num1 or i==num2 or i==num3 or i==num4:

 Large=i

print(“ Largest Number = “,Large)

print(“End of Program”)

output

Enter the first Number: 4

Enter the first Number: 3

Enter the first Number: 12

(Contd.)

Python Programming124

Enter the first Number: 2

The sum of Entered 5 Numbers is = 21

Largest Number = 12

End of Program

Program 5.15 Write a program to generate a triangular number.

If the number entered is 5, its triangular number would be (1+2+3+4+5) = 15.

Num=int(input(“Please enter the Number: “))

Triangular_Num=0

for i in range(Num,0,-1):

 Triangular_Num=Triangular_Num+i

print(“ Triangular Number of “,Num,” is = “,Triangular_Num)

output

Please enter the Number: 10

Triangular Number of 10 is = 55

Note: A triangular number is nothing but the summation of 1 to the given number.

Program 5.16 Write a program to print Fibonacci series up to 8.

 First_Number = 0

 Second_Number = 1

 Fibonacii Series = 0 1 1 2 3 5 8 13 21 34 55

First_Number=int(input(“Please enter First Number:”))

Second_Number=int(input(“Please enter First Number:”))

Limit=int(input(“ Number of Fibonacci Numbers to be Print: “))

print(First_Number,end=” “)

print(Second_Number,end=” “)

for i in range(Limit+1):

 sum=First_Number+Second_Number

 First_Number=Second_Number

 Second_Number=sum

 print(sum,end=” “)

(Contd.)

Loop Control Statements 125

output

Please enter First Number:0

Please enter First Number:1

 Number of Fibonacci Numbers to be Print: 8

0 1 1 2 3 5 8 13 21 34 55

5.5 nested LOOps

The for and while loop statements can be nested in the same manner in which the if statements
are nested. Loops within the loops or when one loop is inserted completely within another loop,
then it is called nested loop.

Program 5.17 Write a program to demonstrate the use of the nested for loop.

for i in range(1,4,1): #Outer Loop

 for j in range(1,4,1): #Inner Loop

 print(“i = “,i,” j = “,j,” i + j =”,i + j)

print(“End of Program”)

output

i = 1 j = 1 i + j = 2

i = 1 j = 2 i + j = 3

i = 1 j = 3 i + j = 4

i = 2 j = 1 i + j = 3

i = 2 j = 2 i + j = 4

i = 2 j = 3 i + j = 5

i = 3 j = 1 i + j = 4

i = 3 j = 2 i + j = 5

i = 3 j = 3 i + j = 6

End of Program

Explanation In the above program, we have used two loops. One is the outer loop and the other
is the inner loop. The inner loop ‘j’ terminates when the value of j exceeds 3. Whereas, outer loop ‘i’
terminates when the value of i exceeds 3.

Program 5.18 Write a program to display multiplication tables from 1 to 5.

Print(“Multiplication Table from 1 to 5 “)

for i in range(1,11,1): #Outer Loop

 for j in range(1,6,1): #Inner Loop

(Contd.)

Python Programming126

 print(format(i * j,”4d”),end=” “)

 print()

print(“End of Program”)

output

Multiplication Table from 1 to 5

 1 2 3 4 5

 2 4 6 8 10

 3 6 9 12 15

 4 8 12 16 20

 5 10 15 20 25

 6 12 18 24 30

 7 14 21 28 35

 8 16 24 32 40

 9 18 27 36 45

 10 20 30 40 50

End of Program

Explanation The program contains two for loops. The ‘j’ for loop is the innermost for loop and
the ‘i’ for loop is the outermost for loop. The outermost loop ‘i’ executes for 10 times. For each value
of ‘i’, the innermost loop ‘j’ executes 5 times. At the same time for each value of ‘i’, the product
i*j is carried out. To align the numbers properly, the program formats the product of i*j using
format(i*j,”4d”). The digit 4d within format() specifies a decimal integer format with width 4.

5.5.1 some more programs on nested Loops

Program 5.19 Write a program to display the pattern of stars given as follows:

 * * * * *

 * * * *

 * * *

 * *

 *

print(“ Star Pattern Display”)

num=7

x=num

for i in range(1,6,1):

 num=num-1;

 for j in range(1,num,1):

 print(“ * “,end=” “)

 x=num-1

(Contd.)

Loop Control Statements 127

 print()

print(“End of Program”)

output

Star Pattern Display

 * * * * *

 * * * *

 * * *

 * *

 *

End of Program

Program 5.20 Write a program to display the pattern of stars given as follows:

 *

 * *

 * * *

 * * * *

 * * * * *

print(“ Star Pattern Display”)

num=1

x=num

for i in range(1,6,1):

 num=num+1;

 for j in range(1,num,1):

 print(“ * “,end=” “)

 x=num+1

 print()

print(“End of Program”)

output

Star Pattern Display

 *

 * *

 * * *

 * * * *

 * * * * *

End of Program

Program 5.21 Write a program to display the pattern of numbers given as follows:

1

1 2

Python Programming128

1 2 3

1 2 3 4

1 2 3 4 5

print(“ Number Pattern Display”)

num=1

x=num

for i in range(1,6,1):

 num=num+1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num+1

 print()

print(“End of Program”)

output

Number Pattern Display

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

End of Program

Program 5.22 Write a program to display the pattern of numbers given as follows:

1

1 2

1 2 3

1 2 3 4

1 2 3

1 2

1

print(“ Number Pattern Display”)

num=1

x=num

for i in range(1,5,1):

 num=num+1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num+1

 print()

(Contd.)

Loop Control Statements 129

num=5

x=num

for i in range(1,5,1):

 num=num-1;

 for j in range(1,num,1):

 print(j, end=” “)

 x=num-1

 print()

output

Number Pattern Display

1

1 2

1 2 3

1 2 3 4

1 2 3

1 2

1

5.6 the break statement

The keyword break allows a programmer to terminate a loop. When the break statement is
encountered inside a loop, the loop is immediately terminated and the program control automatically
goes to the first statement following the loop. The flowchart for break is shown in Figure 5.3.

Figure 5.3 Flowchart for break statement

Python Programming130

The working of break in while and for loop is shown as follows:

Working of break in while loop:

while test-Boolean-expression:

 body of while

 if condition:

 break

 body of while

statement(s)

Working of break in for loop:

for var in sequence:

 body of for

 if condition:

 break

 body of for

 statement(s)

Program 5.23 Write a program to demonstrate the use of the break statement.

print(“The Numbers from 1 to 10 are as follows:”)

for i in range(1,100,1):

 if(i==11):

 break

 else:

 print(i, end=” “)

output

The Numbers from 1 to 10 are as follows:

1 2 3 4 5 6 7 8 9 10

Explanation The above program prints the numbers from 0 to 10 on the screen. The loop terminates
because ‘break’ causes immediate exit from the loop.

Program 5.24 Check if the number entered is prime or not.

num=int(input(“Enter the Number:”))

x=num

for i in range(2,num):

 if num%i==0: #Check if entered number is divisible by i

 flag=0

 break

 else:

(Contd.)

Loop Control Statements 131

 flag=1

if(flag==1):

 print(num,” is Prime “)

else:

 print(num,” is not prime “)

output

#Test case 1:

Enter the Number:23

23 is Prime

#Test case 2:

Enter the Number:12

12 is not prime

Explanation The number is read from the user through the keyboard. A prime number should
be divisible by 1 and itself. Therefore, the variable ‘i’ is iterated from 2 to one less than the number
entered. Each value of ‘i’ is used to check if ‘i’ can divide the number entered.

5.7 the continue statement

The continue statement is exactly opposite of the break statement. When continue is encountered
within a loop, the remaining statements within the body are skipped but the loop condition is
checked to see if the loop should continue or exit. Flowchart for continue statements is shown in
Figure 5.4.

Figure 5.4 Flowchart for continue statement

Python Programming132

The working of continue in while loop is shown as follows:

while test-boolean-expression:

 body of while

 if condition:

 continue

 body of while

 statement(s)

Alternatively, the working of continue in for loop is shown as follows:

for var in sequence:

 body of for

 if condition:

 continue

 body of for

 statement(s)

The difference between break and continue is given in Table 5.2.

Table 5.2 Difference between break and continue functions

Break Continue

Exits from current block or loop. Skips the current iteration and also skips the
remaining statements within the body.

Control passes to the next statement. Control passes at the beginning of the loop.

Terminates the loop. Never terminates the loop.

Program 5.25 Demonstrate the use of continue keyword.

for i in range(1,11,1):

 if i == 5:

 continue

 print(i, end=” “)

output

1 2 3 4 6 7 8 9 10

Explanation In each iteration in the above program, the value of the variable ‘i’ is checked. If
the value of ‘i’ is 5 then continue statement is executed and the statements following the continue
statement are skipped.

Program 5.26
 Read the string “Hello World” from the user. Make use of continue keyword and remove
space.

Loop Control Statements 133

str1=str(input(“Please Enter the String: “))

print(“ Entered String is : “, str1)

print(“ After Removing Spaces, the String becomes:”)

for i in str1:

 if i==” “:

 continue

 print(i, end=””)

output

Please Enter the String: Hello World

Entered String is : Hello World

After Removing Spaces, the String becomes:

HelloWorld

Explanation The string str1 is read from the user. Each character of entered string is iterated
through the variable ‘i’. The statement if i ==” “: is used to check if the entered string contains
any space. If it contains space, the continue statement is executed and the rest of the statements
following the continue statement are skipped. Finally, we obtain the string without spaces.

mini prOject
generate prime numbers using charles Babbage
Function

Charles Babbage discovered the first calculating machine to print prime numbers for a given
equation. This mini project will make use of if, if –else, if-elif and for loop concepts of programming.

Let us consider the formula used by Charles Babbage:

 T = X2 + X + 41

The above formula generates a sequence of values for T, which happen to be prime numbers.
Thus, calculate the sequence of prime numbers T for the values of x starting from 0 to 5. The
following table contains prime numbers generated by the Charles Babbage function.

Table 5.3 Evaluation of Charles Babbage function

D2 D1 T = X2 + X + 41 (Value of X)

41 0

2 2 43 1

2 4 47 2

2 6 53 3

2 8 61 4

2 10 71 5

Python Programming134

In Table 5.3, we have calculated prime numbers for all the values of x, i.e. from 0 to 5 using the
Charles Babbage function. The D1 is the first difference column and D2 is the second difference
column.

Program Statement

Write a program to generate prime number using the Charles Babbage formula, (T = X2 + X + 41).
The output should be as shown in Table 5.3

algorithm

 | STEP 1: Since we want 5 values of x, i.e. from 0 to 5. Iterate x as i 5 times.

 | STEP 2: For each value of i, assign the value to x.

 | STEP 3: Calculate the value of T for the value of x

 | STEP 4: If the value of i is equal to 0 then print the values of T and i.

 | STEP 5: If the value of i is greater than 0 and less than 2 then print the values of D, T and i. Else
go to Step 6

 | STEP 6: Print value of D2, D, T and i.

Program

########## x2 + x + 41 = T ##############

Charles Babbage Function

########### for second order #############

x = 0;

print(‘{}\t{}\t{}\t{}’.format(‘D2’,’D1’,’T’,’X’))

print(‘--------------------------’)

for i in range(0,5):

 x = i

 T = (x*x) + x + 41

 if(i == 0):

 print(‘\t\t{}\t{}’.format(T,i))

 elif(i > 0 and i < 2):

 a = ((x-1)*(x-1) + (x-1) + 41)

 print(‘\t{}\t{}\t{}’.format(T -(a),T,i))

 else:

 a = ((x-1)*(x-1) + (x-1) + 41)

 b = ((x-2)*(x-2) + (x-2) + 41)

 c = (T - a)-(a - b)

 print(‘{}\t{}\t{}\t{}’.format(c,(T - a),T,i))

Thus, the above program generates all the prime numbers for all the values of x, i.e. from 0 to
5 for the given equation T = x2 + x + 41. The format() method is used to print data in a well-
formatted manner.

Loop Control Statements 135

 Summary

  Loop is the process of executing a set of statements for fixed number of times.

  Iteration refers to one time execution of a statements within a loop.

  Python supports two types of loop control statements, i.e. for loop and while loop.

  While loop is condition controlled loop.

  for loop is count controlled loop and it execute statements within the body of loop for fixed number of
times.

  The break and continue keywords can be in the loops.

  The break statement exits from the current block or loop and control passes to the next statement.

  The continue statement skips the current iteration and also skips the remaining statements within the
body of a loop.

 KEy TErmS

 � while Loop: Condition controlled loop

 � for Loop: Count controlled loop

 � range(): Generates a list of integers

 � nested Loop: Loop within a loop

 � break Statement: The break statement within a loop helps a programmer to terminate the loop
immediately

 � continue Statement: Skips the current iteration and also skips the remaining statement within the
body.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. How many times will a loop with header for count in range(5): execute statements in its body?

 a. 5 times b. 4 times

 c. 6 times d. 3 times

 2. What will be the output of the following program?

count = 35

for x in range(0,10):

 count = count - 1

 if x == 2:

 break

print(count)

 a. 35 b. 32

 c. 35, 34 , 33 d. 34, 33, 32

Python Programming136

 3. What will be the output of the following program?

Z = 1

while Z<5:

 if Z % 7 == 0:

 break

 Z = Z + 2

print(Z)

 a. 5 b. 3

 c. 4 d. 2

 4. What will be the output of the following program?

My_str = “I LOVE PHYTHON”

count = 0

for char in my_str:

 if char == “O”:

 continue

 else:

 count = count + 1

print(count)

 a. 10 b. 9

 c. 11 d. 12

 5. What will be the output of the following program?

my_str = “I LOVE PYTHON”

count = 0

for char in my_str:

 count = count + 1

 if char == “E”:

 break

print(count)

 a. 11 b. 13

 c. 10 d. 12

 6. What will be the output of the following program?

i = 1

for x in range(1,4):

 for y in range(1,3):

 i = i +(i * 1)

print(i)

 a. 32 b. 62

 c. 63 d. 64

Loop Control Statements 137

 7. What will be the output of the following program?

count = 0

for x in range (1,3):

 for y in range (4,6):

 count = count + (x * y)

print (count)

 a. 32 b. 27

 c. 57 d. 64

 8. What will be the output of the following program?

i = 0

for x in range (1,3):

 j = 0

 for y in range (-2,0):

 j = j + y

 i = i + j

print (i)

 a. 10 b. –10

 c. 0 d. None of the above

 9. By default, while is:

 a. Condition control statement b. Loop control statement

 c. Both a and b d. None of the above

 10. What will be the output of the following program?

Count = 0

num = 10

while num > 8:

 for y in range(1,5):

 count = count + 1

 num = num - 1

print(count)

 a. 10 b. 8

 c. 12 d. 11

B. True or False

 1. Python facilitates the use of control statements to change the flow of execution of programs.

 2. The while loop is not a keyword supported by Python.

 3. A loop cannot repeatedly execute a block of statements for a specified number of times.

 4. A loop cannot be nested.

 5. The continue statement is a keyword.

 6. The break statement is used to terminate from the loop.

 7. The break statement is not a keyword.

 8. The while statement is terminated by a semicolon (;).

Python Programming138

 9. The meaning of while(1) implies it is true.

 10. Indentation does not play a major role for the statements within the body of a loop.

C. Exercise Questions

 1. Give the syntax for control statements supported by Python.

 2. Explain the working of the while loop with a flowchart.

 3. What happens if we create a loop that never ends?

 4. What is meant by nested loops?

 5. Find the bugs in the following programs.

 a. count = 0

s=0

while count<10:

s += count

 count=count+1

 print(s)

 b. count=0

for i in range(10,0,-1)

 print(i)

 6. Is it possible to nest the while loop within for loops?

 7. When is the break statement used?

 8. When is the continue statement used?

 9. Convert the following for loop into while loop.

for i in range(50,0,-2):

 print(i,end=’ ‘)

 10. Answer the following questions.

 a. How many times will the following loop execute and what will be its output for both the programs,
a and b?

sum=0

for i in range(20,0,-2):

 sum=sum+i

 print(i)

 if i==14:

 continue

print(sum)

sum=0

for i in range(20,0,-2):

 sum=sum+i

 print(i)

 if i==14:

 break

print(sum)

 (a) (b)

 11. Convert the following while loop into for loop

i=0

s=0

while i<=50:

 if i%7==0:

 s = s+i

 i = i+7

print(s)

Loop Control Statements 139

 1. Write a program that asks for input n and prints a sequence of powers of 5 from 5^0 to 5^n
in separate lines.

 Note: The input number n should be positive.

 Example:

 Input: N=4

 Output: 1

 5

 25

 125

 625

 2. Write a program to display the following table.

 Kilogram Gram

1 1000

2 2000

3 3000

 Note: 1 kilogram = 1000 grams

 3. Write a program to display the numbers of a series 1, 4, 9, 16, 25,…..n by using for loop.

 4. Write a program using the while loop, which prints the sum of every fifth number from 0
to 500 (including both 0 and 500).

 5. Write a program using the while loop to read the positive integer and count the number of
decimal digits in a positive integer.

 6. Write a program to read the password from a user. If the user types the correct password,
i.e. “Python” then display the message, “Welcome to Python Programming”.

 Note: Only three attempts are allowed to enter the right password.

 7. Write programs for the following series using the while loop.

 a. x+x2/2!+x3/3!+..n

 b. 1+x+x2+x3+….xn

 8. Consider a scenario where a son eats five chocolates every day. The price of each chocolate
is different. His father pays the bill to the chocolate vendor at the end of every week.

 Develop a program that can generate the bills for the chocolates and send to the father. Also
state which loop will be used to solve this problem.

Programming aSSignmEnTS

UNIT 3

 Lists Tuples, Sets and Dictionaries

6

Lists

Learning OutcOmes

After completing this chapter, students will be able to:

• Explain the necessity and importance of ‘list’ in programming languages

• Create a list of different and mixed types

• Write programs to access the elements of a list using the positive index operator and the negative index
operator

• Explain list slicing with different features and programs

• Use various operators, such as +, * and in operators on lists

• Create a new list from an existing list, learn to pass a list to a function and write programs to return
lists from a function

chapter OutLine

 6.1 Introduction

 6.2 Creating Lists

 6.3 Accessing the Elements of a List

 6.4 Negative List Indices

 6.5 List Slicing [Start: end]

 6.6 List Slicing with Step Size

 6.7 Python Inbuilt Functions for Lists

 6.8 The List Operator

 6.9 List Comprehensions

 6.10 List Methods

 6.11 List and Strings

 6.12 Splitting a String in List

 6.13 Passing List to a Function

 6.14 Returning List from a Function

Python Programming142

6.1 intrOductiOn

We may need to store variables of the same data type on many occasions. For example, currency
notes used in daily life in India are of denominations `5, 10, 20, 100, 500 and 2000. If a programmer
wishes to display all the six currency notes then by regular programming methods he/she may
print them by reading all the currency notes with six different variables. Through a list, however,
a programmer can use a single variable to store all the elements of the same or different data
type and even print them. Similarly, miscellaneous lists to display top 100 countries in the world,
students qualifying GRE exams, buying groceries etc. can be created.

In Python, a list is a sequence of values called items or elements. The elements can be of any
type. The structure of a list is similar to the structure of a string.

6.2 creating Lists

The List class define lists. A programmer can use a list’s constructor to create a list. Consider the
following example.

Example: Create a list using the constructor of the list class

 a. Create an empty list.

 L1 = list();

 b. Create a list with any three integer elements, such as 10, 20 and 30.

 L2 = list([10,20,30])

 c. Create a list with three string elements, such as “Apple”, “Banana” and “Grapes”.

 L3 = list([“Apple”,”Banana”,”Grapes”])

 d. Create a list using inbuilt range() function.

 L4 = list(range(0,6)) # create a list with elements from 0 to 5

 e. Create a list with inbuilt characters X, Y and Z.

 L5=list(“xyz”)

Example: Creating a list without using the constructor of the list class

 a. Create a list with any three integer elements, such as 10, 20 and 30.

 L1=[10,20,30]

 b. Create a list with three string elements, such as “Apple”, “Banana” and “Grapes”.

 L2 = [“Apple”, “Banana”, “Grapes”]

 Note: A list can contain the elements of mixed type.
Example:

 L3=list([“Jhon”,”Male”,25,5.8])

The above example creates a list L3, which is of mixed type, i.e. it contains elements of different types,
such as string, float and integer.

Lists 143

6.3 accessing the eLements Of a List

The elements of a list are unidentifiable by their positions. Hence, the index [] operator is used
to access them. The syntax is:

 Name_of_Variable_of_a_List[index]

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1 #print the complete List

[10, 20, 30, 40, 50]

>>> L1[0] # Print the first element of the List

10

Explanation The above example L1 creates a list of five elements

L1 = [10,20,30,40,50]

where L1 is the reference variable of the list.

L1[4] 50

L1[3] 40

L1[2] 30

L1[1] 20

L1[0] 10

Figure 6.1 The list has five elements with index from 0 to 4

 Note: A list retains its original order. Therefore, a list is an ordered set of elements enclosed in square
brackets separated by commas. The index of a non-empty list always starts from zero.

6.4 negative List indices

The negative index accesses the elements from the end of a list counting in backward direction.
The index of the last element of any non-empty list is always -1, as shown in Figure 6.2.

List1 = 10 20 30 40 50 60

–6 –5 –4 –3 –2 –1

Figure 6.2 List with negative index

Accessing the elements of a list using a negative index.

Python Programming144

Example

>>> List1=[10,20,30,40,50,60]#Create a List

>>> List1[-1] #Access Last element of a List

60

>>>List1[-2] #Access the second last element of List

50

>>> List1[-3] #Access the Third last element of List

40

>>>List1[-6] #Access the first Element of the List

10

 Note: 
 List[-n] == List[Length_of(List)-n]

Example:

>>>List1=[10,20,30,40,50,60]

>>>List1[-3]

40

Explanation:

List1[-3]==List1[Len(List1)-3]=List1[6-3]=List1[3].

Thus, List1[-3]==List1[3] prints the element stored at index 3 counting in a forward direction from the list or
we can say it prints the element stored at index -3 counting in a backward direction from the list.

6.5 List sLicing [start: end]

The slicing operator returns a subset of a list called slice by specifying two indices, i.e. start and
end. The syntax is:

Name_of_Variable_of_a_List[Start_Index: End_Index]

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1[1:4]

 20,30,40

The L1[1:4] returns the subset of the list starting from index the start index 1 to one index less than
that of the end index, i.e. 4-1 = 3.

Example

>>> L1=([10,20,30,40,50]) #Create a List with 5 Different Elements

>>> L1[2:5]

[30, 40, 50]

The above example L1 creates a list of five elements. The index operator L1[2:5] returns all the
elements stored between the index 2 and one less than the end index, i.e. 5-1 = 4.

Lists 145

6.6 List sLicing with step size

So far, we learnt how to select a portion of a list. In this section, we will explore how to select every
second or third element of a list using step size. In slicing, the first two parameters are start index
and end index. Thus, we need to add a third parameter as step size to select a list with step size.
To be able to do this we use the syntax:

 List_Name[Start_Index:End_Index:Step_Size]

Example

>>>MyList1=[“Hello”,1,”Monkey”,2,”Dog”,3,”Donkey”]

>>>New_List1=MyList1[0:6:2]

print(New_List1)

[‘Hello’, ‘Monkey’, ‘Dog’]

Explanation Initially we created a list named Mylist1 with five elements. The statement
MyList1[0:6:2] indicates the programmer to select the portion of a list which starts at index 0 and
ends at index 6 with the step size as 2. It means we first extract a section or slice of the list which
starts at the index 0 and ends at the index 6 and then selects every other second element.

Example

>>> List1=[“Python”,450,”C”,300,”,C++”,670]

>>> List1[0:6:3] #Start from Zero and Select every Third Element

[‘Python’, 300] #Output

6.6.1 some more complex examples of List slicing

>>> List1=[1,2,3,4] #List With Four Elements

>>> MyList1[:2] #Access first two elements of the List.

[1,2]

>>> MyList1[::-1] #Display List in Reverse Order

[4, 3, 2, 1]

#Start index with -1 and End Index with 0 and step Size with -1

>>>MyList1[-1:0:-1]

[4, 3, 2]

6.7 pythOn inbuiLt functiOns fOr Lists

Python has various inbuilt functions that can be used with lists. Some of these are listed in
Table 6.1.

Python Programming146

Table 6.1 Inbuilt functions that can be used with lists

Inbuilt Functions Meaning

Len() Returns the number of elements in a list.

Max() Returns the element with the greatest value.

Min() Returns the element with the lowest value.

Sum() Returns the sum of all the elements.

random.shuffle() Shuffles the elements randomly.

Example

#Creates a List to store the names of Colors and return size of list.

>>> List1=[“Red”,”Orange”,”Pink”,”Green”]

>>> List1

[‘Red’, ‘Orange’, ‘Pink’, ‘Green’]

>>> len(List1) #Returns the Size of List

4

#Create a List, find the Greatest and Minimum value from the list.

>>> List2=[10,20,30,50,60]

>>> List2

[10, 20, 30, 50, 60]

>>> max(List2) #Returns the greatest element from the list.

60

>>> min(List2) #Returns the minimum element from the list.

10

#Create a List, and Shuffle the elements in random manner.

#Test Case 1

>>>import random

>>> random.shuffle(List2)

>>> List2

[30, 10, 20, 50, 60]

>>> List2

[30, 10, 20, 50, 60]

#Test Case2

>>> random.shuffle(List2)

>>> List2

[20, 10, 30, 50, 60]

Lists 147

#Create a List, and find the sum of all the elements of a List.

>>> List2=[10,20,30,50,60]

>>> List2

[10, 20, 30, 50, 60]

>>> sum(List2) # Returns the sum of all the elements

170

6.8 the List OperatOr

 1. The + Operator: The concatenation operator is used to join two lists.

Example

>>> a=[1,2,3] #Create a list with three elements 1,2, and 3

>>> a #Prints the list

[1, 2, 3]

>>> b=[4,5,6] #Create a list with three elements 4,5, and 6

>>> b #print the list

[4, 5, 6]

>>> a+b #Concatenate the list a and b

[1, 2, 3, 4, 5, 6]

 2. The * Operator: The multiplication operator is used to replicate the elements of a list.

Example

>>> List1=[10,20]

>>> List1

[10, 20]

>>> List2=[20,30]

>>> List2

[20, 30]

>>> List3=2*List1 #Print each element of a List1 twice.

>>> List3

[10, 20, 10, 20]

 3. The in Operator: The in operator used to determine whether an element is in a list. It returns
True if the element is present and False if the element is absent in the list.

Example

>>> List1= [10,20]

>>> List1

[10, 20]

>>> 40 in List1 #To Check if 40 is present in List1

False

>>> 10 in List1 #To Check if 10 is present in List1

True

Python Programming148

 4. The isOperator: Let us execute the following two statements:
 A=’Python’
 B=’Python’

 We know that both A and B refer to a string but we don’t know whether they refer to the same
string or not. Two possible situations are:

A ‘Python’

B ‘Python’

A ‘Python’

B

 In the first case, A and B refer to two different objects that have the same values. In second
case, they refer to the same object. To understand whether two variables refer to the same
object, a programmer can use the ‘is’ operator.

Example

>>> A=’Microsoft’

>>> B=’Microsoft’

>>> A is B #Check if two variable refer to the same Object

True

From the above example, it is clear that Python created only one string object and both A and B
refer to the same object. However, when we create two lists with the same elements, Python creates
two different objects as well.

Example

>>> A=[‘A’,’B’,’C’]

>>> B=[‘A’,’B’,’C’]

>>> A is B #Check if two lists refer to the same Object

False

Explanation In the above example, the two lists A and B contain exactly the same number of
elements. The is operator is used to check if both the variables A and B refer to the same object,
but it returns False. It means that even if the two lists are the same, Python creates two different
objects. State diagram for the above example is given in Figure 6.3.

A [‘A’,’B’,’C’]

B [‘A’,’B’,’C’]

Figure 6.3 Effect of is operator on a list

It is important to note that in the above example, we can say that the two lists are equivalent
because they have the same elements. We cannot say that both the lists are identical because they
don’t refer to the same object.

Lists 149

 Note: 
1. In case of strings, if both the variables contain the same values then both the variables refer to the

same object.
2. In case of a list, if two variables contain the list with the same number of elements then both the

variables refer to two different objects.
3. If two objects are identical then they are also equivalent.
4. If two objects are equivalent then it is not necessary that they will also be identical.

 5. The del Operator: The del operator stands for Delete. The del operator is used to remove the
elements from a list. To delete the element of a list, the elements of the list are accessed using
their index position and the del operator is placed before them.

Example

Lst=[10,20,30,40,50,60,70]

>>> del Lst[2] #Removes 3rd element from the List

>>> Lst

[10, 20, 40, 50, 60, 70]

Lst=[10,20,30,40,50,60,70]

>>> del Lst[-1]

>>> Lst #Removes last element from the List

[10, 20, 30, 40, 50, 60]

>>> Lst=[10,20,30,40,50,60,70]

>>> del Lst[2:5] #Removes element from index position 2 to 4

>>> Lst

[10, 20, 60, 70]

>>> Lst=[10,20,30,40,50,60,70]

>>> del Lst[:] #Removes all the element from the List

>>> Lst

[]

 Note: The del operator uses index to access the elements of a list. It gives a run time error if the index
is out of range.
Example:

>>> del Lst[4]

Traceback (most recent call last):

 File “<pyshell#37>”, line 1, in <module>

 del Lst[4]

IndexError: list assignment index out of range

Python Programming150

6.9 List cOmprehensiOns

List comprehension is used to create a new list from existing sequences. It is a tool for transforming
a given list into another list.

Example: Without list comprehension

Create a list to store five different numbers such as 10, 20, 30, 40 and 50. Using the for loop, add
number 5 to the existing elements of the list.

>>> List1= [10, 20, 30, 40, 50]

>>> List1

 [10, 20, 30, 40, 50]

>>> for i in range(0,len(List1)):

 List1[i]=List1[i]+5 #Add 5 to each element of List1

>>> List1 #print the List1 After Performing

 [15, 25, 35, 45, 55]

The above code is workable but not the optimal code or the best way to write a code in Python.
Using list comprehension, we can replace the loop with a single expression that produces the same
result.

The syntax of list comprehension is based on set builder notation in mathematics. Set builder
notation is a mathematical notation for describing a set by stating the property that its members
should satisfy. The syntax is

[<expression> for <element> in <sequence> if <conditional>]

The syntax is designed to read as “Compute the expression for each element in the sequence,

if the conditional is true”.

Example: Using list comprehension

>>> List1= [10, 20, 30, 40, 50]

>>> List1

 [10, 20, 30, 40, 50]

>>>for i in range(0,len(List1)):

 List1[i]=List1[i]+10

>>>List1

[20, 30, 40, 50, 60]

>>> List1= [10,20,30,40,50]

>>> List1= [x+10 for x in List1]

>>> List1

[20, 30, 40, 50, 60]

 Without List Comprehension Using List Comprehension

In the above example, the output for both without list comprehension and using list
comprehension is the same. The use of list comprehension requires lesser code and also runs
faster. With reference to the above example we can say that list comprehension contains:

 a. An input sequence

Lists 151

 b. A variable referencing the input sequence

 c. An optional expression

 d. An output expression or output variable

Example

List1= [20, 30, 40, 50, 60]

List1= [x+10 for x in List1]

 (An output (An input sequence)

 variable)

 (A variable referencing

 an input sequence)

Output [20, 30, 40, 50, 60]

PrOgram 6.1
 Write a program to create a list with elements 1,2,3,4 and 5. Display even elements of the list
using list comprehension.

List1=[1,2,3,4,5]

print(“Content of List1”)

print(List1)

List1=[x for x in List1 if x%2==0]

print(“Even elements from the List1”)

print(List1)

Output

Content of List1

[1, 2, 3, 4, 5]

Even elements from the List1

[2, 4]

Explanation The List1 contains element 1,2,3,4 and 5. The statement List1=[x for x in List1 if

x%2==0] consists of an output variable x and an input sequence List1 and an expression x%2==0.

6.9.1 some more examples of List comprehension

PrOgram 6.2 Consider the following mathematical expressions

 A = {: x in {0………9}}

 B = {: x in {0……9}}

 C = {X : x in A and even}

Python Programming152

Write a program to create a list ‘A’ to generate squares of a number (from 1 to 10), list ‘B’ to generate cubes of a
number (from 1 to 10) and list ‘C’ with those elements that are even and present in list ‘A’.

print(“List A = “,end=” “)

A=[x**2 for x in range(11)] #Computes Square of a number X

print(A)

B=[x**3 for x in range(11)] # Computes Cube of a number X

print(“List B = “,end=” “)

print(B)

print(“Only Even Numbers from List A = “,end=” “)

C=[x for x in A if x%2==0]

print(C)

Output

List A = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

List B = [0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

Only Even Numbers from List A = [0, 4, 16, 36, 64, 100]

PrOgram 6.3 Consider a list with five different Celsius values. Convert all the Celsius values into Fahrenheit.

print(“All the elements with Celsius Value:”)

print(“Celsius= “,end=””)

Celsius=[10,20,31.3,40,39.2] #List with Celsius Value

print(Celsius)

print(“ Celsius to Fahrenheit Conversion “)

print(“Fahrenheit = “,end=””)

Fahrenheit=[((float(9)/5)*x + 32) for x in Celsius]

print(Fahrenheit)

Output

All the elements with Celsius Value:

Celsius= [10, 20, 31.3, 40, 39.2]

 Celsius to Fahrenheit Conversion

Fahrenheit = [50.0, 68.0, 88.34, 104.0, 102.56]

Note: Formula to convert Celsius values into Fahrenheit.
Fahrenheit = (9/5) * Celsius + 32

PrOgram 6.4
 Consider the list with mixed type of elements, such as L1 = [1,’x’,4,5.6,’z’, 9, ‘a’, 0, 4]. Create
another list using list comprehension which consists of only the integer element present within
the list L1.

Lists 153

print(“List With Mixed Elements”)

L1 = [1,’x’ ,4,5.6,’z’, 9, ‘a’, 0, 4]

print(L1)

print(“List With only Integer Elements:”)

L2 = [e for e in L1 if type(e) == int]

print(L2)

Output

List With Mixed Elements

[1, ‘x’, 4, 5.6, ‘z’, 9, ‘a’, 0, 4]

List With only Integer Elements:

[1, 4, 9, 0, 4]

6.10 List methOds

Once a list is created, we can use the methods of the list class to manipulate the list. Table 6.2
contains the methods of the list class along with examples.

Table 6.2 Methods of list along with example

Methods of List Meaning

None append(object x)

Example:

>>> List1=[‘X’,’Y’,’Z’]

>>> List1

[‘X’, ‘Y’, ‘Z’]

>>> List1.append(‘A’) #Append element ‘A’ to the end

of the List1

>>> List1

[‘X’, ‘Y’, ‘Z’, ‘A’]

Note: Append method is equivalent to doing:

 List1[len(List1):]=[Element_Name]

Example:

>>>List1=[“Red”,”Blue”,”Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List1[len(List1):]=[‘Yellow’]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’, ‘Yellow’]

Adds an element x to the end of
the list. None is the return type
of method appended.

(Contd.)

Python Programming154

None clear()

Example:

>>> List1=[“Red”, “Blue”, “Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List1.clear() # Removes all the element of List

>>> List1 # Returns Empty List after

removing all elements

[]

Removes all the items from the
list.

int count(object x)

Example:

>>> List1=[‘A’,’B’,’C’,’A’,’B’,’Z’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘A’, ‘B’, ‘Z’]

#Count the number of times the element ‘A’ has

appeared in the list

>>> List1.count(‘A’)

2 # Thus, ‘A’ has appeared 2 times in List1

Returns the number of times the
element x appears in the list.

List copy()

Example:

>>> List1=[“Red”,”Blue”,”Pink”]

>>> List1

[‘Red’, ‘Blue’, ‘Pink’]

>>> List2=List1.copy() # Copy the contents of List1

to List2

>>> List2

[‘Red’, ‘Blue’, ‘Pink’]

 Note: Copy() Method is equivalent to doing

List2=List1[:] # Copies the content of List1 to List2

Example:

>>> List1=[“Red”,”Blue”,”Pink”]

>>> List2=List1[:]

>>> List2

[‘Red’, ‘Blue’, ‘Pink’]

This method returns a shallow
copy of the list.

None extend(list L2)

Example:

>>> List1= [1,2,3]

>>> List2= [4,5,6]

>>> List1

[1, 2, 3]

Appends all the elements of list
L2 to the list.

(Contd.)

Lists 155

>>> List2

[4, 5, 6]

>>> List1.extend(List2) #Appends all the elements

of List2 to List1

>>> List1

[1, 2, 3, 4, 5, 6]

int index(object x)

Example:

>>> List1=[‘A’,’B’,’C’,’B’,’D’,’A’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘A’]

#Returns the index of first occurrence of element

‘B’ from the list1

>>> List1.index(‘B’)

1 #Returns the index of element B

Returns the index of the first
occurrence of the element x from
the list.

None insert(int index,Object X)

Example:

>>> Lis1=[10,20,30,40,60]

>>> Lis1

[10, 20, 30, 40, 60]

>>> Lis1.insert(4,50) #Insert Element 50 at index 4

>>> Lis1

[10, 20, 30, 40, 50, 60]

Insert the element at a given
index.
Note: The index of the first
element of a list is always zero.

Object pop(i)

Example:

>>> Lis1=[10,20,30,40,60]

>>> Lis1

[10, 20, 30, 40, 60]

>>> Lis1.pop(1) # Remove the element which is at

index 1.

20

>>> Lis1 # Display List after removing the

element from index 1.

[10, 30, 40, 60]

>>> Lis1.pop() # Remove the last element from the

list

60

>>> Lis1

[10, 30, 40] #Display the list after removing last

element

Removes the element from the
given position. Also, it returns
the removed element.
Note: The parameter i is optional.
If it is not specified then it
removes the last element from
the list.

(Contd.)

Python Programming156

None remove(object x)

Example:

>>> List1=[‘A’,’B’,’C’,’B’,’D’,’E’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘E’]

>>> List1.remove(‘B’)#Removes the first occurrence

of element B

>>> List1

[‘A’, ‘C’, ‘B’, ‘D’, ‘E’]

Removes the first occurrence of
element x from the list.

None reverse()

Example:

>>> List1=[‘A’,’B’,’C’,’B’,’D’,’E’]

>>> List1

[‘A’, ‘B’, ‘C’, ‘B’, ‘D’, ‘E’]

>>> List1.reverse() # Reverse all the elements of

the list.

>>> List1

[‘E’, ‘D’, ‘B’, ‘C’, ‘B’, ‘A’]

Reverses the element of the list.

None sort()

Example:

>>> List1=[‘G’,’F’,’A’,’C’,’B’]

>>> List1

[‘G’, ‘F’, ‘A’, ‘C’, ‘B’] #Unsorted List

>>> List1.sort()

>>> List1 #Sorted List

[‘A’, ‘B’, ‘C’, ‘F’, ‘G’]

Sort the elements of list.

 Q. What will be the output of the following program?

my_list = [‘two’, 5, [‘one’, 2]]

print(len(my_list))

Output

3

Explanation [‘one’,2] is one element so the overall length is 3.

 Q. What will be the output of the following program?

Mixed_List=[‘pet’ , ‘dog’ ,5, ‘cat’, ‘good’,’dog’]

Mixed_List.count(‘dog’)

Output

2

Lists 157

Explanation It returns the number of occurrence of “dog” in the list.

 Q. What will be the output of the following program?

Mylist=[‘Red’,3]

Mylist.extend(‘Green’)

print(Mylist)

Output

[‘Red’, 3, ‘G’, ‘r’, ‘e’, ‘e’, ‘n’]

Explanation Extend the list by adding each character to it.

 Q. What will be the output of the following program?

Mylist=[3,’Roses’,2,’ Chocolate ‘]

Mylist.remove(3)

Mylist

Output

[‘Roses’, 2, ‘Chocolate’]

Explanation Remove the item from the list whose value is 3.

6.11 List and strings

A String is a sequence of characters and list is sequence of values, but a list of characters is not the
same as string. To convert from string to a list of character, you can use list.

Example: Convert String to list of Characters

>>> p=’Python’

>>> p

‘Python’

>>> L=list(p)

>>> L

[‘p’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’]

6.12 spLitting a string in List

In the above example, we have used the inbuilt function list. The list() function breaks a string
into individual letters. In this section, we will explore how to split a string into words.

The str class contains the split method and is used to split a string into words.

Python Programming158

Example

>>> A=”Wow!!! I Love Python Programming” #A Complete String

>>> B=A.split() # Split a String into Words

>>> B #Print the contents of B

[‘Wow!!!’, ‘I’, ‘Love’, ‘Python’, ‘Programming’]

Explanation In the above example, we have initialised string to A as “Wow!!! I Love Python
Programming”. In the next line, the statement, B = A.split() is used to split “Wow!!! I Love Python
Programming” into the list [‘Wow!!!’, ‘I’, ‘Love’, ‘Python’, ‘Programming’].

Note: In the above program, we have used the following two lines to split string into words:
>>> A=”Wow!!! I Love Python Programming”

>>> B=A.split()

We can also write the split method as

>>> A=”Wow!!! I Love Python Programming”.split()

It is fine to split a string without a delimiter. But what if the string contains the delimiter? A
string containing a delimiter can be split into words by removing the delimiter. It is also possible
to remove the delimiter from the string and convert the entire string into a list of words. In order to
remove the delimiter, the split() method has a parameter called split(delimiter). The parameter

delimiter specifies the character to be removed from the string. The following example illustrates
the use of a delimiter inside the split() method.

Example

>>> P=”My-Data-of-Birth-03-June-1991” # String with Delimiter ‘-‘

>>> P # Print the Entire String

 ‘My-Data-of-Birth-03-June-1991’

>>> P.split(‘-’) #Remove the delimiter ‘–‘ using split method.

 [‘My’, ‘Data’, ‘of’, ‘Birth’, ‘03’, ‘June’, ‘1991’]

6.13 passing List tO a functiOn

As list is a mutable object. A programmer can pass a list to a function and can perform various
operations on it. We can change the contents of a list after passing it to a function. Since a list is an
object, passing a list to a function is just like passing an object to a function.

Consider the following example to print the contents of a list after the list is passed to a function.

PrOgram 6.5
 Create a list of 5 elements. Pass the list to a function and print the contents of the list inside the
function.

def Print_List(Lst):

 for num in Lst:

(Contd.)

Lists 159

 print(num,end=” “)

Lst=[10,20,30,40,100]

Print_List(Lst) # Invoke Function by Passing List as Parameter

Output

10 20 30 40 100

PrOgram 6.6 Create a list of five elements. Pass the list to a function and compute the average of five numbers.

def Calculate_Avg(Lst):

 print(‘Lst= ‘,Lst)

 print(‘ Sum = ‘,sum(Lst))

 avg=sum(Lst)/len(Lst)

 print(‘ Average = ‘,avg)

Lst=[10,20,30,40,3]

Calculate_Avg(Lst)

Output

Lst= [10, 20, 30, 40, 3]

Sum = 103

Average = 20.6

PrOgram 6.7
 Write a function Split_List(Lst,n), where list Lst is split into two parts and the length of the first part
is given as n.

Lst = [1,2,3,4,5,6]

Split_List(Lst,2)

Lst1=[1,2]

Lst2=[3,4,5,6]

def Split_List(Lst,n) :

 list1 = Lst[:n]

 list2 = Lst[n:]

 print(‘First List with ‘,n,’ elements’)

 print(list1)

 print(‘Second List with ‘,len(Lst)-n,’ elements ‘)

 print(list2)

#Sample test:

Lst = [100,22,32,43,51,64]

print(‘List Lst Before Splitting’)

(Contd.)

Python Programming160

print(Lst)

Split_List(Lst,4)

Output

List Lst Before Splitting

[100, 22, 32, 43, 51, 64]

First List with 4 elements

[100, 22, 32, 43]

Second List with 2 elements

[51, 64]

6.14 returning List frOm a functiOn

We can pass a list while invoking a function. Similarly, a function can return a list. When a function
returns a list, the list’s reference value is returned.

Consider the following example to pass a list to a function. After passing, reverse the elements
of the list and return the list.

PrOgram 6.8 Write a program to pass a list to function

def Reverse_List(Lst):

 print(‘List Before Reversing = ‘,Lst)

 Lst.reverse() # The reverse() to reverse the contents of list

 return Lst # Return List

Lst=[10,20,30,40,3]

print(‘List after Reversing = ‘,Reverse_List(Lst))

Output

List Before Reversing = [10, 20, 30, 40, 3]

List after Reversing = [3, 40, 30, 20, 10]

PrOgram 6.9
 Write a function that accepts a positive integer k and returns a list that contains the first five
multiples of k.

The first five multiples of 3 are 3, 6, 9, 12, and 15.

def list_of_multiples(k):

 my_list=[]

 for i in range(1,6):

 res=k*i

 my_list.append(res)

(Contd.)

Lists 161

 return my_list

print(list_of_multiples(3))

Output

[3, 6, 9, 12, 15]

Some More Programs on List

PrOgram 6.10
 Write a function that accepts two positive integers, viz. a and b and returns a list of all the even
numbers between a and b (including a and not including b).

Even numbers between 10 and 20.

 [10,12,14,16,18]

def list_of_even_numbers(start, end):

 output_list = []

 for number in range(start, end):

 # check if the number is even

 if number % 2 == 0:

 # if true put the numbers in the output list

 output_list.append(number)

 return output_list

print(list_of_even_numbers(10, 20))

Output

[10, 12, 14, 16, 18]

PrOgram 6.11
 Write a function is_Lst_Palindrome(Lst) to check whether a list is palindrome. It should return True
if Lst is palindrome and False if Lst is not palindrome.

Note: List is palindrome if it contains the same elements in forward direction & reverse direction.

Lst = [1,2,3,2,1] #Should return true

Lst = [1,2,3] #Should return false.

def is_Lst_Palindrome(Lst):

 r = Lst[::-1]

 for i in range (0, (len(Lst) + 1)//2):

 if r[i] != Lst[i]:

 return False

 return True

(Contd.)

Python Programming162

#Sample test

Lst = [1,2,3,2,1]

x = is_Lst_Palindrome(Lst)

print(Lst,”(is palindrome): “,x)

Lst1 = [1,2,3,4]

x = is_Lst_Palindrome(Lst1)

print(Lst1,”(is palindrome): “,x)

Output

[1, 2, 3, 2, 1] (is palindrome): True

[1, 2, 3, 4] (is palindrome): False

PrOgram 6.12
 Write a function check_duplicate(Lst) which returns True if a list Lst contains duplicate elements.
It should return False, if all the elements in the list Lst are unique.

 Lst = [4,6,2,1,6,7,4]

 # Should return true as 4 and 6 appears more than once.

 Lst = [1,2,3,12,4]

 # Should return false as all the elements appears only once.

def check_duplicate(Lst) :

 dup_Lst = []

 for i in Lst:

 if i not in dup_Lst:

 dup_Lst.append(i)

 else:

 return True

 return False

#Sample test:

Lst = [4,6,2,1,6,7,4]

print(Lst)

x = check_duplicate(Lst)

print(x)

Lst1 = [1,2,3,12,4]

print(Lst1)

x = check_duplicate(Lst1)

print(x)

Output

[4, 6, 2, 1, 6, 7, 4]

True # Returns true since 4 and 6 is repeated twice

(Contd.)

Lists 163

[1, 2, 3, 12, 4]

False

#Returns false since no element from above list is repeated twice

PrOgram 6.13
 Write a program that prompts a user to enter the element of a list and add the element to a list.
Write a function maximum(Lst) and minimum(Lst) to find the maximum and minimum
number from the list.

