
System
s A

na
lysis a

nd
 D

esig
n M

ethod
s

Jeffrey L. Whitten
Professor

Lonnie D. Bentley
Professor

Both at Purdue University

West Lafayette, IN

With contributions by

Gary Randolph

Purdue University

and

Shana Dardan

California State

University Sacramento

SEVENTH EDITION

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis

Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City

Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

SYSTEMS ANALYSIS AND DESIGN METHODS

Published by McGraw-Hill/Irwin, a business unit of The McGraw-Hill Companies, Inc., 1221

Avenue of the Americas, New York, NY 10020. Copyright © 2007 by The McGraw-Hill

Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior written

consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or

other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers

outside the United States.

This book is printed on acid-free paper.

2 3 4 5 6 7 8 9 0 VNH/VNH 0 9 8 7 6

ISBN 978-0-07-305233-5

MHID 0-07-305233-7

Editorial director: Brent Gordon

Executive editor: Paul Ducham

Project manager: Trina Hauger

Marketing manager: Sankha Basu

Media producer: Greg Bates

Project manager: Kristin Bradley

Lead production supervisor: Michael R. McCormick

Senior designer: Kami Carter

Photo research coordinator: Lori Kramer

Media project manager: Lynn M. Bluhm

Cover design: Kami Carter

Interior design: Kami Carter

Cover image: © Corbis

Typeface: 10/12 Garamond Light

Compositor: GTS—Los Angeles, CA Campus

Printer: Von Hoffmann Corporation

Library of Congress Cataloging-in-Publication Data

Whitten, Jeffrey L.

Systems analysis and design methods / Jeffrey L. Whitten, Lonnie D. Bentley.—7th ed.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-07-305233-5 (alk. paper)

ISBN-10: 0-07-305233-7 (alk. paper)

1. System design. 2. System analysis. I. Bentley, Lonnie D. II. Title.

QA76.9.S88W48 2007

004.2 1—dc22

2005054019

www.mhhe.com

D
ed

ica
tion

To my lovely wife Cheryl and my children Robert, Heath, and Coty. To my
coauthor and good friend Jeff and our twenty years of writing side by side.

–Lonnie

To my father. You instilled in me the work ethic, perseverance, and curiosity for
knowledge that has made this book possible.

–Jeff

> Intended Audience

Systems Analysis and Design Methods, seventh edition, is intended to support one or
more practical courses in information systems development. These courses are nor-
mally taught to both information systems and business majors at the sophomore,
junior, senior, or graduate level.

We recommend that students take a computer- and information systems–literacy
course before using this text. While not required or assumed, a programming course
can significantly enhance the learning experience provided by this textbook.

> Why We Wrote This Book

More than ever, today’s students are “consumer-oriented,” due in part to the changing
world economy, which promotes quality, competition, and professional currency.They
expect to walk away from a course with more than a grade and a promise that they’ll
someday appreciate what they’ve learned. They want to “practice” the application of
concepts, not just study applications of concepts.We wrote this book (1) to balance the
coverage of concepts, tools, techniques, and their application, (2) to provide the most
examples of system analysis and design deliverables available in any book, and (3) to bal-
ance the coverage of classic methods (such as structured analysis and information

engineering) and emerging methods (e.g., object-oriented analysis, agile development,

and rapid application development). Additionally, our goal is to serve the reader by pro-
viding a postcourse, professional reference for the best current practices.

We have written the book using a lively, conversational tone. This approach (and
the numerous examples) delivers a comprehensive text that still connects with the
student throughout the learning process.

> Changes for the Seventh Edition

• Reorganization for Better Clarity: The object-oriented analysis chapter has
become Chapter 10 to better position it alongside the structured analysis
chapters (Chapters 8 and 9). Other chapters have been reorganized internally. For
example, Chapter 9, in response to reviewer comments, has undergone extensive
reorganization. Also, the discussion of sequential versus iterative development has
been moved to Chapter 3 to place it with related methodology concepts.

• Expanded Object-Oriented Coverage: As object-oriented analysis and design
grows in importance, coverage continues to increase.The seventh edition more
fully explains the object-oriented approach and tracks both where it follows the
same path as the traditional, structured approach and where the two approaches
part ways.The object-oriented analysis chapter (Chapter 10) features expanded
coverage of activity diagrams. New to this edition in Chapter 10 is coverage of
system sequence diagrams. Chapter 18 features expanded coverage of object-
oriented design. Persistence and system design classes are discussed as well as
entity, controller, and interface design classes.The discussion of sequence diagrams
and CRC cards has been expanded, and their role in the design process explained
more fully. Coverage of design patterns has been greatly expanded with a discussion
of the Gang of Four patterns and an examination of two of the patterns.

• UML 2.0: Both Chapter 10 and Chapter 18 have been revised to cover the UML
2.0 specification. Each UML 2.0 diagram is listed with an explanation of its
purpose. In Chapters 7, 10, and 18, five of the thirteen UML 2.0 diagrams are
developed in depth and three more are shown and discussed.

• Expanded Discussion of Feasibility: The discussion of feasibility now includes
legal feasibility and cultural (or political) feasibility as well as our traditional four
tests of feasibility (operational, economic, schedule, and technical).

• Use of Context Diagrams: Even as the move away from data flow diagrams and
to UML diagrams continues, the context diagram continues to be important as a

Pr
ef
a
ce

iv

tool for understanding system scope. It has been added to the tools used in

Chapter 5 and can be employed in the classroom as a first modeling assignment.

• Updated Technology References: The extensive references to example

technologies has been continued in the seventh edition and updated to reflect

technological changes, version updates, and mergers and acquisitions of

technology companies.

• Revision of the SoundStage Running Case: The SoundStage case has been

condensed, changed from a dialogue format to a narrative format, and integrated

into the opening of each chapter. Featuring the perspective of a just-graduated

systems analyst in his first assignment, SoundStage briefly introduces the concepts

taught in each chapter and underscores their importance in a real systems project.

> Pedagogical Use of Color

The seventh edition continues the use of color applied to an adaptation of Zachman’s

Framework for Information Systems Architecture. The color mappings are displayed

in the inside front cover of the textbook.

The information systems building blocks matrix uses these colors to introduce re-

curring concepts. System models then reinforce those concepts with a consistent use

of the same colors.

> Organization

Systems Analysis and Design Methods, seventh edition, is divided into four parts.The

text’s organization is flexible enough to allow instructors to omit and resequence

chapters according to what they feel is important to their audience. Every effort has

been made to decouple chapters from one another as much as possible to assist in re-

sequencing the material—even to the extent of reintroducing selected concepts and

terminology.

Part One,“The Context of Systems Development Projects,” presents the informa-

tion systems development scenario and process. Chapters 1 through 4 introduce the

student to systems analysts, other project team members (including users and man-

agement), information systems building blocks (based on the Zachman framework), a

v

Information Systems Framework
Color is used consistently throughout the text’s frame-

work to introduce recurring concepts.

represents methods

represents data and/or knowledge

represents process

represents communication/interface

represents people

vi

contemporary systems development life cycle, and project management. Part One can
be covered relatively quickly. Some readers may prefer to omit project management
or delay it until the end of the book.

Part Two, “Systems Analysis Methods,” covers the front-end life-cycle activities,
tools, and techniques for analyzing business problems, specifying business require-
ments for an information system, and proposing a business and system solution.
Coverage in Chapters 5 through 11 includes requirements gathering, use cases, data
modeling with entity-relationship diagrams, process modeling with data flow dia-
grams, object-oriented analysis, and solution identification and the system proposal.

Part Three,“Systems Design Methods,” covers the middle life-cycle activities, tools,
and techniques. Chapters 12 through 18 include coverage of both general and de-
tailed design, with a particular emphasis on application architecture, rapid develop-
ment and prototyping, external design (inputs, outputs, and interfaces), internal
design (e.g., database and software engineering), and object-oriented design.

Part Four,“Beyond Systems Analysis and Design,” is a capstone unit that places sys-
tems analysis and design into perspective by surveying the back-end life-cycle activi-
ties. Specifically, Chapters 19 and 20 examine system implementation, support,
maintenance, and reengineering.

> Supplements and Instructional Resources

It has always been our intent to provide a complete course, not just a textbook. We
are especially excited about this edition’s comprehensive support package. It
includes Web-hosted support, software bundles, and other resources for both the
student and the instructor. The supplements for the seventh edition include the
following components.

Web Site/OLC
A completely redesigned Web site provides easy-to-find resources for instructors and
students.

For the Instructor

Web Site/OLC

The book’s Web site at www.mhhe.com/whitten provides resources for instructors

and students using the text. The Online Learning Center (OLC) builds on the book’s

pedagogy and features with self-assessment quizzes, extra material not found in the

text, Web links, and other resources. The instructor side of the site offers a secure

location for downloading the latest supplemental resources.

Instructor’s Manual with PowerPoint Presentations

The instructor’s manual is offered on the Instructor’s CD-ROM, as well as on the

book’s Web site. This manual includes course planning materials, teaching guidelines

and PowerPoint slides, templates, and answers to end-of-chapter problems, exercises,

and minicases.

The PowerPoint presentations on the CD-ROM include over 400 slides. All slides

are complete with instructor notes that provide teaching guidelines and tips. Instruc-

tors can (1) pick and choose the slides they wish to use, (2) customize slides to their

own preferences, and (3) add new slides. Slides can be organized into electronic pre-

sentations or be printed as transparencies or transparency masters.

Test Bank

The Instructor’s CD-ROM also includes an electronic test bank covering all the

chapters. Computerized/Network Testing with Brownstone Diploma software is fully

networkable for LAN test administration. Each chapter offers 75 questions in the fol-

lowing formats: true/false, multiple choice, sentence completion, and matching. The

test bank and answers are cross-referenced to the page numbers in the textbook. A

level-of-difficulty rating is also assigned to each question.

> Packages

System Architect Student Edition Version 8

An optional package combines the textbook, Student Resource CD, and a student

version of System Architect. System Architect is a powerful, repository-based enter-

prise modeling tool which supports a comprehensive set of diagramming techniques

and features, including all nine UML diagram types, business enterprise modeling, data

modeling, business modeling with IDEFO and IDEF3 notations, plus many more.

Visible Analyst Workbench

Another optional package combines the textbook, Student Resource CD, and Vis-

ible Analyst Workbench. This tool integrates business function analysis, data modeling

and database design, process modeling, and object modeling in one easy-to-use pack-

age. Print versions of each case can be ordered through McGraw-Hill’s Custom Pub-

lishing group by visiting www.primiscontentcenter.com. A build your own project

model is retained for instructors and students who want to maximize value by lever-

aging students’ past and current work experience or for use with a live-client project.

vii

Primis Content Center

Primis Online

Print versions of projects and cases, as well as other MIS content, can be ordered

through McGraw-Hill’s Custom Publishing Group.

viii

Patricia J. Guinan, Boston University

Bill C. Hardgrave, University of

Arkansas–Fayetteville

Alexander Hars, University of Southern

California

Richard C. Housley, Golden Gate University

Constance Knapp, Pace University

Riki S. Kuchek, Orange Coast College

Thom Luce, Ohio University

Charles M. Lutz, Utah State University

Ross Malaga, University of

Maryland–Baltimore County

Chip McGinnis, Park College

William H. Moates, Indiana State University

Ronald J. Norman, San Diego State University

Charles E. Paddock, University of

Nevada–Las Vegas

June A. Parsons, Northern Michigan

University

Harry Reif, James Madison University

Gail L. Rein, SUNY–Buffalo

Rebecca H. Rutherfoord, Southern College of

Technology

Craig W. Slinkman, University of

Texas–Arlington

John Smiley, Holy Family College

Mary Thurber, Northern Alberta Institute of

Technology

Jerry Tillman, Appalachian State University

Jonathan Trower, Baylor University

Margaret S. Wu, University of Iowa

Jacqueline E. Wyatt, Middle Tennessee State

University

Vincent C.Yen, Wright State University

Ahmed S. Zaki, College of William and Mary

Finally, we acknowledge the contributions,
encouragement, and patience of the staff at
McGraw-Hill. Special thanks to Brent Gordon,
publisher; Paul Ducham, sponsoring editor;
Trina Hauger, developmental editor; Greta
Kleinert, marketing manager; Kristin Bradley,
project manager; and Kami Carter, designer.
We also thank Judy Kausal, photo research co-
ordinator; Michael McCormick, production
supervisor; Greg Bates, media producer; and
Rose Range, supplement coordinator.

To those of you who used our previous edi-
tions, thank you for your continued support.
For those using the text for the first time, we
hope you see a difference in this text. We
eagerly await your reactions, comments, and
suggestions.

Jeffrey L. Whitten

Lonnie D. Bentley

We are indebted to many individuals who con-
tributed to the development of this edition:

Grant Alexander, Northeastern Oklahoma

State University

Richard J. Averbeck, DeVry Institutes

Emerson (Bill) Bailey, Park University

Jack Briner, Charleston Southern University

Jimmie Carraway, Old Dominion University

Casey Cegielski, Auburn University

Minder Chen, George Mason University

Glenn Dietrich, University of Texas–San

Antonio

Dorothy Dologite, Baruch College, CUNY

Tom Erickson, University of Virginia’s

Virginia Center for Continuing and

Professional Education

Bob Kilmer, Messiah College

Avram Malkin, DeVry College of Technology

Dat-Dao Nguyen, California State

University–Northridge

Parag C. Pendharkar, Penn State University

Leah Pietron, University of

Nebraska–Omaha

Charlene Riggle, University of South

Florida–Sarasota/Manatee

A special thank-you is extended to the follow-
ing focus group participants:

Jeffrey Parsons, Memorial University of

Newfoundland

Parag C. Pendharkar, Penn State University

Carl Scott, University of Houston

Ron Thompson, Wake Forest University

Steve Walczak, Colorado University–Denver

We also are indebted to many individuals who
contributed to the development of the previ-
ous editions of this text.

Jeanne M. Alm, Moorhead State University

Charles P. Bilbrey, James Madison University

Ned Chapin, California State

University–Hayward

Carol Clark, Middle Tennessee State

University

Gail Corbitt, California State

University–Chico

Larry W. Cornwell, Bradley University

Barbara B. Denison, Wright State University

Linda Duxbury, Carleton University

Dana Edberg, University of Nevada–Reno

Craig W. Fisher, Marist College

Raoul J. Freeman, California State

University–Dominguez Hills

Dennis D. Gagnon, Santa Barbara

City College

Abhijit Gopal, University of Calgary

A
ck

no
w

le
d
g
em

en
ts

Preface vi

P A R T O N E

The Context of Systems
Development Projects 3

1 The Context of Systems Analysis and

Design Methods 4

2 Information System Building Blocks 42

3 Information Systems Development 66

4 Project Management 118

P A R T T W O

Systems Analysis Methods 157

5 Systems Analysis 158

6 Fact-Finding Techniques for

Requirements Discovery 206

7 Modeling System Requirements with

Use Cases 242

8 Data Modeling and Analysis 268

9 Process Modeling 314

10 Object-Oriented Analysis and Modeling

Using the UML 368

11 Feasibility Analysis and the System

Proposal 412

P A R T T H R E E

Systems Design Methods 443

12 Systems Design 444

13 Application Architecture and

Modeling 474

14 Database Design 516

15 Output Design and

Prototyping 548

16 Input Design and

Prototyping 580

17 User Interface Design 612

18 Object-Oriented Design and Modeling

Using the UML 646

P A R T F O U R

Beyond Systems Analysis
and Design 681

19 Systems Construction and

Implementation 682

20 Systems Operations and

Support 700

Photo Credits 720

Glossary/Index 721

Brief Contents

ix

x

Contents

Preface vi

P A R T O N E

The Context of Systems Development
Projects 3

1 THE CONTEXT OF SYSTEMS
ANALYSIS AND DESIGN
METHODS 4

Introduction 6
A Framework for Systems Analysis and Design 6
The Players—System Stakeholders 7

Systems Owners 7

Systems Users 7

Systems Designers 10

Systems Builders 10

Systems Analysts 11

External Service Providers 16

The Project Manager 16

Business Drivers for Today’s Information
Systems 16

Globalization of the Economy 17

Electronic Commerce and Business 18

Security and Privacy 19

Collaboration and Partnership 20

Knowledge Asset Management 21

Continuous Improvement and Total Quality

Management 21

Business Process Redesign 22

Technology Drivers for Today’s Information
Systems 22

Networks and the Internet 22

Mobile and Wireless Technologies 24

Object Technologies 25

Collaborative Technologies 25

Enterprise Applications 26

A Simple System Development Process 30

System Initiation 32

System Analysis 32

System Design 33

System Implementation 33

System Support and Continuous

Improvement 33

2 INFORMATION SYSTEM BUILDING
BLOCKS 42

Introduction 44
The Product—Information Systems 44
A Framework for Information Systems

Architecture 46

KNOWLEDGE Building Blocks 47

PROCESS Building Blocks 51

COMMUNICATIONS Building Blocks 55

Network Technologies and the IS Building
Blocks 58

3 INFORMATION SYSTEMS
DEVELOPMENT 66

Introduction 68
The Process of Systems Development 68

The Capability Maturity Model 69

Life Cycle versus Methodology 70

Underlying Principles for Systems

Development 72

A Systems Development Process 76

Where Do Systems Development Projects Come

From? 77

The FAST Project Phases 77

Cross Life-Cycle Activities 88

Sequential versus Iterative

Development 89

Alternative Routes and Strategies 92

The Model-Driven Development

Strategy 94

The Rapid Application Development

Strategy 98

The Commercial Application Package

Implementation Strategy 100

Hybrid Strategies 104

System Maintenance 104

Automated Tools and Technology 107

Computer-Assisted Systems Engineering 108

Application Development Environments 109

Process and Project Managers 111

xi

Task 2.5—Update or Refine the Project

Plan 183

Task 2.6—Communicate Findings and

Recommendations 183

The Requirements Analysis Phase 185

Task 3.1—Identify and Express System

Requirements 185

Task 3.2—Prioritize System Requirements 188

Task 3.3—Update or Refine the Project

Plan 188

Task 3.4—Communicate the Requirements

Statement 189

Ongoing Requirements Management 189

The Logical Design Phase 189

Task 4.1a—Structure Functional

Requirements 191

Task 4.1b—Prototype Functional Requirements

(alternative) 192

Task 4.2—Validate Functional

Requirements 192

Task 4.3—Define Acceptance Test Cases 192

The Decision Analysis Phase 192

Task 5.1—Identify Candidate Solutions 194

Task 5.2—Analyze Candidate Solutions 195

Task 5.3—Compare Candidate Solutions 197

Task 5.4—Update the Project Plan 197

Task 5.5—Recommend a System

Solution 197

6 FACT-FINDING TECHNIQUES FOR
REQUIREMENTS DISCOVERY 206

Introduction 208
An Introduction to Requirements Discovery 208
The Process of Requirements Discovery 210

Problem Discovery and Analysis 210

Requirements Discovery 212

Documenting and Analyzing

Requirements 212

Requirements Management 214

Fact-Finding Techniques 215

Sampling of Existing Documentation, Forms,

and Files 215

Research and Site Visits 217

Observation of the Work Environment 218

Questionnaires 220

Interviews 222

How to Conduct an Interview 224

Discovery Prototyping 228

Joint Requirements Planning 229

A Fact-Finding Strategy 234

4 PROJECT MANAGEMENT 118

Introduction 120
What Is Project Management? 120

The Causes of Failed Projects 121

The Project Management Body of

Knowledge 123

The Project Management Life Cycle 127

Activity 1—Negotiate Scope 130

Activity 2—Identify Tasks 130

Activity 3—Estimate Task Durations 132

Activity 4—Specify Intertask

Dependencies 134

Activity 5—Assign Resources 136

Activity 6—Direct the Team Effort 139

Activity 7—Monitor and Control

Progress 140

Activity 8—Assess Project Results and

Experiences 149

P A R T T W O

Systems Analysis Methods 157

5 SYSTEMS ANALYSIS 158

Introduction 160
What Is Systems Analysis? 160
Systems Analysis Approaches 161

Model-Driven Analysis Approaches 161

Accelerated Systems Analysis Approaches 163

Requirements Discovery Methods 165

Business Process Redesign Methods 166

FAST Systems Analysis Strategies 166

The Scope Definition Phase 167

Task 1.1—Identify Baseline Problems and

Opportunities 169

Task 1.2—Negotiate Baseline Scope 172

Task 1.3—Assess Baseline Project

Worthiness 173

Task 1.4—Develop Baseline Schedule and

Budget 173

Task 1.5—Communicate the

Project Plan 173

The Problem Analysis Phase 174

Task 2.1—Understand the Problem

Domain 175

Task 2.2—Analyze Problems and

Opportunities 180

Task 2.3—Analyze Business Processes 180

Task 2.4—Establish System Improvement

Objectives 182

7 MODELING SYSTEM REQUIREMENTS
WITH USE CASES 242

Introduction 244
An Introduction to Use-Case Modeling 244
System Concepts for Use-Case Modeling 246

Use Cases 246

Actors 247

Relationships 248

The Process of Requirements Use-Case
Modeling 251

Step 1: Identify Business Actors 251

Step 2: Identify Business Requirements Use

Cases 252

Step 3: Construct Use-Case Model

Diagram 254

Step 4: Document Business Requirements

Use-Case Narratives 256

Use Cases and Project Management 260

Ranking and Evaluating Use Cases 260

Identifying Use-Case Dependencies 261

8 DATA MODELING AND
ANALYSIS 268

Introduction 270
What Is Data Modeling? 270
System Concepts for Data Modeling 271

Entities 271

Attributes 272

Relationships 274

The Process of Logical Data Modeling 283

Strategic Data Modeling 283

Data Modeling during Systems

Analysis 285

Looking Ahead to Systems Design 286

Automated Tools for Data Modeling 286

How to Construct Data Models 288

Entity Discovery 289

The Context Data Model 290

The Key-Based Data Model 292

Generalized Hierarchies 295

The Fully Attributed Data Model 295

Analyzing the Data Model 298

What Is a Good Data Model? 298

Data Analysis 299

Normalization Example 299

Mapping Data Requirements to
Locations 306

9 PROCESS MODELING 314

Introduction 316
An Introduction to Process Modeling 316
System Concepts for Process Modeling 319

External Agents 319

Data Stores 319

Process Concepts 321

Data Flows 325

The Process of Logical Process
Modeling 334

Strategic Systems Planning 334

Process Modeling for Business Process

Redesign 334

Process Modeling during Systems

Analysis 335

Looking Ahead to Systems Design 337

Fact-Finding and Information Gathering for

Process Modeling 337

Computer-Aided Systems Engineering (CASE) for

Process Modeling 337

How to Construct Process Models 338

The Context Data Flow Diagram 338

The Functional Decomposition

Diagram 339

The Event-Response or Use-Case List 341

Event Decomposition Diagrams 342

Event Diagrams 345

The System Diagram(s) 347

Primitive Diagrams 349

Completing the Specification 349

Synchronizing of System Models 359

Data and Process Model

Synchronization 359

Process Distribution 360

10 OBJECT-ORIENTED ANALYSIS
AND MODELING USING
THE UML 368

An Introduction to Object-Oriented
Modeling 370

History of Object Modeling 370
System Concepts for Object Modeling 371

Objects, Attributes, Methods, and

Encapsulation 371

Classes, Generalization, and

Specialization 373

Object/Class Relationships 376

Messages and Message Sending 378

Polymorphism 380

xii

The UML Diagrams 381
The Process of Object Modeling 383

Modeling the Functional Description of the

System 383

Constructing the Analysis Use-Case

Model 383

Modeling the Use-Case Activities 390

Guidelines for Constructing Activity

Diagrams 394

Drawing System Sequence

Diagrams 394

Guidelines for Constructing System Sequence

Diagrams 395

Finding and Identifying the Business

Objects 396

Organizing the Objects and Identifying Their

Relationships 400

11 FEASIBILITY ANALYSIS AND THE
SYSTEM PROPOSAL 412

Introduction 414
Feasibility Analysis and the System

Proposal 414

Feasibility Analysis—A Creeping Commitment

Approach 414

Systems Analysis—Scope Definition

Checkpoint 416

Systems Analysis—Problem Analysis

Checkpoint 416

Systems Design—Decision Analysis

Checkpoint 416

Six Tests for Feasibility 417

Operational Feasibility 417

Cultural (or Political) Feasibility 417

Technical Feasibility 418

Schedule Feasibility 418

Economic Feasibility 419

Legal Feasibility 419

The Bottom Line 419

Cost-Benefit Analysis Techniques 419

How Much Will the System Cost? 419

What Benefits Will the System Provide? 420

Is the Proposed System Cost-Effective? 422

Feasibility Analysis of Candidate Systems 426

Candidate Systems Matrix 426

Feasibility Analysis Matrix 429

The System Proposal 431

Written Report 431

Formal Presentation 433

P A R T T H R E E

Systems Design Methods 443

12 SYSTEMS DESIGN 444

Introduction 446
What Is Systems Design? 446
Systems Design Approaches 446

Model-Driven Approaches 447

Rapid Application Development 451

FAST Systems Design Strategies 453

Systems Design for In-House Development—The
“Build” Solution 453

Task 5.1—Design the Application

Architecture 453

Task 5.2—Design the System Database(s) 457

Task 5.3—Design the System Interface 457

Task 5.4—Package Design

Specifications 459

Task 5.5—Update the Project Plan 460

Systems Design for Integrating Commercial
Software—The “Buy” Solution 460

Task 4.1—Research Technical Criteria and

Options 462

Task 4.2—Solicit Proposals or Quotes from

Vendors 462

Task 5A.1—Validate Vendor Claims and

Performances 465

Task 5A.2—Evaluate and Rank Vendor

Proposals 465

Task 5A.3—Award (or Let) Contract and

Debrief Vendors 466

Impact of Buy Decision on Remaining

Life-Cycle Phases 466

13 APPLICATION ARCHITECTURE AND
MODELING 474

Introduction 476
Application Architecture 476
Physical Data Flow Diagrams 477

Physical Processes 477

Physical Data Flows 481

Physical External Agents 481

Physical Data Stores 481

Information Technology Architecture 483

Distributed Systems 484

Data Architectures—Distributed Relational

Databases 494

xiii

Interface Architectures—Inputs, Outputs, and

Middleware 495

Process Architectures—The Software

Development Environment 500

Application Architecture Strategies for Systems
Design 502

The Enterprise Application Architecture

Strategy 502

The Tactical Application Architecture

Strategy 503

Modeling the Application Architecture of an
Information System 503

Drawing Physical Data Flow Diagrams 504

Prerequisites 504

The Network Architecture 505

Data Distribution and Technology

Assignments 506

Process Distribution and Technology

Assignments 507

The Person/Machine Boundaries 510

14 DATABASE DESIGN 516

Introduction 518
Conventional Files versus the Database 518

The Pros and Cons of Conventional Files 518

The Pros and Cons of Databases 520

Database Concepts for the Systems Analyst 520

Fields 521

Records 521

Files and Tables 522

Databases 523

Prerequisite for Database Design—
Normalization 528

Conventional File Design 529
Modern Database Design 529

Goals and Prerequisites to Database Design 530

The Database Schema 530

Data and Referential Integrity 535

Roles 538

Database Distribution and Replication 538

Database Prototypes 539

Database Capacity Planning 539

Database Structure Generation 539

15 OUTPUT DESIGN AND
PROTOTYPING 548

Introduction 550
Output Design Concepts and Guidelines 550

Distribution and Audience of Outputs 550

Implementation Methods for Outputs 553

How to Design and Prototype Outputs 558

Automated Tools for Output Design and

Prototyping 558

Output Design Guidelines 559

The Output Design Process 562

Web-Based Outputs and E-Business 570

16 INPUT DESIGN AND
PROTOTYPING 580

Introduction 582
Input Design Concepts and

Guidelines 582

Data Capture, Data Entry, and Data

Processing 582

Input Methods and Implementation 585

System User Issues for Input Design 587

Internal Controls—Data Editing for

Inputs 589

GUI Controls for Input Design 590

Common GUI Controls for Inputs 592

Advanced Input Controls 596

How to Design and Prototype Inputs 598

Automated Tools for Input Design and

Prototyping 598

The Input Design Process 599

Web-Based Inputs and E-Business 605

17 USER INTERFACE DESIGN 612

Introduction 614
User Interface Design Concepts and

Guidelines 614

Types of Computer Users 614

Human Factors 615

Human Engineering Guidelines 616

Dialogue Tone and Terminology 617

User Interface Technology 618

Operating Systems and Web

Browsers 618

Display Monitor 618

Keyboards and Pointers 619

Graphical User Interface Styles and
Considerations 619

Windows and Frames 620

Menu-Driven Interfaces 620

Instruction-Driven Interfaces 627

Question-Answer Dialogues 629

Special Considerations for User Interface

Design 629

xiv

How to Design and Prototype a User Interface 633

Automated Tools for User Interface Design and

Prototyping 634

The User Interface Design Process 635

18 OBJECT-ORIENTED DESIGN
AND MODELING USING
THE UML 646

Introduction 648
The Design of an Object-Oriented System 648

Entity Classes 648

Interface Classes 648

Control Classes 649

Persistence Classes 649

System Classes 649

Design Relationships 650

Attribute and Method Visibility 650

Object Responsibilities 651

The Process of Object Design 651

Refining the Use-Case Model 651

Modeling Class Interactions, Behaviors,

and States That Support the Use-Case

Scenario 656

Updating the Object Model to Reflect the

Implementation Environment 665

Object Reusability and Design Patterns 666

Design Patterns 668

The Strategy Pattern 669

The Adapter Pattern 670

Object Frameworks and Components 671

Additional UML Design and Implementation
Diagrams 671

P A R T F O U R

Beyond Systems Analysis and Design 681

19 SYSTEMS CONSTRUCTION AND
IMPLEMENTATION 682

Introduction 684
What Is Systems Construction and

Implementation? 684

The Construction Phase 684

Task 6.1—Build and Test Networks

(if Necessary) 684

Task 6.2—Build and Test Databases 687

Task 6.3—Install and Test New Software

Packages (if Necessary) 687

Task 6.4—Write and Test New Programs 688

The Implementation Phase 689

Task 7.1—Conduct System Test 689

Task 7.2—Prepare Conversion Plan 689

Task 7.3—Install Databases 692

Task 7.4—Train Users 693

Task 7.5—Convert to New System 694

20 SYSTEMS OPERATIONS AND
SUPPORT 700

Introduction 702
The Context of Systems Operation and

Support 702
System Maintenance 706

Task 8.1.1—Validate the Problem 706

Task 8.1.2—Benchmark Program 707

Task 8.1.3—Study and Debug the Program 708

Task 8.1.4—Test the Program 709

System Recovery 709
Technical Support 710
System Enhancement 710

Task 8.4.1—Analyze Enhancement

Request 712

Task 8.4.2—Make the Quick Fix 712

Task 8.4.3—Recover Existing Physical

System 713

System Obsolescence 714

Photo Credits 720

Glossary/Index 721

xv

System
s A

na
lysis a

nd
 D

esig
n M

ethod
s

Part One
The Context of Systems Development Projects

This is a practical book about infor-

mation systems development meth-

ods. All businesses and organizations

develop information systems. You can

be assured that you will play some

role in the systems analysis and de-

sign for those systems—either as a

customer or user of those systems or

as a developer of those systems. Sys-

tems analysis and design is about

business problem solving and com-

puter applications. The methods you

will learn in this book can be applied

to a wide variety of problem do-

mains, not just those involving the

computer.

Before we begin, we assume

you’ve completed an introductory

course in computer-based informa-

tion systems. Many of you have also

completed one or more programming

courses (using technologies such as

Access, Java, C/C , or Visual

Basic). That will prove helpful, since

systems analysis and design precedes

and/or integrates with those activities.

But don’t worry—we’ll review all

the necessary principles on which

systems analysis and design is based.

Part One focuses on the big pic-

ture. Before you learn about specific

activities, tools, techniques, methods,

and technology, you need to under-

stand this big picture. As you explore

the context of systems analysis and

design, we will introduce many ideas,

tools, and techniques that are not ex-

plored in great detail until later in the

book. Try to keep that in mind as you

explore the big picture.

Systems development isn’t

magic. There are no secrets for suc-

cess, no perfect tools, techniques, or

methods. To be sure, there are skills

that can be mastered. But the com-

plete and consistent application of

those skills is still an art.

We start in Part One with funda-

mental concepts, philosophies, and

trends that provide the context of sys-

tems analysis and design methods—

in other words, the basics! If you

understand these basics, you will be

better able to apply, with confidence,

the practical tools and techniques you

will learn in Parts Two through Four.

You will also be able to adapt to new

situations and methods.

Four chapters make up this part.

Chapter 1, “The Context of Systems

Analysis and Design Methods,” intro-

duces you to the participants in sys-

tems analysis and design with special

emphasis on the modern systems ana-

lyst as the facilitator of systems work.

You’ll also learn about the relation-

ships between systems analysts, end

users, managers, and other informa-

tion systems professionals. Finally,

you’ll learn to prepare yourself for a

career as an analyst (if that is your

goal). Regardless, you will under-

stand how you will interact with this

important professional.

Chapter 2, “Information System

Building Blocks,” introduces the

product we will teach you how to

build—information systems. Specifi-

cally, you will learn to examine infor-

mation systems in terms of common

building blocks, KNOWLEDGE,

PROCESSES, and COMMUNICATIONS—

each from the perspective of different

participants or stakeholders. A visual

matrix framework will help you orga-

nize these building blocks so that you

can see them applied in the subse-

quent chapters.

Chapter 3, “Information Systems

Development,” introduces a high-

level (meaning general) process for

information systems development.

This is called a systems development

life cycle. We will present the life cy-

cle in a form in which most of you

will experience it—a systems devel-

opment methodology. This methodol-

ogy will be the context in which you

will learn to use and apply the sys-

tems analysis and design methods

taught in the remainder of the book.

Chapter 4, “Project Management,”

introduces project management

techniques. All systems projects are

dependent on the principles that are

surveyed. This chapter introduces two

modeling techniques for project man-

agement: Gantt and PERT. These tools

help you schedule activities, evaluate

progress, and adjust schedules.

C H A P T E R 1 H O M E P A G E Each chapter in this book begins with a “home page” similar to
the one above. The home page is something of a chapter map, a visual framework for systems thinking
applicable to that chapter. Chapter 1 focuses on (1) the players in the systems game, (2) business drivers
of interest to business players, (3) technology drivers and enablers of interest to the technical players,
and (4) the process used to develop systems. We will also examine the critical role played by systems
analysts in facilitating an understanding of how all four perspectives must come together.

I N F O R M A T I O N

S Y S T E M S

Transaction Processing Systems
Management Information Systems

Decision Support Systems

Executive Information Systems
Expert Systems

Communications & Collaboration Systems
Office Automation Systems

THE “PLAYERS”

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

T H E T E C H N O L O G Y D R I V E R S

T H E B U S I N E S S D R I V E R S

THE “PRODUCT”

THE “PROCESS”

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

Chapter Preview and Objectives

This is a book about systems analysis and design as applied to information systems and

computer applications. No matter what your chosen occupation or position in any busi-

ness, you will likely participate in systems analysis and design. Some of you will become

systems analysts, the key players in systems analysis and design activities. The rest of you

will work with systems analysts as projects come and go in your organizations. This

chapter introduces you to information systems from four different perspectives. You will

understand the context for systems analysis and design methods when you can:

❚ Define information system and name seven types of information system applications.

❚ Identify different types of stakeholders who use or develop information systems, and

give examples of each.

❚ Define the unique role of systems analysts in the development of information systems.

❚ Identify those skills needed to successfully function as an information systems analyst.

❚ Describe current business drivers that influence information systems development.

❚ Describe current technology drivers that influence information systems development.

❚ Briefly describe a simple process for developing information systems.

1The Context of Systems
Analysis and Design Methods

It is Bob Martinez’s first week at work as an analyst/programmer. Fresh out of college
with a degree in computer information systems technology, Bob is eager to work with
information systems in the real world. His employer is SoundStage Entertainment
Club, one of the fastest-growing music and video clubs in America. SoundStage is just
beginning systems analysis and design work on a reengineering of their member ser-
vices information system. Bob has been appointed to the project team.

This morning was the kickoff meeting for the project, a meeting that included the
vice president of member services, director of the audio club, director of the game
club, director of marketing, director of customer services, and director of warehouse
operations. With that lineup Bob was glad to mainly keep silent at the meeting and
rely on his boss, Sandra Shepherd, a senior systems analyst. He was amazed at how
well Sandra was able to speak the language of each of the participants and to explain
the plans for the new information system in terms they could understand and with
benefits they could appreciate. Bob had thought that being just out of college he
would know more about cutting-edge technology than most of his co-workers.
But Sandra seemed to understand everything about e-commerce and using mobile
technologies plus many things of which Bob was only vaguely aware. He made a
note to read up on ERP systems as that had come up in the discussion. By the end of
the meeting Bob had a new appreciation for the job of systems analyst and of all the
things he had yet to learn.

6 Part One The Context of Systems Development Projects

system a group of interre-

lated components that func-

tion together to achieve a

desired result.

information system (IS)
an arrangement of people,

data, processes, and infor-

mation technology that inter-

act to collect, process, store,

and provide as output the in-

formation needed to support

an organization.

information technology
(IT) a contemporary term

that describes the combina-

tion of computer technology

(hardware and software) with

telecommunications technol-

ogy (data, image, and voice

networks).

transaction processing
system (TPS) an informa-

tion system that captures and

processes data about busi-

ness transactions.

management informa-
tion system (MIS) an infor-

mation system that provides

for management-oriented re-

porting based on transaction

processing and operations of

the organization.

Introduction

A Framework for Systems Analysis and Design

As its title suggests, this is a book about systems analysis and design methods. In this
chapter, we will introduce the subject using a simple but comprehensive visual frame-
work. Each chapter in this book begins with a home page (see page 4) that quickly and
visually shows which aspects of the total framework we will be discussing in the chapter.
We’ll build this visual framework slowly over the first four chapters to avoid overwhelm-
ing you with too much detail too early. Thereafter, each chapter will highlight those
aspects of the full framework that are being taught in greater detail in that chapter.

Ultimately, this is a book about “analyzing” business requirements for information
systems and “designing” information systems that fulfill those business requirements.
In other words, the product of systems analysis and design is an information system.
That product is visually represented in the visual framework as the large rectangle in
the center of the picture.

A system is a group of interrelated components that function together to achieve
a desired result. For instance, you may own a home theater system made up of a DVD
player, receiver, speakers, and display monitor.

Information systems (IS) in organizations capture and manage data to produce
useful information that supports an organization and its employees, customers, suppli-
ers, and partners. Many organizations consider information systems to be essential to
their ability to compete or gain competitive advantage. Most organizations have come
to realize that all workers need to participate in the development of information sys-
tems. Therefore, information systems development is a relevant subject to you regard-
less of whether or not you are studying to become an information systems professional.

Information systems come in all shapes and sizes.They are so interwoven into the
fabric of the business systems they support that it is often difficult to distinguish be-
tween business systems and their support information systems. Suffice it to say that in-
formation systems can be classified according to the functions they serve. Transaction

processing systems (TPSs) process business transactions such as orders, time
cards, payments, and reservations. Management information systems (MISs) use
the transaction data to produce information needed by managers to run the business.

Decision support systems (DSSs) help various decision makers identify and choose
between options or decisions. Executive information systems (EISs) are tailored to
the unique information needs of executives who plan for the business and assess per-
formance against those plans. Expert systems capture and reproduce the knowledge
of an expert problem solver or decision maker and then simulate the “thinking” of that
expert. Communication and collaboration systems enhance communication and
collaboration between people, both internal and external to the organization. Finally,
office automation systems help employees create and share documents that support
day-to-day office activities.

As illustrated in the chapter home page, information systems can be viewed from
various perspectives, including:

• The players in the information system (the “team”).
• The business drivers influencing the information system.
• The technology drivers used by the information system.
• The process used to develop the information system.

Let’s examine each of these perspectives in the remaining sections of the chapter.

The Players—System Stakeholders

Let’s assume you are in a position to help build an information system. Who are the
stakeholders in this system? Stakeholders for information systems can be broadly clas-
sified into the five groups shown on the left-hand side of Figure 1-1. Notice that each
stakeholder group has a different perspective of the same information system.The sys-

tems analyst is a unique stakeholder in Figure 1-1.The systems analyst serves as a facili-
tator or coach, bridging the communications gap that can naturally develop between the
nontechnical system owners and users and the technical system designers and builders.

All the above stakeholders have one thing in common—they are what the U.S.
Department of Labor calls information workers. The livelihoods of information
workers depend on decisions made based on information.Today, more than 60 percent
of the U.S. labor force is involved in producing, distributing, and using information.
Let’s examine the five groups of information workers in greater detail.

Let’s briefly examine the perspectives of each group. But before we do so, we
should point out that these groups actually define “roles” played in systems develop-
ment. In practice, any individual person may play more than one of these roles. For ex-
ample, a system owner might also be a system user. Similarly, a systems analyst may
also be a system designer, and a system designer might also be a system builder. Any
combination may work.

> Systems Owners

For any information system, large or small, there will be one or more system owners.

System owners usually come from the ranks of management. For medium to large in-
formation systems, system owners are usually middle or executive managers. For
smaller systems, system owners may be middle managers or supervisors. System own-
ers tend to be interested in the bottom line—how much will the system cost? How
much value or what benefits will the system return to the business? Value and bene-
fits can be measured in different ways, as noted in the margin checklist.

> Systems Users

System users make up the vast majority of the information workers in any information
system. Unlike system owners, system users tend to be less concerned with costs and
benefits of the system. Instead, as illustrated in Figure 1-1, they are concerned with
the functionality the system provides to their jobs and the system’s ease of learning
and ease of use. Although users have become more technology-literate over the years,

The Context of Systems Analysis and Design Methods Chapter One 7

decision support system
(DSS) an information system

that either helps to identify

decision-making opportunities

or provides information to help

make decisions.

executive information
system (EIS) an information

system that supports the plan-

ning and assessment needs

of executive managers.

expert system an informa-

tion system that captures the

expertise of workers and then

simulates that expertise to the

benefit of nonexperts.

communications and
collaboration system an

information system that en-

ables more effective commu-

nications between workers,

partners, customers, and sup-

pliers to enhance their ability

to collaborate.

office automation system
an information system that

supports the wide range of

business office activities that

provide for improved work flow

between workers.

stakeholder any person

who has an interest in an ex-

isting or proposed information

system. Stakeholders may in-

clude both technical and non-

technical workers. They may

also include both internal and

external workers.

information worker any

person whose job involves

creating, collecting, process-

ing, distributing, and using

information.

THE “PROCESS”THE "PRODUCT" — AN INFORMATION SYSTEM "PLAYERS"

SYSTEM OWNERS’ VIEW OF THE INFORMATION SYSTEM

System owners pay for the system to be built and operated and set

the vision and priorities for the system. Hence, they view an

information system in terms of costs and benefits to solve problems

and exploit opportunities.

B U S I N E S S D R I V E R S

T E C H N O L O G Y D R I V E R S

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

S
Y

S
T

E
M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

SYSTEM USERS’ VIEW OF THE INFORMATION SYSTEM

System users define the business requirements and expectations

for the system. Hence, they view an information system in terms of

the functionality provided to their jobs, ease-of-learning, or ease-of-

use.

SYSTEM DESIGNERS’ VIEW OF THE INFORMATION SYSTEM

System designers translate the business requirements into a

feasible technical solution. Hence, they view an information system

in terms of a design blueprint to guide the construction of the final

system.

SYSTEM BUILDERS’ VIEW OF THE INFORMATION SYSTEM

System builders construct, deploy, and maintain the information

system. Hence, they tend to view an information system in terms of

the actual working hardware and software to implement the system.

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 1 Stakeholders’ Perspective of an Information System

their primary concern is to get the job done. Consequently, discussions with most
users need to be kept at the business requirements level as opposed to the technical
requirements level. Much of this book is dedicated to teaching you how to effectively
identify and communicate business requirements for an information system.

There are many classes of system users. Each class should be directly involved in
any information system development project that affects them. Let’s briefly examine
these classes.

8 Part One The Context of Systems Development Projects

system owner an informa-

tion system’s sponsor and

executive advocate, usually

responsible for funding the

project of developing, operat-

ing, and maintaining the

information system.

Internal System Users Internal system users are employees of the businesses for
which most information systems are built. Internal users make up the largest per-
centage of information system users in most businesses. Examples include:

• Clerical and service workers—perform most of the day-to-day transaction
processing in the average business. They process orders, invoices, payments,
and the like. They type and file correspondence. They fill orders in the
warehouse. And they manufacture goods on the shop floor. Most of the
fundamental data in any business is captured or created by these workers,
many of whom perform manual labor in addition to processing data. Infor-
mation systems that target these workers tend to focus on transaction pro-
cessing speed and accuracy.

• Technical and professional staff—consists largely of business and industrial
specialists who perform highly skilled and specialized work. Examples
include lawyers, accountants, engineers, scientists, market analysts, advertising
designers, and statisticians. Because their work is based on well-defined bod-
ies of knowledge, they are sometimes called knowledge workers. Informa-
tion systems that target technical and professional staff focus on data analysis
as well as generating timely information for problem solving.

• Supervisors, middle managers, and executive managers—are the decision
makers. Supervisors tend to focus on day-to-day problem solving and decision
making. Middle managers are more concerned with tactical (short-term) oper-
ational problems and decision making. Executive managers are concerned
with strategic (long-term) planning and decision making. Information systems
for managers tend to focus entirely on information access. Managers need the
right information at the right time to identify and solve problems and make
good decisions.

External System Users The Internet has allowed traditional information system
boundaries to be extended to include other businesses or direct consumers as sys-
tem users. These external system users make up an increasingly large percentage of
system users for modern information systems. Examples include:

• Customers—any organizations or individuals that purchase our products and
services. Today, our customers can become direct users of our information
systems when they can directly execute orders and sales transactions that
used to require intervention by an internal user. For example, if you
purchased a company’s product via the Internet, you became an external
user of that business’s sales information system. (There was no need for a
separate internal user of the business to input your order.)

• Suppliers—any organizations from which our company may purchase supplies
and raw materials. Today, these suppliers can interact directly with our com-
pany’s information systems to determine our supply needs and automatically
create orders to fill those needs. There is no longer always a need for an inter-
nal user to initiate those orders to a supplier.

• Partners—any organizations from which our company purchases services or
with which it partners. Most modern businesses contract or outsource a num-
ber of basic services such as grounds maintenance, network management, and
many others. And businesses have learned to partner with other businesses to
more quickly leverage strengths to build better products more rapidly.

• Employees—those employees who work on the road or who work from
home. For example, sales representatives usually spend much of their time on
the road. Also, many businesses permit workers to telecommute (meaning
“work from home”) to reduce costs and improve productivity. As mobile or
remote users, these employees require access to the same information sys-
tems as those needed by internal users.

The Context of Systems Analysis and Design Methods Chapter One 9

system user a “customer”

who will use or is affected by

an information system on a

regular basis—capturing, vali-

dating, entering, responding

to, storing, and exchanging

data and information.

knowledge worker any

worker whose responsibilities

are based on a specialized

body of knowledge.

POSSIBLE VALUES
AND BENEFITS OF
INFORMATION
SYSTEMS

Increased Business Profit

Reduced Business Costs

Costs and Benefits of the
System

Increased Market Share

Improved Customer
Relations

Increased Efficiency

Improved Decision Making

Better Compliance with
Regulations

Fewer Mistakes

Improved Security

Greater Capacity

External system users are increasingly referred to as remote users and mobile

users. They connect to our information systems through laptop computers, handheld
computers, and smart phones—either wired or wireless. Designing information sys-
tems for these devices presents some of the most contemporary of challenges that we
will address in this book.

> Systems Designers

System designers are technology specialists for information systems. As Figure 1-1
shows, system designers are interested in information technology choices and in the
design of systems that use chosen technologies. Today’s system designers tend to fo-
cus on technical specialties. Some of you may be educating yourselves to specialize in
one of these technical specialties, such as:

• Database administrators—specialists in database technologies who design
and coordinate changes to corporate databases.

• Network architects—specialists in networking and telecommunications tech-
nologies who design, install, configure, optimize, and support local and wide
area networks, including connections to the Internet and other external
networks.

• Web architects—specialists who design complex Web sites for organizations,
including public Web sites for the Internet, internal Web sites for organizations
(called intranets), and private business-to-business Web sites (called extranets).

• Graphic artists—relatively new in today’s IT worker mix, specialists in graph-
ics technology and methods used to design and construct compelling and
easy-to-use interfaces to systems, including interfaces for PCs, the Web, hand-
helds, and smart phones.

• Security experts—specialists in the technology and methods used to ensure
data and network security (and privacy).

• Technology specialists—experts in the application of specific technologies
that will be used in a system (e.g., a specific commercial software package or
a specific type of hardware).

> Systems Builders

System builders (again, see Figure 1-1) are another category of technology specialists
for information systems. Their role is to construct the system according to the system
designers’ specifications. In small organizations or with small information systems,
systems designers and systems builders are often the same people. But in large organi-
zations and information systems they are often separate jobs. Some of you may be ed-
ucating yourselves to specialize in one of their technical specialties, such as:

• Applications programmers—specialists who convert business requirements
and statements of problems and procedures into computer languages. They
develop and test computer programs to capture and store data and to locate
and retrieve data for computer applications.

• Systems programmers—specialists who develop, test, and implement operating
systems–level software, utilities, and services. Increasingly, they also develop
reusable software “components” for use by applications programmers (above).

• Database programmers—specialists in database languages and technology
who build, modify, and test database structures and the programs that use
and maintain them.

• Network administrators—specialists who design, install, troubleshoot, and
optimize computer networks.

• Security administrators—specialists who design, implement, troubleshoot,
and manage security and privacy controls in a network.

10 Part One The Context of Systems Development Projects

remote user a user who is

not physically located on the

premises but who still requires

access to information systems.

mobile user a user whose

location is constantly chang-

ing but who requires access to

information systems from any

location.

system designer a techni-

cal specialist who translates

system users’ business re-

quirements and constraints

into technical solutions. She or

he designs the computer

databases, inputs, outputs,

screens, networks, and soft-

ware that will meet the system

users’ requirements.

system builder a technical

specialist who constructs in-

formation systems and com-

ponents based on the design

specifications generated by

the system designers.

• Webmasters—specialists who code and maintain Web servers.
• Software integrators—specialists who integrate software packages with hard-

ware, networks, and other software packages.

Although this book is not directly intended to educate the system builder, it is in-
tended to teach system designers how to better communicate design specifications to
system builders.

> Systems Analysts

As you have seen, system owners, users, designers, and builders often have very dif-
ferent perspectives on any information system to be built and used. Some are inter-
ested in generalities, while others focus on details. Some are nontechnical, while
others are very technical.This presents a communications gap that has always existed
between those who need computer-based business solutions and those who under-
stand information technology. The systems analyst bridges that gap. You can (and
probably will) play a role as either a systems analyst or someone who works with sys-
tems analysts.

As illustrated in Figure 1-1, their role intentionally overlaps the roles of all the
other stakeholders. For the system owners and users, systems analysts identify and val-
idate business problems and needs. For the system designers and builders, systems an-
alysts ensure that the technical solution fulfills the business needs and integrate the
technical solution into the business. In other words, systems analysts facilitate the de-
velopment of information systems through interaction with the other stakeholders.

There are several legitimate, but often confusing, variations on the job title we are
calling “systems analyst.” A programmer/analyst (or analyst/programmer) includes the
responsibilities of both the computer programmer and the systems analyst. A business

analyst focuses on only the nontechnical aspects of systems analysis and design. Other
synonyms for “systems analyst” are systems consultant, business analyst, systems archi-
tect, systems engineer, information engineer, information analyst, and systems integrator.

Some of you will become systems analysts. The rest of you will routinely work
with systems analysts who will help you solve your business and industrial problems
by creating and improving your access to the data and information needed to do your
job. Let’s take a closer look at systems analysts as the key facilitators of information
systems development.

The Role of the Systems Analyst Systems analysts understand both business and
computing.They study business problems and opportunities and then transform busi-
ness and information requirements into specifications for information systems that
will be implemented by various technical specialists including computer program-
mers. Computers and information systems are of value to a business only if they help
solve problems or effect improvements.

Systems analysts initiate change within an organization. Every new system
changes the business. Increasingly, the very best systems analysts literally change their
organizations—providing information that can be used for competitive advantage,
finding new markets and services, and even dramatically changing and improving the
way the organization does business.

The systems analyst is basically a problem solver. Throughout this book, the term
problem will be used to describe many situations, including:

• Problems, either real or anticipated, that require corrective action.
• Opportunities to improve a situation despite the absence of complaints.
• Directives to change a situation regardless of whether anyone has complained

about the current situation.

The systems analyst’s job presents a fascinating and exciting challenge to many
individuals. It offers high management visibility and opportunities for important

The Context of Systems Analysis and Design Methods Chapter One 11

systems analyst a special-

ist who studies the problems

and needs of an organization

to determine how people,

data, processes, and informa-

tion technology can best

accomplish improvements

for the business.

Executive
Management

Operations
Human

Resources
Financial

Management
Research &

Development
Information

Services

Budget

Finance

Accounting

Departmental

Computing

Employment

Services

Regulatory

Compliance

Employee

Benefits

Departmental

Computing

Sales and

Distribution

Departmental

Computing

Inventory

Control

Customer

Service

Market

Research

Product

Engineering

Industrial

Engineering

Advertising

Systems

Development

Data

Management

Network

Services

Departmental

Computing

Production

Control

Purchasing Operations

Technical

Support

Financial

Systems

Team

Human

Resource

Systems

Team

Operations

Systems

Team

Research &

Development

Systems

Team

Unassigned

Developers

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

Systems

Analysts

NOTE: This figure demonstrates how we

will cross-reference notes in the text to the

figure. The numbered bullets refer to in-

text references that explain the bullet.

1

2

3

4

5

1 1 1 1

2

2

2

2

3

3

3

5

5 5

F I G U R E 1 - 2 Systems Analysts in a Typical Organization

decision making and creativity that may affect an entire organization. Furthermore,
this job can offer these benefits relatively early in your career (compared to other
entry-level jobs and careers).

Where Do Systems Analysts Work? Every business organizes itself uniquely. But
certain patterns of organization seem to reoccur. Figure 1-2 is a representative orga-
nization chart. The following numbered bullets cross-reference and emphasize key
points in the figure:

System owners and system users are located in the functional units and sub-
units of the business, as well as in the executive management.
System designers and builders are usually located in the information systems
unit of the business. Most systems analysts work also for the information ser-
vices unit of an organization.
As shown in the figure, systems analysts (along with systems designers and
builders) may be permanently assigned to a team that supports a specific
business function (e.g., financial systems).

Numbers 2 and 3 above represent a traditional approach to organizing systems
analysts and other developers. Numbers 4 and 5 below represent strategies intended
to emphasize either efficiency or business expertise. All of the strategies can be
combined in a single organization.

3

2

1

12 Part One The Context of Systems Development Projects

Many of you are considering or preparing for a career as
a systems analyst. The life of a systems analyst is both chal-
lenging and rewarding. But what are the prospects for the
future? Do organizations need systems analysts? Will they
need them in the foreseeable future? Is the job changing
for the future, and if so, how? These questions are
addressed in this box.

According to the U.S. Department of Labor, computer-
related jobs account for 5 out of the 20 fastest-growing
occupations in the economy. What’s more, these fastest-
growing computer-related occupations pay better than
many other jobs.

In 2002, 468,000 workers were classified as systems
analysts. By 2012, that number will grow to 653,000, an
increase of 39%. This means that at least 185,000 new
systems analysts must be educated and hired (not includ-
ing those needed to replace the ones who retire or move
into managerial positions or other occupations). The need
is increasing because industry needs systems analysts to
meet the seemingly endless demand for more information
systems and software applications. As some programming
jobs are being out-sourced to independent contractors and
other countries, the need grows even greater for skilled sys-
tems analysts, who can create solid design specifications
for remote development teams. Opportunities for success
will be the greatest for the most educated, qualified, skilled,
and experienced analysts.

What happens to the successful systems analyst? Does
a position as a systems analyst lead to any other careers?
Indeed, there are many career paths. Some analysts leave
the information systems field and join the user community.
Their experience with developing business applications,
combined with their total systems perspective, can make
experienced analysts unique business specialists. Alterna-
tively, analysts can become project managers, information
systems managers, or technical specialists (for databases,
telecommunications, microcomputers, and so forth). Finally,
skilled systems analysts are often recruited by the consulting

and outsourcing industries. The career
path opportunities are virtually limitless.

As with any profession, systems ana-
lysts can expect change. While it is al-
ways dangerous to predict changes,
we’ll take a shot at it. We believe that
organizations will become increasingly
dependent on external sources for their
systems analysts—consultants and out-
sourcers. This will be driven by such fac-
tors as the complexity and rapid change
of technology, the desire to accelerate
systems development, and the continued
difficulty in recruiting, retaining, and re-
training skilled systems analysts (and
other information technology profes-
sionals). In many cases, internally em-
ployed systems analysts will manage
projects through consulting or outsourcing
agreements.

We believe that an increasing per-
centage of tomorrow’s systems analysts
will not work in the information sys-
tems department. Instead, they will work
directly for a business unit within an organization. This
will enable them to better serve their users. It will also
give users more power over what systems are built and
supported.

Finally, we also believe that a greater percentage of
systems analysts will come from noncomputing back-
grounds. At one time most analysts were computer spe-
cialists. Today’s computer graduates are becoming more
business-literate. Similarly, today’s business and noncom-
puting graduates are becoming more computer-literate.
Their full-time help and insight will be needed to meet de-
mand and to provide the business background necessary
for tomorrow’s more complex applications.

The Next Generation:
Career Prospects for Systems Analysts

N
ext G

enera
tions

13

Systems analysts (along with system designers and builders) may also be
pooled and temporarily assigned to specific projects for any business
function as needed. (Some organizations believe this approach yields greater
efficiency because analysts and other developers are always assigned to the
highest-priority projects regardless of business area expertise.)
Some systems analysts may work for smaller, departmental computing organi-
zations that support and report to their own specific business functions.
(Some organizations believe this structure results in systems analysts that
develop greater expertise in their assigned business area to complement their
technical expertise.)

All of the above strategies can, of course, be reflected within a single organization.

5

4

Regardless of where systems analysts are assigned within the organization, it is im-
portant to realize that they come together in project teams. Project teams are usually
created and disbanded as projects come and go. Project teams must also include ap-
propriate representation from the other stakeholders that we previously discussed
(system owners, system users, system designers, and system builders). Accordingly,
we will emphasize team building and teamwork throughout this book.

Skills Needed by the Systems Analyst For those of you with aspirations of be-
coming a systems analyst, this section describes the skills you will need to develop.
This book introduces many systems analysis and design concepts, tools, and tech-
niques. But you will also need skills and experiences that neither this book nor your
systems analysis and design course can fully provide.