 Lst = [12,34,45,77]

 #Should return 12 as Minimum and 77 as Maximum.

lst = []

for i in range(0,4):

 x = input(‘Enter element to add to the list:’)

 x = int(x)

 lst.append(x)

print(‘Elements of List are as follows:’)

print(lst)

def maximum(lst):

 myMax = lst[0]

 for num in lst:

 if myMax < num:

 myMax = num

 return myMax

def minimum(lst):

 myMin = lst[0]

 for num in lst:

 if myMin > num:

 myMin = num

 return myMin

#Sample test

y = maximum(lst)

print(‘Maximum Element from List = ‘,y)

y = minimum(lst)

print(‘Minimum Element from the List = ‘,y)

Output

Enter element to add to the list:665

Enter element to add to the list:234

(Contd.)

Python Programming164

Enter element to add to the list:213

Enter element to add to the list:908

Elements of List are as follows:

[665, 234, 213, 908]

Maximum Element from List = 908

Minimum Element from the List = 213

PrOgram 6.14
 Write a function Assign_grade(Lst) which reads the marks of a student from a list and
assigns a grade based on the following conditions:

 if Marks >=90 then grade A

 if Marks >=80 && <90 then grade B

 if Marks >65 && < 80 then grade C

 if Marks > =40 && <=65 then grade D

 if Marks <40 then grade F

Consider the List of Marks of a 5 Student in English Subject.

 Lst=[78,90,34,56,89]

#Should return

 Student 1 Marks 78 grade C

 Student 2 Marks 90 grade A

 Student 3 Marks 34 grade F

 Student 4 Marks 56 grade D

 Student 5 Marks 89 grade B

def Assign_grade(Lst):

 for Marks in Lst :

 if Marks >= 90:

 print(‘Student’,Lst.index(Marks) + 1,’Marks =’,Marks,’ grade A’)

 elif Marks >=80 and Marks<90:

 print(‘Student’,Lst.index(Marks)+ 1,’Marks =’,Marks,’ grade B’)

 elif Marks >65 and Marks< 80 :

 print(‘Student’,Lst.index(Marks)+ 1,’Marks =’,Marks,’ grade C’)

 elif Marks >=40 and Marks<=65:

 print(‘Student’,Lst.index(Marks)+ 1,’Marks =’,Marks,’ grade D’)

 else:

 print(‘Student’,Lst.index(Marks)+ 1,’Marks =’,Marks,’ grade F’)

#Sample test

Lst=[78,90,34,56,89]

(Contd.)

Lists 165

print(‘Marks of 5 Student = ‘,Lst)

Assign_grade(Lst)

Output

Marks of 5 Student = [78, 90, 34, 56, 89]

Student 1 Marks = 78 grade C

Student 2 Marks = 90 grade A

Student 3 Marks = 34 grade F

Student 4 Marks = 56 grade D

Student 5 Marks = 89 grade B

PrOgram 6.15
 Write a function check_duplicate(Lst) which returns True if a list Lst contains duplicate elements.
It should return False if all the elements in the list Lst are unique.

Lst = [4,6,2,1,6,7,4]

Should return true as 4 and 6 appears more than once.

Lst = [1,2,3,12,4]

Should return false as all the elements appears only once.

def check_duplicate(Lst) :

 dup_Lst = []

 for i in Lst:

 if i not in dup_Lst:

 dup_Lst.append(i)

 else:

 return True

 return False

#Sample test:

Lst = [4,6,2,1,6,7,4]

print(Lst)

x = check_duplicate(Lst)

print(x)

Lst1 = [1,2,3,12,4]

print(Lst1)

x = check_duplicate(Lst1)

print(x)

(Contd.)

Python Programming166

Output

[4, 6, 2, 1, 6, 7, 4]

True # Returns true since 4 and 6 is repeated twice

[1, 2, 3, 12, 4]

False #Returns false since no element from above list is repeated twice

PrOgram 6.16 Write a function print_reverse(Lst) to reverse the elements of a list.

Note: Reverse the contents of a list without using the reverse() method of a list and without using
slicing.

 Lst=[12,23,4,5]

 # Should reverse the contents of list as follows

 Lst=[5,4,23,12]

def print_reverse(Lst):

 print(‘List Before Reversing’)

 print(Lst)

 lst = []

 count = 1

 for i in range(0,len(Lst)):

 lst.append(Lst[len(Lst)-count])

 count += 1

 lst = str(lst)

 lst = ‘’.join(lst)

 return lst

#Sample test:

Lst=[12,23,4,5,1,9]

x = print_reverse(Lst)

print(‘List After Reversing’)

print(x)

Output

List Before Reversing

[12, 23, 4, 5, 1, 9]

List After Reversing

[9, 1, 5, 4, 23, 12]

PrOgram 6.17
 Write a function that accepts two positive integers a and b (a is smaller than b) and returns a list
that contains all the odd numbers between a and b (including a and including b if applicable)
in descending order.

Lists 167

Odd numbers between 10 and 20 should create the list and print the list in descending order as follows

 [19, 17, 15, 13, 11]

def list_of_odd_numbers(start, end):

 output_list = []

 for number in range(start, end+1):

 # check if the number is odd

 if number % 2 == 1:

 # if true put the numbers in the output list

 output_list.append(number)

 # Sort the List

 output_list.sort()

 # Reverse the list to displat elements in descending order

 output_list.reverse()

 return output_list

print(list_of_odd_numbers(10, 20))

Output

[19, 17, 15, 13, 11]

PrOgram 6.18 Write a program to return prime numbers from a list.

List1=[3,17,9,2,4,8,97,43,39]

print(‘List1= ‘,List1)

lst = []

print(‘Prime Numbers from the List are as Follows:’)

for a in List1 :

 prime = True

 for i in range(2, a):

 if (a%i == 0):

 prime = False

 break

 if prime:

 lst.append(a)

print(lst)

Output

List1= [3, 17, 9, 2, 4, 8, 97, 43, 39]

Prime Numbers from the List are as Follows:

[3, 17, 2, 97, 43]

Python Programming168

 SUmmary

  A list is a sequence of zero or more elements.

  The element within a list can be of any data type.

  List is a mutable kind of data structure.

  A list can be initialised in different ways, viz. with and without using constructor lists.

  The index operator is used to access the elements of a list.

  The negative index accesses elements from the end of a list by counting in backward direction.

  The slicing operator and the list slicing with step size operator return a subset of a list.

  Various inbuilt functions can be used with lists.

  The for loop can be used to traverse the elements of a list.

  List comprehension can be used to create a new list from existing sequences. It is a tool for transforming
a given list into another list.

  Methods such as copy, reverse and sort can be used to copy, reverse and sort the elements of a list.

  Methods such as append(), extend(), insert() are used to insert the elements within the list
whereas methods such as pop(), and remove() are used to remove the contents from the list

  Proficiency in a list is impossible unless the unanswered problems are taken up for solving.

 KEy TErmS

 � The index[] Operator: Accesses elements of a list

 � List Slicing: Returns a subset of a list

 � List Comprehensions: Creates a new list from an existing list

 � The split() Method: Splits a string into words

 � The List Inbuilt Method: min(), max(), shuffle(), len() and sum()

 rEviEW QUESTiOnS

a. multiple Choice Questions

 1. Given: List1 = [‘a’,’b’,’c’,’d’].

 What will be the output of the following statement?

 List1 = [x for x in List1 if ord(x) > 97]

 print(List1)

 a. [‘a’,’b’,’c’] b. [‘b’,’c’,’d’]

 c. [‘a’,’b’,’c’,’d’] d. None of the above

 2. Consider the list, L = [‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’]. Which one of the following outputs is correct?

 a. >>> L[0::3] b. >>> L[0:-1]

 [‘a’, ‘c’, ‘f’, ‘i’] [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’]

 c. >>> L[0:2] d. None of the above

Lists 169

 [‘a’, ‘b’, ’c’]

 3. Consider the list L1 containing the elements L1= [1, 2, 3].

 What will be the output of the following statement?

 L1 = L1 + [4, 5, 6]

 a. L1 =[1,2,3,5,7,9] b. L1 =[4,5,6]

 c. L1 =[5,7,9] d. L1 =[1,2,3,4,5,6]

 4. What will be the output of the following statement?

 List1 = [[n, n + 1, n + 2] for n in range(0, 3)]

 a. [0, 1 , 2] b. [[0, 1, 2],[0,1,2],[0,1,2]]

 c. [[0, 1 ,2],[1, 2, 3],[2, 3, 4]] d. [[0, 1 ,2],[2, 3, 4],[4, 5, 6]]

 5. What will be the output of the following statement?

>>> string = ‘DONALD TRUMPH’

>>> k = [print(i) for i in string if i not in “aeiou”]

>>> print(k)

 a. DONALD TRUMPH b. DNLD TRMPH

 c. DNLD d. None of the above

 6. What will be the output of the following program?

def func1(L):

 L[0]=’A’

L1=[1,2,3]

func1(L1)

print(L1)

 a. [1,2,3] b. [1,’A’,’2’]

 c. [‘A’,1,2] d. [‘A’,’1’,’2’]

 7. What will be the output of the following statement?

>>> L1=[‘A’,’B’,3,4,5]

>>> L1[::-1]

>>> print(L1)

 a. [5,4,3,’B’,’A’] b. [‘A’,’B’,3,4,5]

 c. [‘A’,3, 5] d. [5,3,’A’]

 8. How will a new element be added to the empty list L1?

 a. L1.append(10) b. L1.add(10)

 c. L1.appendLast(10) d. L1.addLast(10)

 9. What will be the output of the following program?

list1=[10,30]

list2 = list1

list1[0] = 40

print(list2)

 a. 10, 30 b. 40, 30

 c. 10, 40 d. 30, 40

Python Programming170

 10. List1 = [‘A’,’B’,’C’] and List2 = [‘B’,’A’,’C’]

 Is List1 == List2?

 a. Yes c. Cannot predict

 b. No d. None of the above

B. True or False

 1. The list() is used to create an empty list.

 2. The range() is used for creating a list with elements from 0 to 5.

 3. A list can be created without using a constructor.

 4. The elements of a list are not identified by their positions.

 5. The negative index accesses elements from the start of a list.

 6. List1[-1] accesses the first element of a list.

 7. L1[2:5] returns all the elements stored between the index 2 and the one less than the end index, i.e. 5-1
= 4.

 8. It is possible to access the elements of a list only in sequence.

 9. The len() returns a number of elements in a list.

 10. The sum() returns the sum of all the elements in a list.

 11. It is impossible to shuffle elements randomly in a list.

 12. The concatenation operator ‘+’ is used to join two lists.

 13. The multiplication operator * is used to replicate the elements in a list.

 14. The del operator is used to remove a specific element from a list.

 15. Odd elements of a list can be displayed using list comprehension.

 16. One can insert an element at a given index.

 17. The pop(1) removes an element from a list which is at index 1.

 18. The pop() removes the last element from a list.

 19. A string is a sequence of characters.

 20. A programmer can pass a list to a function and perform various operations.

C. Exercise Questions

 1. How is a list created?

 2. Explain the different ways to create a list with suitable examples.

 3. What is meant by slicing operation?

 4. What is the benefit of step size in a list?

 5. Explain the supporting inbuilt functions used to create lists.

 6. List and clarify the operators supporting lists.

 7. What is the use of the ‘is’ operator in Python?

 8. Which operator is used to delete elements from a list?

 9. What application is used for list comprehension?

 10. What facilitates counting of similar elements in a list?

 11. How are elements of a list reversed?

 12. How is a string converted into characters?

 13. How is an empty list and list with five integers, i.e. 10, 15, 30, 50 and 40 created?

Lists 171

 14. Given: List1 = [‘a’,’b’,’c’,’d’,’e’] and List2= [1, 2, 3]. What is the return value of each of the following
statements?

 a. ice b. List1+List2

 c. List2*2 d. 2*List2

 15. Given: List1 = [100,200,400,500]. What is the return value of the following statements?

 a. min(List1) b. max(List1)

 c. sum(List1) d.) List.count(400)

 e. List1.count(100)+List1.count(200)

 16. Given: List1 = [12, 23, 45, 23]. What is the return value of the following statements?

 a. List1*List1.count(23) b. List1+List1[:]

 c. List1+List1[-1:] d. List1+List1[::]

 e. List1+List1[::-1]

 17. Given: List Lst = [10,23,5,56,78,90]. Evaluate the following expressions.

 a. Lst[:] b. Lst[0:4]

 c. Lst[:-1] d. Lst[-1:]

 e. Lst[-1] f. Lst[::-1]

 g. Lst[:-1:] h. Lst[:-2:]

 18. Given: List1= [12, 45, 7, 89, 90]. What is the return value of the following statements?

 a. List1.reverse() b. List1.sort()

 c. List1.appned(10) d. List.pop(2)

 e. List1.clear()

 19. What is the error in the following program?

List1=[‘a’,’b’,’c’,’d’]

List2=[]+List1

List1[1]=’f’

print(List1*List2)

print(List2)

 20. Write a program to pass a list to a function and return it in the reverse order.

 1. Write the function Replicate_n_times(Lst,n) to replicate the elements of a list n times, i.e. to
replicate the elements of a list for a given number of times.

 Example:

 Lst = [1, 2, 3, 4]

 Replicate_n_time(Lst,2)

 Lst = [1,1,2,2,3,3,4,4]

 2. Write a program to count the occurrences of each element within a list.

 Example:

 Lst = [1, 23, 0, 9, 0 ,23]

 1 occurs 1 time

PrOgramming aSSignmEnTS

(Contd.)

Python Programming172

PrOgramming aSSignmEnTS (Contd.)

 23 occurs 2 times

 0 occurs 2 times

 9 occurs 1 times

 3. Write the function remove_negative(Lst) to remove the negative elements and return the
positive elements from a list.

 Example:

 Lst = [-1, 0,2,-4,12]

 #Should return list with positive elements

 Lst = [0,2,12]

 4. Write a program to duplicate all the elements of a list.

 Example:

 Lst=[1,2,3]

 #Should return

 Lst=[1,1,2,2,3,3]

 5. Write a program to check if an element of a list is a prime number. If it is prime, return True
or else return False.

 Example:

 List1=[3,17,9,2,4,8]

 #Should display

 Lsit1=[True, True, False, False, False, False]

 6. Write the function remove_first_last(list) to remove the first and last element from a list.

 Example:

 List1=[10,20,30,40,50]

 removeFirstAndLast(Lis1)

 #should return

 [20, 30, 40]

 7. Write a function Extract_Even(List) to return all even numbers from a list.

 Example:

 List1=[1,2,3,4,5,6]

 Extract_Even(List1)

 #should return

 [2,4,6]

7

Tuples, Sets and Dictionaries

Learning OutcOmes

After completing this chapter, students will be able to:

• Create tuples, sets and dictionaries and explain their necessity and importance in programming

• Pass variable length arguments to tuples and use inbuilt functions such as len, min, max and sum, and
other functions such as zip() and sort() on tuples

• Perform different operations on sets such as union, intersection, difference and symmetric difference

• Create dictionaries and add, retrieve, modify and delete the values of dictionaries

• Traverse the contents of sets, tuples and dictionaries using the for loop function

chapter OutLine

7.1 Introduction to Tuples

7.2 Sets

7.3 Dictionaries

7.1 intrOductiOn

Tuples work exactly like lists. A tuple contains a sequence of items of many types. The elements of
tuples are fixed. Once a tuple has been created, we cannot add or delete elements, or even shuffle
their order. Hence, tuples are immutable. This means that once created, they cannot be changed.
Since tuples are immutable, their length is also fixed. A new tuple must be created to grow or
shrink an earlier one.

Python Programming174

7.1.1 creating tuples

A tuple is an inbuilt data type in Python. In order to create a tuple, the elements of tuples are
enclosed in parenthesis instead of square brackets. All the elements of a tuple are separated by
commas.

Example: Defining a tuple

T1 = () #Create an empty tuple

T2 = (12,34,56,90) #Create a tuple with 4 elements

T3 = (‘a’,’b’,’c’,’d’,’e’) #Create a tuple of 5 characters

T4 = ‘a’,’b’,’c’,’d’,’e’ #Create a tuple without parenthesis

 Note: #To create a tuple of a single element, it should be followed by a
comma.

>>> T1=(4,)

>>> type(T1)

<class ‘tuple’>

Is it possible to create a tuple of a single element without a comma?

>>> T1=(4)

>>> type(T1)

<class ‘int’>

Point to Remember

A single value in parenthesis is not a tuple.

7.1.2 the tuple()Function

In the above section, we learnt how to create a tuple. For example, an empty tuple is created by
using empty parenthesis.

>>>t1=() # Create Empty tuple

>>> t1 # Print Empty tuple

()

>>> type(t1) #Check the type of t1

<class ‘tuple’>

An alternate way of creating a tuple is by using the tuple() function.

Example

>>> t1=tuple() # Create Empty tuple using tuple() function

>>> t1 # Print tuple t1

()

If the argument to a tuple() function is a sequence, i.e. string, list or a tuple then the result is a
tuple with the elements of the sequence.

Tuples, Sets and Dictionaries 175

Example

>>> t1=tuple(“TENNIS”) #Tuple function with string as argument

>>> t1

(‘T’, ‘E’, ‘N’, ‘N’, ‘I’, ‘S’)

7.1.3 inbuilt Functions for tuples

Python provides various inbuilt functions that can be used with tuples. Some of these are shown
in Table 7.1.

Table 7.1 Inbuilt functions that can be used with tuples

Inbuilt Functions Meaning

len() Returns the number of elements in a tuple

max() Returns the element with the greatest value

min() Returns the element with the smallest value

sum() Returns the sum of all the elements of a tuple

index(x) Returns the index of element x

count(x) Returns the number of occurrences of element x

Example

>>> t1=(“APPLE”)

>>> len(t1) #Return the length of tuple t1

5

>>> max(t1) #Return Element from tuple with Maximum Value

‘P’

>>> min(t1) #Return Element from tuple with Minimum Value

‘A’

>>> t1.index(‘A’)

0

>>> t1.count(‘P’)

2

7.1.4 indexing and slicing

Since tuples are like lists, the indexing and slicing of tuples is also similar to that of lists. The
index [] operator is used to access the elements of a tuple.

Example

t[0] t[1] t[2] t[3] t[4] t[5] Positive Index

P Y T H O N

t[-6] t[-5] t[-4] t[-3] t[-2] t[-1] Negative Index

Python Programming176

>>> t=(‘P’,’Y’,’T’,’H’,’O’,’N’) #Create Tuple

>>>t #Print Tuple

>>>(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>> t[0]

‘P’

>>> t[5]

‘N’

>>> t[-1]

‘N’

>>> t[-6]

‘P’

Tuple Slicing Example

>>> t=(‘P’,’Y’,’T’,’H’,’O’,’N’) #Create Tuple

>>>t #Print Tuple

>>>(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>>t[0:] #Print the contents of tuple t starting from index 0

(‘P’, ‘Y’, ‘T’, ‘H’, ‘O’, ‘N’)

>>> t[0:3] #Print the contents of tuple t starting from 0 to 2

(‘P’, ‘Y’, ‘T’)

 Note: More details of slicing can be found in Chapter 8: Lists.

7.1.5 Operations on tuples

Tuples don’t support all methods supported by lists. A tuple supports the usual sequence operations
supported by a list.

1. The + Operator: The concatenation + operator is used to join two tuples.

>>>(1,2)+(3,4) #The concatenation operator

(1, 2, 3, 4)

2. The * Operator: The multiplication operator is used to replicate the elements of a tuple.

>>> (1,2)*3 #The Repetition Operator

(1, 2, 1, 2, 1, 2)

7.1.6 passing Variable Length arguments to tuples

We can pass variable number of parameters to a function. An argument which begins with the * in
function definition gathers all arguments into a tuple.

Program 7.1
 Write a program to create a function create _ tup() which accepts a variable number of
arguments and prints all of them.

def create_tup(*args):

 print(args)

(Contd.)

Tuples, Sets and Dictionaries 177

output

Run the above program in interactive mode of Python.

>>> create_tup(1,2,3,4)

(1, 2, 3, 4)

>>> create_tup(‘a’,’b’)

(‘a’, ‘b’)

The inbuilt sum() function takes two parameters to add the elements within it.

How can we create a function that takes variable arguments and adds all the elements present
in it?

The following program creates the function sum _ all() which accepts a variable number of
arguments and displays the sum of all the arguments.

Program 7.2
 Create function sum _ all() to accept a variable number of arguments and display the sum
of all the elements present in it.

def sum_all(*args):

 t=()

 s=0

 for i in args:

 s=s+i

 print(s)

output

#Running the above program in Python interactive mode.

>>>sum_all(10,20,30,40) #Function sum_all with variable arguments

100

 >>> sum_all(1,2,3)

6

7.1.7 Lists and tuples

A tuple can also be created from a list. This is illustrated in the following example.

Example

>>> List1=[1,2,3,4] #Create List

>>> print(List1) #Print List1

[1, 2, 3, 4]

>>> type(List1) #Print the type of variable List1

<class ‘list’>

>>> t1=tuple(List1) #Convert List to tuple

>>> t1 #print t1

Python Programming178

(1, 2, 3, 4)

>>> type(t1) #Check type of t1 after converting List to Tuple

<class ‘tuple’>

7.1.8 sort tuples

If a programmer wants to sort a tuple, he/she can use the inbuilt sort() method. A tuple does not
contain any method named sort. Therefore, to sort a tuple, a programmer will have to first convert
a tuple into a list. After conversion, he/she can use sort() method for lists and then again convert
the sorted list into a tuple.

>>> t1=(7,2,1,8) #Create Tuple t1

>>> t1 #Print t1

(7, 2, 1, 8)

>>> L1=list(t1) #Convert Tuple t1 to List

>>> L1 #Print L1

[7, 2, 1, 8]

>>> L1.sort() #Sort List

>>>t2=tuple(L1) #Convert Sorted List to Tuple

>>> t2 #Print sorted tuple

(1, 2, 7, 8)

7.1.9 traverse tuples from a List

A tuple assignment can be used in the for loop to traverse a list of tuples.

Program 7.3 Write a program to traverse tuples from a list.

T=[(1, “Amit”),(2,”Divya”),(3,”Sameer”)]

for no, name in t:

 print(no, name)

output

1 Amit

2 Divya

3 Sameer

7.1.10 the zip() Function

The zip() is an inbuilt function in Python. It takes items in sequence from a number of collections
to make a list of tuples, where each tuple contains one item from each collection. The function is
often used to group items from a list which has the same index.

Example

>>> A1=[1,2,3]

Tuples, Sets and Dictionaries 179

>>> A2=”XYZ”

>>> list(zip(A1,A2)) #Zip List A1 and A2

[(1, ‘X’), (2, ‘Y’), (3, ‘Z’)]

Explanation

The result of list (zip(A1,A2)) is a list of tuples where each tuple contains an index wise element
from each list as a pair.

Example

>>> L1=[‘Laptop’, ‘Desktop’, ‘Mobile’] #Create List1

>>> L2=[40000,30000,15000] #Create List2

>>> L3=tuple((list(zip(L1,L2)))) #Group item from List 1 and 2

>>> L3 #print L3

((‘Laptop’, 40000), (‘Desktop’, 30000), (‘Mobile’, 15000))

Note: If the sequences are not of the same length then the result of zip() has the length of the shorter
sequence.
Example:

>>> a=”abcd” #Sequence of length 4

>>> b=[1,2,3] #Sequence of length 3

>>> list(zip(a,b)) #Zip() on a and b returns list of tuples

[(‘a’, 1), (‘b’, 2), (‘c’, 3)]

Program 7.4
 Consider two lists, viz. List L1 and L2 . Here, L1 contains a list of colors and L2 contains their color
code as:

 L1=[‘Black’,’White’,’Gray’]

 L2=[255,0,100]

Display the contents as:

 (‘Black’,255)

 (‘white’,0)

 (‘Gray’,100)

L1=[‘Black’,’White’,’Gray’] #Create List L1

L2=[255,0,100] #Create List L2

for Color,Code in zip(L1,L2): # Use of zip in for loop

 print((Color,Code))

output

(‘Black’, 255)

(‘White’, 0)

(‘Gray’, 100)

Python Programming180

7.1.11 the inverse zip(*) Function

The * operator is used within the zip() function. The * operator unpacks a sequence into positional
arguments. A simple example of the * operator on positional arguments is given as follows:

Program 7.5 Demonstrate the use of the * operator on positional arguments.

def print_all(Country, Capital):

 print(Country)

 print(Capital)

output

>>> args=(“INDIA”,”DELHI”)

>>> print_all(*args)

INDIA

DELHI

Explanation In the above program, the function print _ all() is created. When *args are assed
to the function print_all, its values are unpacked into the function’s positional arguments arg1 to
Country and Capital to arg2.

The function zip(*) also performs the same operation, i.e. unpacks a sequence into positional
arguments.

Program 7.6 Demonstrate the use of the zip(*) function.

X=[(“APPLE”,50000),(“DELL”,30000)] #List of tuples

Laptop,Prize=zip(*X) # Unpacking Values

print(Laptop)

print(Prize)

output

(‘APPLE’, ‘DELL’)

(50000, 30000)

Explanation In the above program, initially the list is created. List x contains a sequence of tuples.
The function zip(*) is used to unpack the values of x.

7.1.12 more examples on zip(*) Function

#Transpose of a matrix

>>> Matrix=[(1,2),(3,4),(5,6)]

Tuples, Sets and Dictionaries 181

>>> Matrix

[(1, 2), (3, 4), (5, 6)]

>>> x=zip(*Matrix)

>>> tuple(x)

((1, 3, 5), (2, 4, 6))

7.1.13 more programs on tuples

Program 7.7
 Consider an example of a tuple as T = (1, 3, 2, 4, 6, 5). Write a program to store numbers present
at odd index into a new tuple.

def oddTuples(aTup): #Function with tuple as an argument

 rTup = () #Initially the output tuple rTup is empty

 index = 0

 while index < len(aTup):

 rTup += (aTup[index],)

 index += 2 #index increased by 2

 return rTup

t=(1, 3, 2, 4, 6, 5)

print(oddTuples(t))

output

(1, 2, 6)

Explanation In the above program, initially a tuple ‘t’ is created. This tuple ‘t’ is passed as a
parameter to a function. The while loop iterates till the length of the tuple. In each iteration, the
number stored at an odd index is accessed and stored into the output tuple ‘rTup’.

7.2 sets

A set is an unordered collection of unique elements without duplicates. A set is mutable. Hence, we
can easily add or remove elements from a set. The set data structure in Python is used to support
mathematical set operations.

7.2.1 creating sets

A programmer can create a set by enclosing the elements inside a pair of curly brackets {}. The
elements within a set can be separated using commas. We can also create a set using the inbuilt
set() function, or from an existing list or tuple.

Examples

>>>S1 =set() # Creates an empty Set

>>>S1 # Print Set S1

Python Programming182

set()

>>> type(S1) # Check type of S1

<class ‘set’>

>>> S1={10,20,30,40} # Create set of 4 elements

>>> S1 # Print Set S1

{40, 10, 20, 30}

>>> S2=[1,2,3,2,5] # Create List

>>> S2 # Print List

[1, 2, 3, 2, 5]

>>> S3=set(S2) # Convert List S2 to Set

>>> S3 #Print S3 (Removes duplicate from the List)

{1, 2, 3, 5}

>>> S4=(1,2,3,4) # Create Tuple

>>> S5=set(S4) # Convert Tuple to Set

>>> S5 # Print S5

{1, 2, 3, 4}

7.2.2 the set in and not in Operator

The in operator is used to check if an element is in a set. The in operator returns True if the element
is present in the list. The not in operator returns True if the said element is not present in the set.

Example

>>> S1={1,2,3}

>>> 3 in S1 # Check if 3 is in S1

True

>>> 4 not in S1 # Check if 4 is not in the S1

True

7.2.3 the python set class

Python contains a set class. The most commonly used methods within the set class (with examples)
are listed in Table 7.2.

Tuples, Sets and Dictionaries 183

Table 7.2 Methods of set class

Function Meaning

s.add(x)
Example:

>>> s1={1,2,19,90} # Create set of 4 elements

>>> s1.add(100) # Add 100 to the existing list
s1

>>> s1 # Print s1

{1, 90, 19, 2, 100}

Adds the element x to an
existing set s.

s.clear()
Example:

>>> s1={1,2,3,4} #Create set of 4 elements

>>> s1.clear() #Remove all the elements from the set
s1

>>> s1 #Print s1

set()

Removes the entire element
from an existing set.

S.remove(x)
Example:

>>> s1={1,2,3,4}

>>> s1.remove(2) #Remove element 2 from Set s1

>>> S1

{1, 3, 4}
Note: The discard()function is similar to remove function.

Removes the item x from a
set.

s1. issubset(s2)
Example:

>>> s1={1,2,3,4}

>>> s2={1,2,3,4,5}

>>> s1.issubset(s2) # Check if all the elements of s1
are in s2.

True

If every element in s1 is also
in s2 then set s1 is a subset
of s2. The issubset()is
used to check whether s1 is
a subset of s2.

s2.issuperset(s1)
Example:

>>> s1={1,2,3}

>>> s2={1,2,3,4}

>>> s2.issuperset(s1)

True

Let s1 and s2 be two sets.
If s1 is a subset of s2 and
the set s1 is not equal to s2
then the set s2 is called a
superset of A.

Python Programming184

7.2.4 set Operations

In mathematics or everyday applications we often use various set operations, such as union(),
intersection(), difference() and symmetric _ difference(). All these methods are part
of the set class.

The union() Method

The union of two sets A and B is a set of elements which are in A, in B or in both A and B. We can
use the union method or the |operator to perform this operation.

Example

>>> S1={1,2,3,4}

>>> S2={2,4,5,6}

>>> S1.union(S2)

{1, 2, 3, 4, 5, 6}

>>>S1 | S2

{1, 2, 3, 4, 5, 6}

Note: Sets cannot have duplicate elements. So, the union of sets {1,2,3,4} and {2,4,5,6} is
{1,2,3,4,5,6}.

The intersection() Method

The intersection of two sets A and B is a set which contains all the elements of A that also belong
to B. In short, intersection is a set which contains elements that appear in both sets. We can use
intersection methods or the & operator to perform this operation.

Example

>>> S1={1,2,3,4}

>>> S2={3,4,5,6}

>>> S1.intersection(S2)

{3, 4}

>>> S1 & S2

{3, 4}

The difference() Method

The difference between two sets A and B is a set which contains the elements in set A but not in set
B. We can use the difference method or the – operator to perform the difference operation.

Example

>>> A={1,2,3,4}

>>> B={3,4,5,6}

>>> A.difference(B)

{1, 2}

Tuples, Sets and Dictionaries 185

>>>>>> A-B

{1, 2}

The symmetric_difference()

The symmetric difference is a set which contains elements from the either set but not in both sets.
We can use symmetric_difference method or the ^ (exclusive) operator to perform this operation.

Example

>>> S1={1,2,3,4}

>>> S2={3,4,5,6}

>>> S1.symmetric_difference(S2)

{1, 2, 5, 6}

>>> S1^S2

{1, 2, 5, 6}

7.3 dictiOnaries

7.3.1 need of dictionaries

In the previous chapter, we learnt about a Python data structure called list. Lists organise their
elements by position and this kind of structuring is useful when we want to locate elements in a
specific order, i.e. locate either first, last element or visit each element in a sequence.

There may be situation where a programmer is not so much interested in the position of the
item or element in the structure but in association of that element with some other element in the
structure.

For example, to look up Amit’s phone number we are just interested in his number from the
phonebook and don’t care much where the number is located in the phonebook. It means the name
of the person is associated with his phone number.

7.3.2 Basics of dictionaries

In Python, a dictionary is a collection that stores values along with keys. The sequence of such key
and value pairs is separated by commas. These pairs are sometimes called entries or items. All
entries are enclosed in curly brackets { and }. A colon separates a key and its value. Sometimes,
items within dictionaries are also called associative arrays because they associate a key with a
value.

Simple examples of dictionaries are given as follows:

Phonebook - {“Amit”:“918624986968”, “Amol”:“919766962920”}

Country Code Information - {“India”:“+91”,“USA”:“+1”,“Singapore”: “+65”}

The structure of a dictionary is shown in Figure 7.1a. The above phonebook example is illustrated
in Figure 7.1b.

Python Programming186

Key

Key

Value

Value

Amit 918624986968

Amol 919766952920

Item

Search key
Corresponding value

 of that key

(a) Structure of a dictionary (b) Phonebook example

Figure 7.1 a and b Dictionary—structure and example

Keys are like an index operator in a dictionary. A key can be of any type. Therefore, a dictionary
maps a set of objects, i.e. keys to another set of objects, i.e. values. It is a mapping of unique keys to
values, i.e. each key is mapped to one value. Also, dictionaries do not contain any duplicate keys.

7.3.3 creating a dictionary

We can create a dictionary by enclosing the items inside a pair of curly brackets {}. One way to start
a dictionary is to create an empty dictionary first and then add items to it.

Creating an Empty Dictionary

Example

>>>D1 = {} # Create Empty Dictionary

>>>D1 # Print Empty Dictionary

{}

>>> type(D1) # Check the type of D1

<class ‘dict’>

Note: Python uses curly brackets for sets and dictionaries. Therefore, to create an empty dictionary,
we use {} and to create an empty set, we use the function set().

Creating a Dictionary with Two Items

To create a dictionary of two items, the items should be in the form of key:value and separated by
commas.

Example: Creating a dictionary of two items

>>> P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

Tuples, Sets and Dictionaries 187

Creating Dictionaries in Four Different Ways

Example

#Way 1:

>>>D1={‘Name’:’Sachin’,’Age’:40}

>>> D1

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 2:

>>> D2={}

>>> D2[‘Name’]=’Sachin’

>>> D2[‘Age’]=40

>>> D2

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 3:

>>> D3=dict(Name=’Sachin’,Age=40)

>>> D3

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 4:

>>> dict([(‘name’,’Sachin’),(‘age’,40)])

{‘age’: 40, ‘name’: ‘Sachin’}

Explanation

In the above example, we have created dictionaries in four different ways. We can select the first
way if we know all the contents of a dictionary in advance. The second way, if we want to add one
field at a time. The third way requires all keys to string. The fourth way is good if we want to build
keys and values at runtime.

7.3.4 adding and replacing Values

To add a new item to a dictionary, we can use the subscript[] operator. The syntax to add and
an item to a dictionary is:

 Dictionary_Name[key] = value

Example

P[“Jhon”]=”913456789087”

In the above example, the name of the dictionary is P. We are adding the phone number of
“Jhon” into our phonebook. The “Jhon” will act as the key and the phone number of Jhon will be
its value.

Python Programming188

#Running the above example in Python interactive mode

#Create Dictionary of Phonebook

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

#Add another element to the existing Dictionary of Phone Book P

>>> P[“Jhon”]=”913456789087” #Add New element

>>> P

{‘Jhon’: ‘913456789087’, ‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

Note: If a key is already present in a list then it replaces the old value for the said key with the new
value.

Example

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

>>> P[“Amit”]=”921029087865” #Replace the Old value by New

>>> P #Print After Replacing

{‘Amit’: ‘921029087865’, ‘Amol’: ‘919766962920’}

7.3.5 retrieving Values

The subscript[] can also be used to obtain the value associated with a key. The syntax is:

Dictinoary_Name[Key] #Retrieve the value associated with the key.

Example

P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P #Display P

{‘Amit’: ‘918624986968’, ‘Amol’: ‘919766962920’}

>>> P[“Amol”] #Display the value associated with the key “Amol”

‘919766962920’

Note: If a key is not in a dictionary, Python raises an error.

Example

>>>P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> P[“Sachin”]

Tuples, Sets and Dictionaries 189

Traceback (most recent call last):

 File “<pyshell#48>”, line 1, in <module>

 P[“Sachin”]

KeyError: ‘Sachin’

7.3.6 Formatting dictionaries

The % operator is used to substitute values from a dictionary, into a string by a name.

Example

>>> D={}

>>> D[“Laptop”]=”MAC”

>>> D[“Count”]=10

>>> D #Print Dictionary D

{‘Laptop’: ‘MAC’, ‘Count’: 10}

>>> P=”I want %(Count)d %(Laptop)s Laptops”%D

>>> P

‘I want 10 MAC Laptops’

Explanation

In the above program, initially a dictionary is created containing two keys, viz. ‘Laptop’ and
‘Count’. In the statement, “I want %(Count)d %(Laptop)s Laptops”%D.” The characters ‘d’ and ‘s’
for integer and string.

7.3.7 deleting items

We can delete any entry from a dictionary. The del operator is used to remove a key and its
associated value. If a key is in a dictionary then it is removed otherwise Python raises an error. The
syntax used to remove an element from a dictionary is

 del dictionary_name[key]

Example

>>>P={“Amit”:”918624986968”, “Amol”:”919766962920”}

>>> del P[“Amit”] #delete key “Amit”

>>> P #Print after deleting

{‘Amol’: ‘919766962920’}

7.3.8 comparing two dictionaries

The == operator is used to test if two dictionaries contain the same items. Also, the != operator
returns True if the items within dictionaries are not the same.

Python Programming190

Example

>>> A={“I”:”India”,”A”:”America”}

>>> A

{‘I’: ‘India’, ‘A’: ‘America’}

>>> B={“I”:”Italy”,”A”:”America”}

>>> B

{‘I’: ‘Italy’, ‘A’: ‘America’}

>>> A==B

False

>>> A!=B

True

7.3.9 the methods of dictionary class

Python contains dict class for dictionaries. To see the complete documentation for dictionaries we
can run help(dict) in Python interactive mode. Table 7.3 contains the methods of the dictionary
class along with suitable examples.

Table 7.3 Some commonly used dictionary operations

Methods of dict Class What it does?

keys()
Example:

>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}

>>> ASCII_CODE #Print Dictionary named ASCII_CODE

{‘D’: 68, ‘B’: 66, ‘A’: 65, ‘C’: 67}

>>> ASCII_CODE.keys() #Return all keys

dict_keys([‘D’, ‘B’, ‘A’, ‘C’])

Returns a sequence
of keys.

 Values()
Example:

>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}

>>> ASCII_CODE.values() #Return Values

dict_values([68, 66, 65, 67])

Returns a sequence
of values.

items()
Examples:

>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}

>>>ASCII_CODE.items()

dict_items([(‘D’, 68), (‘B’, 66), (‘A’, 65), (‘C’, 67)])

Returns a sequence
of tuples.

clear()
Example:

>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}

>>> ASCII_CODE.clear() # Delete all entries

>>> ASCII_CODE # Print after

{}

Deletes all entries.

(Contd.)

Tuples, Sets and Dictionaries 191

get(key)
Example:

>>> Temperature={“Mumbai”:35,”Delhi”:40,”Chennai”:54}

>>> Temperature.get(“Mumbai”)

35

Returns the value for
a key.

pop(key)
Example:

>>> Temperature.pop(“Mumbai”)

35

>>> Temperature #Print after removing key “Mumbai”.

{‘Delhi’: 40, ‘Chennai’: 54}

Removes a key and
returns the value if
the key exists.

clear()
Example:

>>> Temperature={“Mumabai”:35,”Delhi”:40,”Chennai”:54}

>>> Temperature.clear()

>>> Temperature

Removes all the keys.

7.3.10 traversing dictionaries

The for loop is used to traverse all the keys and values of a dictionary. A variable of the for loop is
bound to each key in an unspecified order. It means it retrieves the key and its value in any order.
The following program shows the traversing elements of a dictionary.

Program 7.8 Write a program to traverse the elements of a dictionary.

Grades={“Tammana”:”A”,”Pranav”:”B”,”Sumit”:”C”}

for key in Grades:

 print(key,”:”,str(Grades[key]))

output

Tammana: A

Sumit: C

Pranav: B

Note: Write the above program in Python shell and then execute it in Python interpreter. The latter will
display all items in a different order.

Program 7.9
 Write a program to assign grades to students and display all the grades using keys() and get()
method of a dictionary.

Grades={“Tamana”:”A”,”Pranav”:”B”,”Summit”:”C”}

for key in Grades.keys():

(Contd.)

Python Programming192

 print(key,’’,Grades.get(key,0))

output

Summit C

Pranav B

Tamana A

Explanation Grades of students are assigned to the dictionary Grades. As discussed in Table 7.3,
the keys() method is used in for loop to return the sequence of keys. All returned keys are stored
in a variable key. Finally, get() method is used to return values associated with the particular key.

7.3.11 nested dictionaries

A dictionary within a dictionary is called a nested dictionary. To understand this, let us make a
dictionary of Indian cricket players with some information about them. The key for this dictionary
will consist of the cricketers’ names. The value will include information such as the runs scored in
test and ODI matches.

>>> Players={“Virat Kohli” : { “ODI”: 7212 ,”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426 ,”Test”:15921}}

>>> Players[‘Virat Kohli’][‘ODI’] # Display run scored by Kohli in ODI

7212

>>> Players[‘Virat Kohli’][‘Test’]#Display run scored by Kohli in Test

3245

>>> Players[‘Sachin Tendulkar’][‘Test’]

 15921

>>> Players[‘Sachin Tendulkar’][‘ODI’]

18426

7.3.12 traversing nested dictionaries

We used the for loop to traverse simple dictionaries. It can also be used to traverse nested
dictionaries. Let us write the above example and use the for loop to go through the keys of the
dictionaries.

Players={“Virat Kohli” : { “ODI”: 7212 ,”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426 ,”Test”:15921}}

#Way 1

for Player_Name, Player_Details in Players.items():

(Contd.)

Tuples, Sets and Dictionaries 193

 print(“”,Player_Name)

 print(“”,Player_Details)

#Way 2

for Player_Name, Player_Details in Players.items():

 print(“ Player: “,Player_Name)

 print(“ Run Scored in ODI:\t”,Player_Details[“ODI”])

 print(“ Run Scored in Test:\t”,Player_Details[“Test”])

output

Sachin Tendulkar

 {‘Test’: 15921, ‘ODI’: 18426}

Virat Kohli

 {‘Test’: 3245, ‘ODI’: 7212}

Player: Sachin Tendulkar

 Run Scored in ODI: 18426

 Run Scored in Test: 15921

Player: Virat Kohli

 Run Scored in ODI: 7212

 Run Scored in Test: 3245

Explanation The above program shows the two different ways to print the details of the
dictionaries. The fist way contains the code:

for Player_Name, Player_Details in Players.items():

 print(“”,Player_Name)

 print(“”,Player_Details)

In the above code, Player_Name stores the keys, i.e. the name of the player from the outer
dictionary and the variable Player_Details stores the value associated with the key, i.e. Player_
Name.

However, the second way is used to access specific information about a player. The code for the
second way is:

for Player_Name, Player_Details in Players.items():

 print(“ Player: “,Player_Name)

 print(“ Run Scored in ODI:\t”,Player_Details[“ODI”])

 print(“ Run Scored in Test:\t”,Player_Details[“Test”])

In the for loop we have used Player_Name which displays the name of the player as key of the
dictionary. To access specific details of that player, key the index [] operator is used.

The above program code is much shorter and easier to maintain, but even this code will not
keep up with our dictionary. If we add more information to our dictionary, we will have to update
our print statements later.

Python Programming194

Let us minimise the above piece of code and put a second for loop inside the first for loop in
order to run through all the information about each player.

Players={“Virat Kohli” : { “ODI”: 7212 ,”Test”:3245},

 “Sachin Tendulkar” : {“ODI”: 18426 ,”Test”:15921}}

for Player_Name, Player_Details in Players.items():

 print(“ “,Player_Name)

 for key in Player_Details:

 print(key,’:’,str(Player_Details[key]))

output

Sachin Tendulkar

Test : 15921

ODI : 18426

 Virat Kohli

Test : 3245

ODI : 7212

Explanation The first loop gives us all the keys in the main dictionary which consist of the name
of each player. Each of these names can be used to unlock the dictionary for each player. The
inner loop goes through the dictionary for that individual player and pulls out all the keys in that
player’s dictionary. The inner for loop prints the key, which tells us the kind of information we are
about to see and the value for that key.

7.3.13 simple programs on dictionary

Program 7.10
 Write a function histogram that takes string as parameter and generates a frequency of
characters contained in it.

 S = “AAPPLE”

The program should create a dictionary

 D = {‘A’: 2, ‘E’: 1, ‘P’: 2, ‘L’: 1}

def Histogram(S):

 D =dict() #Initially Create Empty Dictionary

 for C in S:

 if C not in D:

 D[C] = 1

 else:

 D[C]=D[C]+1

(Contd.)

Tuples, Sets and Dictionaries 195

 return D

H=Histogram(“AAPPLE”)

print(H)

output

{‘A’: 2, ‘E’: 1, ‘P’: 2, ‘L’: 1}

Explanation In the above program, we created a function Histogram(S). A string S is passed as a
parameter to the function. Initially, an empty dictionary is created. The for loop is used to traverse
the string. While traversing, each character is stored in C. If the character C is not in the dictionary
then we inserted a new item into the dictionary with key C and initial value as 1. If C is already in
the dictionary then we incremented D[C].

Program 7.11 Write a program to count the frequency of characters using the get() method.

def Histogram(S):

 D =dict()

 for C in S:

 if C not in D:

 D[C] = 1

 else:

 D[C]=D.get(C,0)+1

 return D

H=Histogram(“AAPPLE”)

print(H)

output

{‘P’: 2, ‘L’: 1, ‘A’: 2, ‘E’: 1}

Program 7.12 Write a program to print and store squares of numbers into a dictionary.

def Sq_of_numbers(n):

 d=dict() #Creates A Empty Dictionary

 for i in range(1,n+1): # Iterates from 1 to N

 if i not in d:

 d[i]=i*i #Store the Square of a Number i into dictionary

 return d

print(‘Squares of Number:’)

(Contd.)

Python Programming196

Z=Sq_of_numbers(5)

print(Z)

output

Squares of Number:

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Program 7.13
 Write a program to pass a list to a function. Calculate the total number of positive and negative
numbers from the list and then display the count in terms of dictionary.

Input: L=[1,-2,-3,4]

Output: {‘Neg’: 2, ‘Pos’: 2}

def abc(L):

 D={} #Empty Dictionary

 D[“Pos”]=0

 D[“Neg”]=0

 for x in L:

 if x>0:

 D[“Pos”]+=1

 else:

 D[“Neg”]+=1

 print(D)

L=[1,-2,-3,4]

abc(L)

output

{‘Pos’: 2, ‘Neg’: 2}

Explanation In the above program, an empty dictionary D is created. Initially two keys are added
to the dictionary, viz. Pos and Neg with count 0 as their respective value. The list L is passed to the
function abc(). If the number is positive or negative, the count is increased accordingly.

Program 7.14 Write a program to convert an octal number into binary.

Input: (543)8

Output: (101100011)

def Convert_Oct_Bin(Number,Table):

 binary=’’

 for digit in Number:

(Contd.)

Tuples, Sets and Dictionaries 197

 binary = binary +Table[digit]

 return binary

octToBinaryTable={‘0’:’000’, ‘1’:’001’,’2’:’010’,

 ‘3’:’011’, ‘4’:’100’,’5’:’101’,

 ‘6’:’110’, ‘7’:’111’}

output

#Sample Input 1:

>>> Convert_Oct_Bin(“553”,octToBinaryTable)

‘101101011’

#Sample Input 2:

>>> Convert_Oct_Bin(“127”,octToBinaryTable)

‘001010111’

Explanation In the above program we created the function Convert_oct_Bin(). It accepts two
parameters. The first parameter is the octal number as a string which we want to convert into
binary and the second parameter is the dictionary which contains the decimal number and its
equivalent binary number.

The above algorithm visits each digit of the octal number, selects the corresponding three bits
which represent that digit in binary and add these bits to the result string binary.

7.3.14 polynomials as dictionaries

As we learnt in previous chapters, Python has two data types, viz. mutable and immutable. Python
objects that cannot change their contents are known as immutable data types. The immutable data
types consist of str and tuple. List and dictionaries can change their contents so they are called
mutable objects. The keys in a dictionary are not restricted to be strings. Any immutable Python
object can be used as a key. However, a common type of key used in a dictionary is of type integers.

Let us consider the following example of how dictionaries with integers as keys represent a
polynomial.

Example of Polynomial

P(Y) = -2 + Y2 + 3Y6

The above example is a polynomial of a single variable, i.e. y. The above polynomial consists
of three terms, viz. (-2), (Y2) and (3Y6). All the terms can be viewed as set of power and coefficient
terms. The first term, i.e. (-2) contains power of y as 0 and coefficient as -2. Similarly, the term two
(Y2) contains the power of y as 2 and coefficient as 1. And the last term (3Y6) contains the power of
y as 6 and coefficient as 3. A dictionary can be used to map a power to a coefficient.

Python Programming198

Representing above Polynomial using Dictionaries

P = {0:-2, 2:1, 6:3}

The above polynomial can also be represented as a list. But we have to fill in all zero coefficients
too since the index must match power. Therefore, representing the above polynomial as list is

P(Y) = -2 + Y2 + 3Y6

P = [-2, 0, 1, 0, 0, 0, 3]

After representing the said polynomial in terms of list, we can compare the representation of
the polynomial in terms of dictionary and list. The advantage of a dictionary is that the user has
to store only the non-zero coefficient. For the polynomial 1+x50 , the dictionary holds only two
elements, while the list holds 51 elements.

Program 7.15 Write a program to evaluate a polynomial of one variable, i.e. x if the value of x is 2.

 P(X) = -2+X2+3X3

 P(2) = 26

def Eval_Poly(P,X):

 sum = 0

 for Power in P:

 sum = sum + P[Power]*X**Power

 print(‘The Value of Polynomial after Evaluation:’,sum)

P ={0:-2, 2:1, 3:3}

Eval_Poly(P,2)

output

The Value of Polynomial after Evaluation: 26

Explanation The function Eval _ Poly() is created. The polynomial P is represented in the form
of a dictionary. The argument to the function is a dictionary of polynomial P. Where P[Power]
holds the coefficient associated with the term X**Power.

mini prOject Orange cap calculator

The orange cap is an annual cricket award presented to the leading run scorer in a cricket series.

Example

Consider an ongoing test cricket series. Following are the names of the players and their scores in
the test1 and 2. Calculate the highest number of runs scored by an individual cricketer in both the
tests.

Tuples, Sets and Dictionaries 199

orangecap({‘test1’:{‘Dhoni’:74, ‘Kohli’:150}, ‘test2’:{‘Dhoni’:29,
‘Pujara’:42}})

From the above example we can analyse the runs scored by each player in both tests as

Dhoni = 74 + 29 = 103

Kohli = 150 + 0 = 150

Pujara = 0 + 42 = 42

Thus, Kohli scored the most runs in both the test matches and he will be awarded the orange
cap for this tournament.

Program Statement

Define a Python function ‘orangecap(d)’ which reads a dictionary ‘d’ of the following form and
identifies the player with the highest total score. The function should return a pair (playername,
topscore), where playername is the name of the player with the highest score and topscore is the
total runs scored by the player.

Input
orangecap({‘test1’:{‘Dhoni’:74, ‘Kohli’:150}, ‘test2’:{‘Dhoni’:29,
‘Pujara’:42}})

output

(‘Kohli’, 150)

algorithm

 | STEP 1: Create a dictionary ‘d’ consisting of overall score details of test1 and tets2.

 | STEP 2: Pass the dictionary ‘d’ to the Orangecap() function.

 | STEP 3: Use the for loop to traverse the contents of dictionaries and nested dictionaries.

 | STEP 4: In each iteration for each player store the runs scored by each player.

 | STEP 5: Display information about a player with name and maximum runs in all the matches.

Program

def orangecap(d):

 total = {}

 for k in d.keys():

 for n in d[k].keys():

 if n in total.keys():

 total[n] = total[n] + d[k][n]

 else:

(Contd.)

Python Programming200

 total[n] = d[k][n]

 print(‘Total Run Scored by Each Player in 2 Tests: ‘)

 print(total)

 print(‘Player With Highest Score’)

 maxtotal = -1

 for n in total.keys():

 if total[n] > maxtotal:

 maxname = n

 maxtotal = total[n]

 return(maxname,maxtotal)

d=orangecap({‘test1’:{‘Dhoni’:74, ‘Kohli’:150}, ‘test2’:{‘Dhoni’:29,
‘Pujara’:42}})

print(d)

output

Total Run Scored by Each Player

{‘Dhoni’: 103, ‘Pujara’: 42, ‘Kohli’: 150}

Player With Highest Score

(‘Kohli’, 150)

 Summary

  A tuple contains a sequence of items of any type.

  The elements of tuples are fixed.

  Tuples are immutable.

  A tuple can also be created from a list.

  The elements of tuples are enclosed in parenthesis instead of square brackets.

  Tuples don’t not contain any method named sort.

  A set is an unordered collection of elements without duplicates.

  Sets are mutable.

  Different mathematical operations such as union, intersection, difference and symmetric difference
can be performed on sets.

  A dictionary is a collection which stores values along with keys.

  A for loop is used to traverse all keys and values of a dictionary.

  The in and not in can be used to check if a key is present in á dictionary.

 KEy TErmS

 � Tuple: Sequence of elements of any type

 � Set: Unordered collection of elements without duplicates

Tuples, Sets and Dictionaries 201

 � Dictionary: Collection of key and value pair

 � Immutable: Python objects which can’t be changed

 � Nested Dictionary: A dictionary within a dictionary

 � zip() Function: Inbuilt Python function used to make a list of tuples

 � zip(*) Function: Zip inverse

 � set Functions: union(), intersection(), difference() and symmetric _ difference()

 rEvIEw QuESTIonS

a. multiple Choice Questions

 1. What will be the output of the following code?

def main():

 Average_Rainfall={}

 Average_Rainfall[‘Mumbai’]=765

 Average_Rainfall[‘Chennai’]=850

 print(Average_Rainfall)

main()

 a. [‘Mumbai’: 765, ‘Chennai’: 850] b. {‘Mumbai’: 765, ‘Chennai’: 850}

 c. (‘Mumbai’: 765, ‘Chennai’: 850) d. None of the above

 2. What will be the output of the following code?

init_tuple=()

print(init_tuple.__len__())

 a. 1 b. 0

 c. NULL d. Empty

 3. What will be the output of the following code?

 t = (1, 2, 3, 4)

 t[2] = 10

 print(t)

 a. 1,2,10,4 b. 1,10,2,4

 c. Error d. 1,10,10,4

 4. What will be the output of the following code?

a = ((1,2),)*7

print(len(a[3:6]))

 a. 2 b. 3

 c. 4 d. Error

 5. What will be the output of the following program?

 my_dict={}

 my_dict[(1, 2, 3)] = 12

 my_dict[(4,5)] = 2

Python Programming202

 print(my_dict)

 a. {12,12,12,2,2} b. Error

 c. {(4, 5): 2, (1, 2, 3): 12} d. {(1, 2, 3): 12 ,(4, 5): 2}

 6. What will be the output of the following code?

jersey = {‘sachin’:10,’Virat’:18}

jersey[10]

 a. Sachin b. Virat

 c. Error d. None of the above

 7. What will be the output after the execution of the following statements?

capital = {‘India’:’Delhi’,’SriLanka’:’Colombo’}

capital=list(captial.values)

 a. Delhi b. [‘Delhi’, ‘Colombo’]

 c. [‘Colombo’] d. Error

 8. Which dictionary has been created correctly?

 a. d={1:[‘+91’,’India’],2:[‘+65’,’USA’]}

 b. d={[‘India’]:1,[‘USA’]:2}

 c. d={(‘India’):1,(‘USA’):2}

 d. d={1:”INDIA”,2:”USA”}

 e. d={“Payal”:1,”Rutuja”:2}

 a. Only d b. Only b

 c. a, b c d. a, c, d and e

 9. Which set has been created correctly?

 a. S1={1,2,3,4}

 b. S2={(1,2),(23,45)}

 c. S2={[1,2],[23,45]}

 a. All a, b and c b. Only c

 c. Both a and b d. Both b and c

 10. What will be the output of the following code?

Fruits = (‘Banana’,’Grapes’,’Mango’,’WaterMelon’)

print(max(fruits))

print(min(fruits))

 a. WaterMelon, Mango b. WaterMelon, Banana

 c. WaterMelon, Grapes d. Banana, WaterMelon

B. True or False

 1. A tuple contains non-sequential items of any type.

 2. The elements of tuples are fixed.

 3. Elements can be added after a tuple has been created.

 4. A tuple is an inbuilt data type in Python.

 5. In order to create a tuple, the elements of tuples are enclosed in parenthesis instead of square brackets.

Tuples, Sets and Dictionaries 203

 6. The elements of tuples are not separated by commas.

 7. Indexing and slicing of tuples is similar to that of lists.

 8. The index [] operator is used to access the elements of a tuple.

 9. The zip() function takes items in a sequence from a number of collections to make a list of tuples.

 10. The * operator unpacks a sequence into positional arguments.

 11. A dictionary within a dictionary is called a nested dictionary.

 12. A for loop can be used to traverse nested dictionaries.

 13. Python objects which cannot change their contents are known as mutable data types.

 14. Immutable data types consist of int, float, complex, str and tuple.

 15. List and dictionaries can change their contents, so they are called immutable.

 16. A dictionary holds only two elements for the polynomial 1+x50 .

C. Exercise Questions

 1. What is meant by a tuple and how is it created?

 2. What are the functions of tuples?

 3. Compare tuples and lists.

 4. How is a single element using a tuple created?

 5. List the inbuilt functions supported by tuples.

 6. How is indexing and slicing of tuples done?

 7. Which operator is used to access the elements in a tuple?

 8. Can a programmer pass a variable to a function? If yes, how?

 9. Consider the example of a tuple as follows:

 x = (11, 12, (13, ‘Sachin’, 14), ‘Hii’)

 a. x[0] b. x[2]

 c. x[-1] d. x[2][2]

 e. x[2][-1] f. x[-1][-1]

 g. x[-1][2] h. x[0:1]

 i. x[0:-1] j. len(x)

 k. 2 in x l. 3 in x

 m. x[0] = 8

 Write the output for the expression

 10. What is the function of zip()?

 11. What is the role of the * operator within the zip() function?

 12. Describe the basics of dictionaries.

 13. A dictionary named ‘Grades’ is created as

 Grades = {“Sahil”:90,”Abhijeet”:65}

 What do the following statements do?

 a. print(Grades.keys()) b. print(Grades.values())

 c. print(len(Grades)) d. Grades[“Kuruss”]=99

 e. Grades[“Abhijeet”] += 5 f. del Grades[“Abhijeet”]

 g. print(Grades.items())

Python Programming204

 14. What will be the output of the following code?

 Set1 = {10, 20, 30, 40}

 a. S1.issubset({10,20,30,40,50,60}) b. S1.issuperset({20,30,40})

 c. print(10 in S1) d. print(101 in S1)

 e. print(len(S1)) f. print(max(S1))

 g. print(sum(s1))

 15. Show the output of the following code.

S1 = {‘A’,’B’,’C’}

S2 = {‘C’,’D’,’E’}

 a. print(S1.union(S2)) b. print(S1.intersection(S2))

 c. print(S1.difference (S2)) d. print(S1.symmetric_difference(S2))

 e. print(S1 ^ S2) f. print(S1 | S2)

 g. print(S1 & S2)

 16. What will be the output of the following code?

 T = (10, 34, 22, 87, 90)

 a. print(t) b. t[0]

 c. print(t[0:4]) d. print(t[:-1])

 17. How can all keys and values of a dictionary be traversed?

 18. How are nested dictionaries created?

 19. How can a polynomial be represented using dictionaries?

 1. Write a function which takes a tuple as a parameter and returns a new tuple as the output,
where every other element of the input tuple is copied, starting from the first one.

T = (‘Hello’,’Are’,’You’,’Loving’,’Python?’)

Output_Tuple = (‘Hello’, ‘You’, ‘Python?’)

 2. Write a function called how_many, which returns the sum of the number of values
associated with a dictionary.

T= animals = {‘L’:[‘Lion’],’D’:[‘Donkey’],’E’:[‘Elephant’]}

>>>print(how_many(animals))

3

 3. Write a function ‘biggest’ which takes a dictionary as a parameter and returns the key
corresponding to the entry with the largest number of values associated with it.

>>>animals = {‘L’:[‘Lion’],’D’:[‘Donkey’,’Deer’],’E’:[‘Elepha
nt’]}

>>>biggest(animals)

>>>d #Since d contains two values

 4. Write a function Count_Each_vowel which accepts string from a user. The function should
return a dictionary which contains the count of each vowel.

 >>> Count_Each_vowel(“HELLO”)

 >>>{‘H’:1, ‘E’:1, ‘L’:2 , ‘O’:2}

ProgrammIng aSSIgnmEnTS

UNIT 4

 Functions Modules, Packages and Introduction
to PIP

8

Functions

Learning OutcOmes

After completing this chapter, students will be able to:

• Describe the necessity and importance of functions in programming languages

• Invoke functions with actual parameters and write a program by invoking a function using keyword
or positional arguments

• Use local and global scope of a variable appropriately

• Define recursive function and its implementation with programs

• Write functions that return multiple values with programs

chapter OutLine

 8.1 Introduction

 8.2 Syntax and Basics of a Function

 8.3 Use of a Function

 8.4 Parameters and Arguments in a Function

 8.5 The Local and Global Scope of a
Variable

 8.6 The return Statement

 8.7 Recursive Functions

 8.8 The Lambda Function

8.1 intrOductiOn

It is difficult to prepare and maintain a large-scale program and the identification of the flow of
data subsequently gets harder to understand. The best way to create a programming application is
to divide a big program into small modules and repeatedly call these modules.

Functions 207

With the help of functions, an entire program can be divided into small independent modules
(each small module is called a function). This improves the code’s readability as well as the flow of
execution as small modules can be managed easily.

8.2 syntax and Basics Of a functiOn

A function is a self-contained block of one or more statements that performs a special task when
called. The syntax for function is given as follows:

def name_of_function(Parameters): Function Header

 statement1

 statement2

 statement3

 ……………………………

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

 Function Body

 ……………………………

 statementN

The syntax for the Python function contains a header and body. The function header begins
with the ‘def’ keyword. The def keyword signifies the beginning of the function’s definition. The
name of the function is followed by the def keyword. The function header may contain zero or
more number of parameters. These parameters are called formal parameters. If a function contains
more than one parameter then all the parameters are separated by commas. A function’s body is a
block of statements. The statements within the function’s body define the actions that the function
needs to perform.

A simple example for creating a function is explained in the following program.

Program 8.1
 Write a program to create a function having a name, display. Print the message, “Welcome to
Python Programming” inside the function.

def Display():

 print(“Welcome to Python Programming “)

Display() #call function

output

Welcome to Python Programming

Explanation In the above program, a function having the name display() is created. This
function takes no parameters. The body of the function contains only one statement. Finally,
function display() is called to print the message “Welcome to Python Programming” within
the block of the function.

Program 8.2
 Write a program to prompt the name of a user and print the welcome message, “Dear Name_
of_user Welcome to Python Programming!!!”

Python Programming208

def print_msg():

 str1=input(“Please Enter Your Name:”)

 print(“Dear “,str1,” Welcome to Python Programming “)

print_msg() #call function

output

Please Enter Your Name: Virat

Dear Virat Welcome to Python Programming

Explanation The function named print _ msg() is created. Initially, the function print _

msg() is called and the control of the program passes to the called function print _ msg(). The
function reads the name of the user by making use of the input reserved keyword and finally the
welcome message is printed.

8.3 use Of a functiOn

A programmer wants to find the sum of numbers starting from 1 to 25, 50 to 75 and 90 to 100.
Without functions, he/she will write the code in the following manner.

Program 8.3
 Write a program to add the sum of digits from 1 to 25, 50 to 76 and 90 to 101 using three
different for loops.

sum=0

for i in range(1,26):

 sum=sum+i

print(‘Sum of integers from 1 to 25 is:’,sum)

sum=0

for i in range(50,76):

 sum=sum+i

print(‘Sum of integer from 50 to 76 is:’,sum)

sum=0

for i in range(90,101):

 sum=sum+i

print(‘Sum of integer from 90 to 100 is:’,sum)

output

Sum of integers from 1 to 25 is: 325

Sum of integer from 50 to 76 is: 1625

Sum of integer from 90 to 100 is: 1045

Functions 209

The programmer has created the above code. Observe that the code to compute the sum of
numbers is conventional. However, there is a slight difference in the range of numbers, i.e. starting
integers and ending integers. Here, all the three for loops contain a different range, i.e. from 1 to
26, 50 to 76 and 90 to 101. Thus, by observing the above code, we can say that it would be better
if we could simply write the common code once and then use it repeatedly. A programmer can
accomplish this by defining function and using it repeatedly. The code above can be simplified and
written using functions as shown in Program 8.4.

Program 8.4 Write a program to illustrate the use of functions.

def sum(x,y):

 s=0;

 for i in range(x,y+1):

 s=s+i

 print(‘Sum of integers from ‘,x,’ to ‘,y,’ is ‘,s)

sum(1,25)

sum(50,75)

sum(90,100)

Explanation The function named sum is created with two parameters ‘x’ and ‘y’. Initially, the
function invokes the first function call, i.e. sum(1, 25) to compute the sum of numbers from 1 to 25.
After computing the sum of numbers from 1 to 25 the control passes to the next function call, i.e.
sum(50, 75). After computing the sum of integers from 50 to 75, the third function is finally called,
i.e. sum(90,100).

Thus, a programmer can effectively make use of functions to write this program.

 a. If a programmer wants to perform a task repetitively, then it is not necessary to re-write the
particular block of the program repeatedly. A particular block of statements can be shifted
in a user-defined function. The function defined can be then called any number of times to
perform a task.

 b. Large programs can be reduced to smaller ones using functions. It is easy to debug, i.e. find
out the errors in it and hence, it also increases readability.

8.4 parameters and arguments in a functiOn

Parameters are used to give inputs to a function. They are specified with a pair of parenthesis in
the function’s definition. When a programmer calls a function, the values are also passed to the
function.

While parameters are defined by names that appear in the function’s definition, arguments
are values actually passed to a function when calling it. Thus, parameters define what types of
arguments a function can accept.

Let us consider the example of passing parameters to a function given as follows and use it to
differentiate between argument and parameter.

Python Programming210

Example

def printMax(num1,num2):

 Statemen1

 Statemen2

üï
ï
ï
ï
ïï
ý
ï
ï
ï
ï
ïïþ

 #Define a Function

 ………………………

 ………………………

 StatementN

printMax(10,20) Call a function(Invoke)

In the above example, printMax(num1, num2) has two parameters, viz. num1 and num2.
The parameters num1 and num2 are also called formal parameters. A function is invoked by
calling the name of the function, i.e. printMax(10,20), where 10, 20 are the actual parameters.
Actual parameters are also called arguments. num1 and num2 are the parameters of a function.

Program 8.5 demonstrates the use of parameters and arguments in a function.

Program 8.5 Write a program to find the maximum of two numbers.

def printMax(num1,num2): #Function Definition

 print(“ num1 = “,num1)

 print(“ num2 = “,num2)

 if num1>num2:

 print(“The Number “,num1,” is Greater than “,num2)

 elif num2>num1:

 print(“The Number “,num2,” is Greater than “,num1)

 else:

 print(“ Both Numbers “,num1,”,and”,num2,”are equal”)

printMax(20,10) #call to function printMax

output

num1 = 20

num2 = 10

The Number 20 is Greater than 10

Explanation In the above program we have defined a function printMax(). The function contains
two parameters, viz. num1 and num2. The function printMax() is called by passing the values
as arguments to the function. The statement printMax(10, 20) causes the value of 10 and 20 to be
assigned to parameters num1 and num2, respectively. Finally, based on the values of num1 and
num2 within the function, greatest of the two numbers is calculated and displayed.

Functions 211

Program 8.6 Write a program to find the maximum of two numbers.

def calc_factorial(num):

 fact=1

 print(“ Entered Number is: “,num)

 for i in range(1,num+1):

 fact=fact*i

 print(“Factorial of Number “,num,” is = “,fact)

number=int(input(“Enter the Number:”))

calc_factorial(number)

output

Enter the Number:5

Entered Number is: 5

Factorial of Number 5 is = 120

8.4.1 positional arguments

Consider the question—If there are more than one parameters, how does Python know which
argument in the call statement has to be assigned to which parameter?

The answer is quite simple. The parameters are assigned by default according to their position,
i.e. the first argument in the call statement is assigned to the first parameter listed in the function
definition. Similarly, the second argument in the call statement is assigned to the second parameter
listed in the function’s definition and so on.

Consider a simple example to demonstrate the use of positional arguments.

Example

 def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(“John”,25)

Display(40,”Sachin”)

In the above example, the evaluation of statement Display(“John”,25) prints the result as
Name = John and age = 25. However, the statement Display(40,”Sachin”) has a different meaning.
It passes 40 to name and Sachin to age. It means the first argument binds to the first parameter
and the second argument binds to the second parameter. This style of matching up arguments and
parameter is called positional argument style or positional parameter style.

In the above example, the function definition Display(Name, age) contains two parameters.
Thus, the call is made to function Display() by passing exactly two parameters.

Python Programming212

What will be the output of the following program?

def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(“John”)

output

Prints the error message

Traceback (most recent call last):

File “C:\Python34\keyword_1.py”, line 3, in <module>

Display(“John”)TypeError: Display() missing 1 required positional
argument: ‘age’

Explanation In the above program, there is no output due to an error. The third line of the
program contains the statement Display(“John”), i.e. the statement has made a call to function
Display(name, age). As the function call contains lesser number of arguments as compared to the
function definition, Python will report a missing argument error.

Note: Python will show an error when an incorrect number of arguments are passed to the function call.
The arguments must match the parameters in order, number and type as defined in the function.

8.4.2 Keyword arguments

An alternative to positional argument is keyword argument. If a programmer knows the parameter
name used within the function then he/she can explicitly use the parameter name while calling the
function. A programmer can pass a keyword argument to a function by using its corresponding
parameter name rather than its position. This can be done by simply typing Parameter_name =

value in the function call.

Syntax to call a function using keyword argument is:

Name_of_Function(pos_args,keyword1=value,keyword2=value2………)

Program 8.7 Write a simple program on keyword argument.

def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(age=25,Name=”John”) #Call function using keyword
 arguments

output

Name = John age = 25

Functions 213

Explanation Thus, in the above program, the statement Display(age=25,Name=”John”) passes
the value 25 to the parameter ‘age’ and ‘John’ to the parameter ‘Name’. It means arguments can
appear in any order using keyword arguments.

Precautions for Using Keyword Arguments

 1. A positional argument cannot follow a keyword argument.

 Example: Consider the function definition,

 def Display(num1,num2):

 Thus, a programmer can invoke the above Display() function as:

 Display(40,num2=10)

 But, he/she cannot invoke the function as:

 Display(num2=10,40)

 because the positional argument 40 appears after the keyword argument num2=10.

 2. A programmer cannot duplicate an argument by specifying it as both, a positional argument
and a keyword argument.

 Example: Consider the function definition,

 def Display(num1,num2):

 Thus, a programmer cannot invoke the above Display() function as

 Display(40,num1=40) #Error

 because he/she has specified multiple values for parameter num1.

8.4.3 parameter with default Values

Parameters within a function’s definition can have default values. We can provide default value to
a parameter by using the assignment (=) operator.

Program 8.8 Write a program to illustrate the use of default values in a function’s definition.

def greet(name,msg=”Welcome to Python!!”):

 print(“ Hello “,name,msg)

greet(“Sachin”)

output

Hello Sachin Welcome to Python!!

In the above example, the function greet() has the parameter name. The parameter name
does not have any default value and is mandatory during a function call. On the other hand,
the parameter msg has a default value as “Welcome to Python!!”. Hence, it is optional during

Python Programming214

a function call. If a value is provided, it will overwrite the default value. Here are some valid
function calls to this function.

#Test case 1

>>> greet(“Amit”)

Output

Hello Amit Welcome to Python!!

#Test case 2

>>> greet(“Bill Gates”,”How are You?”)

Output

Hello Bill Gates How are You?

The above example has two test cases. In the first test case, only one argument is passed to
the function greet() during the function call. And the second parameter is not passed. In such
a case, Python uses the default value of a parameter specified during function definition. But in
case of test case 2, both the parameters greet(“Bill Gates”,”How are You?”) are passed during the
function call. In such a situation, the new argument value overwrites the default parameter value.

 Note: During a function’s definition, any number of parameters in a function can have default values.
But once we have a default value to a parameter, all the parameters to its right must also have default
values. For example, if we define a function’s definition as:

def greet(msg=”Welcome to Python!!”, name): #Error

Python will give the error as:

Syntax Error: Non-default argument follows default argument

Program 8.9 Write a program to calculate the area of a circle using the formula:

 Area of Circle = pi*(r) 2

Declare the default parameter value of pi as 3.14 and radius as 1.

def area_circle(pi=3.14,radius=1):

 area=pi*radius*radius

 print(“radius=”,radius)

 print(“ The area of Circle = “,area)

area_circle()

area_circle(radius=5)

output

radius= 1

(Contd.)

Functions 215

The area of Circle = 3.14

radius= 5

The area of Circle = 78.5

What will be the output of the following program?

def disp_values(a,b=10,c=20):

 print(“ a = “,a,” b = “,b,”c= “,c)

disp_values(15)

disp_values(50,b=30)

disp_values(c=80,a=25,b=35)

output

a = 15 b = 10 c= 20

a = 50 b = 30 c= 20

a = 25 b = 35 c= 80

Explanation In the above program, the function named disp_values has one parameter without a
default argument value, followed by two parameters with default argument values.

During the first function call disp_values(15), parameter a gets the value 15 and parameters b
and c get the default values 10 and 20, respectively.

During the function call disp_values(50,b=30), parameter a gets the value 50, parameter b gets
the value 30, i.e. the value of b is overwritten and parameter c gets the default value 20.

During the function call disp_values(c=80,a=25,b=35), the default values of parameters b and c
are replaced by the new values 35 and 80, respectively.

8.5 the LOcaL and gLOBaL scOpe Of a VariaBLe

Variables and parameters that are initialised within a function including parameters, are said to
exist in that function’s local scope. Variables that exist in local scope are called local variables.
Variables that are assigned outside functions are said to exist in global scope. Therefore, variables
that exist in global scope are called global variables.

Program 8.10 Write a program to show local scope vs global scope.

p = 20 #global variable p

def Demo():

 q = 10 #Local variable q

 print(‘The value of Local variable q:’,q)

 #Access global variable p within this function

 print(‘The value of Global Variable p:’,p)

Demo()

(Contd.)

Python Programming216

#Access global variable p outside the function Demo()

print(‘The value of global variable p:’,p)

output

The value of Local variable q: 10

The value of Global Variable p: 20

The value of global variable p: 20

Explanation In the above example, we have created one local variable ‘q’ and one global variable

‘p’. As global variables are created outside all functions and are accessible to all functions in their
scope, in the above example as well the global variable ‘p’ is accessed from the function Demo()
and it is also accessed outside the function.

Local Variables Cannot be Used in Global Scope

Program 8.11 Write a program to access a local variable outside a function.

def Demo():

 q = 10 #Local variable q

 print(‘The value of Local variable q:’,q)

Demo()

#Access local variable q outside the function Demo()

print(‘The value of local variable q:’,q) #Error

output

The value of Local variable q: 10

Traceback (most recent call last):

 File “C:/Python34/loc1.py”, line 6, in <module>

 print(‘The value of local variable q:’,q) #Error

NameError: name ‘q’ is not defined

Explanation The local variable ‘q’ is defined within the function Demo(). The variable ‘q’ is accessed
from the function Demo(). The scope of a local variable lies within the block of the function, i.e. it
starts from its creation and continues up to the end of the function. Therefore, any attempt to access
the variable from outside of the function causes an error.

Note: Accessing a local variable outside the scope will cause an error.

8.5.1 reading global Variables from a Local scope

Consider the following program where global variables are read from a local scope.

Functions 217

Program 8.12 Write a program where global variables are read from a local scope.

def Demo():

 print(S)

S=’I Love Python’

Demo()

output

I Love Python

Explanation Before calling the function Demo(), the variable ‘s’ is defined as a string, “I Love
Python”. However, the body of the function Demo() contains only one statement print(s) statement.
As there is no local variable ‘s’ defined within the function Demo(), the print(s) statement uses the
value from the global variable. Hence, the output of the above program will be ‘I Love Python’.

8.5.2 Local and global Variables with the same name

What will be the output of the above program if we change the value of ‘s’ inside the function
Demo()? Will it affect the value of the global variable? Program 8.13 demonstrates the change in
value ‘s’ within the function Demo().

Program 8.13 Write a program to change the value ‘s’ within the function.

def Demo():

 S=’I Love Programming’

 print(S)

S=’I Love Python’

Demo()

print(S)

output

I Love Programming

I Love Python

Explanation As we know, the scope of a local variable lies within the block of a function. Initially,
the value of ‘s’ is assigned as ‘I Love Python’. But after calling the function Demo(), the value of ‘s’ is
changed to ‘I Love Programming’. Therefore, the print statement within the function Demo() will
print the value of the local variable ‘s’, i.e. ‘I Love Programming’. Whereas the print statement after
the Demo() statement, will print the old value of the variable ‘s’, i.e. ‘I Love Python’.

8.5.3 the global statement

Consider a situation where a programmer needs to modify the value of a global variable within
a function. In such a situation, he/she has to make use of the global statement. The following
program demonstrates the use of the global statement.

Python Programming218

Program 8.14 Write a program without using the global statement.

a = 20

def Display():

 a = 30

 print(‘ The value of a in function:’,a)

Display()

print(‘The value of an outside function:’,a)

output

The value of a in function: 30

The value of an outside function: 20

Explanation In the above program, we have assigned the value of an outside function as 20. By
chance, a programmer uses the same name, i.e. ‘a’ inside the function. But in this case the variable
‘a’ within the function is local to the function. Therefore, any changes to the value associated with
the name inside the function will change the value of the local variable itself and not the value of
the global variable ‘a’.

Program 8.15 Write a program using the global statement.

a = 20

def Display():

 global a

 a = 30

 print(‘ The value of a in function:’,a)

Display()

print(‘The value of an outside function:’,a)

output

The value of a in function: 30

The value of an outside function: 30

Explanation The program demonstrates the use of the global keyword. The global keyword has
been used before the name of the variable to change the value of the local variable. Since the value
of the global variable is changed within the function, the value of ‘a’ outside the function will be
the most recent value of ‘a’.

8.6 the return statement

The return statement is used to return a value from the function. It is also used to return from a
function, i.e. break out of the function.

Functions 219

Program 8.16 Write a program to return the minimum of two numbers.

def minimum(a,b):

 if a<b:

 return a

 elif b<a:

 return b

 else:

 return “Both the numbers are equal”

print(minimum(100,85))

output

8 is minimum

Explanation The minimum function returns the minimum of the two numbers supplied as
parameters to a function minimum. It uses simple if..elif..else statement to find the minimum value
and then returns that value.

Program 8.17
 Write a function calc_Distance(x1, y1, x2, y2) to calculate the distance between two points
represented by Point1(x1, y1) and Point2 (x2, y2). The formula for calculating distance is:

Distance = ()- + - 22
(x2 x1) y2 y1

import math

def calc_Distance (x1, y1, x2, y2):

 print(“ x1 = “,x1)

 print(“ x2 = “,x2)

 print(“ y1 = “,y1)

 print(“ y2 = “,y2)

 dx=x2-x1

 dx=math.pow(dx,2)

 dy=y2-y1

 dy=math.pow(dy,2)

 z = math.pow((dx + dy), 0.5)

 return z

print(“Distance = “,(format(calc_Distance(4,4,2,2),”.2f”)))

output

 x1 = 4

 x2 = 2

 y1 = 4

 y2 = 2

Distance = 2.83

Python Programming220

Program 8.18
 For a quadratic equation in the form of ax2+bx+c, the discriminant D, is b2 - 4ac. Write a
function to compute the discriminant D, that returns the following output depending on the
discriminant D.

 if D > 0: The Equation has two Real Roots

 if D = 0: The Equation has one Real Root

 if D < 0: The Equation has two Complex Roots

def quad_D(a,b,c):

 d=b*b-4*a*c

 print(“a = “,a)

 print(“a = “,b)

 print(“a = “,c)

 print(“D = “,d)

 if d>0:

 return “The Equation has two Real Roots”

 elif d<0:

 return “The Equation has two Complex Roots”

 else:

 return “The Equation has one Real Root”

print(quad_D(1,2,5))

output

a = 1

a = 2

a = 3

D = -8

The Equation has two Complex Roots

Note: The return statement without a value is equivalent to return ‘None’. Where, ‘None’ is a special
type in Python that represents nothingness.

Program 8.19
 Write a program to pass the radius of a circle as a parameter to a function area_of_circle().
Return the value none if the value of the radius is negative or return the area of the circle.

def area_of_Circle(radius):

 if radius<0:

 print(“ Try Again, Radius of circle cannot be Negative “)

 return

 else:

 print(“Radius = “,radius)

(Contd.)

Functions 221

 return 3.1459*radius**radius

print(“Area of Circle =”,area_of_Circle(2))

output

Radius = 2

Area of Circle = 12.5836

Explanation In the above program, the user has to pass the radius of the circle as a parameter to
the function area_of_circle(). If the radius of the circle is positive then it calculates and returns the
area of the circle. Whereas, if the entered radius of the circle is negative, it returns a none value, i.e.
it returns nothing.

What will be the output of the above program?

def calc_abs(x):

 if x<0:

 return -x

 elif x>0:

 return x

print(calc_abs(0))

output

None

Explanation The above piece of code is incorrect because when the user has passed the value 0
as a parameter to the function calc_abs(), the value of x happened to be 0. Then neither condition
is true and the function ends without executing any return statement. In such a situation, the
function returns a special value called None.

8.6.1 returning multiple Values

It is possible to return multiple values in Python.

Program 8.20
 Write a function calc_arith_op(num1, num2) to calculate and return at once the result of
arithmetic operations such as addition and subtraction.

def calc_arith_op(num1, num2):

 return num1+num2, num1-num2 #Return multiple values

print(“ “,calc_arith_op(10,20))

output

 (30, -10)

Python Programming222

Explanation In the above program, two parameters, viz. num1 and num2 are passed to a function
calc_arith_op(). Within the body of the function, the single return statement computes the addition
and subtraction of the two numbers. Finally, the single return statement returns the result of both
the arithmetic operations, viz. addition and subtraction.

8.6.2 assign returned multiple Values to Variable(s)

It is also possible for a function to perform certain operations, return multiple values and assign
the returned multiple values to a multiple variable.

Program 8.21 Write a program to return multiple values from a function.

def compute(num1):

 print(“Number = “,num1)

 return num1*num1, num1*num1*num1

square,cube=compute(4)

print(“Square = “,square,”Cube = “,cube)

output

Number = 4

Square = 16 Cube = 64

Explanation The number is passed to the function compute(). The return statement calculates the
square and cube of a passed number. After computation, it returns both the values simultaneously.
The returned square of a number is assigned to a variable square and the returned cube of a
number is assigned to a variable cube.

8.7 recursiVe functiOns

So far, we have seen that it is legal for one function to call another function. In programming, there
might be a situation where a function needs to invoke itself. Python also supports the recursive
feature, which means that a function is repetitively called by itself. Thus, a function is said to be
recursive if a statement within the body of the function calls itself.

Let us consider a simple example of recursion. Suppose we want to calculate the factorial value
of an integer. We know that the factorial of a number is the product of all the integers between 1
and that number, i.e. n! is defined as n * (n-1)!.

Consider the following example.

Formula to calculate the factorial of a number (n)! = n*(n-1)!

 5!= 5*(4)!

 = 5*4*(3)!

 = 5*4*3*(2)!

 = 5*4*3*2*(1)

 = 120

Functions 223

Program 8.22 Calculate the factorial of a number using recursion.

def factorial(n):

 if n==0:

 return 1

 return n*factorial(n-1)

print(factorial(5))

output

120

Explanation In the above program, factorial() is a recursive function. The number is passed
to function factorial(). When the function factorial is executed, it is repeatedly invoked by itself.
Every time a function is invoked, the value of ‘n’ is reduced by one and multiplication is carried out.
The recursion function produces the number 5, 4, 3, 2 and 1. The multiplication of these numbers is
carried out and returned. Finally, the print statement prints the factorial of the number.

Program 8.23
 Write a recursive function which computes the nth Fibonacci number. Fibonacci numbers are
defined as:

 Fib(0)= 1,
 Fib(1) = 1
 Fib(n)= Fib(n-1)+Fib(n-2).

Write this as a Python code and then find the 8th Fibonacci number.

def fib(n):

 if n==0:

 return 1

 if n==1:

 return 1

 return fib(n-1)+fib(n-2)

print(“ The Value of 8th Fibonacci number = “,fib(8))

output

The Value of 8th Fibonacci number = 34

8.8 the LamBda functiOn

Lambda functions are named after the Greek letter l (lambda). These are also known as anonymous

functions. Such kind of functions are not bound to a name. They only have a code to execute that
which is associated with them. The basic syntax for a lambda function is:

 Name = lambda(variables): Code

Python Programming224

Let us consider a simple example which calculates the cube of a number using simple concepts
of a function.

>>> def func(x):

 return x*x*x

>>> print(func(3))

27

Without the lambda function Now we will calculate the cube of a number using the lambda
function.

>>> cube = lambda x: x*x*x #Define lambda function

>>> print(cube(2)) #Call lambda function

8

using the lambda function Thus, in the above example, both the functions func() and cube()
do exactly the same thing. The statement cube = lambda x: x*x*x creates a lambda function called
cube, which takes a single argument and returns the cube of a number.

Note: (a) A lambda function does not contain a return statement.
(b) It contains a single expression as a body and not a block of statements as a body.

mini prOject
calculation of compound interest and yearly analysis
of interest and principal amount

This mini project will use programming features, such as decision, control statements and
functions to calculate the interest deposited for a principal amount for some period of time ‘n’ at
some interest ‘r’.

Explanation and Calculation of Compound Interest

Compound interest is the addition of interest to the initial principal amount and also to the
accumulated interest over preceding periods of a deposit or loan.

Compound interest is different from simple interest. In simple interest, there is no interest on
interest. Simply interest is added to the principal amount.

The formula to calculate annual compound interest including principal amount is

CI =
tn

r
 P

t

Ê ˆ+ -Á ˜Ë ¯
 * 1 P

where,

P = Principal investment amount

r = Annual interest rate

n = Number of years the money is invested

t = Number of times the interest is compounded per year

Functions 225

The formula to calculate interest if it is compounded once per year is

I = P * (1 + r)n------- {A}

Thus, ‘I’ gives future values of an investment or loan which is compound interest plus the
principal. So, we are going to use formula ‘A’.

Example

Let principal (P) amount = 10,000

Rate (R) of interest = 5

Number of Years = 7

Value of compound interest per year (t) = 1

We will use the above formula ‘A’ to calculate the interest accumulated each year.

Year Starting Balance Interest Ending Balance

1 10000.00 500.00 10500.00

2 10500.00 525.00 11025.00

3 11025.00 551.25 11576.25

4 11576.25 578.81 12155.06

5 12155.06 607.75 12762.82

6 12762.82 638.14 13400.96

7 13400.96 670.05 14071.00

algorithm to Calculate Compound Interest

 | StEP 1: Read the principal amount, rate of interest and number of years the amount is to be
deposited. (Assuming interest is compounded once per year).

 | StEP 2: Pass the principal, rate of interest and the number of years to the function named
Calculate_Compund_Interest().

 | StEP 3: Iterate for loop for ‘n’ number of times to calculate interest generated per year by using
the formula for compound interest as discussed above.

 | StEP 4: Display the final compound interest.

Program StatEmEnt
 Write a program to calculate compound interest for principal amount as 10,000, at

rate of interest as 5% and number of years the amount is deposited as 7 years.

def Calculate_Compund_Interest(p,n,r):

 print(‘StartBalance\t’,’\tInterest\t’,’Ending Balance’)

 total = 0

(Contd.)

Python Programming226

 x= r/100

 tot = 0

 for i in range(1,n+1):

 z_new = p*(1 + x) **i - p

 z_old = p*(1 + x)**(i-1) - p

 tot = tot + (z_new - z_old)

 if(i == 1):

 print(‘{0:.2f}\t’.format(p),end=’’)

 print(‘\t{0:.2f}\t’.format(z_new - z_old),end=’’)

 print(‘\t\t{0:.2f}\t’.format(z_new+p))

 else:

 print(‘{0:.2f}\t’.format(p+z_old),end=’’)

 print(‘\t{0:.2f}\t’.format(z_new - z_old),end=’’)

 print(‘\t\t{0:.2f}\t’.format(z_new+p))

 print(‘Total Interest Deposited:Rs{0:.2f}’.format(tot))

p = int(input(‘Enter the Principal amount:’))

r = int(input(‘Enter the rate of interest:’))

n = int(input(‘Enter number of year:’))

Calculate_Compund_Interest(p,n,r)

output

Enter the Principal amount:10000

Enter the rate of interest:5

Enter number of year:7

Start Balance Interest Ending Balance

10000.00 500.00 10500.00

10500.00 525.00 11025.00

11025.00 551.25 11576.25

11576.25 578.81 12155.06

12155.06 607.75 12762.82

12762.82 638.14 13400.96

13400.96 670.05 14071.00

Total Interest Deposited: Rs 4071.00

In the above program, initially principal amount, rate of interest and number of years are
read from the user. The same values are passed as a parameter to the function Calculate _

Compund _ Interest(). The for loop is iterated for n number of times to calculate the annual
interest generated per year. The difference between Z_new and Z_old in above program gives the
interest generated per year. At last, the compound interest is displayed.

Functions 227

 Summary

  A function is a self-contained block of one or more statements that perform a special task when called.

  A function’s definition in Python begins with the def keyword followed by the function’s name,
parameter and body.

  The function header may contain zero or more number of parameters.

  Parameters are the names that appear in a function’s definition.

  Arguments are the values actually passed to a function while calling a function.

  Arguments to a function can be passed as positional or keyword arguments.

  The arguments must match the parameters in order, number and type as defined in the function.

  A variable must be created before it is used.

  Variables defined within the scope of a function are said to be local variables.

  Variables that are assigned outside of functions are said to be global variables.

  The return statement is used to return a value from a function.

  Functions in Python can return multiple values.

  Python also supports a recursive feature, i.e. a function can be called repetitively by itself.

 KEy tErmS

 � The def Keyword: Reserved word to define a function

 � Positional Arguments: By default, parameters are assigned according to their position

 � Keyword Arguments: Use syntax keyword = Value to call a function with keyword arguments

 � Local and Global Scope of a Variable: Describes two different scopes of a variable

 � The Return Keyword: Used to return single or multiple values

 � Lambda: An anonymous function

 rEvIEw QuEStIonS

a. multiple Choice Questions

 1. A variable defined outside a function is referred to as

 a. Local variable b. Only variable

 c. Global variable d. None of the above

 2. Which of the following function headers is correct?

 a. def Demo(P, Q = 10): b. def Demo(P=10,Q = 20):

 c. def Demo(P=10,Q) d. Both a and c

 3. What will be the output of the following program?

x = 10

def f():

 x= x + 10

 print(x)

f()

Python Programming228

 a. 20

 b. 10

 c. Error: Local variable X referenced before assignment

 d. None of the above

 4. What will be the output of the following program?

def Func_A(P = 10, Q = 20):

 P = P + Q

 Q = Q + 1

 print(P, Q)

Func_A(Q = 20, P = 10)

 a. Error: P and Q are not defined. b. 20 10

 c. 10 20 d. 30 21

 5. What will be the output of the following program?

Def test():

 x=10

Main Program

x = 11

test()

print(x)

 a. 10 b. 11

 c. Garbage value d. None of the above

 6. If a function does not return any value, then by default which type of value is returned by the function?

 a. int b. double

 c. str d. None

 7. What will be the output of the following program?

def test():

 global x

 x=’A’

Main Program

x = ‘Z’

test()

print(x)

 a. Z b. A

 c. Garbage value d. None of the above

 8. What will be the output of following program?

def test(x):

 x = 200

Main Program

x = 100

test(x)

print(x)

Functions 229

 a. 100 b. Garbage value

 c. 200 d. None of the above

 9. What will be the output of the following program?

def test(x):

 p = 90

Main Program

p = 50

print(test(p))

 a. 90 b. 50

 c. Error d. None

 10. What will be the output of the following program?

def evaluate_expression_1(Z):

 Z = Z + 5

 def evaluate_expression_2(Z):

 print(‘Hello’)

 return Z

 return Z

value = 10

print(evaluate_expression_1(value))

 a. Hello 10 b. 10

 c. 15 Hello d. 15

 11. What will be the output of the following program?

def evaluate_expression_1():

 global x

 x = x - 5

 def evaluate_expression_2():

 global x

 return x + 3

 return evaluate_expression_2()

Main Program

x = 10

print(evaluate_expression_1())

 a. 5 b. 8

 c. 10 d. 13

 12. What will be the output of the following program?

def perform_multiplication(Num1, Num2):

 Num2 = Num1 * Num2

 return Num1, Num2

Python Programming230

Main Program

Num2, Num1 = perform_multiplication(5,4)

print(Num1, Num2)

 a. 5, 4 b. 5, 20

 c. 20, 5 d. 4, 5

 13. What will be the output of the following program?

def Display(Designation, Salary):

 print(“Designation = “,Designation, “Salary = “,Salary)

Display(“Manager”,25000)

Display(300000,’Programmer’)

 a. Error: Type Mismatch

 b. Manger 25000

 300000 Programmer

 c. 300000 Programmer

 Manger 25000

 d. None of the above

B. true or False

 1. A function divides a program in small independent modules.

 2. The syntax of Python function contains a header and body.

 3. The function header begins with the definition keyword.

 4. Parameters are used to give inputs to a function.

 5. Parameters are specified with a pair of parenthesis in the function’s definition.

 6. In a function, parameters are defined by the names that appear in the function’s definition.

 7. Arguments are values actually passed to a function when calling it.

 8. The return statement is used to return a value from a function.

 9. A function invoking itself is called a recursive function.

 10. A function is said to be recursive if a statement within the body of the function calls itself.

C. Exercise Questions

 1. What are the advantages of functions?

 2. What does a function do?

 3. Write the definition of a function.

 4. Write the syntax for a function.

 5. Differentiate between user-defined and library-defined functions.

 6. How does a function work? Explain how arguments are passed and results are returned?

 7. What are arguments? How are arguments passed to a function?

 8. What is the use of a return statement?

 9. Is it possible to return multiple values from a function?

 10. What are local and global variables?

Functions 231

 1. Write a function eval_Quadratic_Equa(a, b, c, x) which returns the value of any quadratic
equation of form

 ax2 + bx + c

 2. Write a function calc_exp(base, exp) which computes the exponent of any number, i.e.
baseexp. The function should take two values as base, which can be float or integer. Exp will
be an integer greater than 0.

 3. Write a function Calc_GCD_Recurr(a, b) which calculates the GCD recursively of two
numbers. The function should take two positive integers and should return one integer as
GCD.

 Note: The greatest common divisor (GCD) of two positive integers is the largest integer that
divides each of them without a remainder.