When all else fails, the systems analyst who remembers the basic concepts and
principles of “systems thinking” will still succeed. No tool, technique, process, or
methodology is perfect in all situations! But concepts and principles of systems think-
ing will always help you adapt to new and different situations. This book emphasizes
systems thinking.

Not too long ago, it was thought that the systems analyst’s only real tools were pa-
per, pencil, and a flowchart template. Over the years, several tools and techniques
have been developed to help the systems analyst. Unfortunately, many books empha-
size a specific class of tools that is associated with one methodology or approach to
systems analysis and design. In this book, we propose a “toolbox” approach to systems
analysis and design. As you read this book, your toolbox will grow to include many
tools from different methodologies and approaches to systems analysis and design.
Subsequently, you should pick and use tools based on the many different situations
you will encounter as an analyst—the right tool for the right job!

In addition to having formal systems analysis and design skills, a systems analyst
must develop or possess other skills, knowledge, and traits to complete the job.These
include:

• Working knowledge of information technologies—The analyst must be
aware of both existing and emerging information technologies. Such knowl-
edge can be acquired in college courses, professional development seminars
and courses, and in-house corporate training programs. Practicing analysts
also stay current through disciplined reading and participation in appropriate
professional societies. (To get started, see the Suggested Readings at the end
of this and subsequent chapters.)

• Computer programming experience and expertise—It is difficult to imagine
how systems analysts could adequately prepare business and technical specifi-
cations for a programmer if they didn’t have some programming experience.
Most systems analysts need to be proficient in one or more high-level pro-
gramming languages.

• General knowledge of business processes and terminology—Systems analysts
must be able to communicate with business experts to gain an understanding
of their problems and needs. For the analyst, at least some of this knowledge
comes only by way of experience. At the same time, aspiring analysts should
avail themselves of every opportunity to complete basic business literacy
courses available in colleges of business. Relevant courses may include finan-
cial accounting, management or cost accounting, finance, marketing, man-
ufacturing or operations management, quality management, economics, and
business law.

• General problem-solving skills—The systems analyst must be able to take a
large business problem, break down that problem into its parts, determine
problem causes and effects, and then recommend a solution. Analysts must
avoid the tendency to suggest the solution before analyzing the problem.
For aspiring analysts, many colleges offer philosophy courses that teach

14 Part One The Context of Systems Development Projects

problem-solving skills, critical thinking, and reasoning. These “soft skills” will
serve an analyst well.

• Good interpersonal communication skills—An analyst must be able to com-
municate effectively, both orally and in writing. Almost without exception,
your communications skills, not your technical skills, will prove to be the
single biggest factor in your career success or failure. These skills are learn-
able, but most of us must force ourselves to seek help and work hard to
improve them. Most schools offer courses such as business and technical
writing, business and technical speaking, interviewing, and listening—all use-
ful skills for the systems analyst. These skills are taught in Chapter 6.

• Good interpersonal relations skills—As illustrated in Figure 1-3, systems
analysts interact with all stakeholders in a systems development project.
These interactions require effective interpersonal skills that enable the ana-
lyst to deal with group dynamics, business politics, conflict, and change.
Many schools offer valuable interpersonal-skills development courses on
subjects such as teamwork, principles of persuasion, managing change and
conflict, and leadership.

• Flexibility and adaptability—No two projects are alike. Accordingly, there is
no single, magical approach or standard that is equally applicable to all proj-
ects. Successful systems analysts learn to be flexible and to adapt to unique
challenges and situations. Our aforementioned toolbox approach is intended
to encourage flexibility in the use of systems analysis and design tools and
methods. But you must develop an attitude of adaptability to properly use
any box of tools.

• Character and ethics—The nature of the systems analyst’s job requires a
strong character and a sense of right and wrong. Analysts often gain access
to sensitive or confidential facts and information that are not meant for
public disclosure. Also, the products of systems analysis and design are usu-
ally considered the intellectual property of the employer. There are several
standards for computer ethics. One such standard, from the Computer
Ethics Institute, is called “The Ten Commandments of Computer Ethics” and
is shown in Figure 1-4.

The Context of Systems Analysis and Design Methods Chapter One 15

Systems

analyst

Various committees

User 1

User 2

User N

 System owner Database

administrator

Consultant Interface

design expert

Network

administrator

Applications

programmers

Information

technology

vendors

F I G U R E 1 - 3

The Systems
Analyst as a
Facilitator

> External Service Providers

Those of you with some computing experience may be wondering where consultants

fit in our taxonomy of stakeholders. They are not immediately apparent in our visual

framework. But they are there! Any of our stakeholder roles may be filled by internal

or external workers. Consultants are one example of an external service provider

(ESP). Most ESPs are systems analysts, designers, or builders who are contracted to

bring special expertise or experience to a specific project. Examples include tech-

nology engineers, sales engineers, systems consultants, contract programmers, and

systems integrators.

> The Project Manager

We’ve introduced most of the key players in modern information systems development—

systems owners, users, designers, builders, and analysts. We should conclude by

emphasizing the reality that these individuals must work together as a team to suc-

cessfully build information systems and applications that will benefit the business.

Teams require leadership. For this reason, usually one or more of these stakeholders

takes on the role of project manager to ensure that systems are developed on time,

within budget, and with acceptable quality. As Figure 1-1 indicates, most project

managers are experienced systems analysts. But in some organizations, project man-

agers are selected from the ranks of what we have called “system owners.” Regardless,

most organizations have learned that project management is a specialized role that

requires distinctive skills and experience.

16 Part One The Context of Systems Development Projects

external service
provider (ESP) a systems

analyst, system designer, or

system builder who sells his

or her expertise and experi-

ence to other businesses to

help those businesses pur-

chase, develop, or integrate

their information systems

solutions; may be affiliated

with a consulting or services

organization.

project manager an expe-

rienced professional who

accepts responsibility for

planning, monitoring, and

controlling projects with respect

to schedule, budget, deliver-

ables, customer satisfaction,

technical standards, and

system quality.

F I G U R E 1 - 4 Ethics for Systems Analysts

The Ten Commandments of Computer Ethics

1. Thou shalt not use a computer to harm other people.

2. Thou shalt not interfere with other people’s computer work.

3. Thou shalt not snoop around in other people’s computer files.

4. Thou shalt not use a computer to steal.

5. Thou shalt not use a computer to bear false witness.

6. Thou shalt not copy or use proprietary software for which you have not paid.

7. Thou shalt not use other people’s computer resources without authorization or proper
compensation.

8. Thou shalt not appropriate other people’s intellectual output.

9. Thou shalt think about the social consequences of the program you are writing or the
system you are designing.

10. Thou shalt always use a computer in ways that insure consideration and respect for
your fellow humans.

Source: Computer Ethics Institute.

Business Drivers for Today’s Information Systems

Another way to look at our information system product is from the perspective of busi-

ness drivers. Using Figure 1-5, let’s now briefly examine the most important business

trends that are impacting information systems. Many trends quickly become fads, but

here are some business trends we believe will influence systems development in the

I N F O R M A T I O N

S Y S T E M S

 √ Globalization of the economy

 √ Electronic commerce and business

 √ Security and privacy

 √ Collaboration and partnership

 √ Knowledge asset management

 √ Continuous improvement

 √ Total quality management

 √ Business process redesign

THE “PLAYERS”

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

T H E T E C H N O L O G Y D R I V E R S

T H E B U S I N E S S D R I V E R S

THE “PRODUCT” THE “PROCESS”

S
Y

S
T

E
M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 5 Business Drivers for an Information System

coming years. Many of these trends are related and integrated such that they form a new
business philosophy that will impact the way everyone works in the coming years.

> Globalization of the Economy

Since the 1990s, there has been a significant trend of economic globalization. Compe-
tition is global, with emerging industrial nations offering lower-cost or higher-quality

The Context of Systems Analysis and Design Methods Chapter One 17

electronic commerce
(e-commerce) the buying

and selling of goods and

services by using the Internet.

electronic business
(e-business) the use of the

Internet to conduct and sup-

port day-to-day business

activities.

alternatives to many products. American businesses find themselves with new in-
ternational competitors. On the other hand, many American businesses have dis-
covered new and expanded international markets for their own goods and services.
The bottom line is that most businesses were forced to reorganize to operate in this
global economy.

How does economic globalization affect the players in the systems game? First,
information systems and computer applications must be internationalized. They
must support multiple languages, currency exchange rates, international trade reg-
ulations, and different business cultures and practices. Second, most information
systems ultimately require information consolidation for performance analysis and
decision making. The aforementioned language barriers, currency exchange rates,
transborder information regulations, and the like, complicate such consolidation.
Finally, there exists a demand for players who can communicate, orally and in writ-
ing, with management and users that speak different languages, dialects, and slang.
Opportunities for international employment of systems analysts should continue to
expand.

> Electronic Commerce and Business

In part due to the globalization of the economy, and in part because of the pervasiveness
of the Internet, businesses are changing or expanding their business model to implement
electronic commerce (e-commerce) and electronic business (e-business). The
Internet is fundamentally changing the rules by which business is conducted. We
live in a world where consumers and businesses will increasingly expect to conduct
commerce (business transactions) using the Internet. But the impact is even more
substantive. Because people who work in the business world have become so com-
fortable with “surfing the Web,” organizations are increasingly embracing the Web in-
terface as a suitable architecture for conducting day-to-day business within the
organization.

There are three basic types of e-commerce- and e-business-enabled information
systems applications:

• Marketing of corporate image, products, and services is the simplest form of
electronic commerce application. The Web is used merely to “inform” cus-
tomers about products, services, and policies. Most businesses have achieved
this level of electronic commerce.

• Business-to-consumer (B2C) electronic commerce attempts to offer new,
Web-based channels of distribution for traditional products and services. You,
as a typical consumer, can research, order, and pay for products directly via
the Internet. Examples include Amazon.com (for books and music) and
E-trade.com (for stocks and bonds). Both companies are businesses that were
created on the Web. Their competition, however, includes traditional busi-
nesses that have added Web-based electronic commerce front ends as an
alternative consumer option (such as Barnes and Noble and Merrill Lynch).
Figure 1-6 illustrates a typical B2C Web storefront.

• Business-to-business (B2B) electronic commerce is the real future. This is the
most complex form of electronic commerce and could ultimately evolve into
electronic business—the complete, paperless, and digital processing of virtually
all business transactions that occur within and between businesses.

One example of B2B electronic commerce is electronic procurement. All busi-
nesses purchase raw materials, equipment, and supplies—frequently tens or hundreds
of millions of dollars worth per year. B2B procurement allows employees to browse
electronic storefronts and catalogs, initiate purchase requisitions and work orders,
route requisitions and work orders electronically for expenditure approvals, order the
goods and services, and pay for the delivered goods and completed services—all

18 Part One The Context of Systems Development Projects

F I G U R E 1 - 6 An Electronic Commerce Storefront

without the traditional time-consuming and costly paper flow and bureaucracy. Fig-
ure 1-7 illustrates a sample Web-based procurement storefront.

Largely due to the trend toward these e-business and e-commerce applications,
most new information systems applications are being designed for an Internet
architecture. Not that long ago, we were redesigning most applications to operate
within a Windows user interface. Today, we increasingly see applications designed to
run within an Internet browser such as Internet Explorer or Netscape. The choice of
a desktop operating system, such as Windows, Macintosh, or Linux, is becoming less
important than the availability of the browser itself.

> Security and Privacy

As the digital economy continues to evolve, citizens and organizations alike have de-
veloped a heightened awareness of the security and privacy issues involved in today’s
economy. Security issues tend to revolve around business continuity; that is,“How will
the business continue in the event of a breach or disaster—any event that causes a dis-
ruption of business activity?” Additionally, businesses must ask themselves,“How can
the business protect its digital assets from outside threats?” It is true that these ques-
tions ultimately come down to technology; however, the concerns have become
fundamental business concerns.

The Context of Systems Analysis and Design Methods Chapter One 19

F I G U R E 1 - 7 An Electronic Commerce Procurement Storefront

Related to security is the issue of privacy. Consumers are increasingly demanding
privacy in the digital economy. Governments are regulating privacy issues, and the
regulations will likely become more stringent as the digital economy continues to
evolve. Go to your favorite commercial Web sites. Almost every business now has a
privacy policy. Consumer groups are beginning to analyze and monitor such privacy
policies, holding companies accountable and lobbying governments for stricter
regulations and enforcement.

As information systems are developed and changed, you will increasingly be ex-
pected to incorporate more stringent security and privacy controls. In the global
economy, you will need to become sensitive to a wide array of regulations that vary
considerably from one country to another. Certainly, security and privacy mechanisms
will be subject to the same internal audits that have become routine in systems that
support or interact with financial systems.

> Collaboration and Partnership

Collaboration and partnership are significant business trends that are influencing in-
formation systems applications.Within organizations, management is emphasizing the
need to break down the walls that separate organization departments and functions.
Management speaks of “cross-functional” teams that collaborate to address common
business goals from interdisciplinary perspectives. For example, new product design
used to be the exclusive domain of engineers.Today, new product design typically in-
volves a cross-functional team of representatives from many organizational units, such
as engineering, marketing, sales, manufacturing, inventory control, distribution, and,
yes, information systems.

20 Part One The Context of Systems Development Projects

data raw facts about people,

places, events, and things that

are of importance in an orga-

nization. Each fact is, by itself,

relatively meaningless.

information data that has

been processed or reorga-

nized into a more meaningful

form for someone. Information

is formed from combinations

of data that hopefully have

meaning to the recipient.

knowledge data and infor-

mation that are further refined

based on the facts, truths, be-

liefs, judgments, experiences,

and expertise of the recipient.

Ideally information leads to

wisdom.

business processes tasks

that respond to business

events (e.g., an order). Busi-

ness processes are the work,

procedures, and rules re-

quired to complete the busi-

ness tasks, independent of

any information technology

used to automate or support

them.

continuous process
improvement (CPI) the

continuous monitoring of

business processes to effect

small but measurable

improvements in cost

reduction and value added.

total quality management
(TQM) a comprehensive ap-

proach to facilitating quality

improvements and manage-

ment within a business.

Similarly, the trend toward collaboration extends beyond the organization to in-
clude other organizations—sometimes even competitors. Organizations choose to di-
rectly collaborate as partners in business ventures that make good business sense.
Microsoft and Oracle sell competitive database management systems. But Microsoft
and Oracle also partner to ensure that Oracle applications will operate on a Microsoft
database. Both companies benefit financially from such cooperation.

In a similar vein, businesses have learned that it can be beneficial for their infor-
mation systems to interoperate with one another. For example, while Wal-Mart could
generate its own restocking orders for merchandise and send them to its suppliers,
it makes more sense to integrate their respective inventory control systems. Sup-
pliers can monitor Wal-Mart’s inventory levels directly and can automatically initiate
business-to-business transactions to keep the shelves stocked with their mer-
chandise. Both companies benefit. (Of course, this also raises the aforementioned
issue of requirements for good security.)

> Knowledge Asset Management

What is knowledge? Knowledge is the result of a continuum of how we process raw
data into useful information. Information systems collect raw data by capturing busi-
ness facts (about products, employees, customers, and the like) and processing busi-
ness transactions. Data gets combined, filtered, organized, and analyzed to produce
information to help managers plan and operate the business. Ultimately, information
is refined by people to create knowledge and expertise. Increasingly, organizations
are asking themselves,“How can the company manage and share knowledge for com-
petitive advantage? And as workers come and go, how can the workers’ knowledge
and expertise be preserved within the organization?”

Thirty years of data processing and information systems have resulted in an enor-
mous volume of data, information, and knowledge. All three are considered critical
business resources, equal in importance to the classic economic resources of land,
labor, and capital.

The need for knowledge asset management impacts information systems on a va-
riety of fronts. Although we have captured (and continue to capture) a great amount
of data and information in information systems, they are loosely integrated in most
organizations—indeed, redundant and contradictory data and information are com-
mon in information systems. As new information systems are built, we will increas-
ingly be expected to focus on integration of the data and information that can create
and preserve knowledge in the organizations for which we work. This will greatly
complicate systems analysis and design. In this book, we plan to introduce you to
many tools and techniques that can help you integrate systems for improved
knowledge management.

> Continuous Improvement and
Total Quality Management

Information systems automate and support business processes. In an effort to con-
tinuously improve a business process, continuous process improvement (CPI)

examines a business process to implement a series of small changes for improvement.
These changes can result in cost reductions, improved efficiencies, or increased value
and profit. Systems analysts are both affected by continuous process improvements
and expected to initiate or suggest such improvements while designing and imple-
menting information systems.

Another ongoing business driver is total quality management (TQM). Businesses
have learned that quality has become a critical success factor in competition. They
have also learned that quality management does not begin and end with the products
and services sold by the business. Instead, it begins with a culture that recognizes that

The Context of Systems Analysis and Design Methods Chapter One 21

everyone in the business is responsible for quality. TQM commitments require that
every business function, including information services, identify quality indicators,
measure quality, and make appropriate changes to improve quality.

Information systems, and hence systems analysts, are part of the TQM require-
ment. Our discussions with college graduate recruiters suggest that an “obsessive” at-
titude toward quality management will become an essential characteristic of
successful systems analysts (and all information technology professionals). Through-
out this book, continuous process improvement and total quality management will be
an underlying theme.

> Business Process Redesign

As stated earlier, many information systems support or automate business processes.
Many businesses are learning that those business processes have not changed sub-
stantially in decades and that those business processes are grossly inefficient and/or
costly. Many business processes are overly bureaucratic, and all their steps do not truly
contribute value to the business. Unfortunately, information systems have merely au-
tomated many of these inefficiencies. Enter business process redesign!

Business process redesign (BPR) involves making substantive changes to busi-
ness processes across a larger system. In effect, BPR seeks to implement more substantial
changes and improvements than does CPI. In a BPR, business processes are carefully
documented and analyzed for timeliness, bottlenecks, costs, and whether or not each
step or task truly adds value to the organization (or, conversely, adds only bureau-
cracy). Business processes are then redesigned for maximum efficiency and lowest
possible costs.

So how does BPR affect information systems? There are two basic ways to imple-
ment any information system—build it or buy it. In other words, you can write the
software yourself, or you can purchase and implement a commercial software pack-
age. In both cases, BPR figures prominently. In writing your own software, it is useful
to redesign business processes before writing the software to automate them. This
way, you avoid automating underlying inefficiencies. Alternatively, in purchasing soft-
ware packages, most businesses have discovered it is easier to redesign the business
processes to work with the software package than to attempt to force (and even
cripple) the software package to work with existing business processes.

Technology Drivers for Today’s Information Systems

Advances in information technology can also be drivers for information systems (as
suggested in Figure 1-8). In some cases, outdated technologies can present significant
problems that drive information system development projects. In other cases, newer
technologies present business opportunities. Let’s examine several technologies that
are influencing today’s information systems.

> Networks and the Internet

Scott McNealy, Sun Computer’s charismatic CEO, is often cited as stating, “The net-
work has become the computer.” Few would argue that today’s information systems
are installed on a network architecture consisting of local and wide area networks.
These networks include mainframe computers, network servers, and a variety of desk-
top, laptop, and handheld client computers. But today, the most pervasive networking
technologies are based on the Internet. Some of the more relevant Internet technolo-
gies that you need to become aware of, if not develop some basic skill with, are
described in the following list. (For now, don’t be intimidated by these terms—we

22 Part One The Context of Systems Development Projects

business process
redesign (BPR) the study,

analysis, and redesign of

fundamental business

processes to reduce costs

and/or improve value added

to the business.

I N F O R M A T I O N

S Y S T E M S

 √ Networks and the Internet

 √ Mobile and wireless technologies

 √ Object technologies

 √ Collaborative technologies

 √ Enterprise applications

THE “PLAYERS”
S

Y
S

T
E

M
 O

W
N

E
R

S
S

Y
S

T
E

M
 U

S
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

T H E T E C H N O L O G Y D R I V E R S

T H E B U S I N E S S D R I V E R S

THE “PRODUCT” THE “PROCESS”

S
Y

S
T

E
M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 8 Technology Drivers for an Information System

will be teaching you more about these technologies and how to design systems that
use them throughout this textbook.)

• xHTML and XML are the fundamental languages of Web page authoring and
Internet application development. Extensible Hypertext Markup Language
(xHTML) is the emerging second-generation version of HTML, the language
used to construct Web pages. Extensible Markup Language (XML) is the
language used to effectively transport data content along with its proper inter-

The Context of Systems Analysis and Design Methods Chapter One 23

Wireless Handheld

pretation over the Internet. Introductory xHTML and XML courses have become
core requirements in most information systems and information technology
college curricula.

• Scripting languages are simple programming languages designed specifically
for Internet applications. Examples include Perl, VBScript, and JavaScript.

These languages are increasingly taught in college Web development and
programming courses.

• Web-specific programming languages such as Java and Cold Fusion have
emerged to specifically address construction of complex, Web-based applica-
tions that involve multiple servers and Web browsers. These languages are
also becoming prevalent in college programming curricula.

• Intranets are essentially private Internets designed for use by employees of
an organization. They offer the look and feel of the Internet; however, secu-
rity and firewalls restrict their use to employees.

• Extranets, like intranets, are private Internets. But extranets are for use
between specific organizations. Only the employees of those identified busi-
nesses can access and use the extranet. For example, an automotive manufac-
turer such as Chevrolet might set up an extranet for the sole use of its deal-
ers. Through this extranet, the manufacturer can communicate information
about parts, problems, sales incentives, and the like.

• Portals (in corporations) are “home pages” that can be customized to the
specific needs of different individuals who use them. For example, portal
technology can define Web pages that provide appropriate information and
applications for different roles in the same company. Each individual’s role
determines which information and applications that person can use from her
or his Web page. Examples of roles include “customer,” “supplier,” and differ-
ent types of “employee.” Portals can also effectively integrate public Internet,
private intranet, and extranet content into each individual user’s home page.

• Web services are the latest rage. Web services are reusable, Web-based pro-
grams that can be called from any other Internet program. For example, let’s
say you need to write a program to accept credit card payments over the
Web. Sure, you could write, debug, and test the credit card validation pro-
gram yourself. But an alternative approach would be to purchase the right to
use a credit card validation program over the Web. By doing so, you need not
maintain responsibility for the credit card validation code. You need only
“call” the Web service from your program, much as you would call an inter-
nal subroutine. Of course, you will pay for the privilege of using Web ser-
vices since somebody had to write the original Web service program.

These are but a few of the network and Internet technologies that you should
seek out during your education. But you must recognize the volatility of the Internet
and accept that these and other technologies will emerge and disappear frequently in
the near future.

> Mobile and Wireless Technologies

Mobile and wireless technologies are poised to significantly change the next generation
of information systems. Handheld computers, or personal data assistants (PDAs, such
as the HP iPaq, Palm, and RIM BlackBerry®), have become common in the ranks of
information workers. These devices are increasingly including wireless capabilities
(see margin photo) that provide Web access and e-mail. Cell phones are also increasingly
featuring Internet and e-mail capabilities. And now, integrated devices such as smart

phones are emerging that integrate the capabilities of PDAs and cell phones into a single
device (see margin photo). For those who prefer separate devices, technologies like
Bluetooth are emerging to allow the separate devices to interoperate as one logical
device while preserving each one’s form factors and advantages.

24 Part One The Context of Systems Development Projects

Smart Phone

Additionally, laptop computers are increasingly equipped with wireless and mobile
capabilities to allow information workers to more easily move between locations while
preserving connectivity to information systems. All of these technical trends will signif-
icantly impact the analysis and design of new information systems. Increasingly, wireless
access must be assumed. And the limitations of mobile devices and screen sizes must be
accommodated in an information system’s design.This textbook will teach and demon-
strate tools and techniques to deal with the design of emerging mobile applications.

> Object Technologies

Today, most contemporary information systems are built using object technologies.

Today’s pervasive programming languages are object-oriented.They include C , Java,

Smalltalk, and Visual Basic .NET. Object technologies allow programmers to build soft-
ware from software parts called objects. (We will get into more specifics about objects
later in this book.) Object-oriented software offers two fundamental advantages over
nonobject software. First, objects are reusable. Once they are designed and built, objects
can be reused in multiple information systems and applications.This reduces the time re-
quired to develop future software applications. Second, objects are extensible.They can
be changed or expanded easily without adversely impacting any previous applications
that used them.This reduces the lifetime costs of maintaining and improving software.

The impact of object technology is significant in the world of systems analysis
and design. Prior to object technologies, most programming languages were based on
so-called structured methods. Examples include COBOL (the dominant language), C,

FORTRAN, Pascal, and PL/1. It is not important at this time for you to be able to dif-
ferentiate between structured and object technologies and methods. Suffice to say,
structured methods are inadequate to the task of analyzing and designing systems that
will be built using object technologies. Accordingly, object-oriented analysis and

design methods have emerged as the preferred approach for building most contem-
porary information systems. For this reason, we will integrate object-oriented analysis
and design tools and techniques throughout this book to give you a competitive
advantage in tomorrow’s job market.

At the same time, structured tools and techniques are still important. Databases,
for example, are still commonly designed using structured tools. And structured tools
are still preferred by many systems analysts for analyzing and designing work flows
and business processes.Thus, we will also teach you several popular structured tools
and techniques for systems analysis and design.

It is easy to become a devout disciple of one analysis and design strategy, such as
structured analysis and design or object-oriented analysis and design. You should
avoid doing so! We will advocate both and teach you when and how to combine
structured and object-oriented tools and techniques for systems analysis and design.
As we write this chapter, this approach—called agile development—is gaining favor
among experienced analysts who have become weary of overly prescriptive meth-
ods that usually insist that you use only one methodology’s tools and processes. At
the risk of oversimplifying agile methods, think of it as assembling a toolbox of dif-
ferent tools and techniques—structured, object-oriented, and others—and then se-
lecting the best tool or technique for whatever problems or need you encounter as
a systems analyst.

> Collaborative Technologies

Another significant technology trend is the use of collaborative technologies. Collabora-
tive technologies are those that enhance interpersonal communications and teamwork.
Four important classes of collaborative technologies are e-mail, instant messaging,
groupware, and work flow.

Everybody knows what e-mail is. But e-mail’s importance in information systems
development is changing. Increasingly, modern information systems are e-mail-enabled;

The Context of Systems Analysis and Design Methods Chapter One 25

object technology a soft-

ware technology that defines

a system in terms of objects

that consolidate data and be-

havior (into objects). Objects

become reusable and extensi-

ble components for the soft-

ware developers.

object-oriented analysis
and design a collection of

tools and techniques for

systems development that will

utilize object technologies to

construct a system and its

software.

agile development a

systems development strategy

wherein the system developers

are given the flexibility to select

from a variety of appropriate

tools and techniques to best

accomplish the tasks at hand.

Agile development is believed

to strike an optimal balance

between productivity and qual-

ity for systems development.

REPRESENTATIVE
ERP VENDORS

SSA

Oracle/PeopleSoft

SAP AG (the Market Leader)

systems integration the

process of building a unified

information system out of di-

verse components of pur-

chased software, custom-built

software, hardware, and

networking.

enterprise resource
planning (ERP) a software

application that fully integrates

information systems that span

most or all of the basic, core

business functions (including

transaction processing and

management information for

those business functions).

that is, e-mail capabilities are built right into the application software.There is no need
to switch to a dedicated e-mail program such as Outlook. The application merely
invokes the user’s or organization’s default e-mail program to enable relevant messages
to be sent or received.

Related to e-mail technology is instant messaging (e.g., AOL’s Instant Messenger

and Microsoft’s MSN Messenger Service). Instant messaging was popularized in pub-
lic and private “chat rooms” on the Internet. But instant messaging is slowly being in-
corporated into enterprise information systems applications as well. For example,
instant messaging can implement immediate response capabilities into a help system
for a business application. Imagine being able to instantly send and receive messages
with the corporate help desk when using a business application.The productivity and
service-level implications are significant.

Finally, groupware technology allows teams of individuals to collaborate on proj-
ects and tasks regardless of their physical location. Examples of groupware technolo-
gies include Lotus’s SameTime and Microsoft’s NetMeeting. Using such groupware
allows multiple individuals to participate in meetings and share software tools across
a network. As with e-mail and instant messaging, groupware capabilities can be built
into appropriate business applications.

Clearly, systems analysts and system designers must build these innovative col-
laborative technologies into their applications.

> Enterprise Applications

Virtually all organizations, large and small, require a core set of enterprise applications
to conduct business. As shown in Figure 1-9, for most businesses the core applications
include financial management, human resource management, marketing and sales,
and operations management (inventory and/or manufacturing control). At one time,
most organizations custom-built most or all of these core enterprise applications. But
today, these enterprise applications are frequently purchased, installed, and config-
ured for the business and integrated into the organization’s business processes. Why?
Because these core enterprise applications in different organizations or industries
tend to be more alike than they are different.

Today, these “internal” core applications are being supplemented with other en-
terprise applications that integrate an organization’s business processes with those of
its suppliers and customers. These applications, called customer relationship man-

agement and supply chain management, are also illustrated in Figure 1-9.
The trend toward the use of purchased enterprise applications significantly im-

pacts systems analysis and design. Purchased and installed enterprise applications are
never sufficient to meet all of the needs for information systems in any organization.
Thus, systems analysts and other developers are asked to develop value-added applica-
tions to meet additional needs of the business. But the purchased and installed enter-
prise applications become a technology constraint. Any custom application must
properly integrate with and interface to the purchased enterprise applications.This is
often called systems integration, and this is the business and systems environment
into which most of you will graduate. Let’s briefly explore some of the more common
enterprise applications and describe their implications for systems analysis and design.

Enterprise Resource Planning (ERP) As previously noted, the core business in-
formation system applications in most businesses were developed in-house incre-
mentally over many years. Each system had its own files and databases with loose and
awkward integration of all applications. During the 1990s, businesses tried very hard
to integrate these legacy information systems, usually with poor results. Organizations
would have probably preferred to redevelop these core business applications (see
Figure 1-9 again) from scratch as a single integrated information system. Unfortunately,
few if any businesses had enough resources to attempt this. Recognizing that the
basic applications needed by most businesses were more similar than different, the
software industry developed a solution—enterprise resource planning (ERP)

26 Part One The Context of Systems Development Projects

REPRESENTATIVE
SCM VENDORS

i2 Technologies

Manugistics

SAP

SCT

C O R E B U S I N E S S F U N C T I O N S

ENTERPRISE RESOURCE PLANNING

(E R P)

CUSTOMERS
SUPPLIERS

DISTRIBUTORS

MARKETING

& SALES

(an enterprise

application)

OPERATIONS

MANAGEMENT

(an enterprise

application)

HUMAN

RESOURCE

MANAGEMENT

(an enterprise

application)

FINANCIAL

MANAGEMENT

(an enterprise

application)

CUSTOMER

RELATIONSHIP

MANAGEMENT

(C R M)

SUPPLY CHAIN

MANAGEMENT

(S C M)

applications. An ERP solution is built around a common database shared by common
business functions. Examples of ERP software vendors are listed in the margin.

An ERP solution provides the core information system functions for the entire
business. But usually an organization must redesign its business processes to fully ex-
ploit and use an ERP solution. Most organizations must still supplement the ERP solu-
tion with custom software applications to fulfill business requirements that are
unique to the industry or business. For most organizations, an ERP implementation
and integration represents the single largest information system project ever under-
taken by the organization. It can cost tens of millions of dollars and require a small
army of managers, users, analysts, technical specialists, programmers, and consultants.

ERP applications are significant to systems analysts for several reasons. First, sys-
tems analysts may be involved in the decision to select and purchase an ERP solution.
Second, and more common, systems analysts are frequently involved in the cus-
tomization of the ERP solution, as well as the redesign of business processes to use
the ERP solution.Third, if custom-built applications are to be developed within an or-
ganization that uses an ERP core solution, the ERP system’s architecture significantly
impacts the analysis and design of the custom application that must coexist and in-
teroperate with the ERP system.

Supply Chain Management Today, many organizations are expending effort on en-
terprise applications that extend support beyond their core business functions. Com-
panies are extending their core business applications to interoperate with their
suppliers and distributors to more efficiently manage the flow of raw materials and
products between their respective organizations.These supply chain management

(SCM) applications utilize the Internet as a means for integration and communications.

The Context of Systems Analysis and Design Methods Chapter One 27

supply chain manage-
ment (SCM) a software

application that optimizes

business processes for raw

material procurement through

finished product distribution by

directly integrating the logisti-

cal information systems of or-

ganizations with those of their

suppliers and distributors.

F I G U R E 1 - 9 Enterprise Applications

REPRESENTATIVE
CRM VENDORS

BroadVision

E.piphany

Kana

Amdocs

Oracle/PeopleSoft

Siebel (the Market Leader)

SAP

Freight Companies
Food Processing Plants

The Restaurants

The Farms

Distribution Centers
Freight Companies

F I G U R E 1 - 1 0 Supply Chain

For example, Figure 1-10 demonstrates a logical supply chain ending at restaurants
belonging to a franchise (e.g., Outback, Red Lobster, Wendy’s). Notice that this supply
chain includes many businesses and carriers to achieve its final result—ensuring that the
restaurants have adequate food supplies to do business. Any delays or problems in any
single link of this supply chain will adversely affect one and all. For that reason, several of
these businesses will implement supply chain management using SCM software tech-
nology to plan, implement, and manage the chain. Examples of supply chain manage-
ment vendors are listed in the margin. (It should be noted that several ERP application
vendors are extending ERP software applications to include SCM capabilities.The SCM
market is due for a shakeout because there are too many vendors for all to succeed.)

SCM applications are significant to systems analysts for the same reasons as stated
for ERP applications. As an analyst, you may be involved in the evaluation and selection
of an SCM package. Or you may be expected to implement and perhaps customize such
packages to meet the organization’s needs. And again, you may expect to participate in
redesigning existing business processes to work appropriately with the SCM solution.

Customer Relationship Management Many companies have discovered that
highly focused customer relationship management can create loyalty that results in
increased sales. Thus, many businesses are implementing customer relationship

management (CRM) solutions that enable customer self-service via the Internet.

28 Part One The Context of Systems Development Projects

customer relationship
management (CRM) a

software application that pro-

vides customers with access

to a business’s processes

from initial inquiry through

postsale service and support.

C O R E B U S I N E S S F U N C T I O N S

CUSTOMER

RELATIONSHIP

MANAGEMENT

(C R M)

SUPPLY CHAIN

MANAGEMENT

(S C M)

CUSTOMERS SUPPLIERS

DISTRIBUTORS

Other

Purchased

Application

Other

Custom-

Built

Application

Other

Custom-

Built

Application

Other

Purchased

Application

ENTERPRISE RESOURCE PLANNING

APPLICATIONS

(E R P : See Figure 1.9)

ENTERPRISE APPLICATION

INTEGRATION

(E A I)

F I G U R E 1 - 1 1 Enterprise Application Integration

REPRESENTATIVE
EAI VENDORS

BEA Systems

IBM (MQSeries)

Mercator Software

TIBCO Software

The theme of all CRM solutions is a focus on the “customer.” CRM is concerned
with not only providing effective customer inquiry responses and assistance but
also helping the business better profile its customer base for the purpose of im-
proving customer relations and marketing. Examples of CRM vendors are listed in
the margin. As was the case with SCM technologies, many ERP vendors are devel-
oping or acquiring CRM capabilities to complement and extend their ERP solu-
tions. And as with SCM, the larger number of players will likely be reduced through
acquisition and attrition.

CRM technology impacts systems analysts in precisely the same ways as those we
described for ERP and SCM technology. In many businesses, new applications must in-
terface with a core, CRM enterprise application.

Enterprise Application Integration Many companies face the significant challenge
of integrating their existing legacy systems with new applications such as ERP, SCM, and
CRM solutions. Any company that wants to do business across the Internet will also
have to meet the challenge of integrating its systems with those of other organizations
and their different systems and technologies.To meet this challenge, many organizations
are looking at enterprise application integration software. Enterprise application

integration (EAI) involves linking applications, whether purchased or developed in-
house, so that they can transparently interoperate with one another. This is illustrated
conceptually in Figure 1-11. Some vendors offering EAI tools are listed in the margin.

The Context of Systems Analysis and Design Methods Chapter One 29

enterprise application
integration (EAI) the

process and technologies

used to link applications to

support the flow of data and

information between those

applications. EAI solutions

are usually based on

middleware.

system development
process a set of activities,

methods, best practices,

deliverables, and automated

tools that stakeholders use to

develop and maintain

information systems and

software.

Again, this market is rapidly expanding and contracting.The tools are used to define and
construct communication pipelines between differing applications and technologies.

Today, as any new information system is developed, it must be integrated with
all the information systems that preceded it.These “legacy” information systems may
have been purchased or built in-house. Regardless, systems analysts and other de-
velopers must consider application integration for any new information system to
be developed. And EAI technologies are at the core of the integration requirements.

A Simple System Development Process

Thus far you have learned about different types of information systems, the players
involved in developing those systems, and several business and technology drivers
that influence the development of information systems. In this section you will learn
about another information system perspective, the “process” for developing an infor-
mation system.

Most organizations have a formal system development process consisting of a
standard set of processes or steps they expect will be followed on any system devel-
opment project. While these processes may vary greatly for different organizations, a
common characteristic can be found: Most organizations’ system development
process follows a problem-solving approach.That approach typically incorporates the
following general problem-solving steps:

1. Identify the problem.
2. Analyze and understand the problem.
3. Identify solution requirements and expectations.
4. Identify alternative solutions and choose the best course of action.
5. Design the chosen solution.
6. Implement the chosen solution.
7. Evaluate the results. (If the problem is not solved, return to step 1 or 2 as

appropriate.)

Figure 1-12 adds a system development process perspective that we will use
(with appropriate refinements) throughout this book as we study the development
process, tools, and techniques. For the sake of simplicity our initial problem-solving
approach establishes four stages or phases that must be completed for any system
development project—system initiation, system analysis, system design, and system

30 Part One The Context of Systems Development Projects

middleware software

(usually purchased) used to

translate and route data

between different applications.

Our Simplified System

Development Process General Problem-Solving Steps

System initiation 1. Identify the problem. (Also plan for the solution

of the problem.)

System analysis 2. Analyze and understand the problem.

3. Identify solution requirements and expectations.

System design 4. Identify alternative solutions and choose the

best course of action.

5. Design the chosen solution.

System implementation 6. Implement the chosen solution.

7. Evaluate the results. (If the problem is not

solved, return to step 1 or 2 as appropriate.)

project management the

activity of defining, planning,

directing, monitoring, and

controlling a project to develop

an acceptable system within

the allotted time and budget.

THE “PROCESS”THE "PRODUCT" — AN INFORMATION SYSTEM

SYSTEM INITIATION DELIVERABLES

System initiation produces a business problem statement project

plan that establishes scope, goals, schedule, and budget for solving

the problem with a technical solution.

B U S I N E S S D R I V E R S

T E C H N O L O G Y D R I V E R S

SYSTEM ANALYSIS DELIVERABLES

System analysis produces a statement of the system users’

business requirements, expectations, and priorities for a solution to

the business problem.

SYSTEM DESIGN DELIVERABLES

System design produces a technical blueprint and specifications for

a solution that fulfills the business requirements.

SYSTEM IMPLEMENTATION DELIVERABLES

System implementation produces the technical hardware and

software solution for the business problem according to the technical
architecture and specifications.

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

THE “PLAYERS”
S

Y
S

T
E

M
 O

W
N

E
R

S
S

Y
S

T
E

M
 U

S
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S
S

Y
S

T
E

M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

F I G U R E 1 - 1 2 Systems Development and Problem Solving

implementation. The table on the previous page shows the correlation between the
above general problem-solving steps and our process.

It is important to note that any system development process must be managed
on a project-by-project basis. You learned earlier that at least one stakeholder ac-
cepts responsibility as the project manager for ensuring that the system is devel-
oped on time, within budget, and with acceptable quality. The activity of managing
a project is referred to as project management. Accordingly, in Figure 1-12 we
have added a process for project management. Also, to ensure that all projects are

The Context of Systems Analysis and Design Methods Chapter One 31

process management
the ongoing activity that

defines, improves, and

coordinates the use of an

organization’s chosen

methodology (the “process”)

and standards for all system

development projects.

system initiation the initial

planning for a project to define

initial business scope, goals,

schedule, and budget.

system analysis the study

of a business problem domain

to recommend improvements

and specify the business

requirements and priorities

for the solution.

managed according to the same development process, we have included process

management as an ongoing activity. Notice that project and process management
overlap all of the process phases.

Let’s briefly examine our system development process in Figure 1-12 to expand
your understanding of each phase and activity in the process. Given a problem to be
solved or a need to be fulfilled, what will we do during system initiation, analysis, de-
sign, and implementation? Also, who will be involved in each phase?

> System Initiation

Information system projects are usually complicated. They require a significant time,
effort, and economic investment. The problems to be solved are frequently stated
vaguely, which means that the initial envisioned solution may be premature. For these
reasons, system projects should be carefully planned. System initiation establishes proj-
ect scope and the problem-solving plan. Thus, as shown in Figure 1-12, we see that
system initiation establishes the project scope, goals, schedule, and budget required
to solve the problem or opportunity represented by the project. Project scope defines
the area of the business to be addressed by the project and the goals to be achieved.
Scope and goals ultimately impact the resource commitments, namely, schedule and
budget, that must be made to successfully complete the project. By establishing a proj-
ect schedule and budget against the initial scope and goals, you also establish a base-

line against which all stakeholders can accept the reality that any future changes in
scope or goals will impact the schedule and budget.

Figure 1-12 also shows that project managers, system analysts, and system own-
ers are the primary stakeholders in a system analysis. This book will teach you
many tools and techniques for initiating a system project and establishing a suitable
project plan.

> System Analysis

The next step in our system development process is system analysis. System
analysis is intended to provide the project team with a more thorough under-
standing of the problems and needs that triggered the project. As such, the busi-
ness area (scope of the project—as defined during system initiation) may be
studied and analyzed to gain a more detailed understanding of what works, what
doesn’t, and what’s needed. As depicted in Figure 1-12, the system analysis requires
working with system users to clearly define business requirements and expecta-
tions for any new system that is to be purchased or developed. Also, business pri-
orities may need to be established in the event that schedule and budget are
insufficient to accomplish all that is desired.

Recall the business drivers discussed earlier in the chapter. These (and future)
business drivers most closely affect system analysis, which often defines business re-
quirements in response to the business drivers. For example, we discussed a current
trend toward e-business and e-commerce.This business driver may influence the busi-
ness requirement for any information system, leading us to establish project goals to
conduct all business transactions on the Web.

The completion of a system analysis often results in the need to update many of
the deliverables produced earlier, during system initiation.The analysis may reveal the
need to revise the business scope or project goals—perhaps we now feel the scope
of the project is too large or too small. Accordingly, the schedule and budget for the
project may need to be revised. Finally, the feasibility of the project itself becomes
questionable.The project could be canceled or could proceed to the next phase.

As shown in Figure 1-12, project managers, system analysts, and system users
are the primary stakeholders in a system analysis. Typically, results must be summa-
rized and defended to the system owners, who will pay to design and implement an
information system to fulfill the business requirements. This book will teach you

32 Part One The Context of Systems Development Projects

system design the

specification or construction of

a technical, computer-based

solution for the business

requirements identified in a

system analysis. (Note: In-

creasingly, the design takes

the form of a working

prototype.)

system implementation
the construction, installation,

testing, and delivery of a

system into production

(meaning day-to-day

operation).

many tools and techniques for performing a system analysis and documenting user
requirements.

> System Design

Given an understanding of the business requirements for an information system, we
can now proceed to system design. During system design we will initially need to
explore alternative technical solutions. Rarely is there only one solution to any prob-
lem. For example, today most companies need to choose between purchasing a solu-
tion that is good enough and building a custom solution in-house. (We’ll explore
options such as this throughout this book.)

Once a technical alternative is chosen and approved, the system design phase de-
velops the technical blueprints and specifications required to implement the final solu-
tion.These blueprints and specifications will be used to implement required databases,
programs, user interfaces, and networks for the information system. In the case where
we choose to purchase software instead of build it, the blueprints specify how the pur-
chased software will be integrated into the business and with other information systems.

Recall the technology drivers discussed in the last section of the chapter. These
(and future) technology drivers most closely impact the system design process and
decisions. Many organizations define a common information technology architecture
based on these technology drivers. Accordingly, all system designs for new informa-
tion systems must conform to the standard IT architecture.

As depicted in Figure 1-12, project managers, system analysts, and system design-
ers are the primary stakeholders in a system design. This book will teach you many
tools and techniques for performing a system design.

> System Implementation

The final step in our simple system development process is system implementa-

tion. As shown in Figure 1-12, system implementation constructs the new informa-
tion system and puts it into operation. It is during system implementation that any
new hardware and system software are installed and tested. Any purchased applica-
tion software and databases are installed and configured. And any custom software
and databases are constructed using the technical blueprints and specifications
developed during system design.

As system components are constructed or installed, they must be individually
tested. And the complete system must also be tested to ensure that it works properly
and meets user requirements and expectations. Once the system has been fully tested,
it must be placed into operation. Data from the previous system may have to be con-
verted or entered into start-up databases, and system users must be trained to prop-
erly use the system. Finally, some sort of transition plan from older business processes
and information systems may have to be implemented.

And once again, as depicted in Figure 1-12, project managers, system analysts, and
system builders are the primary stakeholders in a system implementation. While this
book will teach you some of the tools and techniques for performing a system imple-
mentation, most of these methods are taught in programming, database, and net-
working courses. This book emphasizes system initiation, analysis, and design skills,
but it will also teach you the unique system implementation tools and techniques that
are most commonly performed by systems analysts and, therefore, are not typically
covered in these other information technology courses.

> System Support and Continuous Improvement

We would be remiss not to briefly acknowledge that implemented information sys-
tems face a lifetime of support and continuous improvement. But where is that shown
in Figure 1-12? It is there! But it is subtle.

The Context of Systems Analysis and Design Methods Chapter One 33

Le
a
rn

in
g
 R

oa
d
m

a
p Each chapter will provide guidance for self-paced instruction under the heading

“Learning Roadmap.” Recognizing that different students and readers have different

backgrounds and interests, we will propose appropriate learning paths—most within

this book, but some beyond the scope of this book.

Most readers should proceed directly to Chapter 2 because the first four chapters

provide much of the context for the remainder of the book. Several recurring themes,

frameworks, and terms are introduced in those chapters to allow you to define your

own learning path from that point forward. This chapter focused on information sys-

tems from four different perspectives:

• The players—both developers and users of information systems.

• The business drivers that currently influence information systems.

• The technology drivers that currently influence information systems.

• The process of developing information systems.

Chapter 2 will take a closer look at the product itself—information systems—

from an architectural perspective appropriate for systems development. We will de-

fine how different players and development stages view an information system.

Looking further ahead, Chapter 3 more closely examines the process of systems

development. Chapter 4 completes the introduction to systems analysis and design

methods by examining the management of systems development.

1. Information systems in organizations capture and
manage data to produce useful information that
supports an organization and its employees, cus-
tomers, suppliers, and partners.

2. Information systems can be classified according
to the functions they serve, including:

a. Transaction processing systems that process
business transactions such as orders, time
cards, payments, and reservations.

b. Management information systems that use
transaction data to produce information
needed by managers to run the business.

Summary

Implemented information systems are rarely perfect. Your users will find errors
(bugs) and you will discover, on occasion, design and implementation flaws that
require attention and fixes. Also, business and user requirements constantly change.
Thus, there will be a need to continuously improve any information system until the
time it becomes obsolete. So where does system support and change fit into our
development process?

A change made for system support or improvement is merely another project,
sometimes called a maintenance or enhancement project. Such a project should fol-
low the exact same problem-solving approach defined for any other project.The only
difference is the effort and budget required to complete the project. Many of the
phases will be completed much more quickly, especially if the original stakeholders
properly documented the system as initially developed. Of course, if they did not, a
system improvement project can quickly consume much greater time, effort, and
money. Much of what we will teach you in this book is intended to help you appro-
priately document information systems to significantly reduce lifetime costs of
supporting and improving your information systems.

34 Part One The Context of Systems Development Projects

The Context of Systems Analysis and Design Methods Chapter One 35

c. Decision support systems that help various de-
cision makers identify and choose between
options or decisions.

d. Executive information systems that are
systems tailored to the unique information
needs of executives who plan for the busi-
ness and assess performance against the
plans.

e. Expert systems that are systems that
capture and reproduce the knowledge of
an expert problem solver or decision maker
and then simulate the “thinking” of that
expert.

f. Communication and collaboration systems
that enhance communication and collabora-
tion between people, both internal and exter-
nal to the organization.

g. Office automation systems that help employ-
ees create and share documents that support
day-to-day office activities.

3. Information systems can be viewed from vari-
ous perspectives, including from the perspec-
tive of the “players,” the “business drivers”
influencing the information system, the “tech-
nology drivers” used by the information system,
and the “process” used to develop the informa-
tion system.

4. Information workers are the stakeholders in infor-
mation systems. Information workers include
those people whose jobs involve the creation,
collection, processing, distribution, and use of
information.They include:

a. System owners, the sponsors and chief advo-
cates of information systems.

b. System users, the people who use or are im-
pacted by the information system on a regular
basis. Geographically, system users may be
internal or external.

c. System designers, technology specialists
who translate system users’ business
requirements and constraints into technical
solutions.

d. System builders, technology specialists who
construct the information system based on the
design specifications.

e. Systems analysts, who facilitate the develop-
ment of information systems and computer
applications.They coordinate the efforts of
the owners, users, designers, and builders.
Frequently, they may play one of those roles
as well. Systems analysts perform systems
analysis and design.

5. In addition to having formal systems analysis and
design skills, a systems analyst must develop or

possess the following skills, knowledge, and
traits:

a. Working knowledge of information
technologies.

b. Computer programming experience and
expertise.

c. General knowledge of business processes and
terminology.

d. General problem-solving skills.
e. Good interpersonal communication skills.
f. Good interpersonal relations skills.
g. Flexibility and adaptability.
h. Character and ethics.

6. Any stakeholder role may be filled by an internal
or external worker referred to as an external ser-
vice provider (ESP). Most ESPs are systems ana-
lysts, designers, or builders who are contracted to
bring special expertise or experience to a spe-
cific project.

7. Most information systems projects involve work-
ing as a team. Usually one or more of the stake-
holders (team members) takes on the role of
project manager to ensure that the system is de-
veloped on time, within budget, and with accept-
able quality. Most project managers are
experienced systems analysts.

8. Business drivers influence information systems.
Current business drivers that will continue to in-
fluence the development of information systems
include:

a. Globalization of the economy.
b. Electronic commerce and business.
c. Security and privacy.
d. Collaboration and partnership.
e. Knowledge asset management.
f. Continuous improvement and total quality

management.
g. Business process redesign.

9. Information technology can be a driver of infor-
mation systems. Outdated technologies can pre-
sent problems that drive the need to develop
new systems. Newer technologies such as the
following are influencing today’s information
systems:

a. Networks and the Internet:

i) xHTML and XML are the fundamental lan-
guages of Web page authoring and Inter-
net application development. Extensible
Hypertext Markup Language (xHTML) is

the emerging second-generation version
of HTML, the language used to construct
Web pages. Extensible Markup Language
(XML) is the language used to effectively

transport data content along with its
proper interpretation over the Internet.

ii) Scripting languages are simple program-
ming languages designed specifically for
Internet applications.

iii) Web-specific programming languages
such as Java and Cold Fusion have
emerged to specifically address construc-
tion of complex, Web-based applications
that involve multiple servers and Web
browsers.

iv) Intranets are essentially private Internets
designed for use by employees of an orga-
nization.They offer the look and feel of
the Internet; however, security and fire-
walls restrict their use to employees.

v) Extranets, like intranets, are private Inter-
nets. But extranets are for use between
specific organizations. Only the employ-
ees of those identified businesses can
access and use the extranet.

vi) Portals (in corporations) are “home
pages” that can be customized to the
specific needs of different individuals
who use them. For example, portal tech-
nology can define Web pages that pro-
vide appropriate information and
applications for different roles in the
same company. Each individual’s role de-
termines which information and applica-
tions that person can use from her or his
Web page.

vii) Web services are reusable, Web-based pro-
grams that can be called from any other
Internet program.

b. Mobile and wireless technologies—Increas-
ingly, wireless access must be assumed. And
the limitations of mobile devices and screen
sizes must be accommodated in an informa-
tion system’s design. All of the following tech-
nical trends will significantly impact the
analysis and design of new information
systems:

i) Handheld computers, or personal data

assistants (such as the HP iPaq, Palm, and
RIM BlackBerry) have become common
in the ranks of information workers.These
devices are increasingly including wireless
capabilities that provide Web access and
e-mail

ii) Cell phones are also increasingly featuring
Internet and e-mail capabilities.

iii) Integrated devices such as smart phones

are emerging that integrate the capabilities

36 Part One The Context of Systems Development Projects

of PDAs and cell phones into a single
device.

iv) Technologies like Bluetooth are emerging
to allow separate devices to interoperate
as one logical device while preserving
each one’s form factors and advantages.

c. Object technologies—Most contemporary infor-
mation systems are built using object technolo-
gies. Object technologies allow programmers to
build software from software parts called ob-
jects. Object-oriented software offers the advan-
tage of reusability and extensibility.

d. Collaborative technologies—Collaborative
technologies are those that enhance interper-
sonal communications and teamwork. Four im-
portant classes of collaborative technologies
are e-mail, instant messaging, groupware, and
work flow.

e. Enterprise applications—Virtually all organiza-
tions, large and small, require a core set of en-
terprise applications to conduct business. For
most businesses the core applications include
financial management, human resource man-
agement, marketing and sales, and operations
management (inventory and/or manufacturing
control). At one time, most organizations
custom-built most or all of these core enter-
prise applications. But today, these enterprise
applications are frequently purchased, in-
stalled, and configured for the business and
integrated into the organization’s business
processes.These “internal” core applications
are being supplemented with other enterprise
applications that integrate an organization’s
business processes with those of its suppliers
and customers.These applications are called
customer relationship management (CRM) and
supply chain management (SCM). Enterprise
application integration (EAI) involves linking
applications, whether purchased or developed
in-house, so that they can transparently inter-
operate with one another.

10. Many organizations have a formal systems develop-
ment process consisting of a standard set of
processes or steps they expect will be followed on
any systems development project. Systems devel-
opment processes tend to mirror general problem-
solving approaches.This chapter presented a
simplified system development process that is
composed of the following phases:

a. System initiation—the initial planning for a
project to define initial business scope, goals,
schedule, and budget.

1. Why are information systems (IS) essential in
organizations?

2. Why do systems analysts need to know who the
stakeholders are in the organization?

3. Who are the typical stakeholders in an informa-
tion system? What are their roles?

4. Please explain what the consequences are if an
information system lacks a system owner.

5. What are the differences between internal users
and external users? Give examples.

6. What are the differences between the role of
system analysts and the role of the rest of the
stakeholders?

7. What kind of knowledge and skills should a
system analyst possess?

8. In addition to the business and computing knowl-
edge that system analysts should possess, what

are the other essential skills that they need to
effectively complete their jobs?

9. Why are good interpersonal communication skills
essential for system analysts?

10. What are some of the business drivers for today’s
information systems?

11. What are the differences between electronic
commerce (e-commerce) and electronic business
(e-business)?

12. What are the differences between information
and knowledge?

13. What are the most important technology drivers
for today’s information systems?

14. What are the four steps in a system development
process? What happens in each step?

15. Why is system initiation essential in the system
development process?

Review Questions
1

2

1. Assume you are a systems analyst who will be
conducting a requirements analysis for an individ-
ually owned brick-and-mortar retail store with a
point-of-sale system. Identify who the typical
internal and external users might include.

2. Assume you are a systems analyst for a consulting
company and have been asked to assist the chief
executive officer (CEO) of a regional bank.The
bank recently implemented a plan to reduce the

number of staff, including loan officers, as a strat-
egy to maintain profitability. Subsequently, the
bank has experienced chronic problems with
backlogged loan requests because of the limited
number of loan officers who are able to review
and approve or disapprove loans.The CEO of the
bank is interested in solutions that would allow
the approval process to move faster without in-
creasing the number of loan officers, and has

Problems and Exercises

b. System analysis—the study of a business
process domain to recommend improvements
and specify the business requirements and pri-
orities for the solution.

c. System design—the specification or construc-
tion of a technical, computer-based solution
for the business requirements identified in sys-
tem analysis.

d. System implementation—the construction, in-
stallation, testing, and delivery of a system into
operation.

11. Information systems face a lifetime of support
and continuous improvement. A change made for
system support or improvement is merely an-
other project, sometimes called a maintenance
or enhancement project.These projects follow
the exact same problem-solving approach defined

The Context of Systems Analysis and Design Methods Chapter One 37

for any other project, but they require less effort
and budget.

12. Sequential development requires that each devel-
opment process (phase) be completed—one after
the other.This approach is referred to as the
waterfall approach. An alternative development
approach is iterative (or incremental) development.
This approach requires completing enough analy-
sis, design, and implementation as is necessary to
fully develop a part of the new system. Once that
version of the system is implemented, the strat-
egy is to then perform some additional analysis,
design, and implementation in order to release
the next version of the system.These iterations
continue until all parts of the entire information
system have been developed.

1. Research the average and/or median salaries for IT
professionals.You can use a variety of methods to
find this information, such as searching the Web
for online sites that publish the results of salary
surveys for IT professionals.You can also look at
classified ads in newspapers, trade magazines,
and/or online.

a. Is there a significant difference between
typical salaries for system analysts, designers
and developers?

b. Roughly, what is the difference in the typical
salaries for these different groups?

c. What do you think are the reasons for the
difference?

d. Is there a gender gap in the salaries of IT pro-
fessionals? Discuss any trends that you found,
and the implications.

2. Contact the chief information officers (CIOs) or
top IT managers of several local or regional
organizations. Ask them about the process or

Projects and Research

engaged your company to come up with sugges-
tions. What is one type of system that you might
recommend to the bank?

3. How do communication and collaboration sys-
tems improve efficiency and effectiveness? What
are some of the communication and collaboration
systems that are being used by an increasing
number of organizations?

4. Identify the type of information system that cleri-
cal workers in an organization would typically
use and why.

5. As information systems increase in complexity
and comprehensiveness, ethical issues regarding
accessing and using data from these systems are
also increasing. What are some of these ethical
issues?

6. What are business to consumer (B2C) and busi-
ness to business (B2B) Web applications, and
what are some examples of each type?

7. While system development processes and
methodologies can vary greatly, identify and
briefly explain the “generic” phases of the system
development process that are described in the
textbook and which must be completed for any
project.You are a contractor with a systems inte-
gration company.

8. Your company has a contract with a local firm
to link all of their systems so they can transpar-
ently work together. Their applications include
a number of existing legacy systems, which
were built at different times by different devel-
opers using a variety of languages and plat-
forms, as well as several newer contemporary
applications. What is the term for this type of
linking? What type of tool would you most
likely use, and what are some examples of these
tools?

9. Your company has asked you to develop a new
Web-based system to replace its existing legacy
system. There will be very little change in
business requirements and functionality from
the existing legacy system. Suggest which
system development process you might use
and why.

10. You recently joined a retail sales company which
has recently bought out and assimilated a com-
mercial industrial supply house.You have been
asked to lead a project to develop a consolidated
inventory-tracking system. Suggest which system
development process you might use and why.

11. Your company president sits down beside you
just before a meeting is to begin and tells you that
people keep saying the customer needs to install
a CRM, but doesn’t really know what it is.The
company president then asks you to explain it in
nontechnical terms in the next 30 seconds.

12. Industry studies indicate that mobile and wireless
technology has become one of the major technol-
ogy drivers for designing new information sys-
tems. Why is this the case and what is the impact?

13. Briefly explain the impact of Web services on Web
development. Give some examples of Web services.

14. Identify in which phase of the development
process the following activities belong:

a. Development of the technical blueprint or de-
sign document.

b. Project scheduling.
c. Integration testing.
d. Interviewing system users to define business

requirements.

15. What are the two most important advantages of
object-oriented software technologies over struc-
tured software technologies?

38 Part One The Context of Systems Development Projects

1. What do you think will be possible technologically
10 years from now? How about 20 or 30 years
from now? Research a new and interesting tech-
nology that is in the research and development
stage. Prepare a presentation using a movie clip
and PowerPoint on this technology and present it

to the class. Submit a short paper on the impacts
this new technology might have on society and/or
businesses.

2. Consider outsourcing: It is many times the case
that at least part of the development process is
outsourced. In fact, project leaders today must be

Minicases

methodology they use for system development
in their organizations, and why they utilize that
particular approach.

a. Describe and compare the different approaches
that you have found.

b. Which approach do you believe to be the most
effective approach?

c. Why?

3. Career choices and personal skills:

a. At this point in your education, if you had to
choose between becoming a systems analyst,
systems designer, or systems builder, which one
would you choose?

b. Why?
c. Now divide a piece of paper into two columns.

On one side, list the personal skills and traits
you think are most important for each of these
three groups of systems analysts, designers, and
builders. In the second column, list at least five
skills and traits that you feel to be your
strongest ones, then map them to the skills and
traits you listed for each of the three groups.
With which group do you have the most skills
and traits in common?

d. Is this group the same one as the one you
would choose in Question 3a? Why do you
think this is (or is not) the case?

4. Your school library should have journals and peri-
odicals dating back at least several decades, or may
subscribe to online research services which do.
Look at several recent articles in information tech-
nology journals regarding systems analysis, as well
as several articles from at least 25 years ago.

a. Compare the recent articles to the older ones.
Do there appear to be significant differences in
the typical knowledge, skills, abilities, and/or
experience that systems analysts needed
25 years ago compared to now?

b. If you found some differences, what are the
ones that you consider most important?

c. What do you think are some of the reasons for
these changes?

The Context of Systems Analysis and Design Methods Chapter One 39

d. Now get out your crystal ball and look into the
future 25 years from now. What differences do
you predict between the systems analysts of
today and those in 25 years?

5. Search the Web for several articles and information
on ethical issues related to information technology
professionals.

a. What articles did you find?
b. Based on your research, which ethical issues do

you think systems analysts might face during
their careers?

c. Pick a particular ethical issue and explain the
steps you would take if you were confronted
with this issue.

d. What would you do if you found your best
friend and co-worker had committed a serious
ethical violation? Facts to consider:The viola-
tion may never be discovered, but it will cost
your company many thousands of dollars in
higher costs over the next several years.Your
company has a stringent policy of firing em-
ployees who commit serious ethical violations.
Make sure to explain your reasons for the
action(s) you would take, if any.

6. Search the Web or business periodicals in your
library such as Forbes Magazine for information
on three or four chief information officers of large
companies or organizations.

a. Which industry sector, companies, and CIOs did
you find?

b. For each CIO that you researched, what was
their predominant experience prior to becom-
ing a CIO; that is, did they have an information
technology background, a business background,
or both?

c. For each CIO, what is their level of education?
d. How many years has each been a CIO, and for

approximately how many different companies
has each one worked?

e. Based upon your research, what knowledge and
skills does a CIO need in order to be successful?
Why?

1. Get together into small groups of two.The first per-
son will decide on a task that he/she wishes to be
completed—for instance, sharpen a pencil or write
down the name of the professor. It should be sim-
ple and straightforward.That person is to commu-
nicate on paper using only diagrams and no words
(verbal or written) what he/she wishes to be done,
and give it to person number two. Person number
two should then complete the requested task.

2. What did you discover from this exercise? How
long did it take until the second person under-
stood what the first person was asking for? Was

there miscommunication? Write down your
thoughts and observations, and share them with
the class.

3. Individual exercise: Imagine a really cool technol-
ogy.The sky is the limit, and anything is possible.
How does this technology impact your life? Does
it impact business?

4. Individual exercise:Think back on the last time
someone told you something couldn’t be done.
What was it? Did you listen to them? Why or
why not?

Team and Individual Exercises

Ambler, Scott. Agile Modeling: Effective Practices for eX-

treme Programming and the Unified Process. New York:

John Wiley & Sons, 2002. This book has significantly

shaped our thinking about the software development

process. Those of you who are critical of the “extreme-

programming” movement need not fear that our enthusi-

asm for this suggested reading indicates an endorsement

of extreme programming. We simply like the sanity that

Scott brings to the process of systems and software devel-

opment through the use of flexible methods within the

context of an iterative process. We will reference this

book in several chapters.

Ernest, Kallman; John Grillo; and James Linderman. Ethical

Decision Making and Information Technology: An In-

troduction with Cases, 2nd ed. Burr Ridge, IL: McGraw-

Hill/Irwin, 1995.This is an excellent textbook for teaching

ethics in an MIS curriculum. It is a collection of case stud-

ies that can complement a systems analysis and design

course.

Gartner Group IT Symposium and Expo (annual). Our uni-

versity’s management information unit has long sub-

scribed to the Gartner Group’s service that reports on

industry trends, the probabilities for success of trends

and technologies, and suggested strategies for informa-

tion technology transfer. Gartner research has played a

significant, ongoing role in helping us to chart business

and technology drivers as described in this chapter. We

have also been fortunate to be able to attend Gartner’s

annual IT symposium. Gartner Group reports and

symposiums have influenced each edition of the book.

For more information about the Gartner Group, see

www.gartner.com.

Suggested Readings

40 Part One The Context of Systems Development Projects

capable of handling geographically diverse teams
as well as timeline and resource constraints. Out-
sourcing brings to the table increased efficiency
and economic gains to the societies that are inter-
acting. However, these gains are not quickly real-
ized, and the negative impacts on a society that is
outsourcing can be significant from a jobs perspec-
tive. Dr. Mankiw, as an economic advisor to
President Bush, publicly touted the benefits of out-
sourcing and was deeply criticized for his stance.
Do you think that it is good or bad for a business
to outsource work? Do you think there are ethical
dilemmas for companies who outsource? Find at
least two articles on the impacts of outsourcing,
and bring them to share with the class.

3. You are a network administrator, and as part of
your job, you monitor employee e-mails.You dis-
cover that your boss is cutting corners on a system

that your company is developing in order to finish
the project more quickly and to stay under budget.
There is a flaw in the system as a result, and this
flaw will cause a network crash if more than
20 people are on the network at a time.The client
expects approximately 12 people on the network
at any given time.You are sure, as apparently your
boss is, that the customer will not find out until
well after the project is accepted (if ever). What
do you do?

4. A systems analyst must be both technically profi-
cient and capable of successful customer commu-
nication. Developing a good system requires a
complete understanding of user requirements.
Many times, users don’t know what is available
(technologically) or even what they would like
from a system. What are characteristics of good
communication?

The Context of Systems Analysis and Design Methods Chapter One 41

Gause, Donald, and Gerald Weinberg. Are Your Lights On?

How to Figure Out What the Problem REALLY Is. New

York: Dorset House Publishing, 1990. Yes, this is not a re-

cent book, but neither are the fundamentals of problem

solving. Here’s a short and easy-to-read book about gen-

eral problem solving. You can probably read the entire

book in one night, and it could profoundly improve your

problem-solving potential as a systems analyst (or, for that

matter, any other profession).

Levine, Martin. Effective Problem Solving, 2nd ed. Engle-

wood Cliffs, NJ: Prentice Hall, 1994. This is another older

book, but as we stated before, problem-solving methods

are timeless. At only 146 pages, this title can serve as an

excellent professional reference.

Weinberg, Gerald. Rethinking Systems Analysis and Design.

New York: Dorset House Publishing, 1988. Don’t let the

date fool you. This is one of the best and most important

books on this subject ever written. This book may not

teach any of the popular systems analysis and design meth-

ods of our day, but it challenges the reader to leap beyond

those methods to consider something far more important—

the people side of systems work. Dr. Weinberg’s theories

and concepts are presented in the context of dozens of

delightful fables and short experiential stories. We are

grateful to him for our favorite systems analysis fable of all

time,“The Three Ostriches.”

B u s i n e s s D r i v e r s

T e c h n o l o g y D r i v e r s

I N F O R M A T I O N S Y S T E MStakeholders

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

Development

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N

S
Y

S
T

E
M

IM
P

L
E

M
E

N
T

A
T

IO
N

Goal:

IMPROVE

BUSINESS

PROCESSES

Goal:

IMPROVE

BUSINESS

KNOWLEDGE

Goal:

IMPROVE

BUSINESS

COMMUNICATIONS

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

BUSINESS

PROCESS

REQUIREMENTS

BUSINESS

DATA

REQUIREMENTS

BUSINESS

INTERFACE

REQUIREMENTS

DATABASE

DESIGN

BUSINESS

PROCESS

DESIGN

SOFTWARE

DESIGN

INTERFACE

DESIGN

COMMERCIAL

SOFTWARE

PACKAGES

and / or

CUSTOM-BUILT

APPLICATION

PROGRAMS

DATABASE

SOLUTION

SOFTWARE

TECHNOLOGIES

DATABASE

TECHNOLOGIES

INTERFACE

TECHNOLOGIES

INTERFACE

SOLUTION

NETWORK TECHNOLOGIES

2Information System
Building Blocks

Chapter Preview and Objectives

Systems analysis and design methods are used to develop information systems for organi-

zations. Before learning the process of building systems, you need a clear understanding

of the product you are trying to build. This chapter takes an architectural look at informa-

tion systems and applications. We will build a framework for information systems archi-

tecture that will subsequently be used to organize and relate all of the chapters in this

book. The chapter will address the following areas:

❚ Differentiate between front- and back-office information systems.

❚ Describe the different classes of information system applications (transaction

processing, management information, decision support, expert, communication and

collaboration, and office automation systems) and how they interoperate to supplement

one another.

❚ Describe the role of information systems architecture in systems development.

❚ Identify three high-level goals that provide system owners and system users with a

perspective of an information system.

❚ Name three goal-oriented perspectives for any information systems.

❚ Identify three technologies that provide system designers and builders with a

perspective of an information system.

❚ Describe four building blocks of the KNOWLEDGE goal for an information system.

❚ Describe four building blocks of the PROCESS goal for an information system.

❚ Describe four building blocks of the COMMUNICATIONS goal for an information system.

❚ Describe the role of network technologies as it relates to KNOWLEDGE, PROCESSES, and

COMMUNICATIONS building blocks.

Enterprise Resource Planning (ERP)

CUSTOMERS

SUPPLIERS

Electronic Commerce and Customer Relations Management (CRM)

Electronic Commerce and Supply Chain Management (SCM)

Management Information and Decision Support Systems

Marketing

Information

System

Sales

Information

System

Customer

Management

Information

System

Enterprise Resource Planning (ERP)

Human

Resources

Information

System

Financial

Information

System

Manufac-

turing

Information

System

Inventory

Information

System

In
te

r
n

e
t

In
tra

n
e

t

Front-

Office

Systems

Back-

Office

Systems

The SoundStage member services system project is getting underway. Bob Martinez

has been assigned the task of conducting initial meetings with groups of system users

to gain their perspective on the system and what it must accomplish. He quickly dis-

covered that everyone had a different perspective and expressed that perspective in

a different language. In college, majoring in computer information systems technol-

ogy, Bob tended to think about information systems in terms of programming lan-

guages, networking technologies, and databases. He found that the others didn’t think

in those terms. The system users talked about manual forms and how they were

routed. They talked about policies and procedures and reports they needed. As he

met with managers he heard them talk about strategic plans and how the system

could give the organization a competitive edge.

It reminded Bob of the old story he had heard about three blind men who came

upon an elephant. One felt the trunk and concluded that an elephant was like a snake.

Another felt a leg and concluded that an elephant was like a tree.The third felt an ear

and concluded that an elephant was like a fan. It didn’t take Bob long to realize that

the owners’ and users’perspectives were just as valid as his. An information system is

more than technology. It is mainly a tool that serves the goals of the organization.

44 Part One The Context of Systems Development Projects

front-office information
system an information sys-

tem that supports business

functions that extend out to

the organization’s customers.

F I G U R E 2 - 1

A Federation
of Information
Systems

Introduction

The Product—Information Systems

In Chapter 1 you were introduced to information systems from four different per-

spectives, including stakeholders, business drivers, technology drivers, and the

process of systems development. As suggested by the home page (see p. 42), this

chapter will more closely examine the information system “product.”

Organizations are served not by a single information system but, instead, by a

federation of information systems that support various business functions.This idea

is illustrated in Figure 2-1. Notice that most businesses have both front-office

F I G U R E 2 - 2 Information Systems Applications

Transaction

Processing

System

Office

Automation

System

(personal)

Management

Information

System

Decision

Support

System

Executive

Information

System

Expert

System

Office

Automation

System

(work group)

Online

Transactional

Database

(OLTP)

Historical

Data

Warehouse

(DW)

Knowledge

base

Work Group

Database

Operational

Data Store

(ODS)

Online

Transactional

Database

(OLTP)

Transaction

Processing

System

Management

Information

System

Personal

Database

read-

only

data

work group

data

messages

and data

data

data

imported

data

personal

data

personal

data & information

decision support

information

executive

information

solution

management

Information

transaction

data

transaction

information

management

information

business

models

transaction

information

Filtered &

reorganized

data

data

snapshots

Filtered &

reorganized

data

Filtered &

reorganized

data

read-only

data

read-only

data

read-only

data

rules and

heuristics

problem

6

read-

only

data

copy

copy

Operational

Data Store

(ODS)

6

3

1

4

2

5

10

11

6

6
8

9

7

7

information systems that support business functions that reach out to

customers (or constituents) and back-office information systems that support

internal business operations as well as interact with suppliers. These front- and

back-office information systems feed data to management information systems and

decision support systems that support management needs of the business. Con-

temporary information systems are interfacing with customers and suppliers using

electronic commerce technology, customer relations management (CRM), and

supply chain management (SCM) applications (see descriptions in Chapter 1) over

the Internet. Finally, most companies have some sort of intranet (internal to the

business) to support communications between employees and the information

systems.

In Chapter 1 you learned that there are several classes of information system ap-

plications (see opposite page). Each class serves the needs of different types of users.

In practice, these classes overlap such that it isn’t always easy to differentiate one

from another.The various applications should ideally interoperate to complement and

supplement one another. Take a few moments to study Figure 2-2, which illustrates

typical roles of information systems in an organization. The rounded rectangles

represent various information systems. Notice that an organization can and will have

multiple transaction-processing systems, office automation systems, and the like.

The “drum” shapes represent stored data. Notice that an organization has multiple

Information System Building Blocks Chapter Two 45

back-office information
system an information

system that supports internal

business operations of an

organization, as well as

reaches out to suppliers.

CLASSES OF
INFORMATION
SYSTEM
APPLICATIONS

Transaction Processing
System (TPS)

Management Information
System (MIS)

Decision Support System
(DSS)

Executive Information
System (EIS)

Expert System

Communication and
Collaboration System

Office Automation System

sets of stored data, and only some of them work together.We call your attention to the

following number annotations on the diagram:

The first transaction processing system responds to an input transaction’s

data (e.g., an order). It produces transaction information to verify the correct

processing of the input transaction.

The second transaction processing system merely produces an output trans-

action (e.g., an invoice). Such a system may respond to something as simple

as the passage of time (e.g., it is the end of the month; therefore, generate all

invoices).

The first management information system simply produces reports or

information (e.g., sales analysis reports) using data stored in transactional

databases (maintained by the aforementioned transaction processing

systems).

The second management information system uses business models (e.g., MRP)

to produce operational management information (e.g., a production schedule).

Notice that an MIS may use data from more than one transactional database.

Notice that snapshots of data from the transactional databases populate a data

warehouse. The snapshots may be taken at various time intervals, and different

subsets of data may be included in various snapshots. The data in the ware-

house will be organized to ensure easy access and inquiry by managers.

Decision support and executive information systems applications will typ-

ically provide read-only access to the data warehouses to produce decision

support and executive management information.

An expert system requires a special database that stores the expertise in the

form of rules and heuristics.

An expert system either accepts problems as inputs (e.g., Should we grant

credit to a specific customer?), or senses problems in the environment

(e.g., Is the lathe producing parts within acceptable specifications?), and

then responds to a problem with an appropriate solution based on the

system’s expertise.

Personal office automation systems tend to revolve around the data and busi-

ness processing needs of an individual. Such systems are typically developed

by the users themselves (and run on personal computers).

Work group office automation systems are frequently message-based (e.g.,

e-mail-based) and are smaller-scale solutions to departmental needs. As shown

in the figure, they can access or import data from larger, transaction processing

systems.

In the average business, there will be many instances of each of these different

applications.

11

10

9

8

7

6

5

4

3

2

1

46 Part One The Context of Systems Development Projects

information systems
architecture a unifying

framework into which various

stakeholders with different

perspectives can organize

and view the fundamental

building blocks of information

systems.

A Framework for Information Systems Architecture

It has become fashionable to deal with the complexity of modern information systems

by using the term architecture. Information technology professionals speak of data

architectures, application architectures, network architectures, software architectures,

and so forth. An information systems architecture serves as a higher-level frame-

work for understanding different views of the fundamental building blocks of an

information system. Essentially, information systems architecture provides a founda-

tion for organizing the various components of any information system you care to

develop.

Different stakeholders have different perspectives on or views of an information

system. System owners and system users tend to focus on three common business

goals of any information system. These goals are typically established in response to

Information System Building Blocks Chapter Two 47

one or more of the business drivers you read about in Chapter 1.These goal-oriented
perspectives of an information system include:

• The goal to improve business knowledge. Knowledge is a product of infor-
mation and data.

• The goal to improve business processes and services.
• The goal to improve business communications and people collaboration.

The role of the system designers and builders is more technical. As such, their
focus tends to be placed more on the technologies that may be used by the infor-
mation system in order to achieve the business goal.The system designers’and builders’
perspectives of an information system tend to focus more on:

• The database technologies that support business accumulation and use of
business knowledge.

• The software technologies that automate and support business processes and
services.

• The interface technologies that support business communications and
collaboration.

As shown in Figure 2-3, the intersection of these perspectives (rows and
columns) defines building blocks for an information system. In the next section, we
will describe all these information system building blocks.

NOTE: Throughout this book, we use a consistent color scheme for both the
framework and the various tools that relate to, or document, the building blocks.
The color scheme is based on the building blocks as follows:

represents something to do with
represents something to do with
represents something to do with

The information system building blocks do not exist in isolation. They must be
carefully synchronized to avoid inconsistencies and incompatibilities within the
system. For example, a database designer (a system designer) and a programmer
(a system builder) have their own architectural views of the system; however, these
views must be compatible and consistent if the system is going to work properly.
Synchronization occurs both horizontally (across any given row) and vertically (down
any given column).

In the remainder of this chapter, we’ll briefly examine each focus and perspective—
the building blocks of information systems.

> KNOWLEDGE Building Blocks

Improving business knowledge is a fundamental goal of an information system. As you
learned in Chapter 1, business knowledge is derived from data and information.
Through processing, data is refined to produce information that results in knowledge.
Knowledge is what enables a company to achieve its mission and vision.

The KNOWLEDGE column of your framework is illustrated in Figure 2-4. Notice at
the bottom of the KNOWLEDGE column that our goal is to capture and store business
data using DATABASE TECHNOLOGIES. Database technology (such as Access, SQL Server,

DB2, or Oracle) will be used to organize and store data for all information systems.
Also, as you look down the KNOWLEDGE column, each of our different stakeholders has
different perspectives of the information system. Let’s examine those views and
discuss their relevance to the KNOWLEDGE column.

System Owners’ View of KNOWLEDGE The average system owner is not inter-
ested in raw data. The system owner is interested in information that adds new
business knowledge. Business knowledge and information help managers make

COMMUNICATIONS

PROCESSES

KNOWLEDGE

F I G U R E 2 - 3 Information System Perspectives and Focuses

I N F O R M A T I O N S Y S T E M

T e c h n o l o g y D r i v e r s

B u s i n e s s D r i v e r s

Stakeholders

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

Development

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N

S
Y

S
T

E
M

IM
P

L
E

M
E

N
T

A
T

IO
N

Goal:

IMPROVE

BUSINESS

PROCESSES

Goal:

IMPROVE

BUSINESS

KNOWLEDGE

Goal:

IMPROVE

BUSINESS

COMMUNICATIONS

BUILDING BLOCK BUILDING BLOCK BUILDING BLOCK

BUILDING BLOCKBUILDING BLOCK BUILDING BLOCK

BUILDING BLOCK BUILDING BLOCK BUILDING BLOCK

BUILDING BLOCKBUILDING BLOCK

SOFTWARE

TECHNOLOGIES

DATABASE

TECHNOLOGIES

INTERFACE

TECHNOLOGIES

BUILDING BLOCK

NETWORK TECHNOLOGIES

48 Part One The Context of Systems Development Projects

F I G U R E 2 - 4 A BUSINESS KNOWLEDGE Perspective of Information Systems

I N F O R M A T I O N S Y S T E M

T e c h n o l o g y D r i v e r s

B u s i n e s s D r i v e r s

Stakeholders

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

Development

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N

S
Y

S
T

E
M

IM
P

L
E

M
E

N
T

A
T

IO
N

Goal:

IMPROVE

BUSINESS

PROCESSES

Goal:

IMPROVE

BUSINESS

KNOWLEDGE

Goal:

IMPROVE

BUSINESS

COMMUNICATIONS

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

BUSINESS

PROCESS

REQUIREMENTS

BUSINESS

DATA

REQUIREMENTS

BUSINESS

INTERFACE

REQUIREMENTS

DATABASE

DESIGN

BUSINESS

PROCESS

DESIGN

SOFTWARE

DESIGN

INTERFACE

DESIGN

COMMERCIAL

SOFTWARE

PACKAGES

and / or

CUSTOM-BUILT

APPLICATION

PROGRAMS

DATABASE

SOLUTION

SOFTWARE

TECHNOLOGIES

DATABASE

TECHNOLOGIES

INTERFACE

TECHNOLOGIES

INTERFACE

SOLUTION

NETWORK TECHNOLOGIES

Information System Building Blocks Chapter Two 49

intelligent decisions that support the organization’s mission, goals, objectives, and
competitive edge.

Business knowledge may initially take the form of a simple list of business entities
and business rules. Examples of business entities might include CUSTOMERS, PRODUCTS,
EQUIPMENT, BUILDINGS, ORDERS, and PAYMENTS. What do business entities have to do with
knowledge? Information is produced from raw data that describe these business
entities. Therefore, it makes sense that we should quickly identify relevant business
entities about which we need to capture and store data.

It is also useful to understand simple business associations or rules that describe
how the business entities interact. Examples of useful business rules for a sales system
might include the following:

• A CUSTOMER can place ORDERS—an ORDER must be placed by a CUSTOMER.
• An ORDER sells PRODUCTS—a PRODUCT may be sold on an ORDER.

Intuitively, a system’s database needs to track these business entities and rules in order
to produce useful information (for example,“Has CUSTOMER 2846 placed any unfilled
ORDERS?”).

System owners are concerned with the big picture. They are generally not inter-
ested in details (such as what fields describe a CUSTOMER or an ORDER).The primary role
of system owners in a systems development project should be to define the scope and
vision for the project. For KNOWLEDGE, scope can be defined in simple terms such as
the aforementioned business entities and rules. System owners define project vision
and expectations in terms of their insight into problems, opportunities, and con-
straints as they relate to the business entities and rules.

System Users’ View of KNOWLEDGE Information system users are knowledgeable
about the data that describe the business. As information workers, they capture,
store, process, edit, and use that data every day. They frequently see the data only
in terms of how data are currently stored or how they think data should be stored.
To them, the data are recorded on forms, stored in file cabinets, recorded in books
and binders, organized into spreadsheets, or stored in computer files and data-
bases. The challenge in systems development is to correctly identify and verify
users’ business data requirements. Data requirements are an extension of the
business entities and rules that were initially identified by the system owners. Sys-
tem users may identify additional entities and rules because of their greater famil-
iarity with the data. More importantly, system users must specify the exact data
attributes to be stored and the precise business rules for maintaining that data.
Consider the following example:

A system owner may identify the need to store data about a business entity called
CUSTOMER. System users might tell us that we need to differentiate between
PROSPECTIVE CUSTOMERS, ACTIVE CUSTOMERS, and INACTIVE CUSTOMERS because they know
that slightly different types of data describe each type of customer. System users
can also tell us precisely what data must be stored about each type of customer.
For example, an ACTIVE CUSTOMER might require such data attributes as CUSTOMER

NUMBER, NAME, BILLING ADDRESS, CREDIT RATING, and CURRENT BALANCE. Finally, system
users are also knowledgeable about the precise rules that govern entities and re-
lationships. For example, they might tell us that the credit rating for an ACTIVE

CUSTOMER must be PREFERRED,NORMAL, or PROBATIONARY and that the default for a new
customer is NORMAL. They might also specify that only an ACTIVE CUSTOMER can
place an ORDER, but an ACTIVE CUSTOMER might not necessarily have any current
ORDERS at any given time.

Notice from the above example that the system user’s data requirements can be
identified independently of the DATABASE TECHNOLOGY that can or will be used to store
the data. System users tend to focus on the “business” issues as they pertain to

50 Part One The Context of Systems Development Projects

data requirement a

representation of users’ data

in terms of entities, attributes,

relationships, and rules.

the data. It is important that the system users provide data requirements that are
consistent with and complementary to the information scope and vision provided by
the system owners.

System Designers’ View of KNOWLEDGE The system designer’s KNOWLEDGE per-
spective differs significantly from the perspectives of system owners and system
users. The system designer is more concerned with the DATABASE TECHNOLOGY that
will be used by the information system to support business knowledge. System de-
signers translate the system users’ business data requirements into database designs
that will subsequently be used by system builders to develop computer databases
that will be made available via the information system. The system designers’ view
of data is constrained by the limitations of whatever database management system
(DBMS) is chosen. Often, the choice has already been made and the developers
must use that technology. For example, many businesses have standardized on an
enterprise DBMS (such as Oracle, DB2, or SQL Server) and a work group DBMS
(such as Access).

In any case, the system designer’s view of KNOWLEDGE consists of data structures,
database schemas, fields, indexes, and other technology-dependent components. Most
of these technical specifications are too complex to be reasonably understood by sys-
tem users.The systems analyst and/or database specialists design and document these
technical views of the data. This book will teach tools and techniques for transform-
ing business data requirements into database schemas.

System Builders’ View of KNOWLEDGE The final view of KNOWLEDGE is relevant to
the system builders. In the KNOWLEDGE column of Figure 2-4, system builders are clos-
est to the actual database management system technology. They must represent data
in very precise and unforgiving languages.The most commonly encountered database
language is SQL (Structured Query Language). Alternatively, many database manage-
ment systems, such as Access and Visual FoxPro include proprietary languages or
facilities for constructing a new database.

Not all information systems use database technology to store their business
data. Many older legacy systems were built with flat-file technologies such as VSAM.
These flat-file data structures were constructed directly within the programming
language used to write the programs that use those files. For example, in a COBOL

program the flat-file data structures are expressed as PICTURE clauses in a DATA DIVISION.
It is not the intent of this book to teach either database or flat-file construction
languages, but only to place them in the context of the KNOWLEDGE building block of
information systems.

> PROCESS Building Blocks

Improving business and services processes is another fundamental goal of an infor-
mation system. Processes deliver the desired functionality of an information system.
Processes represent the work in a system. People may perform some processes, while
computers and machines perform others.

The PROCESS building blocks of information systems are illustrated in Figure 2-5.
Notice at the bottom of the PROCESS column that SOFTWARE TECHNOLOGIES will be used to
automate selected processes. As you look down the PROCESS column, each of our dif-
ferent stakeholders has different perspectives of the information system. Let’s
examine those views and discuss their relevance to the PROCESS column.

System Owners’ View of PROCESSES As usual, system owners are generally inter-
ested in the big picture.They tend to focus not so much on work flow and procedures
as on high-level business functions, such as those listed in the margin of page 53.
Organizations are often organized around these business fuctions with a vice president

Information System Building Blocks Chapter Two 51

business function a group

of related processes that sup-

port the business. Functions

can be decomposed into other

subfunctions and eventually

into processes that do specific

tasks.

F I G U R E 2 - 5 A BUSINESS PROCESS Perspective of Information Systems

I N F O R M A T I O N S Y S T E M

T e c h n o l o g y D r i v e r s

B u s i n e s s D r i v e r s

Stakeholders

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

Development

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N

S
Y

S
T

E
M

IM
P

L
E

M
E

N
T

A
T

IO
N

Goal:

IMPROVE

BUSINESS

PROCESSES

Goal:

IMPROVE

BUSINESS

KNOWLEDGE

Goal:

IMPROVE

BUSINESS

COMMUNICATIONS

FUNCTIONAL

SCOPE

&

VISION

BUSINESS

PROCESS

REQUIREMENTS

BUSINESS

PROCESS

DESIGN

SOFTWARE

DESIGN

COMMERCIAL

SOFTWARE

PACKAGES

and / or

CUSTOM-BUILT

APPLICATION

PROGRAMS

SOFTWARE

TECHNOLOGIES

DATABASE

TECHNOLOGIES

INTERFACE

TECHNOLOGIES

NETWORK TECHNOLOGIES

S
Y

S
T

E
M

 O
W

N
E

R
S

Y
S

T
E

M
 U

S
E

R
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
Y

S
T

E
M

 B
U

IL
D

E
R

52 Part One The Context of Systems Development Projects

overseeing each function. Unlike business events (such as CUSTOMER SUBMITS ORDER)
that have a definite beginning and end, a business function has no starting time or
stopping time.

Historically, most information systems were (or are) function-centered. That
means the system supported one business function. An example would be a SALES

INFORMATION SYSTEM that supports only the initial processing of customer orders.
Today, many of these single-function information systems are being redesigned as
cross-functional information systems that support several business functions.
As a contemporary alternative to the traditional SALES INFORMATION SYSTEM, a cross-
functional ORDER FULFILLMENT INFORMATION SYSTEM would also support all relevant
processes subsequent to the processing of the customer order.This would include fill-
ing the order in the warehouse, shipping the products to the customer, billing the cus-
tomer, and providing any necessary follow-up service to the customer—in other
words, all business processes required to ensure a complete and satisfactory response
to the customer order, regardless of which departments are involved.

As shown in Figure 2-5, the system owners view a system’s business PROCESSES

with respect to the functional scope being supported by the systems and to a vi-
sion or expectation for improvements. The system’s business functions are fre-
quently documented by systems analysts in terms of simple lists of business events
and responses to those events. Some examples of business events and responses
are as follows:

• Event: CUSTOMER SUBMITS ORDER

Response: CUSTOMER RECEIVES ORDERED PRODUCTS

• Event: EMPLOYEE SUBMITS PURCHASE REQUISITION FOR SUPPLIES

Response: EMPLOYEE RECEIVES REQUESTED SUPPLIES

• Event: END OF MONTH

Response: INVOICE CUSTOMERS AGAINST ACCOUNTS

With respect to each event and response identified, system owners would iden-
tify perceived problems, opportunities, goals, objectives, and constraints. The costs
and benefits of developing information systems to support business functions would
also be discussed. As was the case with KNOWLEDGE, system owners are not concerned
with PROCESS details. That level of detail is identified and documented as part of the
system users’ view of processes.

System owners also frequently identify services and levels of service that they
seek to provide to customers, suppliers, and employees. A popular example is cus-
tomer, supplier, or employee self-service. Human resource systems, for example,
increasingly provide employees with the ability to enter their own transactions such
as change of address, medical claims, and training requests. System owners also identify
needs for information systems to improve service by reducing errors and improving
service.

This book will teach you how to identify and document project scope in terms of
relevant business functions, business events, and responses.

System Users’ View of PROCESSES Returning again to Figure 2-5, we are ready to
examine the system users’ view of processes. Users are concerned with the business
processes, or “work,” that must be performed in order to provide the appropriate re-
sponses to business events. System users specify the business process in terms of
process requirements for a new system. Process requirements are often docu-
mented in terms of activities, data flows, or work flow.

These process requirements must be precisely specified, especially if they are to
be automated or supported by software technology. Business process requirements
are frequently defined in terms of policies and procedures. Policies are explicit
rules that must be adhered to when completing a business process. Procedures are
the precise steps to be followed in completing the business process. Consider the
following example:

Information System Building Blocks Chapter Two 53

cross-functional
information system a

system that supports relevant

business processes from

several business functions

without regard to traditional

organizational boundaries

such as divisions, depart-

ments, centers, and offices.

process requirements a

user’s expectation of the

processing requirements for

a business process and its

information systems.

policy a set of rules that

govern a business process.

procedure step-by-step set

of instructions and logic for

accomplishing a business

process.

TYPICAL BUSINESS
FUNCTIONS

Sales

Service

Manufacturing

Shipping

Receiving

Accounting

work flow the flow of trans-

actions through business

processes to ensure appropri-

ate checks and approvals are

implemented.

CREDIT APPROVAL is a policy. It establishes a set of rules for determining whether or
not to extend credit to a customer. That credit approval policy is usually applied
within the context of a specific CREDIT CHECK procedure that established the cor-
rect steps for checking credit against the credit policy.

Process requirements are also frequently specified in terms of work flow. Most
businesses are very dependent on checks and balances to implement work flow. For
example, a purchase requisition may be initiated by any employee. But that requisition
follows a specific work flow of approvals and checks before it becomes a purchase
order transaction that is entered into an information processing system. Of course,
these checks and balances can become cumbersome and bureaucratic. Systems ana-
lysts and users seek an approproriate balance between checks and balances and
service and performance.

Once again, the challenge in systems development is to identify, express, and an-
alyze business process requirements exclusively in business terms that can be under-
stood by system users.Tools and techniques for process modeling and documentation
of policies and procedures are taught extensively in this book.

System Designers’ View of PROCESSES As was the case with the KNOWLEDGE build-
ing block, the system designer’s view of business processes is constrained by the
limitations of specific application development technologies such as Java, Visual

Basic.NET, C , and C#. Sometimes the analyst is able to choose the software tech-
nology; however, often the choices are limited by software architecture standards that
specify which software and hardware technologies must be used. In either case, the
designer’s view of processes is technical.

Given the business processes from the system users’ view, the designer must first
determine which processes to automate and how to best automate those processes.
Models are drawn to document and communicate how selected business processes
are, or will be, implemented using the software and hardware.

Today, many businesses purchase commercial off-the-shelf (COTS) software in-
stead of building that software in-house. In fact, many businesses prescribe that soft-
ware that can be purchased should never be built—or that only software that
provides true competitive advantage should be built. In the case of purchasing soft-
ware, business processes must usually be changed or adapted to work with the soft-
ware. Hence, in this scenario the business process design specifications must
document how the software package will be integrated into the enterprise.

Alternatively, in the case of building software in-house, business processes are
usually designed first. And the business process specifications must then be sup-
plemented with software specifications that document the technical design of
computer programs to be written. You may have encountered some of these soft-
ware specifications in a programming course. As was the case with KNOWLEDGE,
some of these technical views of PROCESSES can be understood by users but most
cannot.The designers’ intent is to prepare software specifications that (1) fulfill the
business process requirements of system users and (2) provide sufficient detail and
consistency for communicating the software design to system builders. The sys-
tems design chapters in this book teach tools and techniques for transforming busi-
ness process requirements into both business process design and software design
specifications.

System Builders’ View of PROCESSES System builders represent PROCESSES using pre-
cise computer programming languages or application development environments
(ADEs) that describe inputs, outputs, logic, and control. Examples include C ,

Visual Basic .NET, C# (part of the Microsoft Visual Studio .NET ADE), and Java

(available in ADEs such as IBM WebSphere and BEA WebLogic). Additionally, some
applications and database management systems provide their own internal languages
for programming. Examples include Visual Basic for Applications (in Access) and

54 Part One The Context of Systems Development Projects

software specifications
the technical design of

business processes to be

automated or supported by

computer programs to be

written by system builders.

PL-SQL (in Oracle). All these languages are used to write custom-built application

programs that automate business processes.
This book does not teach application programming. We will, however, demon-

strate how some of these languages provide an excellent environment for rapidly de-
veloping a system using prototyping software. Prototyping has become the design
technique of choice for many system designers and builders. Prototypes typically
evolve into the final version of the system or application.

As mentioned earlier, sometimes decisions may involve purchasing a commercial
software package as a system solution. In this scenario, the system builder may need to
focus on customization that must be done to the software package.The system builder
may also be expected to develop application programs that must be integrated with
the commercial package to extend the package’s functional capabilities. Finally, the sys-
tem builder must also focus on program utilities that must be written to help with the
conversion and integration of the commercial program and existing systems.

> COMMUNICATIONS Building Blocks

Let’s examine our final building block—COMMUNICATIONS. A common goal of most
organizations is to improve business communications and collaboration between
employees and other constituents. Communication improvements in information
systems are typically directed toward two critical interface goals for an information
system:

• Information systems must provide effective and efficient communication inter-
faces to the system’s users.These interfaces should promote teamwork and
coordination of activities.

• Information systems must interface effectively and efficiently with other infor-
mation systems—both with those within the business and increasingly with
other businesses’ information systems.

The COMMUNICATIONS building blocks of information systems are illustrated in our
framework in Figure 2-6. Notice at the bottom of the COMMUNICATION column that it uti-
lizes INTERFACE TECHNOLOGIES to implement the communication interfaces. And once
again, as you look down the COMMUNICATION column, each of our different stakehold-
ers has different views of the system. Let’s examine those views and discuss their
relevance to systems development.

System Owners’ View of COMMUNICATION The system owners’ view of COMMUNI-
CATION is relatively simple. Early in a systems development project, system owners
need to specify:

• With which business units, employees, customers, and external businesses must
the new system interface?

• Where are these business units, employees, customers, and external businesses
located?

• Will the system have to interface with any other information, computer, or
automated systems?

Answers to these questions help to define the communications scope of an infor-
mation systems development project. Minimally, a suitable system owners’ view of
information system communication scope and vision might be expressed as a sim-
ple list of business locations or systems with which the information system must in-
terface. Again, relevant problems, opportunities, or constraints may be identified
and analyzed.

System Users’ View of COMMUNICATION System users’ view of COMMUNICATION is
more in terms of the information system’s inputs and outputs. Those inputs and
outputs can take many forms; however, the business interface requirements are more

Information System Building Blocks Chapter Two 55

application program a

language-based, machine-

readable representation of

what a software process is

supposed to do or how a

software process is supposed

to accomplish its task.

prototyping a technique

for quickly building a function-

ing but incomplete model of

the information system using

rapid application development

tools.

F I G U R E 2 - 6 A BUSINESS COMMUNICATIONS Perspective of Information Systems

B u s i n e s s D r i v e r s

T e c h n o l o g y D r i v e r s

I N F O R M A T I O N S Y S T E MStakeholders

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

Development

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N

S
Y

S
T

E
M

IM
P

L
E

M
E

N
T

A
T

IO
N

Goal:

IMPROVE

BUSINESS

PROCESSES

Goal:

IMPROVE

BUSINESS

KNOWLEDGE

Goal:

IMPROVE

BUSINESS

COMMUNICATIONS

COMMUNICATIONS

SCOPE

&

VISION

BUSINESS

INTERFACE

REQUIREMENTS

INTERFACE

DESIGN

SOFTWARE

TECHNOLOGIES

DATABASE

TECHNOLOGIES

INTERFACE

TECHNOLOGIES

INTERFACE

SOLUTION

NETWORK TECHNOLOGIES

S
Y

S
T

E
M

 O
W

N
E

R
S

Y
S

T
E

M
 U

S
E

R
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
Y

S
T

E
M

 B
U

IL
D

E
R

56 Part One The Context of Systems Development Projects

important than the technical format. The inputs and outputs represent how the pro-
posed system would interact with users, employees, business units, customers, and
other businesses.

The details of those inputs and outputs are important. System users might spec-
ify the details in the form of a list of fields (and their values) that make up the inputs
or outputs. Alternatively, and because system users have become comfortable with
the graphical user interface (e.g., Windows or Web browsers) for the system, the
details might be specified in the form of prototypes. System users are increasingly
demanding that their custom-built information system applications have the same
“look and feel” as their favorite PC tools such as word processors and spreadsheets.
This common graphical user interface makes each new application easier to learn
and use.

Both list and prototype approaches to documenting the system users’ view of
COMMUNICATION will be addressed in various chapters of this book.

System Designers’ View of COMMUNICATION System designers must be concerned
with the technical design of both the user and the system-to-system communication in-
terfaces. We call these interface specifications. Let’s begin with the user interface.

Users and designers can be involved in interface design. But whereas system users
are interested in requirements and format, system designers have other interests such
as consistency, compatibility, completeness, and user dialogues. The user dialogue

(sometimes called interface navigation) specifies how the user will navigate through
an application to perform useful work.

The trend toward graphical user interfaces (GUIs) such as Windows and Web
browsers has simplified life for system users but complicated the design process for
system designers. In a typical Windows application, there are many different things
users can do at any given time—type something, click the left mouse button on a menu
item or toolbar icon, press the F1 key for help, maximize the current window, mini-
mize the current window, switch to a different program, and many others. Accordingly,
the system designer views the interface in terms of various system states, events that
change the system from one state to another, and responses to those events. Today,
there are many more design decisions and considerations the system designer must ad-
dress to document the dialogue of a graphical user interface solution. Tools used to
document user dialogues will be discussed in the design unit of this book.

Web interfaces have further complicated the designer’s activities. Society has come
to expect more glitz in Web interfaces. For that reason, it is not at all uncommon for the
design team to include graphical design specialists and human–computer interface spe-
cialists to ensure that the interface for a Web server is both compelling and easy to use.

Although not depicted in Figure 2-6, modern system designers may also design
keyless interfaces such as bar coding, optical character recognition, pen, and voice or
handwriting recognition. These alternatives reduce errors by eliminating the key-
board as a source of human error. However, these interfaces, like graphical user inter-
faces, must be carefully designed to both exploit the underlying technology and
maximize the return on what can be a sizable investment.

Finally, and as suggested earlier, system designers are also concerned with system-
to-system interfaces. Increasingly, system interfaces are the most difficult to design
and implement. For instance, consider a procurement information system that is used
to initiate and purchase everything from supplies to equipment. A procurement sys-
tem must interface with other information systems such as human resources (to
determine authority to purchase and approve orders), accounting (to determine if
funds are available against an account), receiving (to determine if ordered goods were
received, and accounts payable (to initiate payment). These interfacing systems may
use very different software and databases.This can greatly complicate system interface
design. System interfaces become even more complex when the interface is between
information systems in different businesses. For example, in the aforementioned sys-
tem, we might want to enable our procurement system to directly interface with a
supplier’s order fulfillment system.

Information System Building Blocks Chapter Two 57

interface specifications
technical designs that docu-

ment how system users are to

interact with a system and

how a system interacts with

other systems.

user dialogue a specifica-

tion of how the user moves

from window to window or

page to page, interacting with

the application programs to

perform useful work.

middleware utility software

that allows application soft-

ware and systems software

that utilize differing technolo-

gies to interoperate.

Legacy information systems in most businesses were each built with the tech-
nologies and techniques that represented the best practices at the time when they
were developed. Some systems were built in-house. Others were purchased from
software vendors or developed with consultants. As a result, the integration of these
heterogeneous systems can be difficult. Consequently, the need for different systems
to interoperate is pervasive. Accordingly, the time system designers spend on system-
to-system integration is frequently as much as or more than the time they spend on
system development. The system designer’s mission is to find or build interfaces
between these systems that (1) do not create maintenance projects for the legacy
systems, (2) do not compromise the superior technologies and design of the new
systems, and (3) are ideally transparent to the system users.

System Builders’ View of COMMUNICATION System builders construct, install, test,
and implement both user and system-to-system interface solutions using INTERFACE

TECHNOLOGY (see Figure 2-6). For user interfaces, the interface technology is frequently
embedded into the application development environment (ADE) used to construct
software for the system. For example, ADEs such as those for Visual Studio .NET, and
Powerbuilder include all the interface technology required to construct a Windows

graphical user interface (GUI). ADEs such as those for Java and Cold Fusion provide
similar functionality for Web interfaces. Alternatively, the user interface could be
constructed with a stand-alone interface technology that supports xHTML (e.g.,
Macromedia’s Dreamweaver).

System-to-system interfaces are considerably more complex than user interfaces
to construct or implement. One system-to-system interfacing technology that is cur-
rently popular is middleware. Middleware is a layer of utility software that sits in be-
tween application software and systems software to transparently integrate differing
technologies so that they can interoperate.

One common example of middleware is the open database connectivity (ODBC)
tools that allow application programs to work with different database management
systems without having to be rewritten to take into consideration the nuances and dif-
ferences of those database management systems. Programs written with ODBC com-
mands can, for the most part, work with any ODBC-compliant database (which
includes dozens of different database management systems). Similar middleware prod-
ucts exist for each of the columns in our information system framework. System
designers help to select and apply these products to integrate systems.

At the time of this writing, XML (eXtensible Markup Language) has emerged as
an evolving standard for system-to-system communication. XML is unique in its ability
to share data between systems through data streams that not only include the data but
also include the meaning and structural definitions for that data. XML capabilities are
the new frontier for software that implements electronic data exchange over the Web.

Once again, this book is not about system construction; however, we present the
system builder’s view because the other COMMUNICATION views lead to the construc-
tion of the actual communication interfaces.

58 Part One The Context of Systems Development Projects

1John A. Zachman,“A Framework for Information Systems Architecture,” IBM Systems Journal 26, no. 3 (1987),

pp. 276–292.

Network Technologies and the IS Building Blocks

In this chapter, we unveiled a framework for information systems architecture that
was initially inspired by the work of John Zachman.1 The Zachman “Framework for
Information Systems Architecture” achieved international recognition and use.The
Zachman framework is a matrix (similar to the chapter map at the beginning of this
chapter). The rows correspond to what Zachman calls perspectives of different

PROCESS

Building

Blocks

KNOWLEDGE

Building

Blocks

COMMUNICATIONS

Building

Blocks

NETWORK TECHNOLOGIES

Lea
rning

 Roa
d
m

a
p

So where are we now? If you have already read Chapter 1, you learned about infor-

mation systems development projects with a focus on the stakeholders, the process,

and the business and technical drivers that influence the need for new systems. If you

haven’t already done so, you should at least skim Chapter 1 to learn about the context

of systems analysis and design methods.

In Chapter 2, you learned about the product itself—information systems—in

terms of basic building blocks.This architectural perspective focused on the different

information system views of the various stakeholders. You learned that system own-

ers and users view information systems from the standpoint of achieving goals—

improving business knowledge, processes, and communications—whereas system

designers and builders view information systems in terms of technology that supports

the achievement of goals.

Most readers should proceed directly to Chapter 3, which introduces you to the

process of information system development. You’ll learn about information systems

problem solving, methodologies, and development technology as you expand your

education in the fundamentals for systems analysis and design methods.

people involved in systems development and use. The columns correspond to
focuses on different aspects of the information system. Zachman’s architecture
includes a separate column that closely equates to what our framework recognizes
as NETWORK TECHNOLOGIES. (We have chosen to omit that column because network
frameworks are more typically covered in data communications and networking
textbooks—and those textbooks tend to focus on the Open Systems Interconnect
(OSI) framework as opposed to Zachman’s.)

But unquestionably, today’s information systems are built on networks. Figure 2-7
shows a modern high-level information systems framework that demonstrates the
contemporary layering of an information system’s KNOWLEDGE, PROCESSES, and COMMUNI-
CATIONS building blocks on NETWORK TECHNOLOGIES. Today’s best-designed information
systems tend to separate these layers and force them to communicate across the net-
work.This clean-layering approach allows any one building block to be replaced with
another while having little or no impact on the other building blocks. For example,
the DATABASE TECHNOLOGY, SOFTWARE TECHNOLOGY, or INTERFACE TECHNOLOGY could be
changed without impacting the other building blocks.

It is not the intent of this book to teach network technology. Most information
systems and technology programs offer courses that can expand your understanding
of network technology.

Information System Building Blocks Chapter Two 59

F I G U R E 2 - 7

The Role of the
Network in
Information
Systems

1. Organizations are served by a federation of infor-
mation systems that support various business func-
tions. Businesses have front-office information
systems that support business functions that ex-
tend out to their customers and back-office infor-
mation systems that support internal business
operations and interact with suppliers.

2. The many classes of information system applica-
tions overlap and interoperate to complement and
supplement one another.

3. Information systems architecture provides a unify-
ing framework into which various stakeholders
with different perspectives can organize and view
the fundamental building blocks of information
systems:

a. System owners and system users tend to focus
on three common business goals of any infor-
mation system—improvements in business
knowledge, business processes, and business
communications.

b. System designers and builders tend to focus
on technologies used by the information system
in order to achieve the business goals.They
focus on the database technologies that
support business knowledge, software tech-
nologies that support business processes, and
interface technologies that support business
communications.

4. The three views represented in the model are:

a. KNOWLEDGE—the business knowledge that helps
managers make intelligent decisions.

b. PROCESSES—the activities (including manage-
ment) that carry out the mission of the
business.

c. COMMUNICATIONS—how the system interfaces
with its users and other information systems.

5. Improving business knowledge is a fundamental
goal of an information system:

a. The system owner is interested in information
that adds new business knowledge.

b. Information system users are knowledgeable
about the data that describes the business.This
data is used to create information and subse-
quent business knowledge.

c. System designers are concerned with the
database technology that will be used by the
information system to support business
knowledge.

d. System builders focus on the actual database
management system technology used to store
the business data that will support business
knowledge.

6. Improving business processes is a fundamental
goal of an information system:

a. System owners are interested in the business
functions the groups of related processes, that
support a business.

b. System users specify the business process in
terms of process requirements for a new sys-
tem. Business process requirements are fre-
quently defined in terms of policies and
procedures. Policies are explicit rules that
must be adhered to when completing busi-
ness processes. Procedures are the
precise steps to be followed in completing
business processes.

c. System designers view business processes
in terms of the application development envi-
ronment and the software technology used
to develop the system. Many businesses pur-
chase commercial off-the-shelf software solu-
tions instead of building the software
in-house.

d. System builders focus on custom-built applica-
tions programs that automate business
processes.

7. A common goal of most organizations is to im-
prove business communications:

a. System owners define the communications
scope of an information system development
project.

b. System users view communications in terms of
the information system’s inputs and outputs.

c. System designers are concerned with the tech-
nical design of both user and system-to-system
communication interfaces.

d. System builders are concerned with the in-
terface technology they use to implement
user and system-to-system communication
interfaces.

8. Today’s information systems are built on net-
works. Network technology allows properly de-
signed information systems to separate the
KNOWLEDGE, PROCESS, and COMMUNICATION building
blocks and force them to communicate across
the network.

Summary

60 Part One The Context of Systems Development Projects

1. Companies generally need to use more than one
information system to support all their different
business functions. These functions are fre-
quently referred to as either front-office infor-
mation systems or back-office systems. Define
each of these two types of systems and identify
some of the typical business functions sup-
ported by them.

2. As a systems analyst, designer, or builder, you will
frequently be involved with your organization’s
information systems architecture. What is an in-
formation systems architecture, and what is its
purpose?

3. Although system owners and system users gen-
erally have different perspectives of their orga-
nization’s information system, both groups tend
to focus on three business goals that are com-
mon to any information system. What are these
goal-oriented perspectives, and what is their
importance?

4. In an information system, the process building
blocks represent the work that occurs in a sys-

tem, which may be performed by people or by
computers and machinery. Stakeholders tend to
have different views or perspectives of these
building blocks. What are these different stake-
holder perspectives regarding processes, and
how they differ from each other?

5. Assume you are a systems designer and your or-
ganization is building a new inventory manage-
ment system. In reviewing the requirements
documentation, it appears that an error was
made and some additional data elements were
left out that are needed to meet the business or
technical objectives of the inventory manage-
ment system. What should you not do at this
point?

6. Assume you are designing a retail point-of-sale
(POS) system for your company. What are the
typical system interfaces of a point-of-sale system
that need to be taken into account in designing
the POS system?

7. As business technology becomes more powerful
and sophisticated, many businesses are redesigning

Problems and Exercises

Information System Building Blocks Chapter Two 61

1. What is the difference between front-office
information systems and back-office information
systems?

2. How do transaction processing systems (TPSs),
management information systems (MISs), and
decision support systems (DSSs) interact with
each other?

3. Why do we need to identify the information
system architecture?

4. What are the three business goal–oriented per-
spectives or views of an information system
that systems owners and system users tend to
focus on? What are the three technological
perspectives that system designers and builders
tend to focus on?

5. How are the business perspectives and the tech-
nology perspectives of an information system
related?

6. In any given building blocks of an information
system, the views of four groups of stakeholders
need to be taken into account during the devel-
opment of the system. What are these four stake-
holder groups?

7. Briefly describe how system designers and
system builders tend to view KNOWLEDGE in a
system.

8. Understanding business functions is essential in
the process building block of an information sys-
tem. What are six high-level business functions
typical of many companies?

9. If you were the system owner of an online CD
store, list two business functions of your online
store in terms of business events and responses
to those events.

10. Give an example of a policy and the procedures
needed to implement the policy.

11. What is prototyping? Why do we need such a
technique?

12. What are the two most critical goals in the com-
munication building blocks?

13. What is user dialogue?
14. Why has the increasing use of graphical user in-

terfaces (GUI) complicated the design process for
system designers?

15. What role does network technology play in devel-
oping an information system?

Review Questions
1

2

1. Select a medium to large organization. The organi-

zation can be in the public or private sector, and it

can be one with which you are personally familiar

or one for which information is readily available.

a. Describe the organization you have selected

(type of organization, mission, products or ser-

vices, size, annual sales or revenues, etc.).

b. Select one of the major information systems the

organization uses and/or is developing, and

describe it.

c. In the organization you selected, who would

typically be the owner of this system?

d. Describe, from the viewpoint of the owner, the

information produced by this system.

e. If the organization initiated a project to replace

or modify this system, how might the system

owner define the scope and vision of the project

within the context of the organization you

selected

f. Who are the typical users of this system?

g. Describe, from the perspective of the users, the

information produced by this system.

h. What is an essential difference in how system

owners and users view the information pro-

duced by the system?

2. Contact and interview two or three systems ana-

lysts, in different organizations if possible, regard-

ing this chapter’s subtopic on communication

building blocks.

a. Describe the nature of each analyst’s company

or organization, its mission, and current busi-

ness issues or needs.

b. How important does each of the system ana-

lysts consider communications with system

users versus system builders; that is, which is

more important and why?

c. Do they find it more difficult to communicate

with the system users or with the system

builders? Why?

Projects and Research

their single-function information systems,

such as sales, into cross-functional information

systems that provide integrated support for

separate, but related, business functions. Assume

that you are designing an order management sys-

tem that will integrate all business functions trig-

gered by the submission of a sales order. What

typical business functions would be included in a

cross-functional information system?

8. Middleware is frequently used in systems integra-

tion projects when different information systems

are tied together to exchange data via system-to-

system interfaces. Briefly define middleware, ex-

plain its benefits, and provide an example.

9. In identifying and documenting business require-

ments, systems analysts need to be able to distin-

guish between laws, policies, and procedures.

Why is this important?

10. It is common for system owners and system

users to have very different views of the same

business processes used in an information sys-

tem. Why do you think this is? Consider an air-

line that is developing a customer self-check-in

system at airports. What do you think the per-

spective of the system owners is? What about the

system users? Give examples of how the business

processes for an airline check-in system will be

viewed by the system owners and system users.

62 Part One The Context of Systems Development Projects

11. System designers and system builders also

tend to have very different views of system

building blocks. Explain the different ways

that designers and builders might view the

communication building blocks using the cus-

tomer self check-in system scenario described

in the last question.

12. System designers frequently have a number of

technical design options to choose from when

designing interfaces between different systems

and applications. What should designers always

keep in mind when designing these interfaces?

13. The framework for information systems archi-

tecture used in this textbook is derived from

the pioneering framework developed by John

Zachman. What is one of the advantages of de-

signing systems based upon this or similar

frameworks?

14. At times, an organization may choose to purchase a

commercial off-the-shelf (COTS) software package.

What do you think are the pros and cons of using

off-the-shelf applications compared to custom-

built applications?

15. If an organization chose a COTS package as their

solution, would the view of the system builder be

the same as for a custom-built application? If not,

how would it be different?

1. An IT manager requests an amount of funds to
upgrade the e-mail server. Without the necessary
upgrade, the server will be burdened by the sheer
amount of e-mail and will run the risk of crashing.
The business manager denies the request, citing

the past reliability of the server, and expresses
concern at the recent large IT expenditures. The
business manager leaves the conversation wonder-
ing what IT investments are really necessary, and
if the IT manager is just creating “job security.”

Minicases

Information System Building Blocks Chapter Two 63

d. If they were CIOs for a day, what would
each of them change about the way their de-
signers communicate with system users and
builders?

e. Which viewpoints do you agree with, or do you
have a totally different one than the people you
interviewed? Justify your answer.

3. Select an information system used by a medium to
large organization. It can be one with which you
are personally familiar or one whose organizational
structure and information system you have
researched.

a. What is the nature of the organization you have
selected, its mission, and the high-level purpose
of their information system?

b. Who is the owner of the system?
c. If you were the owner of the system, describe

how you would see the system processes from
that viewpoint.

d. Who are the users of the system?
e. If you were one of the system users, describe

how you would see the system processes from
that viewpoint.

f. If you were the system designer, describe the
system processes from that viewpoint.

g. What are the essential differences in viewpoints?