 Example:

 gcd(12 , 2) = 2

 gcd(6 , 12) = 6

 gcd(9 , 12) = 3

 4. Write a function reverse_number() to return the reverse of the number entered.

 Example:

 Reverse_number(1234) displays 4321

 5. A four-digit integer is entered through the keyboard. Write a function to calculate the sum
of the four-digit number both without recursion and using recursion.

 6. A positive integer is entered through the keyboard. Write a function factors(num) to obtain
the factors of the given numbers.

 7. Write a program to define function dec_bin(num) to convert the existing decimal number
into its equivalent binary number.

ProgrammIng aSSIgnmEntS

9

Modules, Packages and
Introduction to PIP

Chapter outline

 9.1 Introduction to Modules

 9.2 Creating and Importing Modules

 9.3 Packages in Python

 9.4 Introduction to PIP

 9.5 Installing and Uninstalling Packages
via PIP

 9.6 Using Python Packages

9.1 introduCtion to Modules

A module is a piece or part of something. In Python, we can say modules are smaller pieces of a
bigger program. Each module is a separate file on hard disk. Programmer can take a big program
and split it up into more than one module. As Python programs are written in script mode of
Python’s IDLE, once the code is written, the file is saved by .py extension. In short, the modules
are Python’s .py files which contain Python codes. In order to use something that is in a module,
you first have to tell Python which module you want to use. The Python import keyword lets you
to include other modules in your program. The reason behind using modules is as follows.

 a. It makes the file smaller which helps programmer to find the things easily into the written code.

 b. Once module is created, it can be used in lot of programs. This feature saves the programmers
from starting all over again next time if the programmer would need the same function again.

learninG outCoMes

After completing this chapter, students will be able to:

• Learn to create the modules

• Understand the packages

• Learn to install and uninstall packages via PIP

• Learn to use installed packages

Modules, Packages and Introduction to PIP 233

9.2 CreatinG and iMportinG Modules

Writing a module is like writing a simple Python program in a file and saving it in .py extension.
Modules contain definitions of functions, classes and variables which can be utilized in other
programs. Let us create a simple file, viz. Demo.py.

def Display():

 print(‘Hello, Welcome all!’)

If we try to execute the above code, nothing will happen because we have just written the
function and it has not been called from elsewhere to perform its action. So, let us create another
file named main.py so that we can import the module Demo.py what we have just created and
then call the function Display() present in the file Demo.py from a new file, which is main.py.
Therefore, we create another file named main.py. In the file main.py, we will make use of import
statement to import the module named Demo.py. The contents of the main.py file are as follows.

#main.py

import Demo #Importing Module named Demo

demo.Display() #Call function Display present within Demo.py

Output

‘Hello, Welcome all!’

In the above program, we are importing a module, therefore we need to call the function
by referencing the module by “.”, i.e. the dot notation. Thus, we use the ModuleName.
FuncionName() to reference the function present within the module. The statement demo.
Display() calls the function Display() from module named demo.py. The above code contains
the following two lines.

import demo

demo.Display()

We can use the from keyword and replace the above two lines as from Demo import Display.

 Note: The module which we have imported and the file, in which we have used the import statement,
should be in the same directory. With respect to the above example, Demo.py and main.py should
be stored/located at the same location.

Thus, we can get the same output even if we use the from keyword. In the above example, we
have seen how a function being present in another file can be called using the import statement.
A programmer can use the import statement to import variables and classes present in another file
in this manner.

Python Programming234

9.3 paCkaGes in python

As we know that the modules are smaller pieces of bigger program. Where such module is a
separate file on hard disk and each file does contain the Python statements, definitions like
functions and class definitions. Thus, the following section is all about handling the multiple
modules together aiming to form a package.

A package is basically a directory with Python file and file with the name _init_.py. In short,
every directory inside the Python path which contains a file named _init_.py, will be treated as
a package by Python. In those cases, the programmer can put multiple modules into a package. A
package can be imported like a “normal” module.

9.3.1 Creating package

Let us create a simple package with some Python modules. First step is to need to create a folder.
The name of the folder will be the name of package which we want to create. Let the name of
package be “My_First_Package”. The sample directory structure for creating package is shown
in Figure 9.1 as follows.

My_First_Package Folder name

init.py a.py b.py Files within the Directory

Figure 9.1 Package directory structure

 Note: •  The Package (folder or directory structure) should contain _init_.py file.
•  It should also contain one or multiple .py files.
•   Apart from _.init_.py file, all the files will be used as modules and those modules will be

imported in _init_.py file.

Working Example of Package

 | Step 1: Let us create a package (folder). The name of the package, say, “My_First_Package”.

 | Step 2: Create _init_.py file inside the created package, viz. “My_First_Package”. The
directory should contain a file named _init_.py. This file can be empty or it may
contain valid Python code. Let keep it as empty file.

 | Step 3: Inside the package, let us create two different .py files, i.e. a.py and b.py.

Modules, Packages and Introduction to PIP 235

 | Step 4: Write Python code inside a.py and b.py files. Thus, the contents of a.py and b.py
files are as follows.

#a.py

def call _ A():

 print(“I” am in File a.py”)

#b.py

def call _ B():

 print(“I” am in File b.py”)

Execute both of these files, a.py and b.py. Make sure that there are no errors present in it.

 | Step 5: Import ‘My_First_Package’ from the interactive Python as follows.

>>> from My _ First _ Package import a, b

>>> a.call _ A() #Call method Call _ A() present in file a.py

 I am in File a.py

>>> b.call _ B() #Call method Call _ B() present in file b.py

 I am in File b.py

In the above example, we have created three files, i.e. _init_.py, a.py and b.py. But the file
init.py is empty. We have used statement from My_First_Package and import a, b to
import the contents of files, a.py and b.py. Alternatively, we can minimize from My_First_
Package and import a, b statement and automatically load these modules using _init_.py file.
Thus, the open empty ‘_init_.py’ file and insert the following code as follows.

import My _ First _ Package.a

import My _ First _ Package.b

In order to check if imported modules within _init_.py works, execute the following
instructions onto the interactive mode as follows.

>>> My _ First _ Package.a.call _ A()

I am in File a.py

>>> My _ First _ Package.b.call _ B()

I am in File b.py

9.4 introduCtion to pip

One of the hurdles that new Python developer has to understand about the Python packaging eco
system. Where PIP is a tool for installing Python packages from “Python Package Index” (PyPI).
The PyPI is the repository of software for Python programming language. It helps you to find and
install the software being developed and shared by the Python community.

Python Programming236

9.4.1 pip directory structure

The following is the directory structure where you can find the PIP.

Python27 (Base Directory)

 |

 +----------Scripts (Sub Directory)

 |

 +-----------pip

Similarly, following Figure 9.2 shows a snapshot containing PIP into the directory structure.

Figure 9.2 PIP Directory Structure

9.4.2 knowing the Version of pip

If the developer is interested to check the version of PIP, then it can be done in following steps on
windows platform.

 | Step 1: Open CMD (Figure 9.3) (command line interface)—[Press Windows key and in search
option, write CMD and press the Tab and Enter.]

Modules, Packages and Introduction to PIP 237

Figure 9.3 Command Line Interface (CMD)

 | Step 2: Change the directory and go to the base installation directory of Python, i.e. where you
have installed Python software. (In my case, I have installed python on C: drive).
Type following two commands and press the Tab and Enter (Figure 9.4).

Cd/

Cd Python27

Figure 9.4 Root Directory of Python

Python Programming238

 | Step 3: Now, go to the scripts directory inside the root directory. Type following command to
go into the script directory (Figure 9.5).

cd scripts

Figure 9.5 Python Script Directory

 | Step 4: Check if the script directory has PIP. Write command dir to list all the files present
within the directory structure (see Figure 9.6 below).

Figure 9.6 List of files within Script Directory

Modules, Packages and Introduction to PIP 239

 | Step 5: If the script directory contains PIP, then write following command on CMD to know
the version of PIP (see Figure 9.7).

Pip-V

Figure 9.7 Knowing the Version of PIP

 Note: pip–h will list the help options related to PIP.

9.5 installinG and uninstallinG paCkaGes Via pip

Python software packages can be easily installed by making use of command line interface by just
writing one single command. The syntax to install any package is as follows.

Python Programming240

pip install some-package-name

Similarly, the user can uninstall the installed packages using PIP. The syntax is as follows.

pip uninstall some-package-name

9.5.1 the pip Commands and options

The PIP provides various commands and options to know various things related to packages.
Following Table 9.1 gives the details about commands provided by PIP.

table 9.1 Commands and options provided by PIP

Command Meaning

list
Example:
(Run command PIP list on command line interface)
C:\Python27\Scripts>PIP list

cycler (0.10.0)
Cython (0.28.2)
matplotlib (2.2.2)
numpy (1.14.2)
pandas (0.22.0)
pdfminer (20140328)
Pillow (5.1.0)
pip (9.0.1)

List installed packages

list–format columns
Example:
C:\Python27\Scripts>PIP list--format columns

Packages Version
----------------------------- --------
backports.functools-lru-cache 1.5
cycler 0.10.0
Cython 0.28.2
matplotlib 2.2.2
numpy 1.14.2
pandas 0.22.0
pdfminer 20140328
Pillow 5.1.0

List installed packages with column
formatting

legacy
Example:
C:\Python27\Scripts>PIP list--format=legacy

backports.functools-lru-cache (1.5)
cycler (0.10.0)
Cython (0.28.2)
matplotlib (2.2.2)
numpy (1.14.2)
pandas (0.22.0)
pdfminer (20140328)
Pillow (5.1.0)

Use legacy formatting

(Contd.)

Modules, Packages and Introduction to PIP 241

json Use json formatting to list installed
Example: packages.
C:\Python27\Scripts>PIP list--format=json

[{“version”: “1.5”, “name”: “backports.functools-lru-cache”},
{“version”: “0.10.0”, “name”: “cycler”}, {“version”: “0.28.2”, “name”: “Cython”},
{“version”: “2.2.2”, “name”: “matplotlib”},
{“version”: “1.14.2”, “name”: “numpy”}, {“version”: “0.22.0”, “name”: “pandas”}]

freeze

Example:
C:\Python27\Scripts>PIP list--format=freeze

backports.functools-lru-cache==1.5
cycler==0.10.0
Cython==0.28.2
matplotlib==2.2.2
numpy==1.14.2
pandas==0.22.0

Use freeze formatting to list installed
packages.

Outdated List outdated packages

Example:
C:\Python27\Scripts>PIP list--outdated--format columns

Package Version
----------------------------- --------
backports.functools-lru-cache 1.5
cycler 0.10.0
Cython 0.28.2
matplotlib 2.2.2
numpy 1.14.2
pandas 0.22.0
pdfminer 20140328
Pillow 5.1.0
pip 9.0.1

list–outdated–not-required List packages that have not dependencies of

Example: other package.

C:\Python27\Scripts>pip list--outdated--not-required

scipy (1.0.1) - Latest: 1.1.0 [wheel]
setuptools (28.8.0) - Latest: 39.1.0 [wheel]

9.6 usinG python paCkaGes

Before using any package, the developer should look various installed packages by making use of
PIP’s list command. Let us assume we have to make use of package “numpy”, where numpy is a
fundamental package for scientific computing with Python. In short, it is a library which provides
support for large multi-dimensional array and matrices. In order to use it, first check if “numpy”
package is installed or not.

Python Programming242

C:\Python27\Scripts>pip list-format columns

Package Version

----------------------------- --------

backports.functools-lru-cache 1.5

cycler 0.10.0

Cython 0.28.2

matplotlib 2.2.2

The command PIP list shows the installed packages. Among the list of installed packages,
there is no package called “numpy”. Thus, the install package, i.e. numpy staying on command line
interface as follows.

C:\Python27\Scripts>pip install numpy

Collecting numpy

 Downloading

https://files.pythonhosted.org/packages/1c/98/b03970f7e080bccc1118c5ee0f9168ecc735e6c
0e618f7de26d4ec163799/numpy-1.14.3-cp27-none-win32.whl (9.8MB)

 100% |################################| 9.8MB 103kB/s

Installing collected packages: numpy

Successfully installed numpy-1.14.3

Thus, the package numpy is installed and you can start using this package. In order to use it, first
statement is “import numpy” to import the package numpy.

Using installed “numpy” package:

>>> import numpy as np

>>> a = np.array([1,2,3,4]) #Create one dimensional array

>>> a

array([1, 2, 3, 4])

>>> b=np.array([[1,2,3],[4,5,6]]) #Create two dimensional array

>>> b

array([[1, 2, 3],

 [4, 5, 6]])

>>> b.shape

(2, 3)

 Summary

  Modules are smaller pieces of bigger program.

  import name_of_module is the syntax to loads module.

  from name_of_module import * is the syntax to put all of the contents of module into the
current module.

  Python’s import keyword lets you to include other modules in your program.

Modules, Packages and Introduction to PIP 243

  Package is a collection of multiple modules.

  Directory containing a file _init_.py will be treated as a package by Python.

  The “PIP” is one of the tool for installing Python packages.

 Key termS

 � Package: It is a folder with _init_.py and multiple other .py files altogether.

 � Import: It is used to include other modules in the main program.

 � PIP: It is a tool for installing packages.

 review QueStiOnS

a. exercise Questions

 1. How can we create a module? Explain with examples how to use a module in another program.

 2. Explain how we can create a package.

 3. What is PIP?

 4. List different commands and options provided by PIP.

 1. Write a program to create package named “Arithmetic_Operation_Package”. Inside the
package, create two .py files containing name as add.py and sub.py. Now write a code
to perform addition and subtraction into add.py and sub.py and execute the modules of
add.py and sub.py using the package “Arithmetic_Operation_Package”.

 2. Write a program to get the list of installed packages using PIP.

prOgramming aSSignmentS

UNIT 5

 Object-Oriented Programming:
Class, Objects and Inheritance

 Errors and Exceptions

10

Object-Oriented
Programming: Class,

Objects and Inheritance

Learning OutcOmes

After completing this chapter, students will be able to:

• Explain the necessity and importance of object-oriented features in programming

• Describe attributes and methods for a given object

• Access attributes and member functions, i.e. methods of a class using the dot operator

• Reference an object using the self-parameter

• Overload inbuilt functions using special methods

• Learn to create super and sub classes using the concept of inheritance

• Learn different types of inheritance and make use of them effectively in programming

chapter OutLine

 10.1 Introduction

 10.2 Defining Classes

 10.3 The Self-parameter and Adding
Methods to a Class

 10.4 Display Class Attributes and
Methods

 10.5 Special Class Attributes

 10.6 Accessibility

 10.7 The __init__ Method (Constructor)

 10.8 Passing an Object as Parameter to a
Method

 10.9 __del__() (Destructor Method)

 10.10 Class Membership Tests

 10.11 Method Overloading in Python

 10.12 Operator Overloading

 10.13 Inheritance

 10.14 Types of Inheritance

10.15 The Object Class

10.16 Inheritance in Detail

10.17 Subclass Accessing Attributes of
Parent Class

10.18 Multilevel Inheritance in Detail

10.19 Multiple Inheritance in Detail

10.20 Using Super()

10.21 Method Overriding

10.22 Precaution: Overriding Methods in
Multiple Inheritance

Python Programming246

10.1 intrOductiOn

Python is an object-oriented language. Object-oriented languages help a programmer to reduce the
complexity of programs by reusing existing modules or functions. The concept of object-oriented
programming language is based on class. We know that class is another name for type in Python.
It means a programmer can create objects of their own class.

So far, we have learnt various inbuilt classes, such as int, str, bool, float and list. Since all of
these are inbuilt classes, Python defines how these classes look and behave. Overall, in any object-
oriented language, the class defines how an object of its type looks and behaves. For example, we
know how an integer looks. Its ‘behavior’ will be the operations one can perform on it.

10.2 defining cLasses

As discussed above, class is another name for type in Python. A class may contain data in the
form of fields. Fields are also called attributes and coded in the form of procedures known as
methods. Finally, a programmer has to create an object of its own class, where the object represents
an entity which can be easily identified. For example, person, vehicle, fan, book etc. represent real
objects. Each object has a unique identity, state and behaviour. The state of the object is also called
property or attribute. For example, a circular object has a data field radius which is a property that
characterises a circle. The syntax to define a class in Python is given as follows:

Class Class_Name:

 Initializer

 attributes

 methods()

 Statement(s)

Program 10.1 Write a simple class program.

class Demo:

 pass

D1=Demo() #Instance or Object of the class Demo

print(D1)

output

<__main__.Demo object at 0x029B3150>

Explanation In the above example, we have created a new class called Demo using the class
statement. The class is followed by an indented block of statement which forms the body of the class.
In the above program, we have an empty block which is indicated using the pass statement. The
object/instance of this class is created using the name of the class followed by a pair of parentheses.
The print statement is used to verify the type of variable D1. Therefore, the print statement tells us

Object-Oriented Programming: Class, Objects and Inheritance 247

that there is an instance of the Demo class in the __main__ module. The output of the print statement
is <__main__.Demo object at 0x029B3150>. It tells us the address of the computer’s memory where
the object D1 is stored. The value of the address varies from one machine to another. Python stores
an object wherever it finds the space. We can say the return value of print(D1) is a reference to a
Demo class, which we have assigned to D1. Creation of a new object is called instantiation and the
object is an instance of the class.

 Note: In the above program, we have created an object/instance of the class as:

 D1=Demo()

Creating objects in Python is equivalent to the following code in Java, C++

 Demo D1 = new Demo();

Therefore, there is no new keyword in Python as in Java and C++.

Program 10.2
 Write a program to create a simple class and print the message, “Welcome to Object-oriented
Programming” and print the address of the instance of the class.

class MyFirstProgram:

 print(‘ Welcome to Object-oriented Programming’)

C=MyFirstProgram() #Instance of class.

print(C)

output

Welcome to Object-oriented Programming

<__main__.MyFirstProgram object at 0x028B6C90>

Explanation Name of the class is MyFirstProgram. The instance, i.e. ‘C’ of the class is created.
Inside the class, the print statement is used to display the welcome message. Additionally, the last
print statement is used to display the address of the computer’s memory where the object ‘C’ is
stored.

10.2.1 adding attributes to a class

In Program 10.1, we have created a simple class named Demo. The class Demo does not contain
any data and it does not do anything. What can a programmer do to assign an attribute to a given
object? The programs ahead explain how to add an attribute to an existing class.

Let us consider a simple class called Rectangle which defines two instance variables length and
breadth. Currently, the class Rectangle does not contain any method.

Class Rectangle:

length=0; #Attribute length

breadth=0; #Attribute breadth

From above example, it is important to remember that a class declaration only creates a template,
i.e. it does not create an actual object. Hence, the above code also does not create any object of type

Python Programming248

Rectangle. To create a Rectangle object we will use the following statement.

R1 = Rectangle () # Instance of Class

After execution of the above statement R1 will be the instance of the class Rectangle. Each time
we create an instance of class, we are creating an object that contains its own copy of each instance
variable or attribute defined by that class. Thus, every Rectangle object will contain its copies of
instance variables, length and breadth.

10.2.2 accessing attributes of a class

The syntax used to access the attributes of a class is:

<object>.<attribute>

Program 10.3 Write a program to access the attributes of a class.

class Rectangle:

 length=0; #Attribute length

 breadth=0; #Attribute breadth

R1 = Rectangle () #Instance of a class

print(R1.length) #Access attribute length

print(R1.breadth) #Access attribute breadth

output

0

0

Explanation The class Rectangle is created as shown above. The class contains two attributes, viz.
length and breadth. Initially the values of both the attributes are assigned to zero. R1 is the instance
of the class. The object R1 and dot operators are used together to print the value of the attributes
of a class.

10.2.3 assigning Value to an attribute

The syntax used to assign a value to an attribute of an object is

 <object>.<attribute> = <Value>

The value can be anything like a Python primitive, an inbuilt data type, another object etc. It can
even be a function or another class.

Example

R1.length=20;

R1.breadth=30;

Object-Oriented Programming: Class, Objects and Inheritance 249

Program 10.4
 Write a program to calculate the area of a rectangle by assigning the value to the attributes of
a rectangle, i.e. length and breadth.

class Rectangle:

 length=0; #Attribute length

 breadth=0; #Attribute breadth

R1 = Rectangle () #Instance of a class

print(‘Initial values of Attribute’)

print(‘Length = ‘,R1.length) #Access attribute length

print(‘Breadth = ‘,R1.breadth) #Access attribute breadth

print(‘Area of Rectangle = ‘,R1.length * R1.breadth)

R1.length = 20 #Assign value to attribute length

R1.breadth = 30 #Assign value to attribute breadth

print(‘After reassigning the value of attributes’)

print(‘Length = ‘,R1.length)

print(‘Breadth = ‘,R1.breadth)

print(‘Area of Rectangle is ‘,R1.length * R1.breadth)

output

Initial values of Attribute

Length = 0

Breadth = 0

Area of Rectangle = 0

After reassigning the value of attributes

Length = 20

Breadth = 30

Area of Rectangle is 600

10.3 the seLf-parameter and adding methOds tO a cLass

10.3.1 adding methods to a class

As discussed at the beginning of this chapter, a class usually consists of instance variables and
instance methods. The syntax to add methods in a class is

class Class_Name:

 instance variable; #instance variable with initialisation

def mthod_name(Self,parameter_list):#Paramter List is Optional

 block_of_statements

10.3.2 the self-parameter

To add methods to an existing class, the first parameter for each method should be self. There is
only one difference between class methods and ordinary functions. The self-parameter is used

Python Programming250

in the implementation of the method, but it is not used when the method is called. Therefore, the
self-parameter references the object itself. Program 10.5 illustrates the self-parameter and addition
of methods to an existing class.

Program 10.5
 Write a program to create a method Display_Message() in a class having the name MethodDemo
and display the message, “Welcome to Python Programming”.

class MethodDemo:

 def Display_Message(self):

 print(‘Welcome to Python Programming’)

ob1 = MethodDemo() #Instance of a class

ob1.Display_Message() #Calling Method

output

Welcome to Python Programming

Explanation In the above program, the Display_Message() method takes no parameters but
still the method has the self-parameter in the function definition. Therefore, the self-parameter
refers to the current object itself. Finally, the method is called and the message is displayed.

 Note: 1. The first parameter for each method inside a class should be defined by the name ‘self’.
2. The variable ‘self’ refers to the object itself. Therefore, for convention it is given the name self.
3. The self in Python is equivalent to the ‘this’ pointer in C++ and ‘this’ reference in Java.

Important Note
4. Although a programmer can give any name to the parameter self but it is strongly recommended that

he/she uses the name ‘self’. There are many advantages to using a standard name self, such as any
reader of the program will be able to immediately recognise it.

10.3.3 defining self-parameter and Other parameters in a class method

Program 10.6 explains defining of self and parameters for methods of the existing class.

Program 10.6
 Write a program to create a class named Circle. Pass the parameter radius to the method
named Calc _ Area() and calculate the area of the circle.

import math

class Circle:

 def Calc_Area(self,radius):

 print(‘radius = ‘,radius)

 return math.pi*radius**2

ob1 = Circle()

print(‘Area of circle is ‘,ob1.Calc_Area(5))

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 251

output

radius = 5

Area of circle is 78.53981633974483

Explanation The class with name Circle is created as shown above. The extra parameter radius is
passed to a method defined inside the class Calc_Area(). The instance ob1 of a class is created
and used to call the method of the existing class. Even though the method Calc_Area() contains
two parameters, viz. self and radius, only one parameter should be passed, viz. the radius of the
circle while calling the method.

Program 10.7
 Write a program to calculate the area of a rectangle. Pass the length and breadth of the
rectangle to the method named Calc_Rect_Area().

class Rectangle:

 def Calc_Area_Rect(self,length,breadth):

 print(‘length = ‘,length)

 print(‘breadth = ‘,breadth)

 return length*breadth

ob1 = Rectangle()

print(‘Area of Rectangle is ‘,ob1.Calc_Area_Rect(5,4))

output

length = 5

breadth = 4

Area of rectangle is 20

10.3.4 the self-parameter with instance Variable

As discussed above, the self-work as a reference to the current object whose method is invoked. The
self can also be used to refer any attribute/member variable or instance variable of the current
object from within the instance method. The self is used to handle variables.

We cannot create two instance variables/local variables with the same name. However, it is legal
to create one instance variable and one local variable or method parameter with the same name.
But in this scenario, the local variable tends to hide the value of the instance variable. Program 10.8
illustrates this concept of variable hiding.

Program 10.8 Write a program for variable hiding.

class Prac:

 x=5 # attribute x

 def disp(self, x):

(Contd.)

Python Programming252

 x=30

 print(‘ The value of local variable x is ‘,x)

 print(‘ The value of instance variable x is ‘,x)

ob=Prac()

ob.disp(50)

output

The value of local variable x is 30

The value of instance variable x is 30

Explanation The instance variable x is initialised with the value 5. Similarly, the method disp()
has a local variable named x and it is initialised with the value 30. Object ob is instantiated and the
method disp() is invoked. Thereafter, it displays both the values of x as 30.

Thus, in the above program we have seen the value of the instance variable is hidden by the local
variable. If a programmer does not want to hide the value of an instance variable, he/she needs to
use self with the name of the instance variable. Program 10.9 demonstrates the use of self with an
instance variable to solve the problem of variable hiding.

Program 10.9
 Write a program to demonstrate the use of self with an instance variable to solve the problem
of variable hiding.

class Prac:

 x=5

 def disp(self, x):

 x=30

 print(‘ The value of local variable x is’,x)

 print(‘ The value of instance variable x is ‘,self.x)

ob=Prac()

ob.disp(50)

output

The value of local variable x is 30

The value of instance variable x is 5

Explanation The self is used to differentiate between an instance and local variable. Here x
displays the value of the local variable and self.x displays the value of the instance variable.

10.3.5 the self-parameter with method

The self is also used within methods to call another method from the same class.

Program 10.10
 Write a program to create two methods, i.e. Method_A() and Method_B(). Call
Method_A() from Method_B() using self.

Object-Oriented Programming: Class, Objects and Inheritance 253

class Self_Demo:

 def Method_A(self):

 print(‘In Method A’)

 print(‘wow got a called from A!!!’)

 def Method_B(self):

 print(‘In Method B calling Method A’)

 self.Method_A() #Calling Method_A

Q=Self_Demo()

Q.Method_B() #calling Method_B

output

In Method B calling Method A

In Method A

wow got a called from A!!!

10.4 dispLay cLass attributes and methOds

There are two ways to determine the attributes in a class. One way is by using the inbuilt function
dir(). The syntax used to display dir() attributes is:

 dir(name_of_class) or

 dir(Instance_of_class)

Program 10.11 explains how to display the attributes present in a given class.

Program 10.11 Write a program to display the attributes present in a given class

class DisplayDemo:

 Name = ‘’; #Attribute

 Age = ‘ ‘; #Attribute

 def read(self):

 Name=input(‘Enter Name of student: ‘)

 print(‘Name = ‘,Name)

 Age=input(‘Enter Age of the Student:’)

 print(‘Age = ‘,Age)

D1 = DisplayDemo()

D1.read()

#Display attributes using dir() on the interactive mode

>>>(dir(DisplayDemo)

[‘Age’, ‘Name’, ‘__class__’, ‘__delattr__’, ‘__dict__’, ‘__dir__’, ‘__doc__’,
‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’, ‘__gt__’, ‘__hash__’,
‘__init__’, ‘__le__’, ‘__lt__’, ‘__module__’, ‘__ne__’, ‘__new__’, ‘__
reduce__’, ‘__reduce_ex__’, ‘__repr__’, ‘__setattr__’, ‘__sizeof__’, ‘__
str__’, ‘__subclasshook__’, ‘__weakref__’, ‘read’]

Python Programming254

Explanation When dir() method is executed in interactive mode, the dir() function returns
a sorted list of attributes and methods belonging to an object. The function returns the existing
attributes and methods belonging to the class, including any special methods.

An alternate way to display the attributes of a class is by using a special class attribute __dict__.
The syntax to display the attributes and methods of an existing class using __dict__ is

Class_Name.__dict__

Note: The dict contains two underscores i.e. two underscores before the word dict and two
underscores afterwards.

Program 10.12 Write a program executing __dict__ method on Program 10.11.

class DisplayDemo:

 Name = ‘’; #Attribute

 Age = ‘ ‘; #Attribute

 def read(self):

 Name=input(‘Enter Name of student: ‘)

 print(‘Name = ‘,Name)

 Age=input(‘Enter Age of the Student:’)

 print(‘Age = ‘,Age)

D1 = DisplayDemo()

D1.read()

#Display attributes using __dict__

>>> DisplayDemo.__dict__

mappingproxy({‘read’: <function DisplayDemo.read at 0x02E7C978>, ‘__
weakref__’: <attribute ‘__weakref__’ of ‘DisplayDemo’ objects>, ‘__doc__’:
None, ‘__dict__’: <attribute ‘__dict__’ of ‘DisplayDemo’ objects>, ‘__
module__’: ‘__main__’, ‘Name’: ‘’, ‘Age’: ‘ ‘})

Explanation The special class attribute __dict__ returns the details of the class containing
methods and attributes. The output of the above function returns the address of the method read,
i.e. {‘read’: <function DisplayDemo.read at 0x02E7C978>. It also displays the attributes of the class
DisplayDemo, viz. Name and Age.

10.5 speciaL cLass attributes

Consider a simple program of a class given as follows:

class Demo1:

 pass

D1=Demo1()

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 255

>>>dir(D1)

[‘__class__’, ‘__delattr__’, ‘__dict__’, ‘__dir__’, ‘__doc__’, ‘__eq__’, ‘__
format__’, ‘__ge__’, ‘__getattribute__’, ‘__gt__’, ‘__hash__’, ‘__init__’,
‘__le__’, ‘__lt__’, ‘__module__’, ‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__
reduce_ex__’, ‘__repr__’, ‘__setattr__’, ‘__sizeof__’, ‘__str__’, ‘__
subclasshook__’, ‘__weakref__’]

In this program, we executed the dir() method on the class Demo1. The Demo1 is a simple
class. It neither contains any methods nor any attributes. However, by default it contains a list of
special methods sorted in an ascending order as output of dir().

Note: For any class C, Table 10.1 gives a list of all the special attributes.

Table 10.1 Special attributes of a class

Attribute Meaning

C.__class__ String name of class

C.__doc__ Documentation string for class

C__dict__ Attributes of class

C.__module__ Module where class is defined

10.6 accessibiLity

In Python, there are no keywords like public, protected or private. All attributes and methods are
public by default.

There is one way to define private in Python. The syntax to define private attribute and methods
is

 __Attribute

 __Methods_Name()

To make an attribute and a method private, we need to add two underscores, i.e. “__” in front of
the attribute and the method’s name. It helps in hiding these when accessed out of class.

Program 10.13 Write a program to illustrate the use of private.

class Person:

 def __init__(self):

 self.Name = ‘Bill Gates’ #Public attribute

 self.__BankAccNo =10101 #Private attribute

 def Display(self):

(Contd.)

Python Programming256

 print(‘ Name = ‘,self.Name)

 print(‘Bank Account Number = ‘,self.__BankAccNo)

P = Person()

#Access public attribute outside class

print(‘ Name = ‘,P.Name)

P.Display()

#Try to access private variable outside class but fails

print(‘ Salary = ‘,P.__BankAccNo)

P.Displaay()

output

Name = Bill Gates

 Name = Bill Gates

Bank Account Number = 10101

Traceback (most recent call last): #Error

 File “C:/Python34/PrivateDemo.py”, line 13, in <module>

 print(‘ Salary = ‘,P.__BankAccNo)

AttributeError: ‘Person’ object has no attribute ‘__BankAccNo’

Explanation In the above program, we have defined public and private attributes. The private
variable can be accessed within the function. We have created an instance of class Person, i.e. P to
access the attributes defined within the class.

However, it fails and shows an error when instance of class try to access private attributes
defined inside the class & are accessed from outside the class.

Note: Python hides a private name by changing its name to _ClassName__AttrName. This
technique is termed as “mangling”.

10.7 the __init__ methOd (cOnstructOr)

There are many inbuilt methods in Python. Each method has its own significance. The importance
of the __init__ method is explained ahead.

The __init__ method is known as an initialiser. It is a special method that is used to initialise the
instance variable of an object. This method runs as soon as an object of a class is instantiated. The
syntax of adding __init__ method to a class is given as follows:

class Class_Name:

 def __init__(self): #__init__ method

 …………………………

 …………………………

Object-Oriented Programming: Class, Objects and Inheritance 257

Note that init needs to be preceded and followed by two underscores. Also __init__ method must
have self as the first argument. As self refers to the object itself, it refers to the object that invokes
the method. The self-parameter within the __init__ method automatically sets the reference for
the object just created. The __init__ method can also have positional and/or keyword arguments.

Program 10.14 Write a simple program using the init method.

class Circle:

 def __init__(self,pi):

 self.pi = pi

 def calc_area(self,radius):

 return self.pi*radius**2

C1=Circle(3.14)

print(‘ The area of Circle is ‘,C1.calc_area(5))

output

The area of Circle is 78.5

Explanation In the above program we have created a class named Circle. The class contains two
different methods, viz. one is __init__ method and another calc_area() to calculate the area of a
circle. Notice that in the above program we do not explicitly call the __init__ method. We have
created an instance of the class Circle, i.e. C1. While creating the instance of the class we have
passed the arguments following the class name to initialise the instance variable of an object.

10.7.1 attributes and __init__ method

Programmers can initialise the value of a member variable or attribute by making use of the
__init__ method. Program 10.15 demonstrates the use of the __init__ method to initialise the
attributes with some values.

Program 10.15 Write a program to initialise the value of the attributes by making use of the init method.

class Circle:

 pi = 0; #Attribute pi

 radius = 0 #Attribute radius

 def __init__(self):

 self.pi = 3.14

 self.radius = 5

 def calc_area(self):

 print(‘Radius = ‘,self.radius)

 return self.pi*self.radius**2

C1=Circle()

print(‘ The area of Circle is ‘,C1.calc_area())

Python Programming258

Explanation Initially the attributes of the class Circle, i.e. pi and radius are initialised to Zero.
With the help of the init method the value of the instance variable pi and radius are reinitialised to
3.14 and 5. These values are initialised upon the creation of the instance of class, i.e. C1. Finally, the
area of the circle is calculated by calling the method calc_area().

10.7.2 more programs on __init__ method

Program 10.16 Write a program to calculate the volume of a box.

class Box:

 width = 0; #Member Variables

 height = 0;

 depth = 0;

 volume = 0;

 def __init__(self):

 self.width = 5

 self.height = 5

 self.depth = 5

 def calc_vol(self):

 print(‘Width = ‘,self.width)

 print(‘Height = ‘,self.height)

 print(‘depth = ‘,self.depth)

 return self.width * self.height * self.depth

B1=Box()

print(‘ The Volume of Cube is ‘,B1.calc_vol())

output

Width = 5

Height = 5

Depth = 5

The Volume of Cube is 125

Explanation The member variable of class Box is initialised to zero. Thereafter, all the member
variables, viz. width, height and depth are reinitialised to the value 5 by instantiating the object B1
and using the init method.

10.8 passing an Object as parameter tO a methOd

So far, we have learnt about passing any kind of parameter of any type to methods.

We can also pass objects as parameter to a method. This is explained in Program 10.17.

Object-Oriented Programming: Class, Objects and Inheritance 259

Program 10.17 Write a program to pass an object as parameter to a method.

class Test:

 a = 0

 b = 0

 def __init__(self, x , y):

 self.a = x

 self.b = y

 def equals(self, obj):

 if(obj.a == self.a and obj.b == self.b):

 return True

 else:

 return False

Obj1 = Test(10,20)

Obj2 = Test(10,20)

Obj3 = Test(12,90)

print(‘ Obj1 == Obj2 ‘,Obj1.equals(Obj2))

print(‘ Obj1 == Obj3 ‘,Obj1.equals(Obj3))

output

Obj1 == Obj2 True

Obj1 == Obj3 False

Explanation In the above program, the equals() method inside the class named Test compares
two objects for equality and returns a result. It compares the invoking object with one that is passed
as parameter to the method.

ob1.equals(ob2)

As shown above, the invoking object is ob1 and the object being passed to the equals method
is ob2. If the values of ob1 and ob2 contain the same value then the method returns True, else it
returns False.

Program 10.18
 Write a program to calculate the area of a rectangle by passing an object as parameter to
method.

class Rectangle:

 length = 0

 breadth = 0

 def __init__(self, l , w):

 self.length = l

 self.breadth = w

 def Calc_Area(self, obj):

(Contd.)

Python Programming260

 print(‘ Length = ‘,obj.length)

 print(‘ Breadth = ‘,obj.breadth)

 return obj.length * obj.breadth

Obj1 = Rectangle(10,20)

print(‘The area of Rectangle is ‘, Obj1.Calc_Area(Obj1))

output

Length = 10

Breadth = 20

The area of Rectangle is 200

Explanation The object Obj1 of class Rectangle is instantiated. With the help of init method, the
default values of length and rectangle are initialised to 100 and 200. The Obj1 itself is passed as
parameter to the method Calc_area() and finally the area of the rectangle is computed.

10.9 __del__() (destructOr methOd)

Like other object-oriented programming languages, Python also has a destructor. The method
__del__ denotes the destructor and the syntax to define destructor is.

def __del__(self)

 block

Python invokes the destructor method when the instance is about to be destroyed. It is invoked
one per instance. The self refers to the instance on which the __del__() method is invoked. In
other words, Python manages garbage collection of objects by reference counting. This function
is executed only if all the references to an instance object have been removed. Program 10.19
illustrates the use of the __del__ method.

Program 10.19 Write a program to illustrate the use of the __del__ method.

class Destructor_Demo:

 def __init__(self): #Constructor

 print(‘Welcome’)

 def __del__(self): #Destructor

 print(‘Destructor Executed Successfully’)

Ob1=Destructor_Demo() #Instantiation

Ob2 = Ob1

Ob3 = Ob1 #Object Ob2 and Ob3 refers to same object

print(‘ Id of Ob1 = ‘,id(Ob1))

print(‘ Id of Ob2 = ‘,id(Ob2))

print(‘ Id of Ob3 = ‘,id(Ob3))

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 261

del Ob2 #Remove reference Ob2

del Ob1 #Remove reference Ob1

del Ob3 #Remove reference Ob3

output

Welcome

 Id of Ob1 = 47364272

 Id of Ob2 = 47364272

 Id of Ob3 = 47364272

Destructor Executed Successfully

Explanation In the above example, we have used constructor __init__ and destructor __del__
functions. Initially we have instantiated the object Ob1 and then assigned aliases Ob2 and Ob3 to
it. The inbuilt function id() is used to confirm that all the three aliases reference to the same object.
Finally, all the aliases are removed using the del statement.

The destructor __del__ is not invoked unless all the aliases are deleted.
The destructor is called exactly once.

#Program to demonstrate the above concept

class Destructor_Demo:

 def __init__(self):

 print(‘Welcome’)

 def __del__(self):

 print(‘Destructor Executed Successfully’)

Ob1=Destructor_Demo()

Ob2 = Ob1

Ob3 = Ob1

print(‘ Id of Ob1 = ‘,id(Ob1))

print(‘ Id of Ob2 = ‘,id(Ob2))

print(‘ Id of Ob3 = ‘,id(Ob3))

del Ob1

del Ob2

output

Welcome

 Id of Ob1 = 48347312

 Id of Ob2 = 48347312

 Id of Ob3 = 48347312

#From the above program it is clear that the destructor __del__ is not invoked until all the
references to the instance of class are removed. Thus, in order to invoke __del__, the reference
count has to be decreased to zero.

Python Programming262

10.10 cLass membership tests

When we create an instance of a class, the type of that instance is the class itself. The inbuilt
function isinstance(obj,Class_Name) is used to check for membership in a class. The function
returns True if an object obj belongs to the class Class_Name. Program 10.20 demonstrates the use
of the isinstance() function.

Program 10.20 Write a program to demonstrate the use of the isinstance() method.

class A:

 pass

class B:

 pass

class C:

 pass

Ob1=A() #Instance of Class A

Ob2=B() #Instance of Class B

Ob3=C() #Instance of Class C

#Lets make use of isinstance method to check the type.

>>> isinstance(Ob1,A)

True

>>> isinstance(Ob1,B)

False

>>> isinstance(Ob2,B)

True

>>> isinstance(Ob2,C)

False

>>> isinstance(Ob3,B)

False

>>> isinstance(Ob3,C)

True

10.11 methOd OVerLOading in pythOn

Most object-oriented programming languages contain the concept of method overloading. It simply
refers to having multiple methods with the same name which accept different sets of arguments.
Let us consider the code below to understand method overloading.

class OverloadDemo:

 def add(self,a,b):

 print(a+b)

 def add(self,a,b,c):

 print(a+b+c)

P = OverloadDemo()

P.add(10,20)

Object-Oriented Programming: Class, Objects and Inheritance 263

If we try to run the code above, it will not execute and show the following error.

Traceback (most recent call last):

 File “C:/Python34/Overload_Demo.py”, line 7, in <module>

 P.add(10,20)

TypeError: add() missing 1 required positional argument: ‘c’

This is because Python understands the last definition of the method add(self, a, b ,c) which
takes only three arguments apart from self. Therefore, while calling the add() method it is forced
to pass three arguments. In other words, it forgets the previous definition of method add().

 Note: C++ and Java support method overloading. Both the languages allow more than one methods
with same name and different signature. The type of method argument defines the signature. In case of
overloading, the signature determines which method is actually being invoked.
However, Python does not allow method overloading based on type as it is not strongly typed language.

The above program on method overloading can be solved by using the inbuilt function
isinstanceof.

Program 10.21 Write a program on method overloading.

class Demo:

 result = 0

 def add(self,instanceOf=None, *args):

 if instanceOf == ‘int’:

 self.result = 0

 if instanceOf == ‘str’:

 self.result = ‘’

 for i in args:

 self.result = self.result + i

 return self.result

D1=Demo()

print(D1.add(‘int’, 10,20,30))

print(D1.add(‘str’, ‘ I ‘, ‘ Love ‘ , ‘ Python ‘, ‘ Programming ‘))

output

60

I Love Python Programming

Explanation The instance of class Demo named D1 is created. The method add() is called twice.
The first and second call to add() methods are:

 #First Call

 D1.add(‘int’, 10,20,30))

Python Programming264

 #Second Call

 D1.add(‘str’, ‘ I ‘, ‘ Love ‘ , ‘ Python ‘, ‘ Programming ‘)

The instanceof method checks the type of the first parameter being passed to the add() method.
It stores the value of result process based upon type.

Program 10.22
 Write a program to display a greeting message. Create a class named MethodOverloading.
Define the function greeting() having one parameter Name.

Input: obj.greeting()

Output: Weclome

Input: obj.greeting(‘Donald Trump’)

Output: Weclome Donald Trump

class methodOverloading :

 def greeting(self, name=None):

 if name is not None:

 print(“Welcome “ + name)

 else:

 print(“Welcome”)

Create an object referencing by variable obj

obj = methodOverloading()

call the method greeting without parameter

obj.greeting()

call the method with parameter

obj.greeting(‘Donald Trump’)

In Python, method overloading is a technique to define a method in such way that there are
more than one ways to call it. This is different from other programming languages.

10.12 OperatOr OVerLOading

The idea of operator overloading is not new. It has been used in various object-oriented programming
languages, such as C++ and Java. It is one of the best features of a programming language since
it makes it possible for a programmer to interact with objects in a natural way. It is the ability to
define a data type which provides its own definition of operators. A programmer can overload
almost every operator, such as arithmetic, comparison, indexing and slicing, and the number of
inbuilt functions, such as length, hashing and type conversion. Overloading operators and inbuilt
functions makes user defined types to behave exactly like built-in types.

Object-Oriented Programming: Class, Objects and Inheritance 265

10.12.1 special methods

To support operator overloading, Python associates a special method with each inbuilt function
and operator. Corresponding to the special method, Python internally converts an expression into
a call to perform a certain operation. For example, if a programmer wants to perform a sum of
two operands then he/she writes x + y. When Python observes the + operator, it converts the
expression x + y to call a special method __add__. Thus, to overload the + operator, he/she needs
to include the implementation of the special method __add__.

The details for special methods for arithmetic operations are explained ahead.

10.12.2 special methods for arithmetic Operations

Python supports various arithmetic operations, such as addition, subtraction, multiplication and
division. It associates a special method with each arithmetic operator. A programmer can overload
any arithmetic operation by implementing the corresponding special method. A list of arithmetic
operators with their corresponding special method is given in Table 10.2.

Table 10.2 Special methods for operator overloading

Operation Special Method Description

 X + Y __add__(self, Other) Add X and Y

 X - Y __sub__(Self, Other) Subtract Y from X

 X * Y __mul__(self, Other) Product of X and Y

 X / Y __truediv__(self, Other) Y divides X and it shows the quotient as its output

 X // Y __floordiv__(self,Other) Floored quotient of X and Y

 X % Y __mod__(self, Other) X mod Y gives a remainder when dividing X by Y

 -X __neg__(self) Arithmetic negation of X

Program 10.23 illustrates operator overloading for adding two objects.

Program 10.23 Write a program to overload the + Operator and perform the addition of two objects.

class OprOverloadingDemo:

 def __init__(self,X):

 self.X = X

 def __add__(self,other):

 print(‘ The value of Ob1 =’,self.X)

 print(‘ The value of Ob2 =’,other.X)

 print(‘ The Addition of two objects is:’,end=’’)

 return ((self.X+other.X))

Ob1 = OprOverloadingDemo(20)

Ob2 = OprOverloadingDemo(30)

(Contd.)

Python Programming266

Ob3 = Ob1 + Ob2

print(Ob3)

output

The value of Ob1 = 20

The value of Ob2 = 30

The Addition of two objects is: 50

Explanation In the above example, we have applied the + operation on two instances, Ob1 and
Ob2. When we sum these two objects, the representation is as follows:

 Ob3 = Ob1 + Ob2

As the above statement contains the + operator, Python automatically invokes the __add__
method. In the __add__ method, the first parameter is the object on which the method is invoked
and the second parameter is other, which is used to distinguish from self.

 Note: It is the responsibility of Python to call a method based on the types of operand of the operator
involved while adding two objects.
Example: If a programmer writes Ob1 + Ob2, it will call the int class __add__ method if ob1 is an
integer. It will call float types __add__ method if ob1 is float. This is because object on the left side of
the + operator corresponds to the object on the right side.
Writing Ob1 + Ob2 is equivalent to Ob1.__add__(Ob2)

10.12.3 special methods for comparing types

Comparison is not strictly done on numbers. It can be made on various types, such as list, string
and even on dictionaries.

If you are creating your own class, it makes sense to compare your objects to other objects. Similar
to the arithmetic operators’ above, a programmer can overload any of the following comparison
operators. We can use the following special methods to implement comparisons.

Table 10.3 Special methods for comparison operators

Operation Special Method Description

X == Y __eq__(self, other) is X equal to Y?

X < Y __lt__(self, other is X less than Y?

X <= Y __le__(self, other) is X less than or equal to Y?

X > Y __gt__(self, other) is X greater than Y?

X >= Y __ge__(self, other) is greater than or equal to Y?

Program 10.24 demonstrates operator overloading for comparing two objects.