4. Imagine that you are the owner of a small business
and are searching on the Web for a company that
can supply the products or services needed by
your business. Find several business-to-business
(B2B) Web sites that offer the products or services
for which your business is looking. Familiarize
yourself with their Web sites from the viewpoint
of a typical business customer who is visiting these
sites for the first time.

a. What is the nature of your organization, and
for what type of goods or services are you
looking?

b. Which B2B sites did you find on the Web?
c. Compare the different sites. If all other things

were equal (price, availability, brands offered,
etc.), would you be more likely to purchase

goods or services from one than the other(s),
solely because of differences in their Web sites?
Why or why not?

d. From the viewpoint of a business customer, do
you think design or usability is more important
for a Web site? Explain your answer.

e. From the viewpoint of a consumer, would
your answer be the same as in the preceding
question? Explain.

5. Research several articles published in the last few
years in your library and/or on the Web that dis-
cuss ethical issues related to systems design.

a. What articles were you able to find?
b. Describe some of the situations and ethical

issues that might arise from time to time in
systems design.

c. Pick one of the situations described in (b) and
describe what you believe to be the system
designer’s ethical obligation, if any.

d. (Extra credit) Do you think that requiring IT
professionals, that is, systems analysts, designers,
and builders, to be licensed or certified would
increase professionalism and/or reduce unethi-
cal behavior? Why or why not?

6. The textbook uses a framework for describing in-
formation systems architecture that is based upon
John Zachman’s “Framework for Information Sys-
tems Architecture” model. Using the Web or your
school library, research other frameworks for de-
scribing IS architectures, and select one, such as
Open Systems Interconnect (OSI).

a. Which frameworks did you find, and which did
you select?

b. Describe its approach to communicating systems
architecture. Include a diagram if applicable.

c. What are its similarities to the framework used
in the textbook?

d. What are its differences?
e. If you were a systems owner, which one would

you find easier to understand?
f. If you were a systems analyst, which one would

you find easier to understand?

1. How do you solve a seemingly insolvable problem?
As a team, develop a methodology for solving the
following question: How many homes are there in
the United States that are painted yellow?

2. Try something you have not done before (legal,
not dangerous, and rated G). Share with the class

what you did, and why you did it. Why is it impor-
tant to try and experience new things?

3. Share (with your team) an unethical incident that
you have observed. How did that incident affect
you directly? What indirect impact did it have on
others?

Team and Individual Exercises

Galitz, Wilbert O. The Essential Guide to User Interface

Design: An Introduction to GUI Design Principles

and Techniques, 2nd ed. New York: John Wiley &

Sons, 2002.

Goldman, James E.; Phillip T. Rawles; and Julie R. Mariga.

Client/Server Information Systems: A Business-Oriented

Approach. New York: John Wiley & Sons, 1999. For

students who are looking for a student-oriented intro-

duction to information technology architecture and

data communications, we recommend our colleagues’

book because it was written for business and informa-

tion systems majors to provide a comprehensive survey

of the technology that supports today’s information

systems.

Inmon, W. H. Building the Data Warehouse, 3rd ed. New

York: John Wiley & Sons, 2002.

Sethi,Vikram, and William R. King. Organizational Transfor-

mation through Business Process Reengineering. Upper

Saddle River, NJ: Prentice Hall, 1998.

Taylor, David, and Alyse D.Terhune. Doing E-Business: Strate-

gies for Thriving in an Electronic Marketplace. New

York: John Wiley & Sons, 2000.

Zachman, John A. “A Framework for Information System

Architecture.” IBM Systems Journal 26, no. 3 (1987). We

adapted the matrix model for information system building

blocks from Mr. Zachman’s conceptual framework.We first

encountered John Zachman on the lecture circuit, where

he delivers a remarkably informative and entertaining talk

Suggested Readings

The IT manager, likewise, leaves the meeting frus-
trated at not having the tools he/she needs to do
the job properly. The IT manager knows that
when the server crashes, it will be his/her respon-
sibility to fix.

a. Do you think this happens often in business?
b. What perspectives do you think each are taking

on the problem?
c. How could each have communicated those per-

spectives and business needs better?

2. Interview at least one person in marketing, cus-
tomer service, and accounting/payroll in the same
company. What types of information do they han-
dle? Do they share information across depart-
ments? Do you notice overlap in information or in
data entry?

3. Government service departments are deeply bur-
dened by the amount of data that they hold and
process. Interview someone from a service de-
partment and draft a short essay. Service depart-
ments that must sift through vast amounts of
data are those that deal with, for example, miss-
ing persons, child protective services, DMV, and
tracking of persons on probation following a

crime. You should include, but are not limited to,
topics such as:

• What is the department’s (or person’s) job?
• What kind of data do they collect and analyze?
• What kind of analyses do they do on the data?
• How much information do they collect, from

whom, and what programs do they use?

4. Your neighborhood grocery store, Wow Grocery,
always seems to be running out of your favorite ice
cream. In frustration, you ask the store manager
why they always seem to be out.The store man-
ager, Bob, tells you that the small store cannot
afford an inventory management system, so inven-
tory is updated manually.This means that often-
times the store must either stock extra quantities
of well-liked items or risk running out. Unfortu-
nately, Wow Grocery does not have a large enough
freezer to store additional stocks of ice cream. As
a result, the store runs out of the ice cream quite
frequently.

5. What can Wow Grocery do to automate or manage
its inventory system without spending much
money? Draft your solution into a short paper.

64 Part One The Context of Systems Development Projects

on the same subject as this article. Mr. Zachman’s frame-

work has drawn professional acclaim and inspired at least

one conference on his model. His framework is based on

the concept that architecture means different things to

different people. His framework suggests that information

systems consist of three distinct “product-oriented”

views—data, processes, and technology (which we re-

named communications)—to which we added a fourth

view, “interface.” The Zachman framework offers six dif-

ferent audience-specific views—for each of those product

views—the ballpark and owner’s views (which we re-

named as owner’s and user’s views, respectively), the de-

signer’s and builder’s views (which we combined into our

designer’s view), and an out-of-context view (which we

called the builder’s view).

Information System Building Blocks Chapter Two 65

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

3Information Systems
Development

Chapter Preview and Objectives

This chapter more closely examines the systems development process that was first intro-

duced in Chapter 1. Successful systems development is governed by some fundamental,

underlying principles that we introduce in this chapter. We also introduce a basic, repre-

sentative systems development methodology as a disciplined approach to developing in-

formation systems. Although such an approach will not guarantee success, it will greatly

improve the chances of success. You will know that you understand information systems

development when you can:

❚ Describe the motivation for a standard systems development process in terms of the

Capability Maturity Model (CMM) for quality management.

❚ Differentiate between the system life cycle and a system development methodology.

❚ Describe 10 basic principles of systems development.

❚ Define problems, opportunities, and directives—the triggers for systems development

projects.

❚ Describe the PIECES framework for categorizing problems, opportunities, and

directives.

❚ Describe the essential phases of systems development. For each phase, describe its

purpose, inputs, and outputs.

❚ Describe cross life-cycle activities that overlap multiple system development phases.

❚ Describe typical, alternative “routes” through the essential phases of systems

development. Describe how routes may be combined or customized for different types

of projects.

❚ Describe various automated tools for systems development.

Work is getting underway at SoundStage Entertainment Club for the systems analysis
and design of their member services information system. But the more Bob Martinez
learns about the system, the more confused he gets. Bob can recall some of his pro-
gramming assignments in college. Most of them were just a page or two of bulleted
points listing required features. It was pretty easy to get your head around that. But
the new SoundStage system will involve tracking member contacts and purchase re-
quirements, promotions, sales, shipments, inventory, multiple warehouses, Web sites,
and more. Bob wonders how they will even list all the requirements, let alone keep
them straight. How will they know what data they need to track? How will they know
what every piece of programming needs to do? He mentioned that to his boss, Sandra.
She said it was all about following “the methodology.” He remembered something
about methodology from a systems analysis class. At the time it seemed like a lot of
unnecessary work. But he is starting to see now that on a large project, following an
established method may be the only path that is safe to travel.

68 Part One The Context of Systems Development Projects

1Richard Hunter,“AD Project Portfolio Management,” Proceedings of the Gartner Group IT98 Symposium/Expo

(CD-ROM).The Gartner Group is an industry watchdog and research group that tracks and projects industry trends for

IT managers.

systems development
process a set of activities,

methods, best practices,

deliverables, and automated

tools that stakeholders (from

Chapter 1) use to develop and

continuously improve informa-

tion systems and software

(from Chapters 1 and 2).

Introduction

The Process of Systems Development

This chapter introduces a focus on information systems development.We will examine
a systems development process. Notice we did not say “the” process—there are as
many variations on the process as there are experts and authors. We will present one
representative process and use it consistently throughout this book. The chapter
home page shows an expanded number of phases compared to the home page of
Chapter 1. This is because we have factored the high-level phases such as system
analysis and system design from Chapter 1 into multiple phases and activities. We
have also refined the size and place of the stakeholder roles to reflect “involvement”
as opposed to emphasis or priority. And we have edited and enhanced the building
blocks to indicate deliverables and artifacts of system development. All of these
modifications will be explained in due time.

Why do organizations embrace standardized processes to develop information sys-
tems? Information systems are a complex product. Recall from Chapter 2 that an infor-
mation system includes data, process, and communications building blocks and
technologies that must serve the needs of a variety of stakeholders. Perhaps this ex-
plains why as many as 70 percent or more of information system development projects
have failed to meet expectations, cost more than budgeted, and are delivered much later
than promised. The Gartner Group suggests that “consistent adherence to moderately
rigorous methodology guidelines can provide 70 percent of [systems development] or-
ganizations with a productivity improvement of at least 30 percent within two years.”1

Increasingly, organizations have no choice but to adopt and follow a standardized
systems development process. First, using a consistent process for systems development
creates efficiencies that allow management to shift resources between projects. Second,
a consistent methodology produces consistent documentation that reduces lifetime
costs to maintain the systems. Finally, the U.S. government has mandated that any orga-
nization seeking to develop software for the government must adhere to certain quality
management requirements. A consistent process promotes quality. And many other or-
ganizations have aggressively committed to total quality management goals in order to
increase their competitive advantage. In order to realize quality and productivity im-
provements, many organizations have turned to project and process management
frameworks such as the Capability Maturity Model, discussed in the next section.

Level

5

OPTIMIZED

(continuous

process

improvement)
Level

4

MANAGED

(process

managed

and

measured)

Level

3

DEFINED

(consistent

process

used)
Level

2

REPEATABLE

(consistent

project

management)

RISK

COMPETITIVENESS

Level

1

INITIAL

(inconsistent

methods)

> The Capability Maturity Model

It has been shown that as an organization’s information system development process ma-
tures, project timelines and cost decrease while productivity and quality increase. The
Software Engineering Institute at Carnegie Mellon University has observed and measured
this phenomenon and developed the Capability Maturity Model (CMM) to assist all
organizations to achieve these benefits.The CMM has developed a wide following, both
in industry and government. Software evaluation based on CMM is being used to qualify
information technology contractors for most U.S. federal government projects.

The CMM framework for systems and software is intended to help organizations
improve the maturity of their systems development processes.The CMM is organized
into five maturity levels (see Figure 3-1):

• Level 1—Initial: This is sometimes called anarchy or chaos. At this level, sys-
tem development projects follow no consistent process. Each development
team uses its own tools and methods. Success or failure is usually a function
of the skill and experience of the team. The process is unpredictable and not
repeatable. A project typically encounters many crises and is frequently over
budget and behind schedule. Documentation is sporadic or not consistent
from one project to the next, thus creating problems for those who must
maintain a system over its lifetime. Almost all organizations start at Level 1.

• Level 2—Repeatable: At this level, project management processes and practices
are established to track project costs, schedules, and functionality. The focus
is on project management. A system development process is always followed,
but it may vary from project to project. Success or failure is still a function
of the skill and experience of the project team; however, a concerted effort
is made to repeat earlier project successes. Effective project management
practices lay the foundation for standardized processes in the next level.

Information Systems Development Chapter Three 69

Capability Maturity
Model (CMM) a standard-

ized framework for assessing

the maturity level of an organi-

zation’s information systems

development and manage-

ment processes and products.

It consists of five levels of

maturity.

F I G U R E 3 - 1

The Capability
Maturity Model
(CMM)

T A B L E 3 - 1 Impact of System Development “Process” on Quality

CMM Project Statistics for a Project Resulting in 200,000 Lines of Code

Organization’s Project Project Number Median Lowest Highest
CMM Duration Person- of Defects Cost Cost Cost
Level (months) Months Shipped ($ millions) ($ millions) ($ millions)

1 30 600 61 5.5 1.8 100

2 18.5 143 12 1.3 .96 1.7

3 15 80 7 .728 .518 .933

Source: Master Systems, Inc.

• Level 3—Defined: In this level, a standard system development process
(sometimes called a methodology) is purchased or developed. All projects
use a tailored version of this process to develop and maintain information
systems and software. As a result of using the standardized process for all
projects, each project results in consistent and high-quality documentation
and deliverables. The process is stable, predictable, and repeatable.

• Level 4—Managed: In this level, measurable goals for quality and productivity
are established. Detailed measures of the standard system development process
and product quality are routinely collected and stored in a database. There is
an effort to improve individual project management based on this collected
data. Thus, management seeks to become more proactive than reactive to sys-
tems development problems (such as cost overruns, scope creep, schedule
delays, etc.). Even when a project encounters unexpected problems or issues,
the process can be adjusted based on predictable and measurable impacts.

• Level 5—Optimizing: In this level, the standardized system development
process is continuously monitored and improved based on measures and data
analysis established in Level 4. This can include changing the technology and
best practices used to perform activities required in the standard system
development process, as well as adjusting the process itself. Lessons learned
are shared across the organization, with a special emphasis on eliminating
inefficiencies in the system development process while sustaining quality. In
summary, the organization has institutionalized continuous systems develop-
ment process improvement.

It is very important to recognize that each level is a prerequisite for the next level.
Currently, many organizations are working hard to achieve at least CMM Level 3

(sometimes driven by a government or organizational mandate). A central theme to
achieving Level 3 (Defined) is the use of a standard process or methodology to build
or integrate systems. As shown in Table 3-1, an organization can realize significant
improvements in schedule and cost by institutionalizing CMM Level 3 process
improvements.2

> Life Cycle versus Methodology

The terms system life cycle and system development methodology are frequently and
incorrectly interchanged. Most system development processes are derived from a nat-
ural system life cycle. The system life cycle just happens. Figure 3-2 illustrates two

70 Part One The Context of Systems Development Projects

system development
methodology a formalized

approach to the systems de-

velopment process; a stan-

dardized process that includes

the activities, methods, best

practices, deliverables, and

automated tools to be used

for information systems

development.

2White Paper,“Rapidly Improving Process Maturity: Moving Up the Capability Maturity Model through Outsourcing”

(Boston: Keane, 1997, 1998, p.11).

system life cycle the fac-

toring of the lifetime of an

information system into two

stages, (1) systems develop-

ment and (2) systems opera-

tion and maintenance—first

you build it; then you use and

maintain it. Eventually, you

cycle back to redevelopment

of a new system.

Lifetime

of a

System

LIFE-CYCLE STAGE

A System

Development

Process

Ideal ly using a

System Development

Methodology

The “Systems

Development

Process” and

various System
Development

Methodologies

are the focus of
this chapter and

textbook.

LIFE-CYCLE STAGE

System

Operat ion

and

Maintenance

Using the system’s

chosen informat ion

technology

Conversion

Obsolescence

life-cycle stages. Notice that there are two key events that trigger a change from one
stage to the other:

• When a system cycles from development to operation and maintenance, a
conversion must take place.

• At some point in time, obsolescence occurs (or is imminent) and a system
cycles from operation and maintenance to redevelopment.

Actually, a system may be in more than one stage at the same time. For example, one ver-
sion may be in operation and support while the next version is in development.

So how does this contrast with a systems development methodology? A systems
development methodology “executes” the systems development stage of the system
life cycle. Each individual information system has its own system life cycle. The
methodology is the standard process to build and maintain that system and all other
information systems through their life cycles. Consistent with the goals of the CMM,
methodologies ensure that:

• A consistent, reproducible approach is applied to all projects.
• There is reduced risk associated with shortcuts and mistakes.
• Complete and consistent documentation is produced from one project to the

next.
• Systems analysts, designers, and builders can be quickly reassigned between

projects because all use the same process.
• As development teams and staff constantly change, the results of prior work

can be easily retrieved and understood by those who follow.

Methodologies can be purchased or homegrown. Why purchase a methodology?
Many information system organizations can’t afford to dedicate staff to the develop-
ment and continuous improvement of a homegrown methodology. Methodology ven-
dors have a vested interest in keeping their methodologies current with the latest
business and technology trends. Homegrown methodologies are usually based on
generic methodologies and techniques that are well documented in books and on
Web sites. Examples of system development methodologies are listed in the margin
on the following page.You should be able to research most of them on the Web. Many
of their underlying methods will be taught in this textbook.

Throughout this book, we will use a methodology called FAST, which stands
for Framework for the Application of Systems Thinking. FAST is not a real-world com-
mercial methodology. We developed it as a composite of the best practices we’ve

Information Systems Development Chapter Three 71

FAST a hypothetical method-

ology used throughout this

book to demonstrate a repre-

sentative systems develop-

ment process. The acronym’s

letters stand for Framework

for the Application of Systems

Thinking.

F I G U R E 3 - 2

The System Life
Cycle

REPRESENTATIVE
SYSTEM
DEVELOPMENT
METHODOLOGIES

Architected Rapid
Application Development
(Architected RAD)

Dynamic Systems
Development Methodology
(DSDM)

Joint Application
Development (JAD)

Information Engineering (IE)

Rapid Application
Development (RAD)

Rational Unified Process
(RUP)

Structured Analysis and
Design (old, but still
occasionally encountered)

eXtreme Programming (XP)

Note: There are many
commercial methodologies
and software tools
(sometimes called
methodware) based on the
above general
methodologies.

encountered in many commercial and reference methodologies. Unlike many com-
mercial methodologies, FAST is not prescriptive.That is to say, FAST is an agile frame-
work that is flexible enough to provide for different types of projects and strategies.
Most important, FAST shares much in common with both the book-based and the
commercial methodologies that you will encounter in practice.

> Underlying Principles for Systems Development

Before we examine the FAST methodology, let’s introduce some general principles
that should underlie all systems development methodologies.

Principle 1: Get the System Users Involved Analysts, programmers, and other in-
formation technology specialists frequently refer to “my system.” This attitude has, in
part, created an “us versus them” conflict between technical staff and their users and
management. Although analysts and programmers work hard to create technologically
impressive solutions, those solutions often backfire because they don’t address the
real organization problems. Sometimes they even introduce new organization prob-
lems. For this reason, system user involvement is an absolute necessity for successful
systems development. Think of systems development as a partnership between sys-
tem users, analysts, designers, and builders. The analysts, designers, and builders are
responsible for systems development, but they must engage their owners and users,
insist on their participation, and seek agreement from all stakeholders concerning
decisions that may affect them.

Miscommunication and misunderstandings continue to be a significant problem
in many systems development projects. However, owner and user involvement and
education minimize such problems and help to win acceptance of new ideas and
technological change. Because people tend to resist change, information technology
is often viewed as a threat. The best way to counter that threat is through constant
and thorough communication with owners and users.

Principle 2: Use a Problem-Solving Approach A system development methodol-
ogy is, first and foremost, a problem-solving approach to building systems. The term
problem is broadly used throughout this book to include (1) real problems, (2) oppor-
tunities for improvement, and (3) directives from management. The classical problem-
solving approach is as follows:

1. Study and understand the problem, its context, and its impact.
2. Define the requirements that must be met by any solution.
3. Identify candidate solutions that fulfill the requirements, and select the best

solution.
4. Design and/or implement the chosen solution.
5. Observe and evaluate the solution’s impact, and refine the solution accordingly.

Systems analysts should approach all projects using some variation of this problem-
solving approach.

Inexperienced or unsuccessful problem solvers tend to eliminate or abbreviate one
or more of the above steps. For example, they fail to completely understand the prob-
lem, or they prematurely commit to the first solution they think of. The result can range
from (1) solving the wrong problem, to (2) incorrectly solving the problem, (3) picking
the wrong solution, or (4) picking a less-than-optimal solution. A methodology’s
problem-solving process, when correctly applied, can reduce or eliminate these risks.

Principle 3: Establish Phases and Activities All methodologies prescribe phases
and activities.The number and scope of phases and activities vary from author to au-
thor, expert to expert, methodology to methodology, and business to business. The
chapter home page at the beginning of this chapter illustrates the eight phases of our
FAST methodology in the context of your information systems framework.The phases

72 Part One The Context of Systems Development Projects

F I G U R E 3 - 3 Overlap of System Development Phases and Activities

ID Phase Name

Jun 2004 Jul 2004 Aug 2004 Sep 2004 Oct 2004 Nov 2004 Dec 2004 Jan 2005

5/23 5/30 6/6 6/13 6/20 6/27 7/4 7/11 7/18 7/25 8/1 8/8 8/15 8/22 8/29 9/5 9/12 9/19 9/26 10/3 10/10 10/17 10/24 10/31 11/7 11/14 11/21 11/28 12/5 12/12 12/19 12/26 1/2 1/9 1/16

1 Project Management

3 Problem Analysis

4 Requirements Definition

5 Logical Design

6 Decision Analysis

7 Physical Design

8 Construction & Testing

9 Installation & Delivery

10 Process Management

 2 Scope Definition 1

1

4

2

3

3

3

2

2

are listed on the far right-hand side of the illustration. In each phase, the focus is on
those building blocks and on stakeholders that are aligned to the left of that phase.

The phases are: scope definition, problem analysis, requirements analysis, logical
design, decision analysis, physical design and integration, construction and testing,
and installation and delivery. Each of these phases will be discussed later in this
chapter. These phases are not absolutely sequential. The phases tend to overlap one
another, as illustrated in Figure 3-3. Also, the phases may be customized to the special
needs of a given project (e.g., deadlines, complexity, strategy, resources). In this chap-
ter, we will describe each customization as alternative routes through the methodol-
ogy and problem-solving process.

Principle 4: Document throughout Development When do you document the
programs you write? Be honest. We must confess that, like most students, we did our
documentation after we wrote the programs. We knew better, but we postdocu-
mented anyway.That just does not work in the business world. In medium to large or-
ganizations, system owners, users, analysts, designers, and builders come and go.
Some will be promoted; some will have extended medical leaves; some will quit the
organization; and still others will be reassigned.To promote good communication be-
tween constantly changing stakeholders, documentation should be a working by-
product of the entire systems development effort.

Documentation enhances communications and acceptance. Documentation reveals
strengths and weaknesses of the system to multiple stakeholders. It stimulates user in-
volvement and reassures management about progress. At the same time, some method-
ologies have been criticized for expecting too much documentation that adds little value
to the process or resulting system. Our FAST methodology advocates a balance between
the value of documentation and the effort to produce it. Experts call this agile modeling.

Principle 5: Establish Standards In a perfect world, all information systems would
be integrated such that they behave as a single system. Unfortunately, this never hap-
pens because information systems are developed and replaced over a very long pe-
riod of time. Even organizations that purchase and install an enterprise resource
planning (ERP) product usually discover that there are applications and needs that fall
outside the ERP system. Systems integration has become critical to the success of any
organization’s information systems.

To achieve or improve systems integration, organizations turn to standards. In
many organizations, these standards take the form of enterprise information technol-
ogy architecture. An IT architecture sets standards that serve to direct technology
solutions and information systems to a common technology vision or configuration.

Information Systems Development Chapter Three 73

An information technology architecture typically standardizes on the following (note:
it is not important that you know what all these sample technologies are):

• Database technology—What database engine(s) will be used (e.g., Oracle,

IBM DB2, Microsoft SQL Server)? On what platforms will they be operated
(e.g., UNIX, Linux, Windows XP, MVS)? What technologies will be used to
load data into online transaction processing (OLTP) databases, operational
data stores, and data warehouses (i.e., Extract Transform and Load [ETL])?

• Software technology—What application development environment(s)/lan-
guage(s) will be used to write software (e.g., IBM’s Websphere with Java,

Microsoft’s Visual Studio .NET with Visual Basic .NET, Visual C , and/or
Visual C#; Syebase’s Powerbuilder, Oracle’s Oracle Forms)?

• Interface technology—How will user interfaces be developed—with MS

Windows components or Web languages and components (e.g., an xHTML

editor such as Macromedia’s Dreamweaver, a portal engine such as IBM’s
Websphere)? How will data be exchanged between different information sys-
tems (e.g., a data broker such as IBM’s MQ Messaging, an XML-based data
exchange, or a custom programmed interface)?

Notice how these architectural questions closely correspond to the technology
drivers in your information system model.

In the absence of an IT architecture, each information system and application
may be built using radically different technologies. Not only does this make it difficult
to integrate applications, but it creates resource management problems—IT organiza-
tions cannot as easily move developers between projects as priorities change or emer-
gencies occur because different teams are staffed with technical competencies based
on the various technologies used and being used to develop information systems. Cre-
ating an enterprise IT architecture and driving projects and teams to that architecture
make more sense.

As new technologies emerge, an IT architecture must change. But that change
can be managed. The chief technology officer (CTO) in an organization is fre-
quently charged with technology exploration and IT architecture management.
Given that architecture, all information systems projects are constrained to imple-
ment new systems that conform to the architecture (unless otherwise approved by
the CTO).

Principle 6: Manage the Process and Projects Most organizations have a system
development process or methodology, but they do not always use it consistently on
projects. Both the process and the projects that use it must be managed. Process

management ensures that an organization’s chosen process or management is used
consistently on and across all projects. Process management also defines and im-
proves the chosen process or methodology over time. Project management ensures
that an information system is developed at minimum cost, within a specified time
frame, and with acceptable quality (using the standard system development process
or methodology). Effective project management is essential to achieving CMM Level 2
success. Use of a repeatable process gets us to CMM Level 3. CMM Levels 4 and 5 re-
quire effective process management. Project management can occur without a stan-
dard process, but in mature organizations all projects are based on a standardized and
managed process.

Process management and project management are influenced by the need for
quality management. Quality standards are built into a process to ensure that the ac-
tivities and deliverables of each phase will contribute to the development of a high-
quality information system. They reduce the likelihood of missed problems and
requirements, as well as flawed designs and program errors (bugs). Standards also
make the IT organization more agile. As personnel changes occur, staff can be relo-
cated between projects with the assurance that every project is following an under-
stood and accepted process.

74 Part One The Context of Systems Development Projects

process management an

ongoing activity that docu-

ments, teaches, oversees the

use of, and improves an orga-

nization’s chosen methodol-

ogy (the “process”) for

systems development.

Process management is con-

cerned with phases, activities,

deliverables, and quality stan-

dards that should be consis-

tently applied to all projects.

project management the

process of scoping, planning,

staffing, organizing, directing,

and controlling a project to

develop an information system

at minimum cost, within a

specified time frame, and with

acceptable quality.

Principle 7: Justify Information Systems as Capital Investments Information
systems are capital investments, just like a fleet of trucks or a new building. System
owners commit to this investment. Notice that the initial commitment occurs early in
a project, when system owners agree to sponsor and fund the project. Later (during
the phase called decision analysis), system owners recommit to the more costly tech-
nical decisions. In considering a capital investment, two issues must be addressed:

1. For any problem, there are likely to be several possible solutions. The systems
analyst and other stakeholders should not blindly accept the first solution sug-
gested. The analyst who fails to look at alternatives may be doing the business a
disservice.

2. After identifying alternative solutions, the systems analyst should evaluate each
possible solution for feasibility, especially for cost-effectiveness. Cost-
effectiveness is measured using a technique called cost-benefit analysis.

Like project and process management, cost-benefit analysis is performed throughout
the system development process.

A significant advantage of the phased approach to systems development is that it
provides several opportunities to reevaluate cost-effectiveness, risk, and feasibility.
There is often a temptation to continue with a project only because of the investment
already made. In the long run, canceled projects are usually much less costly than im-
plemented disasters.This is extremely important for young analysts to remember.

Most system owners want more from their systems than they can afford or are
willing to pay for. Furthermore, the scope of most information system projects in-
creases as the analyst learns more about the business problems and requirements as
the project progresses. Unfortunately, most analysts fail to adjust estimated costs and
schedules as the scope increases. As a result, the analyst frequently and needlessly
accepts responsibility for cost and schedule overruns.

Because information systems are recognized as capital investments, system de-
velopment projects are often driven by enterprise planning. Many contemporary in-
formation technology business units create and maintain a strategic information

systems plan. Such a plan identifies and prioritizes information system development
projects. Ideally, a strategic information systems plan is driven by a strategic enter-

prise plan that charts a course for the entire business.

Principle 8: Don’t Be Afraid to Cancel or Revise Scope There is an old saying:
“Don’t throw good money after bad.” In other words, don’t be afraid to cancel a project
or revise scope, regardless of how much money has been spent so far—cut your
losses. To this end, we advocate a creeping commitment approach to systems
development.3 With the creeping commitment approach, multiple feasibility check-
points are built into any systems development methodology. At each checkpoint fea-
sibility is reassessed. All previously expended costs are considered sunk (meaning not
recoverable). They are, therefore, irrelevant to the decision. Thus, the project should
be reevaluated at each checkpoint to determine if it remains feasible to continue
investing time, effort, and resources into the project. At each checkpoint, the analyst
should consider the following options:

• Cancel the project if it is no longer feasible.
• Reevaluate and adjust the costs and schedule if project scope is to be increased.
• Reduce the scope if the project budget and schedule are frozen and not suffi-

cient to cover all project objectives.

The concept of sunk costs is more or less familiar to most financial analysts, but it is
frequently forgotten or not used by the majority of systems analysts, most system
users, and even many system owners.

Information Systems Development Chapter Three 75

cost-effectiveness the

result obtained by striking a

balance between the lifetime

costs of developing, main-

taining, and operating an

information system and the

benefits derived from that

system. Cost-effectiveness is

measured by cost-benefit

analysis.

strategic information
systems plan a formal

strategic plan (3 to 5 years) for

building and improving an

information technology infra-

structure and the information

system applications that use

that infrastructure.

strategic enterprise plan
a formal strategic plan (3 to 5

years) for an entire business

that defines its mission,

vision, goals, strategies,

benchmarks, and measures of

progress and achievement.

Usually, the strategic enter-

prise plan is complemented by

strategic business unit plans

that define how each business

unit will contribute to the

enterprise plan. The informa-

tion systems plan (above) is

one of those unit-level plans.

creeping commitment a

strategy in which feasibility

and risks are continuously

reevaluated throughout a

project. Project budgets and

deadlines are adjusted

accordingly.

3Thomas Gildersleeve, Successful Data Processing Systems Analysis, 2nd ed. (Englewood Cliffs, NJ: Prentice Hall,

1985), pp. 5–7.

PRINCIPLES OF
SYSTEMS
DEVELOPMENT

Get the System Users
Involved.

Use a Problem-Solving
Approach.

Establish Phases and
Activities.

Document throughout
Development.

Establish Standards.

Manage the Process and
Projects.

Justify Information Systems
as Capital Investments.

Don’t Be Afraid to Cancel or
Revise Scope.

Divide and Conquer.

Design Systems for Growth
and Change.

In addition to managing feasibility throughout the project, we must manage risk.
Risk management seeks to balance risk and reward. Different organizations are
more or less averse to risk, meaning that some are willing to take greater risks than
others in order to achieve greater rewards.

Principle 9: Divide and Conquer Whether you realize it or not, you learned the
divide-and-conquer approach throughout your education. Since high school, you’ve
been taught to outline a paper before you write it. Outlining is a divide-and-conquer
approach to writing. A similar approach is used in systems development. We divide a
system into subsystems and components in order to more easily conquer the problem
and build the larger system. In systems analysis, we often call this factoring. By repeat-
edly dividing a larger problem (system) into more easily managed pieces (subsystems),
the analyst can simplify the problem-solving process. This divide-and-conquer
approach also complements communication and project management by allowing dif-
ferent pieces of the system to be communicated to different and the most appropri-
ate stakeholders.

The building blocks of your information system framework provide one basis for
dividing and conquering an information system’s development.We will use this frame-
work throughout the book.

Principle 10: Design Systems for Growth and Change Businesses change over
time. Their needs change. Their priorities change. Accordingly, information systems
that support a business must change over time. For this reason, good methodologies
should embrace the reality of change. Systems should be designed to accommodate
both growth and changing requirements. In other words, well-designed information
systems can both scale up and adapt to the business. But regardless of how well we
design systems for growth and change, there will always come a time when they
simply cannot support the business.

System scientists describe the natural and inevitable decay of all systems over
time as entropy. As described earlier in this section, after a system is implemented
it enters the operations and maintenance stage of the life cycle. During this stage
the analyst encounters the need for changes that range from correcting simple mis-
takes, to redesigning the system to accommodate changing technology, to making
modifications to support changing user requirements. Such changes direct the
analyst and programmers to rework formerly completed phases of the life cycle.
Eventually, the cost of maintaining the current system exceeds the costs of devel-
oping a replacement system—the current system has reached entropy and be-
comes obsolete.

But system entropy can be managed.Today’s tools and techniques make it possible
to design systems that can grow and change as requirements grow and change. This
book will teach you many of those tools and techniques. For now, it’s more important
to simply recognize that flexibility and adaptability do not happen by accident—they
must be built into a system.

We have presented 10 principles that should underlie any methodology. These
principles are summarized in the margin and can be used to evaluate any methodol-
ogy, including our FAST methodology.

76 Part One The Context of Systems Development Projects

risk management the

process of identifying, evaluat-

ing, and controlling what

might go wrong in a project

before it becomes a threat to

the successful completion of

the project or implementation

of the information system.

Risk management is driven by

risk analysis or assessment.

A Systems Development Process

In this section we’ll examine a logical process for systems development. (Re-
minder: FAST is a hypothetical methodology created for learning purposes.) We’ll
begin by studying types of system projects and how they get started. Then we’ll
introduce the eight FAST phases. Finally, we’ll examine alternative variations,
or “routes” through the phases, for different types of projects and development
strategies.

> Where Do Systems Development Projects Come From?

System owners and system users initiate most projects.The impetus for most projects
is some combination of problems, opportunities, and directives. To simplify this
discussion, we will frequently use the term problem to collectively refer to problems,
opportunities, and directives. Accordingly, problem solving refers to solving prob-
lems, exploiting opportunities, and fulfilling directives.

There are far too many potential system problems to list them all in this book.
However, James Wetherbe developed a useful framework for classifying problems.4 He
calls it PIECES because the letters of each of the six categories, when put together,
spell the word “pieces.” The categories are:

P the need to correct or improve performance.

I the need to correct or improve information (and data).
E the need to correct or improve economics, control costs, or increase profits.
C the need to correct or improve control or security.
E the need to correct or improve efficiency of people and processes.
S the need to correct or improve service to customers, suppliers, partners,

employees, and so on.

Figure 3-4 expands on each of the PIECES categories.
The categories of the PIECES framework are neither exhaustive nor mutually

exclusive—they overlap. Any given project is usually characterized by one or more
categories, and any given problem or opportunity may have implications with respect
to more than one category. But PIECES is a practical framework (used in FAST), not
just an academic exercise. We’ll revisit PIECES several times in this book.

Projects can be either planned or unplanned. A planned project is the result of
one of the following:

• An information systems strategy plan has examined the business as a whole
to identify those system development projects that will return the greatest
strategic (long-term) value to the business.

• A business process redesign has thoroughly analyzed a series of business
processes to eliminate redundancy and bureaucracy and to improve efficiency
and value added. Now it is time to redesign the supporting information sys-
tem for those redesigned business processes.

The opposite of planned projects are unplanned projects—those that are trig-
gered by a specific problem, opportunity, or directive that occurs in the course of do-
ing business. Most organizations have no shortage of unplanned projects. Anyone can
submit a proposed project based on something that is happening in the business.The
number of unplanned-project proposals can easily overwhelm the largest information
systems organization; therefore, they are frequently screened and prioritized by a
steering committee of system owners and IT managers to determine which re-
quests get approved. Those requests that are not approved are backlogged until
resources become available (which sometimes never happens).

Both planned and unplanned projects go through the same essential system de-
velopment process. Let’s now examine the project phases in somewhat greater detail.

> The FAST Phases

FAST, like most methodologies, consists of phases. The number of phases will vary
from one methodology to another. In Chapter 1 you were introduced to the four
classic phases of the system development life cycle. The FAST methodology employs

Information Systems Development Chapter Three 77

4James Wetherbe and Nicholas P.Vitalari, Systems Analysis and Design: Traditional, Best Practices, 4th ed. (St. Paul,

MN: West Publishing, 1994), pp. 196–199. James Wetherbe is a respected information systems educator, researcher, and

consultant.

problem an undesirable

situation that prevents the

organization from fully

achieving its mission, vision,

goals, and/or objectives.

opportunity a chance to

improve the organization even

in the absence of an identified

problem.

directive a new requirement

that’s imposed by manage-

ment, government, or some

external influence.

steering committee an

administrative body of system

owners and information

technology executives that

prioritizes and approves

candidate system develop-

ment projects.

backlog a repository of

project proposals that cannot

be funded or staffed because

they are a lower priority than

those that have been ap-

proved for system develop-

ment. Note that priorities

change over time; therefore, a

backlogged project might be

approved at some future date.

78 Part One The Context of Systems Development Projects

The PIECES Problem-Solving Framework and Checklist

The following checklist for problem, opportunity, and directive identification uses Wetherbe’s PIECES framework.
Note that the categories of PIECES are not mutually exclusive; some possible problems show up in multiple lists.
Also, the list of possible problems is not exhaustive. The PIECES framework is equally suited to analyzing both
manual and computerized systems and applications.

PERFORMANCE

A. Throughput – the amount of work performed
over some period of time.

B. Response times – the average delay between
a transaction or request, and a response to that
transaction or request.

INFORMATION (and Data)

A. Outputs
1. Lack of any information
2. Lack of necessary information
3. Lack of relevant information
4. Too much information – “information

overload”
5. Information that is not in a useful format
6. Information that is not accurate
7. Information that is difficult to produce
8. Information is not timely to its subsequent use

B. Inputs
1. Data is not captured
2. Data is not captured in time to be useful
3. Data is not accurately captured – contains

errors
4. Data is difficult to capture
5. Data is captured redundantly – same data

captured more than once
6. Too much data is captured
7. Illegal data is captured

C. Stored data

B. Profits

1. Data is stored redundantly in multiple files
and/or databases

2. Same data items have different values in
different files (poor data integration)

3. Stored data is not accurate
4. Data is not secure to accident or vandalism
5. Data is not well organized
6. Data is not flexible – not easy to meet new

information needs from stored data
7. Data is not accessible

ECONOMICS

A. Costs
1. Costs are unknown
2. Costs are untraceable to source
3. Costs are too high

1. New markets can be explored
2. Current marketing can be improved
3. Orders can be increased

CONTROL (and Security)

A. Too little security or control
1. Input data is not adequately edited
2. Crimes (e.g., fraud, embezzlement) are (or

can be) committed against data
3. Ethics are breached on data or information

– refers to data or information getting to
unauthorized people

4. Redundantly stored data is inconsistent in
different files or databases

5. Data privacy regulations or guidelines are
being (or can be) violated

6. Processing errors are occurring (either by
people, machines, or software)

7. Decision-making errors are occurring
B. Too much control or security

1. Bureaucratic red tape slows the system
2. Controls inconvenience customers or

employees
3. Excessive controls cause processing delays

EFFICIENCY

A. People, machines, or computers waste time
1. Data is redundantly input or copied
2. Data is redundantly processed
3. Information is redundantly generated

B. People, machines, or computers waste materials
and supplies

C. Effort required for tasks is excessive
D. Material required for tasks is excessive

SERVICE

A. The system produces inaccurate results
B. The system produces inconsistent results
C. The system produces unreliable results
D. The system is not easy to learn
E. The system is not easy to use
F. The system is awkward to use
G. The system is inflexible to new or exceptional

situations
H. The system is inflexible to change
I. The system is incompatible with other systems

F I G U R E 3 - 4 The PIECES Framework for Problem Identification

eight phases to better define periodic milestones and the deliverables.The grid below
compares the FAST phases to the classic phases. As you can see, both sets of phases
cover the same ground, but FAST is more detailed.

Classic Phases

Project System System System

Initiation Analysis Design Implementation

Scope definition X

Problem analysis X X

Requirements analysis X

Logical design X

Decision analysis

Physical design and integration X

Construction and testing X X

Installation and delivery X

Figure 3-5 illustrates the phases of the FAST methodology. Each phase produces de-
liverables that are passed to the next phase. And documentation accumulates as you
complete each phase. Notice that we have included an iconic representation of the
building blocks to symbolize this accumulation of knowledge and work-in-process arti-
facts during system development. Notice also that a project starts with some combina-
tion of PROBLEMS, OPPORTUNITIES, and DIRECTIVES from the user community (the green
arrow) and finishes with a WORKING BUSINESS SOLUTION (the red arrow) for the user
community.

Figure 3-6 shows the FAST methodology from the perspective of your information
system building blocks that you learned in Chapters 1 and 2. The phases are on the
right-hand side. The deliverables are built around the building blocks for knowledge,
processes, and communications. The stakeholders are on the left-hand side. Notice
how we have expanded and duplicated some stakeholders to reflect their involve-
ment opposite the phases in which they primarily participate.

NOTE: The remainder of this section briefly describes each of the eight basic
phases.Throughout this discussion, we will be referring to the process flowchart
in Figure 3-5, as well as the building blocks view of the process in Figure 3-6. Also
throughout the discussion, all terms printed in SMALL CAPS refer to phases, prereq-
uisites (inputs), and deliverables (outputs) shown in Figures 3-5 and 3-6.

Scope Definition The first phase of a typical project is SCOPE DEFINITION. The pur-
pose of the scope definition phase is twofold. First, it answers the question,“Is this
problem worth looking at?” Second, and assuming the problem is worth looking at, it
establishes the size and boundaries of the project, the project vision, any constraints
or limitations, the required project participants, and, finally, the budget and schedule.

In Figure 3-6, we see that the participants in the scope definition phase primarily
include SYSTEM OWNERS, PROJECT MANAGERS, and SYSTEM ANALYSTS. System users are gener-
ally excluded because it is too early to get into the level of detail they will eventually
bring to the project.

(a system analysis transition phase)

Information Systems Development Chapter Three 79

FAST Phases

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
 C

y
c

le
 S

ta
g

e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l

D
e
s
ig

n
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s
,
O

p
p

o
rt

u
n

it
ie

s
,

D
ir

e
c
ti

v
e
s
,
C

o
n

s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e
s
ig

n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

F
ro

m
 F

ig
u
re

 3
.2

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e
 &

 V
is

io
n

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

T
ra

in
in

g

M
a
te

ri
a
ls

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

B
u

s
i

n
e

s
s

D

r
i

v
e

r
s

T
e

c
h

n
o

l
o

g
y

D

r
i

v
e

r
s

I
N

F
O

R
M

A
T

I
O

N

S
Y

S
T

E
M

S
ta

k
e
h

o
ld

e
rs

SYSTEMOWNERS SYSTEMUSERS SYSTEMDESIGNERS SYSTEMBUILDERS

SYSTEMSANALYSTSandPROJECTMANAGERS

D
e
v
e
lo

p
m

e
n

t

P R O J E C T a n d P R O C E S S M A N A G E M E N T

SYSTEM

ANALY SIS

SYSTEM

INITIATION
SYSTEM

DESIGN

SYSTEM

IM PLEM ENTATION

G
o
a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

P
R

O
C

E
S

S
E

S

G
o
a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

K
N

O
W

L
E

D
G

E

G
o
a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

C
O

M
M

U
N

IC
A
T

IO
N

S

IN
F

O
R

M
A
T

IO
N

S
C

O
P

E

&

V
IS

IO
N

F
U

N
C

T
IO

N
A

L

S
C

O
P

E

&

V
IS

IO
N

C
O

M
M

U
N

IC
A
T

IO
N

S

S
C

O
P

E

&

V
IS

IO
N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

D
A
T
A

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

IN
T

E
R

F
A

C
E

R
E

Q
U

IR
E

M
E

N
T

S

D
A
T
A

B
A

S
E

D
E

S
IG

N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

D
E

S
IG

N

S
O

F
T

W
A

R
E

D
E

S
IG

N

IN
T

E
R

F
A

C
E

D
E

S
IG

N

C
O

M
M

E
R

C
IA

L

S
O

F
T

W
A

R
E

P
A

C
K

A
G

E
S

a
n
d
 /
 o

r

C
U

S
T

O
M

 B
U

IL
T

A
P

P
L
IC

A
T

IO
N

P
R

O
G

R
A

M
S

D
A
T
A

B
A

S
E

S
O

L
U

T
IO

N

S
O

F
T

W
A

R
E

T
E

C
H

N
O

L
O

G
IE

S

D
A
T
A

B
A

S
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

S
O

L
U

T
IO

N

N
E

T
W

O
R

K
 T

E
C

H
N

O
L
O

G
IE

S

F
I
G

U
R

E

3

-
5

P
ro

ce
ss

 V
ie

w
 o

f
S

y
st

em
 D

ev
el

o
p

m
en

t

80

D E S I G N S P E C I F I C A T I O N S D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASES

USER

INTERFACES

SYSTEM

INTERFACESM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

PHYSICAL BUSINESS

PROCESS DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

F I G U R E 3 - 6 Building Blocks View of System Development

Information Systems Development Chapter Three 81

In Figure 3-5, we see that the scope definition phase is triggered by some combi-
nation of PROBLEMS, OPPORTUNITIES, and DIRECTIVES (to which we will add CONSTRAINTS and
VISION). There are several deliverables or outcomes of a scope definition. One impor-
tant outcome is a PROBLEM STATEMENT, a succinct overview of the problems, opportuni-
ties, and/or directives that triggered the project. The PIECES framework provides an
excellent outline for a problem statement. The goal here is not to solve the prob-
lems, opportunities, and directives but only to catalog and categorize them.We should
also identify any constraints that may impact the proposed project. Examples of con-
straints include budget limits, deadlines, human resources available or not available,
business policies or government regulations, and technology standards. Finally, the
system owners should be asked for at least a high-level vision for the system
improvements they are seeking.

Given a basic understanding of problems, opportunities, directives, constraints,
and vision, we need to establish initial scope.Thus, an initial SCOPE STATEMENT is another
important outcome of this phase. Scope defines how big we think the project is.Your
information system building blocks provide a useful framework for defining scope.
Figure 3-6 illustrates that scope and vision can be defined in terms of INFORMATION,
FUNCTIONS, and INTERFACES. Scope can, and frequently does, change during a project. But
by documenting initial scope, you establish a baseline for controlling scope creep on
both the budget and the schedule.

Given the initial problem and scope statements for the project, the analyst can
staff the project team, estimate the budget for system development, and prepare a
schedule for the remaining phases. Ultimately, this phase concludes with a “go or no-
go” decision from system owners. Either the system owners agree with the pro-
posed scope, budget, and schedule for the project, or they must reduce scope (to
reduce costs and time) or cancel the project.This feasibility checkpoint is illustrated
in Figure 3-5 as a diamond.

The final and most important deliverable is a STATEMENT OF WORK. A statement of

work is a contract or agreement to develop the information system. It consolidates
the problem statement, scope statement, and schedule and budget for all parties who
will be involved in the project.

Problem Analysis There is always an existing system, regardless of whether it cur-
rently uses information technology. The PROBLEM ANALYSIS phase studies the existing sys-
tem and analyzes the findings to provide the project team with a more thorough
understanding of the problems that triggered the project.The analyst frequently uncov-
ers new problems and answers the most important question,“Will the benefits of solv-
ing these problems exceed the costs of building the system to solve these problems?”

Once again, Figure 3-6 provides a graphical overview of the problem analysis
phase in terms of your information system building blocks. Notice that the partici-
pants still include the SYSTEM OWNERS but that this phase begins to actively involve the
SYSTEM USERS as well. The system users are the business subject matter experts in any
project. (Notice the intentional expansion of the system users’perspective to overlap
many phases—remember principle 1: “Get the system users involved.”) Of course,
PROJECT MANAGERS and SYSTEM ANALYSTS are always involved in all phases of a project.

As shown in Figure 3-5, the prerequisites for the problem analysis phase are the
SCOPE and PROBLEM STATEMENTS as defined and approved in the scope definition phase.
The deliverable of the problem analysis phase is a set of SYSTEM IMPROVEMENT OBJECTIVES

derived from a thorough understanding of the business problems.These objectives do
not define inputs, outputs, or processes. Instead, they define the business criteria on
which any new system will be evaluated. For instance, we might define a system
improvement objective as any of the following:

Reduce the time between order processing and shipping by three days.
Reduce bad credit losses by 45 percent.
Comply with new financial aid federal qualification requirements by January 1.

82 Part One The Context of Systems Development Projects

problem statement a

statement and categorization

of problems, opportunities,

and directives; may also

include constraints and an

initial vision for the solution.

Synonyms include prelimi-

nary study and feasibility

assessment.

constraint any factor,

limitation, or restraint that may

limit a solution or the problem-

solving process.

scope creep a common

phenomenon wherein the

requirements and expecta-

tions of a project increase,

often without regard to the

impact on budget and

schedule.

statement of work a

contract with management

and the user community to

develop or enhance an infor-

mation system; defines vision,

scope, constraints, high-level

user requirements, schedule,

and budget. Synonyms include

project charter, project plan,

and service-level agreement.

Think of system improvement objectives as the grading criteria for evaluating any
new system that you might eventually design and implement. System improvement
objectives may be presented to system owners and users as a written recommenda-
tion or an oral presentation.

Depending on the complexity of the problem and the project schedule, the team
may or may not choose to formally document the existing system. Such documenta-
tion frequently occurs when the business processes are considered dated or overly
bureaucratic. Documentation of the existing system is sometimes called an “AS IS”
BUSINESS MODEL.The as-is model may be accompanied by analysis demonstrating ineffi-
ciencies, bottlenecks, or other problems related to the business processes.

Every existing system has its own terminology, history, culture, and nuances.
Learning those aspects of the system is an important by-product of this phase. From
all of the information gathered, the project team gains a better understanding of the
existing system’s problems and opportunities. After reviewing the findings, the system
owners will either agree or disagree with the recommended system improvement ob-
jectives. And consistent with the creeping commitment principle, we include another
go or no-go feasibility checkpoint (the red diamond) at the end of the phase. The
project can be either:

• Canceled if the problems are deemed no longer worth solving.
• Approved to continue to the next phase.
• Reduced or expanded in scope (with budget and schedule modifications) and

then approved to continue to the next phase.

Requirements Analysis Given system owner approval to continue from the prob-
lem analysis phase, now you can design a new system, right? No, not yet! What capa-
bilities should the new system provide for its users? What data must be captured and
stored? What performance level is expected? Careful! This requires decisions about
what the system must do, not how it should do those things.The REQUIREMENTS ANALYSIS

phase defines and prioritizes the business requirements. Simply stated, the analyst
approaches the users to find out what they need or want out of the new system, care-
fully avoiding any discussion of technology or technical implementation. This is per-
haps the most important phase of systems development. Errors and omissions in
requirements analysis result in user dissatisfaction with the final system and costly
modifications.

Returning again to Figure 3-6, notice that the participants primarily include both
SYSTEM USERS (which may include owners who will actually use the system) and SYSTEMS

ANALYSTS. PROJECT MANAGERS are also involved. SYSTEM DESIGNERS are omitted from this
phase in order to prevent premature attention to technology solutions. The building
blocks can themselves provide the framework for defining many business require-
ments, including BUSINESS DATA REQUIREMENTS, BUSINESS PROCESS REQUIREMENTS, and BUSINESS

AND SYSTEM INTERFACE REQUIREMENTS. Because the business requirements are intended to
solve problems, the PIECES framework can also provide a useful outline, this time for
a requirements statement.

In Figure 3-5, we see that the SYSTEM IMPROVEMENT OBJECTIVES from the problem
analysis phase are the prerequisite to the requirements analysis phase.The deliverable
is a BUSINESS REQUIREMENTS STATEMENT. Again, this requirements statement does not spec-
ify any technical possibilities or solutions. The requirements statement may be a doc-
ument as small as a few pages, or it may be extensive with a page or more of
documentation per requirement.

To produce a business requirements statement, the systems analyst works
closely with system users to identify needs and priorities. This information is col-
lected by way of interviews, questionnaires, and facilitated meetings.The challenge
to the team is to validate those requirements. The system improvement objectives
provide the “grading key” for business requirements: Does each requirement

contribute to meeting one or more system improvement objectives? Chapters 6

Information Systems Development Chapter Three 83

and 7 will introduce systems analysis tools and techniques for identifying and doc-
umenting user requirements.

Typically, requirements must also be prioritized. Priorities serve two purposes.
First, if project timelines become stressed, requirements priorities can be used to
rescope the project. Second, priorities can frequently be used to define iterations of
design and construction to create staged releases or versions of the final product.

The requirements analysis phase should never be skipped or shortchanged. One
of the most common complaints about new systems and applications is that they
don’t really satisfy the users’ needs. This usually happens when system designers and
builders become preoccupied with a technical solution before fully understanding
the business needs. System designers and builders are dependent on competent
systems analysts to work with users to define and document complete and accurate
business requirements before applying any technology.

Logical Design Business requirements (above) are usually expressed in words. Sys-
tems analysts have found it useful to translate those words into pictures called system

models to validate the requirements for completeness and consistency. (Figure 3-5 is
an example of a common system model called a data flow diagram.) System model-
ing implements a timeless concept:“A picture is worth a thousand words.”

The LOGICAL DESIGN PHASE translates business requirements into system models.The
term logical design should be interpreted as “technology independent,” meaning the
pictures illustrate the system independent of any possible technical solution—hence,
they model business requirements that must be fulfilled by any technical solution we
might want to consider.

Different methodologies require or recommend different amounts and degrees of
system modeling or logical design. Prescriptive methodologies like structured analy-

sis and design, information engineering, and the Rational Unified Process (RUP)

usually require that many types and/or instances of system models be drawn in vari-
ous levels of detail. Fortunately, computer-automated tools are available to assist the
systems analyst in these drawing tasks. Alternatively, agile methodologies like archi-

tected rapid application development and extreme programming recommend “just
enough modeling.” This so-called agile modeling seeks to prevent the project from
degenerating into a condition called analysis paralysis. This textbook leans toward
agile methods but recognizes that complex problems may best be solved using more
prescriptive approaches.

In Figure 3-6, we see that the participants include SYSTEM ANALYSTS (who draw the
models) and SYSTEM USERS (who validate the models). PROJECT MANAGERS are always in-
cluded to ensure that modeling meets standards and does not deter overall project
progress. We can draw (1) LOGICAL DATA MODELS that depict data and information re-
quirements, (2) LOGICAL PROCESS MODELS that depict business processes requirements, and
(3) LOGICAL INTERFACE MODELS that depict business and system interface requirements.5

In Figure 3-5, we see that the prerequisite to logical design is the BUSINESS REQUIRE-
MENTS STATEMENT from the previous phase. In practice, the requirements analysis and
logical design phases almost always have considerable overlap. In other words, as
business requirements are identified and documented, they can be modeled. The de-
liverables of logical design are the LOGICAL SYSTEM MODELS AND SPECIFICATIONS themselves.
Depending on the methodology used, the level of detail in the specifications will vary.
For example, we may define a business rule that specifies the legitimate values for a
data attribute such as Credit Rating or a rule that specifies the business policy for a
Credit Check.

84 Part One The Context of Systems Development Projects

system model a picture of

a system that represents

reality or a desired reality.

System models facilitate

improved communication

between system users,

system analysts, system

designers, and system

builders.

logical design the transla-

tion of business user

requirements into a system

model that depicts only the

business requirements and

not any possible technical

design or implementation of

those requirements. Common

synonyms include conceptual

design and essential design,

the latter of which refers to

modeling the “essence” of a

system, or the “essential

requirements” independent of

any technology. The antonym

of logical design is physical

design (defined later in this

chapter).

analysis paralysis a

satirical term coined to

describe a common project

condition in which excessive

system modeling dramatically

slows progress toward imple-

mentation of the intended

system solution.

5Those of you already familiar with object-oriented modeling should note that object models tend to blur the boundaries

of our framework somewhat, but the framework can still be applied since the problem to be solved is still driven by the

three fundamental business goals illustrated in our framework.This will be demonstrated in the object-oriented analysis

and design chapters of this book.

Before we move on to the next phase, we should note that the SCOPE DEFINITION,
PROBLEM ANALYSIS, REQUIREMENTS ANALYSIS, and LOGICAL DESIGN PHASES are collectively recog-
nized by most experts as system analysis. Some experts would also include our next
phase, DECISION ANALYSIS. But we consider it to be a system analysis to system design
transition phase because it makes the transition from the business concerns of system
owners and users to the technology concerns of system designers and builders. And
of course, systems analysts are the common thread that ensures continuity as we
make this transition. Let’s examine the transition.

Decision Analysis Given business requirements and the logical system models,
there are usually numerous alternative ways to design a new information system to
fulfill those requirements. Some of the pertinent questions include the following:

• How much of the system should be automated with information technology?
• Should we purchase software or build it ourselves (called the make-versus-buy

decision)?
• Should we design the system for an internal network, or should we design a

Web-based solution?
• What information technologies (possibly emerging) might be useful for this

application?

These questions are answered in the DECISION ANALYSIS phase of the methodology. The
purpose of this phase is to (1) identify candidate technical solutions, (2) analyze those
candidate solutions for feasibility, and (3) recommend a candidate system as the target
solution to be designed.

In Figure 3-6, we see that the decision analysis phase is positioned halfway
through the development process. Half the building blocks are positioned higher, and
half are positioned lower. This is consistent with the decision analysis phase’s role as
a transition from analysis to design—and from business concerns of SYSTEM USERS to
those of SYSTEM DESIGNERS (and, ultimately, system builders). Designers (the technical
experts in specific technologies) begin to play a role here along with system users and
SYSTEM ANALYSTS. Analysts help to define and analyze the alternatives. Decisions are
made regarding the technologies to be used as part of the application’s architecture.
Ultimately, SYSTEM OWNERS will have to approve or disapprove the approved decisions
since they are paying for the project.

Figure 3-5 shows that a decision analysis is triggered by validated business
requirements plus any logical system models and specifications that expand on those
requirements. The project team solicits ideas and opinions for technical design and
implementation from a diverse audience, possibly including IT software vendors. Can-
didate solutions are identified and characterized according to various criteria. It
should be noted that many modern organizations have information technology and ar-
chitecture standards that constrain the number of candidate solutions that might be
considered and analyzed. (The existence of such standards is illustrated at the bottom
of your information system building blocks model in Figure 3-6.) After the candidate
solutions have been identified, each one is evaluated by the following criteria:

• Technical feasibility—Is the solution technically practical? Does our staff
have the technical expertise to design and build this solution?

• Operational feasibility—Will the solution fulfill the user’s requirements? To
what degree? How will the solution change the user’s work environment?
How do users feel about such a solution?

• Economic feasibility—Is the solution cost-effective (as defined earlier in the
chapter)?

• Schedule feasibility—Can the solution be designed and implemented within
an acceptable time period?

• Risk feasibility—What’s the probability of a successful implementation using
the technology and approach?

Information Systems Development Chapter Three 85

The project team is usually looking for the most feasible solution—the solution that
offers the best combination of technical, operational, economic, schedule, and risk
feasibility. Different candidate solutions may be most feasible on a single criterion;
however, one solution will usually prove most feasible based on all of the criteria.

The key deliverable of the decision analysis phase is a SYSTEM PROPOSAL. This pro-
posal may be written and/or presented verbally. Several outcomes are possible. The
creeping commitment feasibility checkpoint (again, the red diamond) may result in
any one of the following options:

• Approve and fund the system proposal for design and construction (possibly
including an increased budget and timetable if scope has significantly
expanded).

• Approve or fund one of the alternative candidate solutions.
• Reject all the candidate solutions and either cancel the project or send it

back for new recommendations.
• Approve a reduced-scope version of the proposed solution.

Optionally, the decision analysis phase may also produce an APPLICATION ARCHITECTURE

for the approved solution. Such a model serves as a high-level blueprint (like a simple
house floor plan) for the recommended or approved proposal.

Before we move on, you may have noticed in Figure 3-6 a variation on the SYSTEM PRO-
POSAL deliverable called a REQUEST FOR SYSTEM PROPOSALS (or RFP).This variation is for a rec-
ommendation to purchase the hardware and/or software solution as opposed to building
it in-house. We’ll defer any further discussion of this option until later in the chapter
when we discuss the commercial package integration variation of our basic process.

Physical Design and Integration Given approval of the SYSTEM PROPOSAL from the
decision analysis phase, you can finally design the new system. The purpose of the
PHYSICAL DESIGN AND INTEGRATION phase is to transform the business requirements
(represented in part by the LOGICAL SYSTEM MODELS) into PHYSICAL DESIGN SPECIFICATIONS

that will guide system construction. In other words, physical design addresses greater
detail about how technology will be used in the new system. The design will be con-
strained by the approved ARCHITECTURAL MODEL from the previous phase. Also, design
requires adherence to any internal technical design standards that ensure complete-
ness, usability, reliability, performance, and quality.

Physical design is the opposite of logical design.Whereas logical design dealt ex-
clusively with business requirements independent of any technical solution, physical
design represents a specific technical solution. Figure 3-6 demonstrates the physical
design phase from the perspective of your building blocks. Notice that the design
phase is concerned with technology-based views of the system: (1) PHYSICAL DATABASE

DESIGN SPECIFICATIONS, (2) PHYSICAL BUSINESS PROCESS and SOFTWARE DESIGN SPECIFICATIONS,
and (3) PHYSICAL USER AND SYSTEM INTERFACE SPECIFICATIONS. The SYSTEM DESIGNER and SYSTEM

ANALYST (possibly overlapping roles for some of the same individuals) are the key par-
ticipants; however, certain aspects of the design usually have to be shared with the
SYSTEM USERS (e.g., screen designs and work flow). You may have already had some
exposure to physical design specifications in either programming or database courses.

There are two extreme philosophies of physical design.

• Design by specification—Physical system models and detailed specifications
are produced as a series of written (or computer-generated) blueprints for
construction.

• Design by prototyping—Incomplete but functioning applications or subsys-
tems (called prototypes) are constructed and refined based on feedback from
users and other designers.

In practice, some combination of these extremes is usually performed.
No new information system exists in isolation from other existing information

systems in an organization. Consequently, a design must also reflect system integration
concerns. The new system must be integrated both with other information systems

86 Part One The Context of Systems Development Projects

physical design the

translation of business user

requirements into a system

model that depicts a technical

implementation of the users’

business requirements.

Common synonyms include

technical design or, in

describing the output, imple-

mentation model. The

antonym of physical design is

logical design (defined earlier

in this chapter).

and with the business’s processes themselves. Integration is usually reflected in phys-
ical system models and design specifications.

In summary, Figure 3-5 shows that the deliverables of the physical design and in-
tegration phase include some combination of PHYSICAL DESIGN MODELS AND SPECIFICATIONS,
DESIGN PROTOTYPES, and REDESIGNED BUSINESS PROCESSES. Notice that we have included one
final go or no-go feasibility checkpoint for the project (the red diamond). A project is
rarely canceled after the design phase unless it is hopelessly over budget or behind
schedule. On the other hand, scope could be decreased to produce a minimum ac-
ceptable product in a specified time frame. Or the schedule could be extended to
build a more complete solution in multiple versions. The project plan (schedule and
budget) would need to be adjusted to reflect these decisions.

It should be noted that in modern methodologies, there is a trend toward merg-
ing the design phase with our next phase, construction. In other words, the design
and construction phases usually overlap.

Construction and Testing Given some level of PHYSICAL DESIGN MODELS AND SPECIFICA-
TIONS (and/or DESIGN PROTOTYPES), we can begin to construct and test system compo-
nents for that design. Figure 3-5 shows that the primary deliverable of the CONSTRUCTION

AND TESTING phase is a FUNCTIONAL SYSTEM that is ready for implementation.The purpose
of the construction and testing phase is twofold: (1) to build and test a system that ful-
fills business requirements and physical design specifications, and (2) to implement the
interfaces between the new system and existing systems. Additionally, FINAL DOCUMEN-
TATION (e.g., help systems, training manuals, help desk support, production control in-
structions) will be developed in preparation for training and system operation. The
construction phase may also involve installation of purchased software.

Your information system framework (Figure 3-6) identifies the relevant building
blocks and activities for the construction phase.The focus is on the last row of build-
ing blocks.The project team must construct or install:

• DATABASES—Databases may include online transaction processing (OLTP)

databases to support day-to-day business transactions, operational data stores

(ODS) to support day-to-day reporting and queries, and data warehouses to
support data analysis and decision support needs.

• COMMERCIAL SOFTWARE PACKAGES and/or CUSTOM-BUILT SOFTWARE—Packages are
installed and customized as necessary. Application programs are constructed
according to the physical design and/or prototypes from the previous phase.
Both packages and custom software must be thoroughly tested.

• USER AND SYSTEM INTERFACES—User interfaces (e.g., Windows and Web interfaces)
must be constructed and tested for usability and stability. System-to-system
interfaces must be either constructed or implemented using application inte-
gration technologies. Notice that MIDDLEWARE (a type of system software) is
often used to integrate disparate database, software, and interface technolo-
gies. We’ll talk more about middleware in the design unit of this book.

Figure 3-6 also identifies the participants in this phase as SYSTEM BUILDERS, SYSTEM

ANALYSTS, SYSTEM USERS, and PROJECT MANAGERS. SYSTEM DESIGNERS may also be involved to
clarify design specifications.

You probably already have some experience with part of this activity—application
programming. Programs can be written in many different languages, but the current
trend is toward the use of visual and object-oriented programming languages such as
Java, C , or Visual Basic. As components are constructed, they are typically
demonstrated to users in order to solicit feedback.

One of the most important aspects of construction is conducting tests of both in-
dividual system components and the overall system. Once tested, a system (or version
of a system) is ready for INSTALLATION AND DELIVERY.

Installation and Delivery What’s left to do? New systems usually represent a de-
parture from the way business is currently done; therefore, the analyst must provide

Information Systems Development Chapter Three 87

for a smooth transition from the old system to the new system and help users cope
with normal start-up problems. Thus, the INSTALLATION AND DELIVERY phase serves to
deliver the system into operation (sometimes called production).

In Figure 3-5, the FUNCTIONAL SYSTEM from the construction and testing phase is the
key input to the INSTALLATION AND DELIVERY phase. The deliverable is an OPERATIONAL

SYSTEM. SYSTEM BUILDERS install the system from its development environment into the
production environment. SYSTEM ANALYSTS must train SYSTEM USERS, write various user
and production control manuals, convert existing files and databases to the new data-
bases, and perform final system testing. Any problems may initiate rework in previous
phases thought to be complete. System users provide continuous feedback as new
problems and issues arise. Essentially, the installation and delivery phase considers the
same building blocks as the construction phase.

To provide a smooth transition to the new system, a conversion plan should be
prepared.This plan may call for an abrupt cutover, where the old system is terminated
and replaced by the new system on a specific date. Alternatively, the plan may run the
old and new systems in parallel until the new system has been deemed acceptable to
replace the old system.

The installation and delivery phase also involves training individuals who will use
the final system and developing documentation to aid the system users. The imple-
mentation phase usually includes some form of POST-AUDIT REVIEW to gauge the success
of the completed systems project.This activity promotes continuous improvement of
the process and future project management.

System Operation and Maintenance Once the system is placed into operation, it
will require ongoing system support for the remainder of its useful, productive life-
time. System support consists of the following ongoing activities:

• Assisting users—Regardless of how well the users have been trained and
how thorough and clear the end-user documentation is, users will eventually
require additional assistance as unanticipated problems arise, new users are
added, and so forth.

• Fixing software defects (bugs)—Software defects are errors that slipped
through the testing of software. These are inevitable, but they can usually be
resolved, in most cases, by knowledgeable support.

• Recovering the system—From time to time, a system failure may result in a
program “crash” and/or loss of data. Human error or a hardware or software
failure may cause this. The systems analyst or technical support specialists
may then be called on to recover the system—that is, to restore a system’s
files and databases and to restart the system.

• Adapting the system to new requirements—New requirements may include
new business problems, new business requirements, new technical problems,
or new technology requirements.

Eventually, we expect that the user feedback and problems, or changing business
needs, will indicate that it is time to start over and reinvent the system. In other
words, the system has reached entropy, and a new project to create an entirely new
system development process should be initiated.

> Cross Life-Cycle Activities

System development also involves a number of cross life-cycle activities. These
activities, listed in the margin definition, are not explicitly depicted in Figure 3-5, but
they are vital to the success of any project. Let’s briefly examine each of these activities.

Fact-Finding There are many occasions for fact-finding during a project. Fact-
finding is most crucial to the early phases of a project. It is during these phases that

88 Part One The Context of Systems Development Projects

system support the

ongoing technical support for

users of a system, as well as

the maintenance required to

deal with any errors, omis-

sions, or new requirements

that may arise.

cross life-cycle activity
any activity that overlaps

multiple phases of the system

development process. Exam-

ples include fact-finding,

documentation, presentation,

estimation, feasibility analysis,

project and process manage-

ment, change management,

and quality management.

fact-finding the formal

process of using research,

interviews, meetings, ques-

tionnaires, sampling, and

other techniques to collect

information about system

problems, requirements, and

preferences. It is also called

information gathering or data

collection.

the project team learns about a business’s vocabulary, problems, opportunities, con-
straints, requirements, and priorities. But fact-finding is also used during the decision
analysis, physical design, construction and testing, and installation and delivery
phases—only to a lesser extent. It is during these latter phases that the project team
researches technical alternatives and solicits feedback on technical designs, standards,
and working components.

Documentation and Presentation Communication skills are essential to the suc-
cessful completion of any project. In fact, poor communication is frequently cited as
the cause of project delays and rework. Two forms of communication that are com-
mon to systems development projects are documentation and presentation.

Clearly, documentation and presentation opportunities span all the phases. In
Figure 3-7, the black arrows represent various instances of documentation of a phase.
The red arrows represent instances where presentations are frequently required.
Finally, the green arrows represent the storage of documentation and other artifacts of
systems development in a repository. A repository saves documentation for reuse
and rework as necessary.

Feasibility Analysis Consistent with our creeping commitment approach to sys-
tems development, feasibility analysis is a cross life-cycle activity. Different mea-
sures of feasibility are applicable in different phases of the methodology. These
measures include technical, operational, economic, schedule, and risk feasibility, as de-
scribed when we introduced the decision analysis phase. Feasibility analysis requires
good estimation techniques.

Process and Project Management Recall that the CMM considers systems devel-
opment to be a process that must be managed on a project-by-project basis. For this
reason and others, process management and project management are ongoing, cross
life-cycle activities. Both types of management were introduced earlier, but their defi-
nitions are repeated in the margin on page ••• for your convenience. Process

management defines the methodology to be used on every project—think of it as
the recipe for building a system. Project management is concerned with adminis-
tering a single instance of the process as applied to a single project.

Failures and limited successes of systems development projects often outnumber
successful projects. Why is that? One reason is that many systems analysts are unfa-
miliar with, or undisciplined in how to properly apply, tools and techniques of sys-
tems development. But most failures are attributed to poor leadership and
management.This mismanagement results in unfulfilled or unidentified requirements,
cost overruns, and late delivery.

> Sequential versus Iterative Development

The above discussion of phases might lead you to assume that systems develop-
ment is a naturally sequential process, moving in a one-way direction from phase
to phase. Such sequential development is, in fact, one alternative. This approach
is depicted in part (a) of Figure 3-8. In the figure we have used the four classic
phases rather than the eight FAST phases in the interest of simplicity. This strategy
requires that each phase be “completed” one after the other until the information
system is finished. In reality, the phases may somewhat overlap one another in
time. For example, some system design can be started prior to the completion of
system analysis. Given its waterfall-like visual appearance, this approach is often
called the waterfall development approach.

The waterfall approach has lost favor with most modern system developers. A
more popular strategy, shown in part (b) of Figure 3-8, is commonly referred to as
the iterative development approach, or incremental development process. This

Information Systems Development Chapter Three 89

documentation the ongoing

activity of recording facts and

specifications for a system for

current and future reference.

presentation the ongoing

activity of communicating find-

ings, recommendations, and

documentation for review

by interested users and

managers. Presentations may

be either written or verbal.

repository a database

and/or file directory where sys-

tem developers store all docu-

mentation, knowledge, and

artifacts for one or more infor-

mation systems or projects. A

repository is usually automated

for easy information storage,

retrieval, and sharing.

feasibility analysis the

activity by which feasibility is

measured and assessed.

feasibility a measure of

how beneficial the develop-

ment of an information system

would be to an organization.

estimation the calculated

prediction of the costs and ef-

fort required for system devel-

opment. A somewhat facetious

synonym is guesstimation,

usually meaning that the esti-

mation is based on experience

or empirical evidence but is

lacking in rigor—in other

words, a guess.

process management an

ongoing activity that docu-

ments, teaches, oversees the

use of, and improves an orga-

nization’s chosen methodol-

ogy (the “process”) for

systems development.

Process management is con-

cerned with phases, activities,

deliverables, and quality stan-

dards that should be consis-

tently applied to all projects.

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
 C

y
c

le
 S

ta
g

e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l
D

e
s
ig

n

M
o

d
e
ls

 &
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s
,
O

p
p

o
rt

u
n

it
ie

s
,

D
ir

e
c
ti

v
e
s
,
C

o
n

s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e
s
ig

n

M
o

d
e
ls

a
n

d

S
p

e
c
if

ic
a
ti

o
n

s

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e
 &

 V
is

io
n

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

F
in

a
l

D
o

c
u

m
e
n

ta
ti

o
n

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

V
a
li
d

a
te

d

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

R
e
p
o
s
it
o
ry

F
I
G

U
R

E

3

-
7

S
y

st
em

 D
ev

el
o

p
m

en
t

D
o

cu
m

en
ta

ti
o

n
, R

ep
o

si
to

ry
, a

n
d

 P
re

se
n

ta
ti

o
n

90

Complete

System

Initiation

Complete

System

Implementation

Complete

System

Design

Complete

System

Analysis

Complete

System

Initiation

Some

System

Analysis

Some

System

Design

Some

System

Implementation

More

System

Analysis

More

System

Design

More

System

Implementation

Still more

System

Analysis

Still more

System

Design

Still more

System

Implementation

The entire
information

systemResults

in

A part

of the

system

Another

part of

the

system

Yet another

part of

the

system

Repeat until no additional

iterations needed

Results
in

Results

in

Results

in

I T E R A T I O N # 1

I T E R A T I O N # 2

I T E R A T I O N # 3

(a) The Sequential or “Waterfall” Strategy

(b) The Iterative or Incremental Strategy

F I G U R E 3 - 8 Sequential versus Iterative Systems Development Approach

Information Systems Development Chapter Three 91

approach requires completing enough analysis, design, and implementation to be able
to fully develop a part of the new system and place it into operation as quickly as pos-
sible. Once that version of the system is implemented, the strategy is to then perform
some additional analysis, design, and implementation to release the next version of
the system. These iterations continue until all parts of the entire information system
have been implemented.The popularity of this iterative and incremental process can
be explained simply: System owners and users have long complained about the
excessive time required to develop and implement information systems using the
waterfall approach. The iterative approach allows versions of useable information to
be delivered in regular and shorter time frames. This results in improved customer
(system owner and user) satisfaction.

92 Part One The Context of Systems Development Projects

project management the

process of scoping, planning,

staffing, organizing, directing,

and controlling a project to

develop an information system

at minimum cost, within a

specified time frame, and

with acceptable quality.

waterfall development
approach an approach to

systems analysis and design

that completes each phase

one after another and only

once.

iterative development
approach an approach to

systems analysis and design

that completes that entire in-

formation system in succes-

sive iterations. Each iteration

does some analysis, some de-

sign, and some construction.

Synonyms include incremental

and spiral.

Alternative Routes and Strategies

Given any destination, there are many routes to that destination and many modes of
transport.You could take the superhighway, highways, or back roads, or you could fly.
Deciding which route is best depends on your goals and priorities. Do you want to get
there fast, or do you want to see the sights? How much are you willing to spend? Are
you comfortable with the mode of travel? Just as you would pick your route and
means to a travel destination, you can and should pick a route and means for a systems
development destination.

So far, we’ve described a basic set of phases that comprise our FAST methodology.
At one time, a “one size fits all” methodology was common for most projects; how-
ever, today a variety of types of projects, technologies, and development strategies
exist—one size no longer fits all projects! Like many contemporary methodologies,
FAST provides alternative routes and strategies to accommodate different types of
projects, technology goals, developer skills, and development paradigms.

In this section, we will describe several FAST routes and strategies. Before we do
so, examine Figure 3-9 on the following page. The figure illustrates a taxonomy or
classification scheme for methodological strategies. Notice the following:

• Methodologies and routes can support the option of either building software

solutions in-house or buying a commercial software solution from a soft-
ware vendor. Generally, many of the same methods and techniques are appli-
cable to both options.

• Methodologies may be either very prescriptive (“Touch all the bases; follow
all the rules”) or relatively adaptive (“Change as needed within certain
guidelines”).

• Methodologies can also be characterized as model-driven (“Draw pictures of
the system”) or product-driven (“Build the product and see how the users
react”).

• Model-driven methodologies are rapidly moving to a focus on the object-

oriented technologies being used to construct most of today’s systems (more
about this later). Earlier model-driven approaches emphasized either process
modeling or data modeling.

• Finally, product-driven approaches tend to emphasize either rapid prototyping

or writing program code as soon as possible (perhaps you’ve heard the term
extreme programming).

So many strategies! Which should you choose? A movement is forming known as
agile methods. In a nutshell, advocates of agile methods suggest that system analysts
and programmers should have a tool box of methods that include tools and tech-
niques from all of the above methodologies. They should choose their tools and
techniques based on the problem and situation. FAST is an agile methodology. It
advocates the integrated use of tools and techniques from many methodologies,
applied in the context of repeatable processes (as in CMM Level 3). That said, let’s
examine some of the route variations and strategies for the FAST process. As we

Methodology uses a

prescriptive

process

continuum

Methodology uses a

Model-Driven Process

software development

using pictures

Process-

Centric

Models

Data-

Centric

Models

Object-

Oriented

Models

moving to moving to Codeversus

Agile

Methods

The decision to “buy”

software instead of “build”

software does not

eliminate

the opportunity to use

“make”

methods and techniques

for package evaluation

and integration into the

business.

It simply adds tools for

interacting with software

vendors.

choice

continuum

SYSTEM

DEVELOPMENT

METHODOLOGIES

a taxonomy

TO BUILD

SOFTWARE

SOLUTIONS

TO BUY

SOFTWARE

SOLUTIONS

Methodology uses a

Product-Driven Process

software development

by writing code

Prototypes

Methodology uses an

adaptive

process

F I G U R E 3 - 9 A Taxonomy for System Development Methodologies and Strategies

Information Systems Development Chapter Three 93

navigate through each route, we will use red typefaces and arrows to highlight those
aspects of the route that differ from the basic route you’ve already learned.

> The Model-Driven Development Strategy

One of the oldest and most commonly used approaches to analyzing and designing in-
formation systems is based on system modeling. As a reminder, a system model is a
picture of a system that represents reality or a desired reality. System models facilitate
improved communication between system users, system analysts, system designers,
and system builders. In the FAST methodology, system models are used to illustrate
and communicate the KNOWLEDGE, PROCESS, or INTERFACE building blocks of information
systems.This approach is called model-driven development.

The model-driven development route for FAST is illustrated in Figure 3-10. The
model-driven approach does not vary much from the basic phases we described ear-
lier. We call your attention to the following notes that correspond to the numbered
bullets:

System models may exist from the project that created the current system.
Be careful! These models are notorious for being out of date. But they can
still be useful as a point of departure.
Earlier you learned that it is important to define scope for a project. One of
the simplest ways to communicate scope is by drawing MODELS THAT SHOW

SCOPE DEFINITION. Scope models show which aspects of a problem are within
scope and which aspects are outside scope. This is sometimes called a
context diagram or context model.
Some system modeling techniques call for extensive MODELS OF THE EXISTING

SYSTEM to identify problems and opportunities for system improvement. This
is sometimes called the as-is system model. Modeling of the current system
has waned in popularity today. Many project managers and analysts view it as
counterproductive or of little value added. The exception is modeling of as-is
business processes for the purpose of business process redesign.
The requirements statement is one of the most important deliverables of sys-
tem development. It sometimes includes MODELS THAT DEPICT HIGH-LEVEL BUSINESS

REQUIREMENTS. One of the most popular modeling techniques today is called
use case (introduced in Chapter 7). Use cases identify requirements and track
their fulfillment through the life cycle.
Most model-driven techniques require that analysts document business
requirements with logical models (defined earlier). Business requirements
are frequently expressed in LOGICAL MODELS THAT DEPICT MORE DETAILED USER

REQUIREMENTS. They show only what a system must be or must do. They are
implementation independent; that is, they depict the system independent of
any possible technical implementation. Hence, they are useful for depicting
and validating business requirements.
As a result of the decision analysis phase, the analyst may produce system
MODELS THAT DEPICT APPLICATION ARCHITECTURE. Such models illustrate the planned
technical implementation of a system.
Many model-driven techniques require that analysts develop MODELS THAT

DEPICT PHYSICAL DESIGN SPECIFICATIONS (defined earlier in this chapter). Recall
that physical models show not only what a system is or does but also
how the system is implemented with technology. They are implementation
dependent because they reflect technology choices and the limitations of those
technology choices. Examples include database schemas, structure charts, and
flowcharts. They serve as a blueprint for construction of the new system.
New information systems must be interwoven into the fabric of an organiza-
tion’s business processes. Accordingly, the analyst and users may develop
MODELS OF REDESIGNED BUSINESS PROCESSES.

8

7

6

5

4

3

2

1

94 Part One The Context of Systems Development Projects

model-driven
development a system

development strategy that

emphasizes the drawing of

system models to help visual-

ize and analyze problems,

define business requirements,

and design information

systems.

logical model a pictorial

representation that depicts

what a system is or does.

Synonyms include essential

model, conceptual model,

and business model.

physical model a technical

pictorial representation that

depicts what a system is or

does and how the system is

implemented. Synonyms in-

clude implementation model

and technical model.

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
c

o
p

e

D
e

fi
n

it
io

n

a
s

 p
re

fa
c

e
 t

o

S
y

s
te

m
 I

m
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

A
p

p
li

c
a

ti
o

n

A
rc

h
it

e
c

tu
re

P
h

y
s

ic
a

l
D

e
s

ig
n

S
p

e
c

if
ic

a
ti

o
n

s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l
S

y
s

te
m

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

U

S
E

R
S

T
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

L
o

g
ic

a
l

S
y

s
te

m

M
o

d
e

ls
 a

n
d

S
p

e
c

if
ic

a
ti

o
n

s

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
ta

te
m

e
n

t

o
f
W

o
rk

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y

s
te

m

P
ro

p
o

s
a

l
R

e
d

e
s

ig
n

e
d

B
u

s
in

e
s

s

P
ro

c
e

s
s

e
s

D
e

s
ig

n

P
ro

to
ty

p
e

s

T
ra

in
in

g
 M

a
te

ri
a

ls

P
o

s
t-

A
u

d
it

R
e
v

ie
w

M
o

d
e

ls
 t

h
a

t

s
h

o
w

M
o

d
e

ls
 o

f
th

e

e
x

is
ti

n
g

 s
y

s
te

m

m
a
y

 i
n

c
lu

d
e

m
o

d
e

ls
 t

h
a

t

d
e

p
ic

t
h

ig
h

-

le
v

e
l

b
u

s
in

e
s

s

re
q

u
ir

e
m

e
n

ts

M
o

d
e

ls
 t

h
a

t
d

e
p

ic
t

M
o

d
e

ls
 t

h
a

t
d

e
p

ic
t

m
a
y

 i
n

c
lu

d
e

m
o

d
e

ls
 t

h
a

t

d
e

p
ic

t
s

o
ft

w
a

re

a
s

 c
o

n
s

tr
u

c
te

d

m
a
y

 i
n

c
lu

d
e

 m
o

d
e

ls

th
a

t
d

e
p

ic
t

o
p

e
ra

ti
o

n
a

l

fl
o

w
 a

n
d

 p
ro

c
e

d
u

re
s

th
a

t
d

e
p

ic
t

d
e

p
ic

t

m
o

re

d
e

ta
il

e
d

u
s

e
r

re
q

u
ir

e
m

e
n

ts

 M
o

d
e

ls
 o

f

m
a
y

 i
n

c
lu

d
e

 m
o

d
e

ls

R
e

p
o

s
it

o
ry

o
f

S
y
s
te

m

K
n

o
w

le
d

g
e

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
 C

y
c

le
 S

ta
g

e

1

1
0

9

7

8
6

4

5

3

2

F
I
G

U
R

E

3

-
1

0
T

h
e

M
o

d
el

-D
ri

v
en

 S
y

st
em

 D
ev

el
o

p
m

en
t

S
tr

at
eg

y

95

Construction translates the physical system models into software. In some
cases, automated tools exist to automatically translate software into PHYSICAL

MODELS THAT DEPICT SOFTWARE CONSTRUCTED. This is called reverse engineering.

Finally, the operational system may include MODELS THAT DEPICT FLOW AND

PROCEDURE. For example, system models may document backup and recovery
procedures.

In summary, system models can be produced as a portion of the deliverables for most
phases. Model-driven approaches emphasize system modeling. Once implemented,
the system models serve as documentation for any changes that might be needed dur-
ing the operation and support stage of the life cycle.

The model-driven approach is believed to offer several advantages and disadvan-
tages, as listed below:

10

9

96 Part One The Context of Systems Development Projects

process modeling a

process-centered technique

popularized by the structured

analysis and design methodol-

ogy that used models of busi-

ness process requirements to

derive effective software de-

signs for a system. Structured

analysis introduced a model-

ing tool called the data flow

diagram to illustrate the flow of

data through a series of busi-

ness processes. Structured

design converted data flow

diagrams into a process model

called structure charts to illus-

trate a top-down software

structure that fulfills the busi-

ness requirements.

Advantages

• Requirements specification tends to
be more thorough and better
documented.

• Business requirements and system
designs are easier to validate with
pictures than words.

• It is easier to identify, conceptualize,
and analyze alternative technical
solutions.

• Design specifications tend to be
more sound, stable, adaptable, and
flexible because they are model
based and more thoroughly ana-
lyzed before they are built.

• Systems can be constructed more
correctly the first time when built
from thorough and clear model
based specifications. Some argue that
code-generating software can auto-
matically generate skeleton or near-
complete code from good system
models.

Disadvantages

• It is time-consuming. It takes time
to collect the facts, draw the mod-
els, and validate those models. This
is especially true if users are uncer-
tain or imprecise about their system
requirements.

• The models can only be as good as
the users’ understanding of those
requirements.

• Pictures are not software—some
argue that this reduces the users’
role in a project to passive partici-
pation. Most users don’t get
excited about pictures. Instead,
they want to see working software,
and they gauge project progress by
the existence of software (or its
absence).

• The model-driven approach is con-
sidered by some to be inflexible—
users must fully specify require-
ments before design, design must
fully document technical specifica-
tions before construction, and so
forth. Some view such rigidity as
impractical.

Model-driven development is most effective for systems for which requirements are
well understood and which are so complex that they require large project teams to
complete. The approach also works well when fulfillment of user expectations and
quality is more important than cost and schedule.

There are several different model-driven techniques. They differ primarily in
terms of the types of models that they require the systems analyst to draw and vali-
date. Let’s briefly examine three of the most popular model-driven development tech-
niques that will be taught in this book. Please note that we are introducing only the
techniques here, not the models. We’ll teach the models themselves later, in the “how
to” chapters.

Process Modeling Process modeling was founded in the structured analysis and
design methodologies in 1978.While structured analysis and design has lost favor as a

methodology, process modeling remains a viable and important technique. Recall that
your information system building blocks include several possible focuses: KNOWLEDGE,
PROCESSES, and INTERFACES. Process modeling focuses on the PROCESS column of building
blocks. Flowcharts are one type of process model (used primarily by SYSTEM BUILDERS)
that you may have encountered in a programming course. Process modeling has en-
joyed something of a renaissance with the emergence of business process redesign
(introduced in Chapter 1).

Data flow diagrams and structure charts have contributed significantly to reduc-
ing the communications gap that often exists between nontechnical system owners
and users and technical system designers and builders. Process modeling is taught in
this book.

Data Modeling Recall that KNOWLEDGE improvement is a fundamental goal and set
of building blocks in your framework. Knowledge is the product of information,

which in turn is the product of data. Data modeling methods emphasize the knowl-
edge building blocks, especially data. In the data modeling approach, emphasis is
placed on diagrams that capture business data requirements and translate them into
database designs. Arguably, data modeling is the most widely practiced system
modeling technique. Hence, it will be taught in this book.

Object Modeling Object modeling is the result of technical advancement. Today,
most programming languages and methods are based on the emergence of object
technology. While the concepts of object technology are covered extensively
throughout this book, a brief but oversimplified introduction is appropriate here.

For the past 30 years, techniques like process and data modeling deliberately sep-
arated the concerns of PROCESSES from those of DATA. In other words, process and data
models were separate and distinct. Because virtually all systems included processes
and data, the techniques were frequently used in parallel and the models had to be
carefully synchronized. Object techniques are an attempt to eliminate the separation
of concerns, and hence the need for synchronization of data and process concerns.
This has given rise to object modeling methods.

Business objects correspond to real things of importance in the business such as
customers and the orders they place for products. Each object consists of both the
data that describes the object and the processes that can create, read, update, and
delete that object. With respect to your information system building blocks, object-
oriented analysis and design (OOAD) significantly changes the paradigm. The DATA

and PROCESS columns (and, arguably, the INTERFACE column as well) are essentially
merged into a single OBJECT column. The models then focus on identifying objects,
building objects, and assembling appropriate objects, as with Legos, into useful
information systems.

The current popularity of object technology is driving the interest in object
models and OOAD. For example, most of today’s popular operating systems like
Microsoft Windows and Apple Mac/OS have object-oriented user interfaces (“point
and click,” using objects such as windows, frames, drop-down menus, radio but-
tons, checkboxes, scroll bars, and the like). Web user interfaces like Microsoft
Internet Explorer and Netscape Navigator are also based on object technology.
Object programming languages such as Java, C , C#, Smalltalk, and Visual

Basic .NET are used to construct and assemble such object-oriented operating sys-
tems and applications. And those same languages have become the tools of choice
for building next-generation information system applications. Not surprisingly,
object modeling techniques have been created to express business and software
requirements and designs in terms of objects. This edition of this book extensively
integrates the most popular object modeling techniques to prepare you for systems
analysis and design that ultimately produces today’s object-based information
systems and applications.

Information Systems Development Chapter Three 97

data modeling a data-

centered technique used to

model business data require-

ments and design database

systems that fulfill those

requirements. The most fre-

quently encountered data

models are entity relationship

diagrams.

object modeling a tech-

nique that attempts to merge

the data and process con-

cerns into singular constructs

called objects. Object models

are diagrams that document a

system in terms of its objects

and their interactions. Object

modeling is the basis for

object-oriented analysis and

design methodologies.

> The Rapid Application Development Strategy

In response to the faster pace of the economy in general, rapid application devel-

opment (RAD) has become a popular route for accelerating systems development.
The basic ideas of RAD are:

• To more actively involve system users in the analysis, design, and construc-
tion activities.

• To organize systems development into a series of focused, intense workshops
jointly involving SYSTEM OWNERS, USERS, ANALYSTS, DESIGNERS, and BUILDERS.

• To accelerate the requirements analysis and design phases through an itera-
tive construction approach.

• To reduce the amount of time that passes before the users begin to see a
working system.

The basic principle behind prototyping is that users know what they want when they
see it working. In RAD, a prototype eventually evolves into the final information sys-
tem.The RAD route for FAST is illustrated in Figure 3-11. Again, the red text and flows
indicate the deviations from the basic FAST process. We call your attention to the
following notes that correspond to the numbered bullets:

The emphasis is on reducing time in developing applications and systems;
therefore, the initial problem analysis, requirements analysis, and decision
analysis phases are consolidated and accelerated. The deliverables are typ-
ically abbreviated, again in the interest of time. The deliverables are said to
be INITIAL, meaning “expected to change” as the project progresses.

After the above initial analysis, the RAD uses an iterative approach, as dis-
cussed earlier in the chapter. Each iteration emphasizes only enough new
functionality to be accomplished within a few weeks.
LOGICAL AND PHYSICAL DESIGN SPECIFICATIONS are usually significantly abbreviated
and accelerated. In each iteration of the cycle, only some design specifications
will be considered. While some system models may be drawn, they are selec-
tively chosen and the emphasis continues to be on rapid development. The
assumption is that errors can be caught and fixed in the next iteration.
In some, but rarely all, iterations, some business processes may need to be
redesigned to reflect the likely integration of the evolving software application.
In each iteration of the cycle, SOME DESIGN PROTOTYPES or SOME PARTIAL

FUNCTIONAL SYSTEM elements are constructed and tested. Eventually, the
completed application will result from the final iteration through the cycle.
After each prototype or partial functional subsystem is constructed and
tested, system users are given the opportunity to experience working with
that prototype. The expectation is that users will clarify requirements,
identify new requirements, and provide BUSINESS FEEDBACK on design (e.g., ease
of learning, ease of use) for the next iteration through the RAD cycle.
After each prototype or functioning subsystem is constructed and tested,
system analysts and designers will review the application architecture and
design to provide TECHNICAL FEEDBACK and direction for the next iteration
through the RAD cycle.
Based on the feedback, systems analysts will identify REFINED SYSTEM

IMPROVEMENT OBJECTIVES and/or BUSINESS REQUIREMENTS. This analysis tends to
focus on revising or expanding objectives and requirements and identifying
user concerns with the design.
Based on the feedback, systems analysts and system designers will identify a
REFINED APPLICATION ARCHITECTURE and/or DESIGN CHANGES.
Eventually, the system (or a version of the system) will be deemed worthy of
implementation. This CANDIDATE RELEASE VERSION OF THE FUNCTIONAL SYSTEM is sys-
tem tested and placed into operation. The next version of the system may
continue iterating through the RAD cycle.

9

8

7

6

5

4

3

2

1

98 Part One The Context of Systems Development Projects

rapid application
development (RAD) a

system development strategy

that emphasizes speed of de-

velopment through extensive

user involvement in the rapid,

iterative, and incremental

construction of a series of

functioning prototypes of a

system that eventually evolves

into the final system (or a

version).

prototype a small-scale,

representative, or working

model of the users’ require-

ments or a proposed design

for an information system. Any

given prototype may omit cer-

tain functions or features until

such time as the prototype

has sufficiently evolved into an

acceptable implementation of

requirements.

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

(f
ro

m
 F

ig
u

re
 3

-5
)

P
R

O
B

L
E

M
 A

N
A

LY
S

IS

R
E

Q
U

IR
E

M
E

N
T

S
 A

N
A

LY
S

IS

D
E

C
IS

IO
N

 A
N

A
LY

S
IS

2
 +

 3
 +

 5

 (
fr

o
m

 F
ig

u
re

 3
-5

)

P
ro

b
le

m

S
ta

te
m

e
n

t

a
n

d

S
c

o
p

e
 &

V
is

io
n

S
o

m
e

D
e

s
ig

n
 P

ro
to

ty
p

e
s

a
n

d
/o

r

P
a

rt
ia

l

F
u

n
c

ti
o

n
a

l
 S

y
s

te
m

R
e

fi
n

e
d

 S
y

s
te

m
 I

m
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

 a
n

d
/o

r

B
u

s
in

e
s

s
 R

e
q

u
ir

e
m

e
n

ts

In
it

ia
l

S
y
s
te

m
 I
m

p
ro

v
e
m

e
n

t
O

b
je

c
ti

v
e
s

In
it

ia
l

B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts
 S

ta
te

m
e
n

t

In
it

ia
l

S
y
s
te

m
 P

ro
p

o
s
a
l

In
it

ia
l

A
p

p
li
c
a
ti

o
n

 A
rc

h
it

e
c
tu

re

R
e

fi
n

e
d

A
p

p
li

c
a

ti
o

n

A
rc

h
it

e
c

tu
re

a
n

d
/o

r

D
e

s
ig

n
 C

h
a

n
g

e
s

D
E

L
IV

E
R

Y

o
f

a
 v

e
rs

io
n

7

(f
ro

m
 F

ig
u

re
 3

-5
)

C
a

n
d

id
a

te

R
e

le
a

s
e

V
e

rs
io

n

o
f

th
e

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

P
o

s
t-

A
u

d
it

 R
e
v

ie
w

O
p

e
ra

ti
o

n
a

l
S

y
s

te
m

 V
e

rs
io

n
 #

.#
T
ra

in
in

g
 M

a
te

ri
a

ls

B
u

s
in

e
s

s

F
e

e
d

b
a

c
k

s
o

m
e

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

7
 (

fr
o

m
 F

ig
u

re
 3

-5
)

s
o

m
e

 m
o

re

R
E

Q
T

S
.

&
 D

E
C

IS
IO

N

A
N

A
LY

S
IS

3
 +

 4
 +

 5

(f
ro

m
 F

ig
u

re
 3

-5
)

R
E

V
IE

W

T
H

E

S
Y

S
T

E
M

N
E

W

R
e

p
o

s
it

o
ry

o
f

S
y
s
te

m

K
n

o
w

le
d

g
e

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o
n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

T
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

S

ta
te

m
e

n
t

o
f

W
o

rk

S
o

m
e

 R
e

d
e

s
ig

n
e

d

B
u

s
in

e
s

s
 P

ro
c

e
s

s
e

s

S
o

m
e

L
o

g
ic

a
l

a
n

d
/o

r

P
h

y
s

ic
a

l
D

e
s

ig
n

S
p

e
c

if
ic

a
ti

o
n

s

T
e

c
h

n
ic

a
l

fe
e

d
b

a
c
k

1

7

8

5 6

9

4

2

3

s
o

m
e

D
E

S
IG

N
(l

o
g

ic
a

l
a

n
d

/o
r

p
h

y
s
ic

a
l)

4
 +

 6

(f
ro

m
 F

ig
u

re
 3

-5
)

++

F
I
G

U
R

E

3

-
1

1
T

h
e

R
ap

id
 A

p
p

li
ca

ti
o

n
 D

ev
el

o
p

m
en

t
(R

A
D

)
S

tr
at

eg
y

99

Although not a rigid requirement for RAD, the duration of the prototyping loop can
be limited using a technique called timeboxing. Timeboxing seeks to deliver an op-
erational system to users and management on a regular, recurring basis. Advocates of
timeboxing argue that management and user enthusiasm for a project can be en-
hanced and sustained because a working version of the system is implemented on a
regular basis.

The RAD approach offers several advantages and disadvantages:

100 Part One The Context of Systems Development Projects

timeboxing the imposition

of a nonextendable period of

time, usually 60 to 90 days, by

which the first (or next) ver-

sion of a system must be de-

livered into operation.

Advantages

• It is useful for projects in which
the user requirements are uncertain
or imprecise.

• It encourages active user and man-
agement participation (as opposed
to a passive reaction to nonworking
system models). This increases end-
user enthusiasm for the project.

• Projects have higher visibility and
support because of the extensive
user involvement throughout the
process.

• Users and management see work-
ing, software-based solutions more
rapidly than they do in model-
driven development.

• Errors and omissions tend to be
detected earlier in prototypes than
in system models.

• Testing and training are natural
by-products of the underlying proto-
typing approach.

• The iterative approach is a more
natural process because change is
an expected factor during
development.

Disadvantages

• Some argue that RAD encourages a
“code, implement, and repair” men-
tality that increases lifetime costs
required to operate, support, and
maintain the system.

• RAD prototypes can easily solve the
wrong problems since problem
analysis is abbreviated or ignored.

• A RAD-based prototype may dis-
courage analysts from considering
other, more worthy technical
alternatives.

• Sometimes it is best to throw a
prototype away, but stakeholders
are often reluctant to do so because
they see this as a loss of time and
effort in the current product.

• The emphasis on speed can
adversely impact quality because
of ill-advised shortcuts through the
methodology.

RAD is most popular for small- to medium-size projects.We will demonstrate pro-
totyping and RAD techniques in appropriate chapters of this book.

> The Commercial Application Package
Implementation Strategy

Sometimes it makes more sense to buy an information system solution than to build
one in-house. In fact, many organizations increasingly expect to build software in-
house only when there is a competitive advantage to be gained. And for many core
applications such as human resources, financials, procurement, manufacturing, and
distribution, there is little competitive value in building your own system—hence a
commercial application package is purchased. Accordingly, our FAST methodology
includes a commercial software package route.

The ultimate commercial solution is enterprise resource planning, or ERP (defined
in Chapter 1). ERP solutions provide all of the core information system applications for
an entire business. For most organizations, an ERP implementation represents the sin-
gle largest information system project ever undertaken by the organization. It can cost
tens or hundreds of millions of dollars and require a small army of managers, users,
analysts, technical specialists, programmers, consultants, and contractors.

commercial application
package a software applica-

tion that can be purchased

and customized (within limits)

to meet the business require-

ments of a large number of

organizations or a specific

industry. A synonym is com-

mercial off-the-shelf (COTS)

system.

The FAST methodology’s route for commercial application package integration is
not really intended for ERP projects. Indeed, most ERP vendors provide their own
implementation methodology (and consulting partners) to help their customers
implement such a massive software solution. Instead, our FAST methodology provides
a route for implementing all other types of information system solutions that may be
purchased by a business. For example, an organization might purchase a commercial
application package for a single business function such as accounting, human
resources, or procurement. The package must be selected, installed, customized, and
integrated into the business and its other existing information systems.

The basic ideas behind our commercial application package implementation
route are:

• Packaged software solutions must be carefully selected to fulfill business
needs—“You get what you ask and pay for.”

• Packaged software solutions not only are costly to purchase but can be costly
to implement. In fact, the package route can actually be more expensive to
implement than an in-house development route.

• Software packages must usually be customized for and integrated into the
business. Additionally, software packages usually require the redesign of exist-
ing business processes to adapt to the software.

• Software packages rarely fulfill all business requirements to the users’ com-
plete satisfaction. Thus, some level of in-house systems development is neces-
sary in order to meet the unfulfilled requirements.

The commercial application package implementation route is illustrated in Fig-
ure 3-12. Once again, the red typeface and arrows indicate differences from the basic
FAST process. We call your attention to the following notes that correspond to the
numbered bullets:

It should be noted that the decision to purchase a package is determined in
the problem analysis phase. The red diamond represents the “make versus
buy” decision. The remainder of this discussion assumes that a decision to
buy has been approved.
Problem analysis usually includes some initial TECHNOLOGY MARKET RESEARCH to
identify what package solutions exist, what features are in the software, and
what criteria should be used to evaluate such application packages. This
research may involve software vendors, IT research services (such as the
Gartner Group), or consultants.
After defining business requirements, the requirements must be communicated
to the software vendors who offer viable application solutions. The business
(and technical) requirements are formatted and communicated to candidate
software vendors as either a REQUEST FOR PROPOSAL (RFP) or a REQUEST FOR

QUOTATION (RFQ). The double-ended arrow implies that there may need to be
some clarification of requirements and criteria.
Vendors submit PROPOSALS or QUOTATIONS for their application solutions. These
proposals are evaluated against the business and technical requirements spec-
ified in the RFP. The double-ended arrow indicates that claimed features and
capabilities must be validated and in some instances clarified. This occurs
during the decision analysis phase.
A CONTRACT AND ORDER is negotiated with the winning vendor for the software
and possibly for services necessary to install and maintain the software.
The vendor provides the BASELINE COMMERCIAL APPLICATION software and documen-
tation. Services for installation and implementation of the software are fre-
quently provided by the vendor or its service providers (certified consultants).
When an application package is purchased, the organization must nearly always
change its business processes and practices to work efficiently with the package.
The need for REDESIGNED BUSINESS PROCESSES is rarely greeted with enthusiasm,

7

6

5

4

3

2

1

Information Systems Development Chapter Three 101

request for proposal
(RFP) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to vendors

that may wish to compete for

the sale of that application

package and services.

request for quotation
(RFQ) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to a single

vendor that has been deter-

mined as being able to supply

that application package and

services.

P
R

O
B

L
E

M

A
N

A
LY

S
IS

2

(f
ro

m
 F

ig
u

re
 3

-5
)

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

3

(f
ro

m
 F

ig
u

re
 3

-5
)

D
E

C
IS

IO
N

A
N

A
LY

S
IS

5

(f
ro

m
 F

ig
u

re
 3

-5
)

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

D
E

S
IG

N

N
E

W

to
 t

h
is

 R
o

u
te

(r
e

p
la

c
e

s
 #

4
 o

n
 F

ig
 3

-5
)

IN
S

T
A

L
L

A
T

IO
N

&

C
U

S
T

O
M

IZ
A

T
IO

N

N
E

W
 t

o
 t

h
is

 R
o

u
te

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

(f
ro

m
 F

ig
u

re
 3

-5
)

D
E

L
IV

E
R

Y

8

(f
ro

m
 F

ig
u

re
 3

-5
)

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

(f
ro

m
 F

ig
u

re
 3

-5
)

R
e

p
o

s
it

o
ry

o
f

S
y

s
te

m

K
n

o
w

le
d

g
e

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e
P

ro
b

le
m

S
ta

te
m

e
n

t

S
y

s
te

m

Im
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l
S

y
s

te
m

&

P
o

s
t-

A
u

d
it

 R
e
v

ie
w

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

 U
S

E
R

S

T
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y
T

E
C

H
N

O
L

O
G

Y
 I

N
D

U
S

T
R

Y

S
A

L
E

S
 R

E
P

R
E

S
E

N
T
A

T
IV

E
S

 A
N

D

T
E

C
H

N
O

L
O

G
Y

IN

T
E

G
R

A
T

O
R

S

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7
-b

(f

ro
m

 F
ig

u
re

 3
-5

)
P

h
y

s
ic

a
l

D
e

s
ig

n

S
p

e
c

if
ic

a
ti

o
n

s

D
o

c
u

m
e

n
ta

ti
o

n

B
u

s
in

e
s

s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

R
e

d
e

s
ig

n
e

d
 B

u
s

in
e

s
s

 P
ro

c
e

s
s

e
s

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c

o
p

e
 &

 V
is

io
n

T
ra

in
in

g

M
a

te
ri

a
ls

D
e

s
ig

n
 P

ro
to

ty
p

e
s

T
e

c
h

n
o

lo
g

y
 M

a
rk

e
t

R
e

s
e

a
rc

h

P
ro

p
o

s
a

l

o
r

Q
u

o
ta

ti
o

n

C
o

n
tr

a
c

t

a
n

d

O
rd

e
r

R
F

P o
r

R
F

Q

B
a

s
e

li
n

e
 C

o
m

m
e

rc
ia

l
A

p
p

li
c

a
ti

o
n

F
e

a
tu

re
s

a
n

d

C
a

p
a

b
il

it
ie

s
A

d
d

-o
n

/-
in

S
o

ft
w

a
re

 R
e

q
u

ir
e

m
e

n
ts

C
u

s
to

m
iz

a
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

C
u

s
to

m
iz

e
d

 C
o

m
m

e
rc

ia
l

A
p

p
li

c
a

ti
o

n

2

1

3

4

5

7

6

8

9

1
0

F
I
G

U
R

E

3

-
1

2
T

h
e

C
o

m
m

er
ci

al
 A

p
p

li
ca

ti
o

n
 P

ac
k

ag
e

Im
p

le
m

en
ta

ti
o

n
 S

tr
at

eg
y

102

but they are usually necessary. In many cases, the necessary changes are not
wrong—they are just different and unfamiliar. System users tend to be uncom-
fortable with changing the way they have always done something.
An application package rarely meets all business requirements upon installa-
tion. Typically, a gap analysis must be performed to determine which busi-
ness requirements are not fulfilled by the package’s capabilities and features.
For requirements that will not be fulfilled, the following options exist:

• Request customizations of the package within allowable limits as specified
by the software vendor. Most commercial application packages allow the
purchaser to set specific options, preferences, and defined values and
ranges for certain parameters. Within limits, these customizations allow you
to “personalize” the package to the business accounting and business prac-
tices. Such necessary CUSTOMIZATION REQUIREMENTS need to be specified.

• Define ADD-ON SOFTWARE REQUIREMENTS. Add-on software requirements specify
programs that must be designed and constructed to augment the commercial
application package and deliver additional functionality. It should be noted
that add-on programs carry some risk that they may have to be modified in
the future when a new version of the software becomes available. But this
risk is nominal, and most organizations take the risk in order to provide addi-
tional functionality.

• Define ADD-IN SOFTWARE REQUIREMENTS. Add-in software requirements are very
dangerous! They specify changes to the actual commercial application pack-
age to meet business requirements. In other words, users are requesting that
changes be made to the purchased software, its database, or its user inter-
faces. At best, such changes can make version upgrades extremely difficult
and prohibitively expensive. At worst, such changes can invalidate technical
support from the vendor. (And most vendors encourage keeping versions
relatively current by canceling technical support on older versions.) Changing
program code and database structures should be discouraged. Insistence by
users is often a symptom of unwillingness to adapt business processes to
work with the application. Many organizations prohibit changes to application
packages and force users to adapt in order to preserve their upgrade path.

The BASELINE COMMERCIAL APPLICATION is installed and tested. Allowable changes
based on options, preferences, and parameters are completed and tested.
Note: These customizations within the limits specified by the software
vendor will typically carry forward to version upgrades. In most instances the
vendor has provided for this level of CUSTOMIZED COMMERCIAL APPLICATION.
Any add-on (or add-in) software changes are designed and constructed to meet
additional business requirements. The system is subsequently tested and placed
into operation using the same activities described in the basic FAST process.

The commercial application package strategy offers its own advantages and
disadvantages:

10

9

8

Information Systems Development Chapter Three 103

gap analysis a comparison

of business and technical re-

quirements for a commercial

application package against

the capabilities and features

of a specific commercial

application package for the

purpose of defining the

requirements that cannot

be met.

Advantages

• New systems can usually be imple-
mented more quickly because exten-
sive programming is not required.

• Many businesses cannot afford the
staffing and expertise required to
develop in-house solutions.

• Application vendors spread their
development costs across all cus-
tomers that purchase their software.
Thus, they can invest in continuous

Disadvantages

• A successful COTS implementation is
dependent on the long-term success
and viability of the application
vendor—if the vendor goes out of
business, you can lose your technical
support and future improvements.

• A purchased system rarely reflects
the ideal solution that the business
might achieve with an in-house-
developed system that could be

Regardless, the trend toward purchased commercial application packages cannot
be ignored. Today, many businesses require that a package alternative be considered
prior to engaging in any type of in-house development project. Some experts estimate
that by the year 2005 businesses will purchase 75 percent of their new information sys-
tem applications. For this reason, we will teach systems analysis tools and techniques
needed by system analysts to function in this environment.

> Hybrid Strategies

The FAST routes are not mutually exclusive. Any given project may elect to or be re-
quired to use a combination of, or variation of, more than one route. The route to be
used is always selected during the scope definition phase and is negotiated as part of
the statement of work. One strategy that is commonly applied to both model-driven
and rapid application development routes is an incremental strategy. Figure 3-13
illustrates one possible implementation of an incremental strategy in combination
with rapid application development.The project delivers the information system into
operation in four stages. Each stage implements a version of the final system using a
RAD route. Other variations on routes are possible.

> System Maintenance

All routes ultimately result in placing a new system into operation. System mainte-
nance is intended to guide projects through the operation and support stage of their
life cycle—which could last decades! Figure 3-14 places system maintenance into
perspective. System maintenance in FAST is not really a unique route. As illustrated in
the figure, it is merely a smaller-scale version of the same FAST process (or route) that
was used to originally develop the system. The figure demonstrates that the starting
point for system maintenance depends on the problem to be solved. We call your
attention to the following numbered bullets in the figure:

Maintenance and reengineering projects are triggered by some combination
of user and technical feedback. Such feedback may identify new problems,
opportunities, or directives.
The maintenance project is initiated by a SYSTEM CHANGE REQUEST that indicates
the problems, opportunities, or directives.
The simplest fixes are SOFTWARE BUGS (errors). Such a project typically jumps
right into a reCONSTRUCTION AND reTESTING phase and is solved relatively quickly.
Sometimes a DESIGN FLAW in the system becomes apparent after
implementation. For example, users may frequently make the same mistake
due to a confusing screen design. For this type of maintenance project, the
PHYSICAL DESIGN AND INTEGRATION phase would need to be revisited, followed of
course by the construction and delivery phases.

4

3

2

1

104 Part One The Context of Systems Development Projects

improvements in features, capabili-
ties, and usability that individual
businesses cannot always afford.

• The application vendor assumes
responsibility for significant system
improvements and error corrections.

• Many business functions are more
similar than dissimilar for all busi-
nesses in a given industry. For exam-
ple, business functions across organi-
zations in the health care industry are
more alike than different. It does not
make good business sense for each
organization to “reinvent the wheel.”

customized to the precise expecta-
tions of management and the users.

• There is almost always at least
some resistance to changing busi-
ness processes to adapt to the soft-
ware. Some users will have to give
up or assume new responsibilities.
And some people may resent
changes they perceive to be tech-
nology-driven instead of business-
driven.

F
I
G

U
R

E

3

-
1

3
A

n
 I

n
cr

em
en

ta
l

Im
p

le
m

en
ta

ti
o

n
 S

tr
at

eg
y

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

V
e
rs

io
n
 #

.#

V
E

R
S

IO
N

 1

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 2

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 3

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 4

O
F

 S
Y

S
T

E
M

IT
E

R
A
T

IO
N

 #
1

IT
E

R
A
T

IO
N

 #
3

IT
E

R
A
T

IO
N

 #
4

IT
E

R
A
T

IO
N

 #
2

105

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l

D
e
s
ig

n
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

S
T
A

R
T

:

F
e
e
d

b
a
c
k

L
o

g
ic

a
l

D
e
s
ig

n

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

T
ra

in
in

g

M
a
te

ri
a
ls

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

F
IN

IS
H

:

U
p

d
a
te

d
 o

r

Im
p

ro
v
e
d

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

1

8

2

7

3

4

5

6

S
y
s
te

m

C
h

a
n

g
e

R
e
q

u
e
s
t

N
e
w

B
u

s
in

e
s
s

P
ro

b
le

m
s

N
e
w

 B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts

N
e
w

 T
e
c
h

n
ic

a
l

R
e
q

u
ir

e
m

e
n

ts

D
e
s
ig

n

F
la

w

o
r

B
u

s
in

e
s
s

P
ro

c
e
s
s

Is
s
u

e

S
o

ft
w

a
re

“
B

u
g

”

F
I
G

U
R

E

3

-
1

4
A

S
y

st
em

 M
ai

n
te

n
an

ce
 P

er
sp

ec
ti

v
e

106

In some cases a BUSINESS PROCESS ISSUE may become apparent. In this case,
only the business process needs to be redesigned.
On occasion, NEW TECHNICAL REQUIREMENTS might dictate a change. For example,
an organization may standardize on the newest version of a particular
database management system such as SQL Server or Oracle. For this type of
project, the DECISION ANALYSIS phase may need to be revisited to first determine
the risk and feasibility of converting the existing, operational database to the
new version. As appropriate, such a project would subsequently proceed to
the physical design, construction, and delivery phases as necessary.
Businesses constantly change; therefore, business requirements for a system
also change. One of the most common triggers for a reengineering project is
a NEW (or revised) BUSINESS REQUIREMENT. Given the requirement, the
REQUIREMENTS ANALYSIS phase must be revisited with a focus on the impact of
the new requirement on the existing system. Based on requirements analysis,
the project would then proceed to the logical design, decision analysis, physi-
cal design, construction, and delivery phases.

Time out! By now, you’ve noticed that maintenance and reengineering
projects initiate in different phases of the basic methodology. You might be
concerned that repeating these phases would require excessive time and
effort. Keep in mind, however, that the scope of maintenance and
reengineering projects is much, much smaller than the original project that
created the operational system. Thus, the work required in each phase is
much less than you might have guessed.
Again, as businesses change, significant NEW BUSINESS PROBLEMS, opportunities, and
constraints can be encountered. In this type of project, work begins with the
PROBLEM ANALYSIS phase and proceeds as necessary to the subsequent phases.
In all cases, the final result of any type of maintenance or reengineering proj-
ect is an updated operational business system that delivers improved value to
the system users and owners. Updates may include revised programs,
databases, interfaces, or business processes.

As described earlier in the chapter, we expect all systems to eventually reach
entropy. The business and/or technical problems and requirements have become so
troublesome as to warrant “starting over.”

That completes our introduction to the systems development methodology and
routes. Before we end this chapter, we should introduce the role of automated tools
that support systems development.

Automated Tools and Technology

You may be familiar with the old fable of the cobbler (shoemaker) whose own children
had no shoes. That situation is not unlike the one faced by some systems developers.
For years we’ve been applying information technology to solve our users’ business
problems; however, we’ve sometimes been slow to apply that same technology to our
own problem—developing information systems. In the not-too-distant past, the princi-
pal tools of the systems analyst were paper, pencil, and flowchart template.

Today, entire suites of automated tools have been developed, marketed, and in-
stalled to assist systems developers.While system development methodologies do not
always require automated tools, most methodologies do benefit from such technol-
ogy. Some of the most commonly cited benefits include:

• Improved productivity—through automation of tasks.
• Improved quality—because automated tools check for completeness, consis-

tency, and contradictions.
• Better and more consistent documentation—because the tools make it easier

to create and assemble consistent, high-quality documentation.