Object-Oriented Programming: Class, Objects and Inheritance 267

Program 10.24 Write a program to use special methods and compare two objects.

class CmpOprDemo:

 def __init__(self,X):

 self.X = X

 def __lt__(self,other):

 print(‘ The value of Ob1 =’,self.X)

 print(‘ The value of Ob2 =’,other.X)

 print(‘ Ob1 < Ob2 :’,end=’’)

 return self.X <other.X

 def __gt__(self,other):

 print(‘ Ob1 > Ob2 :’,end=’’)

 return self.X > other.X

 def __le__(self,other):

 print(‘ Ob1 <= Ob2 :’,end=’’)

 return self.X <= other.X

Ob1 = CmpOprDemo(20)

Ob2 = CmpOprDemo(30)

print(Ob1 < Ob2)

print(Ob1 > Ob2)

print(Ob1 <= Ob2)

output

The value of Ob1 = 20

The value of Ob2 = 30

Ob1 < Ob2 :True

Ob1 > Ob2 :False

Ob1 <= Ob2 :True

Explanation In the above example, we have applied <, > and <= operator on two instances, Ob1
and Ob2. Therefore, when we need to check if one object is less than other it appears as

 Ob1 < Ob2

As the above statement contains the < operator, Python automatically invokes the __lt__ method.
Whenever Python observes > and <= operators, it invokes __gt__ and __ge__ methods.

10.12.4 reference equality and Object equality

Consider the following example which gives more details about equality operators in Python.

Python Programming268

Example

>>> Ob1 = 50

>>> Ob2 = 60

>>> Ob3 = Ob1

>>> id(Ob1)

1533264672

>>> id(Ob2)

1533264832

>>> Ob1 is Ob2

False

>>> Ob3 is Ob1

True

>>> Ob4 = 50

>>>Ob1 == Ob4

>>>True

The above example can be illustrated as shown in Figure 10.1.

Figure 10.1 Variable referring to objects

In Figure 10.1, objects are referenced by variables, viz. Ob1, Ob2, Ob3 and Ob4. From the Figure,
Ob1, Ob3 and Ob4 refer to the same object but Ob2 refer to some other object. If a programmer
wants to check the equality of two objects, he/she can use the following two ways:

 1. Reference equality: If two references are equal and refer to the same object then it is said to
be a case of reference equality. The inbuilt id() function gives the memory address of the
object, i.e. identity of the object. The is and is not operator test whether the two variables refer
to the same object. The implementation of statement i.e. Ob1 is Ob2 checks whether id of Ob1,
i.e. id(Ob1) and id(Ob2) are the same. If they are same, it returns True. In the above example
as Ob1 and Ob2 reside at different memory locations, the statement Ob1 is Ob2 returns False.

 2. Object equality: When two references hold two different/same objects and if the values of
the two objects are equal then it is said to be object equality. Thus, in the above example, Ob1
== Ob4 returns True since both of them refer to two different objects with the same value.

Object-Oriented Programming: Class, Objects and Inheritance 269

10.12.5 special methods for Overloading inbuilt functions

Like operators, we can also overload inbuilt functions. Several inbuilt functions can be overloaded
in a manner similar to overloading normal operators in Python. Table 10.4 contains some common
inbuilt functions.

Table 10.4 Special methods for inbuilt functions

Operation Special Method Description

abs(x) __abs__(Self) Absolute value of x

float(x) __float__(self) Float equivalent of x

str(x) __str__(self) String representation of x

iter(x) __itr__(self) Iterator of x

hash(x) __hash__(self) Generates an integer hash code
for x

len(x) __len__(self) Length of x

10.13 inheritance

Inheritance is one of the most useful and essential characteristics of object-oriented programming.
The existing classes are the main components of inheritance. New classes are created from the
existing ones. The properties of the existing classes are simply extended to the new classes. A
new class created using an existing one is called a derived class or subclass and the existing
class is called a base class or super class. An example of inheritance is shown in Figure 10.2. The
relationship between base and derived class is known as kind of relationship. A programmer can
define new attributes, i.e. (member variables) and functions in a derived class.

Figure 10.2 Simple example of inheritance

Python Programming270

The procedure of creating a new class from one or more existing classes is called inheritance.

10.14 types Of inheritance

We have covered simple examples of inheritance using one base class and one derived class. The
process of inheritance can be simple or complex according to the following:

 1. Number of base classes: A programmer can use one or more base classes to derive a single
class.

 2. Nested derivation: The derived class can be used as the base class and a new class can be
derived from it. This is possible at any extent.

Inheritance can be classified as: (i) single inheritance, (ii) multilevel inheritance and (iii) multiple
inheritance. Each of these has been described in detail as follows:

 (i) Single inheritance: Only one base class is used for deriving a new class. The derived class is not
used as the base class.

P is a base class. Q is a
derived class. This type
involves one base and one
derived class. Further, no
class is derived from Q.Q

P

Figure 10.3 Single inheritance

 (ii) Multilevel inheritance: When a class is derived from another derived class, the derived class
acts as the base class. This is known as multilevel inheritance.

X is a base class. Y is
derived from X. Z is derived
from Y. Here, Y is not only a
derived class but also a base
class for Z. And Z can be used
as a base class.

Y

X

Z

Figure 10.4 Multilevel inheritance

 (iii) Multiple inheritance: When two or more base classes are used for deriving a new class, it is
called multiple Inheritance.

Object-Oriented Programming: Class, Objects and Inheritance 271

X and Y are base classes. Z is
a derived class. Class Z
inherits properties of both X
and Y. Further, Z is not used
as a base class.

YX

Z

Figure 10.5 Multiple inheritance

10.15 the Object cLass

Every class in Python is derived from the object class. The object class is defined in the Python
library. Consider the following example of class.

Example

class className:

 Pass

Equivalent to class className(object):

 Pass

(a) (b)

Figure 10.6 The simple class example

Figure 10.6 describes classes in Python. If no inheritance is specified when a class is defined then
by default the class is derived from its super class object.

10.16 inheritance in detaiL

Inheritance is a powerful feature of object-oriented programming. It helps creating a new class
with little or no modifications on the existing class. The new class called subclass or derived class,
inherits the features of its base class. The syntax to define inheritance (i.e. to inherit a single base
class) in Python is:

Class Derived_Class_Name(Single_Base_Class_Name):

 Body_of_Derived_Class

The syntax to inherit multiple base classes is:

Class Derived_Class_Name(Comma_Seperated_Base_Class_Names):

 Body_of_Derived_Class

Program 10.25 demonstrates the concept of single inheritance.

Python Programming272

Program 10.25 Write a simple program on inheritance.

class A:

 print(‘Hello I am in Base Class’)

class B(A):

 print(‘Wow!! Great ! I am Derived class’)

ob2 = A() #Instance of class B

output

Hello I am in Base Class

Wow!! Great! I am Derived class

Explanation In the above program, we have created the parent class, i.e. (base class) class A and
child class class B(A): (also called the derived class). The ‘A’ inside the brackets indicates that class
B inherits the properties of its base class A. The instance of the derived class, i.e. the instance ob2 is
invoked to execute the functionality of the derived class.

Program 10.26
 Write program to create a base class with Point. Define the method Set_Cordinate(X,
Y). Define the new class New_Point, which inherits the Point class. Also add draw()
method inside the subclass.

Class Point: #Base Class

 def Set_Cordinates(self,X, Y):

 self.X = X

 self.Y = Y

class New_Point(Point): #Derived Class

 def draw(self):

 print(‘ Locate Point X = ‘,self.X,’ On X axis’)

 print(‘ Locate Point Y = ‘,self.Y,’ On Y axis’)

P = New_Point() #Instance of Derived Class

P.Set_Cordinates(10,20)

P.draw()

output

Locate Point X = 10 On X axis

Locate Point Y = 20 On Y axis

Object-Oriented Programming: Class, Objects and Inheritance 273

Explanation The instance of the derived class P is created. It is used to initialise the two member
variables, X and Y. Set_Cordinates() method is used to initialise the values of X and Y. The
instance, P can access this method since it has been inherited from the parent class. Finally, the
draw() method is called to draw the point. Thus, the child class New_Point has access to all the
attributes and methods defined in its parent class.

10.17 subcLass accessing attributes Of parent cLass

Consider Program 10.27 where attributes of the parent class are inherited by its child class.

Program 10.27 Write a program to inherit attributes of the parent class to a child class.

class A: # Base Class

 i = 0

 j = 0

 def Showij(self):

 print(‘i = ‘,self.i,’ j = ‘,self.j)

class B(A): #Class B inherits attributes and methods of class A

 k = 0

 def Showijk(self):

 print(‘ i = ‘,self.i,’ j = ‘,self.j,’ k = ‘,self.k)

 def sum(self):

 print(‘ i + j + k = ‘, self.i + self.j + self.k)

Ob1 = A() #Instance of Base class

Ob2 = B() #Instance of Child class

Ob1.i = 100

Ob1.j = 200

print(‘ Contents of Obj1 ‘)

Ob1.Showij()

Ob2.i = 100

Ob2.j = 200

Ob2.k = 300

print(‘ Contents of Obj2 ‘)

Ob2.Showij() #Sub class Calling method of Base Class

Ob2.Showijk()

print(‘ Sum of i, j and k in Ob2’)

Ob2.sum()

output

Contents of Obj1

i = 100 j = 200

(Contd.)

Python Programming274

Contents of Obj2

i = 100 j = 200

i = 100 j = 200 k = 300

Sum of i, j and k in Ob2

i + j + k = 600

Explanation In the above example, the subclass B includes all the attributes of its base class A.
This is why Ob2 can access i, j and call method showij().

10.18 muLtiLeVeL inheritance in detaiL

The procedure of deriving a class from a derived class is called multilevel inheritance.

Figure 10.7 Multilevel inheritance

Program 10.28 Write a simple program to demonstrate the concept of multilevel inheritance.

class A: #Base Class

 name = ‘ ‘

 age = 0

class B(A): #Derived Class inheriting Base Class A

 height = ‘ ‘

class C(B): #Derived Class inheriting his Base Class B

 weight = ‘ ‘

 def Read(self):

 print(‘Please Enter the Following Values’)

 self.name=input(‘Enter Name:’)

 self.age = (int(input(‘Enter Age:’)))

 self.height = (input(‘Enter Height:’))

 self.weight = (int(input(‘Enter Weight:’)))

 def Display(self):

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 275

 print(‘Entered Values are as follows’)

 print(‘ Name = ‘,self.name)

 print(‘ Age = ‘,self.age)

 print(‘ Height = ‘,self.height)

 print(‘ Weight = ‘,self.weight)

B1 = C() #Instance of Class C

B1.Read() #Invoke Method Read

B1.Display() #Invoke Method Display

output

Please Enter the Following Values

Enter Name: Amit

Enter Age:25

Enter Height:5,7’

Enter Weight:60

Entered Values are as follows

Name = Amit

Age = 25

Height = 5,7’

Weight = 60

Explanation In the above program class A, B and C are declared. The member variables of all
these classes are initialised with the default value as zero. Class B is derived from class A. Class C
is derived from class B. Thus, class B acts as the derived class as well as the base class for class C.
The method read() reads data through the keyboard and the method Display() displays data on
the screen. Both the functions are invoked using the object B1 of class C.

10.19 muLtipLe inheritance in detaiL

When two or more base classes are used for derivation of a new class, it is called multiple
inheritance. Let us create a two base classes A, B and one child class C. The child class C inherits
the classes A and B.

BA

C

 Base Class A and B

 Subclass C inherits A and B

 Figure 10.8 Example of multiple inheritance

Python Programming276

Program 10.29 Write a simple program to demonstrate multiple inheritance.

class A: #Base Class A

 a = 0

class B: #Other Base Class B

 b = 0

class C(A,B): #Inherit A and B to create New Class C

 c = 0

 def Read(self):

 self.a =(int(input(‘Enter the Value of a:’)))

 self.b =(int(input(‘Enter the value of b:’)))

 self.c =(int(input(‘Enter the value of c:’)))

 def display(self):

 print(‘ a = ‘,self.a)

 print(‘ b = ‘,self.b)

 print(‘ c = ‘,self.c)

Ob1 = C() #Instance of Child Class

Ob1.Read()

Ob1.display()

output

Enter the Value of a:10

Enter the value of b:20

Enter the value of c:30

 a = 10

 b = 20

 c = 30

Explanation In the above program we have created two base classes A and B. Class C is created,
which inherits the properties of classes A and B. The statement class C(A, B) is used to inherit the
properties of classes A and B. Finally, the instance of subclass C is used to call method read and
display.

10.19.1 more practical examples on inheritance

We have created the parent class Box. The constructor __init__ is used to initialise all the attributes
of the class Box. Similarly, the subclass named ChildBox is created. The extra attribute named
weight is added to the child class, i.e. weight. Thus, all the attributes of the base class along with

Object-Oriented Programming: Class, Objects and Inheritance 277

the attributes of the child class are initialised in the constructor of the child class by making use
of the __init__ method.

Program 10.30 Write a program to calculate the volume of Box using the init() method.

Class Box:

 width = 0

 height = 0

 depth = 0

 def __init__(self,W,H,D):

 self.width = W

 self.height = H

 self.depth = D

 def volume(self):

 return self.width * self.height * self.depth

class ChildBox(Box):

 weight = 0

 def __init__(self,W,H,D,WT):

 self.width = W

 self.height = H

 self.depth = D

 self.weight = WT

 def volume(self):

 return self.width * self.height * self.depth

B1 = ChildBox(10,20,30,150)

B2 = ChildBox(5,4,2,100)

vol = B1.volume()

print(‘ ----- Characteristics of Box1 ---- ‘)

print(‘ Width = ‘,B1.width)

print(‘ height = ‘,B1.height)

print(‘ depth = ‘,B1.depth)

print(‘ Weight = ‘,B1.weight)

print(‘ Volume of Box1 = ‘,vol)

print(‘ ----- Characteristics of Box2---- ‘)

print(‘ Width = ‘,B2.width)

print(‘ height = ‘,B2.height)

print(‘ depth = ‘,B2.depth)

print(‘ Weight = ‘,B2.weight)

vol = B2.volume()

print(‘ Volume of Box2 =’,vol)

(Contd.)

Python Programming278

output

----- Characteristics of Box1 ----

 Width = 10

 height = 20

 depth = 30

 Weight = 150

 Volume of Box1 = 6000

 ----- Characteristics of Box2----

 Width = 5

 height = 4

 depth = 2

 Weight = 100

 Volume of Box2 = 40

10.20 using super()

Consider the following program.

Program 10.31

class Demo:

 a = 0

 b = 0

 c = 0

 def __init__(self,A,B,C):

 self.a = A

 self.b = B

 self.c = C

 def display(self):

 print(self.a,self.b,self.c)

class NewDemo(Demo):

 d = 0

 def __init__(self,A,B,C,D):

 self.a = A

 self.b = B

 self.c = C

 self.d = D

 def display(self):

 print(self.a,self.b,self.c,self.d)

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 279

B1 = Demo(100,200,300)

print(‘ Contents of Base Class’)

B1.display ()

D1=NewDemo(10,20,30,40)

print(‘ Contents of Derived Class’)

D1.display()

output

Contents of Base Class

100 200 300

 Contents of Derived Class

10 20 30 40

In the above program, the classes derived from the base class Demo were not implemented
efficiently or robustly. For example, the derived class NewDemo explicitly initialises the value
of A, B and C, fields of the Base class. The same duplication of code is found while initialising
the same fields in the base class Demo, which is inefficient. This implies that a subclass must be
granted access to the members of a super class.

Therefore, whenever a subclass needs to refer to its immediate super class, a programmer can
do so by using super. The super is used to call the constructor, i.e. the __init__ method of the super
class.

10.20.1 super to call super class constructor

Any subclass can call the constructor, i.e. the __init__ method defined by its super class by making
use of super. The syntax to call the constructor of a super class in Python 3.X is:

super().__init__(Parameters_of_Super_class_Constructor)

The syntax to call the super class constructor from its base class in Python 2.X is:

super(Derived_Class_Name,self).__init__(Parameters_of_Super_class_Constructor)

Consider the above program and use super to avoid duplication of code.

Program 10.32 Use super() and call the constructor of the base class.

class Demo:

 a = 0

 b = 0

 c = 0

(Contd.)

Python Programming280

 def __init__(self,A,B,C):

 self.a = A

 self.b = B

 self.c = C

 def display(self):

 print(self.a,self.b,self.c)

class NewDemo(Demo):

 d = 0

 def __init__(self,A,B,C,D):

 self.d = D

 super().__init__(A,B,C) #Super to call Super class

 #__init__method

 def display(self):

 print(self.a,self.b,self.c,self.d)

B1 = Demo(100,200,300)

print(‘ Contents of Base Class’)

B1.display ()

D1=NewDemo(10,20,30,40)

print(‘ Contents of Derieved Class’)

D1.display()

output

Contents of Base Class

100 200 300

Contents of Derived Class

10 20 30 40

Explanation The derived class NewDemo() calls the super()with arguments a, b and c. This
causes the constructor __init__ of the base class, i.e. Demo to be called. This initialises the values of
a, b and c. The NewDemo() class no longer initialises these values itself.

10.21 methOd OVerriding

In class hierarchy, when a method in a sub class has the same name and same header as that of a
super class then the method in the sub class is said to override the method in the super class. When
an overridden method is called, it always invokes the method defined by its subclass. The same
method defined by the super class is hidden. Consider the following example to demonstrate the
concept of method overriding.

Object-Oriented Programming: Class, Objects and Inheritance 281

Program 10.33 Write a program to show method overriding.

class A: #Base Class

 i = 0

 def display(self):

 print(‘ I am in Super Class’)

class B(A): #Derived Class

 i = 0

 def display(self): #Overridden Method

 print(‘ I am in Sub Class’)

D1 = B()

D1.display()

Explanation In the above program when display() method is invoked on an instance of B, the
method display() defined within B is invoked. Therefore, the method display() overrides the
method display() defined in the base class A.

Programmer can make use of super to access the overridden methods. The syntax to call the
overridden method that is defined in super class is

 super().method_name

The above same program 10.33 is given below except, the overridden method defined in super
class is accessed by using super().

class A: #Base Class

 i = 0

 def display(self):

 print(‘ I am in Super Class’)

class B(A): #Super Class

 i = 0

 def display(self): #Overriden Method

 print(‘ I am in Sub Class’)

 super().display() #Call Display method of Base class

D1 = B() #Instance of sub class

D1.display()

output:

I am in Sub Class

I am in Super Class

Python Programming282

From this program we have learnt how to call overridden methods using super.

10.22 precautiOn: OVerriding methOds in muLtipLe

inheritance

As discussed before, in multiple inheritance there is at least one class which inherits the
properties from two or more classes. Sometimes multiple inheritance can be so complex that some
programming languages put restrictions on it.

Consider Program 10.34 on multiple inheritance where method named display() has been
overridden.

Program 10.34 Program to override Display() method in multiple inheritance.

class A(object):

 def Display(self):

 print(“ I am in A”)

class B(A):

 def Display(self):

 print(“ I am in B”)

 A.Display(self) # call the parent class method too

class C(A):

 def Display(self):

 print(“ I am in C”)

 A.Display(self)

class D(B, C):

 def Display(self):

 print(“ I am in D”)

 B.Display(self)

 C.Display(self)

Ob = D()

Ob.Display()

output

I am in D

I am in B

I am in A

I am in C

I am in A

Object-Oriented Programming: Class, Objects and Inheritance 283

The problem with the above method is that A.Display method has been called twice. If we have
a complex tree of multiple inheritance then it is very difficult to solve this problem by hand. We
have to keep track of which super classes have already been called and avoid calling them a second
time.

Therefore, to solve the above problem, we can make use of super. Consider the same program
with some modifications.

class A(object):

 def Display(self):

 print(“ I am in A”)

class B(A):

 def Display(self):

 print(“ I am in B”)

 super().Display() # call the parent class method too

class C(A):

 def Display(self):

 print(“ I am in C”)

 super().Display()

class D(B, C):

 def Display(self):

 print(“ I am in D”)

 super().Display()

Ob = D()

Ob.Display()

output

I am in D

I am in B

I am in C

I am in A

Therefore, by using super, the method inside multiple inheritance hierarchy gets exactly called
once and in the right order.

mini prOject arithmetic Operations on complex numbers

This mini project will make use of various concepts of object-oriented programming such as
constructor, self-parameter, creating instance of class and overloading of inbuilt functions.

Python Programming284

Explanation of Complex Numbers

Complex numbers can be written in the form a + bi where a and b are real numbers and i is the
unit imaginary number, i.e. -1. The values of a and b can be zero. Complex numbers contain two
parts, viz. real and imaginary.

Valid examples of complex numbers are

 2 + 6i, 1 – i, 4 + 0i

addition of Two Complex Numbers

Consider two complex numbers (a + bi) and (c + di). In case of addition, add the real parts and then
add the imaginary parts.

(a + bi) + (c + di) = (a + c) + (b + d)i

(2 + 1i) + (5 + 6i) = (2 + 5) + (1 + 6) i = (7+7i)

Subtraction of Two Complex Numbers

Consider two complex numbers (a + bi) and (c + di). In case of subtraction, subtract the real parts
and then subtract the imaginary parts.

(a + bi) - (c + di) = (a - c) + (b - d)i

(2 + 1i) - (5 + 6i) = (2 - 5) + (1 - 6) i = (-3 - 5i)

multiplication of Two Complex Numbers

Consider two complex numbers (a + bi) and (c + di). Multiplication of two such complex numbers
is:

 (a + bi) * (c + di) = (ac – bd) + (ad + bc)i

 (2 + 1i) * (5 + 6i) = (2*5 - 1*6) + ((2*6)i +(1*5)i)

 = 4 + 17i

ProblEm STaTEmENT Write a program to perform the following operations on complex numbers.

 (a) Addition

 (b) Subtraction

 (c) Multiplication

 (d) Check if two complex numbers are equal or not

 (e) Check if C1 >= C2

 (f) Check if C1 <= C2

Object-Oriented Programming: Class, Objects and Inheritance 285

 Note: Make use of the following inbuilt methods to implement the above functions.
 __add__ method to overload + Operator

 __sub__ method to overload – Operator
 __mul__ method to overload * operator
 __le__ method to overload < operator
 __ge__ method to overload > operator

algorithm

 | STEP 1: Create a class named Complex.

 | STEP 2: Create the constructor of the class Complex using the init method. The constructor
will have two parameters, viz. one each to store the real and the imaginary part.

 | STEP 3: Create such other methods for add, sub, mul to perform addition, subtraction and
multiplication, respectively. Define all the functionalities of these operations by
making use of inbuilt functions.

 | STEP 4: Also define the inbuilt methods to check if two complex numbers are equal or if the
first complex number is greater than the second.

 | STEP 5: Create two instances of Complex class C1 and C2 to declare two complex numbers.

 | STEP 6: Use these two instances to perform all the operations.

Solution

class Complex(object):

 def __init__(self,real,imag=0.0):

 self.real = real

 self.imag = imag

 def print_Complex_Number(self):

 print(‘(‘,self.real, ‘ , ‘, self.imag,’)’)

 def __add__(self,other):

 return Complex(self.real + other.real,

 self.imag + other.imag)

 def __sub__(self,other):

 return Complex(self.real - other.real,

 self.imag - other.imag)

 def __mul__(self,other):

 return Complex(self.real* other.real

(Contd.)

Python Programming286

 - self.imag * other.imag,

 self.imag* other.real +

 self.real * other.imag)

 def __eq__(self,other):

 return self.real == other.real and

 self.imag == other.imag

 def __le__(self,other):

 return self.real < other.real and self.imag < other.imag

 def __ge__(self,other):

 return self.real > other.real and self.imag > other.imag

C1 = Complex(2, 1)

print(‘First Complex Number is as Follows:’)

C1.print_Complex_Number()

C2 = Complex(5, 6)

print(‘Second Complex Number is as Follows:’)

C2.print_Complex_Number()

print(‘Addition of two complex Number is as follows:’)

C3 = C1 + C2

C3.print_Complex_Number()

print(‘Subtraction of two Complex Number is as follows:’)

C4 = C1 - C2

C4.print_Complex_Number()

print(‘Multiplication of two Complex Number is as follows:’)

C5 = C1 * C2

C5.print_Complex_Number()

print(‘Compare Two Complex Numbers:’)

print((C1 == C2)) #Returns true if equal

 #Returns false if not

print(‘Checking if C1 is Greater than C2:’)

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 287

print(C1 >= C2)

print(‘Checking if C1 is Less than C2:’)

print(C1 <= C2)

output

First Complex Number is as Follows:

(2 , 1)

Second Complex Number is as Follows:

(5 , 6)

Addition of two complex Number is as follows:

(7 , 7)

Subtraction of two Complex Number is as follows:

(-3 , -5)

Multiplication of two Complex Number is as follows:

(4 , 17)

Compare Two Complex Numbers:

False

Checking if C1 is Greater than C2:

False

Checking if C1 is Less than C2:

True

Thus, in the above program we have effectively used inbuilt methods to overload various
operators, such as +, - , * ,>=, <= and == operators.

 Summary

  The class is fundamental building block of python’s object-oriented programming.

  Attributes and methods can be added inside the class definition.

  Instantiation refers to creation of new object.

  Self parameter is used to distinguish between normal method defined outside the class and the
method defined within the class.

  The __init__ method is similar to the constructor of other programming language.

  The __del__ i.e. destructor method is invoked when instance is about to be destroyed.

  Operator and method overloading have been discussed in brief in this chapter.

  The concept of inheritance is used to extend the properties of base class to its child class.

 KEy TErmS

 � class: Type in Python

 � object: Instance of class

Python Programming288

 � dot (.) Operator: Access methods and attributes of a class

 � Instantiation: Process of creating new objects

 � Self-parameter: References the object itself

 � Accessibility: Prevents access

 � __init__: Initialiser (Constructor)

 � __del__: Destructor

 � Operator Overloading: Associates a special method for each operator

 � Inheritance: Creates a new class from an existing class

 � Single, Multiple, Multilevel: Types of inheritance

 � super Keyword: Used for method overriding

 rEviEw QuESTioNS

a. multiple Choice Questions

 1. What is the relation between object and class?

 a. A class is an instance of an object b. An object is an instance of an object

 c. An object is an attribute of a class d. None of the above

 2. Which method should be used to create default values in a class constructor?

 a. __doc__ b. __new__

 c. __init__ d. __del__

 3. Instantiation is a process of:

 a. Destroying an object b. Initialising an object with a default value

 c. Creating a new object with a default value d. None of the above

 4. What method is called when an object is created?

 a. Self b. obj.self

 c. init d. __int__

 5. We have an object instance obj and want to call its method calc_area(). Which is the correct way of
calling the function calc_area()?

 a. obj.calc_area(self) b. calc_area.obj()

 c. obj.calc_area() d. calc_area.obj(self)

 6. Method overriding is ________________________.

 a. A method with different name,

 b. A method in a subclass which has the same name and same header as that of the super class

 c. Both a and b

 d. None of the above

 7. What is used to create an object?

 a. Constructor b. Class

 c. Method d. None of the above

 8. Which of the following statements are true?

 a. Objects of the same type have the same id. b. Each object has a unique id.

 c. Both a and b d. None of the above

Object-Oriented Programming: Class, Objects and Inheritance 289

 9. ________ represents an entity in the real world which can be distinctly identified?

 a. Object b. Class

 c. Method d. None of the above

 10. Analyze the code given below to find the reason behind the error in the program.

class A:

 def __init__(self):

 self.P = 10

 self.__Q = 20

 def getY(self):

 return self.__Q

a = A()

print(a.__Q)

 a. Q is private and cannot be access outside of the class.

 b. P is private and cannot be access outside of the class.

 c. Both a and b

 d. None of the above

 11. Analyze the code given below to find the reason behind the error in the program.

class Base:

 def __init__(self, X):

 self.X = X

 def print(self):

 print(self.X)

Ob1 = Base()

Ob1.print()

 a. The class Base does not have a constructor.

 b. X is not defined in print.

 c. The constructor is invoked without arguments.

 d. None of the above

 12. What will be the output of the following program?

class A:

 def __init__(self, s):

 self.s = s

 def display():

 print(s)

a = A(“Welcome”)

a.display()

 a. Welcome b. Error: The self is missing in method display()

 c. Cannot access method display() d. None of the above

Python Programming290

 13. Which statement is correct about self?

 a. Self refers to the previous object. b. Self refers to the next object.

 c. Self refers to the current object. d. None of the above

 14. Which method runs as soon as an object of a class is instantiated?

 a. __init__ b. __del__

 c. self d. None of the above

 15. Which of the following is not a type of inheritance?

 a. Single b. Multilevel

 c. Distributive d. Multiple

 16. Look at the following definition of class and determine the type of inheritance the class is using.

class A:

 Pass

class B:

 Pass

class C(A , B):

 Pass

 a. Single b. Multilevel

 c. Multiple d. None of the above

 17. Which method is used to display the attributes of a class?

 a. __init__ b. __dict__

 c. __del__ d. None of the above

 18. The __del__ is executed only if all______________.

 a. The references to a current instance object have been removed

 b. The references to a previous object have been removed

 c. The references to an instance object have been removed

 d. None of the above

 19. Suppose B is a subclass of A. Which syntax will be used to invoke the __init__ method defined in class
A from class B?

 a. super() b. super().__init(self)__

 c. super().__init()__ d. None of the above

 20. If Ob1 is an instance of class A. Which statement can be used to check whether the object Ob1 is an
instance of class A?

 a. Ob1.isinstance(A) b. A.isinstance(Ob1)

 c. isinstance(Ob1, A) d. isinstance(A,Ob1)

b. True or False

 1. Python does not permit re-use of an existing module or function.

 2. Indentation is not important in Python.

 3. A class is followed by an indented block of statements which forms the body of the class.

 4. In order to add methods to an existing class, the first parameter for each method should be self.

 5. The directory() function is used to see the attributes of a class.

 6. The dir() function returns a sorted list of attributes and methods belonging to an object.

 7. All attributes and methods in Python are public by default.

Object-Oriented Programming: Class, Objects and Inheritance 291

 8. The _init_ method is a special method which is used to initialise instance variable of an object.

 9. We can pass an object as parameter to a method.

 10. The properties of existing classes are simply extended to new classes.

 11. New classes are not created from existing ones using inheritance.

 12. In single inheritance, two base classes are used for the derivation of a new class.

 13. When two or more base classes are used for derivation of a new class, it is called multiple inheritance.

 14. Inheritance inherits features of its base class.

 15. The syntax used to assign a value to an attribute on an object is <object>.<attribute> = <Value>

C. Exercise Questions

 1. What is a class?

 2. State the syntax to define a class.

 3. How are attributes added to a class?

 4. State the syntax to add methods in a class.

 5. What is self-parameter? List its uses.

 6. List the applications of special class attributes.

 7. What is meant by inheritance?

 8. List the different types of inheritances.

 9. Explain multiple inheritance with an example.

 10. What can be done with overriding a method?

 11. State the syntax to override a method.

 12. Complete the code given below and then perform the following tasks on the coordinate class.

 a. Instantiate two different objects P1 and P2.

 b. Display the coordinates of P1 and P2.

 c. Add an __eq__ method that returns True if coordinates P1 and P2 refer to the same point in a
plane.

class Coordinate(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def getX(self):

 return self.x

 def getY(self):

 return self.y

 13. Consider the code and answer the following questions.

 class A(object):

 def __init__(self,Name,Gender):

 self.Name = Name

 self.Gender = Gender

Python Programming292

 def execute(self):

 print(self.Name)

class B(A):

 def __init__(self):

 A.__init__(self, ‘John’, ‘Male’)

class C(A):

 def __init__(self):

 A.__init__(self, ‘Anushka’, ‘Female’)

class D(A):

 print(A)

Ob1 = B()

Ob1.execute()

 a. Identify the parent classes present in the above code.

 b. Identify the child classes present in the above code.

 c. What will be the output of the above code?

 1. Write a program to create a class named Demo. Define two methods Get_String() and
Print_String(). Accept the string form user and print the string in upper case.

 2. Write a program to create a class Circle. Perform the following operations on it.

 a. Define the attribute radius.

 b. Define the constructor with one argument containing radius.

 c. Define the method named get_radius() which returns the radius of the circle.

 d. Define the method named calc_area() which returns the area of the circle.

 3. Write a program to create the class Point. Perform the following operations on it.

 a. Initialise X and Y coordinates of the point.

 b. Print the coordinates by defining the method ‘Display()’.

 c. Define the method Translate(X, Y) to move the point X units in X direction and Y units
in Y direction.

 4. Write a program to implement single inheritance.

 a. Create the parent class Circle. Initialise the constructor with the radius of the circle.

 b. Define the method get_radius() and calc_area() to know the radius and area of the
circle.

ProgrammiNg aSSigNmENTS

(Contd.)

Object-Oriented Programming: Class, Objects and Inheritance 293

ProgrammiNg aSSigNmENTS (Contd.)

 c. Create the child class named Cylinder. Initialise the value of the height within the
constructor and call the constructor of the parent class to initialise the radius of the
cylinder.

 d. Finally, define the method Calc_area() in the class Cylinder to calculate the area of the
cylinder.

 Note: Area of Cylinder = 2 * pi * radius * height

 5. Write a program to implement the concept of multiple inheritance.

 a. Create the parent class Shape. Initialise the constructor with Shape.

 b. Create another class named Rectangle which inherits the properties of the parent
class Shape. Define the attributes length and breadth in the Rectangle class. Initialise
the length and breadth inside the constructor of the Rectangle class. Also call the
constructor of the parent class to initialise the color of the Rectangle. Define the method
calc_area() to return the area of the rectangle.

 c. Create another class named Triangle which inherits the properties of the parent class
Shape. Define the attributes base and height in the Triangle class. Initialise the base
and height inside the constructor of the Triangle class. Also call the constructor of the
parent class to initialise the color of the Triangle. Define the method calc_area() to
return the area of the Triangle.

 d. Also create the method Tring_Details() in the Triangle class and Rect_Details() in
the Rectangle Class to return complete details about the rectangle and triangle.

 e. Finally, create the instance of the Rectangle and Triangle classes to return the area of
the Rectangle and Triangle.

11

Errors and Exceptions

Chapter outline

 11.1 Errors and Exceptions

 11.2 Python Exception and Its Hierarchy

 11.3 Handling Exception

 11.4 Raising Exception

11.1 errors and exCeption

How often did it happen that the program you wrote ran successfully in its very first attempt?
Very rarely right, isn’t it? There are always some errors in the program. This is what this chapter
is all about. It is common to make mistakes while typing as well as while developing a program.
Such types of mistakes are called “Errors”. An error is something that can produce incorrect or
irrelevant output or even be responsible for the system to crash. It is, therefore, very important to
find out these errors and fix them so that the program will not terminate or crash during execution.
Error can be of two types, viz. the compile time errors and run-time errors. Thus, this entire chapter
will help you to deal with all such kind of errors without terminating the program by the concept
called “exception handling”. Details of the exception handling are explained in the next section.

learninG outCoMes

After completing this chapter, students will be able to:

• Learn how to handle exceptions using built-in Python keywords

• Handle the exceptions using try, except and finally keywords

• Raise exception using the raise keyword

Errors and Exceptions 295

11.1.1 exception

“An exception is an error that occurs during the run-time”.
or

“An exception is an erroneous condition which arises while program is running”.

Run-time error occurs while program is in execution or program is running. Examples of
such condition include dividing a number by zero produces “ZeroDivisionError: division by
zero exception”.

Example: Division by Zero Exception

>>> a=10

>>> b=0

>>> a/b

Traceback(most recent call last):

 File “<pyshell#5>”, line 1, in <module>

 a/b

ZeroDivisionError: division by zero

If the programmer attempts to open a file that doesn’t exist, it produces “FileNotFoundError”,
similarly if you try to access an index of a list which is out-of-bound, i.e. to access the index of
an array more than the size of the list, it produces then “IndexError: list index out of range”
exception and many more other exceptions are raised.

Thus, an exception is an object that represents an error. Also it is a condition that prevents
execution of statements in Python to proceed normally. Thus, if the exceptions are not handled
properly, the programs will terminate abnormally. In order to run the program without termination,
there is always need of exception handling.

11.2 python exCeption and its hierarChy

In Python, all of the exceptions are the instances of a class which are derived from BaseException
class. Each exception type is of a separate class. Python organizes the exceptions in a hierarchical
way. The following Table 11.1 contains all in-built exceptions where the indentation indicates how
those exceptions are structured hierarchically.

Table 11.1 Python exception hierarchy

BaseException #The base class for all built-in exceptions

 +-- SystemExit

 +-- KeyboardInterrupt

 +-- GeneratorExit

 +-- Exception #All built-in exceptions and user-defined exceptions are derived

from this class.

 +-- StopIteration

 +-- StandardError

 | +-- BufferError

(Contd.)

Python Programming296

 | +-- ArithmeticError #The base class for those built-in exceptions that
are raised for various arithmetic operations given as follows.

 | | +-- FloatingPointError

 | | +-- OverflowError

 | | +-- ZeroDivisionError

 | +-- AssertionError

 | +-- AttributeError

 | +-- EnvironmentError

 | | +-- IOError

 | | +-- OSError

 | | +-- WindowsError(Windows)

 | | +-- VMSError(VMS)

 | +-- EOFError #This exception is raised when input() function hits an
end-of-file condition (EOF) without reading any data.

 | +-- ImportError

 | +-- LookupError

 | | +-- IndexError#

 | | +-- KeyError

 | +-- MemoryError

 | +-- NameError

 | | +-- UnboundLocalError

 | +-- ReferenceError

 | +-- RuntimeError

 | | +-- NotImplementedError

 | +-- SyntaxError #Raised when parser encounters a syntax error.

 | | +-- IndentationError

 | | +-- TabError

 | +-- SystemError

 | +-- TypeError

 | +-- ValueError

 | +-- UnicodeError

 | +-- UnicodeDecodeError

 | +-- UnicodeEncodeError

 | +-- UnicodeTranslateError

 +-- Warning#

 +-- DeprecationWarning

 +-- PendingDeprecationWarning

 +-- RuntimeWarning

 +-- SyntaxWarning

 +-- UserWarning

 +-- FutureWarning

 +-- ImportWarning

 +-- UnicodeWarning

 +-- BytesWarning

Errors and Exceptions 297

11.3 handlinG exCeption

Exception handling in Python is managed by three keywords, viz. try, except and finally.
The working of all of these keywords is explained below.

Program statements that you want to monitor for exception should be in try block.
If an exception occurs within the try block, then the particular exception is raised (or thrown).
The syntax for exception handling that might raise or throw an exception in a try block is as
follows (Figure 11.1).

try:

#Body of try block

exceptException_Type1

#Perform of some kind of exception handling

#It is Exception Handler for Exception Type 1, Alerts the user

exceptException_Type2

#Exception Handler for Exception Type 2

………………………………………..

…………………………………………

………………………………………..

…………………………………………

exceptException_TypeN

#Exception Handler for Exception Type N

Figure 11.1 Syntax—exception handling

Thus, as the Figure 11.1 explains, when an exception is raised (thrown), it is caught by its
corresponding except statement, which then processes the exception. As the general form shows,
there can be more than one except statement associated with a try. The type of the exception
determines which except statement is executed. That is, if the exception type being specified
by a except statement matches that of the exception, then that except statement is executed
(and all others are then by-passed). If no exception is raised or thrown, then a try block ends
normally, and all of its except statements are by-passed.

Points to Remember

When error occurs in a piece of code, exception mechanism performs the following tasks.

 1. Finds the problem. (Get the exception.)

 2. Informs an error has occurred. (Raise the exception.)

 3. Receives the error information. (The except statement)

 4. Takes the remedial actions. (Handles the exception.)

11.3.1 executing the ‘divide by Zero’ program Without exception handling

Let us consider the following small programming example which demonstrates the scenario being
happened when errors arise in those programs not using the exception handling.

Python Programming298

Program 11.1
 Write a program to read two numbers from user and find the quotient by dividing first number
by second number.

a = int(input(‘Enter the first number:’))

b = int(input(‘Enter the second number:’))

c = a/b

print(‘a = ‘,a)

print(‘b = ‘,b)

print(‘a/b = ‘,c)

output

#Case 1

Enter the first number: 10

Enter the second number: 2

 a = 10

 b = 2

 a/b = 5

#Case 2

Enter the first number: 10

Enter the second number: 0

Traceback(most recent call last):

 File “C:\Python34\Excel.py”, line 3, in <module>

 c = a/b

ZeroDivisionError: division by zero

Explanation The Program 11.1 above asks the user to enter two numbers and calculate the
quotient by dividing first number by second number. But in output, we can see two different
sample outputs. In the first sample execution, the user enters two numbers 10 and 2 and it shows
the output as 5. Thus, for the first case, it shows a successful division.

But in second case, the user enters two numbers, viz. 10 and 0. Since the second number
entered by user is 0, a run-time error occurs. All of us know that we cannot divide an integer by 0.
The following is the exception as generated by Python, if we try to divide a number by 0.

Traceback(most recent call last):

 File “C:\Python34\Excel.py”, line 3, in <module>

 c = a /b

ZeroDivisionError: division by zero

Note: 1. All of the above information generated as errors are known as “Stack-trace”.
2. This includes the name of Exception “ZeroDivisionError”.

Thus, the next section will demonstrate how to handle these exceptions and enable the program
to run till its normal completion by the help of the various programs.

Errors and Exceptions 299

11.3.2 the try and except Blocks to handle Various exceptions

Handling Arithmetic Exception

Program 11.2
 Demonstrate the uses of try and except blocks in order to handle “ZeroDivisionError”
in division by zero.

try:

 a = int(input(‘Enter the first number:’))

 b = int(input(‘Enter the second number:’))

 c = a/b

 print(‘a = ‘,a)

 print(‘b = ‘,b)

 print(‘a/b = ‘,c)

except ZeroDivisionError:

 print(‘You cannot divide number by zero’)

output

#Case 1

Enter the first number: 10

Enter the second number: 2

 a = 10

 b = 2

 a/b = 5.0

#Case 2

Enter the first number: 10

Enter the second number: 0

You cannot divide number by zero

Explanation In the above program, the statements that produce exception are written within
the try block. Thus, the try block asks the user to enter two numbers and divide first number
by second number. If the user enters the second number as 0 then Python generates a run-time
exception, i.e. ZeroDivisionError. As soon as the exception has occurred, the exception is raised
and it is caught by except keyword.

Multiple except Blocks

In Program 11.2 above, we have seen that the code inside the try block generates only one type
of exception and that is handled by a single except block. But, sometimes the code generates
multiple exceptions. In such cases, we need to define multiple except blocks to handle those
exceptions. The Program 11.3 below illustrates the implementation of multiple except blocks.

Python Programming300

Program 11.3
 Write a Python program to include multiple exceptions.

try:
 n1 = int(input(‘Enter the number:’))
 print(n1)
 q = 200/n1
except ValueError:
 print(‘Entered string is not of type int’)
except ZeroDivisionError:
 print(‘Number cannot be divided by zero’)

output

#Case 1:

Enter the number: svsvadbs
svsvadbs
Entered string is not of type int

#Case 2:

Enter the number: 0
0
Number cannot be divided by zero

Explanation In Program 11.3 above, the statements which we want to monitor for exceptions are
kept in try block. Initially, through input the number is the prompt from the user. If user fails to
enter the value of type int, then Python raises an error, i.e. “ValueError”. Even if user tries to
enter the second value as 0, Python interpreter will raise exception “ZeroDivisionError” while
executing the statement q = 200/n1. Thus, the try statement may contain more than one except
block to specify the handlers for different exceptions.

The try–except–finally Block

The finally block sometime referred to as finally clause. The finally block consists
of finally keywords. The finally block is placed after the last except block. If there is no
except block, the finally block should immediately follow the try block. The finally block
will execute whether or not an exception is going to be thrown from the try block. If an exception
is thrown, the finally block will execute even if no except statement matches the exception.
The syntax to define finally block in exception handling is as follows (Figure 11.2).

Errors and Exceptions 301

try:

#Body of try block
exceptException_Type1

#Perform of some kind of exception handling
#It is Exception Handler for Exception Type 1, Alerts the user
exceptException_Type2

#Exception Handler for Exception Type 2
…………………………………………
…………………………………………
exceptException_TypeN

#Exception Handler for Exception Type N
finally:

 …………………………………………
 …………………………………………

Figure 11.2 Syntax try–catch finally

As we have seen in previous section, a try statement can have more than one except clauses to
handle different exceptions. Thus, along with try and except statements in exception handling
block, we can also have an optional finally statement.

Program 11.4
 To demonstrate the use of finally keyword using try–except block.

L1 = [1, 2, 3, 4, 5]
try:
 print(L1)
 n = int(input(‘Enter the index to retrieve the element:’))
 print(‘index = ‘,n,’ Element = ‘,L1[n])
except IndexError:
 print(‘Please check the index’)
 print(‘Index out of bounds’)
finally:
 print(‘No one can Stop Me from Running’);

output

[1, 2, 3, 4, 5]
Enter the index to retrieve the element: 10
Please check the index
Index out of bounds
No one can Stop Me from Running

Explanation In Program 11.4 above, initially the list of five numbers is created. In try block, the
index is prompt from the user to retrieve the element stored at index ‘n’. If the entered index is
greater than the size of the list, the exception block is executed. At last, the finally block is
executed no matters what has been happened in try and except blocks.

Python Programming302

11.4 raisinG exCeption

In previous section of this chapter, we have seen Python interpreter raises the exception whenever
it tries to execute the invalid code. Raising an exception is also like to stop running the code in
the function and move the program execution to the except statement. All these exceptions are
wrapped in objects and are created from the classes. Therefore, the programmer can raise this
exception using the raise statement. The syntax to raise an exception is as follows.

Syntax

raise Exception(value)

Where, exception is the exception type.

Example

raise ArithmeticError(‘Something is wrong’)

Program 11.5
 Write a Program to raise the exception.

A = 10
b = 0
try:
 raise ArithmeticError(‘Cannot divide number by zero’)
 c = a/b
except ZeroDivisionError:
 print(‘Something is Wrong’)
 raise

output

Traceback(most recent call last):
 File “C:\Python34\asacs.py”, line 4, in <module>
 raise ArithmeticError(‘Something is Wrong’)
ArithmeticError: Cannot divide number by zero

Explanation In Program 11.5 above, the raise statement allows the programmer to force the
specified exception, i.e. ArithmeticError: Cannot divide number by zero to occur.

 Summary

  An exception is an error that occurs during run time.

  All of the exceptions are the instances of a class which is derived from BaseException class.

  The three keywords, viz. try, except and finally are used to handle the exceptions.

  The raise keyword is used to raise the exceptions.

Errors and Exceptions 303

 KEy TErmS

 � Exception: It is an erroneous condition that arises while program is running.

 � try: It is a sort of program statements which is placed within the try block to look after the exceptions.

 � except: It is a raised exception which is caught by except keyword.

 � finally: The statement within finally block will execute even if no except matches the exception.

 rEviEw QuESTionS

a. multiple Choice Questions

 1. What is the output of the following Program?

def getMonth(month):

 if month<1 or month>12:

 raise ValueError(“Invalid”)

 print(month)

getMonth(13)

 a. 13 b. 13 and Invalid

 c. ValueError: Invalid d. None of the above

 2. How many except statements does a try block have?

 a. More than one b. More than zero

 c. one d. two

 3. When finally block is executed?

 a. When there is an exception b. When there is no exception

 c. Always d. It never executes

 4. What is the output of the following program?

def demo():

 try:
 return 1

 finally:

 return 2

n = demo()

print(n)

 a. 1 b. 2

 c. None d. 1 and 2

 5. Which of the following is not a standard exception in Python?

 a. IOError b. Wrong Assignment Error

 c. NameError d. ValueError

 6. Which error will be occurred when the following code is executed?

Area = 3.14 * radius

 a. ValueError b. NameError

 c. SyntaxError d. KeyError

Python Programming304

 7. Which error will be occurred when the following code is executed?

 a = 6

 b = 6 − 12

 c = A/(A + B)

 a. NameError b. ValueError

 c. ZeroDivisionError d. None of the above

B. Exercise Questions

 1. Explain the needs of exception handling.

 2. Explain the mechanisms to handle exception handling.

 3. Write a program to handle the arithmetic exception.

 4. Can we have multiple except blocks while handling the exceptions? If yes? How?

 5. What are the uses of raise keyword? Explain with a simple program.

 1. Write a program that will ask the user for an input and tries to handle the error when the
programmer will try to type cast the input to an int using try and except blocks.