8

7

6

5

Information Systems Development Chapter Three 107

REPRESENTATIVE
CASE TOOLS

Computer Associates’ Erwin

Oracle’s Designer 2000

Popkin’s System Architect

Rational ROSE

Visible Systems’ Visible
Analyst

• Reduced lifetime maintenance—because of the aforementioned system quality
improvements combined with better documentation.

• Methodologies that really work—through rule enforcement and built-in expertise.

Chances are that your future employer is using or will be using this technology to
develop systems. We will demonstrate the use of various automated tools throughout
this textbook.There are three classes of automated tools for developers:

• Computer-aided systems modeling.
• Application development environments.
• Project and process managers.

Let’s briefly examine each of these classes of automated tools.

> Computer-Assisted Systems Engineering

Systems developers have long aspired to transform information systems and software
development into engineering-like disciplines. The terms systems engineering and
software engineering are based on a vision that systems and software development
can and should be performed with engineering-like precision and rigor. Such precision
and rigor are consistent with the model-driven approach to systems development. To
help systems analysts better perform system modeling, the industry developed auto-
mated tools called computer-assisted software engineering (CASE) tools. Think
of CASE technology as software that is used to design and implement other software.
This is very similar to the computer-aided design (CAD) technology used by most con-
temporary engineers to design products such as vehicles, structures, machines, and so
forth. Representative modeling products are listed in the margin. Most modeling prod-
ucts run on personal computers, as depicted in Figure 3-15.

CASE Repositories At the center of any true CASE tool’s architecture is a devel-
oper’s database called a CASE repository. The repository concept was introduced
earlier (see Figure 3-7).

Around the CASE repository is a collection of tools, or facilities, for creating sys-
tem models and documentation.

CASE Facilities To use the repository, the CASE tools provide some combination of
the following facilities, illustrated in Figure 3-16:

• Diagramming tools are used to draw the system models required or recom-
mended in most system development methodologies. Usually, the shapes on
one system model can be linked to other system models and to detailed
descriptions (see next item below).

• Dictionary tools are used to record, delete, edit, and output detailed documen-
tation and specifications. The descriptions can be associated with shapes
appearing on system models that were drawn with the diagramming tools.

• Design tools can be used to develop mock-ups of system components such
as inputs and outputs. These inputs and outputs can be associated with both
the aforementioned system models and the descriptions.

• Quality management tools analyze system models, descriptions and specifica-
tions, and designs for completeness, consistency, and conformance to
accepted rules of the methodologies.

• Documentation tools are used to assemble, organize, and report on system
models, descriptions and specifications, and prototypes that can be reviewed
by system owners, users, designers, and builders.

• Design and code generator tools automatically generate database designs and
application programs or significant portions of those programs.

• Testing tools simulate transactions and data traffic, measure performance, and
provide configuration management of test plans and test scripts.

Forward and Reverse Engineering As previous stated, CASE technology auto-
mates system modeling.Today’s CASE tools provide two distinct ways to develop sys-
tem models—forward engineering and reverse engineering. Think of reverse

108 Part One The Context of Systems Development Projects

computer-assisted
software engineering
(CASE) the use of automated

software tools that support the

drawing and analysis of system

models and associated specifi-

cations. Some CASE tools also

provide prototyping and code

generation capabilities.

CASE repository a sys-

tem developers’ database

where developers can store

system models, detailed de-

scriptions and specifications,

and other products of sys-

tems development. Syn-

onyms data include data

dictionary and encyclopedia.

forward engineering a

CASE tool capability that can

generate initial software or

database code directly from

system models.

reverse engineering a

CASE tool capability that can

automatically generate initial

system models from software

or database code.

F I G U R E 3 - 1 5 Screen Capture of System Architect CASE Tool

engineering as allowing you to generate a flowchart from an existing program and of
forward engineering as allowing you to generate a program directly from a flowchart.
CASE tools that allow for bidirectional, forward, and reverse engineering are said to
provide for “round-trip engineering.” For example, you reverse engineer a poorly
designed system into a system model, edit and improve that model, and then forward
engineer the new model into an improved system.

> Application Development Environments

The emphasis on speed and quality in software development has resulted in RAD ap-
proaches.The potential for RAD has been amplified by the transformation of program-
ming language compilers into complete application development environments

(ADEs). ADEs make programming simpler and more efficient. Indeed, most program-
ming language compilers are now integrated into an ADE. Examples of ADEs (and the
programming languages they support, where applicable) are listed in the margin.

Application development environments provide a number of productivity and
quality management facilities.The ADE vendor provides some of these facilities.Third-
party vendors provide many other facilities that can integrate into the ADE.

• Programming languages or interpreters are the heart of an ADE. Powerful
debugging features and assistance are usually provided to help programmers
quickly identify and solve programming problems.

• Interface construction tools help programmers quickly build the user inter-
faces using a component library.

Information Systems Development Chapter Three 109

application development
environment (ADE) an

integrated software develop-

ment tool that provides all the

facilities necessary to develop

new application software with

maximum speed and quality.

A common synonym is

integrated development

environment (IDE).

REPRESENTATIVE
ADEs

IBM’s Websphere (Java)

Borland’s J Builder (Java)

Macromedia’s Cold Fusion

Microsoft’s Visual

Studio.NET (VB .NET, C#,

C .NET)

Oracle’s Developer

Sybase’s Powerbuilder

CASE

Repository

Diagramming

Tools

Dictionary

Tools

Design

Tools

Quality

Management

Tools

Documentation

Tools

Design and

Code

Generator

Tools

CASE

Workstation

and

Software

system

models

design models test results

and and

program code test scripts

system

descriptions

and

specif ications

project and

system

documentation

system

prototypes

quality

reports

PrinterSystems Analysts

CASE repositories

are usually stored

on servers so that

they may be shared

by multiple projects

and par ticipants.

Testing

Tools

F I G U R E 3 - 1 6 CASE Tool Architecture

110 Part One The Context of Systems Development Projects

Lea
rning

 Roa
d
m

a
p

This chapter, along with the first two, completes the minimum context for studying

systems analysis and design. We have described that context in terms of the three

Ps—the participants (the stakeholders; Chapter 1), the product (the information system;

Chapter 2), and the process (the system development; Chapter 3). Armed with this

understanding, you are now ready to study systems analysis and/or design methods.

For many of you, Chapter 4,“Project Management,” will provide a more complete

context for studying systems analysis and design. It builds on Chapter 3 by emphasiz-

ing a variety of management issues related to the system development process.These

include methodology management, resource management, management of expecta-

tions, change management, and others.

For those of you who skip the project and process management chapter, your

next assignment will depend on whether your goal is:

• A comprehensive survey of systems development—We recommend you continue your sequential

path to Chapter 5, “Systems Analysis.” In that chapter you will study in greater depth the scope

definition, problem analysis, requirements analysis, and logical design phases that were

introduced in Chapter 3.

• The study of systems analysis techniques—Again, we recommend you continue your sequential

path to Chapter 5, “Systems Analysis.” Chapter 5 will provide a context for subsequently studying

the tools and techniques of systems analysis.

• The study of systems design techniques—You might still want to quickly skim or review Chapter 5,

“Systems Analysis,” for context. Then continue your detailed study in Chapter 12, “System

Design.” In that chapter, you will learn more about the process and strategies for system design

and construction of information systems.

• Middleware is software that helps programmers integrate the software being
developed with various databases and computer networks.

• Testing tools are used to build and execute test scripts that can consistently
and thoroughly test software.

• Version control tools help multiple programmer teams manage multiple ver-
sions of a program, both during development and after implementation.

• Help authoring tools are used to write online help systems, user manuals,
and online training.

• Repository links permit the ADE to integrate with CASE tool products as
well as other ADEs and development tools.

> Process and Project Managers

A third class of automated tools helps us manage the system development methodol-
ogy and projects that use the methodology. While CASE tools and ADEs are intended
to support analysis, design, and construction of new information systems and soft-
ware, process manager application and project manager application tools are
intended to support cross life-cycle activities. Microsoft’s Project and Niku’s Open

Workbench and Project Manager are examples of automated project management
tools. Because process and project management is the subject of the next chapter,
you’ll learn more about these automated tools in that chapter.

Information Systems Development Chapter Three 111

process manager
application an automated

tool that helps to document

and manage a methodology

and routes, its deliverables,

and quality management

standards. An emerging

synonym is methodware.

project manager
application an automated

tool that helps to plan system

development activities (prefer-

ably using the approved

methodology), estimate and

assign resources (including

people and costs), schedule

activities and resources, moni-

tor progress against schedule

and budget, control and mod-

ify schedule and resources,

and report project progress.

1. A systems development process is a set of activi-
ties, methods, best practices, deliverables, and
automated tools that stakeholders use to develop
and continuously improve information systems
and software.

2. The Capability Maturity Model (CMM) is a
framework for assessing the maturity level of
an organization’s information systems develop-
ment and management processes and products.
It defines the need for a system development
process.

3. A system life cycle divides the life of an informa-
tion system into two stages, systems development

and systems operation and maintenance.

4. A systems development methodology is a
process for the system development stage. It de-
fines a set of activities, methods, best practices,
deliverables, and automated tools that systems
developers and project managers are to use to
develop and maintain information systems and
software.

5. The following principles should underlie all sys-
tems development methodologies:

a. Get the system users involved.
b. Use a problem-solving approach.
c. Establish phases and activities.
d. Document throughout development.
e. Establish standards.
f. Manage the process and projects.
g. Justify information systems as capital

investments.
h. Don’t be afraid to cancel or revise scope.
i. Divide and conquer.
j. Design systems for growth and change.

6. System development projects are triggered by
problems, opportunities, and directives:

a. Problems are undesirable situations that pre-
vent the organization from fully achieving its
purpose, goals, and/or objectives.

b. Opportunities are chances to improve the or-
ganization even in the absence of specific
problems.

c. Directives are new requirements that are im-
posed by management, government, or some
external influence.

7. Wetherbe’s PIECES framework is useful for cate-
gorizing problems, opportunities, and directives.
The letters of the PIECES acronym correspond to
Performance, Information, Economics, Control,
Efficiency, and Service.

8. Traditional, basic systems development phases
include:

a. Scope definition
b. Problem analysis
c. Requirements analysis
d. Logical design
e. Decision analysis
f. Physical design and integration
g. Construction and testing
h. Installation and delivery

9. Cross life-cycle activities are activities that over-
lap many or all phases of the methodology.They
may include:

a. Fact-finding, the formal process of using re-
search, interviews, meetings, questionnaires,
sampling, and other techniques to collect in-
formation about systems, requirements, and
preferences.

b. Documentation, the activity of recording facts
and specifications for a system for current and
future reference. Documentation is frequently
stored in a repository, a database where sys-
tems developers store all documentation,
knowledge, and products for one or more
information systems or projects.

c. Presentation, the activity of communicating
findings, recommendations, and documenta-
tion for review by interested users and man-
agers. Presentations may be either written or
verbal.

d. Feasibility analysis, the activity by which
feasibility, a measure of how beneficial the
development of an information system
would be to an organization, is measured
and assessed.

e. Process management, the ongoing activity that
documents, manages the use of, and improves
an organization’s chosen methodology (the
“process”) for systems development.

f. Project management, the activity of defining,
planning, directing, monitoring, and control-
ling a project to develop an acceptable system
within the allotted time and budget.

10. There are different routes through the basic sys-
tems development phases. An appropriate route
is selected during the scope definition phase.
Typical routes include:

a. Model-driven development strategies, which
emphasize the drawing of diagrams to help
visualize and analyze problems, define

Summary

112 Part One The Context of Systems Development Projects

1. Explain why having a standardized system
development process is important to an
organization.

2. How are system life cycle and system develop-
ment methodology related?

3. What are the 10 underlying principles for systems
development?

4. Why is documentation important throughout the
development process?

5. Why are process management and project man-
agement necessary?

6. What is risk management? Why is it necessary?
7. Which stakeholders initiate most projects? What

is the impetus for most projects?
8. Who are the main participants in the scope

definition? What are their goals in the scope
definition?

9. What are the three most important deliverables in
scope definition?

10. Who are the main participants in the require-
ments analysis phase? Why are they the main
participants?

11. What feasibility analyses are made in the decision
analysis?

12. What is model-driven development?
13. Why is model-driven development popular?
14. What is rapid application development (RAD)?
15. What benefits can RAD bring to the system devel-

opment process?
16. What is computer-assisted software engineering

(CASE)? List some examples of CASE.

Review Questions
1

2

business requirements, and design informa-
tion systems. Alternative model-driven
strategies include:

i) Process modeling
ii) Data modeling
iii) Object modeling

b. Rapid application development (RAD) strate-
gies, which emphasize extensive user in-
volvement in the rapid and evolutionary
construction of working prototypes of a sys-
tem to accelerate the system development
process.

c. Commercial application package implementa-
tion strategies, which focus on the purchase
and integration of a software package or solu-
tion to support one or more business func-
tions and information systems.

d. System maintenance, which occurs after a sys-
tem is implemented and lasts throughout the
system’s lifetime. Essentially, system mainte-
nance executes a smaller-scale version of the
development process with different starting
points depending on the type of problem to
be solved.

11. Automated tools support all systems development
phases:

a. Computer-aided systems engineering (CASE)
tools are software programs that automate or
support the drawing and analysis of system
models and provide for the translation of sys-
tem models into application programs.

Information Systems Development Chapter Three 113

i) A CASE repository is a system developers’
database. It is a place where developers can
store system models, detailed descriptions
and specifications, and other products of
systems development.

ii) Forward engineering requires that the sys-
tems analyst draw system models, either
from scratch or from templates.The result-
ing models are subsequently transformed
into program code.

iii) Reverse engineering allows a CASE tool to
read existing program code and transform
that code into a representative system
model that can be edited and refined by
the systems analyst.

b. Application development environments
(ADEs) are integrated software development
tools that provide all the facilities necessary to
develop new application software with maxi-
mum speed and quality.

c. Process management tools help us document
and manage a methodology and routes, its de-
liverables, and quality management standards.

d. Project management tools help us plan system
development activities (preferably using the
approved methodology), estimate and assign
resources (including people and costs), sched-
ule activities and resources, monitor progress
against schedule and budget, control and mod-
ify schedule and resources, and report project
progress.

1. The Capability Maturity Model (CMM) was devel-
oped by the Software Engineering Institute at
Carnegie Mellon, and is widely used by both the
private and public sectors. What is the purpose
of the CMM framework and how does it achieve
this?

2. List the five maturity levels, and briefly describe
each of them.

3. Table 3-1 in the textbook illustrates the differ-
ence in a typical project’s duration, person-
months, quality, and cost, depending upon
whether an organization’s system development
process is at CMM level 1, 2, or 3. Between
which two CMM levels does an organization
gain the greatest benefit in terms of percentage
of improvement? What do you think is the
reason for this?

4. Systems development methodology and system

life cycle are two terms that are frequently used
and just as frequently misused. What is the differ-
ence between the two terms?

5. Describe how using a systems development
methodology is in line with CMM goals and
can help an organization increase its maturity
level.

6. A number of underlying principles are common
to all systems development methodologies. Iden-
tify these underlying principles and explain them.

7. The PIECES framework was developed by James
Wetherbe as a means to classify problems. Iden-
tify the categories, then categorize the following
problems using the PIECES framework:

a. Duplicate data is stored throughout the system.
b. There is a need to port an existing application

to PDA devices.
c. Quarterly sales reports need to be generated

automatically.
d. Employees can gain access to confidential por-

tions of the personnel system.
e. User interfaces for the inventory system are

difficult and confusing, resulting in a high fre-
quency of incorrect orders.

8. Each phase of a project includes specific deliver-
ables that must be produced and delivered to the
next phase. Using the textbook’s hypothetical
FAST methodology, what are the deliverables for
the requirements analysis, logical design, and
physical design/integration phases?

9. Scope definition is the first phase of the FAST

methodology, and it is either the first phase or
part of the first phase of most methodologies.

What triggers the scope phase, which stake-
holders are involved in this phase, what two
essential questions need to be answered, and
what three important deliverables come out of
this phase?

10. The requirements analysis phase is an essential
part of a system development methodology.
According to the FAST methodology, which stake-
holders typically participate in this phase? What
is the primary focus of requirements analysis?
What is not the focus? How should each pro-
posed requirement be evaluated? What critical
error must be avoided?

11. In the FAST methodology, as well as most system
methodologies, system owners and system de-
signers do not participate in the requirements
analysis phase. What do you think the reason is
for this?

12. What is the essential purpose of the logical de-
sign phase? How does it accomplish this? How
are technological solutions incorporated in this
phase? What are some common synonyms
for this phase used by other methodologies?
Who are the typical participants in this phase?
What is agile modeling and what is its purpose?
What are the deliverables coming out of this
phase? In terms of the development team, what
critical transition takes place by the end of this
phase?

13. What is the essential purpose of the physical de-
sign phase? Who must be involved in this phase,
and who may be involved? What are the two
philosophies of physical design on the different
ends of the continuum, and how are they different?
Is this a likely phase in which a project might be
canceled? With what other phase is there likely
to be overlap, and what do you think is the
reason for this?

14. A customer has engaged your software develop-
ment company to develop a new order-processing
system. However, the time frames are very tight
and inflexible for delivery of at least the basic
part of the new system. Further, user require-
ments are sketchy and unclear. What are two
system development strategies that might be
advantageous to use in this engagement?

15. What is the potential downside to using the
strategies described in the preceding question?

Problems and Exercises

114 Part One The Context of Systems Development Projects

1. The Software Engineering Institute (SEI) at
Carnegie Mellon University has developed a series
of related Capability Maturity Models (CMMs).You
can read about these different CMM products at
SEI’s Web site (http://www.sei.cmu.edu).

a. Identify the current CMM products being main-
tained or developed by SEI.

b. What are their differences and similarities?
c. If you were to rate your organization, or an

organization with which you are familiar, using
the CMM described in the textbook, at which
level would it be? Why?

d. What steps would you recommend that your
organization take in order to advance to the
next CMM level?

e. Do you feel that the time, cost, and resources to
advance to the next level would be worth the
perceived benefits for your organization? Why
or why not?

2. You are a new project manager and have been as-
signed responsibility for an enterprise information
systems project that touches every division in your
organization.The chief executive officer stated at
project initiation that successfully implementing
this project was the number 1 priority of your or-
ganization.The project is in midst of the require-
ments analysis phase. While it is on schedule, you
notice that attendance of the system users and
owners at meetings on requirements has been
dropping. A more experienced project manager
has told you not to worry, that this is normal.
Should you be concerned?

3. There are many different systems development
methodologies in use, each with its own terminol-
ogy, and number and scope of phases. Search the
Web for information on two or three of these
other systems development methodologies, then
do the following:

a. Note the systems development methodologies
that you found. When, by whom, and why were
they developed?

b. What phases and terminology do they employ?
c. Draw a matrix comparing their phases to the

textbook’s FAST methodology.
d. What significant differences did you find?
e. Do you see any advantages or disadvantages in

any of the methodologies that you found com-
pared to the FAST methodology?

4. The PIECES framework, which was developed by
James Wetherbe and is described in the textbook,

is intended to be a framework for classifying prob-
lems, opportunities, and directives.

Contact one of the systems analysts for your
organization, your school, and/or another organi-
zation. Ask them about the information systems
used in their organization and to describe what
the problems are in general terms. Select three of
these systems:

a. Describe the systems you selected, their prob-
lems, and the organizations that use them.

b. Use the PIECES framework in the textbook to
categorize each system’s problems.

c. Describe the PIECES category or categories you
found for each problem. Did each problem gen-
erally have one or more categories associated
with it?

d. For the systems used by different organizations,
what commonality did you find in the categories
of problems? If you found a great deal of com-
monality of categories, do you think this is
significant or just coincidental?

e. Where in the systems development life cycle do
you think the PIECES framework would be of
the greatest value?

5. Computer-assisted software engineering (CASE)
tools can significantly help developers improve
productivity, quality, and documentation. Conduct
an informal survey of about a dozen information
technology departments regarding whether they
use CASE tools, and if so, what type. Also, find out
how long they have been using the CASE tools
and whether they are used for all or just some
projects. Add any other questions you may find
meaningful. Try to split your survey between pub-
lic and private sector agencies, and/or large and
small organizations.

a. What types of organizations did you survey?
b. What did you ask?
c. What were the results?
d. Given the limited and informal nature of this

survey, were you able to find any patterns or
trends?

e. Based upon your readings and your survey,
what are your feelings regarding the use of
CASE tools?

6. Projects at times are canceled or abandoned, some-
time by choice, sometimes not. Research the Web
for articles on project abandonment strategies, and
select two of them.

Projects and Research

Information Systems Development Chapter Three 115

1. Interview at least two project managers. What are
their experiences with scope creep?

2. George is the CEO of a major corporation that has
been trying to develop a program that captures the
keystrokes of employees on their computers.The
project is currently $100,000 over budget and
behind schedule and will require at least another
$50,000 and six months to complete.The CEO
wants to continue the project because so much
has already been invested in it. What is your
recommendation? Why?

3. Beatrice is an excellent manager—she is very capa-
ble of managing the bureaucratic process and
following the business rules in her corporation.

She is a “by the book” person who can always be
counted on to do things “right.” Will Beatrice make
a good project manager? Why or why not?

4. A company is trying to decide between using an
off-the-shelf program or developing a custom
program for inventory management. The off-the-
shelf product is less expensive than the custom
solution and still has most of the needed func-
tionality. The CEO believes that the missing capa-
bility can be addressed through tweaking the
program once it is purchased. As the CIO of the
company, what are your concerns and recom-
mendations to the CEO?

Minicases

1. (Team) Hold team meetings using different com-
munications mediums. Examples: phone, e-mail,
virtual environment. What did you notice about
the impact of the technology on the meeting? Was
the productivity of the meetings the same for each
medium? How did the team feel about the impact
of the technologies on the team relationships?

2. (Individual) The analysis and design of an informa-
tion system, done well, often eliminates jobs in a
company. Economic theory strongly supports the

creation of new jobs when this happens, but gen-
erally there is a time lag between the structural
loss of jobs and the creation of new jobs. How do
you feel about that?

3. (Team or Individual) Visit a neonatal intensive care
unit at a highly regarded medical center (such as
UC San Francisco). Write a short paper on your
thoughts of the involved technology and the im-
pact it has on people’s lives. At the professor’s
discretion, share with the class.

Team and Individual Exercises

Ambler, Scott. Agile Modeling: Effective Practices for eX-

treme Programming and the Unified Process. New York:

John Wiley & Sons, 2002.This is the definitive book on ag-

ile methods and modeling.

Application Development Trends (monthly periodical).

Framingham, MA: Software Productivity Group, Inc.This

is our favorite periodical for keeping up with the latest

trends in methodology and automated tools. Each

month features several articles on different topics and

products.

DeMarco, Tom. Structured Analysis and System Specifica-

tion. Englewood Cliffs, NJ: Prentice Hall, 1978. This is the

classic book on structured systems analysis, a process-

centered, model-driven methodology.

Gane, Chris. Rapid Systems Development. Englewood Cliffs,

NJ: Prentice Hall, 1989.This book presents a nice overview

of RAD that combines model-driven development and

prototyping in the correct balance.

Gildersleeve, Thomas. Successful Data Processing Systems

Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall,

Suggested Readings

a. What articles did you select?
b. What are their central themes, findings, and rec-

ommendations regarding project abandonment?
c. Compare and contrast their findings and their

recommendations. Which strategy would you
choose, if any?

d. Do you think that abandoning a project is
always avoidable and/or always represents a
failure?

116 Part One The Context of Systems Development Projects

1985. We are indebted to Gildersleeve for the creep-

ing commitment approach.The classics never become ob-

solete.

Jacobson, Ivar; Grady Booch; and James Rumbaugh. The

Unified Software Development Process. Reading, MA:

Addison-Wesley, 1999. The Rational Unified Process is a

currently popular example of a model-driven, object-

oriented methodology.

McConnell, Steve. Rapid Development. Redmond, WA: Mi-

crosoft Press, 1996. Chapter 7 of this excellent reference

book provides what may be the definitive summary of sys-

tem development life cycle and methodology variations

that we call “routes” in our book.

Orr, Ken. The One Minute Methodology. New York: Dorsett

House, 1990. Must reading for those interested in exploring

the need for methodology.This very short book can be read

in one sitting. It follows the satirical story of an analyst’s

quest for the development silver bullet, “the one minute

methodology.”

Paulk, Mark C.; Charles V. Weber; Bill Curtis; and Mary Beth

Chrissis. The Capability Maturity Model: Guidelines for

Improving the Software Process. Reading, MA: Addison-

Wesley, 1995. This book fully describes version 1.1 of the

Capability Maturity Model. Note that version 2.0 was

under development at the time we were writing this

chapter.

Wetherbe, James. Systems Analysis and Design: Best Prac-

tices, 4th ed. St. Paul, MN: West, 1994. We are indebted to

Wetherbe for the PIECES framework.

Information Systems Development Chapter Three 117

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

a
n

d
 S

Y
S

T
E

M
S

 A
N

A
L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

LY
S

IS
 a

n
d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N
R

E
Q

U
IR

E
M

E
N

T
S

A
N

A
LY

S
IS

P
R

O
B

L
E

M
A

N
A

LY
S

IS
P

H
Y

S
IC

A
L

D
E

S
IG

N
C

O
N

S
T

R
U

C
T

IO
N

&
 T

E
S

T
IN

G
IN

S
T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E
D

E
F

IN
IT

IO
N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

4Project Management

Chapter Preview and Objectives

Project management skills are greatly in demand in the information technology commu-

nity. Project management is a natural extension of the previous chapter’s introduction to

system development. This chapter provides a process-centric survey of key project man-

agement tools and techniques as they apply to systems analysis and design. You will

know that you understand the basics of project management when you can:

❚ Define the terms project and project management and differentiate between project

and process management.

❚ Describe the causes of failed information systems and technology projects.

❚ Describe the basic competencies required of project managers.

❚ Describe the basic functions of project management.

❚ Differentiate between PERT and Gantt charts as project management tools.

❚ Describe the role of project management software as it relates to project management

tools.

❚ Describe eight activities in project management.

❚ Define joint project planning and its role in project management.

❚ Define scope and write a statement of work to document scope.

❚ Use a work breakdown structure to decompose a project into tasks.

❚ Estimate tasks’ durations and specify intertask dependencies on a PERT chart.

❚ Assign resources to a project and produce a project schedule with a Gantt chart.

❚ Assign people to tasks and direct the team effort.

❚ Use critical path analysis to adjust schedule and resource allocations in response to

schedule and budget deviations.

❚ Manage user expectations of a project and adjust project scope.

Bob Martinez was in the office of his boss, Sandra Shepherd, discussing the Sound-
Stage Member Services system project.

“This sure is a big project,” Bob said,“bigger than anything I’ve ever worked on
before. How will you make sure it stays on track?”

“Well, first we have to get consensus on the scope of the project and document as-
sumptions and constraints,” Sandra answered. “We also have to negotiate the project
budget and schedule.Then we identify all the tasks that need to be performed.The FAST

methodology is our template, but we always customize it for each project. We have
to plan each task and analyze how its work and its own schedule fit in with the overall
project.Then we assign people and other resources to each task. As the project goes on
we have to manage the process to make sure everything stays on schedule.”

“Wow!” Bob replied.“On some of the semester group projects I did in college, we
just kind of dived right in with the work. If we got behind we just pulled a couple of
all-nighters.”

“Believe me,” Sandra said,“you don’t want to be around when the finger pointing
starts on a real systems project that is behind schedule or over budget. That’s some-
thing a couple of all-nighters won’t fix.We have a long road ahead of us, and we want
to plan this as carefully as possible.”

120 Part One The Context of Systems Development Projects

project manager the

person responsible for super-

vising a systems project from

initiation to conclusion. Suc-

cessful project managers

possess a wide range of tech-

nical, management, leader-

ship, and communication

skills.

project a sequence of activi-

ties that must be completed

on time, within budget, and

according to specification.

1Robert K. Wysocki, Robert Beck, Jr., and David B. Crane, Effective Project Management: How to Plan, Manage, and

Deliver Projects on Time and within Budget (New York: John Wiley & Sons, 1995), p. 38.

Introduction

What Is Project Management?

Most of you are familiar with Murphy’s Law, which suggests, “If anything can go
wrong, it will.” Murphy has motivated numerous pearls of wisdom about projects, ma-
chines, people, and why things go wrong.This chapter will teach you strategies, tools,
and techniques for project management as applied to information systems projects.

The demand for project managers in the information systems community is
strong. Typically, IS project managers come from the ranks of experienced IS devel-
opers such as systems analysts. While it is unlikely that your first job responsibilities
will include project management, you should immediately become aware of project
management processes, tools, and techniques. Eventually you will combine this
knowledge with development experience plus your own observation of project man-
agers to form the basis for your own career opportunities in project management.

Before we can define project management, we should first define project. There
are as many definitions as there are authors, but we like the definition put forth by
Wysocki, Beck, and Crane:

A project is a [temporary] sequence of unique, complex, and connected activi-
ties that have one goal or purpose and that must be completed by a specific time,
within budget, and according to specification.1

The keywords are underlined to draw your attention to some key aspects of the defi-
nition. As applied to information system development, we note the following:

• A system development process or methodology, such as FAST, defines a
sequence of activities, mandatory and optional.

• Every system development project is unique; that is, it is different from every
other system development project that preceded it.

• The activities that comprise system development are relatively complex. They
require the skills that you are learning in this book, and they require that you be
able to adapt concepts and skills to changing conditions and unanticipated events.

• By now, you’ve already learned that the phases and activities that make up a
system development methodology are generally sequential. While some tasks
may overlap, many tasks are dependent on the completion of other tasks.

• The development of an information system represents a goal. Several objec-
tives may need to be met to achieve that goal.

• Although many information system development projects do not have
absolute deadlines or specified times (there are exceptions), they are notori-
ously completed later than originally projected. This is becoming less accept-
able to upper management given the organizationwide pressures to reduce
cycle times for products and business processes.

• Few information systems are completed within budget. Again, upper manage-
ment is increasingly rejecting this tendency.

• Information systems must satisfy the business, user, and management expecta-
tions according to specifications (which we call requirements throughout
this book).

For any systems development project, effective project management is neces-
sary to ensure that the project meets the deadline, is developed within an acceptable
budget, and fulfills customer expectations and specifications.You learned in Chapter 3
that project management is a cross life-cycle activity because it overlaps all phases
of any systems development methodology.

Corporate rightsizing has changed the structure and culture of most organizations
and, hence, project management. More flexible and temporary interdepartmental teams
that are given greater responsibility and authority for the success of organizations have
replaced rigid hierarchical command structures and permanent teams. Contemporary
system development methodologies depend on having teams that include both techni-
cal and nontechnical users, managers, and information technologists all directed to the
project goal.These dynamic teams require leadership and project management.

Organizations take different approaches to project management. One approach is
to appoint a project manager from the ranks of the team (once it has been formed).
Alternatively, many organizations believe that successful project managers apply a
unique body of knowledge and skills that must be learned. These organizations tend
to hire and/or develop professional project managers who are then assigned to one or
more projects.

The prerequisite for good project management is a well-defined system develop-
ment process. In Chapter 3, we introduced the Capability Maturity Model (CMM) as a
framework for quality management that is based on a sound systems development
process. In Chapter 3 we differentiated between project and process management.
Project management was defined above. Process management is an ongoing activ-
ity that documents, manages the use of, and improves an organization’s chosen
methodology (the “process”) for systems development. Process management is con-
cerned with the activities, deliverables, and quality standards to be applied to all proj-
ects. The scope of process management is all projects, whereas the scope of project
management is a single project.This chapter will focus on project management.

> The Causes of Failed Projects

What causes a project to succeed or fail? Chapter 3 introduced 10 basic principles of
systems development that are critical success factors for all projects. See Chapter 3 for
a review of those principles. From a project management perspective, a project is
considered a success if:

• The resulting information system is acceptable to the customer.
• The system is delivered “on time.”
• The system is delivered “within budget.”
• The system development process had a minimal impact on ongoing business

operations.

Project Management Chapter Four 121

project management the

process of scoping, planning,

staffing, organizing, directing,

and controlling the develop-

ment of an acceptable system

at a minimum cost within a

specified time frame.

process management the

activity of documenting,

managing, and continually

improving the process of

systems development.

Not all projects meet these criteria, and as a result, not all projects are successful.
Failures and limited successes far outnumber successful information systems. Proj-
ect mismanagement can undermine the best application of the systems analysis and
design methods taught in this book. We can develop an appreciation for the impor-
tance of project management by studying the mistakes of some project managers.
Let’s examine some project mismanagement problems and consequences:

• Failure to establish upper-management commitment to the project—Some-
times commitment changes during a project.

• Lack of organization’s commitment to the system development methodology—
Many system development methodologies do little more than collect dust.

• Taking shortcuts through or around the system development methodology—
Project teams often take shortcuts for one or more of the following reasons:

— The project gets behind schedule, and the team wants to catch up.
— The project is over budget, and the team wants to make up costs by

skipping steps.
— The team is not trained or skilled in some of the methodology’s activities

and requirements, so it skips them.

• Poor expectations management—All users and managers have expectations
of the project. Over time, these expectations may change. This can lead to
two undesirable situations:

— Scope creep is the unexpected growth of user expectations and busi-
ness requirements for an information system as the project progresses.
The schedule and budget can be adversely affected by such changes.

— Feature creep is the uncontrolled addition of technical features to a
system under development without regard to schedule or budget.

• Premature commitment to a fixed budget and schedule—You can rarely
make accurate estimates of project costs and schedule before completing a
detailed problem analysis or requirements analysis. Premature estimates are
inconsistent with the creeping commitment approach introduced in Chapter 3.

• Poor estimating techniques—Many systems analysts estimate by making a
best-calculated estimate and then doubling that number. This is not a scien-
tific approach.

• Overoptimism—Systems analysts and project managers tend to be optimists.
As project schedules slip, they respond, “No big deal. We can make it up
later.” They fail to recognize that certain tasks are dependent on other tasks.
Because of these dependencies, a schedule slip in one phase or activity will
cause corresponding slips in many other phases and activities, thus contribut-
ing to cost overruns.

• The mythical man-month2—As the project gets behind schedule, project
leaders frequently try to solve the problem by assigning more people to the
team. It doesn’t work! There is no linear relationship between time and num-
ber of personnel. The addition of personnel usually creates more communica-
tion problems, causing the project to get even further behind schedule.

• Inadequate people management skills—Managers tend to be thrust into
management positions and are not prepared for management responsibilities.
This problem is easy to identify. No one seems to be in charge; customers
don’t know the status of the project; teams don’t meet regularly to discuss
and monitor progress; team members aren’t communicating with one
another; the project is always said to be “95 percent complete.”

• Failure to adapt to business change—If the project’s importance changes
during the project, or if the management or the business reorganizes,

122 Part One The Context of Systems Development Projects

scope creep the unex-

pected and gradual growth of

requirements during an infor-

mation systems project.

feature creep the uncon-

trolled addition of technical

features to a system.

2Fred Brooks, The Mythical Man-Month (Reading, MA: Addison-Wesley, 1975).

projects should be reassessed for compatibility with those changes and their
importance to the business.

• Insufficient resources—This could be due to poor estimating or to other
priorities, or it could be that the staff resources assigned to a project do not
possess the necessary skills or experience.

• Failure to “manage to the plan”—Various factors may cause the project man-
ager to become sidetracked from the original project plan.

Ultimately, the major cause of project failure is that most project managers were
not educated or trained to be project managers. Just as good programmers don’t al-
ways go on to become good systems analysts, good systems analysts don’t automati-
cally perform well as project managers. To be a good project manager, you should be
educated and skilled in the “art of project management.”

> The Project Management Body of Knowledge

The Project Management Institute was created as a professional society to guide the
development and certification of professional project managers.The institute created
the Project Management Body of Knowledge (PMBOK) for the education and certifi-
cation of professional project managers.This chapter’s content was greatly influenced
by the PMBOK.

Project Manager Competencies Good project managers possess a core set of
competencies. Table 4-1 summarizes these competencies. Some of these competen-
cies can be taught, in courses, books, and professional workshops; however, some
come only with professional experience in the field. There are two basic premises of
project management competencies: First, individuals cannot manage a process they

Project Management Chapter Four 123

T A B L E 4 - 1 Project Manager Competencies

Competency Explanation How to Obtain?

Business Achievement Competencies

Business Ties every systems project to the mission, vision, and goals of the Business experience
awareness organization.

Business partner Keeps managers and users involved throughout a systems project. Business experience
orientation

Commitment to Ensures that every systems project contributes to the quality expectation Business experience
quality of the organization as a whole.

Problem-Solving Competencies

Initiative Demonstrates creativity, calculated risks, and persistence necessary to Business experience
get the job done.

Information Skillfully obtains the factual information necessary to analyze, design, Chapter 6 in this book
gathering and implement the information system. plus business experience

Analytical Can assess and select appropriate system development processes and This chapter
thinking use project management tools to plan, schedule, and budget for

system development.

Can solve problems through the analytical approach of decomposing Chapters 8, 9, and 11 in
systems into their parts and then reassembling the parts into improved this book plus business
systems. experience

Conceptual Understands systems theory and applies it to systems analysis and Chapters 2 and 5–11 in
thinking design of information systems. this book

continued

124 Part One The Context of Systems Development Projects

T A B L E 4 - 1 (Continued)

Competency Explanation How to Obtain?

Influence Competencies

Interpersonal Understands, recognizes, and reacts to interpersonal motivations and Can be learned in courses
awareness behaviors. but requires business

experience

Organizational Understands the politics of the organization and how to use them in a Business experience
awareness project.

Anticipation of Understands implications of project decisions and manages Introduced in this chapter
impact expectations and risk. but requires business

experience

Resourceful use Skillfully obtains cooperation and consensus of managers, users, and Business experience
of influence technologists to solutions.

People Management Competencies

Motivating Coaches and directs individuals to overcome differences and achieve Business experience
others project goals as a team.

Communication Communicates effectively, both orally and in writing, in the context of Can be learned in courses
skills meetings, presentations, memos, and reports. but usually requires

business experience

Developing Ensures that project team members receive sufficient training, Business experience
others assignments, supervision, and performance feedback required to

complete projects.

Monitoring and Develops the project plan, schedule, and budget and continuously Tools and techniques
controlling monitors progress and makes adjustments when necessary. taught in this chapter, but

requires project experience

Self-Management Competencies

Self-confidence Consistently makes and defends decisions with a strong personal Business experience
confidence in the process and/or facts.

Stress Works effectively under pressure or adversity. Business experience
management

Concern for Consistently and honestly delivers on promises and solutions. Maintains Business experience
credibility technical or business currency in the field as appropriate.

Flexibility Capable of adjusting process, management style, or decision making Business experience
based on situations and unanticipated problems.

Source: Adapted from Robert K. Wysocki, Robert Beck, Jr., and David B. Crane, Effective Project Management: How to Plan, Manage, and Deliver Projects on Time and

within Budget (New York: John Wiley & Sons, 1995).

have never used. Second, managers must have an understanding of the business and
culture that provides a context for the project.

Project Management Functions The basic functions of a project manager have been
studied and refined by management theorists for many years. These functions include
scoping, planning, staffing, organizing, scheduling, directing, controlling, and closing:

• Scoping—Scope defines the boundaries of the project. A project manager
must scope project expectations and constraints in order to plan activities,
estimate costs, and manage expectations.

• Planning—Planning identifies the tasks required to complete the project.
This is based on the manager’s understanding of the project scope and the
methodology used to achieve the goal.

• Estimating—Each task that is required to complete the project must be esti-
mated. How much time will be required? How many people will be needed?

What skills will be needed? What tasks must be completed before other tasks
are started? Can some of the tasks overlap? How much will it cost? These are
all estimating issues. Some of these issues can be resolved with the project
modeling tools that will be discussed later in this chapter.

• Scheduling—Given the project plan, the project manager is responsible for
scheduling all project activities. The project schedule should be developed with
an understanding of the required tasks, task duration, and task prerequisites.

• Organizing—The project manager should make sure that members of the
project team understand their own individual roles and responsibilities as
well as their reporting relationship to the project manager.

• Directing—Once the project has begun, the project manager must direct the
team’s activities. Every project manager must demonstrate people management
skills to coordinate, delegate, motivate, advise, appraise, and reward team
members.

• Controlling—Perhaps the manager’s most difficult and important function is
controlling the project. Few plans will be executed without problems and
delays. The project manager must monitor and report progress against goals,
schedule, and costs and make appropriate adjustments when necessary.

• Closing—Good project managers always assess successes and failures at the
conclusion of a project. They learn from their mistakes and plan for continu-
ous improvement of the systems development process.

All the above functions are dependent on ongoing interpersonal communication

among the project manager, the team, and other managers.

Project Management Tools and Techniques—PERT and Gantt Charts The
PMBOK includes tools and techniques that support project managers.Two such tools
are PERT and Gantt charts.

PERT, which stands for Project Evaluation and Review Technique, was devel-
oped in the late 1950s to plan and control large weapons development projects for
the U.S. Navy. A PERT chart is a graphical network model that depicts a project’s
tasks and the relationships between those tasks. A sample PERT chart is illustrated
in Figure 4-1. PERT was developed to make clear the interdependence between proj-
ect tasks before those tasks are scheduled. The boxes represent project tasks (we
used phases from Chapter 3). (The content of the boxes can be adjusted to show
various project attributes such as schedule and actual start and finish times.) The ar-
rows indicate that one task is dependent on the start or completion of another task.

The Gantt chart, first conceived by Henry L. Gantt in 1917, is the most commonly
used project scheduling and progress evaluation tool. A Gantt chart is a simple hori-
zontal bar chart that depicts project tasks against a calendar. Each bar represents a
named project task. The tasks are listed vertically in the left-hand column. The hori-
zontal axis is a calendar time line. Figure 4-2 illustrates a phase-level Gantt chart, once
again based on Chapter 3.We used the same project that was illustrated in Figure 4-1.

Gantt charts offer the advantage of clearly showing overlapping tasks, that is,
tasks that can be performed at the same time. The bars can be shaded to clearly indi-
cate percentage completion and project progress. The figure demonstrates which
phases are ahead of and behind schedule at a glance. The popularity of Gantt charts
stems from their simplicity—they are easy to learn, read, prepare, and use.

Gantt and PERT charts are not mutually exclusive. Gantt charts are more effective
when you are seeking to communicate schedule. PERT charts are more effective
when you want to study the relationships between tasks.

Project Management Software Project management software is routinely used to
help project managers plan projects, develop schedules, develop budgets, monitor
progress and costs, generate reports, and effect change. Representative automated
project management tools are listed in the margin.

Project Management Chapter Four 125

PERT chart a graphical net-

work model used to depict the

interdependencies between a

project’s tasks.

Gantt chart a bar chart

used to depict project tasks

against a calendar.

PROJECT
MANAGEMENT
SOFTWARE

Niku’s Project Manager

Artemis International

Solutions Corporation’s

9000

Computer Associates’
AllFusion Process

Management Suite

Microsoft’s Project

Primavera’s Project Planner

and Project Manager

C/S Solutions’ Risk .

F I G U R E 4 - 1 A PERT Chart

5-3-2001 5-12-2001

5-3-2001 5-11-2001

Problem Analysis

5-12-2001 6-12-2001

5-12-2001 6-14-2001

Requirements Analysis

5-28-2001 7-15-2001

5-30-2001 7-18-2001

Logical Design

6-13-2001 7-30-2001

6-13-2001 8-3-2001

Decision Analysis

9-10-2001 12-14-2001

TBD TBD

Implementation & Delivery

7-19-2001 11-13-2001

7-20-2001 In Progress

Construction & Testing

7-3-2001 9-25-2001

7-5-2001 10-9-2001

Physical Design

5-3-2001 N/A

5-3-2001 N/A

Scope Definition

Scheduled

Start

Scheduled

Finish

Actual Start
Actual

Finish

Task

Scheduled

Start

Scheduled

Finish

Actual Start
Actual

Finish

Task

intertask

dependency

Legend

We will teach you project modeling and management techniques in the context
of project management software. We used Microsoft Project because that tool is
frequently available to students and institutions at special academic prices through
their college bookstore. Microsoft Project, like most project management software
tools, supports both PERT and Gantt charts.

Figure 4-3(a) illustrates one possible Microsoft Project Gantt chart for the Sound-
Stage Member Services project.We call your attention to the following numbered bullets:

The black bars are summary tasks that represent project phases that are fur-
ther broken down into other tasks.
The red bars indicate tasks that have been determined to be critical to the
schedule, meaning that any extension to the duration of those tasks will delay
other tasks and the project as a whole. We’ll talk more about critical tasks later.

2

1

126 Part One The Context of Systems Development Projects

F I G U R E 4 - 2 A Gantt Chart

Incomplete task

Complete task

Legend

ID

1

2

3

4

5

6

7

Problem Analysis

Requirements Analysis

Logical Design

Decision Analysis

Physical Design

Construction & Testing

Implementation & Delivery

May Jun Jul Aug Sep Oct Nov Dec

2001
Task Name

Today

The blue bars indicate tasks that are not critical to the schedule, meaning
they have some slack time during which delays will not affect other tasks
and the project as a whole.
The red arrows indicate prerequisites between two critical tasks. (The blue
arrows indicate prerequisites between two noncritical tasks.)
The teal diamonds indicate milestones—events that have no duration. They
signify the end of some significant task or deliverable.

Figure 4-3(b) shows a Microsoft Project PERT chart based on the same project
plan that was illustrated in the Gantt chart. The contents of each cell in the task rec-
tangles are able to be customized in Microsoft Project.

The Project Management Life Cycle

Recall from Chapter 3 that the Capability Maturity Model defines a framework for as-
sessing the quality of an organization’s information systems development activities. CMM
Level 1 is defined as “initial” and is characterized by the lack of any consistent project or
process management function.The first stage of maturity improvement is to implement
a consistent project management function—called CMM Level 2. In this section we
introduce a project management life cycle representative of CMM Level 2 maturity.

Figure 4-4 illustrates a project management process or life cycle. Recall that project
management is a cross life-cycle activity; that is, project management activities overlap
all the system development phases that were introduced in Chapter 3. The illustrated
project management activities correspond to classic management functions: scoping,
planning, estimating, scheduling, organizing, directing, controlling, and closing.

The project management process shown in Figure 4-4 incorporates a joint project
planning (JPP) technique.3 Joint project planning (JPP) is a strategy wherein all

5

4

3

Project Management Chapter Four 127

3Wysocki, Beck, and Crane, Effective Project Management: How to Plan, Manage, and Deliver Projects on Time and

within Budget, p. 38.

joint project planning
(JPP) a strategy in which all

stakeholders attend an inten-

sive workshop aimed at

reaching consensus on

project decisions.

128 Part One The Context of Systems Development Projects

F I G U R E 4 - 3 Microsoft Project Gantt and PERT Charts

1

2

3

4

5

(a)

(b)

F I G U R E 4 - 4 A Project Management Life Cycle

NEGOTIATE

SCOPE

(SCOPING)

1

IDENTIFY

TASKS

(PLANNING)

2

ESTIMATE

TASK

DURATIONS

(ESTIMATING)

3

SPECIFY

INTERTASK

DEPENDENCIES

(SCHEDULING)

4

ASSIGN

RESOURCES

(ORGANIZING)

5

DIRECT THE

TEAM EFFORT

(DIRECTING)

6

MONITOR AND

CONTROL

PROGRESS

(CONTROLLING)

7

Statement
of Work

Work
Breakdown

Task
Durations

Resource
Assignments
and Budget

Milestone
Completion

Scheduled
Tasks

time
constraints

Project
Assignment

project charter
and

team
building

experiences,
observations,

and
suggestions

delegation
and direction

resource
commitments

estimates
and

opinions

methodology
experience

SYSTEM OWNERS, USERS, DESIGNERS,
BUILDERS, AND ANALYSTS

THE PROJECT TEAM

methodology or process standards

(external)
Progress
Reports

MANAGERS NOT ON THE

PROJECT TEAM

MANAGEMENT

METHODOLOGY AND

AUTOMATED TOOL EXPERTS

CENTERS OF EXCELLENCE

ASSESS PROJECT

RESULTS AND

EXPERIENCES

(CLOSING)

8

Completed
Project

Experiences

Process and Project
Management
Improvements

Next
Milestone
Revision

Structure

task
progress

and
analysis

stakeholders in a project (meaning system owners, users, analysts, designers, and
builders) participate in a one- to three-day project management workshop, the result
of which is consensus on project scope, schedule, resources, and budget. (Subsequent
workshops or meetings may be required to adjust scope, budget, and schedule.)
Notice that in JPP, the project team is actively involved in all inputs and deliverables
of all project management activities.

In the following subsections, we will review each of the illustrated project man-
agement activities and discuss how to use appropriate project management tools and
techniques.

Project Management Chapter Four 129

> Activity 1—Negotiate Scope

Perhaps the most important prerequisite to effective project management occurs at
the beginning. All parties must agree to the project scope before any attempt is made
to identify and schedule tasks or to assign resources (people) to those tasks. Scope de-
fines the expectations of a project, and expectations ultimately determine satisfaction
and degrees of success. Accordingly, the negotiation of project scope is a necessary ac-
tivity in the project management life cycle. What is scope? Scope defines the bound-
aries of a project—the parts of the business that are to be studied, analyzed, designed,
constructed, implemented, and ultimately improved. Scope also defines the aspects of
a system that are considered outside the project. The answers to five basic questions
influence the negotiation of project scope:

• Product—What do you want?
• Quality—How good do you want it to be?
• Time—When do you want it?
• Cost—How much are you willing to pay for it?
• Resources—What resources are you willing or able to bring to the table?

Negotiation of the above factors is a give-and-take activity that includes much itera-
tion. The deliverable is an agreed-on statement of work that describes the work to
be performed during the project. In consulting engagements, the statement of work
has become a commonly used contract between the consultant and client. This
approach works equally well for internal system development projects to establish a
contract between business management and the project manager and team. Accord-
ing to Keane, Inc., a leading project management consulting firm,

The statement of work affirms that the project manager understands who is really
in charge of the effort, who is controlling the purse strings, what is the formal and
informal organization within which the project will be developed, who are the
“kings and queens” that have interest, and other similar but mainly nontechnical
issues. It establishes a firm business relationship between the project manager
and both the customer and the extended project team.4

An outline for a typical statement-of-work document is shown in Figure 4-5. The
size of the document will vary in different organizations. It may be as small as one to
two pages, or it may run several pages.

> Activity 2—Identify Tasks

Given the project scope, the next activity is to identify project tasks.Tasks identify the
work to be done.Typically, this work is defined in a top-down, outline manner. In Chap-
ter 3, you learned about system development routes and their phases. But phases are too
large and complex for planning and scheduling a project.We need to break them down
into activities and tasks until each task represents a manageable amount of work that
can be planned, scheduled, and assigned. Some experts advocate decomposing tasks un-
til the tasks represent an amount of work that can be completed in two weeks or less.

Ultimately, the project manager will determine the level of detail in the outline;
however, most system development methodologies decompose phases for you—into
suggested activities and tasks. These activities and tasks are not necessarily carved in
stone; that is, most methodologies allow for some addition, deletion, and changing of
activities and tasks based on the unique nature of each project. One popular tool used
to identify and document project activities and tasks is a work breakdown structure.
A work breakdown structure (WBS) is a hierarchical decomposition of the project
into phases, activities, and tasks.

130 Part One The Context of Systems Development Projects

statement of work a

narrative description of the

work to be performed as

part of a project. Common

synonyms include scope

statement, project definition,

project overview, and

document of understanding.

scope the boundaries of a

project—the areas of a

business that a project may

(or may not) address.

4Updated and revised by Donald H. Plumber, Productivity Management: Keane’s Project Management Approach for

Systems Development (Boston: Keane, Inc., 1995), p. 5.

work breakdown
structure (WBS) a

graphical tool used to depict

the hierarchical decomposition

of a project into phases,

activities, and tasks.

STATEMENT OF WORK

I. Purpose

II. Background

 A. Problem, opportunity, or directive statement

 B. History leading to project request

 C. Project goal and objectives

 D. Product description

III. Scope
 (notice the use of the information system building blocks)

 A. Stakeholders

 B. Knowledge

 C. Processes

 D. Communications

IV. Project Approach

 A. Route

 B. Deliverables

V. Managerial Approach

 A. Team-building considerations

 B. Manager and experience

 C. Training requirements

 D. Meeting schedules

 E. Reporting methods and frequency

 F. Conflict management

 G. Scope management

VI. Constraints

 A. Start date

 B. Deadlines

 C. Budget

 D. Technology

VII. Ballpark Estimates

 A. Schedule

 B. Budget

VIII. Conditions of Satisfaction

 A. Success criteria

 B. Assumptions

 C. Risks

IX. Appendixes

Work breakdown structures can be drawn using top-down hierarchy charts simi-
lar to organization charts (Figure 4-6). In Microsoft Project, a WBS is depicted using a
simple outline style, indentation of activities and tasks on the Gantt chart “view” of the
project. Microsoft Project also offers a military numbering scheme to represent hier-
archical decomposition of a project as follows:

1. Phase 1 of the project
1.1 Activity 1 of Phase 1

1.1.1 Task 1 of Activity 1 in Phase 1
1.1.2 Task 2 of Activity 1 in Phase 1

1.2 Activity 2 of Phase 1 . . .
2. Phase 2 of the project . . .

If you reexamine Figure 4-3(a), you will notice that Microsoft Project provides a
column for the WBS in the Gantt chart. Also notice its use of the indentation and
numbering to differentiate between tasks and subtasks.

Project Management Chapter Four 131

F I G U R E 4 - 5

An Outline for a
Statement of Work

We may want to include in a WBS special tasks called milestones. These are
events that signify the accomplishment or completion of major deliverables during a
project. In information systems projects, an example of a milestone might be the com-
pletion of all the tasks associated with producing a major project deliverable such as
a requirements statement (see Chapter 3). It might be useful to distinguish milestones
from other tasks in a WBS by using special formatting, such as italics.

> Activity 3—Estimate Task Durations

Given a work breakdown structure with a suitable level of detail, the project manager
must estimate duration for each task. Duration of any task is a random variable subject
to factors such as the size of the team, number of users, availability of users, aptitudes
of users, complexity of the business system, information technology architecture,
experience of team personnel, time committed to other projects, and experience
with other projects.

Most system development methodologies not only define tasks but also provide
baseline estimates for task duration.The project manager must adjust these baselines
into reasonable estimates for each unique project.

In Microsoft Project, all phases, activities, and tasks of a methodology are simply
called tasks. The work breakdown structure then consists of both summary and
primitive tasks. A summary task is one that consists of other tasks (such as phases
and activities). A primitive task is one that does not consist of any other tasks. It is
the primitive tasks for which the project manager must estimate duration. (Like most
project management software, Microsoft Project will automatically calculate the du-
ration of all summary tasks based on the estimated durations of their component
primitive tasks.)

132 Part One The Context of Systems Development Projects

F I G U R E 4 - 6

A Graphical Work
Breakdown
Structure

milestone an event signify-

ing the completion of a major

project deliverable.

PROJECT

GOAL

0

PHASE

2

PHASE

3

PHASE

1

ACTIVITY

2.2

ACTIVITY

2.1

ACTIVITY

2.3

TASK

2.2.2

TASK

2.2.1

TASK

2.2.3

For those primitive tasks that are not milestones, we must estimate duration. In
estimating task duration, it is important to understand the concept of elapsed time.

Elapsed time takes into consideration two important factors with respect to people:

• Efficiency—No worker performs at 100 percent efficiency. Most people take
coffee breaks, lunch breaks, restroom breaks, and time to read their e-mail,
check their calendars, participate in nonproject work, and even engage in
idle conversation. Experts differ on just how productive the average worker
is, but one commonly used figure is 75 percent.

• Interruptions—People experience phone calls, visitors, and other unplanned
interruptions that increase the time required for project work. This is variable
for different workers. Interruptions can consume as little as 10 percent of a
worker’s day or as much as 50 percent.

Why is this important? Given a task that could be completed in 10 hours with 100 per-
cent efficiency and no interruptions, and assuming a worker efficiency of 75 percent
and 15 percent interruptions, the true estimate for the task would be

10 hours 0.75 efficiency 13.3 hours (1.00 0.15 interruptions)

 15.7 hours

There are many techniques for estimating task duration. For the sake of demon-
stration, we offer the following classic technique:

1. Estimate the minimum amount of time it would take to perform the task.

We’ll call this the optimistic duration (OD). The optimistic duration assumes
that even the most likely interruptions or delays, such as occasional employee
illnesses, will not happen.

2. Estimate the maximum amount of time it would take to perform the task.

We’ll call this the pessimistic duration (PD). The pessimistic duration
assumes that nearly anything that can go wrong will go wrong. All possible
interruptions or delays, such as labor strikes, illnesses, inaccurate specification
of requirements, equipment delivery delays, and underestimation of the sys-
tem’s complexity, are assumed to be inevitable.

3. Estimate the expected duration (ED) that will be needed to perform the

task. Don’t just take the median of the optimistic and pessimistic durations.
Attempt to identify interruptions or delays that are most likely to occur, such
as occasional employee illnesses, inexperienced personnel, and occasional
training.

4. Calculate the most likely duration (D), as follows:

D

where 1, 4, and 1 are default weights used to calculate a weighted average of
the three estimates.

Developing OD, PD, and ED estimates can be tricky and require experience. Sev-
eral techniques are used in estimating.Three of the most common techniques are:

• Decomposition—a simple technique wherein a project is decomposed into
small, manageable pieces that can be estimated based on historical data of
past projects and similarly complex pieces.

• COCOMO (pronounced like “Kokomo”)—a model-based technique wherein
standard parameters based on prior projects are applied to the new project
to estimate duration of a project and its tasks.

• Function points—a model-based technique wherein the “end product” of a
project is measured based on number and complexity of inputs, outputs,
files, and queries. The number of function points is then compared to proj-
ects that had a similar number of function points to estimate duration.

(1 OD) (4 ED) (1 PD)

6

Project Management Chapter Four 133

optimistic duration (OD)
the estimated minimum

amount of time needed to

complete a task.

pessimistic duration
(PD) the estimated maxi-

mum amount of time needed

to complete a task.

expected duration (ED)
the estimated amount of time

required to complete a task.

most likely duration (D)
an estimated amount of time

required to complete a task,

based on a weighted average

of optimistic, pessimistic, and

expected durations.

Some automated project management tools, such as CS/10000 and Cost•Xpert,

provide expert system technology that makes these estimates for you based on your
answers to specific questions.

Milestones (as defined in the previous subsection) have no duration.They simply
happen. In Microsoft Project, milestones are designated by setting the duration to
zero. (In the Gantt chart, those zero-duration tasks change from bars to diamonds.)