 2. Write a function which will take two arguments to concatenate two strings. Assume the type
of first argument is unknown but the second argument is the string. Write a Program to
handle errors if the programmer will try to concatenate unknown input (unknown input can
be of integer types or float) type to the string using try and except blocks.

 3. Write a function which will take two parameters to perform the certain task. The first
argument is float but you are unaware about the second argument. Write a Program that
will try to handle the error when you will try to divide the float as the unknown input
being entered by the user using try–except block.

 4. Write a function which will take three parameters. The first parameter to the function will be
list, the second parameter will be the index position and the third parameter will be string.
The function will insert the string at the given index position within the list. In case of a
failure, your function should return to the original list. Write a function which will perform
this task using the try and except blocks.

Programming aSSignmEnTS

UNIT 6

 A Brief Tour of Standard Library

 Graphics Programming: Drawing with
Turtle Graphics

 Unit Testing

12

A Brief Tour of
Standard Library

Chapter outline

 12.1 Introduction

 12.2 Operating System Interface–The
OS Module

 12.3 String Pattern Matching

 12.4 The Date and Time Module

 12.5 Mathematics—The Maths Module

 12.6 Internet Access

 12.7 Data Compression

12.1 introduCtion

Python standard library contains a large number of useful modules. It is always good for the
developers to become familiar with the Python standard library, since many problems can be
solved quickly. At the same time, the Python libraries can cut your development time and reduce
your frustration with respect to the coding. This chapter will describe a couple of fundamental
standard library modules. Most of Python projects make use these modules either directly or
indirectly.

learninG outCoMeS

After completing this chapter, students will be able to:

• Learn interfacing with files and directories of operating system using OS module of Python

• Learn string matching using re module, i.e. regular expression of Python

• Learn accessing URL by using urllib module

• Learn about compression and decompression

• Access date and time related functionalities based on date and time module

A Brief Tour of Standard Library 307

Note: • Python comes with two basic modules which are primary than all other modules. These two
basic modules are _builtin_ and exception modules.

• The _builtin_ module defines the built-in functions like range, len, int and so on.
• The exception module defines all built-in exceptions.

12.2 operatinG SySteM interfaCe — the oS Module

The OS module allows us to use the operating system’s dependent functionalities. It also allows
us to interact with files and directories. It is used to perform the tasks, such as, to find the name
of present working directory, to change current working directory, to check if certain files or
directories exist at location, to create and delete the directories, to walk through a directory aiming
to perform certain operations on specific files and so on. The OS modules include many functions
to interact with the file system. The frequently used functions supported by OS module are listed
as follows in Table 12.1.

Table 12.1 Methods related to OS Interface

In-built Function Name Meaning

getcwd()

Example:
>>> import os
>>> os.getcwd()
‘C:\\Python27’

Gets the complete path of
current working directory.

listdir()

Example:
>>> import os
>>> os.listdir(“C:\Python27\Python Programs”)
[‘Hello_World_Python_Program.py’,’PythonProjectDemo.py’]

The listdir() function
returns the names of all the
files in a given directory.

chdir(path)

Example:
>>> os.getcwd() #Returns current working directory

Changes the current
working directory to that
of the given path.

‘C:\\Python27’
>>>os.chdir(“C:\Python27\Scripts”) #Change current working directory
>>> os.getcwd()
>>>>’C:\\Python27\\Scripts’

mkdir(path)

Example:

Creates a directory at a
given path.

>>>import os
>>>os.mkdir(“C:\\Python_Programming_Practice”)
#The above command creates new directory of name “Python_Programming_Practice”
on the “C” drive.

(Contd.)

Python Programming308

os.remove(path)

Example:

Removes file from the
given path.

>>>import os
>>>os.remove(“C:\\Python27\\a.py”)
#Removes the file a.py from the given location.

os.rename(old_name,new_name)

Example:
>>>import os
>> os.rename(“E:\\My_Programs”,”E:\\My_Progs”)

Changes the name of path
from old path to new path.

rmdir(path)

Example:

Removes the directory
from the given path.

>>>import os
>>>os.rmdir(“E:\\My_Programs\\Practice”)

Note: The rmdir() directory will delete directory only when the directory is empty, otherwise the
operating system raises the error. In order to remove whole directory trees, shutil.rmtree() can
be used.

walk()

Example:
>>>import os
>>> Dir = os.chdir(‘E:’)
>>> for x in os.walk(‘.’):

Generates the files names
in a directory tree by
walking the tree either
top to bottom or bottom to
upwards.

 print(x)
#The above code returns the files present within the given directory.

(‘.’, [], [‘Anaconda3-5.1.0-Windows-x86_64.exe’, ‘jdk-10_windows-x64_bin.exe’,
‘jdk-8u161-nb-8_2-windows-x64.exe’, ‘netbeans-8.2-windows.exe’, ‘npp.7.5.6.
Installer.exe’, ‘python-3.6.4.exe’, ‘vlc-3.0.1-win32.exe’, ‘wrar550.exe’])

Program 12.1 Write program to count “.txt” files.

import os

count = 0

Dir1 = os.chdir(‘C:\Python27\Python Programs’)

for (dirname, dirs, files) in os.walk(‘.’):

 for filename in files:

 if filename.endswith(‘.txt’):

 print(filename)

 count = count + 1

print(‘Text Files:’,count)

output

text1.txt

text2.txt

(‘Text Files:’, 2)

A Brief Tour of Standard Library 309

Explanation In Program 12.1 above, os.chdir() function is used to change the directory.
The Program first generates all of the filenames in given directory using os.walk() function.
Finally, it just counts .txt files and gives total count of .txt files being present within the
specified directory.

Note: The command dir(os) when executed on interactive mode will display the list of variables and
in-built functions supported by OS module for Python 3.6.
>>> dir(os)

[‘DirEntry’, ‘F_OK’, ‘MutableMapping’, ‘O_APPEND’, ‘O_BINARY’,
‘O_CREAT’, ‘O_EXCL’, ‘O_NOINHERIT’, ‘O_RANDOM’, ‘O_RDONLY’, ‘O_RDWR’,
‘O_SEQUENTIAL’, ‘O_SHORT_LIVED’, ‘O_TEMPORARY’, ‘O_TEXT’, ‘O_TRUNC’,
‘O_WRONLY’, ‘P_DETACH’, ‘P_NOWAIT’, ‘P_NOWAITO’, ‘P_OVERLAY’,
‘P_WAIT’, ‘PathLike’, ‘R_OK’, ‘SEEK_CUR’, ‘SEEK_END’, ‘SEEK_SET’,
‘TMP_MAX’, ‘W_OK’, ‘X_OK’, ‘_Environ’, ‘_all_’, ‘_builtins_’,
‘_cached_’, ‘_doc_’, ‘_file_’, ‘_loader_’, ‘_name_’, ‘_package_’,
‘__spec__’, ‘_execvpe’, ‘_exists’, ‘_exit’, ‘_fspath’,
‘_get_exports_list’, ‘_putenv’, ‘_unsetenv’, ‘_wrap_close’, ‘abc’,
‘abort’, ‘access’, ‘altsep’, ‘chdir’, ‘chmod’, ‘close’, ‘closerange’,
‘cpu_count’, ‘curdir’, ‘defpath’, ‘device_encoding’, ‘devnull’, ‘dup’,
‘dup2’, ‘environ’, ‘errno’, ‘error’, ‘execl’, ‘execle’, ‘execlp’,
‘execlpe’, ‘execv’, ‘execve’, ‘execvp’, ‘execvpe’, ‘extsep’, ‘fdopen’,
‘fsdecode’, ‘fsencode’, ‘fspath’, ‘fstat’, ‘fsync’, ‘ftruncate’,
‘get_exec_path’, ‘get_handle_inheritable’, ‘get_inheritable’,
‘get_terminal_size’, ‘getcwd’, ‘getcwdb’, ‘getenv’, ‘getlogin’,
‘getpid’, ‘getppid’, ‘isatty’, ‘kill’, ‘linesep’, ‘link’, ‘listdir’,
‘lseek’, ‘lstat’, ‘makedirs’, ‘mkdir’, ‘name’, ‘open’, ‘pardir’,
‘path’, ‘pathsep’, ‘pipe’, ‘popen’, ‘putenv’, ‘read’, ‘readlink’,
‘remove’, ‘removedirs’, ‘rename’, ‘renames’, ‘replace’, ‘rmdir’,
‘scandir’, ‘sep’, ‘set_handle_inheritable’, ‘set_inheritable’,
‘spawnl’, ‘spawnle’, ‘spawnv’, ‘spawnve’, ‘st’, ‘startfile’, ‘stat’,
‘stat_float_times’, ‘stat_result’, ‘statvfs_result’, ‘strerror’,
‘supports_bytes_environ’, ‘supports_dir_fd’, ‘supports_effective_ids’,
‘supports_fd’, ‘supports_follow_symlinks’, ‘symlink’, ‘sys’, ‘system’,
‘terminal_size’, ‘times’, ‘times_result’, ‘truncate’, ‘umask’,
‘uname_result’, ‘unlink’, ‘urandom’, ‘utime’, ‘waitpid’,
‘walk’, ‘write’]

12.3 StrinG pattern MatChinG

If you are searching a sub-string from a string, then you can use in-built methods of string, such as,
find(). But if you are searching for something that is not quite specific, then in such cases, you can’t
use find() method of string. Thus, in order to handle complex task of searching and extracting
text, Python provides re (Regular Expression) module. Regular Expressions are patterns that we
can specify as strings and use to search for and replace text in other strings. Python as well as many
other languages includes a module to perform various operations on these regular expressions.
The most common uses of regular expressions are to search a string, i.e. to search and match, to
find a string, to break a string into a substring (split) and to replace a part of string (sub).

Python Programming310

12.3.1 the re Module

The re module provides various methods to perform operation on input string. The most commonly
used methods of re module are as follows.

a. re.match(pattern, string)

The match() method returns zero or more characters which match the pattern at the beginning of
string. The match() function returns none if the string does not matches the pattern.

Example 1

>>> import re

>>> match_obj = re.match(“Python”, “Python Programming Language”)

>>> match_obj

<_sre.SRE_Match object at 0x05CAA6E8>

In Example 1 above, it shows the pattern match has been found. But in order to print the
match string, we will use the method group(). The method group() on match returns the
matching string.

Example 2

>>> import re

>>> match_obj = re.match(“Python”, “Python Programming Language”)

>>> match_obj

<_sre.SRE_Match object at 0x05CAA6E8>

>>> match_obj.group(0) #group() method on match

‘Python’

In Example 2 above, we have string “Python Programming Language” and from the given
string, we are going to search string pattern, i.e. “Python”. Thus, the match() function returns the
matched pattern. What if developer is interested to know the index position of match string from
where it starts and ends? Thus, in such cases, we use of the methods, such as, start() and end().

Example 3

>>> match_obj = re.match(“Python”, “Python Programming Language”)

>>> match_obj.start()

0

>>> match_obj.end()

6

Note: The match() method returns none if pattern to be matched from the given string is not present at
the beginning of the string.
>>> import re

>>>match_obj = re.match(“Programming”, “Python Programming Language”)

>>> print(match_obj)

None

A Brief Tour of Standard Library 311

b. re.search(pattern, string)

The search() method same as that of macth() method of regular expression. The main
advantage of serach() method is that it does not restrict us to find matches at the beginning of the
string only.

Example 4

>>> search_obj = re.search(r”Programming”, “Python Programming Language”)

>>> print(search_obj)

<_sre.SRE_Match object at 0x053BEAA0>

>>> search_obj.group(0)

‘Programming’

>>> search_obj.start()

7

>>> search_obj.end()

18

Note: The search() method is able to find a pattern from any position of the string. But it returns only
first occurrence of matched string.

Example:
>>> search_obj = re.search(r”Good”, “If Good Programmer then you can be
Good Developer”)

>>> search_obj.group(0)

‘Good’

>>> search_obj.start()

3

>>> search_obj.end()

7

c. re.findall(pattern,string)

The string is scanned from left to right and the pattern is to be searched if matched ones are
returned in the order they are found. Finally, it returns the list of all matching patterns from
the string.

Example 5

>>> import re

>>> re.findall(“Python”,”Programming in Python.I like Python”)

[‘Python’, ‘Python’]

d. re.split(pattern, string,[maxsplit=0]):

Let us split the string by the occurrences of pattern.

Python Programming312

Example 6

>>> re.split(“y”,”Python”)

[‘P’, ‘thon’]

In Example 6 above, we have split the string “Python” by ‘y’. The split() method has another
argument, i.e. maxsplit. The default value of maxsplit is ’0’. If maxsplit is ‘0’, then split()
method does the maximum split. But if we give value to maxsplit, then the maxsplit will split
the string up to the given number of splits.

Example 7

>>> re.split(“-”,”978-92-95055-02-5”) #maxsplit = 0

[‘978’, ‘92’, ‘95055’, ‘02’, ‘5’]

>>> re.split(“-”,”978-92-95055-02-5”, maxsplit=3)

[‘978’, ‘92’, ‘95055’, ‘02-5’]

e. re.sub(pattern, repl, string)

The sub() method helps us to search a pattern and replace with new sub-strings. If the pattern to
be searched is not found, then the original string will remain unchanged.

Example 8

>>> re.sub(“Python”, “India”,“I Love Python”)

‘I Love India’

f. re.compile(pattern)

Let us compile the regular expression pattern into a regular expression object which later can be
used for matching by utilizing its match(), search() and findall() methods.

The sequence of using compile() and findall() is as follow as follows.

Comp_obj = re.compile(pattern)

result = Comp_obj.findall(string)

Example 9

>>>Comp_obj = re.compile(“Python”)

>>>result = Comp_obj.findall(“I Love Python”)

>>> result

[‘Python’]

12.3.2 regular expression Containing operators and Symbols

As discussed above, the regular expressions are in general used to search particular pattern from
given string. In some cases, it is also used to replace particular pattern within a string based on
the set of rules. The rules to search and extract the patterns are defined by making uses of set of
operators. The following Table 12.2 contains regular expression patterns.

A Brief Tour of Standard Library 313

Table 12.2 Regular expression containing operators

Symbol or Pattern Meaning

. Matches any character except a new line.

^ Matches beginning of the string.

$ Matches the end of the string.

x? Matches x 0 or 1 time.

+ Matches x 1 or more times.

x* Matches x 0 or more times.

[] Uses to indicate a set of characters.

\w Matches any alphanumeric characters and the underscores.

\D Matches any non-digit characters.

\d Matches any numeric digit.

\A Matches only at the start of the string.

a|b Matches either a or b.

x{m} Matches exactly ‘m’ copies of x.

{m,n} It will match m to n repetitions.

12.3.3 Basic example of regular expressions

PROBLEM 1: Extract each character from the given string, i.e. “Python Programming”

Solution

>>> ans = re.findall(‘.’,’Python Programming’)

>>> ans

[‘P’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’, ‘ ‘, ‘P’, ‘r’, ‘o’, ‘g’, ‘r’, ‘a’, ‘m’, ‘m’, ‘i’, ‘n’, ‘g’]

Note In Problem 1 above, space is also extracted as a character. To avoid it \w is used instead of “.”.

>>> ans = re.findall(‘\w’,’Python Programming’)

>>> ans

[‘P’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’, ‘P’, ‘r’, ‘o’, ‘g’, ‘r’, ‘a’, ‘m’, ‘m’, ‘i’, ‘n’, ‘g’]

PROBLEM 2: Extract words from given string, i.e. “I Love Python”

Solution

>>> ans = re.findall(‘\w*’,’I Love Python’)

>>> ans

[‘I’, ‘’, ‘Love’, ‘’, ‘Python’, ‘’]

(Contd.)

Python Programming314

In Problem 2 above, it returns the space as word because “*” returns zero or more different
matches. In order to remove space, we will go with ‘+’.

>>> ans = re.findall(‘\w+’,’I Love Python’)

>>> ans

[‘I’, ‘Love’, ‘Python’]

PROBLEM 3: Extract only first word from the sentence, i.e. “Incredible India”

Solution

>>> ans = re.findall(‘̂ \w+’,’Incredible India’)

>>> ans

[‘Incredible’]

PROBLEM 4: Extract last word from the sentence, i.e. “Incredible India”

Solution

>>> ans = re.findall(‘\w+$’,’Incredible India’)

>>> ans

[‘India’]

PROBLEM 5: Extract date from the string, i.e. ‘India 15-08-1947’

Solution

>>> ans = re.findall(‘\d{2}-\d{2}-\d{4}’,’India 15-08-1947’)

>>> ans

[‘15-08-1947’]

PROBLEM 6: Extract domain names from the given e-mail ids, “abc@gmail.com”
and “mit@standford.edu”

>>>re.findall(“@\w+.(\w+)”,”abc@gmail.com”, “mit@standford.edu”)

[‘com’, ‘edu’]

12.4 the date and tiMe Module

Python provides rich functionalities to deal with date and time data. The standard libraries contain
the modules datetime which provides number of functions to deal with dates, time and time
intervals. Python datetime module supplies classes for manipulating date and times in both
simple and complex ways. In general, all the arithmetic operations are supported on date and time.
Types in datetime module are given in Table 12.3 as follows.

A Brief Tour of Standard Library 315

Table 12.3 Types in datetime module

Type Description

Date Stores calendar date (year, month, day) using Gregorian calendar.

Time Stores time of days as hours, minutes, seconds and microseconds.

Datetime Stores both date and time.

Timedelta Represents the difference between two date time values.

Tzinfo This is a basic type for storing time-zone information.

The datetime class allows us to get the current date and time. The statement ‘datetime.date.
today()’ allows you to get today’s date. Similarly, we can save the return date into a variable. The
following example demonstrates the same.

Program 12.2 Write Program to store date in variable Current_date.

import datetime

current_date= datetime.date.today()

print(current_date)

output

2018-04-22

Similarly, you can access different parts of the date, i.e. month, year and day separately. The
following program demonstrates the same.

Program 12.3 Write a program to access different parts of date.

import datetime

current_date= datetime.date.today()

print(‘Current Month = ‘,current_date.month

print(‘Date = ‘,current_date.day)

print(‘Year = ‘,current_date.year)

output

(‘Current Month = ‘, 4)

(‘Date = ‘, 22)

(‘Year = ‘, 2018)

In Program 12.3 above, we have made use of the function, i.e. datetime.date.today()
to stored today’s date into variable current_date. Similarly, we can display current time by
making use of function datetime.datetime.now(). The Program 12.4 below demonstrates the
use of datetime.datetime.now() function to store current time into variable current_time.

Python Programming316

Program 12.4 Write Program to store current time in variable Current_time.

import datetime

current_time = datetime.datetime.now()

print(current_time)

output

2018-04-22 20:48:05.324000

12.4.1 date formats

Different users and different countries make use of different date formats. So, there is always
scope to handle different date formats by the same time. The default date format is “YYYY-MM-DD”.
Python makes the use of strftime() to format dates. Following Table 12.4 contains some of the
format specifiers used with strftime() to format dates according to the user requirements.

Table 12.4 Format date specifiers

Format Specifier Meaning

%d Represents the day of month.

%B Represents full month’s name.

%b Represents the month.

%Y Represents the year.

%y Represents two digit years.

%a Represents abbreviated day of the week.

%A Represents full name of the day.

Program 12.5 Demonstrate the uses of strftime() function to format date.

import datetime

current_date = datetime.date.today()

print(current_date.strftime(‘Date Formatting: %d %b %y’))

output

Date Formatting: 22 Apr 18

12.4.2 time Module

The time module provides the number of functions that deals with date and time within a day.
When the command dir(time) is executed on interactive mode, it gives the list of functions
available under time module.

A Brief Tour of Standard Library 317

>>> dir(time)

[‘__doc__’, ‘__name__’, ‘__package__’, ‘accept2dyear’, ‘altzone’, ‘asctime’,
‘clock’, ‘ctime’, ‘daylight’, ‘gmtime’, ‘localtime’, ‘mktime’, ‘sleep’,
‘strftime’, ‘strptime’, ‘struct_time’, ‘time’, ‘timezone’, ‘tzname’]

The following Table 12.5 gives details about the some of the frequently used functions of the
time module.

Table 12.5 Functions related to time module

In-built functions Meaning

clock()

Example:
>>> import time
>>> time.clock()
366.2016504055217

In Unix operating system, the function clock() returns the
current processor time as floating point being expressed in
seconds.

On Windows, this function returns wall-clock seconds as
elapsed.

ctime()

Example:
>>>import time
>>> time.ctime()
‘Sun Apr 22 19:05:05 2018’

Returns the current time.

localtime() Returns the current time as that of ctime but in different way.

Example:
>>>import time
>>> time.localtime()
time.struct_time(tm_year=2018, tm_mon=4, tm_mday=22, tm_hour=19, tm_min=6,
tm_sec=3, tm_wday=6, tm_yday=112, tm_isdst=0)

strptime(string[,format]) Parses a string representing a time according to a format.

Example:
time.strptime(“21 Apr 18”, “%d %b %y”)
time.struct_time(tm_year=2018, tm_mon=4, tm_mday=21, tm_hour=0, tm_min=0, tm_sec=0,
tm_wday=5, tm_yday=111, tm_isdst=-1)

sleep(secs)

Example:

Suspends execution of the current thread for the given
number of seconds.

>>> import time
>>> time.sleep(5) #Stops the execution for 5 seconds

12.5 MatheMatiCS–the MathS Module

Python provides additional list of functions defined under Python’s math module to solve problems
related to mathematical calculations. The following Table 12.6 describes the list of function under
math module.

Python Programming318

Table 12.6 The in-built functions of maths module

Function Example Description

ceil(X) >>>import math
>>>math.ceil(10.23)
11

Rounds X to nearest integer and returns
that integer.

floor(X) >>>import math
>>> math.floor(18.9)
18

Returns the largest value not greater than X.

exp(X) >>>import math
>>> math.exp(1)
2.718281828459045

Returns the exponential value for ex.

log(X) >>>import math
>>> math.log(2.71828)
0.999999327347282

Returns the natural logarithmic of X (to base e).

log(X,base) >>>import math
>>> math.log(8,2)
3.0

Returns the logarithmic of X to the given base.

sqrt(X) >>>import math
>>>math.sqrt(9)
3.0

Returns the square root of X.

Trigonometric Functions

sin(X) >>>import math
>>> math.sin(3.14159/2)
0.9999999999991198

Returns the sine of X. Where X is the value in
radians.

asin(X) >>>import math
>>> math.asin(1)
1.5707963267948966

Returns the angle in radians for the inverse of sine.

cos(X) >>>import math
>>> math.cos(0)
1.0

Returns the sine of X. Where X is the value in
radians.

aCos(X) >>>import math
>>> math.acos(1)
0.0

Returns the angle in radians for the inverse of
cosine.

tan(X) >>>import math
>>> math.tan(3.14/4)
0.9992039901050427

Returns the tangent of X. Where X is the value in
radians.

atan(x) >>>import math
>>> math.atan(0.999)
0.784897913314115

Returns the arc tangent of x in radians.

hypot(x,y) >>>import math
>>> math.hypot(3,4)
5.0

Returns the length of the vector from the origin to
point (x, y).

(Contd.)

A Brief Tour of Standard Library 319

Angular Conversion Functions

degrees(X) >>>import math
>>> math.degrees(1.57)
89.95437383553924

Converts angle X from to radians to degrees.

Radians(X) >>>import math
>>> math.radians(89.99999)
1.5707961522619713

Converts angle X from degrees to radians.

Constants

pi >>> import math
>>> math.pi
3.141592653589793

Returns the constant value of pi, i.e. 3.14.

e >>> import math
>>> math.e
2.718281828459045

Returns the constant value of e, i.e. 2.71828.

12.6 internet aCCeSS

Python has number of modules for accessing the Internet and processing Internet protocols.
Following are the various modules of Internet access discussed in brief.

12.6.1 the urllib Module

The urllib is a package. It is a collection of multiple modules for working with URLs (Uniform
Resource Locators). This module is used to interact with websites to perform any of the tasks
related to website such as get data, post data or parse data. Table 12.7 contains modules
within urllib.

Table 12.7 Modules within urllib module

Module Name Purpose

urllib.request To open and read the URLs

urllib.errors To identify exceptions raised by urllib.request
exceptions raised by urllib.request

urlib.parse Used for parsing URL’s.

urllib.robotparse Used for parsing robots.txt files

The urllib.request Module

The urllib module is used for opening and fetching the URLs. The most commonly used
method of urllib.request is urlopen(url). The method urlopen(url) opens and fetches the
requested URL.

Example

>>> url_name = urllib.request.urlopen(‘https://www.google.com/’)

>>> url_name

<http.client.HTTPResponse object at 0x05CA3250>

>>>url_name.geturl() #geturl() returns name of requested URL

‘https://www.google.com/’

Python Programming320

The urllib.parse Module

The urllib.parse module provides functions for manipulating URLs. This module provides
a standard interface to break the URL string into components, such as, path, network location,
addressing scheme etc. It is used to combine the broken components back to URL string and also
to convert the “relative” URL to an “absolute” URL.

The function and working example of urllib.parse are given below in brief as follows.

 a. The urllib.parse.urlparse(url) Method:

The general structure of any URL is “scheme://netloc/path;parameters?query#fragment”.

Where,
 scheme: A URL scheme specifier
 netloc: Network location part
 path: Hierarchical path
 params: Parameters for last path element
 query: Query component
 fragment: Fragment identifier

So, in order to parse any URL, the function urlparse() is used. The function parses a URL into
six components and returns to six tuples.

Example

>>>from urllib.parse import urlparse

>>> url = “https://en.wikipedia.org/wiki/National_symbols_of_India”

>>> parsed = urlparse(url)

>>> parsed

ParseResult(scheme=’https’, netloc=’en.wikipedia.org’,

path=’/wiki/National_symbols_of_India’, params=’’, query=’’, fragment=’’)

Program 12.6
 Write simple program to make use of urlparse() function and store the ans of all returned
components into different variable.

from urllib.parse import urlparse
url = ‘https://en.wikipedia.org/wiki/National_symbols_of_India’

parsed = urlparse(url)

print(‘scheme:’, parsed.scheme)

print(‘netloc:’, parsed.netloc)

print(‘path:’, parsed.path)

print(‘params:’, parsed.params)

print(‘query:’, parsed.query)

print(‘fragment:’, parsed.fragment)

print(‘username:’, parsed.username)

print(‘password:’, parsed.password)

print(‘hostname:’, parsed.hostname)

print(‘port:’, parsed.port)

(Contd.)

A Brief Tour of Standard Library 321

output

scheme: https
netloc: en.wikipedia.org
path: /wiki/National_symbols_of_India
params:
query:
fragment:
username: None
password: None
hostname: en.wikipedia.org
port: None

12.7 data CoMpreSSion

In general, there are two different types of data compression techniques, i.e. lossless and lossy.
The lossless compression allows original data to be perfectly reconstructed from the compressed
data. The lossless compression technique is used in many applications, e.g. in ZIP file format. Where,
in contrast, the lossy compression is a representation that allows you to reproduce something much
similar to original data set. In case of lossy compressions, some amount of data may lose during
the process.

Thus, in short, the lossless compression is used where original and decompressed data are
identical. For example, source code and executable program are one of the best examples of lossless
compressions. Compression of audio file is an example of lossy compression, where we can play
lossy audio files on other portable player.

12.7.1 the zlib library

Python “zlib” library allows compression and decompression for applications that requires data
compression. The most frequently used in-built functions supported by zlib library are as follows.

Table 12.8 In-built functions supported by zlib library

In-built Functions Meaning

compress(string,[level]) Compress data in a string. Returns string
containing compressed data. The level indicates
the level of compressions from 0 to 9. Level 1
is fastest and produces the least compression,
while level 9 is the slowest and produces
the most.

decompress(data) Decompress bytes in data. It returns bytes
object containing the uncompressed data.

(Contd.)

Python Programming322

Compressobj
(level=1, method=DEFLATED, wbits=MAX_WBITS,
memLevel=DEF_MEM_LEVEL, strategy=Z_
DEFAULT_STRATEGY[, zdict])

memLevel: Amount of memory used for internal
compression state

strategy: Used to tune the compression algorithm

wbits: Used to control window size while compressing
data. It decides whether header and trailer to be included
in output or not. It can take range of values limited to the
15, i.e. MAX_WBITS

Decompress bytes in data. It returns bytes
object containing the uncompressed data.

Program 12.7 Write a Program to show the compression and decompression using zlib library.

import zlib

Message = “Launch Satellite from Earth”

compressed_message = zlib.compress(Message)

print(‘Messsage before Compression (Original):’)

print(compressed_message)

decompressed_message = zlib.decompress(compressed_message)

print(‘Decompressed Message:’,decompressed_message)

output

Messsage before Compression (Original):

xœóI,MÎP.IÍÉÉ,IUH+ÊÏUpM,*É

(‘Decompressed Message:’, ‘Lauch Stellite from Earth’)

Explanation In Program 12.7 above, we have used in-built functions for the compression and
decompression of zlib library. Programmer should also make note that the compression rate
varies depending upon the contents of file.

12.7.2 Compressing large data Streams

In Program 12.7 above, we have seen compress() function used to compress a string of data. But,
if we have a large data streams, then compressions of large data streams can be achieved by the
in-built function, i.e. compressobj(). The syntax of compressobj() is as follows.

compressobj(level=-1, method=DEFLATED, wbits=15, memLevel=8, strategy=Z_DEFAULT_

STRATEGY[, zdict])

The details of above syntax are given in Table 12.9 where the wbits controls the window size.
It also decides whether the header and trailer will be included in the output. The possible values
of wbits are as follows.

A Brief Tour of Standard Library 323

Table 12.9 Details of wbits()

Value Window Size (Logarithm) Output

+9 to 15 Base 2 Includes zlib header and trailer

−9 to −15 Absolute value of wbits No header and trailer

+25 to +31 Low 4 bits of the value Includes gzip header and trailing
checksum

Program 12.8 Write a Program to demonstrate the use of compressobj().

import zlib
original_data = open(“C:\NPKey.txt”, ‘rb’).read()
print(original_data)
compressed = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15)
compressed_data = compressed.compress(original_data)
compressed_data += compressed.flush()
print(‘Compressed Data ‘,(compressed_data))

compress_ratio = (float(len(original_data)) - float(len(compressed_data))) /
float(len(original_data))

print(‘Compressed: %d%%’ % (100.0 * compress_ratio))

output

E-18CEED3258
HR-6957-1F5E-8A29-87AE-D8B7
JWZN-ENGP-VNKW-PKPK-NPJJ-KGVN
26/09/2017
Dealer Code:
Dealer Name:
Dealer Mob.:
‘Compressed Data ‘, ‘s\xd55\xb4pvuu162\xb5\xe0\xe5\xf2\x08\xd25\xb345\xd75t3u\
xd5\xb5p4\xb2\xd4\xb50wt\xd5u\xb1p4\xe7\xe5\xf2\n\x8f\xf2\xd3u\xf5s\x0f\xd0\r\
xf3\xf3\x0e\xd7\r\xf0\x0e\xf0\xd6\xf5\x0b\xf0\xf2\xd2\xf5v\x0f\xf3\xe3\xe522\
xd37\xb0\xd4720\x04\x9a\xc3\xcb\xe5\x92\x9a\x98\x93Z\xa4\xe0\x9c\x9f\x92\xaa`\
xa5\x00\xe7\xfb%\xe6\xa2\xf0}\xf3\x93\xf4\xc0|\x00’)
Compressed: 15%

Explanation In Program 12.8 above, we have seen the data within the file is compressed.
Generally, the compressobj() is used to compress when data streams would not fit into the
memory at once. The function flush() is used to go towards next chunk while leaving previous
chunk cleaned up by the garbage collection.

Decompressing Large Data Streams

Decompressing large data streams requires large amount of memory to decompress. But, sometime,
it is not possible to use all of the available memories for performing this task. So zlib library

Python Programming324

contains another function named decmopressobj(), which performs decompression of data in
chunks. The syntax of decompressobj() is as follows.

decompressobj(wbits=15[, zdict])

The function decompresses the bytes where the wbits controls the window size. It also asks for
the header and trailer of the compressed file. The wbits of decompressobj() can take following
possible values (see Table 12.10).

Table 12.10 The wbits of decompressobj()—Possible values

Value Window Size Logarithm Input

0 Automatically determines the
window size from the zlib header

zlib header

+8 to +15 Base 2 Includes zlib header and trailers

−8 to −15 Absolute value of wbits Raw stream with no header and
trailers

+24 to +31 = 16 + (8 to 15) Lower 4 bits Includes gzip header and trailers

+40 to +47 = 32 + (8 to 15) Lower 4 bits zlib or gzip formats

Program 12.9 Write a Program to demonstrate the use of decompressobj().

import zlib

original_data = “HELLO Welcome to Python”

print(original_data)

compressed = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, +15)

compressed_data = compressed.compress(original_data)

compressed_data+ = compressed.flush()

print(‘compressed_data = ‘, compressed_data)

f = open(‘compressed_Orignal_Data.txt’, ‘w’)

f.write(compressed_data)

f.close()

CHUNKSIZE = 1024

data_to_decompress = zlib.decompressobj()

my_file = open(‘compressed_Orignal_Data.txt’, ‘rb’)

buf = my_file.read(CHUNKSIZE)

while buf:

 decompressed_data = data_to_decompress.decompress(buf)

 buf = my_file.read(CHUNKSIZE)

(Contd.)

A Brief Tour of Standard Library 325

decompressed_data+ = data_to_decompress.flush()

print(‘Decompressed data: ‘ + decompressed_data)

my_file.close()

output

HELLO Welcome to Python

(‘compressed_data = ‘, ‘x\x9c\xf3p\xf5\xf1\xf1W\x08O\xcdI\xce\xcfMU(\xc9W\x08\
xa8\xc9\xc8\xcf\x03\x00Y\xee\x08\x06’)

Decompressed data: HELLO Welcome to Python

Explanation In Program 12.9 above, initially the original message is compressed and compressed
data is placed into the file named ‘compressed_Orignal_Data.txt’. The data is then
compressed by making use of compressobj() function. Finally, the compressed data is read from
the file, viz. ‘compressed_Orignal_Data.txt’. To decompress the compressed file, the function
decompressobj() is used.

 Summary

  Python comes with two basic modules, such as, _builtin_ and exception.

  The os module allows you to interact with files and directories of operating system.

  Advanced searching and matching patterns can be done by using regular expressions.

  The date and time module can be accessed and manipulated using datetime module.

  Various modules of Internet are used to interact with websites to perform any of the tasks related to
website, such as, get data, post data or parse data.

  The lossless and lossy are two different types of compression techniques.

 KEy TErmS

 � os module: It allows to use operating system dependent functionality.

 � re module: The regular expression module is used to handle complex task of searching and extracting
text.

 � Datetime: This module contains the classes to manipulate date and time.

 � urllib: It is the collection of multiple modules to work with the URLs.

 � zlib: It allows the compression and decompression.

Python Programming326

 rEviEw QuESTioNS

a. multiple Choice Questions.

 1. What is the output of following code?

import datetime

res = datetime.date(2018,5,17)

print(res)

 a. 2018-05-17 b. 2018-17-05

 c. 05-17-2018 d. None of the above

 2. What is the output of following code?

tday=datetime.date.today()

print(tday.year)

#Note: Assume Current Year as 2018

 a. 2018 b. 2017

 c. 2019 d. None of the above

 3. What is the output of the following code as shown below while the system date is 05-07-2018?

tday=datetime.date.today()

tdelta=datetime.timedelta(days=20)

print(tday+tdelta)

 a. 2018-05-17 b. 2018-05-27

 c. 2018-05-7 d. 2018-27-05

 4. Which of the following codes is used to create a directory?

 a. os.mkdir(path) b. os.mdir(path)

 c. os.createdir(path) d. os.create_directory(path)

 5. Which of the following methods does return the current working directory?

 a. os.getd() b. os.getcwd()

 c. os.getpwd() d. os.pwd()

B. Exercise Questions

 1. Explain trigonometric functions supported by maths module.

 2. Explain match() and search() functions being supported by re, i.e. regular expression module.

 3. Explain the needs of regular expression.

 4. Explain how to compress the large data streams.

 5. Enlist at least six different parameters of urllib.parse().

A Brief Tour of Standard Library 327

 1. Write a Program to count “.pdf” files from any directory.

 2. Write a Program to delete “.txt” files from any directory.

 3. Write a Program to compress and decompress the text

 “Welcome to Python Programming”.

 4. Write a Program to input two sides of a right-angled triangle and calculate hypotenuse using
the in-built trigonometric functions of maths module.

 5. Write a Program to extract all of those words that begin with vowels.

Example: “Abc def efg”

Output: [“Abc , efg”]

ProgrammiNg aSSigNmENTS

13

Graphics Programming:
Drawing with Turtle Graphics

Learning OutcOmes

After completing this chapter, students will be able to:

• Create simple graphics using the Turtle module

• Draw different geometric figures, such as lines, circles, rectangles, squares and polygons using the
Turtle

• Draw basic shapes using iterations

• Draw simple charts

chapter OutLine

 13.1 Introduction

 13.2 Getting Started with the Turtle Module

 13.3 Moving the Turtle in any Direction

 13.4 Moving Turtle to Any Location

 13.5 The color, bgcolor, circle and Speed
Method of Turtle

 13.6 Drawing with Colors

 13.7 Drawing Basic Shapes using
Iterations

 13.8 Changing Color Dynamically
using List

 13.9 Turtles to Create Bar Charts

13.1 intrOductiOn

A simple way to start learning graphics programming is to use the inbuilt Turtle module in
Python. The Turtle module is a graphics package for drawing lines, circles and various other
shapes, including text. In short, the Turtle is a cursor on the screen to draw graphics related things.
Importing the Turtle module helps a programmer to access all graphics functions in Python.

Graphics Programming: Drawing with Turtle Graphics 329

13.2 getting started with the turtLe mOduLe

To start, a programmer can use interactive mode (command line) or script mode of Python. The
steps required to start graphics programming using the Turtle module in interactive mode of
Python are given as follows:

 | Step 1: Launch Python by pressing the start button in Windows and writing Python in the
search box. Click on Python IDLE to start the interactive mode. The following window
will then appear (Figure 13.1).

Figure 13.1

 | Step 2: At the Python’s statement prompt >>> type the following command to import the
Turtle module.

 >>> import Turtle #import Turtle module

 | Step 3: Type the following command to show the current location and direction of the Turtle.

 >>> Turtle.showTurtle()

After the execution of the above statement, Python’s Turtle graphics window will be displayed
as shown in Figure 13.2.

Figure 13.2 Python’s Turtle Graphics Window

Python Programming330

The Turtle is like a pen. The arrowhead indicates the current position and direction of the pen.
Initially, the Turtle is positioned at the center of the window.

13.3 mOving the turtLe in any directiOn

As discussed above, the Turtle is an object which is created when we import the Turtle module.
As soon as the object is created its position is set at (0, 0), i.e. at the center of the Turtle graphics
window. Also by default its direction is set to go straight to the right.

The imported Turtle module uses a pen to draw shapes. It can be used to move and draw lines
in any direction. Python contains methods for moving the pen, setting the pen’s size, lifting and
putting the pen down. By default, the pen is down, i.e. it draws a line from the current position
to the new position. Table 13.1 shows a list of methods to move the Turtle in specified directions.

table 13.1 Turtle methods related to directions

Method Meaning

Turtle.forward(P)

Example:

>>> import Turtle

>>> Turtle.forward(100)

Moves the Turtle P pixels in the direction of its current heading.
Output:

Turtle.left(angle)

Example:

>>> import Turtle

>>> Turtle.left(90)

>>> Turtle.forward(100)

Rotates the Turtle left by the specified angle.
Output:

Explanation: Initially the Turtle is placed at the centre by default. The
command Turtle.left(90) changes the direction of the Turtle to the left
by 90 degrees. Finally, the arrowhead moves 100 pixels forward.

(Contd.)

Graphics Programming: Drawing with Turtle Graphics 331

right(P)

Example:

>>> import Turtle

>>> Turtle.right(90)

>>> Turtle.forward(100)

Rotates the Turtle in place a degree clockwise.
Output:

Explanation: Initially the Turtle is placed at the centre by default. The
command Turtle.right(90) changes the direction of the Turtle to the
right by 90 degrees. Finally, the arrowhead moves 100 pixels forward.

backward(P)

Example:

>>> import Turtle

>>> Turtle.backward(100)

Moves the Turtle P pixels in a direction opposite to its current heading.
Output:

In Table 13.1, we used various methods to move the Turtle from one position to the other. As
discussed above, the Turtle draws a line from one position to the other with the help of the pen.
Table 13.2 illustrates various methods related to the state of a pen.

Python Programming332

table 13.2 Methods related to the state of a pen

Method Meaning

Turtle.pendown()

Example:

>>> import Turtle

>>> Turtle.pendown()

>>> Turtle.forward(100)

Pulls the pen down. Draws when it moves from one place to the
other.
Output:

Explanation: In the above example, the method Turtle.pendown()
draws different shapes when it moves from one place to the other.

Turtle.penup()

Example:

>>> import Turtle

>>> Turtle.penup()

>>> Turtle.forward(100)

Pulls the pen up. In this state, it just moves from one place to the
other without drawing anything.
Output:

Explanation: The import Turtle method places the pen at the center
of the circle. The Turtle.penup() doesn’t allow a programmer to
draw things, it just moves from one place to the other. When the
statement Turtle.forward(100) is executed immediately after the
penup() statement, it moves 100 pixels forward without drawing
any line or shape.

(Contd.)

Graphics Programming: Drawing with Turtle Graphics 333

Turtle.pensize(width)

Example:

>>> import Turtle

>>> Turtle.forward(100)

>>> Turtle.pensize(5)

>>> Turtle.pensize(5)

>>> Turtle.left(90)

>>> Turtle.forward(100)

Sets the line thickness to the specified width.
Output:

Explanation: In the above code, initially the line is drawn 100 pixels
ahead in the forward direction. The statement Turtle.pensize(5)
increases the thickness to draw the figure from here onwards.

13.3.1 programs to draw different shapes

The following programs make use of methods discussed above to draw different shapes.

program 13.1 Write a program to draw the square shown as follows using Python’s Turtle module.

import Turtle #import Turtle module

Turtle.forward(100) #Move Turtle in forward direction

Turtle.left(90) #Change the direction of Turtle to left by 90 degree

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Python Programming334

program 13.2 Write a program to display the polygon shown as follows:

import Turtle #import Turtle module

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

Turtle.left(45)

Turtle.forward(50)

13.4 mOving turtLe tO any LOcatiOn

When a programmer tries to run Python’s Turtle graphics program by default, the Turtle’s
arrowhead (Cursor or Pen) is at the center of the graphics window at coordinate(0, 0) as shown in
Figure 13.3.

>>> import Turtle #import Turtle module

>>> Turtle.showTurtle ()

Graphics Programming: Drawing with Turtle Graphics 335

Y-axis

(0,0)

Y-axis

(a) (b)

Figure 13.3 (a) Representation of coordinate system (b) Centre of Turtle graphics at (0, 0)

The method goto(x, y) is used to move the Turtle at specified points (x, y). The following example
illustrates the use of goto(X, Y) method.

Example

>>> import Turtle

>>> Turtle.showTurtle ()

>>> Turtle.goto(0,-50)

Output

Figure 13.4

Explanation

In the above example, the statement goto(0,-50) will move towards coordinate (0, -50).

Python Programming336

13.5 the cOLOr, bgcOLOr, circLe and speed

methOd Of turtLe

Table 13.3 gives more details about color, bgcolor, circle and speed method of the Turtle.

table 13.3 Turtle methods related to color and speed of the Turtle

Method Meaning

Turtle.speed(integer _

paramter)
The drawing speed of the Turtle must be in the range int 1 (slowest) to
10 (fastest) or 0 (instantaneous).

Turtle.circle(radius,

extent=None)

Example:

>>> import Turtle

>>> Turtle.circle (45)

Draws a circle with the given radius. The center is radius units left of the
Turtle. The extent determines which part of the circle is drawn. If it is not
given, the entire circle is drawn.
Output:

Explanation: The statement Turtle.circle (45) is used to draw a circle of
radius 45 in an anti-clockwise direction.

Turtle.color(*args)

Example:

>>> import Turtle

>>> Turtle.color(“red”)

>>> Turtle.circle (45)

The color method is used to draw colorful animations.
Output:

Explanation: The above statement draws a circle in red color.

(Contd.)

Graphics Programming: Drawing with Turtle Graphics 337

Turtle.bgcolor(*arg)

Example:

>>> import Turtle

>>> Turtle.color(“red”)

>>> Turtle.

bgcolor(“pink”)

Returns the background color of the Turtle screen.
Output:

Explanation: Changes the background color of the Turtle graphics
window to pink.

program 13.3 Write a program to display the circles shown. You can consider any radius.

import Turtle

Turtle.circle (45)

Turtle.circle (55)

Turtle.circle (65)

Turtle.circle (75)

Turtle.circle (85)

explanation In the above program, the 5 circles are drawn with different radius, viz. 45, 55, 65, 75
and 85, respectively.

Python Programming338

13.6 drawing with cOLOrs

A Turtle object contains methods for setting a color. In the above section, we have learnt how to
draw different shapes. Table 13.4 lists methods to draw different shapes with different colors.

table 13.4 More methods of Turtle related to color

Method Meaning

Turtle.color(c) Sets the pen’s color

Turtle.fillcolor(C) Sets the pen’s fill color to ‘C’

Turtle.begin _ fill() Calls this method before filling a shape

Turtle.end _ fill() Fills the shape drawn before the last call to begin_fill

Turtle.filling() Returns the fill state. True is filling, False if not filling.

Turtle.clear() Clears the window. The state and position of window is not affected.

Turtle.reset() Clears the window and resets the state and position to its original
default value

Turtle.screensize() Sets the width and height of the canvas

Turtle.showTurtle() Makes the Turtle visible

Turtle.hideTurtle() Makes the Turtle invisible

Turtle.write(msg,

move,align,font=fontname,

fontsize, fonttype)

Writes a message on the Turtle graphics window

Program 13.4 demonstrates the use of begin _ fill() and end _ fill() method to fill a shape.

program 13.4 Write a program to draw a color filled square box as shown.

import Turtle

Turtle.fillcolor (“gray”) #Fill gray color inside the square

Turtle.begin_fill ()

Turtle.forward(100)

Turtle.left(90)

(Contd.)

Graphics Programming: Drawing with Turtle Graphics 339

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Turtle.left(90)

Turtle.end_fill()

program 13.5 Write a program to create a circle with specifications as:

(a) Fill circle with gray color

(b) Display the text message “Circle!” inside the circle.

Circle!

import Turtle

Turtle.pendown()

Turtle.fillcolor (“gray”)

Turtle.begin_fill()

Turtle.circle(70)

Turtle.end_fill()

Turtle.penup()

Turtle.goto(-25,50)

Turtle.hideTurtle ()

Turtle.write(‘Cirlce!’, font = (‘Times New Roman’, 20, ‘bold’))

13.7 drawing basic shapes using iteratiOns

As shown in Program 13.4, a programmer needs to write the following six sentences to draw a
simple square:

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Turtle.left(90)

Turtle.forward(100)

Turtle.left(90)

Python Programming340

However, if a programmer wants to display four different squares then it would be very
cumbersome to type the above code repeatedly. Such kind of iterations can be accomplished using
the for loop. Thus, to create four different squares, we need to create a function square () and

then draw the square using the for loop. Function takes one argument which is the side of a square.
The following program demonstrates the use of the for loop to display multiple squares.

program 13.6 Create a function to draw four different squares using the for loop as shown.

import Turtle

def square(side):

 for i in range(4):

 Turtle.forward(side)

 Turtle.left(90)

square(20)

square(30)

square(40)

square(50)

program 13.7
 Write a program to display the multiplication table from 1 to 10 in the Turtle graphics window
as shown.

import Turtle as t

t.penup()

(Contd.)

Graphics Programming: Drawing with Turtle Graphics 341

x = -100

y = 100

t.goto(x,y) #Move pen at location x and y

t.penup()

for i in range(1,11,1): # value of i varies from 1 to 10

 y = y - 20

 for j in range(1,11,1): # Value of j varies from 1 to 10

 t.penup()

 t.speed(1)

 t.forward(20)

 t.write(i*j)

 t.goto(x, y)

program 13.8 Write a program to draw the petals of the flower shown as follows using the circle method.

import Turtle as t

def petal(t, r, angle):

 “””Use the Turtle (t) to draw a petal using two arcs

 with the radius (r) and angle.

 “””

 for i in range(2):

 t.circle(r,angle)

 t.left(180-angle)

def flower(t, n, r, angle):

 “””Use the Turtle (t) to draw a flower with (n) petals,

 each with the radius (r) and angle.

 “””

 for i in range(n):

 petal(t, r, angle)

 t.left(360.0/n)

flower(t, 7, 80.0, 60.0)

Python Programming342

13.8 changing cOLOr dynamicaLLy using List

As we have studied in the previous chapter, a list is a sequence of values called items or elements,
where the elements can be of any type. Similarly, we can define the various colors inside a list using
the syntax:

 List_Name = [“First_Color_Name”, “Second_Color_Name”,……………]

Example

 C = [“blue”, “RED”, “Pink”]

Program 13. 9 demonstrates the use of list and for loop to change a color dynamically.

program 13.9 Write a program to draw and fill circles with different colors.

import Turtle as t

C = [“blue”,”RED”,”Pink”]

for i in range(3):

 t.fillcolor (C[i])

 t.begin_fill()

 t.circle(70)

 t.end_fill()

explanation In the above program, all the names of colors are defined inside the list C. The for
loop is used to iterate all the elements of the list. The statement t.fillcolor (C[i])) is used to fill color
inside the circle.

13.9 turtLes tO create bar charts

Turtles can be used to create bar charts. Bar charts can be created using various inbuilt methods
discussed in the previous section of this chapter. A method such as write () can be used to
display the text on the canvas at a particular location. Other methods such as begin _ fill() and
end _ fill() can be used to fill a shape with a specific color. Thus, by using various methods, we
can draw bar charts in Python.

Table 13.5 shows statistics for the most downloaded browser by users in 2016–2017.

table 13.5 Sample data to draw a chart

Web Browser Percentage

Mozilla Firefox 45%

Google Chrome 30%

Internet Explorer 15%

Others 10%

Corresponding to the percentage given in Table 13.5, we will draw a simple rectangle of the
given height with fixed width. The bar chart for Table 13.5 will be:

Graphics Programming: Drawing with Turtle Graphics 343

program 13.10 Write a program to draw a bar chart using Turtle for the sample data given in Table 13.5.

import Turtle

def Draw_Bar_Chart(t, height):

 t.begin_fill() # start filling this shape

 t.left(90)

 t.forward(height)

 t.write(str(height))

 t.right(90)

 t.forward(40)

 t.right(90)

 t.forward(height)

 t.left(90)

 t.end_fill() # stop filling this shape

Mozilla_Firefox = 45

Chrome = 30

IE = 15

Others = 10

S = [Mozilla_Firefox, Chrome, IE,Others] # Sample Data

maxheight = max(S)

num_of_bars = len(S)

border = 10

w = Turtle.Screen() # Setting up attributes of Window

w.setworldcoordinates(0,0,40*num_of_bars + border, maxheight + border)

w.bgcolor(“pink”)

T1 = Turtle.Turtle()

T1.color(“#000000”)

T1.fillcolor(“#DB148E”)

T1.pensize(3)

for a in S:

 Draw_Bar_Chart(T1,a)

explanation In the above program, we have created a function named Draw_Bar_Chart(). Initially,

the sample statistics data of a browser is given in list S. The function setworldcoordinates() is used
to set the coordinates. The actual syntax and its details are:

 setworldcoordinates(LLX,LLY, URX, URY)

Python Programming344

where,

LLX - A number which indicates X coordinate of the lower left corner of the canvas.

LLY - A number which indicates Y coordinate of the lower left corner of the canvas.

URX - A number which indicates X coordinate of the upper right corner of the canvas.

URY - A number which indicates X coordinate of the upper right corner of the canvas.

Thus, setworldcoordinates() sets the coordinates position to draw the chart.

mini prOject turtle racing game

Create three different Turtles of colors red, green and black. Design one track for all of them to run
over the track and win the competition. The track and the Turtle before the start of the completion
should look as shown.

 Turtle Racing Track

To solve this case study, the for loop and Turtle’s inbuilt functions such as penup(), pendown(),
forward(), right(), goto(), color(), shape(), speed(), and left() will be used.

algorithm

 | Step 1: Design the track.

 | Step 2: Place all the Turtles at the appropriate position to start the race.

 | Step 3: Use the for loop to run over the track and a random number to move the Turtle forward
by x pixels.

 | Step 4: End.

Part 1: Design the track.

 (a) First place the Turtles at the starting position position(x,y).

 goto(-240,240)

Graphics Programming: Drawing with Turtle Graphics 345

 (b) To draw the lines vertically, change the direction of the Turtle facing towards the right.

 penup()

 right(90)

 (c) Move the Turtle 10 pixels ahead.

 forward(10)

 (d) Now move the Turtle forward by 150 pixels.

 pendown()

 forward(150)

Thus, up to this step we have successfully created the starting line of the track. To draw the
second line, move backwards by 160 pixels.

 backward(160)

Now, the Turtle has come to its starting position in the first line but is facing up. Therefore, to
draw the second line, change the direction towards the left by 90 degrees and forward by some ‘y’
distance.

 left(90)

 forward(Y)

Repeat all the above steps to draw the remaining lines.

The code to create track is given as follows:

from Turtle import*

title(‘Turtle F1 Racing Game’)

speed(10)

penup()

goto(-240,240) #Initial Position of track

z=0

y=25

for x in range(6): #Iterate to draw six lines

 write(x) #Mark distance at the top of line

 right(90) #change direction facing downwards

 forward(10) #Move 10 steps ahead

 pendown() #Open Pen to draw

 forward(150) #Move 150 Steps ahead

 penup() #Close pen

 backward(160) #Move 160 steps backward

 left(90) #Change direction towards left

 forward(y) #Move by y distance

part II: Write the code to create the three Turtles and place them at the proper position before the
start of the first line.

t1 = Turtle() #create Turtle object t1

t1.penup() #pen up to place Turtle at x y position

Python Programming346

t1.goto(X,Y)

t1.color(‘color_name’) #Change the color of Turtle

t1.shape(‘Turtle’) #Give proper shape to it

Repeat the above steps three times to create three Turtles.

Code to create three Turtles and place them at the proper position before the start of the first line

is given as follows:

t1 = Turtle() #First Turtle – Red Colored

t1.penup()

t1.goto(-260,200)

t1.color(‘red’)

t1.shape(‘Turtle’)

t2 = Turtle() #Second Turtle – Black Colored

t2.penup()

t2.goto(-260,150)

t2.color(‘Black’)

t2.shape(‘Turtle’)

t3 = Turtle() #Third Turtle – Green Colored

t3.penup()

t3.goto(-260,100)

t3.color(‘Green’)

t3.shape(‘Turtle’)

part III: Moving the Turtles randomly.

Use randint from the random module to move a Turtle by x position randomly.

 Turtleobject. forward(randint(1,5))

Perform the above steps for all the three Turtles.

Code to move the Turtles is given as follows:

from random import*

for t in range(50):

 t1.forward(randint(1,5))

 t2.forward(randint(1,5))

 t3.forward(randint(1,5))

Graphics Programming: Drawing with Turtle Graphics 347

Solution

Merging all codes, viz. part I, II and III, we get

from Turtle import*

from random import*

title(‘Turtle F1 Racing Game’)

speed(10)

penup()

goto(-240,240)

z=0

y=25

for x in range(6):

 write(x)

 right(90)

 forward(10)

 pendown()

 forward(150)

 penup()

 backward(160)

 left(90)

 forward(y)

t1 = Turtle()

t1.penup()

t1.goto(-260,200)

t1.color(‘red’)

t1.shape(‘Turtle’)

t2 = Turtle()

t2.penup()

t2.goto(-260,150)

t2.color(‘Black’)

t2.shape(‘Turtle’)

t3 = Turtle()

t3.penup()

t3.goto(-260,100)

t3.color(‘Green’)

t3.shape(‘Turtle’)

for t in range(50):

 t1.forward(randint(1,5))

 t2.forward(randint(1,5))

 t3.forward(randint(1,5))

Python Programming348

output

 Summary

  Turtle is Python’s inbuilt graphics module for drawing various shapes such as lines, circle etc.

  The Turtle is like a pen.

  Initially the Turtle is positioned at the center of the window.

  Various methods such as forward() and backward() are used to move the Turtle forward and backward
by x pixels.

  The Turtle left(angle) and right(angle) is used to rotate the Turtle left or right by some angle.

  The Turtle goto(x, y) method is used to move the Turtle to specified points(x, y).

 Key termS

 � turtle(): Graphics package to draw objects

 � forward (), left(), right() and backward(): Direction to move the Turtle in the given direction

 � penup() and pendown(): Draw depends on the status of the pen

 � color(), fillcolor(), end _ fill(), begin _ fill(): Methods to color Turtle objects

 � setworldcoordinates(): Coordinate the position to draw objects

 � goto(x ,y): Move the Turtle at location x,y.

 revIew QueStIonS

a. multiple Choice Questions

 1. Which instruction is used to set the pen size to 10 pixels?

 a. Turtle.size(10) b. Turtle.pensize(10)

 c. Turtle.setsize(10) d. All of them

Graphics Programming: Drawing with Turtle Graphics 349

 2. Which instruction is used to set the position of the Turle at 0,0?

 a. Turtle.set(0,0) b. Turtle.xy(0,0)

 c. Turtle.goto(0,0) d. Turtle.moveto(0,0)

 3. Which instruction related to the pen is used to draw an object while it is moving?

 a. pendown() b. Pendown()

 c. penDown() d. PenDown()

 4. Which instruction will help us draw a circle with radius 10?

 a. Turtle.drawcircle(10) b. Turtle.circledraw(10)

 c. Turtle.c(10) d. Turtle.circle(10)

 5. Which inbuilt function is used change the speed of the Turtle?

 a. Turtle.move(x) b. Turtle.speed(x)

 c. Both a and b d. None of the above

 6. Which instruction is used to show the current location and direction of the Turtle object?

 a. Turtle.show() b. Turtle.showdirection()

 c. Turtle.shoedirloc() d. Turtle.showTurtle()

 7. Which instruction prevents the Turtle from drawing objects?

 a. penUp() b. penup()

 c. PenUp() d. PenuP()

 8. Which instruction hides the Turtle?

 a. Turtle.hide() b. Turtle.noTurtle()

 c. Turtle.invisble() d. Turtle.hideall()

B. true or False

 1. Interactive mode (command Line) cannot used for graphics programming in Python.

 2. The turtle is an object created when module turtle is imported.

 3. The imported turtle module uses pen to draw shapes.

 4. The turtle is used to move and draw lines in only forward and backward direction on the screen.

 5. By default the position using Turtle pen is down side.

 6. It is not possible to draw complicated figures using turtle.

 7. Slowest speed range for drawing a figure using a turtle is -1.

 8. Maximum speed range for drawing a figure using a turtle is 0.

 9. A turtle object contains methods for setting color.

 10. We can’t fill up the circular figure with a color.

C. exercise Questions

 1. What is Turtle and how is it used to draw objects?

 2. Explain the various inbuilt methods to change the direction of the Turtle.

 3. Explain how different shapes can be drawn using iterations.

 4. Explain the steps required to create bar charts.

 5. How can penup() and pendown() functions be used effectively?

Python Programming350

 1. Write a program to display the hexagon given as follows:

 2. Write a program to display the logo of BMW as given as follows:

 3. Write a program to draw the figure given as follows:

 4. Write a program to display the patterns of stars in the Turtle graphics window as shown.

 *

 * *

 * * *

 * * * *

 * * * * *

programmIng aSSIgnmentS

14

Unit Testing

Chapter outline

 14.1 Why Testing Is Required?

 14.2 Types of Testing

 14.3 Identifying Units

14.4 Unit Testing in Python—The unittest Class

14.5 List of assert Methods

14.6 Writing and Running Multiple Test Cases

14.1 Why testing is required?

Writing programs is difficult at the beginning but it becomes easier after doing them regularly.
Once you start writing programs, the size of program grows by few lines and, ultimately, there
are more chances of appearing errors in the programs. In general, the best practice of testing is to
debug programs and write automated test for your software. Also testing will help developers to
create error-free software. Actually, the testing is the process of running software which looks for
errors. It also tries to make program fail by testing it in many ways.

learning outCoMes

After completing this chapter, students will be able to:

• Learn to write and run test cases

• Learn writing multiple test cases at once

• Learn to test the functional units in isolation

• Write the better test cases in order to verify that requirements are being met

Python Programming352

14.2 types of testing

Generally, there are two categories of testing, i.e. black box and white box testing. In black box
testing, the testers write the test cases based on the specifications for what the code is supposed
to accomplish and they are also not supposed to look at the code itself. But, in cases of white box
testing, testers write the code based on the knowledge of the specifications and the code itself.
Thus, in case of white box testing, testers can write the code before or while the code is written.

Following are the various types of automated tests (Table 14.1), where testers can use them to
test the written software.

Table 14.1 Types of Automated Testing

Types of Automated Testing Description

Unit Testing Here the small modules, classes or functions are being tested.
Or the isolated units of codes are tested.

Acceptance Testing Test features from user’s perspective.

Integration Testing Test two or more larger components.

Performance Testing Test execution speed, memory usage and other parameters.

Regression Testing Running test in order to check if previously built features are
still working.

Consequently, here we will discuss testing in general and will learn to perform unit testing
in Python.

14.3 identifying units

Imagine, you are a group of people as working on one simple Python project. Among the teammates,
suppose one of your colleagues has written following code and it is your responsibility to test
the code.

As it is your turn to test the code, so in order to make the task of testing easy, you need to identify
which section of the codes does contain the units. Is there only one unit which consists of the entire
class or if each of the methods will act as a separate unit? The answer to question may vary upon
the tester to tester. One may say that whole class is a single unit and, in some circumstances, it
may be the best answer. But, it is always easy to subdivide most classes into methods as all of the
methods have isolated behaviour.

14.4 unit testing in python—the UNITTEST Class

To test the software, we must write both test cases and software. Typically, the programmer should
understand the problem first and then write the test cases based on understanding of the problem
and write the code. Of course, the programmer can also write the code first, but it would be better
if the programmer can continuously check the code what he/she is writing against the number of
test cases as already been written. Thus, first to write the test cases and then to write the code for
the application will help the developers/programmers to know how much progress is being made
towards passing all of the respective tests.

Unit Testing 353

Following is the simple example which describes writing test cases for a Program. Here, we have
used the standard Python library containing a module, named “unittest”. Where, the unittest
is a unit-testing framework and it comes with Python’s standard library. The module contains the
core framework classes that form the basis of test cases and other suites. It also provides the utility
class for running the tests and reporting the results. The unittest module provides a class called
“TestCase” from which we can create sub-classes to perform the unit testing. The following
program demonstrates the steps to write test cases using TestCase class for unittest module.

Program 14.1 Create the file arithmetic.py and write the code within it.

def mul(X,Y):

 return X*Y

Program 14.2
Write the test case to check if arithmetic.py works for other numbers or not. Create a test
file called “arithmetic_test.py”.

from arithmetic import_mul

import unittest

class TestArithmetic(unittest.TestCase):

 ##Your test methods go here.

 def test_mul(self):

 self.assertEqual(10,mul(5,2))

unittest.main() #Outside the class which tells the framework to run

output

Ran 1 test in 0.005s OK

Explanation The line-by-line execution of the Program 14.2 shows that this example first imports
our written program arithmetic.py and imports its functionality called mul(). The second line
imports then Python’s unittest module. The test_mul() method is executed before each test
in order to check if it returns the correct result. To check if the mul() method of arithmetic.py
file is giving the adequate result, the assertEqual() method is used. Here, the assertEqual()
method is provided by imported unittest module. This method checks if the first argument
equals to second or not. In the Program 14.2 above, we are interested to check if the multiplication
of 5 and 2 is 10 and the same should be returned by the function mul() of arithmetic.py by
checking whether it calculates correctly and returns 10. Finally, after execution of the Program
above, the output shows “Ran 1 test in 0.005s OK” while it indicates that your test has run
successfully. What if, the test as run went wrong or was unsuccessful? Then what would be the
output in such cases? Thus, we can simulate the same by breaking the test as shown below.

In order to fail the test case, we will change then the code of “arithmetic_test.py”
as follows.

Python Programming354

Program 14.3 Write a Program to fail the test case by changing the code “arithmetic_test.py”.

from arithmetic import_mul

import unittest

class TestArithmetic(unittest.TestCase):

 ##Your test methods go here.

 def test_mul(self):

 self.assertEqual(12,mul(4,6))

unittest.main() #Outside the class, which tells the framework to run

output

F

==

FAIL: test_mul (__main__.TestArithmetic)

--

Traceback(most recent call last):

 File “C:/Python27/Demo/arithmetic_test.py”, line 6, in test_mul

 self.assertEqual(12,mul(4,6))

AssertionError: 12 != 24

--

Ran 1 test in 0.005s

In cases of the failure as the above Program shows, the line number where the error was detected,
the assertion which was failed and the actual result too which was not just as been expected.

So from the test case above, we can analyse unittest modules which provide output in details
even in those cases where the tests fail. In some cases, it may also happen that failure of test case
can go wrong if something goes wrong in the code and then it gives you the wrong answer. So, in
such cases, you need to go in and fix your code.

Note: Rules for writing test methods:
a. The name of a test method must start with word “test”, otherwise it will be ignored.
b. Every test method must have exactly one parameter with “self”.
c. Put “self.” in front of every built-in assertion method while you call.

Let us change the name of method “test_mul” to “tmul” in the code “arithmetic_test.py”.

Program 14.4
 Write a Program where the name of the method will be changed from “test_mul” to “tmul”
in the code “arithmetic_test.py”.

from arithmetic import_mul

import unittest

class TestArithmetic(unittest.TestCase):

 ##Your test methods go here.

(Contd.)

Unit Testing 355

 def tmul(self):

 self.assertEqual(12,mul(4,6))

unittest.main() #Outside the class, which tells the framework to run

output

Ran 0 tests in 0.000s OK

Thus, we got the output “Ran 0 tests in 0.000s OK” which means that it has ignored the
test case since the name of the method has not started with “test”.

14.5 list of assert Methods

Similar to assertEqual(), there are some in-built methods which you can call. Each method
also has an optional “message” parameter to be printed if the corresponding test would fail. The
brackets within the parentheses indicate the optional arguments that can be omitted. Following
Table 14.2 contains the list of different assert methods.

Table 14.2 Different methods of “assert”

1 self.assertEqual(expectedResult,actualResult,[message])

The assertEqual() method is used to check if the values of expected result and actual result are
exactly equal.

2 self.assertNotEqual(firstValue secondValue,[message])

The assertNotEqual() method is used to check if the values of expected result and actual result are
different and fail if they are equal.

3 self.assertAlmostEqual(expectedResult,actualResult,[places,[message]])

The assertAlmostEqual() method is used to check if the values of expected result and actual
result are equal, after rounding to the definite decimal places.

4 self.assertTrue(booleanCondition,[message])

The assertTrue() method is used to check if the booleanCondition is true.

5 self.assertFalse(booleanCondition,[message])

The assertFalse() method is used to check if the booleanCondition is false.

6 self.assertRaises(exception,functionName,parameter,...,parameter)

Test that the function, functionName, when being called with the given (zero or more) parameters,
it raises the given exception,

Python Programming356

14.6 Writing and running Multiple test Cases

In the above section, we have seen to the processes to write the single test cases for a particular
program. But what if the tester would want to test multiple test cases at once? Thus, the following
Programs 14.4 and 14.5 demonstrate the single and multiple test cases in order to calculate the
factorials of a number.

Program 14.5
 Write a simple Program factorial.py to calculate the factorial of number.

def fact(n):

 if n == 0:

 return 1

 elif n == 1:

 return 1

 else:

 return n*fact(n-1)

def main(n):

 print(fact(n))

if __name__ == ‘__main__’:

 main(5)

Program 14.6
 Write the test case to check if above Program 14.5, i.e. factorial.py, works for other
numbers. Create a test file called “Factorial_Test.py”.

from factorial import fact

import unittest

class TestFactorial(unittest.TestCase):

 def test_fact(self):

 res = fact(5)

 self.assertEqual(res,120)

if _name_ == ‘_main_’:

 unittest.main()

output

Ran 1 test in 0.063s OK

Explanation The line-by-line execution of the Program 14.6 shows that this example first imports
our written program factorial.py and imports its functionality called fact(). The second line
imports Python’s unittest module. The test_fact() method is executed before each test to
check if it returns the correct result. To check if fact() method of factorial.py file gives the

Unit Testing 357

correct result, the assertEqual() method is used. Here assertEqual() method is provided by
imported unittest module. This method checks if the first argument equals to second or not.
In the Program 14.6 above, we are interested to check if factorial of 5 is 120 and the same should be
returned by the function fact() of factorial.py checking whether it calculates correctly and
returns 120. Finally, after execution of the Program 14.6 above, the output is “Ran 1 test in
0.063 OK” and it indicates that our test has run successfully. What if as the test run went wrong or
was unsuccessful? Then what would be the output in such cases? Thus, we can simulate the same
by breaking the test as shown below.

In order to fail the test case, we will change then the code of “factorial_test.py” as follows.

Program 14.7
 Write a Program to fail the test case by changing the code “factorial_test.py”.

from factorial import fact

import unittest

class TestFactorial(unittest.TestCase):

 def test_fact(self):

 res = fact(5)

 self.assertEqual(res,121)

if __name__ == ‘__main__’:

 unittest.main()

output

F

==

FAIL: test_fact (__main__.TestFactorial)

--

Traceback(most recent call last):

 File “C:\Python27\try.py”, line 7, in test_fact

 self.assertEqual(res,121)

AssertionError: 120 != 121

--

Ran 1 test in 0.004s

FAILED (failures=1)

So from the test case above, we can analyse unittest module which provides the output in
details even in cases where test would fail. In some cases, it may also happen that failure of test
cases can go wrong if something goes wrong in the code and thus giving you the wrong answer.
So in such cases, you need to go in and fix your code at first.

Python Programming358

In the section above, we have just written only one test case, i.e.

def test_fact(self):

 res = fact(5)

 self.assertEqual(res,120)

Thus, the above code has been able to check only one test case, i.e. in other words, it can check
only if the factorial of 5 is 120 or not. But, if we want to check the factorial of 1, 2, 3, 4, 5, …… etc. at
once, what we should do then? In such scenarios, we use the example list of tuple to check if the
expected output and output through the program is correct. Following Program 14.8 demonstrates
the uses of writing multiple test cases at once.

Program 14.8 Write a Program to demonstrate the uses of writing multiple test cases at once.

from factorial import fact

import unittest

class TestFactorial(unittest.TestCase):

 def test_fact(self):

 L = [(1,1),(2,2),(3,6),(4,24),(5,120)]

 for n, ans in L:

 res = fact(n)

 self.assertEqual(res,ans)

if __name__ == ‘__main__’:

 unittest.main()

output

Ran 1 test in 0.047s OK

Explanation In Program 14.8 above, we have imported unittest module and fact() function
from our factorial.py file which was already written.

The statement is:

L = [(1,1),(2,2),(3,6),(4,24),(5,120)]

It contains list of tuples, i.e. (x, y) is used to check if for each number for x, it gives the correct
output, i.e. y. Finally, the value of each tuple from the list is passed as parameter to fact()
function. Then, the assert function will let you know if the test case for each tuple is successful
or unsuccessful. Thus, the programs containing all of the test cases are executed successfully, and,
therefore, it returns output as “Ran 1 test in 0.047s OK”.

Unit Testing 359

In some cases, it may happen that while testing multiple cases, one of the test cases may go
wrong. Even in such cases, the unittest module gives the details about the failure. The following
Program 14.9 demonstrates how a unit test case fails if any of the corresponding conditions
goes wrong.

from factorial import fact

import unittest

class TestFactorial(unittest.TestCase):

 def test_fact(self):

 L = [(1,1),(2,2),(3,6),(4,25),(5,120)]

 for n, ans in L:

 res = fact(n)

 self.assertEqual(res,ans)

if _name_ == ‘_main_’:

 unittest.main()

output

FAIL: test_fact(_main_.TestFactorial)

--

Traceback(most recent call last):

 File “C:\Users\kamthanea\Documents\Unit Testing in Python\Test.py”, line 9,

in test_fact

 self.assertEqual(res,ans)

AssertionError: 24! = 25

--

Ran 1 test in 0.031s

FAILED (failures=1)

 Summary

  Testing is the process of running software which is looking for errors.

  Testing will help the developers to create error-free software.

  Black Box and White Box testing are the categories of testing.

  The unittest module provides a class called “TestCase” from which we can create sub-classes to
perform unit testing.

Python Programming360

 1. Write a Program and test cases to calculate the area of a circle.

 2. Write a Program and multiple test cases in the same time in order to calculate the area
of a circle.

 3. Write a Program and test cases to calculate and verify the nth term of Fibonacci series.

Programming aSSignmEnTS

 KEy TErmS

 � Black Box Testing: In this type, the tester writes the test cases based on the specifications only but he
or she is not supposed to look at the code while writing them.

 � White Box Testing: In this type, the tester writes the code based on the knowledge of the specification
and looking at the code itself.

 � Unit Testing: The small modules, classes or functions are tested in unit testing method.

 � The unittest module: This is a utility class for running the tests and reporting the result.

 rEviEw QuESTionS

a. Exercise Questions

 1. Explain White Box and Black Box testing.

 2. Explain different types of automated testing.

 3. Can we write multiple test cases? How?

 4. Describe different methods of “assert” which can be used in unit testing.

Previous Year’s Solved JNTU Examination Questions

PART A

1. a. Explain input function. (2M)

Solution

The input() function is used to accept an input from a user. A programmer can ask a user to input
a value by making use of input(). The input() function is used to assign a value to a variable.
Syntax of input() function is as follows.

Syntax

Variable_Name = input()

 OR

Variable_Name = input(‘String’)

Simple program of input() function to read string from the keyword is as follows.

PrograM a.1.1

Name = input(‘Please Enter Your Name:’)

print(‘Hello’,Name,’ How are you??‘)

output

Please Enter Your Name: Steve Jobs

Hello Steve Jobs How are you ??

Python Programming362

b. give an example of lstrip() method. (2M)

Solution

The lstrip() function is used to remove the leading white space characters. The following is the
simple example related to lstrip.

>>> str1 = ‘Hello How are You’

>>> str1

‘Hello How are You’ #Before Stripping

>>> str1.lstrip()

‘Hello How are You’ #After applying lstrip

c. How can we access the values in a dictionary? (2M)

Solution

The subscript[] operator is used to obtain the value associated with the key. The syntax to
retrieve the value from dictionary is as follows.

Syntax

Dictionary_Name[Key] = Value

Example

>>> Founder = {‘Microsoft’:’Bill Gates’,’MAC OS’:’Steve Jobs’}

>>> Founder[‘Microsoft’]

d. What is Default argument? (2M)

Solution

The parameters within a function’s definition can have the default values. We can provide the
default values to a parameter by using the assignment(=) operator. The Program A.1.2 below
demonstrates the use of default argument to calculate the area of circle.

PrograM a.1.2 Show the uses of default argument to calculate the area of circle

def Calc_Area_Circle(radius,pi=3.14):
 print(‘Radius is’,radius)
 print(‘Area of Circle is ‘, pi*radius*radius)
Calc_Area_Circle(5)

output

Radius is 5
Area of Circle is 78.5

Previous Year’s Solved JNTU Examination Questions 363

e. What are the basic overloading methods? (3M)

Solution

The basic overloading methods are as follows.

Table a.1.1 Basic Overloading Methods

Addition E1 + E2 E1._add_(E2)

Subtraction E1 - E2 E1._sub_(E2)

Multiplication E1 * E2 E1._mul_(E2)

Power E1 ** E2 E1._pow_(E2)

Division E1 / E2 E1._truediv_(E2)

Floor Division E1 // E2 E1._floordiv_(E2)

Remainder (modulo) E1 % E2 E1._mod_(E2)

f. Explain importing turtle graphics. (3M)

Solution

The statement “import turtle” is used to import the turtle graphics or the programmer can also
write the statement as “import turtle as t”.

 | STEP 1: import turtle as t.

 | STEP 2: t.showturtle()

After importing turtle the method showturtle() is used to show imported turtle.

Figure a.1.1 Python Turtle Graphics

PART B

2. a. What are the IDLE usability features? (7M)

Solution

 i. Programmer can make use of ‘ALT+P’ combination used to repeat prior commands in IDLE’s main
interactive window, i.e. to scroll backward commands with respect to the command history.

 ii. Programmer can recall commands by positioning the cursor on them by pressing the Enter to insert
text at the input prompt.

 iii. The auto-indent is one of the advanced functionality of IDLE where on pressing of backspace, the
indentation goes one level back.

 iv. The programmer has to invoke ctrl + space while typing in word auto-completion feature.

 v. The other advanced options can help to customize IDLE.

 vi. To change the text fonts and colours in IDLE, the programmer can select configuration option in option
menu of IDLE menu.

b. Explain about keywords used in Python. (7M)

Solution

The keywords used in python are as follows.

Table a.1.2

and def For is Raise

As del from lambda return

assert elif global nonlocal Try

break else If not While

class except import or With

continue finally In pass Yield

Some of the uses of keywords are as follows.
class: The keyword class is just another name for a type in Python. It means that the
programmers can create objects of their own class.

global: The keyword global is used to change the value of global variables.

try: The keyword try is used to monitor the exceptions for written block of the code.

except: The except keyword is used to catch already thrown exception.

raise: The keyword raise is used to raise the exceptions.

Finally: The finally block is placed after the last except block. If there is no except block,
the finally block should immediately follow the try block.

Previous Year’s Solved JNTU Examination Questions 365

3. a. What are the four built-in numeric data types in Python? Explain. (7M)

Solution

The four built-in numeric data types in python are as follows.

int (The Integer Type): The integer literals in a program are written without commas and the

leading minus sign indicates a negative value. The example of integer data type is as follows.

>>> a= 10

>>> type(a)

<type ‘int’>

float (The float Type): The float type is used to store the decimal numbers. Examples of
floating type is as follows.

>>> float_var = 1.23

>>> type(float_var)

<type ‘float’>

complex (The Complex Type): The complex type is used to store the complex numbers. In this
case, the complex number is expressed in terms of a + bj and a and b are real numbers and j is
the imaginary unit. Example of complex type is as follows.

>>> Com_Var = 10+5j

>>> type(Com_Var)

<type ‘complex’>

b. Describe Python jump statements with examples. (7M)

Solution

The break, continue and pass are three different types of jump statements in python. All of
these statements are used to alter the flow of a loop, like where you want to skip a part of a loop or
terminate a loop. The more details about each of them is as follows.

The break statement:
The keyword break allows the programmer to terminate the loop. When the break statement is
encountered inside a loop, the loop is immediately terminated and program control automatically
goes to the first statement following the loop. The working of break statement in while block is
as follows.

while test-Boolean-expression:
 body of while
 if condition:
 break

 body of while
statement(s)

Python Programming366

Similarly, the working of break in for loop is as follows.

for var in sequence:
 body of for

 if condition:
 break
 body of for

statement(s)

The continue statement:
This continue statement is exactly opposite of the break statement. When continue is
encountered within the loop, the remaining statements within the body are skipped but the loop
condition is checked there to see if the loop should continue or exited. The working of continue
in while loop is shown as follows.

while test-boolean-expression:
 body of while
 if condition:
 continue
 body of while

statement(s)

The working of continue in while loop:
Alternately, the working of continue in for loop:

for var in sequence:
 body of for

 if condition:
 continue
 body of for
statement(s)

The pass statement:
The pass Statement in Python does nothing. You use pass statement when you create a method
that you do not want to implement.

Example

>>> def Demo():

 Pass

>>> Demo()

4. a. Explain in detail about dictionaries in Python. (7M)

Solution

The dictionary is a collection that stores the values along with the keys. The sequences of key
and value pairs are separated by the commas. These pairs are sometimes called entries or item.
All entries are enclosed by curly braces, i.e. { and }. A colon separates a key and its value. The simple
example of the dictionary is as follows.

Previous Year’s Solved JNTU Examination Questions 367

Phone Book Example

{“Amit”:“918624986968”, “Amol”:“919766962920”}

The following example gives details about creating dictionaries in four different ways.

Example

#Way 1:

>>>D1={‘Name’:’Sachin’,’Age’:40}

>>> D1

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 2:

>>> D2={}

>>> D2[‘Name’]=’Sachin’

>>> D2[‘Age’]=40

>>> D2

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 3:

>>> D3=dict(Name=’Sachin’,Age=40)

>>> D3

{‘Name’: ‘Sachin’, ‘Age’: 40}

#Way 4:

>>> dict([(‘name’,’Sachin’),(‘age’,40)])

{‘age’: 40, ‘name’: ‘Sachin’}

The in-built functions keys() is used to retrieve all of the sequences of keys within the
dictionary and the values() function returns the sequence of values. Also the following example
illustrates the use of values and keys.

>>> IPL_Team = {“MUMBAI INDIANS”:”Rohit Sharma”,”Rajasthan
Royals”:”Ajinkya Rahane”}

>>> type(IPL_Team)

<type ‘dict’>

>>> IPL_Team.keys()

[‘Rajasthan Royals’, ‘MUMBAI INDIANS’]

>>> IPL_Team.values()

[‘Ajinkya Rahane’, ‘Rohit Sharma’]

b. Discuss about the tuples in Python. (7M)

Solution

Tuple contains the sequence of items of any types. But the elements of tuples are fixed. Once the
tuple is created, you cannot add, delete, reshuffle or reorder the elements in tuple. Therefore, the
tuples are immutable, i.e. once created, it cannot be changed.

Python Programming368

Following example gives the details about creating tuple on python interactive mode.

Example

T1 = () #Creates an Empty Tuple

T2 = (12,34,56,90) #Creates Tuple with four elements

T3 = (‘a’,’b’,’c’,’d’,’e’) #Creates Tuple of five characters

T4 = ‘a’,’b’,’c’,’d’,’e’ #Creates tuple without parentheses

Following are the in-built functions that can be used on tuples.

Table a.1.3

Built-in Functions Meaning

len() Returns the number of elements in the tuple.

max() Returns the element with the greatest value.

min() Returns the element with the minimum value.

sum() Returns the sum of all the elements of tuple.

index(x) Returns the index of element x.

count(x) Returns the number of occurrence of element x.

Example

>>> t1=(“APPLE”)

>>> len(t1) #Return the length of tuple t1

5

>>> max(t1) #Return the element from tuple with maximum Value

‘P’

>>> min(t1) #Return the element from tuple with minimum value

‘A’

>>> t1.index(‘A’)

0

>>> t1.count(‘P’)

2

Following is the simple program to traverse the tuple from the list.

PrograM a.1.3

T=[(1,”Amit”),(2,”Divya”),(3,”Sameer”)]

for no, name in t:

 print(no, name)

output

1 Amit

2 Divya

3 Sameer

Previous Year’s Solved JNTU Examination Questions 369

5. a. Describe the anonymous functions examples. (7M)

Solution

In Python, the anonymous function is a function that is defined without a name. The normal
functions are defined using the def keyword. In Python, the anonymous functions are defined
using the lambda keyword. The lambda operator or lambda function is used to create small
anonymous functions. Hence, the anonymous functions are also called lambda functions.
The general syntax of lambda function is as follows.

lambda argument-list: expression

The argument list consists of a comma separated list of arguments and the expression is an
arithmetic expression using these arguments. The following example of a lambda function returns
the multiplication of its two arguments.

>>> f = lambda x, y : x * y

>>> mul = f(2,8)

>>> mul

16

b. Why do we use modules? How can we structure a program? (7M)

Solution

A module is a piece or part of something. In python, we can say the modules are smaller pieces
of bigger program. Each module is a separate file on hard disk. The programmer can take a big
program and split it up into more than one module. The reason behind using the modules is
as follows.

 a. It makes the file smaller which helps the programmers to find the things easily into the
written code.

 b. Once module is created, it can be used in lot of programs. This feature saves the programmers
from starting all over again by the next time if he or see needs the same function.

Following example illustrates how to structure a program while using the module.

Let us create a simple file as Demo.py.

#Demo.py

def Display():

 print(‘Hello, Welcome all!’)

If we try to execute the above code, nothing will happen, because we have just written the
function and it has not been called from elsewhere to perform its action. So, let us create another
file named main.py, so that we can import the module Demo.py what we have just created and
then call the function Display() as present in file, Demo.py, from a new file, main.py. Therefore,
we create another file named main.py. In the file main.py, we will make use of import statement
to import the module, i.e. Demo.py. The contents of the main.py file are as follows.

Python Programming370

PrograM a.1.4

#main.py

import Demo #Importing Module named Demo

demo.Display() #Call function Display present within Demo.py

output

‘Hello, Welcome all!’

In Program A.1.4 above, we are importing a module, therefore, we need to call the function
by referencing the module by “.”, i.e. by the dot notation. Thus, we use the ModuleName.
FuncionName() to reference the function as present within the module. The statement demo.
Display() calls the function Display() from module named demo.py. The above code contains
the following two lines as shown below.

import Demo

demo.Display()

We can use the from keyword and replace the above two lines as

from Demo import Display

6. a. Explain the creating classes in Python with examples. (7M)

Solution

Where class is just another name for a type in python. The class may contain data in the form
of fields. The fields are also called as attributes and the codes in the form of procedure are
known as methods.

Syntax for defining class in Python is as follows.

Class Class_Name:
 Initializer
 attributes
 methods()
 Statement(s)

Following example illustrates the simple class program.

PrograM a.1.5

class Demo:

 pass

D1=Demo() #Instance or Object of the class Demo

print(D1)

output

<_main_.Demo object at 0x029B3150>

Previous Year’s Solved JNTU Examination Questions 371

In Program A.1.5 above, we have created the object “D1” where the D1 is instance of the class.
Thus, creation of object is called as “instantiation”. The programmer can also add methods to the
class. The following syntax is used to add methods within the class.

class Class_Name:

 instance variable; #instance variable with initialization

 def mthod _ name(Self,parameter _ list):#Paramter List is Optional

 block _ of _ statements

As mentioned above, in order to add methods to the existing class, the first parameter for
each method should be self. This is only one specific difference between class methods and the
ordinary functions. The self-parameter is used in the implementation of the method, but it is not
used when the method is called. Therefore, the self-parameter references the object itself.

The Program A.1.6 below illustrates the use of adding method to the class.

PrograM a.1.6

class MethodDemo:

 def Display _ Message(self):

 print(‘Welcome to Python Programming’)

ob1 = MethodDemo() #Instance of a class

ob1.Display _ Message() #Calling Method

output

Welcome to Python Programming

In the Program A.1.6 above, the Display_Message() method takes no parameters but still the
method has the self in the function definition. Therefore, the self-parameter refers to the current
object itself. Finally, the method is called and message is displayed.

b. Define error and exception. Distinguish between these two features. (7M)

Solution

It is common for the programmers to make mistakes while typing as well as developing a program.
Such types of mistakes are called “Errors”. An error is something that can produce incorrect or
irrelevant output or even tend the system to crash.

The exception is an error which occurs during run-time. Also, one can define the exception as
an erroneous condition that arises while a program is running.

7. a. Why the testing is required? Explain laborately. (7M)

Solution

Writing programs are difficult once you start the program. The size of program grows by few
lines and ultimately there are more chances of appearing errors in the programs. In this case, the
best practice of testing is to debug programs and write automated test for your own software.

Python Programming372

Also, testing will help the developer to create error-free software. Actually, the testing is the process
of running the software which looks for errors. To test the software, we must write both test cases
and software. Typically, a programmer should understand problem first and then write the test
cases based on understanding of the problem and the code as well. Of course, the programmer can
also write the code first, but it is better if the programmer can continuously check the code what
he/she has already written against the number of test cases. Thus, the writing test cases first and
then writing the code for the applications will help the developers/programmers to know how
much progress is being made towards the passing of all the tests. Following are the various types
of automated tests where the tester can use them to test the written software.

Table a.1.4

Type of Automated Test Description

Unit Testing The small modules, classes or functions are tested.
Or, the isolated units of codes are tested.

Acceptance Testing Test features from the user’s perspective.

Integration Testing Testing of two or more larger components.

Performance Testing Testing of the execution speed, memory usage and
other parameters.

Regression Testing Conducting tests in order to check whether
previously built features are still working or not.

Also in case of testing, identifying units plays a major role. Entire class can be one unit or each
method will act as a separate unit. Selection of unit varies from tester to tester. One may say that
whole class is a single unit and, in some circumstances, it may be the best answer. But, it is always
easy to subdivide most classes into methods as all of these methods show the isolated behaviours.

b. Explain the following: (7M)

i. Calendar module and ii. Synchronizing threads

Solution

i. Calendar Module

The calendar module defines the calendar class. It is used to encapsulate the calculations for values,
such as, the dates of the week in a given month or a year. The calendar module has the predefined
TextCalendar and HTMLCalendar classes which produces the pre-formatted outputs.

The following example illustrate the use of calendar module.

Example

>>> import calendar

>>>Cal = calendar.TextCalendar(calendar.SUNDAY)

>>>Str1 = Cal.formatmonth(2018,1)

>>> print(str1)

Previous Year’s Solved JNTU Examination Questions 373

 January 2018

Mo Tu We Th Fr Sa Su

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

In the example above, Cal.formatmonth(2018,1) is used to print the calendar for the first
month of 2018.

ii. Synchronizing threads

Locks are the most fundamental synchronization mechanism provided by the threading
module. A lock has only two states, i.e. locked and unlocked where the locks are typically used
to synchronize access to a shared resource. The acquire() and release() are two states being
used at the time of the synchronizing threads. The function acquire() is used when you need
to access the resource. It will block the execution until the release() method in some other
co-routine sets makes it unlocked. The release() method should only be called in the locked
state while it sets the state to unlocked and returns immediately. The skeleton to set and acquire
locks is as follows.

lock = Lock()

lock.acquire()

try:

………………………access shared resource

finally:

lock.release() #Release Lock

PART A

1. a. Explain output function. (2M)

Solution

A function is a group of statements that are put together to perform a specific task. The Python
print() function will act as output function. The task of print function is to display the contents
on to the screen. The syntax of print function is as follows.

Syntax of print() function:
 print(argument)

Example Display messages using print()
>>> print(‘Hello Welcome to Python Programming’)

Hello Welcome to Python Programming

b. give an example of istitle() method. (2M)

Solution

The method istitle() returns true if the string is a string in title case and there is at least
one character (e.g. uppercase characters may only follow uncased characters and the lowercase
characters follow the cased ones). Otherwise, it returns ‘False’.

Example of istitle() method is as follows:

>> str1 = “Python is Best Programming Language!!!”

>>> str1.istitle()

False

>>> str1 = “Python Is Best Programming Language!!!”

>>> str1.istitle()

True

375Previous Year’s Solved JNTU Examination Questions

c. Describe type() method with example. (2M)

Solution

To know the exact type of any value, Python provides in-built method named “type”. The syntax
to know the type of any value is as follows.

type(value)

Example

>>> type(‘Hello World’)

<class ‘str’>

>>> type(123)

<class ‘int’>

Thus, when the above examples are executed on Python interactive mode, the return type of
value as passed to the in-built function is type().

d. What is the general form of lambda? (2M)

Solution

The lambda operator or lambda function is used to create small anonymous functions. Hence, the
anonymous functions are also called lambda functions. The general syntax of lambda function
is as follows.

lambda argument-list: expression

The argument list consists of a comma separating the list of arguments and the expression is
an arithmetic expression using these arguments. The following example of a lambda function
returns the multiplication of its two arguments as shown below.

>>> f = lambda x, y : x * y

>>> mul = f(2,8)

>>> mul

16

e. Explain about self-variable with example. (3M)

Solution

To add methods to the existing class, the first parameter for each method should be self. This is
only one specific difference between class methods and ordinary functions. The self-parameter
is used in the implementation of the method, but it is not used when the method is called. Therefore,
the self-parameter references the object itself. The following program gives the clear idea about
self-parameter and adding methods to the existing class.

Python Programming376

Following program demonstrates the use of self-parameter to calculate the area of circle.

PrograM a.2.1

import math

class Circle:

 def Calc_Area(self,radius):

 print(‘radius = ‘,radius)

 return math.pi*radius**2

ob1 = Circle()

print(‘Area of circle is ‘,ob1.Calc_Area(5))

output

radius = 5

Area of circle is 78.53981633974483

Explanation The class named as Circle is created. The extra parameter radius is passed to
method as defined inside the class Calc_Area(). The instance ob1 of a class is created and then
is used to call the method of existing class. Even though the method Calc_Area() contains
two parameters, i.e. self and radius. But, in the calling method, only one parameter should be
passed, i.e. the radius of circle.

f. Describe time.time() method. (3M)

Solution

The method time() returns the time as a floating point number as expressed in seconds.
The following example illustrates the use of time() method.

Example

>>> import time

>>> print(time.time())

1527586504.56

>>> print (time.asctime(time.localtime(time.time())))

Tue May 29 15:05:48 2018

377Previous Year’s Solved JNTU Examination Questions

PART B

2. a. What are the assignment operators in Python? Explain. (7M)

Solution

The equal ‘=’ sign is used as the assignment operator. The statement for assigning a value to a
variable is called as an assignment statement. The syntax to assign value to a variable or identifier
is as follows.

Syntax

 Variable = expression

Let us consider the following example of assigning and displaying value of a variable on Python
interactive mode.

Example

>>> Z = 1 #Assign value 1 to variable Z

>>> Z #Display value of Z

1

>>> radius = 5 #Assign value 5 to the variable radius

>>> radius #Display value of variable radius

5

>>> R = radius + Z #Assign the addition of radius and Z to R

>>> R #Display value of Variable R

6

More on assignment operator

The operators +, *, //, /, % and ** are used with assignment operator ‘=’ to form the compound
or augmented assignment operators.

Example

Consider the following example, where the value of a variable x is increased by 1.
X = X + 1

But, Python allows the programmers to combine assignment and addition operators. Thus, the
above statement X = X + 1 can also be written as:

X + = 1

The += operator is called the addition operator. The list of all other compound assignment operators
is shown as follows.

Python Programming378

Table a.2.1 The compound assignment operators

Operators Examples Equivalents Explanations

+= Z+=X Z=Z+X Adds the value of Z to X.

-= Z-=X Z=Z-X Subtracts X from Z.

= Z=X Z=Z*X Multiplies the value of x, y and stores the
result in Z.

/= Z/=X Z=Z/X Performs the floating point division
operation and stores the result in Z.

//= Z//=X Z=Z//X Performs normal integer floor division and
stores the result in Z.

= Z=X Z=Z**X The value of variable X is raised to Z and the
result is stored in variable Z.