> Activity 4—Specify Intertask Dependencies

Given the duration estimates for all tasks, we can now begin to develop a project
schedule. The project schedule depends not only on task durations but also on inter-
task dependencies. In other words, the start or completion of individual tasks may de-
pend on the start or completion of other tasks. There are four types of intertask
dependencies:

• Finish-to-start (FS)—The finish of one task triggers the start of another task.
• Start-to-start (SS)—The start of one task triggers the start of another task.
• Finish-to-finish (FF)—Two tasks must finish at the same time.
• Start-to-finish (SF)—The start of one task signifies the finish of another task.

Intertask dependencies can be established and depicted in both Gantt and PERT
charts. Figure 4-7 illustrates how to enter intertask dependencies in the Gantt chart
view in Microsoft Project. We call your attention to the following annotated bullets:

Intertask dependencies may be entered in the Gantt chart view in the Prede-

cessors column by entering the dependent tasks’ row numbers. Note that a
task can have zero, one, or many predecessors.
Intertask dependencies may also be entered (or modified) by opening the
Task Information dialogue box for a given task.

2

1

134 Part One The Context of Systems Development Projects

F I G U R E 4 - 7 Entering Intertask Dependencies in Microsoft Project

The type of dependency can be entered in the Task Information dialogue
box for any given dependent task.
Intertask dependencies are graphically illustrated in the Gantt chart as arrows
between the bars that represent each task. Arrows may begin or terminate
on the left side (to indicate a “start” dependency) or right side (to indicate a
“finish” dependency).

Milestones (as defined earlier) almost always have several predecessors to signify
those tasks that must be completed before the milestone has been achieved.

Given the start date for a project, the tasks to be completed, the task durations,
and the intertask dependencies, the project can now be scheduled. There are two
approaches to scheduling:

• Forward scheduling establishes a project start date and then schedules
forward from that date. Based on the planned duration of required tasks, their
interdependencies, and the allocation of resources to complete those tasks, a
projected project completion date is calculated.

• Reverse scheduling establishes a project deadline and then schedules back-
ward from that date. Tasks, their duration, interdependencies, and resources must
be considered to ensure that the project can be completed by the deadline.

Each task can be given its own start and finish dates. Like most project manage-
ment tools, Microsoft Project actually builds the schedule for you as you enter the task
durations and intertask dependencies (predecessors). On the Gantt chart, the task
bars are expanded to reflect duration and shifted left and right to reflect start and end
dates. Microsoft Project can also produce a traditional calendar view of the final
schedule, as shown in Figure 4-8.

4

3

Project Management Chapter Four 135

forward scheduling a

project scheduling approach

that establishes a project start

date and then schedules

forward from that date.

reverse scheduling a

project scheduling strategy

that establishes a project

deadline and then schedules

backward from that date.

F I G U R E 4 - 8 The Project Schedule in Calendar View

> Activity 5—Assign Resources

The previous steps resulted in “a” schedule, but not “the” schedule! We have yet to
consider the allocation of resources to the project. Resources include the following
categories:

• People—includes all the system owners, users, analysts, designers, builders,
external agents, and clerical help that will be involved in the project in
any way.

• Services—includes services such as a quality review that may be charged on
a per-use basis.

• Facilities and equipment—includes all rooms and technology that will be
needed to complete the project.

• Supplies and materials—includes everything from pencils, paper, and note-
books to toner cartridges, and so on.

• Money—includes a translation of all of the above into budgeted dollars!

The availability of resources, especially people and facilities, can significantly alter the
project schedule.

Most system development methodologies identify people resources required for
each task in the form of roles. A role is not the same as a job title.Think of a role as a
“hat” that someone wears because he or she possesses a certain skill(s). Any given in-
dividual may be capable of wearing many hats (thus playing many roles). Also, many
people may possess the skills required to play a given role.The project manager’s task
is either to assign specific people to fill roles or to gain commitments from manage-
ment to provide people to fill roles. Representative roles from the FAST methodology
are listed in the margin.

In Microsoft Project, roles and assignments are specified in the Resource Sheet

view, as shown in Figure 4.9(a). Predefined roles and resources may be available in the
chosen methodology and route templates.

The project manager enters the names or titles of people (roles) in the
Resource Name column. Resources may also include specific services, facili-
ties, equipment, supplies, materials, and so forth.
Notice that the Resource Sheet provides a column for establishing what
percentage of a resource will be allocated to the project. For example, a
database administrator might be allocated one-quarter time (25 percent) to
a project. Allocations greater than 100 percent indicate a need for more
than one person to fill a given role in the project. By setting Max. Units to
250 percent for that resource, there would be a need for the equivalent of
21⁄2 full-time programmers.
Project also allows the project manager to estimate the cost of each resource.
These costs can be estimated based on company history, consulting contracts,
or internal cost accounting standards. Notice that both standard and overtime
costs can be estimated. These costs are usually based on standards to protect
information about anyone’s actual salary.
Each resource has a calendar that considers the standard workweek and
holidays, as well as individual vacations and other commitments.

Given the resources, they now can be specifically assigned to tasks, as shown in
Figure 4.9(b). As resources are assigned to the tasks, the project manager would spec-
ify the units of that resource that will be required to complete each assigned task.
(This may be a percentage of a person’s time needed for that task.)

As these resources are formally assigned, the schedule will be adjusted (which
happens automatically in tools such as Project). If you enter the cost of resources,
tools such as Microsoft Project will automatically calculate and maintain a budget
based on the resources and schedule.

4

3

2

1

136 Part One The Context of Systems Development Projects

REPRESENTATIVE
ROLES IN A
PROJECT

Auditor

Business Analyst

Business Subject Matter
Expert

Database Administrator

Executive Sponsor

Information Systems
Manager

JAD Facilitator

JAD Scribe

Management Sponsor

Network Administrator

Programmer

Project Manager

System Modeler

Project Management Chapter Four 137

F I G U R E 4 - 9 Defining and Assigning Project Resources

(a)

(b)

Assigning People to Tasks Recruiting the right team members can make or break
a project.The following are guidelines for selecting and recruiting the team:

• Recruit talented, highly motivated people. Highly skilled and motivated team
members are more likely to overcome project obstacles unaided and are
more likely to meet project deadlines and produce quality work.

• Select the best task for each person. All workers have strengths and weak-
nesses. Effective project managers learn to exploit the strengths of team mem-
bers and avoid assigning tasks to team members not skilled in those areas.

• Promote team harmony. Project managers should select team members who
will work well together.

• Plan for the future. Junior personnel with potential to be mentored by proj-
ect leaders must be considered. Although junior personnel might not be as
productive as the seasoned veterans, project managers will need them and
have to rely on them on future projects.

• Keep the team size small. By limiting the team size, communication overhead
and difficulties will be reduced. A 2-person team has only 1 communication
path; a 4-person team has 6 communication paths; and a 50-person team has
at least 1,200 communication paths. The more communication paths there are,
the greater the probability that there will be increased communication prob-
lems. By the same token the teams should be large enough to provide ade-
quate backup and coverage in key skills if a team member is lost.

Resource Leveling So far, we have identified tasks, task durations, and intertask de-
pendencies and assigned resources to each task to produce the project schedule. It is
common to overallocate resources when assigning resources to tasks. Overallocate

refers to the act of assigning more resources than are available.
For example, during a specific period in the project (day, week, etc.), a project

manager may have assigned a specific person to work on multiple tasks that add up to
more hours than the person has available to work during that period.This renders the
overall schedule infeasible because the overallocated resource cannot reasonably
complete all assigned tasks according to schedule. To correct this problem, project
managers must use a technique called resource leveling. Resource leveling is a strat-
egy used to correct resource overallocations by some combination of delaying or
splitting tasks. Let’s briefly explain both approaches.

Delaying tasks is based on the concepts of critical path and slack time. When it
comes to the project schedule, some tasks are more sensitive to schedule delays than
others. For this reason, project managers must become aware of the critical path for a
project. The critical path for a project is the sequence of dependent tasks that have
the largest sum of most likely durations. The critical path determines the earliest pos-
sible completion date of the project. (We previously described how to estimate most

likely duration for a task.) The critical path tasks have no slack time available—thus,
any delay in completion of any of the tasks on the critical path will cause an overall de-
lay in the completion of the entire project.The opposite of a critical task is one that has
some slack time.The slack time available for any noncritical task is the amount of de-
lay that can be tolerated between the starting time and the completion time of a task
without causing a delay in the completion date of the entire project. Tasks that have
slack time can get behind schedule by an amount less than or equal to the slack time
without having any impact on the project’s final completion date. The availability of
slack time in certain tasks provides an opportunity to delay the start of the tasks to
level resources while not affecting the project completion date. Of course, it may be
necessary to delay a critical path task to level resources, unless you can split the task.

Splitting tasks involves breaking a task into multiple tasks to assign alternate
resources to the tasks. Thus, a single task for which a resource was overallocated is
now apportioned to two or more resources that are (presumably) not overallocated.
Splitting tasks requires identifying and assigning new resources such as analysts,
contractors, or consultants.

138 Part One The Context of Systems Development Projects

resource leveling a strat-

egy for correcting resource

overallocations.

critical path the sequence

of dependent tasks that deter-

mines the earliest completion

date for a project.

slack time the amount of

delay that can be tolerated

between the starting time and

the completion time of a task

without causing a delay in the

completion date of a project.

Resource leveling can be tedious to perform manually. For each resource, the
project manager needs to know the total time available to the project for the resource,
all task assignments made to the resource, and the sum of all durations of those task
assignments over various time periods. All project management software tools, such as
Microsoft Project, automatically determine critical paths and slack times.This enables
those same software tools to track resource allocations and automatically perform
resource leveling. It is extraordinarily rare for any modern project manager to manually
level resource assignments.

Resource leveling will be an ongoing activity because the schedule and resource
assignments are likely to change over the course of a project.

Schedule and Budget Given a schedule based on leveled resources and given the
cost of each resource (e.g., cost per hour of a systems analyst or database administra-
tor) the project manager can produce a printed (or Web-based) document that com-
municates the project plan to all concerned parties. Project management tools will
provide multiple views of a project such as calendars, Gantt chart, PERT chart, re-
source and resource leveling reports, and budget reports. All that remains is to direct
resources to the completion of project tasks and deliverables.

Communication The statement of work, timetable for major deliverables, and over-
all project schedule should be communicated to all parties involved in the project.
This communication must also include a plan for reporting progress, both orally and
in writing, the frequency of such communications, and a contact person and method
for parties to submit feedback and suggestions. A corporate intranet can be an effec-
tive way to keep everyone informed of project progress and issues.

> Activity 6—Direct the Team Effort

All the preceding project management activities led to a master plan for the project.
It’s now time to execute that plan. There are several dimensions to directing the
team effort. Tom Demarco states in his book The Deadline: A Novel about Project

Management that the hardest job in management is people.
Few new project managers are skilled at supervising people. Most learn supervi-

sion through their own experiences as subordinates—things they liked and disliked
about those who supervised them. This topic could easily take up an entire chapter.
In the margin checklist, we provide a classic list of project supervision recommenda-
tions from The People Side of Systems, by Keith London.

As noted by Graham McLeod and Derek Smith,“Individuals brought together in a
systems development team do not form a close-knit unit immediately.” McLeod
and Smith explain that teams go through stages of team development, as shown in
Figure 4-10.

In The One Minute Manager, by Kenneth Blanchard and Spencer Johnson, a
classic and indispensable aid to anyone managing people for the first time, the authors
share the simple secrets of managing people and achieving success through the
actions of subordinates.

Most young, and many experienced, managers have difficulty with the subtle arts
of delegation and accountability. Worse still, they let subordinates reverse-delegate
tasks back to the manager. This leads to poor time management and manager frustra-
tion. In The One Minute Manager Meets the Monkey, Kenneth Blanchard teams with
William Oncken and Hal Burrows to help managers overcome this problem. The
solution is based on Oncken’s classic principle of “the care and feeding of monkeys.”
Monkeys are “problems” that managers delegate to their subordinates, who in turn
attempt to reverse-delegate back to the manager. In this 125-page book the authors
teach managers how to keep the monkeys on the subordinates’ backs. Doing so
increases the manager’s available work time, accelerates task accomplishment by
subordinates, and teaches subordinates how to take responsibility and solve their own
problems.

Project Management Chapter Four 139

10 HINTS FOR
PROJECT
LEADERSHIP

Be Consistent.

Provide Support.

Don’t Make Promises You
Can’t Keep.

Praise in Public; Criticize in
Private.

Be Aware of Morale Danger
Points.

Set Realistic Deadlines.

Set Perceivable Targets.

Explain and Show, Rather
Than Do.

Don’t Rely Just on Status
Reports.

Encourage a Good Team
Spirit.

> Activity 7—Monitor and Control Progress

While executing the project, the project manager must control the project, that is,
monitor its progress against the scope, schedule, and budget. The manager must
report progress and, when necessary, adjust scope, schedule, and resources.

Progress Reporting Progress reporting should be frequent enough to establish ac-
countability and control, but not so frequent as to become a burden and impediment
to real project progress. For example, Keane, Inc., a consulting firm, recommends that
progress reports or meetings occur every two weeks—consistent with the firm’s
project-planning strategy that decomposes projects into tasks that produce deliver-
ables that require no more than 80 work hours.

Project progress reports can be verbal or written. Figure 4-11 illustrates a
template for a written progress report. Project progress reports (or presentations)
should be honest and accurate, even if the news is less than good. Project progress re-
ports should report successes but should clearly identify problems and concerns such
that they can be addressed before they escalate unto major issues or catastrophes.

As tasks are completed, progress can be recorded in Microsoft Project (see
Figure 4-12). We call your attention to the following Gantt progress items:

All the tasks in the preliminary investigation phase are complete as indicated
by the yellow lines that run the full length of each task bar. Notice that
because all these tasks are complete, they are no longer critical—the bars
have changed from red to blue.
In the problem analysis phase, only the first task, “Analyze the current
system,” is 100 percent complete.

2

1

140 Part One The Context of Systems Development Projects

Establish structure and rules•
Clarify team member relationships
Identify responsibilities
Develop a plan to achieve goals

•
•
•

•
•
•
•

•
•
•

ORIENTATION STAGE

Resolve interpersonal conflict
Further clarify rules and goals
Develop a participative climate

INTERNAL PROBLEM-SOLVING STAGE

Direct team activity toward goals

•
•
•
•

Provide and get feedback
Share ideas—growing cohesion
Individuals feel good about each other

GROWTH AND PRODUCTIVITY STAGE

More feedback and evaluation
Adherence to team norms
Roles of team strengthened
Strong team motivation to share goals

EVALUATION AND CONTROL STAGE

FORMING

STORMING

NORMING

PERFORMING

F I G U R E 4 - 1 0

Stages of Team
Maturity
Source: Adapted from Graham

McLeod and Derek Smith,

Managing Information Technol-

ogy Projects (Cambridge, MA:

Course Technology, 1996).

Project Management Chapter Four 141

Notice that the “Establish system improvement objectives” task bar has a par-
tial yellow line running 60 percent of its length. This indicates the task is
about 60 percent complete. The task bar is still red because any delay in
completing the task will threaten the project completion date.
All remaining tasks shown in the displayed chart have not been started. Actual
progress will be recorded when the task is started, in process, or completed.
Progress for any given task is recorded in the task information dialogue box
for that task. In this example, the project manager is recording 10 percent
completion of the named task.

Microsoft Project also provides a number of preconfigured and customizable reports
that can present useful project status information.

Change Management It is not uncommon for scope to grow out of control even
when a properly completed statement of work was agreed on early in the planning
process.We refer to scope growth as “change.” As noted by Keane, Inc.,“Change is fre-
quently a point of contention between the customer and the information systems or-
ganization, because they disagree on whether a particular function is a change or a
part of the initial agreement.” The inevitability of scope change necessitates that we
have a formal strategy and process to deal with change and its impact on schedule

5

4

3

PROJECT PROGRESS REPORT

I. Cover page

 A. Project name or identification

 B. Project manager

 C. Date of report

II. Summary of progress

 A. Schedule analysis

 B. Budget analysis

 C. Scope analysis (describe any changes that may have an impact on future progress) D. Process analysis (describe any problems encountered with strategy or methodology)

 E. Gantt progress chart(s)

III. Activity analysis

 A. Tasks completed since last report

 B. Current tasks and deliverables

 C. Short-term future tasks and deliverables

IV. Previous problems and issues

 A. Action item and status

 B. New or revised action items

 1. Recommendation

 2. Assignment of responsibility

 3. Deadline

V. New problems and issues

 A. Problems (actual or anticipated) B. Issues (actual or anticipated)

 C. Possible solutions

 1. Recommendation

 2. Assignment of responsibility

 3. Deadline

VI. Attachments (include relevant printouts from project management software)

F I G U R E 4 - 1 1

Outline for a
Progress Report

and budget. Change management is intended to protect the project manager and
team from being held accountable for schedule and budget overruns that were driven
by changes in scope.

Changes can be the result of various events and factors, including:

• An omission in defining initial scope (as documented in the statement of work).
• A misunderstanding of the initial scope (the desired product is more compli-

cated than originally communicated or perceived).
• An external event such as government regulations that create new

requirements.
• Organizational changes, such as mergers, acquisitions, and partnerships, that

create new business problems and opportunities (not to mention “players”).
• Availability of better technology.
• Shifts in planned technology that force unexpected and significant changes to

the business organization, culture, and/or processes.
• Management’s desire to have the system do more than was originally

requested or agreed to.
• Reduced funding for the project or imposition of an earlier deadline.

A change management system results in a collection of procedures for docu-
menting a change request and defines the steps necessary to consider the change
based on the expected impact of the change. Most change management systems re-
quire that a change request form be initiated by one or more project stakeholders
(e.g., system owners, users, analysts, designers, or builders). Ideally, change requests
are considered by a change control board (CCB), which is responsible for approving
or rejecting all change requests. The CCB’s composition typically includes members

142 Part One The Context of Systems Development Projects

F I G U R E 4 - 1 2 Progress Reporting on a Gantt Chart

change management a

formal strategy wherein a

process is established to

facilitate changes that occur

during a project.

of the project team as well as outsiders who may have an interest or stake in the
project.The CCB’s decision should be based on impact analysis.

Feasibility impact analysis should assess the importance of the change to the busi-
ness, the impact of the change on the project schedule, and the impact of the change
on the project budget and long-term operating costs.

Ultimately, change management boils down to managing the expectations of the
stakeholders. In the next section, we introduce a simple but conceptually sound frame-
work for managing expectations and their impact on project schedule and budget.

Expectations Management Experienced project managers often complain that
managing system owners’ and users’ expectations of a project is more difficult than
managing cost, schedule, people, or quality. In this section we introduce a simple tool
that we’ll call an expectations management matrix that can help project managers
deal with this problem. We first learned about this tool from Dr. Phil Friedlander,
a consultant and trainer then with McDonnell Douglas. He attributes the matrix to
“folklore” but also credits Jerry Gordon, of Majer, and Ron Leflour, a project manage-
ment educator/trainer. Dr. Friedlander’s paper (listed in the Suggested Readings for
this chapter) is adapted in this text for this presentation.

Every project has goals and constraints when it comes to cost, schedule, scope, and
quality. In an ideal world, each of these parameters could be optimized. Management of-
ten has that expectation. Reality suggests, however, that you can’t optimize them all—
you must strike a balance that is both feasible and acceptable to management. That is
the purpose of the expectations management matrix. An expectations management

matrix is a rule-driven tool for helping management understand the dynamics and
impact of changing project parameters such as cost, schedule, scope, and quality.

The basic matrix, shown in Figure 4-13, consists of three rows and three columns
(plus headings).The rows correspond to the measures of success in any project: cost,
schedule, and scope and/or quality. The columns correspond to priorities: first, sec-
ond, and third.To establish expectations, we assign names to the priorities as follows:

• Maximize or minimize—the measure of success that is determined to be
the most important for a given project.

• Constrain—the second most important of the three measures of success in
a project.

• Accept—the least important of the three measures in a project.

Most managers would, ideally, like to give equal priority to all three measures;
experience suggests that the three measures tend to balance themselves naturally. For
example, if you increase scope or quality requirements, the project will take more time
and/or money. If you try to get any job done faster, you generally have to reduce scope or

Project Management Chapter Four 143

expectations
management matrix a

tool used to understand the

dynamics and impact of

changing the parameters of

a project.

PRIORITIES

 MEASURES OF SUCCESS

Max or Min Constrain Accept

Cost

Schedule

Scope and/or Quality

F I G U R E 4 - 1 3

A Management
Expectations Matrix

quality requirements or pay more money to compensate.The management expectations
matrix helps (or forces) management to understand this through three simple rules:

1. For any project, you must record three Xs within the nine available cells.
2. No row may contain more than one X. In other words, a single measure of

success must have one and only one priority.
3. No column may contain more than one X. In other words, there must be a

first, second, and third priority.

Let’s illustrate the tool using Dr. Friedlander’s own example. In 1961 President
John F. Kennedy established a major project—land a man on the moon and return him
safely before the end of the decade. Figure 4-14 shows the realistic expectations of the
project. Let’s walk through the example:

1. The system owner (the public) had both scope and quality expectations. The
scope (or requirement) was to successfully land a man on the moon. The
quality measure was to return the man (or men) safely. Because the public
would expect no less from the new space program, this had to be made the
first priority. In other words, we had to maximize safety and minimize risk
as a first priority. Hence, we record the X in column 1, row 3.

2. At the time of the project’s inception, the Soviet Union was ahead in the race
to space. This was a matter of national pride; therefore, the second priority
was to get the job done by the end of the decade. We call this the project
constraint—there is no need to rush the deadline, but we don’t want to miss
the deadline. Thus, we record the second X in column 2, row 2.

3. By default, the third priority had to be cost (estimated at $20 billion in 1961).
By making cost the third priority, we are not stating that cost will not be con-
trolled. We are merely stating that we may have to accept cost overruns to
achieve the scope and quality requirement by the constrained deadline. We
record the third X in column 3, row 1.

History records that we achieved the scope and quality requirement, and did so
in 1969.The project actually cost well in excess of $30 billion, more than a 50 percent
cost overrun. Did that make the project a failure? On the contrary, most people
perceived the project as a grand success. The government managed the public’s
expectations of the project in realizing that maximum safety and minimum risk, plus
meeting the deadline (beating the Soviets), was an acceptable trade-off for the cost
overrun. The government brilliantly managed public opinion. Systems development
project managers can learn a valuable lesson from this balancing act.

144 Part One The Context of Systems Development Projects

Max or Min Constrain Accept

Cost

• $20 billion (estimated)
x

Schedule

• Dec 31, 1969 (deadline)
x

Scope and/or Quality

• Land a man on the moon

• Get him back safely

x

PRIORITIES

 MEASURES OF SUCCESS

F I G U R E 4 - 1 4

Management of
Expectations for
the Lunar Landing
Project

At the beginning of any project, the project manager should consider introducing
the system owner to the expectations matrix concept and should work with the system
owner to complete the matrix. For most projects, it would be difficult to record all the
scope and quality requirements in the matrix. Instead, they would be listed in the state-
ment of work.The estimated costs and deadlines could be recorded directly in the matrix.

The project manager doesn’t establish the priorities; he or she merely enforces
the rules of the matrix.This sounds easy, but it rarely is. Many managers are unwilling
to be pinned down on the priorities—“Shouldn’t we be able to maximize every-
thing?” These managers need to be educated about the reason for the priorities.They
need to understand the priorities if they cannot maximize all three measures. This
leads to intelligent compromises instead of merely guesswork.

What if a system owner refuses to prioritize? The tool becomes less useful, except
as a mechanism for documenting concerns before they become disasters. A system
owner who refuses to set priorities may be setting the project manager up for a no-win
performance review. And as Dr. Friedlander points out,“Those who do not ‘believe’ the
principles [of the matrix] will eventually ‘know’ the truth. You do not have to believe
in gravity, but you will hit the ground just as hard as the person who does.”

Let’s assume the management expectations matrix that conforms to the aforemen-
tioned rules. How does this help a project manager manage expectations? During the
course of the average systems development project, priorities are not stable.Various fac-
tors such as the economy, government, and company politics can change the priorities.
Budgets may become more or less constrained. Deadlines may become more or less im-
portant. Quality may become more important. And, most frequently, requirements in-
crease. As already noted, these changing factors affect all the measures in some way.The
trick is to manage expectations despite the ever-changing project parameters.

The technique is relatively straightforward. Whenever the “max/min measure” or
the “constrain measure” begins to slip, it can result in a potential management expec-
tations problem. For example, consider a project manager who is faced with the
following priorities (see Figure 4-15):

1. Explicit requirements and quality expectations were established at the start of
a project and given the highest priority.

2. An absolute maximum budget was established for the project.
3. The project manager agreed to shoot for the desired deadline, but the system

owner(s) accepted the reality that if something must slip, it should be schedule.

Now suppose that during systems analysis, significant and unanticipated business prob-
lems are identified.The analysis of these problems has placed the project behind sched-
ule. Furthermore, solving the new business problems substantially expands the user

Project Management Chapter Four 145

Max or Min Constrain Accept

Cost x

Schedule x

Scope and/or Quality x

PRIORITIES

 MEASURES OF SUCCESS

F I G U R E 4 - 1 5

A Typical Initial
Expectations Matrix

requirements for the new system. How does the project manager react? There should be
no overreaction to the schedule slippage—schedule slippage was the “accept” priority
in the matrix.The scope increase (in the form of several new requirements) is the more
significant problem because the added requirements will increase the cost of the proj-
ect. Cost is the constrained measure of success. As it stands, an expectations problem
exists.The project manager needs to review the matrix with the system owner.

First, the system owner needs to be made aware of which measure or measures
are in jeopardy and why. Then together, the project manager and system owner can
discuss courses of action. Several courses of action are possible:

• The resources (cost and/or schedule) can be reallocated. Perhaps the system
owner can find more money somewhere. All priorities would remain the
same (noting, of course, the revised deadline based on schedule slippages
already encountered during systems analysis).

• The budget might be increased, but it would be offset by additional planned
schedule slippages. For instance, by extending the project into a new fiscal
year, additional money might be allocated without taking any money from
existing projects or uses. This solution is shown in Figure 4-16.

• The user requirements (or quality) might be reduced through prioritizing those
requirements and deferring some of those requirements until version 2 of the
system. This alternative would be appropriate if the budget cannot be increased.

• Finally, measurement priorities can be changed.

Only the system owner may initiate priority changes. For example, the system
owner may agree that the expanded requirements are worth the additional cost. He or
she may allocate sufficient funds to cover the requirements but may migrate priorities
such that minimizing cost now becomes the highest priority (see Figure 4-17, step 1).
But now the matrix violates a rule—there are two Xs in column 1.To compensate, we
must migrate the scope and/or quality criterion to another column, in this case, the con-
strain column (see Figure 4-17, step 2). Expectations have been adjusted. In effect, the
system owner is freezing growth of requirements and still accepting schedule slippage.

There are three final comments about priority changes. First, priorities may
change more than once during a project. Expectations can be managed through any
number of changes as long as the matrix is balanced (meaning it conforms to our

146 Part One The Context of Systems Development Projects

Max or Min Constrain Accept

Cost

Adjusted budget

X+

Increase
budget

Schedule

Adjusted deadline

X-

Extend
deadline

Scope and/or Quality

Adjusted scope

X+

Accept
expanded

requirements

•

•

•

PRIORITIES

 MEASURES OF SUCCESS

F I G U R E 4 - 1 6

Adjusting
Expectations
(a sample)

rules). Second, expectation management can be achieved through any combination of
priority changes and resource adjustments. Finally, system owners can initiate priority
changes even if the project is on schedule. For example, government regulation might
force an uncompromising deadline on an existing project. That would suddenly mi-
grate our “accept” schedule slippages to “max constraint.” The other Xs would have to
be migrated to rebalance the matrix.

While the management expectations matrix is a simple tool, it may be one of the
most effective.

Schedule Adjustments—Critical Path Analysis When it comes to the project
schedule, some tasks are more sensitive to schedule delays than others. For this reason,
project managers must become aware of the critical path and slack times for a project.

Understanding the critical path and slack time in a project is indispensable to the
project manager. Knowledge of such project factors influences the people manage-
ment decisions to be made by the project manager. Emphasis can and should be
placed on the critical path tasks, and if necessary, resources might be temporarily
diverted from tasks with slack time to help get critical tasks back on schedule.

The critical path and slack time for a project can be depicted on both Gantt and
PERT charts; however, PERT charts are generally preferred because they more clearly
depict intertask dependencies that define the critical path. Most project management
software, including Microsoft Project, automatically calculates and highlights the
critical path based on intertask dependencies combined with durations. It is useful,
however, to understand how the critical path and slack times are calculated.

Consider the following hypothetical example. A project consists of the nine prim-
itive tasks shown in Figure 4-18. The most likely duration (in days) for each task is
recorded.There are four distinct sequences of tasks in a project.They are:

Path 1: A → B → C → D → I
Path 2: A → B → C → E → I
Path 3: A → B → C → F → G → I
Path 4: A → B → C → F → H → I

The total of most likely duration times for each path is calculated as follows:

Path 1: 3 2 2 7 5 19
Path 2: 3 2 2 6 5 18
Path 3: 3 2 2 3 2 5 17
Path 4: 3 2 2 3 1 5 16

In this example, path 1 is the critical path at 19 days. (Note: You can have multiple
critical paths if they have the same total duration.)

Project Management Chapter Four 147

Max or Min Constrain Accept

Cost x x

Schedule x

Scope and/or Quality x x

Step 1

Step 2

PRIORITIES

 MEASURES OF SUCCESS

F I G U R E 4 - 1 7

Changing Priorities

F
I
G

U
R

E

4

-
1

8
C

ri
ti

ca
l

P
at

h
 A

n
al

y
si

s

148

Lea
rning

 Roa
d
m

a
p

Where you go from here depends on where you are coming from and where you

want to go. If you are reading through the chapters sequentially, you should probably

move on to Chapter 5,“Systems Analysis,” to expand your understanding of systems

analysis tasks, tools, and techniques. Alternatively, if you are enrolled in a system

design–focused course, you might skip ahead to either Chapter 11,“Feasibility Analy-

sis and the System Proposal” (which marks the end of systems analysis), or Chapter 12,

“Systems Design” (which provides an in-depth look at the activities of system design,

prototyping, and rapid application development).

Some instructors have deferred this project management chapter to the end of

your course. If so, you may be interested in expanding your knowledge of project

management tools, techniques, and methods. Some schools offer a project manage-

ment course. If not, you may find that your systems analysis and design instructor

might supervise you to complete an independent study course on the subject. If so,

we direct you to two specific references at the end of this chapter as possible texts:

(1) the Wysocki et al. book is well organized around the Project Management Body of

Knowledge that we presented in our chapter, and (2) the McLeod and Smith book is

especially comprehensive in its coverage of project management dimensions that we

could not cover fully in our chapter.

Project Management Chapter Four 149

In this example, tasks E, F, and G are not on the critical path; they each have some
slack time. For example, task E is included in a path that has one day less duration than
the critical path; therefore, task E can get behind by as much as one day without ad-
versely affecting the project completion date. Similarly, tasks F and G can combine for
a maximum slack of two days without delaying the entire schedule.

In Figure 4-18, the critical path is shown in red.The tasks that have slack capacity
are shown in black. Similarly, project management software also uses color to differ-
entiate critical path tasks in a Gantt or PERT chart.

> Activity 8—Assess Project Results and Experiences

Project managers must learn from their mistakes! They should embrace continuous
process improvement. This final activity involves soliciting feedback from project
team members (including customers) concerning their project experiences and
suggestions aimed at improving the project and process management of the organi-
zation. Project review(s) should be conducted to answer the following fundamental
questions:

• Did the final product meet or exceed user expectations?
• Did the project come in on schedule?
• Did the project come in under budget?

The answers to these questions should be followed up with the basic question
“Why or why not?” Subsequently, and based on the responses to the above questions,
changes should be made to improve the system development and project manage-
ment methods that will be used on future projects. Suggestions for improvements are
communicated to “Centers for Excellence,” which can modify standards and
processes, as well as share useful ideas and experiences with other project teams that
may solicit their help or expertise. Project assessments often contribute improve-
ments to specific project deliverables (milestones), processes or tasks that created the
deliverables, and the overall management of the project.

150 Part One The Context of Systems Development Projects

1. A project is a (temporary) sequence of unique, com-
plex, and connected activities that have one goal or
purpose and that must be completed by a specific
time, within budget, and according to specification.

2. Project management is the process of scoping,
planning, staffing, organizing, directing, and con-
trolling the development of an acceptable system
at a minimum cost within a specified time frame.

3. Process management is an ongoing activity that
documents, manages the use of, and improves an
organization’s chosen methodology (the “process”)
for systems development.

4. From a project management perspective, a project
is considered a success if the resulting information
system is acceptable to the customer, the system is
delivered “on time” and “within budget,” and the
system development process had a minimal impact
on ongoing business operations.

5. The Project Management Institute has created the
Project Management Body of Knowledge (PMBOK)
for the education and certification of professional
project managers. It addresses:

a. Project manager competencies.
b. Project management functions.
c. Tools and techniques such as:

i) PERT charts, graphical network models that
depict a project’s tasks, and the relationships
between those tasks.

ii) Gantt charts, simple horizontal bar charts
that depict project tasks against a calendar.

d. Project management software.

6. Project management is a cross life-cycle activity; that
is, project management tasks overlap all the system
development phases. A project management process
is essential to achieving CMM Level 2 maturity.

7. Joint project planning (JPP) is a strategy wherein
all stakeholders in a project participate in a one- to
three-day project management workshop, the re-
sult of which is consensus agreement on project
scope, schedule, resources, and budget.

8. The tasks of project management include:

a. Negotiate scope. Scope defines the boundaries
of a project and is included in the statement of
work, a narrative description of the work to be
performed as part of a project.

b. Identify tasks. A work breakdown structure
(WBS) is a hierarchical decomposition of the
project into its tasks and subtasks. Some tasks
represent the completion of milestones or the
completion of major deliverables during a
project.

c. Estimate task durations.There are many tech-
niques and tools for estimating task durations.

d. Specify intertask dependencies.The start or
completion of individual tasks may be depen-
dent on the start or completion of other tasks.
These dependencies impact the completion of
any project.

e. Assign resources.The following resources may
impact a project schedule: people, services, fa-
cilities and equipment, supplies and materials,
and money.

i) Such resources must be assigned to tasks to
develop a schedule.

ii) Resource leveling is a strategy used to cor-
rect resource overallocations by some
combination of delaying or splitting
tasks. Resource leveling requires knowl-
edge of:

(1) The critical path—that sequence of de-
pendent tasks that have the largest sum
of most likely durations.The critical
path determines the earliest possible
completion date of the project.

(2) Slack time—the amount of delay that
can be tolerated between the starting
time and completion time of a task
without causing a delay in the comple-
tion date of the entire project.

f. Direct the team effort. One of the most impor-
tant dimensions of directing the team effort is
the supervision of people.

g. Monitor and control progress. During the proj-
ect, the project manager must monitor project
progress against the scope, schedule, and bud-
get and, when necessary, make adjustments to
scope, schedule, and resources.

i) Progress reporting is an essential control
process that uses communication to keep a
project within scope, on time, and within
budget.

ii) A complete project plan provides mecha-
nisms and a process to manage requests for
changes to scope.This is called change
management.

iii) Change management frequently requires that
a project manager manage the expectations
of management and users themselves. An
expectations management matrix is a rule-
driven tool for helping management under-
stand the dynamics and impact of changing

Summary

1. What is a project?
2. Of the many different reasons that projects fail,

what is the major cause of project failure?
3. What is the difference between scope creep and

feature creep?
4. What are the five main categories of competen-

cies that a project manager should have?
5. Why are business achievement competencies

important?
6. What are the basic project management functions?
7. What are PERT and Gantt charts? How do we

decide which one to use?
8. What are the eight major activities in the project

management life cycle?
• Negotiate scope
• Identify tasks
• Estimate task durations
• Specify intertask dependencies

• Assign resources
• Direct the team effort
• Monitor and control progress
• Assess project results and experiences

9. Why is negotiating scope important? What is the
deliverable in the process of negotiating the scope?

10. What is a popular tool used to identify tasks in
the project management life cycle?

11. What are the factors to consider in estimating
task durations?

12. What are the differences between forward sched-
uling and reverse scheduling?

13. What are the categories of resources to be
allocated to the project?

14. What should project managers do to manage
changes that occur and/or are requested during a
project?

15. Why is critical path analysis important?

Review Questions
1

2

project parameters such as cost, schedule,
scope, and quality.

iv) Schedule adjustments are required when a
project’s scope changes or when other fac-
tors drive schedule or budget out of the
projected range.

Project Management Chapter Four 151

h. Assess project results and experiences.This fi-
nal activity involves soliciting feedback from
project team members (including customers)
concerning their project experiences and sug-
gestions aimed at improving the project and
process management of the organization.

1. Assume you are a systems analyst and a proud
member of a project team that has just completed
a major project that spanned several years and
that touched almost every business unit in your
organization.The project was completed ahead of
schedule and well within budget. Development
and implementation went very smoothly with
virtually no disruption of business operations. A
postimplementation survey indicates that system
users have been able to use the system with mini-
mal training, although there have been some com-
ments from the more vocal users that it wasn’t
quite what they expected and doesn’t do some
of the things they thought it would. Should the
project be considered a success?

2. Executive management is concerned that some
users are less than satisfied with the new system
described in the preceding question and have
assigned you to lead a postimplementation work
group to determine the cause. Of the dozen proj-
ect mismanagement problems described in the
textbook, which ones do you think were most
likely to have contributed to user dissatisfaction?

3. As a newly appointed project manager, you are
eager to get started on your first project. What
should your first activity be? How important is it?
Who is typically involved? What questions do you
need to make sure are answered? What’s the ulti-
mate outcome from this activity, and what is
included in this deliverable?

4. You are the project manager of a medium-size
project that is scheduled to take 10 months from
project initiation on September 1st through deliv-
ery on June 30th. It is now April 1st, seven
months since the project began, and the project
is slightly behind schedule, by perhaps a week.
Draw a Gantt chart (you may use the style shown
in Figure 4.2 or another Gantt chart style if you
prefer). Assume you are using the FAST methodol-
ogy, and that project phases can overlap.

5. You are the project manager for a company that is
building a behavioral health system for some of the
counties in your state.The project is slightly ahead
of schedule and there haven’t been any significant
problems to date. In reviewing some of the
screens under construction, you are surprised to

Problems and Exercises

find a number of features that were not part of the
design.The system builder was one of your most
talented and creative programmers.When you ask
about these features, the builder proudly tells you
that they add to the functionality of the system
without taking any additional programming time,
and that they were intended to be a surprise.You
can see that the features definitely do add to the
functionality of the system.The code has already
been written for them—should you allow them to
be included in the system, even though they were
not part of the approved technical design?

6. The methodology used in your organization calls
for change requests to be considered by a change
control board (CCB). After some reflection and a
discussion with the programmer, you have de-
cided to submit a change request to the CCB to
add the new features. In your presentation to the
CCB, what reason might you give for the change
request and what things should you take into
consideration?

7. The CEO of your organization was so impressed
with your last project that you have been given re-
sponsibility with a larger, even more important proj-
ect.The CEO calls you in for a discussion regarding
the importance of the project, and tells you that the
very survival of the organization may hinge upon
completing this project and rolling out the new sys-
tem to customers before a certain date when a com-
petitor is expected to complete a similar project.
The company can afford to budget only up to a
certain maximum, although if other, less critical
projects-in-progress are delayed, there may be some
additional funding available if absolutely necessary.
Finally, in order to be a competitive product in the
market, the new system must contain at least a cer-
tain minimum feature set, although more would be
desirable, and the quality must be of the highest
level. At the conclusion of this discussion, the CEO
shakes your hand and wishes you good luck. Use
the priorities set by the CEO to create an initial
management expectations matrix.

8. Now suppose that during the course of this
project, it becomes apparent that costs were
significantly underestimated and the budget is
rapidly becoming depleted. In addition, the head
of marketing has picked up a trade magazine and
read that your organization’s main competitor is
adding some really exciting features to their prod-
uct without changing their release date.The budget
overage is not the major problem; you know
additional money can be allocated, although it
may delay other projects. But you also know that
your marketing stakeholders will be demanding
that similar features be added to the system you
are developing while keeping to the original

schedule.This presents an expectations conflict
since scope is the constrained measure of
success. What should you do at this point?

9. Suppose the CEO decides that no matter what,
the new features absolutely must be added in or-
der for the new system to be competitive. What
issues does this raise, and how would this be
reflected in the expectations matrix?

10. You are working on the schedule for the system
design phase and are trying to estimate the dura-
tion of a complex design task. From breaking this
task down into smaller tasks similar to ones that
you’ve had experience with on other projects,
you estimate the task should normally take an ex-
pected duration (ED) of three workdays, given a
typical 75 percent worker efficiency rate and
15 percent interruption factor. But you also know
of some instances where absolutely nothing went
right, and it took up to two full workweeks, or a
pessimistic duration (PD) of 80 hours, to com-
plete the design task. Using the classic technique
described in the textbook, calculate the most
likely duration of the task.

11. In the preceding question, what technique did
you use to estimate the expected duration of the
design task? Describe some of the other tech-
niques you could use to estimate task duration.

12. During one phase of the project, you review the
project schedule and realize that a member of
your project team has been assigned multiple
tasks that add up to more hours than the person
has available to work during that period. What
technique could you use to resolve this?

13. You have been asked to complete a project in
shortest time possible.The project tasks, most
likely duration (in days), and predecessors are
shown below. What are the different paths
(sequence of tasks) and the number of days for
each? What is the critical path, that is, the short-
est time in which the project can be completed?
Is it actually important in the business world for
project managers to understand critical path
analysis, or is this just theoretical knowledge?

152 Part One The Context of Systems Development Projects

Tasks Duration Predecessors

A 2 None

B 2 None

C 1 None

D 4 A

E 5 B

F 1 C, D

G 6 A, E

H 4 F

I 7 G,H

Project Management Chapter Four 153

1. Projects fail, sometimes spectacularly. Search the
Web for articles on major project failures; numerous
articles should be readily available. Find and review
articles on approximately 10 major project failures
during the past decade, then do the following:

a. List the project failures that you found, and
describe them.

b. What was the cost of each project failure?
c. What were the consequences of each project

failure?
d. Categorize the reason(s) for each project’s fail-

ure based upon the causes listed in this chapter.
e. What were the most common causes for the

project failures?
f. In hindsight, how many of the project failures

were avoidable?
g. What is the most important lesson that new

systems analysts can learn from these project
failures?

2. The Project Management Institute (PMI) is one of
the leading and perhaps the leading project man-
agement organization in the world. PMI created
and maintains the “Project Management Body of
Knowledge” (PMBOK), which is a de facto stan-
dard for project managers. PMI also certifies a
project manager who passes its knowledge and
experience requirements as a “Project Manage-
ment Professional” (PMP).

a. Go to the PMI Web site (www.pmi.org). What
are the requirements to become certified as
a PMP?

b. Based upon your readings and experience, how
important do you think the PMP certification is
for the project manager? Do you think it is
worth the investment?

c. What about the organization that employs a
PMP? Is the certification an assurance that the
organization’s projects will be completed suc-
cessfully. How much more should an organization
pay a project manager with a PMP certification?

d. Professionals in many fields, such as medicine,
engineering, accountancy, and law, are required
to be licensed or certified. Do you think profes-
sional certification should be required before
someone can manage a large project?

3. You work in the information technology division
of a large law firm with offices throughout the
state. One of the vice presidents of the company
has asked you to manage the development of an
automated case-tracking system for your company.
The project, which is just beginning, is the first
large project you have been asked to manage.You
take your duties very seriously and want to do an
exemplary job on this project.

a. You are meeting with the vice president of the
company to discuss the scope of the project. In
your meeting, what questions need to be an-
swered and negotiated in order to be able to
determine the scope of the project?

b. Once you have finished negotiating scope, the
vice president has asked you to write a Statement
of Work.What does the Statement of Work repre-
sent in this situation? How long should it be?

c. Write a Statement of Work, using the outline
shown in Figure 4-5 as an example. Assume that
the vice president has given you carte blanche
(although that will probably never happen in
real life).

4. Project management software, such as Microsoft
Project, have become commonplace. Many of them
incorporate traditional tools, such as PERT and
Gantt charts, which were developed decades ago.

a. Conduct an informal survey of about a dozen
project managers in industry. How many of
them use project management software?

b. For those who don’t use project management
software, what are their reasons for not using it?

c. For those who do use project management soft-
ware, which ones do they use? What are their
opinions regarding the software they use?

Projects and Research

14. As a new project manager in a rapidly growing
organization, you have been asked to lead a proj-
ect team for an important project.The scope of
the project is not too broad, project time frames
are somewhat on the tight side but definitely
doable, and the budget is more than generous. In
fact, you have been given the authority to hire as
many people as you want for your project team.

You estimate that 5 people would be about right
for this type of project, 8 would provide a healthy
amount of backup, and 10 could give you the
resources to deliver an outstanding system in
record time. What is something you might want
to keep in mind before making your decision on
how many people to hire?

154 Part One The Context of Systems Development Projects

d. Search on the Web for different project manage-
ment programs. Which ones did you find?

e. Review their features and specifications. Do any
of them appear to have unique features? Which
one do you think is the most popular, or at least
the one most widely used? Which one would
you pick if cost was not a consideration?

5. You are managing the development of a case-
tracking system project for your large law firm.
The requirements phase of the project is almost
complete, and preliminary design work has begun.
The project is running several days behind sched-
ule, which you don’t consider serious, and it is
within budget, but barely. Quality, in terms of re-
quirements analysis, has generally been acceptable
so far in your opinion, but some of the project
team members have mentioned that they are not
sure if certain issues have been fully resolved.
Based upon this information, write a Project
Progress Report, using the outline in Figure 4-11 as

an example and following the guidelines described
in Activity 7 in this chapter.

6. As part of continuous improvement, it is important
for project managers and project teams to assess
the results and their experiences once a project
has been completed.There are numerous methods
and techniques for doing this. Search on the Web
for pertinent articles, using phrases such as project
assessment, project postimplementation reports,
and the like.

a. What articles did you find?
b. Describe the methods and techniques they

suggest.
c. Select the ones you feel are the most valuable,

and explain why.
d. Do you think that assessing project results can

make a significant difference in the quality of
future projects?

1. You are on a team that is developing a Web site for
a local business, Custom Car Care.There is a set
schedule of four months for requirements analysis,
development, and successful deployment.The
team is on schedule, in week 8, and has just shown
Debbie, the CEO of Custom Car Care, the proto-
type. Debbie is very happy with your work so far,
but has some additional capabilities she would like
added to the site. Although the additions are not in
the previous time or cost estimate, she requires
that you stay on schedule and within current
budget. What do you do?

2. Alicia and John are a team coding a difficult and
sizable program in Java.They have some experi-
ence with the language, but will have to learn a
significant amount “on the fly.” They have esti-
mated that the project will take two months as the
optimistic estimate, three months as the expected
estimate, and four months as the pessimistic esti-
mate.You are their project manager and must

develop a contract for completion with the client
for the code development. How much time should
you allow in the contract for this deliverable?

3. Develop both a forward and backward schedule of
tasks and timelines for a major project you are
completing for a class. If there is discrepancy be-
tween the two schedules, err on the side of front-
loading your tasks. Monitor your project timeline
and keep track of the milestones as you complete
the project. At the end of the project, submit your
timeline and project notes to your professor, along
with a copy of the class project. Did the schedule
development and management of the project help
you? Share with your class your experience.

4. In an interview with a project manager, find out
how often personnel issues affect the successful
(and on-time) completion of a project. How does
this project manager deal with personal or family
problems that distract or remove key members of
a team?

Minicases

1. For the professor to direct: Create teams of four and
designate one as the project manager. Assign them a
challenging task with a short deadline. It should be
doable for the class, but certainly not easy. Midway
through the project, exchange one member per
team so that each team has lost one member and

gained one new member. Do not allow the team to
converse with the member that was “hired away.”

Have the project manager document how
they handled the situation, what problems
arose, and how they would handle a team differ-
ently in the future (knowing that they could

Team and Individual Exercises

Project Management Chapter Four 155

Blanchard, Kenneth, and Spencer Johnson. The One Minute

Manager. New York: Berkley Publishing Group, 1981,

1982. Arguably, this is one of the best people management

books ever written. Available in most bookstores, it can be

read overnight and used for discussion material for the

lighter side of project management (or any kind of man-

agement). This is must reading for all college students

with management aspirations.

Blanchard, Kenneth; William Oncken, Jr.; and Hal Burrows.

The One Minute Manager Meets the Monkey. New York:

Simon & Schuster, 1988. A sequel to The One Minute

Manager, this book effectively looks at the topic of dele-

gation and time management. The monkey refers to

Oncken’s classic article, “Managing Management Time:

Who’s Got the Monkey?” as printed in the Harvard Busi-

ness Review in 1974. The book teaches managers how to

achieve results by helping their staff (their monkeys)

solve their own problems.

Brooks, Fred.The Mythical Man-Month. Reading, MA.: Addison-

Wesley, 1975. This is a classic set of essays on software

engineering (also known as systems analysis, design, and

implementation). Emphasis is on managing complex

projects.

Catapult, Inc. Microsoft Project 98: Step by Step. Redmond,

WA: Microsoft Press, 1997. An update for Project 2000 is

expected.

Demarco, Tom. The Deadline: A Novel about Project Man-

agement. New York: Dorset House Publishing, 1997. This

would be an excellent companion to a project manage-

ment text, especially for a graduate-level course. It demon-

strates the “good, bad, and ugly” of project management,

told as a story.

Duncan, William R., Director, and Standards Committee. A

Guide to the Project Management Body of Knowledge.

Upper Darby, PA: Project Management Institute, 1996.

This is a concise overview of the generally accepted Proj-

ect Management Body of Knowledge and practices used

for certification of project managers.

Friedlander, Phillip.“Ensuring Software Project Success with

Project Buyers,” Software Engineering Tools, Techniques,

and Practices 2, no. 6 (March/April 1992), pp. 26–29. We

adapted our expectations management matrix from

Dr. Friedlander’s work.

Kernzer, Harold. Project Management: A Systems Approach

to Planning, Scheduling, and Controlling, 4th ed. New

York: Van Nostrand Reinhold, 1989. Many experts

consider this book to be the definitive work in the field of

project management. Dr. Kernzer’s seminars and courses

on the subject are renowned.

London, Keith. The People Side of Systems. New York:

McGraw-Hill, 1976.This is a timeless classic about various

people aspects of systems work. Chapter 8, “Handling

a Project Team,” does an excellent job of teaching the

leadership aspects of project management.

McLeod, Graham, and Derek Smith. Managing Information

Technology Projects. Cambridge, MA: Course Technol-

ogy, 1996. If you are looking for a good academic book

for a course or independent study project to expand

your knowledge of IT project and process management,

this is it! The book provides a comprehensive treat-

ment of virtually all dimensions of IT project and process

management.

Roetzheim,William H., and Reyna A. Beasley. Software Project

Cost and Schedule Estimating: Best Practices. Upper

Saddle River, NJ: Prentice Hall, 1998. This is one of the

more complete books on the subject of estimating tech-

niques. Better still, the book includes evaluation copies of

Cost•Xpert, Risk•Xpert, and Strategy•Xpert (TMof Marotz,

Inc.), software tools for estimating.

Wysocki, Robert K; Robert Beck, Jr; and David B. Crane. Ef-

fective Project Management: How to Plan, Manage, and

Deliver Projects on Time and within Budget, 2nd ed.

New York: John Wiley & Sons, 2000. Buy this book! This is

our new benchmark for introducing project management.

It is easy to read and worth its weight in gold. We were

surprised how compatible the book is with past editions

of our book, and our project management directions

continue to be influenced by this work.

Suggested Readings

lose a teammate at any time and without any
notice).

2. (Team or Individual) For each of the class projects,
develop a Rolling Wave timeline for completion.
Write down everything you can think of that could
go wrong and a contingency project plan. Advice:
Front-load each project.

3. As a team, go out to lunch or dinner. Share some
aspect of your life that your team may not know
about. Find out something you didn’t know about
each of your teammates.

Systems Analysis Methods

The five chapters in Part Two intro-

duce you to systems analysis activities

and methods. Chapter 5, “Systems

Analysis,” provides the context for all

the subsequent chapters by introduc-

ing the activities of systems analysis.

Systems analysis is the most critical

phase of a project. During systems

analysis we learn about the existing

business system, come to understand

its problems, define objectives for im-

provement, and define the detailed

business requirements that must be

fulfilled by any subsequent technical

solution. Clearly, any subsequent sys-

tem design and implementation of a

new system depends on the quality of

the preceding systems analysis. Sys-

tems analysis is often shortchanged in

a project because (1) many analysts

are not skilled in the concepts and

logical modeling techniques to be

used, and (2) many analysts do not

understand the significant impact of

those shortcuts. Chapter 5 introduces

you to systems analysis and its overall

importance in a project. Subsequent

chapters teach you specific systems

analysis skills with an emphasis on

logical system modeling.

Chapter 6, “Fact-Finding Tech-

niques for Requirements Discovery,”

teaches various fact-finding tech-

niques and strategies used to solicit

user requirements for a new system.

In Chapter 7, “Modeling System

Requirements with Use Cases,” you

will learn about the tools and tech-

niques necessary to perform use-case

modeling to document system

requirements.

In Chapter 8, “Data Modeling

and Analysis,” we teach you data

modeling, a technique for organizing

and documenting the stored data

requirements for a system. You will

learn to draw entity relationship

diagrams as a tool for structuring

business data that will eventually be

designed as a database. These models

will capture the business associations

and rules that must govern the data.

Chapter 9, “Process Modeling,”

introduces process modeling. It ex-

plains how data flow diagrams can be

used to depict the essential business

processes in a system, the flow of

data through a system, and policies

and procedures to be implemented by

processes. If you’ve done any pro-

gramming, you recognize the impor-

tance of understanding the business

processes for which you are trying to

write the programs.

Chapter 10, “Object-Oriented

Analysis and Modeling with UML,”

teaches you about the object-oriented

approach to performing systems

analysis using UML tools.

Chapter 11, “Feasibility Analy-

sis and the System Proposal,”

teaches you how to brainstorm

possible system solutions, analyze

those solutions for feasibility, select

the best overall solution, and then

present your recommendation in the

form of a written and oral proposal

to management.

Part Two

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

5Systems Analysis

Chapter Preview and Objectives

In this chapter you will learn more about the systems analysis phases in a systems devel-

opment project—namely, the scope definition, problem analysis, requirements analysis,

and decision analysis phases. The first three phases are collectively referred to as systems

analysis. The latter phase provides transition between systems analysis and systems de-

sign. You will know that you understand the process of systems analysis when you can:

❚ Define systems analysis and relate the term to the scope definition, problem analysis,

requirements analysis, logical design, and decision analysis phases of this book’s

systems development methodology.

❚ Describe a number of systems analysis approaches for solving business system

problems.

❚ Describe the scope definition, problem analysis, requirements analysis, logical design,

and decision analysis phases in terms of your information system building blocks.

❚ Describe the scope definition, problem analysis, requirements analysis, logical design,

and decision analysis phases in terms of purpose, participants, inputs, outputs,

techniques, and steps.

❚ Identify the chapters in this textbook that can help you learn specific systems analysis

tools and techniques.

NOTE: Although some of the tools and techniques of systems analysis are previewed in

this chapter, it is not the intent of this chapter to teach those tools and techniques. This

chapter teaches only the process of systems analysis. The tools and techniques will be

taught in the subsequent six chapters.

Bob Martinez remembers learning in college that systems analysis defines what an in-
formation system needs to do while system design defines how it needs to do it. At
the time, it sounded like a simple two-step process. Now, as he begins working on the
SoundStage Member Services system project, he sees that there are multiple phases
and several steps within systems analysis and system design.

The SoundStage project is at the beginning of systems analysis, in what Sandra, his
boss, calls the scope definition phase. After that they’ll do problem analysis, require-
ments analysis, and decision analysis. It sounds like a lot of work just to understand
what the system needs to do. But this is a complicated system. As Sandra says, would
you build a house without a good set of plans?

160 Part Two Systems Analysis Methods

systems analysis a

problem-solving technique

that decomposes a system

into its component pieces

for the purpose of studying

how well those component

parts work and interact to

accomplish their purpose.

systems design a comple-

mentary problem-solving tech-

nique (to systems analysis)

that reassembles a system’s

component pieces back into a

complete system—hopefully,

an improved system. This may

involve adding, deleting, and

changing pieces relative to the

original system.

information systems
analysis those development

phases in an information sys-

tems development project that

primarily focus on the busi-

ness problem and require-

ments, independent of any

technology that can or will be

used to implement a solution

to that problem.

repository a location (or set

of locations) where systems

analysts, systems designers,

and system builders keep all

of the documentation associ-

ated with one or more sys-

tems or projects.

Introduction

What Is Systems Analysis?

In Chapter 3 you learned about the systems development process. In that chapter we
purposefully limited our discussion to only briefly examining each phase. In this
chapter, we take a much closer look at those phases that are collectively referred to as
systems analysis. Formally defined in the margin, systems analysis is the study of a
system and its components. It is a prerequisite to systems design, the specification
of a new and improved system.This chapter will focus on systems analysis. Chapter 12
will do the same for systems design.

Moving from this classic definition of systems analysis to something a bit more
contemporary, we see that systems analysis is a term that collectively describes the
early phases of systems development. Figure 5-1 uses color to identify the systems
analysis phases in the context of the full classic route for our FAST methodology (from
Chapter 3). There has never been a universally accepted definition of systems analy-
sis. In fact, there has never been universal agreement on when information systems
analysis ends and when information systems design begins. For the purpose of this
book, information systems analysis emphasizes business issues, not technical or
implementation concerns.

Systems analysis is driven by the business concerns of SYSTEM OWNERS and SYSTEM

USERS. Hence, it addresses the KNOWLEDGE, PROCESS, and COMMUNICATIONS building blocks
from SYSTEM OWNERS’ and SYSTEM USERS’ perspectives.The SYSTEMS ANALYSTS serve as facil-
itators of systems analysis. This context is illustrated in the chapter home page that
preceded the objectives for this chapter.

The documentation and deliverables produced by systems analysis tasks are typi-
cally stored in a repository. A repository may be created for a single project or shared
by all projects and systems. A repository is normally implemented as some combina-
tion of the following:

• A network directory of word processing, spreadsheet, and other computer-
generated files that contain project correspondence, reports, and data.

• One or more CASE tool dictionaries or encyclopedias (as discussed in
Chapter 3).

• Printed documentation (such as that stored in binders and system libraries).
• An intranet Web site interface to the above components (useful for

communication).

Hereafter, we will refer to these components collectively as the repository.

This chapter examines each of our five systems analysis phases in greater detail.
But first, let’s examine some overall strategies for systems analysis.