%= Z%=X Z=Z%X The Z modulo X operation is performed
here.

b. Explain about iteration statements with examples. (7M)

Solution

Python provides two types of loop statements as while loops and for loops. The while loop
is a condition-controlled loop. It is controlled by true or false conditions. But, the for loop is a
count-controlled loop which repeats for specified number of times.

The while loop

The while loop is one of the loop-control statements in Python. It executes the sequence of
statements repeatedly as long as the conditions remain true. The syntax of while loop is given in
Figure A.2.1 below.

while test-condition:

 #Loop Body

 statement(s)

Figure a.2.1 Syntax of While loop

The reserved keyword while begins with the while statement. The test-condition is a
Boolean expression. The colon ‘:’ must follow the test-condition, i.e. the while statement is
terminated with colon (:). The statement(s) within while loop will be executed till the condition
is true, i.e. the condition is evaluated and if the condition is true, then the body of the loop will be
executed. When the condition becomes false, the execution will be out of the loop.

PrograM a.2.2 Write a program to print the numbers from one to five using while loop.

count=0 #initialize the counter

while count<=5: #Test condition

 print(“Count = “,count) #print the value of count

 count=count+1 #Increment the value of count by 1

(Contd.)

379Previous Year’s Solved JNTU Examination Questions

output

Count = 0

Count = 1

Count = 2

Count = 3

Count = 4

Count = 5

The for loop

The for loop in Python iterates through a sequence of objects, i.e. it iterates through each value in
a sequence. The sequence of object holds multiple items of data as stored one after another there.

The syntax of for loop is as follows.

for var in sequence:

 statement(s)

 ………………………………

 ………………………………

 ………………………………

As described in syntax above, the keywords for and in are essential keywords to iterate the
sequence of values. Then, the variable var takes on each consecutive value in the sequence and the
statements in the body of the loop are executed once for each value. The simple example of for
loop is as follows.
The general example of for loop:

for var in range(m,n):

 print var

PrograM a.2.3 Use for loop to print the numbers from 1 to 5.

for i in range(1,6):

 print(i)

print(“End of The Program”)

output

1

2

3

4

5

End of The Program

Python Programming380

3. a. Discuss about immutable constraints and frozen sets. (7M)

Solution

Set is an unordered collection of the elements without duplicates. It is a collection of unique
elements. Sets are mutable so we can easily add or remove elements. A programmer can create a
set by enclosing the elements inside a pair of curly braces, i.e. {}. The elements within the set are
separated by commas. The following example illustrates the creation of sets.

Examples

>>>S1 = set() #Creates an empty Set

>>>S1 #Print Set S1

set()

>>> type(S1) #Check type of S1

<class ‘set’>

>>> S1 = {10,20,30,40} #Create set of four elements

>>> S1 #Print Set S1

{40, 10, 20, 30}

Frozen Sets

The frozen sets are immutable. They are like the sets but they cannot be changed. The examples of
immutable frozen sets is are follows.

>> Countries = frozenset([“India”,”USA”,”JAPAN”,”UK”])

>>> Countries

frozenset([‘JAPAN’, ‘India’, ‘UK’, ‘USA’])

>>> type(Countries)

<type ‘frozenset’>

>>> Countries.add(“China”)

Traceback (most recent call last):

 File “<pyshell#18>”, line 1, in <module>

 Countries.add(“China”)

AttributeError: ‘frozenset’ object has no attribute ‘add’

b. What are the built-in dictionary functions? Explain. (7M)

Solution

The built-in dictionary functions are as follows.

381Previous Year’s Solved JNTU Examination Questions

Table a.2.2

Methods of dict Class What it does?

keys() It returns the sequence of keys.

Example
>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE #Print Dictionary named ASCII_CODE
{‘D’: 68, ‘B’: 66, ‘A’: 65, ‘C’: 67}
>>> ASCII_CODE.keys() #Return all keys
dict_keys([‘D’, ‘B’, ‘A’, ‘C’])

Values() It returns the sequences of values.

Example
>>> ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE.values() #Return Values
dict_values([68, 66, 65, 67])

items() It returns the sequences of Tuples.

Examples
>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>>ASCII_CODE.items()
dict_items([(‘D’, 68), (‘B’, 66), (‘A’, 65), (‘C’, 67)])

clear() It deletes all entries.

Example
>>>ASCII_CODE={“A”:65,”B”:66,”C”:67,”D”:68}
>>> ASCII_CODE.clear() #Delete all entries
>>> ASCII_CODE #Print after
{}

get(key) It returns the values for the key.

>>> Temperature={“Mumbai”:35,”Delhi”:40,”Chennai”:54}
>>> Temperature.get(“Mumbai”)
35

pop(key) It removes the key and returns the
value if the key exists.

>>> Temperature.pop(“Mumbai”)
35
>>> Temperature #Print after removing key “Mumbai”.
{‘Delhi’: 40, ‘Chennai’: 54}

clear() It removes all of the keys.

>>> Temperature={“Mumbai”:35,”Delhi”:40,”Chennai”:54}
>>> Temperature.clear()
>>> Temperature

4. a. Distinguish between local and global variables with examples. (7M)

Solution

The variables that are initialized within a function including parameters are said to exist in that
function’s local scope. The variables that exist in local scope are called “local variables” whereas

Python Programming382

the variables that are assigned outside the functions are said to exist in the global scope. Therefore,
the variables that exist in global scope are called “global variables”.

PrograM a.2.4 Local Scope versus Global scope

p = 20 #global variable p
def Demo():
 q = 10 #Local variable q
 print(‘The value of Local variable q:’,q)
 #Access global variable p within this function
 print(‘The value of Global Variable p:’,p)
Demo()
#Access global variable p outside the function Demo()
print(‘The value of global variable p:’,p)

output

The value of Local variable q: 10
The value of Global Variable p: 20
The value of global variable p: 20

b. Briefly discuss about Python packages. (7M)

Solution

A package is basically a directory within Python file and the file with the name ’_init_.py’.
In short, every directory inside the Python path which contains a file named _init_.py will be
treated as a package by Python.

Following are the simple steps used to create a package.

 | STEP 1: Let us create a package (folder). Say the name of package is “My_First_Package”.

 | STEP 2: Create _init_.py file inside created package “My_First_Package”. The directory
should contain a file named _init_.py. This file can be empty or it may contain valid
Python codes. Let keep it as empty file.

 | STEP 3: Inside the package, let us create two different .py files i.e. a.py and b.py files.

 | STEP 4: Write Python code inside a.py and b.py files. Therefore, contents of a.py and b.py
are as follows.

#a.py

def call_A():

 print(“I am in File a.py”)

#b.py

def call_B():
 print(“I am in File b.py”)

Execute both the files, i.e. a.py and b.py. Make sure that there are no errors present in them.

 | STEP 5: Import ‘My_First_Package’ from the interactive Python as follows.

>>> from My_First_Package import a, b

>>> a.call_A() #Call method Call_A() present in file a.py

383Previous Year’s Solved JNTU Examination Questions

I am in File a.py

>>> b.call_B() #Call method Call_B() present in file b.py

I am in File b.py

In the example above, we have created three files, _init_.py, a.py and b.py. But the file
init.py is empty. We have used statement from My_First_Package import a, b to
import the contents of files a.py and b.py. Alternatively, we can minimize the statement from

My_First_Package import a, b and automatically load these modules using _init_.py file.
Thus, open empty _init_.py file and insert the following code as follows.

import My_First_Package.a

import My_First_Package.b

In order to check if the imported modules work within the file _init_.py, execute the following
instructions in the interactive mode as follows.

>>> My_First_Package.a.call_A()

I am in File a.py

>>> My_First_Package.b.call_B()

I am in File b.py

5. a. Explain about the processes of the handling an exception. (7M)

Solution

An exception is an error that occurs during run time. In Python, all of the exceptions are the
instances of a class which are derived from BaseException class. Each exception type is of a
separate class. Exception handling in Python is managed by three keywords, viz. try, except
and finally. The working of all the keywords is explained below.

Program statements that you want to monitor for exception should be in try block. If an
exception occurs within the try block, then the particular exception is raised (or thrown). The
syntax for exception handling that might raise or (throw) an exception in a try block is as follows.

try:

#Body of try block

exceptException_Type1

#Perform of some kind of exception handling

#It is Exception Handler for Exception Type 1, Alerts the user

exceptException_Type2

#Exception Handler for Exception Type 2

………………………………………..

…………………………………………

………………………………………..

…………………………………………

exceptException_TypeN

#Exception Handler for Exception Type N

Figure a.2.2 Syntax–Exception Handling

Python Programming384

Following program demonstrates the uses of above said mechanism to handle
“ZeroDivisionError” division by zero error.

PrograM a.2.5 Show the mechanism to handle ZeroDivisionError by Zero Error

try:

 a = int(input(‘Enter the first number:’))

 b = int(input(‘Enter the second number:’))

 c = a/b

 print(‘ a = ‘,a)

 print(‘ b = ‘,b)

 print(‘ a/b = ‘,c)

except ZeroDivisionError:

 print(‘You cannot Divide number by Zero’)

output

#Case 1:

Enter the first number:10

Enter the second number:2

 a = 10

 b = 2

 a/b = 5.0

#Case 2:

Enter the first number:10

Enter the second number:0

You cannot Divide number by Zero

b. Describe data hiding and constructors. (7M)

Solution

The _init_ method is known as an initializer. It will act as the constructor to a class. It is a
special method that is used to initialize instance variable of an object. This method runs as soon
as an object of a class is instantiated. Whenever a programmer wants to add constructor to a class,

the _init_ method is used.

The syntax of adding _init_ method to class is given as follows.

class Class_Name:

 def _init_(self): #_init_ method

 …………………………

 …………………………

385Previous Year’s Solved JNTU Examination Questions

Note that init needs to be preceded and followed by two underscores. Also the _init_ method
must have self as first argument. Here, the self refers to the object itself. Therefore, it refers to
the object that invokes the method.

The following is the simple program to calculate the area of circle by making use of init()
method.

PrograM a.2.6 Show the program to calculate the area

class Circle:

 def __init__(self,pi):

 self.pi = pi

 def calc_area(self,radius):

 return self.pi*radius**2

C1=Circle(3.14)

print(‘ The area of Circle is ‘,C1.calc_area(5))

output

The area of Circle is 78.5

6. a. Explain the writing test cases and running tests. (7M)

Solution

The standard Python library contains a module named “unittest”. Where, the unittest is a
unit-testing framework. It comes with Python’s standard library. The module contains the core
framework classes which form the basis of test cases and suites. It also provides the utility class
for running the tests and reporting the result. The unittest module provides a class called
“TestCase” from which we can create subclasses to perform the unit testing.

The following program demonstrates the steps to write test cases using TestCase class for
unittest module.

PrograM a.2.7 Create file arithmetic.py and write code within it as follows.

def mul(X,Y):

 return X*Y

Python Programming386

PrograM a.2.8 Write the test case to check if the Program, i.e. arithmetic.py works for other numbers.
Create a test file called “arithmetic_test.py”.

from arithmetic import mul

import unittest

class TestArithmetic(unittest.TestCase):

 ##Your test methods go here.

 def test_mul(self):

 self.assertEqual(10,mul(5,2))

unittest.main() #Outside the class, which tells the framework to run

output

Ran 1 test in 0.005s

OK

Explanation

 ● The first line of a program imports the written program arithmetic.py at first and imports
its functionality called mul() as well.

 ● Second line imports Python’s unittest module.

 ● The test_mul() method is executed before each test to check if it returns the correct result.

 ● Where assertEqual() method is provided by imported unittest module. This method
checks then if the first argument is equals to second or not.

PART A

1. a. What is indentation? (2M)

Solution

In most other programming languages, the indentation is used only to help make the code look
pretty. But in Python, it is required for indicating what block of code a statement belongs to.

b. give an example of isalnum() method. (2M)

Solution

The function isalnum() returns true if characters in this string are alphanumeric and there is at
least one character.

Example

>>>S=”Python Programming”

>>>S.isalnum()

False

>>> S=”Python”

>>>S.isalnum()

True

>>> P=”1Jhon”

>>>P.isalnum()

True

Python Programming388

c. Describe has_key() method with example. (2M)

Solution

The function has_key()returns true if a given key is inside the dictionary, else it returns false.

>>> dict_players ={‘Microsoft’:’Bill Gates’,’Apple’:’Steve Jobs’}

>>> dict_players.has_key(‘Apple’)

True

>>> dict_players.has_key(‘Facebook’)

False

d. What is a namespace? (2M)

Solution

A namespace is basically a system to make sure that all of the names in a program are unique and
can be used without any conflict. Following are the few examples of namespaces.

 1. Local Namespace: It includes local names inside a function. The namespace is created only
when a function is called and lasts until the function returns.

 2. Global Namespace: This namespace includes the names from various imported modules
which you are using in a project. It is created when the module is included in the project and
it lasts until the script ends.

 3. Built-in Namespace: It includes built-in functions and built-in exception names.

e. Explain user-defined exceptions with examples. (3M)

Solution

Programmer can create user-defined or custom exceptions by creating a new exception class in
Python. This exception class has to be derived from base Exception class. Following is the simple
example of creating user-defined exceptions.

>>> class MyUserDefinedException(Exception):

 def _init_(self):

 Exception._init_(self,” Please Correct it!! Something went wrong.”)

>>> raise MyUserDefinedException

Traceback (most recent call last):

 File “<pyshell#22>”, line 1, in <module>

 raise MyUserDefinedException

MyUserDefinedException: Please Correct it!! Something went wrong.

Explanation In the example above, we have created a user-defined exception called
MyUserDefinedException which is derived from the Exception class. This new exception is
raised like other exceptions using the raise statement with an optional error message.

389Previous Year’s Solved JNTU Examination Questions

The following is the complete example related to creating and throwing user-defined exceptions.

PrograM a.3.1

class UserDefinedErrors(Exception):

 pass

class NumberTooSmallException(UserDefinedErrors):

 pass

class NumberTooLargeException(UserDefinedErrors):

 pass

#main program

#User guesses a number until you gets it right

#User need to guess this number

number = 10

while True:

 try:

 input_num = int(input(“Enter a number: “))

 if input_num < number:

 raise NumberTooSmallException

 elif input_num > number:

 raise NumberTooLargeException

 break

 except NumberTooSmallException:

 print(“Number is too small, try again!”)

 except NumberTooLargeException:

 print(“Number is too large, try again!”)

print(“Great Work!! You guessed number correctly.”)

output

Enter a number: 2

Number is too small, try again!

Enter a number: 4

Number is too small, try again!

Enter a number: 15

Number is too large, try again!

Enter a number: 12

Number is too large, try again!

Enter a number: 11

Number is too large, try again!

Enter a number: 10

Great Work!! You guessed number correctly.

Python Programming390

f. What is time tuple? (3M)

Solution

Python’s time function handles the time as tuple of nine numbers. The following table contains
all of those nine tuple members.

Table a.3.1

Field Values

Year 2008 (any four digit numbers)

Month 1 to 12

Day 1 to 31

Hour 0 to 23

Minute 0 to 59

Second 0 to 60

Day of Week 0 to 6

Day of Year 1 to 365 or 366

Daylight saving -1, 0, 1, -1 means library which determines the DST.

391Previous Year’s Solved JNTU Examination Questions

PART B

2. a. What are relational operators used in Python? Explain. (7M)

Solution

The relational operators are also called as Comparison Operators. All of the comparison operators
compare the value of two operands and return true or false based upon the conditions. Following
are the relational operators used in python.

Table a.3.2

Relational Operator Symbol

Less than <

Greater than >

Less than or Equal to <=

Greater than or Equal to >=

Equal to (Comparison Operator) ==

Not Equal to Operator !=

Examples of all of the relational operators are given as follows.

#Less than Operator

>>> 10 < 12

True

#Greater than Operator

>>> 10 > 12

False

#Less than or Equal to

>>> 10<=11

True

#Greater than or Equal to

>>> 12 >= 8

True

#Comparison Operator (Equal to)

>>> 10 == 9

>>> False

#Not Equal to Operator

>>> 10 != 9

True

>>> 10 != 10

False

Python Programming392

b. Explain about string formatting operator with example. (7M)

Solution

The syntax for format() method is as follows.

Syntax

template.format(P0,P1,…………,k0=V0,K1=V1…}

Whereas,

The arguments to the .format() method are of two types. It consists of zero or more positional
arguments, i.e. Pi followed by zero or more keyword arguments of the form like Ki=Vi.

Example

>>> ‘{} plus{} equals{}’.format(4,5,’Nine’)

‘4 plus 5 equals Nine’

Also, the programmer can make use of conversion code s to format a string with a specified
width. But, by default, the string is left justified. Following are the examples of string formatting.

Example

>>> print(format(“Hello World!”,”25s”))#Left Justification

Example

Hello World!

>>>print(format(“HELLO WORLD!”,”>20s”))#String Right Justification

 HELLO WORLD!

In the example above, the statement (format(“HELLO WORLD!”,”>20s”)) displays the output
in following format.

H E L L O W O R L D !

 20

Figure a.3.1

In print function, ‘20’ specifies the string to be formatted with a width of 20. In second print
statement, ‘>’ is used to make right justified the given string.

3. a. Explain about built-in functions of tuple. (7M)

Solution

The following table contain various built-in functions that can be used with tuples.

Table a.3.3 Built-in functions that can be used with Tuples

Built-in Functions Meaning

len() It returns the number of elements in the tuple.

max() It returns the elements with the greatest value.

min() It returns the elements with the minimum value.

(Contd.)

393Previous Year’s Solved JNTU Examination Questions

sum() It returns the sum of all of the elements of tuple.

index(x) It returns the index of element x.

count(x) It returns the number of occurrence of element x.

divmod(x,y) It returns the tuple, ((x – x % y)/y, x % y)

all() The all() method returns true if all the elements of an iterable are true or else false.

Example

>>> t1=(“APPLE”)

>>> len(t1) #Return the length of tuple t1

5

>>> max(t1) #Return Element from tuple with Maximum Value

‘P’

>>> min(t1) #Return Element from tuple with Minimum value

‘A’

>>> t1.index(‘A’)

0

>>> t1.count(‘P’)

2

>>> z = divmod(10,3)

>>> z

(3, 1)

>>> type(z)

<type ‘tuple’>

>>> T = (1,2,3,4)

>>> all(T)

True

>>> T = [1, False, 8]

>>> all(T)

False

b. Discuss about list and dictionary comprehensions. (7M)

Solution

List Comprehension
List Comprehension is used to create a new list form existing sequences. It is a tool for transforming
a given list into another list.

The Syntax of List comprehension is based on the set-builder notation. the set builder notation
is a mathematical notation for describing a set by stating the property which its member should
satisfy. The syntax is as follows.

Syntax of List Comprehension

[<expression> for <element> in <sequence> if <conditional>]

Python Programming394

The syntax is designed to read like English: “Compute the expression for each element in the

sequence if the conditional is true.”

Example (Using List Comprehension)

>>> List1= [10, 20, 30, 40, 50]

>>> List1

 [10, 20, 30, 40, 50]

>>>for i in range(0,len(List1)):

 List1[i]=List1[i]+10

>>>List1

[20, 30, 40, 50, 60]

>>> List1=[10, 20, 30, 40, 50]

>>> List1=[x+10 for x in List1]

>>> List1

[20, 30, 40, 50, 60]

 Without List Comprehension Using List Comprehension

With reference to the above example, we can say the list comprehension contains

 a. An input sequence

 b. A variable referencing the input sequence,

 c. An optional expression and

 d. An output expression or output variable

Example

List1= [20, 30, 40, 50, 60]

List1=[x+10 for x in List1]

(An Output
 Variable) (An Input Sequence)

(A variable Referencing An input Sequence)

Dictionary Comprehensions

On the top of list comprehensions, Python also supports dictionary comprehensions. It is a
method for transforming one dictionary into another dictionary. It allows programmer to express
the creation of dictionaries during run-time. The syntax of create dictionaries using dictionary
comprehensions is as follows.

Syntax

 {key: value for (key, value) in iterable}

>>> dict1 = {‘a’: 1, ‘b’: 2, ‘c’: 3}

>>> Cube_dict1 = {k:v**3 for (k,v) in dict1.items()}

>>> cube_dict1

395Previous Year’s Solved JNTU Examination Questions

4. a. Explain about required and variable-length arguments. (7M)

Solution

Variable is the number of parameters to a function. An argument which begins with * in function
definition gathers arguments into a tuple.

PrograM a.3.2 Write a Program to create a function create_tup() which accepts the variable as the
number of arguments and print all of them.

def create_tup(*args):

 print(args)

Run the above program from interactive mode of Python.

>>> create_tup(1,2,3,4)

(1, 2, 3, 4)

>>> create_tup(‘a’,’b’)

(‘a’, ‘b’)

b. Discuss in detail about the import statement. (7M)

Solution

A module is a piece or part of something. In Python, we can say modules are smaller pieces of
bigger programs. Each module is a separate file on hard disk. Programmer can take a big program
and split it up into more than one module. In short, modules are Python’s .py files which contain
the Python code. In order to use something that is in a module, you first have to tell Python which
module you want to use. The Python can import keyword to let you include other modules in
your program.

Writing a module is like writing a simple Python program in a file and saving it in .py extension.
Let us create Demo.py.

def Display():

 print(‘Hello, Welcome all!’)

Let us create another file named main.py, so that we can import the module Demo.py what we
have just created and then call the function Display() in order to present in file Demo.py from a
new file named as main.py. The contents of the main.py file are as follows.

PrograM a.3.3

#main.py

import Demo #Importing Module named Demo

demo.Display() #Call function Display present within Demo.py

Python Programming396

output

‘Hello, Welcome all!’

5. a. Explain inheritance class with suitable example. (7M)

Solution

The new classes are created from existing one. The properties of existing classes are simply
extended to the new classes. The new classes created using such methods are known as derived

classes or sub classes and the existing classes are known as base classes or super classes.

The inheritance is classified as follows.

 a. Single Inheritance

 b. Multi-level Inheritance

 c. Multiple Inheritance

a. Single Inheritance

P is a base class. Q is a derived class. This type
involves one base and one derived class. Further,
no class is derived from Q.

P

Q

Figure a.3.2 Single Inheritance

b. Multi-level Inheritance

X is a base class. Y is derived from X. Further. Z is
derived from Y. Here, Y is not only a derived class
but also a base class for Z. Further, Z can be used as
a base class.

X

Y

Z

Figure a.3.3 Multi-Level Inheritance

c. Multiple Inheritances

X and Y are base classes. Z is a derived class. Class
Z inherits properties of both X and Y. Further, Z is
not used as a base class.

X Y

Z

Figure a.3.4 Multiple Inheritances

397Previous Year’s Solved JNTU Examination Questions

Syntax (To Inherit Multiple bases classes)

Class Derived_Class_Name(Comma_Seperated_Base_Class_Names):

 Body_of_Derived_Class

PrograM a.3.4 Write a simple program to demonstrate the Concept of Multiple Inheritances.

class A: #Base Class A

 a = 0

class B: #Other Base Class B

 b = 0

class C(A,B): #Inherit A and B to create New Class C

 c = 0

 def Read(self):

 self.a =(int(input(‘Enter the Value of a:’)))

 self.b =(int(input(‘Enter the value of b:’)))

 self.c =(int(input(‘Enter the value of c:’)))

 def display(self):

 print(‘ a = ‘,self.a)

 print(‘ b = ‘,self.b)

 print(‘ c = ‘,self.c)

Ob1 = C() #Instance of Child Class

Ob1.Read()

Ob1.display()

output

Enter the Value of a: 10

Enter the value of b: 20

Enter the value of c: 30

 a = 10

 b = 20

 c = 30

b. Discuss about try-except block with example. (7M)

Solution

Exception handling in python is managed by three keywords, viz. try, except and finally.
Program statements that you want to monitor for exception should be in try block. If an exception
occurs within the try block, then the particular exception is raised (or thrown). The syntax for
exception handling that might raise or (throw) an exception in a try block is as follows.

Python Programming398

try:

#Body of try block

exceptException_Type1

#Perform of some kind of exception handling

#It is Exception Handler for Exception Type 1, Alerts the user

exceptException_Type2

#Exception Handler for Exception Type 2

………………………………………..

…………………………………………

………………………………………..

…………………………………………

exceptException_TypeN

#Exception Handler for Exception Type N

Explanation When an exception is raised (thrown), it is caught by its corresponding except
statement which then processes the exception.

PrograM a.3.5 Write a Program to use of try and except blocks to handle “ZeroDivisionError”
division by zero.

try:

 a = int(input(‘Enter the first number:’))

 b = int(input(‘Enter the second number:’))

 c = a /b

 print(‘ a = ‘,a)

 print(‘ b = ‘,b)

 print(‘ a/b = ‘,c)

except ZeroDivisionError:

 print(‘You cannot Divide number by Zero’)

output

#Case 1:

Enter the first number:10

Enter the second number:2

 a = 10

 b = 2

 a/b = 5.0

#Case 2:

Enter the first number:10

Enter the second number:0

You cannot Divide number by Zero

399Previous Year’s Solved JNTU Examination Questions

7. a. Explain about unit-testing in Python. (7M)

Solution

The standard Python library containing a module named “unittest”. Here the unittest is a
unit-testing framework and it comes with Python’s standard library. The module contains the core
framework classes that form the bases of test cases and suites. It also provides the utility class
for running the tests and reporting the results. The unittest module provides a class called
“TestCase” from which we can create sub-classes to perform unit-testing.

The following program demonstrates steps to write the test cases using TestCase classes for
unittest module.

PrograM a.3.6 Create file named arithmetic.py and write code within it as -follows.

def mul(X,Y):

 return X*Y

PrograM a.3.7 Write the test case to check if the Program, i.e. arithmetic.py works for other numbers.
Create a test file called “arithmetic_test.py”.

from arithmetic import mul

import unittest

class TestArithmetic(unittest.TestCase):

 ##Your test methods go here.

 def test_mul(self):

 self.assertEqual(10,mul(5,2))

unittest.main() #Outside the class which tells the framework to run

output

Ran 1 test in 0.005s

OK

Explanation

 ● The first line of a program imports the written program, i.e. arithmetic.py first and imports
its functionality called mul().

 ● Second line imports Python’s unittest module.

 ● The test_mul() method is executed then before each test to check if it returns the correct
result or else.

 ● Then, the assertEqual() method is provided by imported unittest module. This method
checks if first argument is equal to the second one.

Python Programming400

b. Explain the following.

 i) zlib module ii) Paned Window (7M)

Solution

Zlib Module

Python “Zlib” library allows compression and decompression for the applications which require
the data compression. Frequently used in-built functions supported by zlib library are as follows.

Table a.3.4 In-built functions supported by zlib library

In-built Functions Meaning

compress(string,[level]) It compresses data in a string.
It returns string containing compressed data.
Level indicates the levels of compression from
0 to 9. Level 1 is the fastest and produces the
least compression while level 9 is the slowest
and produces the most.

decompress(data) It decompresses the bytes in data. It
returns the bytes objects containing the
uncompressed data.

Compressobj(level=-1. method=DEFLATED,
wbits=MAX _ WBITS,
memLevel=DEF _ MEM _ LEVEL,
strategy=Z _ DEFAULT _ STRATEGY[, zdict])

memLevel: It is the amount of memory used for internal
compression state.

Strategy: It is used to tune the compression algorithm.

wbits: It is used to control window size while compressing
data. It decides whether header and trailer to be included
in output or not. It can take the range of values limited to
15, i.e. MAX_WBITS

It is used to compress the data streams that
would not fit into memory at once. It returns
the compressed object.

PrograM a.3.8 Write a Program to show the compression and decompression using zlib library.

import zlib

Message = “Launch Satellite from Earth”

compressed_message = zlib.compressed(Message)

print(‘ Message before Compression(Original):’)

print(compressed_message)

decompressed_message = zlib.decompress(compressed_message)

print(‘ Decompressed Message :’,decompressed_message)

(Contd.)

401Previous Year’s Solved JNTU Examination Questions

output

Message before Compression(Original):

xœóI,MÎP.IÍÉÉ,IUH+ÊÏUpM,*É

(‘ Decompressed Message :’, ‘Launch Satellite from Earth’)

Explanation In the program above, we have used in-built functions, viz. compression and
decompression of zlib library. Programmer should also make note that the compression rate
varies depending upon the contents of file.

Paned Window

The panel window is a container widget which may contain any number of panes horizontally or
vertically. Syntax to create this widget is as follows.

Paned_Window = PanedWindow(master,option,………)

Please note that the master represents the parent window.

The list of commonly used options on the paned window are as follows.

 a. Bg: This is the colour of the sliders and arrowheads when mouse is not over them.

 b. borderwidth: It defines border width which is by default 2.

 c. orient: It is default as horizontal.

 d. height: No such default value it has.

 e. width: No such default value it has.

PrograM a.3.9 Write a simple Program on Panel Window.

from Tkinter import *

p1 = PanedWindow()

p1.pack(fill=BOTH, expand=1)

Left_Pane = Label(p1, text=”left pane”)

p1.add(Left_Pane)

p2 = PanedWindow(p1, orient=VERTICAL)

p1.add(p2)

Top_Pane = Label(p2, text=”top pane”)

p2.add(Top_Pane)

Bottom_Pane = Label(p2, text=”bottom pane”)

p2.add(Bottom_Pane)

mainloop()

(Contd.)

Python Programming402

output

Figure a.3.5

PART A

1. a. What is byte code? (2M)

Solution

If there is no error, i.e. if python instruction/code is in well-formatted order, then the interpreter
translates it into its equivalent form in low-level language called “Byte Code”.

b. give an example of endswith() method. (2M)

Solution

The function endswith(str) returns true if the string ends with the substring Str1.

Example

>>> S=”Python Programming”

>>>S.endswith(“Programming”)

True

c. What is a set? Why the sets are required? (2M)

Solution

 ● Set is an unordered collection of elements without any duplicate element.

 ● It is a collection of unique elements.

 ● The sets are mutable, so we can easily add or remove any element.

 ● The set data structure in python is used to support mathematical set operations.

Python Programming404

Example

The following example creates two different sets A and B and we will perform intersection of both
the sets and store result into set C.

>>> A = {1, 2, 3}

>>> B = {2, 3, 4}

>>> C = A.intersection(B)

>>> C

set([2, 3])

>>> type(A)

<type ‘set’>

>>> type(B)

<type ‘set’>

>>> type(C)

<type ‘set’>

d. Define anonymous function. (2M)

Solution

 ● In Python, the anonymous function is defined without a name.

 ● The normal functions are defined using the def keyword. In Python, the anonymous functions
are defined using the lambda keyword.

 ● The lambda operator or lambda function is used to create small anonymous functions.

 ● Hence, the anonymous functions are also called lambda functions. The general syntax of
lambda function is as follows.

 lambda argument-list: expression

 ● The argument list consists of a comma separating list of arguments and the expression is an
arithmetic expression using these arguments.

 ● The following example of a lambda function returns the multiplication of its two arguments.

>>> f = lambda x, y : x * y
>>> mul = f(2,8)
>>> mul

16

e. give an example for raising an exception. (3M)

Solution

 ● Raising an exception is also like stop running the code in the function and move the program
execution to the except statement.

 ● All these exception are wrapped in objects and are created from the classes.

 ● Therefore, the programmer can raise this exception using the raise statement.

 ● The syntax to raise an exception is as follows.

405Previous Year’s Solved JNTU Examination Questions

Syntax

 raise Exception(value)

Here, the Exception is the exception type.

Example

raise ArithmeticError(‘Something is wrong’)

PrograM a.4.1 Write a Program to raise the exception.

A = 10

b = 0

try:

 raise ArithmeticError(‘Cannot divide number by zero’)

 c = a/b

except ZeroDivisionError:

 print(‘Something is Wrong’)

 raise

output

Traceback (most recent call last):

 File “C:\Python34\asacs.py”, line 4, in <module>

 raise ArithmeticError(‘Something is Wrong’)

ArithmeticError: Cannot divide number by zero

f. What is tick? (3M)

Solution

 ● Python has in-built time module.

 ● The time module provides functions for working with times.

 ● When it comes to the concept of ticks, time is expressed in seconds, since 12:00 am,
January 1, 1970.

 ● In these cases, the time intervals are nothing but the floating point numbers expressed in seconds.

 ● The function time.time() returns the current system time in ticks.

PrograM a.4.2

import time

ticks = time.time()

print(“Number of ticks since 12:00 am, January 1, 1970:”, ticks)

output

(‘Number of ticks since 12:00 am, January 1, 1970:’, 1528005429.106)

Python Programming406

PART B

2. a. Briefly discuss about running Python scripts. (7M)

Solution

All of the steps below are explained with respect to Python IDLE 3.5.

 ● Running python program from a script file is known as running python in “script mode”.

 ● You can write sequence of instructions in one file and execute them.

The steps required to write python programs in python IDLE’S script mode.

 ● In python IDLE’s shell window, click on File and then click on New File or just click
CTRL + N.

 ● Thus, after opening the above window you can write series of instructions and run it to view
the output.

 ● Now we have to write the Python code in script mode.

 ● Save the code written in script mode by some Name. You can do this by simple Click on
File and then click on Save Button or press Ctrl + S.

 ● Thus, after opening the save As window, write the name of your own python program.

 ● Thus, to run the written and saved program, click on Run from the menu bar and then click on
run module or you can directly press ctrl + F5 in order to see the output if the program
is error-free or else.

b. Write the history of Python. (7M)

Solution

 ● Python was developed by Guido van Rossum at National Research Institute for Mathematics
and computer science in Netherlands in 1990.

 ● Guido van Rossum was inspired by Monty Python’s flying circus, a BBC-aired comedy series
and he wanted the name of his new language to be short, unique and mysterious.

 ● Hence, he named it as Python.

 ● Rossum developed python and it became a popular programming language as widely used in
industry and academia because of its simple, concise and extensive support of libraries.

 ● It is a general purpose, interpreted and object-oriented programming language. Python
source code is available under the General Public License (GPL) and maintained by a core
development and maintained at the National Research Institute.

407Previous Year’s Solved JNTU Examination Questions

3. a. Explain Python bitwise operators with example. (7M)

Solution

Python has six bitwise operators. Python supports bitwise operators for the bit-wise
manipulations. The Bitwise operator permits the programmer to access and manipulate
individual bits within a piece of data.

Table a.4.1

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

>> Right Shift

<< Left Shift

~ Bitwise NOT

The Bitwise AND (&) operator

the truth table of And (&) Operator is as follows.

Table a.4.2

Input Output

X Y X & Y

0 0 0

0 1 0

1 0 0

1 1 1

The Bitwise OR (|) operator

The truth table of OR (|) Operator is as follows.

Table a.4.3

Input Output

X Y X | Y

0 0 0

0 1 1

1 0 1

1 1 1

Python Programming408

The Bitwise XOR (^) Operator

The truth table of XOR operator is as follows.

Table a.4.4

Input Output

X Y X ^ Y

0 0 0

0 1 1

1 0 1

1 1 0

The Right Shift (>>) operator

The right shift operator is represented by >>. It also needs two operands. It is used to shift bits to
right by n position.

Example

>>>4 >> 2 #The input data 4 is to be shifted by 2 bits right side

1

>>>8 >> 2

2

The Left Shift (<<) operator

The left shift operator is represented by <<. It also needs two operands. It is used to shift bits to left
by n position.

>>> 4<< 2 #The input data 4 is to be shifted by 2 bits left side

16

>>> 8<< 2 #The input data 8 is to be shifted by 2 bits towards left

3

b. Discuss about Python operators precedence with example. (7M)

Solution

The operator precedence determines the order in which the python interpreter evaluates the
operators in an expression.

For example, consider the expression 4+5*3.

So, how does Python know which operation needs to perform first? From the above example,
i.e. 4+5*3, it is important to know whether 4+5*3 evaluates to 19 (where the multiplication has
been done first) or 27 (where the addition has been done first). But the default order of precedence
determines that multiplication is computed first so the result will be 19. As an expression may
contain lot of operators, the operations on the operands are carried out according to the priority
which is called the precedence of the operator. The operator having higher priority is evaluated first.

409Previous Year’s Solved JNTU Examination Questions

Also, when an expression contains operators with equal precedence, then the associative
property decides which operation is to be performed first. The associative property or associativity
depicts the direction of execution. Associativity is of two types as follows.

i. Left to Right: In this type of expression, the evaluation starts form left to right direction.

Example 4 + 6 – 3 + 2

In the example as shown above, all operators are having the same precedence, therefore, the
associativity rule is followed (i.e. direction of execution is from left to right always).

The evaluation of the expression 4+6-3+2 is equivalent to
=((4+6)-3)+ 2
= ((10)-3)+ 2
=(7)+2
= 9
ii. Right to Left: In this type of expression, the evaluation starts from right to left.

Example

X = Y = Z = Value

In the example as shown above, the assignment operators are used. The value of Z is assigned to
Y and then to X. Thus, the evaluation starts from right to left direction.

The precedence and associativity table for arithmetic operators has been shown in table below.

Table a.4.5 Associativity Rules for Arithmetic Operators

Precedence Operators Associativity

Highest () Innermost to Outermost

** Highest

*,/,//,% Left to Right

Lowest + - Left to Right

4. a. What are built-in dictionary functions? Explain. (7M)

Solution

The built-in dictionary functions are as follows.

Table a.4.6

Methods of dict Class What it does?

keys() It returns the sequence of keys.

Example
>>> ASCII_CODE={“A”: 65, ”B”: 66, ”C”: 67, ”D”: 68}
>>> ASCII_CODE #Print Dictionary named ASCII_CODE
{‘D’: 68, ‘B’: 66, ‘A’: 65, ‘C’: 67}
>>> ASCII_CODE.keys() #Return all keys
dict_keys([‘D’, ‘B’, ‘A’, ‘C’])

(Contd.)

Python Programming410

Values() It returns the sequence of values.

Example
>>> ASCII_CODE={“A”: 65, ”B”: 66, ”C”: 67, ”D”: 68}
>>> ASCII_CODE.values() #Return Values
dict_values([68, 66, 65, 67])

items() It returns the sequence of Tuples.

Example
>>>ASCII_CODE={“A”: 65, ”B”: 66, ”C”: 67, ”D”: 68}
>>>ASCII_CODE.items()
dict_items([(‘D’, 68), (‘B’, 66), (‘A’, 65), (‘C’, 67)])

clear() It deletes all entries.

Example
>>>ASCII_CODE={“A”: 65, ”B”: 66, ”C”: 67, ”D”: 68}
>>> ASCII_CODE.clear() #Delete all entries
>>> ASCII_CODE #Print after
{}

get(key) It returns the value for the key.

Example
>>> Temperature={“Mumbai”: 35, ”Delhi”: 40, ”Chennai”:54}
>>> Temperature.get(“Mumbai”)
35

pop(key) It removes the key and returns the
value if the key exist.

Example
>>> Temperature.pop(“Mumbai”)
35
>>> Temperature #Print after removing key “Mumbai”.
{‘Delhi’: 40, ‘Chennai’: 54}

clear() It removes all the keys.

Example
>>> Temperature={“Mumbai”: 35, ”Delhi”: 40, ”Chennai”:54}
>>> Temperature.clear()
>>> Temperature

b. Explain about the importance of lists in Python. (7M)

Solution

 ● We need to store variables of same data type on many occasions.

 ● For example, the currency notes used in daily life lives India are of denominations Rs. 5, 10, 20,
100, 500 and 2000.

 ● In case, if the programmer wants to display all these six currency notes, then by the normal way
of programming programmer may print it by reading all the currency notes in six different
variables.

411Previous Year’s Solved JNTU Examination Questions

 ● But by making use of the list, the programmer can use just single variable to store all of the
elements of same type or different types and print them using single variable.

 ● Similarly, in day-to-day life applications, we can make use of lists to display the list of top 100
countries in the world, the list of students qualifying GRE exams, a shopping list of grocery
store and so on.

 ● The list is not only able to store same type of values, it can also store values of different types.

 ● The simple working examples of list are as follows.

Example

 a. Create a list with any three integer elements, such as, 10, 20 and 30.
L1=[10,20,30]

 b. List can contain the elements of Mixed Type.

L3=[“Jhon”,”Male”,25,5.8]

5. a. Write a brief note on PIP. Explain installing packages via PIP. (7M)

Solution

The PIP is a tool for installing python packages from “Python Package Index” (PyPI). The PyPI is
repository of software for python programming language. It helps you to find and install software
developed and shared by the python community.

PIP Directory Structure

The following is the directory structure where you can find the PIP.

Python27 (Base Directory)
 |
 +----------Scripts (Sub-directory)
 |
 +-----------PIP

The Python software packages can easily be installed by making use of command line interface
and just writing one single command. The syntax to install any package is as follows.

pip install some-package-name

Similarly, the user can uninstall the installed packages using PIP. The syntax is as follows.

pip uninstall some-package-name

Following are the some of the options provided by PIP command and they are as follows.

Table a.4.7

list List install packages.

list–format columns List install packages with formatted column.

legacy Uses legacy formatting.

json Uses json formatting to list installed packages.

freeze Uses freeze formatting to list installed packages.

(Contd.)

Python Programming412

Outdated List outdates packages.

Example:
C:\Python27\Scripts>pip list outdated--format columns
Package Version
----------------------------- --------
backports.functools-lru-cache 1.5
cycler 0.10.0
Cython 0.28.2
matplotlib 2.2.2
numpy 1.14.2
pandas 0.22.0
pdfminer 20140328
Pillow 5.1.0
pip 9.0.1

b. Explain about keyword and default arguments. (7M)

Solution

Default arguments

like other languages, Python provides support for default argument values. It is a function
arguments, that can either be specified by the caller or left blank to automatically receive a pre-
defined value.

PrograM a.4.3

def greet(name,msg=”Welcome to Python!!”):

 print(“ Hello “,name,msg)

greet(“Sachin”)

output

Hello Sachin Welcome to Python!!

In the Program above, the function greet(), has the parameter name. The parameter name does
not have default value and is required mandatory during a function call. On the other hand, the
parameter msg has a default value of “Welcome to Python!!”. So, during a function call, it will
be optional. If a value is provided, it will overwrite the default value. Here are some valid function
calls to this function.

Keyword arguments

The programmer can pass a keyword argument to a function by using its corresponding parameter‘s
name rather than its position. Simply type Parameter_name = value in the function call.

Syntax to call function using keyword argument is as follows.

Name_of_Function(pos_args,keyword1=value,keyword2=value2………)

413Previous Year’s Solved JNTU Examination Questions

PrograM a.4.4 Write a simple Program on Keyword Argument.

def Display(Name,age):

 print(“Name = “,Name,”age = “,age)

Display(age=25,Name=”Jhon”) #Call function using keyword arguments

output

Name = Jhon age = 25

6. a. give an overview of OOP terminology. (7M)

Solution

Object-oriented languages help the programmer to reduce complexity of programs. It also
encourages the programmer to re-use the existing module or functions. The general concept of
object-oriented programming language is about class. Here, the class is just another name for a
type in python. It means programmer can create objects of their own class.

Overall, in any object-oriented languages, the class defines what object of its type looks
like and how it behaves. For an example, we know how an integer looks like and its behaviour.
Behaviour is the operation where one can perform on it.

The class may also contain data in the form of fields. Fields are also called as attributes
and codes in the form of procedure been known as methods. Finally, the programmer has to
create object of their own class. Here, object represents an entity which can be easily identified.
For an example, the person, vehicle, fan, books and so on represents the real-time objects. One
important thing regarding the object is that each object has a unique identity, state and behaviour.
The object state is also called as properties or attributes.

Syntax for defining class in Python is as follows.

Class Class_Name:

 Initializer

 attributes

 methods()

 Statement(s)

b. Explain about except clause with multiple exceptions. (7M)

Solution

If an exception occurs within the try block, then the particular exception is raised (or thrown).
When an exception is raised (thrown), it is caught by its corresponding except statement.
Sometimes, the code generates the multiple exceptions. In such case, multiple except blocks are
used to handle multiple exceptions. The following program demonstrates using multiple except
clause in a program.

Python Programming414

PrograM a.4.5 Write a Python program to include multiple exceptions.

try:

 n1 = int(input(‘Enter the number:’))

 print(n1)

 q = 200/n1

except ValueError:

 print(‘Entered string is not of type int’)

except ZeroDivisionError:

 print(‘Number cannot be divided by Zero’)

output

#Case 1:

Enter the number:svsvadbs

Entered string is not of type int

#Case 2:

Enter the number:0

0

Number cannot be divided by Zero

7. a. What is multithreading? Discuss about starting a new thread. (7M)

Solution

 ● The multi-threading library is lightweight, it shares memory and been responsible for
responsive UI. It is used well for Input/Output-bound applications.

 ● Multiple threads live in the same process in the same space.

 ● Each thread will do a specific task as it has its own code and shares the heap memory.

 ● Python contains two modules to implement threads in the programs.

 ● thread module: It implements a thread as a function.

 ● threading module: It provides object-oriented approach to enable the thread creation.

 ● To start new thread, call the method start_new_thread(function, args[,kargs])
which is present in thread module.

 ● This method starts with a new thread and returns its identifier.

 ● It will invoke the function specified as the “function” parameter with the passed list of
arguments.

 ● Following is the simple program which can be used to calculate square and cube of a number
by creating two different threads.

 ● Running two different threads will reduce the time of execution of them in parallel.

415Previous Year’s Solved JNTU Examination Questions

PrograM a.4.6 Create two different threads to calculate square and cube of a number using threading module.

import threading

def calc_square(number):

 print(‘Square:’, number * number)

def calc_Cube(number):

 print(‘Cube:’ , number * number * number)

if __name__ == “__main__”:

 number = 7

 thread1 = threading.Thread(target=calc_square, args=(number,))

 thread2 = threading.Thread(target=calc_Cube, args=(number,))

 #Will execute both threads in parallel

 thread1.start()

 thread2.start()

 thread1.join()

 thread2.join()

output

(‘Square:’, 49)(‘Cube:’, 343)

b. Explain about colours and filled shapes. (7M)

Solution

A turtle object contains the methods for setting colours. The following table describes the list of
methods to draw different shapes with different colours.

Table a.4.8 List of methods to draw different shapes with different colours.

Method Meaning

turtle.color(c) It sets the pen colour.

turtle.fillcolor(C) It sets the pen fill colour to “C”.

turtle.begin _ fill() It calls this method before filling a shape.

turtle.end _ fill() It fills the shape drawn before the last call to begin_
fill().

turtle.filling() It returns the fill state. True is filling and False if not-
filling.

turtle.clear() It clears the window. The state and position of window
is not affected.

(Contd.)

Python Programming416

turtle.reset() It clears the window and reset the state and position to
its original default value.

turtle.screensize() It sets the width and height of the canvas.

turtle.showturtle() It makes turtle visible.

turtle.hideturtle() It makes the turtle invisible.

turtle.write(msg,move,align,font=font
name, fontsize, fonttype)

They write messages on the turtle graphics window.

The following Program demonstrate the uses of begin_fill() and end_fill() method to
fill a shape.

PrograM a.4.7

import turtle

turtle.fillcolor (“grey”) #Fill grey colour inside the square

turtle.begin_fill ()

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.end_fill()

The above Program A.4.7 has created square and fill square with colour, “grey”.

	Title
	Contents
	Unit 1
	1 Introduction to Computer and Python Programming
	2 Basics of Python Programming
	Unit 2
	3 Operators and Expressions
	4 Decision Statements
	5 Loop Control Statements
	Unit 3
	6 Lists
	7 Tuples, Sets and Dictionaries
	Unit 4
	8 Functions
	9 Modules, Packages and Introduction to PIP
	Unit 5
	10 Object-Oriented Programming: Class, Objects and Inheritance
	11 Errors and Exceptions
	Unit 6
	12 A Brief Tour of Standard Library
	13 Graphics Programming: Drawing with Turtle Graphics
	14 Unit Testing
	Previous Year’s Solved JNTU Examination Questions