Systems Analysis Approaches

Fundamentally, systems analysis is about problem solving. There are many approaches
to problem solving; therefore, it shouldn’t surprise you that there are many ap-
proaches to systems analysis. These approaches are often viewed as competing alter-
natives. In reality, certain combinations can and should actually complement one
another. This was characterized in Chapter 3 as agile methods. Let’s briefly examine
the varied approaches.

NOTE: The intent here is to develop a high-level understanding only. Subsequent
chapters in this unit will actually teach you the underlying techniques.

> Model-Driven Analysis Approaches

Structured analysis, information engineering, and object-oriented analysis are exam-
ples of model-driven analysis. Model-driven analysis uses pictures to communicate

Systems Analysis Chapter Five 161

model-driven analysis a

problem-solving approach that

emphasizes the drawing of

pictorial system models to

document and validate exist-

ing and/or proposed systems.

Ultimately, the system model

becomes the blueprint for de-

signing and constructing an

improved system.

F I G U R E 5 - 1 The Context of Systems Analysis

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYSIS

3

LOGICAL

DESIGN

4

5

DECISION

ANALYSIS

PHYSICAL

DESIGN

&

INTEGRATION

6

CONSTRUCTION

&

TESTING

7

INSTALLATION

&

DELIVERY

8

SCOPE

DEFINITION

1

SYSTEM

OPERATION

&

MAINTENANCE

Life-Cycle Stage

Problem

Statement

System

Improvement

Objectives

Business

Requirements

Statement

Application

Architecture

Physical

Design Specifications

Functional

System

Operational

System

FINISH:

Working

Business

Solution

START:

Problems, Opportunities,

Directives, Constraints,

and Vision

Logical

Design

Documentation Documentation

SYSTEM OWNERS AND USERS

BUSINESS COMMUNITY

Statement

of Work

Scope & Vision

System

Proposal

Design

Prototypes

Training

Materials

Post-Audit

Review

Redesigned

Business

Processes

Documentation

Documentation Documentation

Documentation Documentation

Documentation

F I G U R E 5 - 2

A Simple Process
Model (Also Called
a Data Flow
Diagram)

Club

Member

Club

Member

Warehouse

Accounts

Orders

Process

Automatic

Orders

Process

Bonus

Orders

Process

Member

Orders

Member order response

Credit rating and limit

Credit rating

and limit
Credit

rating

and

limit

Order to be

filled
Order to be filled

Revised automatic orderExisting order details

Bonus

Order

Order

to be

filled

business problems, requirements, and solutions. Examples of models with which you
may already be familiar include flowcharts, structure or hierarchy charts, and organi-
zation charts.

Today, model-driven approaches are almost always enhanced by the use of auto-
mated tools. Some analysts draw system models with general-purpose graphics soft-
ware such as Microsoft Visio. Other analysts and organizations require the use of
repository-based CASE or modeling tools such as System Architect,Visible Analyst, or
Rational ROSE. CASE tools offer the advantage of consistency and completeness
analysis as well as rule-based error checking.

Model-driven analysis approaches are featured in the model-driven methodologies
and routes that were introduced in Chapter 3. Let’s briefly examine today’s three most
popular model-driven analysis approaches.

Traditional Approaches Various traditional approaches to system analysis and de-
sign were developed beginning in the 1970s. One of the first formal approaches,
which is still widely used today, is structured analysis. Structured analysis focuses
on the flow of data through business and software processes. It is said to be process-

centered. By process-centered, we mean that the emphasis is on the PROCESS building
bocks in your information system framework.

One of the key tools used to model processes is the data flow diagram (Figure 5-2),
which depicts the existing and/or proposed processes in a system along with their in-
puts, outputs, and data. The models show the flow of data between and through
processes and show the places where data is stored. Ultimately these process models
serve as blueprints for business processes to be implemented and software to be
purchased or constructed.

162 Part Two Systems Analysis Methods

model a representation of

either reality or vision. Since

“a picture is worth a thousand

words,” most models use pic-

tures to represent the reality

or vision.

structured analysis a

model-driven, PROCESS-

centered technique used to

either analyze an existing

system or define business

requirements for a new sys-

tem, or both. The models are

pictures that illustrate the

system’s component pieces:

processes and their associ-

ated inputs, outputs, and files.

The practice of structured analysis for software design has greatly diminished in
favor of object-oriented methods. However, process modeling is enjoying something
of a revival thanks to the renewed emphasis on business process redesign, which is
discussed later in this chapter.

Another traditional approach, called information engineering (IE), focuses
on the structure of stored data in a system rather than on processes.Thus, it was said
to be data-centered, emphasizing the analysis of KNOWLEDGE (or data) requirements.
The key tool to model data requirements is the entity relationship diagram (Figure 5-3).
Entity relationship diagrams are still widely used in designing relational databases.

Originally, information engineering was seen as a competing approach to struc-
tured analysis. But over time many people made them as complementary: using data
flow diagrams to model a system’s processes and entity relationship diagrams to
model a system’s data.

Object-Oriented Approach Traditional approaches deliberately separated the
concerns of KNOWLEDGE (data) from those of PROCESSES. Although most systems analy-
sis methods attempted to synchronize data and process models, the attempt did not
always work well in practice. Object technologies have since emerged to eliminate
this artificial separation of data and processes. The object-oriented approach

views information systems not as data and processes but as a collection of objects
that encapsulate data and processes. Objects can contain data attributes. However,
the only way to create, read, update, or delete an object’s data is through one of its
embedded processes (called methods). Object-oriented programming languages,
such as Java, C , and the .NET languages, are becoming increasingly popular.

The object-oriented approach has a complete suite of modeling tools known as
the Unified Modeling Language (UML). One of the UML diagrams, an object class
diagram, is shown in Figure 5-4. Some of the UML tools have gained acceptance for
systems projects even when the information system will not be implemented with
object-oriented technologies.

> Accelerated Systems Analysis Approaches

Discovery prototyping and rapid architected development are examples of acceler-
ated systems analysis approaches that emphasize the construction of prototypes to
more rapidly identify business and user requirements for a new system. Most such ap-
proaches derive from some variation on the construction of prototypes, working but
incomplete samples of a desired system. Prototypes cater to the “I’ll know what I
want when I see it” way of thinking that is characteristic of many users and managers.
By “incomplete,” we mean that a prototype will not include the error checking, input
data validation, security, and processing completeness of a finished application. Nor
will it be as polished or offer the user help as in a final system. But because it can be

Systems Analysis Chapter Five 163

F I G U R E 5 - 3

A Simple Data
Model (Also Called
an Entity
Relationship
Diagram)

information engineering
(IE) a model-driven and

DATA-centered, but PROCESS-

sensitive, technique for plan-

ning, analyzing, and designing

information systems. IE mod-

els are pictures that illustrate

and synchronize the system’s

data and processes.

object the encapsulation of

the data (called properties)

that describes a discrete per-

son, object, place, event, or

thing, with all of the processes

(called methods) that are al-

lowed to use or update the

data and properties. The only

way to access or update the

object’s data is to use the

object’s predefined processes.

object-oriented
approach a model-driven

technique that integrates data

and process concerns into

constructs called objects.

Object models are pictures

that illustrate the system’s

objects from various perspec-

tives, such as the structure,

behavior, and interactions of

the objects.

prototype a small-scale, in-

complete, but working sample

of a desired system.

Member Agreement
is enrolled under;

applies to

Club

established by;

establishes

Member

Order

Product Promotion
sponsors;

is sponsored by
is featured in;

features

generates;

generated by

sells;

is sold on

placed by;

places

F I G U R E 5 - 4

An Object Model
(Using the Unified
Modeling Language
Standard) +Admit()

+Register for Classes()

+Withdraw()

+Change Address()

+Calculate GPA()

+Graduate()

-ID Number

-Name

-Grade Point Average

STUDENT

+Create a Course()

+Delete from Course Master()

+Change in Course Master()

-Subject

-Number

-Title

-Credit

COURSE

+Add()

+Drop()

+Complete()

+Change Grade()

-Semester

-Division

-Grade

TRANSCRIPT COURSE

has record for>0..*

0..*

developed quickly, it can quickly identify the most crucial of business-level require-
ments. Sometimes, prototypes can evolve into the actual, completed information
systems and applications.

In a sense, accelerated analysis approaches place much emphasis on the COMMU-
NICATIONS building blocks in your information system framework by constructing sam-
ple forms and reports. At the same time, the software tools used to build prototypes
also address the DATA and PROCESS building blocks.

These accelerated approaches are common in the rapid application develop-
ment (RAD) methodologies and routes that were introduced in Chapter 3. RAD
approaches require automated tools.While some repository-based CASE tools include
very simple RAD facilities, most analysts use true RAD programming environments
such as Sybase Powerbuilder, Microsoft Access, Microsoft Visual Basic .NET, or IBM
Websphere Studio for Application Development (Java-based).

Let’s briefly examine two popular accelerated analysis approaches.

Discovery Prototyping Discovery prototyping uses rapid development technol-
ogy to help users discover their business requirements. For example, it is very com-
mon for systems analysts to use a simple development tool like Microsoft Access to
rapidly create a simple database, user input forms, and sample reports to solicit user
responses as to whether the database, forms, and reports truly represent business re-
quirements. The intent is usually to develop the final new system in a more sophisti-
cated application development tool and language, but the simpler tool allows the
analyst to more quickly prototype the user’s requirements.

In discovery prototyping, we try to discourage users from becoming preoccupied
with the final “look and feel” of the system prototypes—that can be changed during
system design! Therein lies the primary criticism of prototyping—software templates
exist in prototyping tools to quickly generate some very elegant and visually appealing
prototypes. Unfortunately, this can encourage a premature focus on, and commitment
to, design represented in the prototype. Users can also be misled to believe (1) that the
completed system can be built just as rapidly or (2) that tools like Access can be used

164 Part Two Systems Analysis Methods

discovery prototyping a

technique used to identify the

users’ business requirements

by having them react to a

quick-and-dirty implementa-

tion of those requirements.

to build the final system. While tools like Access can indeed accelerate systems devel-
opment, their use in discovery prototyping is fast only because we omit most of the de-
tailed database and application programming required for a complete and secure
application. Also, tools like Access typically cannot support the database sizes, number
of users, and network traffic that are required of most enterprise applications.

Regardless, discovery prototyping is a preferred and recommended approach.
Unfortunately, some systems analysts and developers are using discovery prototyping
to completely replace model-driven design, only to learn what true engineers
have known for years: you cannot prototype without some amount of more formal
design . . . enter rapid architected analysis.

Rapid Architected Analysis Rapid architected analysis is an accelerated analy-
sis approach that also builds system models. Rapid architecture analysis is made pos-
sible by reverse-engineering technology that is included in many automated tools
such as CASE and programming languages (as introduced in Chapter 3). Reverse-
engineering tools generate system models from existing software applications or
system prototypes.The resulting system models can then be edited and improved by
systems analysts and users to provide a blueprint for a new and improved system. It
should be apparent that rapid architected analysis is a blending of model-driven and
accelerated analysis approaches.

There are two different techniques for applying rapid architected analysis:

• Most systems have already been automated to some degree and exist as
legacy information systems. Many CASE tools can read the underlying data-
base structures and/or application programs and reverse engineer them into
various system models. Those models serve as a point of departure for defin-
ing model-driven user requirements analysis.

• If prototypes have been built into tools like Microsoft Access or Visual Basic,

those prototypes can sometimes be reverse engineered into their equivalent
system models. The system models usually better lend themselves to analyzing
the users’ requirements for consistency, completeness, stability, scalability, and
flexibility to future change. Also, the system models can frequently be forward
engineered by the same CASE tools and ADEs (application development
environments) into databases and application templates or skeletons that will
use more robust enterprise-level database and programming technology.

Both techniques address the previous issue that engineers rarely prototype in the
total absence of a more formal design, and, at the same time, they preserve the
advantages of accelerating the systems analysis phases.

> Requirements Discovery Methods

Both model-driven and accelerated systems analysis approaches attempt to express
user requirements for a new system, either as models or as prototypes. But both ap-
proaches are, in turn, dependent on the more subtle need to actually identify and
manage those requirements. Furthermore, the requirements for systems are depen-
dent on the analysts’ ability to discover the problems and opportunities that exist in
the current system—thus, analysts must become skilled in identifying problems, op-
portunities, and requirements! Consequently, all approaches to systems analysis re-
quire some form of requirements discovery. Let’s briefly survey a couple of
common requirements discovery approaches.

Fact-Finding Techniques Fact-finding is an essential skill for all systems analysts.
The fact-finding techniques covered in this book (in fact, in the next chapter) include:

• Sampling of existing documentation, reports, forms, files, databases, and memos.
• Research of relevant literature, benchmarking of others’ solutions, and site visits.

Systems Analysis Chapter Five 165

rapid architected
analysis an approach that

attempts to derive system

models (as described earlier

in this section) from existing

systems or discovery

prototypes.

reverse engineering the

use of technology that reads

the program code for an exist-

ing database, application pro-

gram, and/or user interface

and automatically generates

the equivalent system model.

requirements discovery
the process, used by systems

analysts, of identifying or ex-

tracting system problems and

solution requirements from

the user community.

fact-finding the process of

collecting information about

system problems, opportuni-

ties, solution requirements,

and priorities. Also called

information gathering.

• Observation of the current system in action and the work environment.
• Questionnaires and surveys of the management and user community.
• Interviews of appropriate managers, users, and technical staff.

Joint Requirements Planning The fact-finding techniques listed above are invalu-
able; however, they can be time-consuming in their classic forms. Alternatively, re-
quirements discovery and management can be significantly accelerated using joint

requirements planning (JRP) techniques. A JRP-trained or -certified analyst usually
plays the role of facilitator for a workshop that will typically run from three to five
full working days. This workshop can replace weeks or months of classic fact-finding
and follow-up meetings.

JRP provides a working environment in which to accelerate all systems analysis
tasks and deliverables. It promotes enhanced SYSTEM OWNER and SYSTEM USER participa-
tion in systems analysis. But it also requires a facilitator with superior mediation
and negotiation skills to ensure that all parties receive appropriate opportunities to
contribute to the system’s development.

JRP is typically used in conjunction with the model-driven analysis approaches
we described earlier, and it is typically incorporated into rapid application develop-
ment (RAD) methodologies and routes (which were introduced in Chapter 3).

> Business Process Redesign Methods

One of the most interesting contemporary applications of systems analysis methods is
business process redesign (BPR). The interest in BPR was driven by the discovery
that most current information systems and applications have merely automated exist-
ing and inefficient business processes. Automated bureaucracy is still bureaucracy;
automation does not necessarily contribute value to the business, and it may actually
subtract value from the business. Introduced in Chapter 1, BPR is one of many types
of projects triggered by the trends we call total quality management (TQM) and
continuous process improvement (CPI).

Some BPR projects focus on all business processes, regardless of their
automation. Each business process is thoroughly studied and analyzed for bottle-
necks, value returned, and opportunities for elimination or streamlining. Process
models, such as data flow diagrams (discussed earlier), help organizations visualize
their processes. Once the business processes have been redesigned, most BPR pro-
jects conclude by examining how information technology might best be applied to
the improved business processes. This may create new information system and
application development projects to implement or support the new business
processes.

BPR is also applied within the context of information system development pro-
jects. It is not uncommon for IS projects to include a study of existing business
processes to identify problems, bureaucracy, and inefficiencies that can be ad-
dressed in requirements for new and improved information systems and computer
applications.

BPR has also become common in IS projects that will be based on the purchase
and integration of commercial off-the-shelf (COTS) software. The purchase of COTS
software usually requires that a business adapt its business processes to fit the soft-
ware. An analysis of existing business processes during systems analysis is usually a
part of such projects.

> FAST Systems Analysis Strategies

Like most commercial methodologies, our hypothetical FAST methodology does not
impose a single approach on systems analysts. Instead, it integrates all the popular ap-
proaches introduced in the preceding paragraphs into a collection of agile methods.

The SoundStage case study will demonstrate these methods in the context of a typical

166 Part Two Systems Analysis Methods

joint requirements
planning (JRP) the use of

facilitated workshops to bring

together all of the system

owners, users, and analysts

and some systems designers

and builders to jointly perform

systems analysis. JRP is gen-

erally considered a part of a

larger method called joint ap-

plication development (JAD),

a more comprehensive appli-

cation of the JRP techniques

to the entire systems develop-

ment process.

business process
redesign (BPR) the

application of systems analy-

sis methods to the goal of

dramatically changing and

improving the fundamental

business processes of an

organization, independent of

information technology.

agile method the integra-

tion of various approaches of

systems analysis and design

for application as deemed ap-

propriate to the problem being

solved and the system being

developed.

first assignment for a systems analyst.The systems analysis techniques will be applied
within the framework of:

• Your information system building blocks (from Chapter 2).
• The FAST phases (from Chapter 3).
• FAST tasks that implement a phase (described in this chapter).

Given this context for studying systems analysis, we can now explore the systems
analysis phases and tasks.

The Scope Definition Phase

Recall from Chapter 3 that the scope definition phase is the first phase of the classic
systems development process. In other methodologies this might be called the pre-

liminary investigation phase, initial study phase, survey phase, or planning phase.

The scope definition phase answers the question,“Is this project worth looking at?”
To answer this question, we must define the scope of the project and the perceived
problems, opportunities, and directives that triggered the project. Assuming the pro-
ject is deemed worth looking at, the scope definition phase must also establish the
project plan in terms of scale, development strategy, schedule, resource requirements,
and budget.1

The context for the scope definition phase is shaded in Figure 5-5. Notice that the
scope definition phase is concerned primarily with the SYSTEM OWNERS’ view of the
existing system and the problems or opportunities that triggered the interest. Sys-
tem owners tend to be concerned with the big picture, not details. Furthermore, they
determine whether resources can and will be committed to the project.

Figure 5-6 is the first of five task diagrams we will introduce in this chapter to take
a closer look at each systems analysis phase. A task diagram shows the work
(tasks) that should be performed to complete a phase. Our task diagrams do not man-
date any specific methodology, but we will describe in the accompanying paragraphs
the approaches, tools, and techniques you might want to consider for each task.
Figure 5-6 shows the tasks required for the scope definition phase. It is important to
remember that these task diagrams are only templates. The project team and project
manager may expand on or alter these templates to reflect the unique needs of any
given project.

As shown in Figure 5-6, the final deliverable for the preliminary investigation
phase is completion of a PROJECT CHARTER. (Such major deliverables are indicated in
each task diagram in all-capital letters.) A project charter defines the project scope,
plan, methodology, standards, and so on. Completion of the project charter represents
the first milestone in a project.

The scope definition phase is intended to be quick. The entire phase should
not exceed two or three days for most projects. The phase typically includes the
following tasks:

1.1 Identify baseline problems and opportunities.
1.2 Negotiate baseline scope.
1.3 Assess baseline project worthiness.
1.4 Develop baseline schedule and budget.
1.5 Communicate the project plan.

Let’s now examine each of these tasks in greater detail.

Systems Analysis Chapter Five 167

1If your course or reading has already included Chapter 4, you should recognize these planning elements as part of

project management. Chapter 4 surveyed and demonstrated the process used by project managers to develop a

project plan.

F I G U R E 5 - 5 The Context of the Scope Definition Phase of Systems Analysis

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

O
W

N
E

R
S

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

168 Part Two Systems Analysis Methods

Identify

baseline

problems and

opportunities

1.1

Negotiate

baseline

scope

1.2

Develop

baseline

schedule &

budget

1.4

Communicate

the project

plan

1.5

Preliminary

Problem

Statement

Baseline Project

Plan and Schedule

PROJECT
CHARTER

Project Request

or Assignment

Repository

problem

statements

(PIECES)

problem

statements

and scope

statements of

project scope

statement of work

project schedule

and resource

assignments

Assess

baseline

worthiness

1.3

Preliminary Problem

Statement with Scope

problem

statements

with scope

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY

(project is worthy)

F I G U R E 5 - 6

Tasks for the Scope
Definition Phase of
Systems Analysis

> Task 1.1—Identify Baseline Problems and
Opportunities

One of the most important tasks of the scope definition phase is establishing an
initial baseline of the problems, opportunities, and/or directives that triggered the
project. Each problem, opportunity, and directive is assessed with respect to ur-
gency, visibility, tangible benefits, and priority. Any additional, detailed analysis is
not relevant at this stage of the project. It may, however, be useful to list any per-
ceived constraints (limits) on the project, such as deadlines, maximum budget, or
general technology.

A senior systems analyst or project manager usually leads this task. Most of the
other participants are broadly classified as SYSTEM OWNERS. This includes the executive
sponsor(s), the highest-level manager(s) who will pay for and support the project. It
also includes managers of all organizational units that may be impacted by the system
and possibly includes information systems managers. SYSTEM USERS, SYSTEM DESIGNERS,
and SYSTEM BUILDERS are not typically involved in this task.

As shown in Figure 5-6, a PROJECT REQUEST OR ASSIGNMENT triggers the task.This trig-
ger may take one of several alternative forms. It may be as simple as a memorandum
of authority from an information systems steering body. Or it may be a memorandum
from a business team or unit requesting systems development. Some organizations re-
quire that all project requests be submitted on some standard request-for-service
form, such as Figure 5-7.

Systems Analysis Chapter Five 169

scope the boundaries of a

project—the areas of a busi-

ness that a project may (or

may not) address.

F I G U R E 5 - 7

A Request for
Systems Services

SoundStage Entertainment Club
Information System Services

Phone: 494-0666 Fax: 494-0999

Internet: http://www.soundstage.com

Intranet: http://www.soundstage.com/iss

Member Services, Warehouse, Shipping

SUBMITTED BY (key user contact)

 Name Sarah Hartman

 Title Business Analyst, Member Services

 Office B035

 Phone 494-0867

REQUEST FOR

INFORMATION

SYSTEM SERVICES

DATE OF REQUEST SERVICE REQUESTED FOR DEPARTMENT(S)

January 9, 2003

EXECUTIVE SPONSOR (funding authority)

 Name Galen Kirkhoff

 Title Vice President, Member Services

 Office G242

 Phone 494-1242

TYPE OF SERVICE REQUESTED:

 Information Strategy Planning Existing Application Enhancement

 Business Process Analysis and Redesign Existing Application Maintenance (problem fix)

 New Application Development Not Sure

 Other (please specify)

BRIEF STATEMENT OF PROBLEM, OPPORTUNITY, OR DIRECTIVE (attach additional documentation as necessary)

The information strategy planning group has targeted member services, marketing, and order fulfillment (inclusive

of shipping) for business process redesign and integrated application development. Currently serviced by separate

information systems, these areas are not well integrated to maximize efficient order services to our members. The

current systems are not adaptable to our rapidly changing products and services. In some cases, separate systems

exist for similar products and services. Some of these systems were inherited through mergers that expanded our

products and services. There also exist several marketing opportunities to increase our presence to our members.

One example includes Internet commerce services. Finally, the automatic identification system being developed for

the warehouse must fully interoperate with member services.

BRIEF STATEMENT OF EXPECTED SOLUTION

We envision completely new and streamlined business processes that minimize the response time to member

orders for products and services. An order shall not be considered fulfilled until it has been received by the

member. The new system should provide for expanded club and member flexibility and adaptability of basic

business products and services.

 We envision a system that extends to the desktop computers of both employees and members, with appropriate

shared services provided across the network, consistent with the ISS distributed architecture. This is consistent with

strategic plans to retire the AS/400 central computer and replace it with servers.

ACTION (ISS Office Use Only)

 Feasibility assessment approved Assigned to Sandra Shepherd

 Feasibility assessment waived Approved Budget $ 450,000

 Start Date ASAP Deadline ASAP

 Request delayed Backlogged until date:

 Request rejected Reason:

Authorized Signatures:

Chair, ISS Executive Steering Body Project Executive Sponsor

FORM ISS-100-RFSS (Last revised December, 1999)

The key deliverable of this task, the PRELIMINARY PROBLEM STATEMENT, consists of the
problems, opportunities, and directives that were identified. The PROBLEM STATEMENTS

are stored in the repository for later use in the project. Figure 5-8 is a sample docu-
ment that summarizes problems, opportunities, and directives in terms of:

• Urgency—In what time frame must/should the problem be solved or the
opportunity or directive be realized? A rating scale could be developed to
consistently answer this question.

• Visibility—To what degree would a solution or new system be visible to
customers and/or executive management? Again, a rating scale could be
developed for the answers.

• Benefits—Approximately how much would a solution or new system increase
annual revenues or reduce annual costs? This is often a guess, but if all par-
ticipants are involved in that guess, it should prove sufficiently conservative.

170 Part Two Systems Analysis Methods

F I G U R E 5 - 8 Sample Problem Statements

Project: Member services information system

Created by: Sandra Shepherd

Date created: January 9, 2003

Problem Statements

Project manager: Sandra Shepherd

Last updated by: Robert Martinez

Date last updated: January 15, 2003

Brief Statements of Problem,

Opportunity, or Directive

Priority

or Rank

Proposed

SolutionUrgency

Annual

BenefitsVisibility

ASAP

6 months

6 months

12 months

3 months

6 months

12 months

3 months

High

Med

Med

Low

High

Med

Low

High

$175,000

75,000

515,000

15,000

35,000

Unknown

Unknown

65,000

2

2

2

3

1

2

4

1

Order response time as measured from

time of order receipt to time of cus-

tomer delivery has increased to an

average of 15 days.

The recent acquisitions of Private

Screenings Video Club and Game-

Screen will further stress the through-

put requirements for the current system.

Currently, three different order entry

systems service the audio, video, and

game divisions. Each system is de-

signed to interface with a different

warehousing system; therefore, the

intent to merge inventory into a single

warehouse has been delayed.

There is a general lack of access to

management and decision-making

information. This will become ex-

asperated by the acquisition of two

additional order processing systems

(from Private Screenings and Game-

Screen).

There currently exist data incon-

sistencies in the member and order

files.

The Private Screenings and

GameScreen file systems are

incompatible with the SoundStage

equivalents. Business data problems

include data inconsistencies and lack

of input edit controls.

There is an opportunity to open order

systems to the Internet, but security

and control are an issue.

The current order entry system is

incompatible with the forthcoming

automatic identification (bar-coding)

system being developed for

the warehouse.

1.

2.

3.

4.

5.

6.

7.

8.

New development

New development

New development

After new system is

developed, provide

users with

easy-to-learn and

-use reporting tools.

Quick fix; then new

development

New development.

Additional quanti-

fication of benefit

might increase

urgency.

Future version of

newly

developed system

Quick fix; then new

development

Systems Analysis Chapter Five 171

• Priority—Based on the above answers, what are the consensus priorities for
each problem, opportunity, or directive. If budget or schedule becomes a
problem, these priorities will help to adjust project scope.

• Possible solutions (OPT)—At this early stage of the project, possible solu-
tions are best expressed in simple terms such as (a) leave well enough alone,
(b) use a quick fix, (c) make a simple to moderate enhancement of the exist-
ing system, (d) redesign the existing system, or (e) design a new system. The
participants listed for this task are well suited to an appropriately high-level
discussion of these options.

The PIECES framework that was introduced in Chapter 3 can be used as a framework
for categorizing problems, opportunities, directives, and constraints. For example,
Problem 1 in Figure 5-8 could be classified according to PIECES as P.B.—Performance,
Response Times. (See Figure 3-4 in Chapter 3). Problem 4 in Figure 5-8 could be clas-
sified as I.A.2—Information, Outputs, Lack of necessary information.

The primary techniques used to complete this task include fact-finding and meet-
ings with SYSTEM OWNERS.These techniques are taught in Chapter 6.

> Task 1.2—Negotiate Baseline Scope

Scope defines the boundary of the project—those aspects of the business that will and
will not be included in the project. Scope can change during the project; however, the
initial project plan must establish the preliminary or baseline scope. Then if the scope
changes significantly, all parties involved will have a better appreciation for why the bud-
get and schedule have also changed.This task can occur in parallel with the prior task.

Once again, a senior systems analyst or project manager usually leads this task.
Most of the other participants are broadly classified as SYSTEM OWNERS.This includes the
executive sponsor, managers of all organizational units that may be impacted by the
system, and possibly information systems managers. SYSTEM USERS, SYSTEM DESIGNERS, and
SYSTEM BUILDERS are not typically involved in this task.

As shown in Figure 5-6, this task uses the PRELIMINARY PROBLEM STATEMENT produced
by the previous task. It should make sense that those problems, opportunities, and di-
rectives form the basis for defining scope. The STATEMENTS OF PROJECT SCOPE are added
to the repository for later use. These statements are also formally documented as the
task deliverable, PRELIMINARY PROBLEM STATEMENT WITH SCOPE.

Scope can be defined easily within the context of your information system build-
ing blocks. For example, a project’s scope can be described in terms of:

• What types of DATA describe the system being studied? For example, a sales
information system may require data about such things as CUSTOMERS, ORDERS,
PRODUCTS, and SALES REPRESENTATIVES.

• What business PROCESSES are included in the system being studied? For exam-
ple, a sales information system may include business processes for CATALOG

MANAGEMENT, CUSTOMER MANAGEMENT, ORDER ENTRY, ORDER FULFILLMENT, ORDER

MANAGEMENT, and CUSTOMER RELATIONSHIP MANAGEMENT.
• How must the system INTERFACE with users, locations, and other systems? For

example, potential interfaces for a sales information system might include
CUSTOMERS, SALES REPRESENTATIVES, SALES CLERKS AND MANAGERS, REGIONAL SALES OFFICES,
and the ACCOUNTS RECEIVABLE and INVENTORY CONTROL INFORMATION SYSTEMS.

Notice that each statement of scope can be described as a simple list. We don’t
necessarily “define” the items in the list. Nor are we very concerned with precise re-
quirements analysis. And we definitely are not concerned with any time-consuming
steps such as modeling or prototyping.

Once again, the primary techniques used to complete this task are fact-finding
and meetings. Many analysts prefer to combine this task with both the previous and
the next tasks and accomplish them within a single meeting.

172 Part Two Systems Analysis Methods

> Task 1.3—Assess Baseline Project Worthiness

This is where we answer the question,“Is this project worth looking at?” At this early
stage of the project, the question may actually boil down to a “best guess”: Will solv-
ing the problems, exploiting the opportunities, or fulfilling the directives return
enough value to offset the costs that we will incur to develop this system? It is
impossible to do a thorough feasibility analysis based on the limited facts we’ve
collected to date.

Again, a senior systems analyst or project manager usually leads this task. But the
SYSTEM OWNERS, inclusive of the executive sponsor, the business unit managers, and the
information systems managers, should make the decision.

As shown in Figure 5-6, the completed PRELIMINARY PROBLEM STATEMENT WITH SCOPE

triggers the task. This provides the level of information required for this preliminary
assessment of worth. There is no physical deliverable other than the GO OR NO-GO

DECISION.There are actually several alternative decisions.The project can be approved or
canceled, and project scope can be renegotiated (increased or decreased!). Obviously,
the remaining tasks in the preliminary investigation phase are necessary only if the
project has been deemed worthy and approved to continue.

> Task 1.4—Develop Baseline Schedule and Budget

If the project has been deemed worthy to continue, we can now plan the project in
depth.The initial project plan should consist of at least the following:

• A preliminary master plan that includes schedule and resource assignments
for the entire project. This plan will be updated at the end of each phase of
the project. It is sometimes called a baseline plan.

• A detailed plan and schedule for completing the next phase of the project
(the problem analysis phase).

The task is the responsibility of the project manager. Most project managers find
it useful to include as much of the project team, including SYSTEM OWNERS, USERS,
DESIGNERS, and BUILDERS, as possible. Chapter 4 coined the term joint project planning

to describe the team approach to building a project plan.
As shown in Figure 5-6, this task is triggered by the GO OR NO-GO DECISION to con-

tinue the project. This decision represents a consensus agreement on the project’s
scope, problems, opportunities, directives, and worthiness. (This “worthiness”
must still be presented and approved.) The PROBLEM STATEMENTS WITH SCOPE are the key
input (from the repository).The deliverable of this task is the BASELINE PROJECT PLAN AND

SCHEDULE. The STATEMENT OF WORK (see Chapter 4) and PROJECT SCHEDULE AND RESOURCE

ASSIGNMENTS are also added to the repository for continuous monitoring and, as
appropriate, updating. The schedule and resources are typically maintained in the
repository as a project management software file.

The techniques used to create a project plan were covered in depth in Chapter 4.
Today, these techniques are supported by project management software such as
Microsoft Project. Chapter 4 also discussed the detailed steps for completing the plan.

> Task 1.5—Communicate the Project Plan

In most organizations, there are more potential projects than resources to staff and
fund those projects. Unless our project has been predetermined to be of the highest
priority (by some sort of prior tactical or strategic planning process), then it must be
presented and defended to a steering body for approval. Most organizations use a
steering body to approve and monitor projects and progress. The majority of any
steering body should consist of non–information systems professionals or managers.
Many organizations designate vice presidents to serve on a steering body. Other

Systems Analysis Chapter Five 173

steering body a committee

of executive business and

system managers that studies

and prioritizes competing proj-

ect proposals to determine

which projects will return the

most value to the organization

and thus should be approved

for continued systems devel-

opment. Also called a steering

committee.

organizations assign the direct reports of vice presidents to the steering body. And
some organizations utilize two steering bodies, one for vice presidents and one for
their direct reports. Information systems managers serve on the steering body only to
answer questions and to communicate priorities back to developers and project
managers.

Regardless of whether or not a project requires steering committee approval, it is
equally important to formally launch the project and communicate the project, goals,
and schedule to the entire business community. Opening the lines of communication
is an important capstone to the preliminary investigation. For this reason, we advocate
the “best practices” of conducting a project kickoff event and creating an intranet

project Web site. The project kickoff meeting is open to the entire business commu-
nity, not just the business units affected and the project team. The intranet project
Web site establishes a community portal to all nonsensitive news and documentation
concerning the project.

Ideally, the executive sponsor should jointly facilitate the task with the chosen
project manager.The visibility of the executive sponsor establishes instant credibility
and priority to all who participate in the kickoff meeting. Other kickoff meeting par-
ticipants should include the entire project team, including assigned SYSTEM OWNERS,
USERS,ANALYSTS, DESIGNERS, and BUILDERS. Ideally, the kickoff meeting should be open to
any and all interested staff from the business community. This builds community
awareness and consensus while reducing both the volume and the consequences of
rumor and misinformation. For the intranet component, a Webmaster or Web author
should be assigned to the project team.

As shown in Figure 5-6, this task is triggered by the completion of the BASELINE

PROJECT PLAN AND SCHEDULE. The PROBLEM STATEMENTS AND SCOPE are available from the
repository. The deliverable is the PROJECT CHARTER. The project charter is usually a
document. It includes various elements that define the project in terms of partici-
pants, problems, opportunities, and directives; scope; methodology; statement of
work to be completed; deliverables; quality standards; schedule; and budget. The
project charter should be added to the project Web site for all to see. Elements of the
project charter may also be reformatted as slides and handouts (using software such
as Microsoft PowerPoint) for inclusion in the project kickoff event.

Effective interpersonal and communications skills are the keys to this task. These
include principles of persuasion, selling change, business writing, and public speaking.

This concludes our discussion of the scope definition phase. The participants in
the scope definition phase might decide the project is not worth proposing. It is also
possible the steering body may decide that other projects are more important. Or the
executive sponsor might not endorse the project. In each of these instances, the proj-
ect is terminated. Little time and effort have been expended. On the other hand, with
the blessing of all the system owners and the steering committee, the project can now
proceed to the problem analysis phase.

174 Part Two Systems Analysis Methods

The Problem Analysis Phase

There is an old saying,“Don’t try to fix it unless you understand it.” That statement
aptly describes the problem analysis phase of systems analysis. There is always a cur-
rent or existing system, regardless of the degree to which it is automated with infor-
mation technology. The problem analysis phase provides the analyst with a more
thorough understanding of the problems, opportunities, and/or directives that trig-
gered the project. The problem analysis phase answers the questions,“Are the prob-
lems really worth solving?” and “Is a new system really worth building?” In other
methodologies, the problem analysis phase may be known as the study phase, study

of the current system, detailed investigation phase, or feasibility analysis phase.

Can you ever skip the problem analysis phase? Rarely! You almost always need
some level of understanding of the current system. But there may be reasons to

accelerate the problem analysis phase. First, if the project was triggered by a strate-
gic or tactical plan, the worthiness of the project is probably not in doubt—the
problem analysis phase would be reduced to understanding the current system,
not analyzing it. Second, a project may be initiated by a directive (such as compli-
ance with a governmental directive and deadline). Again, in this case project wor-
thiness is not in doubt. Finally, some methodologies and organizations deliberately
consolidate the problem analysis and requirements analysis phases to accelerate
systems analysis.

The goal of the problem analysis phase is to study and understand the problem
domain well enough to thoroughly analyze its problems, opportunities, and con-
straints. Some methodologies encourage a very detailed understanding of the cur-
rent system and document that system in painstaking detail using system models
such as data flow diagrams. Today, except when business processes must be re-
designed, the effort required and the value added by such detailed modeling is ques-
tioned and usually bypassed. Thus, the current version of our hypothetical FAST

methodology encourages only enough system modeling to refine our understanding
of project scope and problem statement, and to define a common vocabulary for
the system.

The context for the problem analysis phase is shaded in Figure 5-9. Notice that
the problem analysis phase is concerned primarily with both the SYSTEM OWNERS’
and the SYSTEM USERS’ views of the existing system. Notice that we build on the lists
created in the preliminary investigation phase to analyze the KNOWLEDGE, PROCESS, and
COMMUNICATIONS building blocks of the existing system. Also notice that we imply
minimal system modeling. We may still use the PIECES framework to analyze each
building block for problems, causes, and effects.

Figure 5-10 is the task diagram for the problem analysis phase.The final phase de-
liverable and milestone is producing SYSTEM IMPROVEMENT OBJECTIVES that address prob-
lems, opportunities, and directives. Depending on the size of the system, its
complexity, and the degree to which project worthiness is already known, the illus-
trated tasks may consume one to six weeks. Most of these tasks can be accelerated by
JRP-like sessions.The problem analysis phase typically includes the following tasks:

2.1 Understand the problem domain.
2.2 Analyze problems and opportunities.
2.3 Analyze business processes.
2.4 Establish system improvement objectives.
2.5 Update or refine the project plan.
2.6 Communicate findings and recommendations.

Let’s now examine each of these tasks in greater detail.

> Task 2.1—Understand the Problem Domain

During the problem analysis phase, the team initially attempts to learn about the cur-
rent system. Each SYSTEM OWNER, USER, and ANALYST brings a different level of under-
standing to the system—different detail, different vocabulary, different perceptions,
and different opinions. A well-conducted study can prove revealing to all parties, in-
cluding the system’s own management and users. It is important to study and under-

stand the problem domain, that domain in which the business problems,
opportunities, directives, and constraints exist.

This task will be led by the project manager but facilitated by the lead systems
analyst. It is not uncommon for one individual to play both roles (as Sandra does in
the SoundStage case). Other SYSTEMS ANALYSTS may also be involved since they con-
duct interviews, scribe for meetings, and document findings. A comprehensive
study should include representative SYSTEM OWNERS and USERS from all business units
that will be supported or impacted by the system and project. It is extraordinarily
important that enough users be included to encompass the full scope of the

Systems Analysis Chapter Five 175

F I G U R E 5 - 9 The Context of the Problem Analysis Phase of Systems Analysis

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

O
W

N
E

R
S

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

S
C

O
P

E

D
E

F
IN

IT
IO

N

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

176 Part Two Systems Analysis Methods

F I G U R E 5 - 10

Tasks for the
Problem Analysis
Phase of Systems
Analysis

Repository

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY

(approval to continue project—
from preliminary investigation)

Project Charter

Understand

the problem

domain

2.1

Problem Domain

and

Business Vocabulary

Analyze

problems and

opportunities

2.2

problem statements,

cause/effect analyses

problem domain,

process models,

process analysis

Analyze

business

processes

2.3 (opt)

Establish

system

improvement

objectives

2.4

Update or

refine the

project plan

2.5

Updated

Project

Plan

Communicate

findings and

recommenda-

tions

2.6

SYSTEM
IMPROVEMENT
OBJECTIVES

System

Improvement

Objectives

current system

documentation,

system models

problem analyses,

system models,

and system

improvement

objectives

project

plan
problem analyses,

system improvement objectives,

and constraints

system being studied. In some organizations, one or more experienced users are
“loaned” to the project full-time as business analysts; however, it is rare that any
one user can fully represent the interests of all users. Business analysts can, how-
ever, serve as facilitators to get the right people involved and sustain effective com-
munication back to the business units and management. SYSTEM DESIGNERS and
BUILDERS are rarely involved in this task unless they are interviewed to determine
any technical limitations of the current system.

In Figure 5-10, this task is triggered by APPROVAL TO CONTINUE THE PROJECT—from the
scope definition phase. (The dashed line indicates this approval is an event or trigger,
not a data or information flow.) The approval comes from the SYSTEM OWNERS or steer-
ing committee. The key informational input is the PROJECT CHARTER and any CURRENT

SYSTEM DOCUMENTATION that may exist in the repository and program libraries for the
current system. Current system documentation doesn’t always exist. And when it does
exist, it must be carefully checked for currency—most such documentation is notori-
ously out of date because analysts and programmers are not always diligent about
updating that documentation as changes occur throughout the lifetime of a system.

The deliverables of this task are an understanding of the PROBLEM DOMAIN AND

BUSINESS VOCABULARY. Your understanding of the existing problem domain should be
documented so that it can be verified that you truly understand it. There are several
ways to document the problem domain. Certainly, drawing SYSTEM MODELS of the cur-
rent system can help, but they can lead to a phenomenon called “analysis paralysis,” in
which the desire to produce perfect models becomes counterproductive to the

Systems Analysis Chapter Five 177

schedule. Another approach might be to use your information system building blocks
as a framework for listing and defining the system domain:

• KNOWLEDGE—List all the “things” about which the system currently stores data
(in files, databases, forms, etc.). Define each thing in business terms. For
example, “An ORDER is a business transaction in which a customer requests to
purchase products.”

Additionally, we could list all the reports produced by the current system
and describe their purpose or use. For example, “The open orders report
describes all orders that have not been filled within one week of their
approval to be filled. The report is used to initiate customer relationship man-
agement through personal contact.”

• PROCESSES—Define each business event for which a business response
(process) is currently implemented. For example, “A customer places a new
order,” or “A customer requests changes to a previously placed order,” or “A
customer cancels an order.”

• COMMUNICATIONS—Define all the locations that the current system serves and
all of the users at each of those locations. For example, “The system is cur-
rently used at regional sales offices in San Diego, Dallas, St. Louis, Indianapolis,
Atlanta, and Manhattan. Each regional sales office has a sales manager, assis-
tant sales manager, administrative assistant, and 5 to 10 sales clerks, all of
whom use the current system. Each region is also home to 5 to 30 sales rep-
resentatives who are on the road most days but who upload orders and other
transactions each evening.”

Another facet of interfaces is system interfaces—that is, interfaces that
exist between the current information system and other information systems
and computer applications. These can be quickly listed and described by the
information systems staff.

Ultimately, the organization’s systems development methodology and project plan
will determine what types and level of documentation are expected.

The business vocabulary deliverable is all too often shortchanged. Understanding
the business vocabulary of the system is an excellent way of understanding the sys-
tem itself. It bridges the communication gap that often exists or develops between
business and technology experts.

If you elect to draw SYSTEM MODELS during this task, we suggest that “if you want to
learn anything, you must not try to learn everything—at least not all in this task.” To
avoid analysis paralysis, we suggest that the following system models may be appropriate:

• KNOWLEDGE—A one-page data model is very useful for establishing business
vocabulary and rules. Data modeling is taught in Chapter 8.

• PROCESSES—Today, it is widely accepted that a one- or two-page functional
decomposition diagram should prove sufficient to get a feel for the current
system processing. Decomposition modeling is taught in Chapter 9.

• COMMUNICATIONS—A one-page context diagram or use-case diagrams are very
useful for illustrating the system’s inputs and outputs with other organiza-
tions, business units, and systems. Context diagrams are discussed below. Use
case diagrams are taught in Chapter 7.

Several other techniques and skills are useful for developing an understanding of an
existing system. Obviously, fact-finding techniques (taught in the next chapter) are criti-
cal to learning about any existing system. Also, joint requirements planning, or JRP, tech-
niques (also taught in the next chapter) can accelerate this task. Finally, the ability to
clearly communicate back to users what you’ve learned about a system is equally crucial.

Context Diagram The purpose of a context diagram is to analyze how the system
interacts with the world around it and to specify in general terms the system inputs
and outputs. Context diagrams can be drawn in various ways. Chapter 9 presents the
traditional format, which was done as the first step in drawing data flow diagrams.

178 Part Two Systems Analysis Methods

F I G U R E 5 - 1 1 Context Diagram

Potential Member

Promotion, Subscription,

and Member Reports

Member Order
Club Member

Past Member

Member Services

Member

Reports

New Program

Warehouse

Marketing Department

Accounts Receivable

Member Credit

Status

Member

Services

System

Packing Order

Various Inquiry Responses

Promotion

Subscription Offer

New Subscription

Subscription

Renewal

Subscription

Program

Resubscription

Offer

Chapter 7 shows a different format for a context diagram.The context diagram shown
in Figure 5-11 employs a hybrid approach. It employs use case symbols as use cases
are becoming a generally accepted tool of the requirements analysis phase.

The system itself is shown as a “black box” in the middle of the diagram. We are
not yet ready to look inside the box. For now we just want to see how everyone will
use the box. The stick figures around the outside of the diagram are the persons, or-
ganizations, and other information systems that will interact with the system. In use
cases, these are called actors, and we can call them that here. In traditional data flow
diagrams, they are called external agents. In Chapters 7 and 9 you will learn that once
you look inside the system box, other things such as time or devices like sensors can
also be actors or external agents. But for a context diagram they are rarely shown.

The lines indicate the inputs (arrows pointing to the system) provided by actors
to the system and the outputs (arrows pointing to the actors) created by the system.
Each input and output is identified with a noun phrase that describes it.

To build a context diagram ask the users what business transactions the system
must respond to; these are the inputs. Also ask the users what reports, notifications,
and other outputs must be produced by the system. A system can have many reports

Systems Analysis Chapter Five 179

that can quickly clutter the diagram; consolidate them as needed to keep the diagram
readable. During other phases in the process they will be analyzed separately.

We certainly couldn’t build an information system from a context diagram. But it
is a solid first step. From this simple diagram we know what inputs the system must
respond to and what outputs it must produce. In other words, it helps us understand
the problem domain.We will see in Chapter 7 how to detect use cases from a context
diagram.That will be the first step in cracking open the “black box.” We are following
the principles for systems development presented in Chapter 2: “use a problem-
solving approach” and “divide and conquer.”

> Task 2.2—Analyze Problems and Opportunities

In addition to learning about the current system, the project team must work with
system owners and system users to analyze problems and opportunities. You
might be asking,“Weren’t problems and opportunities identified earlier, in the pre-
liminary investigation phase?” Yes, they were. But those initial problems may be only
symptoms of other problems, perhaps problems not as well known or understood
by the users. Besides, we haven’t yet really analyzed any of those problems in the
classic sense.

True problem analysis is a difficult skill to master, especially for inexperienced sys-
tems analysts. Experience suggests that most new systems analysts (and many system
owners and users) try to solve problems without truly analyzing them. They might
state a problem like this: “We need to . . .” or “We want to . . .” In doing so, they are stat-
ing the problem in terms of a solution. More effective problem solvers have learned to
truly analyze the problem before stating any possible solution.They analyze each per-
ceived problem for causes and effects. In practice, an effect may actually be a symp-
tom of a different, more deeply rooted or basic problem. That problem must also be
analyzed for causes and effects, and so on until such a time as the causes and effects
do not yield symptoms of other problems. Cause-and-effect analysis leads to true
understanding of problems and can lead to not-so-obvious but more creative and
valuable solutions.

SYSTEMS ANALYSTS facilitate this task; however, all SYSTEMS OWNERS and USERS should
actively participate in the process of cause-and-effect analysis. They are the problem
domain experts. SYSTEM DESIGNERS and BUILDERS are not usually involved in this process
unless they are called on to analyze technical problems that may exist in the current
system.

As shown in Figure 5-10, the team’s understanding of the SYSTEM DOMAIN AND

BUSINESS VOCABULARY triggers this task. This understanding of the problem domain is
crucial because the team members should not attempt to analyze problems unless
they understand the domain in which those problems occur.The other informational
input to this task is the initial PROBLEM STATEMENTS (from the scope definition phase).
The deliverables of this task are the updated PROBLEM STATEMENTS and the CAUSE-EFFECT

ANALYSIS for each problem and opportunity. Figure 5-12 illustrates one way to docu-
ment a cause-and-effect analysis.

Once again, fact-finding and JRP techniques are crucial to this task. These tech-
niques, as well as cause-and-effect analysis, are taught in the next chapter.

> Task 2.3—Analyze Business Processes

This task is appropriate only to business process redesign (BPR) projects or system
development projects that build on or require significant business process redesign.
In such a project, the team is asked to examine its business processes in much
greater detail to measure the value added or subtracted by each process as it relates
to the total organization. Business process analysis can be politically charged. Sys-
tem owners and users alike can become very defensive about their existing business

180 Part Two Systems Analysis Methods

cause-and-effect analysis
a technique in which problems

are studied to determine their

causes and effects.

F I G U R E 5 - 1 2 A Sample Cause-and-Effect Analysis

PROBLEMS, OPPORTUNITIES, OBJECTIVES, AND CONSTRAINTS MATRIX

Project: Member Services Information System

Created by: Robert Martinez

Date Created: January 21, 2003

Project Manager: Sandra Shepherd

Last Updated by: Robert Martinez

Date Last Updated: January 31, 2003

Order response time

is unacceptable.

1. 1.

2.

3.

4.

5.

1.

2.

3.

4.

Throughput has increased

while number of order

clerks was downsized.

Time to process a single

order has remained

relatively constant.

System is too keyboard-

dependent. Many of the

same values are keyed for

most orders. Net result is

(with the current system)

each order takes longer to

process than is ideal.

Data editing is performed

by the AS/400. As that

computer has approached

its capacity, order edit

responses have slowed.

Because order clerks are

trying to work faster to

keep up with the volume,

the number of errors has

increased.

Warehouse picking tickets

for orders were never

designed to maximize the

efficiency of order fillers.

As warehouse operations

grew, order filling delays

were inevitable.

Decrease the time

required to process a

single order by 30%.

Eliminate keyboard data

entry for as much as 50%

of all orders.

For remaining orders,

reduce as many key-

strokes as possible by

replacing keystrokes with

point-and-click objects

on the computer display

screen.

Move data editing from a

shared computer to the

desktop.

Replace existing picking

tickets with a paperless

communication system

between member

services and the

warehouse.

1.

2.

3.

There will be no increase

in the order processing

workforce.

Any system developed

must be compatible with

the existing Windows 95

desktop standard.

New system must be

compatible with the

already approved

automatic identification

system (for bar coding).

CAUSE-AND-EFFECT ANALYSIS SYSTEM IMPROVEMENT OBJECTIVES

Problem or

Opportunity Causes and Effects System Objective System Constraint

processes. The analysts involved must keep the focus on the processes, not the
people who perform them, and constantly remind everyone that the goal is to
identify opportunities for fundamental business change that will benefit the business
and everyone in the business.

One or more systems analysts or business analysts facilitate the task. Ideally, the
ANALYSTS should be experienced, trained, or certified in BPR methods. The only other
participants should be appropriate SYSTEM OWNERS and USERS. Business process analysis
should avoid any temptation to focus on information technology solutions until well

Systems Analysis Chapter Five 181

after the business processes have been redesigned for maximum efficiency. Some
analysts find it useful to assume the existence of “perfect people” and “perfect tech-
nology” that can make anything “possible.” They ask,“If the world were perfect, would
we need this process?”

As depicted in Figure 5-10, a business process analysis task is dependent only on
some PROBLEM DOMAIN knowledge (from Task 2.1).The deliverables of this task are busi-
ness “as is” PROCESS MODELS and PROCESS ANALYSES. The process models can look very
much like data flow diagrams (Figure 5-2) except they are significantly annotated to
show (1) the volume of data flowing through the processes, (2) the response times of
each process, and (3) any delays or bottlenecks that occur in the system.The process
analysis data provides additional information such as (a) the cost of each process,
(b) the value added by each process, and (c) the consequences of eliminating or
streamlining the process. Based on the as-is models and their analysis, the team
develops “to be” models that redesign the business processes to eliminate redundancy
and bureaucracy and increase efficiency and service.

Several techniques are applicable to this task. Once again, fact-finding techniques
and facilitated team meetings (Chapter 6) are invaluable. Also, process modeling tech-
niques (Chapter 9) are critical to BPR success.

> Task 2.4—Establish System Improvement Objectives

Given our understanding of the current system’s scope, problems, and opportunities,
we can now establish system improvement objectives. The purpose of this task is to
establish the criteria against which any improvements to the system will be measured
and to identify any constraints that may limit flexibility in achieving those improve-
ments.The criteria for success should be measured in terms of objectives. Objectives
represent the first attempt to establish expectations for any new system. In addition
to identifying objectives, we must also identify any known constraints. Constraints

place limitations or delimitations on achieving objectives. Deadlines, budgets, and
required technologies are examples of constraints.

The SYSTEMS ANALYSTS facilitate this task. Other participants include the same SYSTEM

OWNERS and USERS who have participated in other tasks in this problem analysis phase.
Again, we are not yet concerned with technology; therefore, SYSTEM DESIGNERS and
BUILDERS are not involved in this task.

This task is triggered by the PROBLEM ANALYSES completed in Tasks 2.2 and 2.3. For
each verified and significant problem, the analysts and users should define specific
SYSTEM IMPROVEMENT OBJECTIVES.They should also identify any CONSTRAINTS that may limit
or prevent them from achieving the system improvement objectives.

System improvement objectives should be precise, measurable statements of
business performance that define the expectations for the new system. Some
examples are:

Reduce the number of uncollectible customer accounts by 50 percent within
the next year.

Increase by 25 percent the number of loan applications that can be processed
during an eight-hour shift.

Decrease by 50 percent the time required to reschedule a production lot when
a workstation malfunctions.

The following is an example of a poor objective:

Create a delinquent accounts report.

This is a poor objective because it states only a requirement, not an actual objective.
Now, let’s reword that objective:

Reduce credit losses by 20 percent through earlier identification of delinquent
accounts.

182 Part Two Systems Analysis Methods

objective a measure of

success. It is something that

you expect to achieve, if given

sufficient resources.

constraint something that

will limit your flexibility in

defining a solution to your

objectives. Essentially, con-

straints cannot be changed.

This gives us more flexibility. Yes, the delinquent accounts report would work. But a
customer delinquency inquiry might provide an even better way to achieve the same
objective.

System improvement objectives may be tempered by identifiable constraints.
Constraints fall into four categories, as listed below (with examples):

• Schedule: The new system must be operational by April 15.
• Cost: The new system cannot cost more than $350,000.
• Technology: The new system must be online, or all new systems must use the

DB2 database management system.
• Policy: The new system must use double-declining-balance inventory techniques.

The last two columns of Figure 5-12 document typical system improvement objec-
tives and constraints.

> Task 2.5—Update or Refine the Project Plan

Recall that project scope is a moving target. Based on our baseline schedule and bud-
get from the scope definition phase, scope may have grown or diminished in size and
complexity. (Growth is much more common!) Now that we’re approaching the com-
pletion of the problem analysis phase, we should reevaluate project scope and update

or refine the project plan accordingly.
The project manager, in conjunction with SYSTEM OWNERS and the entire project

team, facilitates this task.The SYSTEMS ANALYSTS and SYSTEM OWNERS are the key individu-
als in this task.The analysts and owners should consider the possibility that not all ob-
jectives may be met by the new system. Why? The new system may be larger than
expected, and they may have to reduce the scope to meet a deadline. In this case the
system owner will rank the objectives in order of importance.Then, if the scope must
be reduced, the higher-priority objectives will tell the analyst what’s most important.

As shown in Figure 5-10, this task is triggered by completion of the SYSTEM

IMPROVEMENT OBJECTIVES. The initial PROJECT PLAN is another key input, and the UPDATED

PROJECT PLAN is the key output. The updated plan should now include a detailed plan
for the requirements analysis phase that should follow. The techniques and steps for
updating the project plan were taught in Chapter 4,“Project Management.”

> Task 2.6—Communicate Findings
and Recommendations

As with the scope definition phase, the problem analysis phase concludes with a com-
munication task.We must communicate findings and recommendations to the busi-
ness community. The project manager and executive sponsor should jointly facilitate
this task. Other meeting participants should include the entire project team, including
assigned SYSTEM OWNERS, USERS,ANALYSTS, DESIGNERS, and BUILDERS. And, as usual, the meet-
ing should be open to any and all interested staff from the business community. Also,
if an intranet Web site was established for the project, it should have been maintained
throughout the problem analysis phase to ensure continuous communication of
project progress.

This task is triggered by the completion of the UPDATED PROJECT PLAN. Informational
inputs include the PROBLEM ANALYSES, any SYSTEM MODELS, the SYSTEM IMPROVEMENT OBJECTIVES,
and any other documentation that was produced during the problem analysis phase.
Appropriate elements are combined into the SYSTEM IMPROVEMENT OBJECTIVES, the major
deliverable of the problem analysis phase. The format may be a report, a verbal
presentation, or an inspection by an auditor or peer group (called a walkthrough). An
outline for a written report is shown in Figure 5-13.

Interpersonal and communications skills are essential to this task. Systems ana-
lysts should be able to write a formal business report and make a business presenta-
tion without getting into technical issues or alternatives.

Systems Analysis Chapter Five 183

This concludes the problem analysis phase. One of the following decisions must
be made after the conclusion of this phase:

• Authorize the project to continue, as is, to the requirements analysis phase.
• Adjust the scope, cost, and/or schedule for the project and then continue to

the requirements analysis phase.
• Cancel the project due to (1) lack of resources to further develop the system,

(2) realization that the problems and opportunities are simply not as important
as anticipated, or (3) realization that the benefits of the new system are not
likely to exceed the costs.

With some level of approval from the SYSTEM OWNERS, the project can now proceed to
the requirements analysis phase.

184 Part Two Systems Analysis Methods

F I G U R E 5 - 1 3 An Outline for a System Improvement Objectives and
Recommendations Report

Analysis of the Current ________________ System

I. Executive summary (approximately 2 pages)

A. Summary of recommendation

B. Summary of problems, opportunities, and directives

C. Brief statement of system improvement objectives

D. Brief explanation of report contents

II. Background information (approximately 2 pages)

A. List of interviews and facilitated group meetings conducted

B. List of other sources of information that were exploited

C. Description of analytical techniques used

III. Overview of the current system (approximately 5 pages)

A. Strategic implications (if the project is part of or impacts an existing information
systems strategic plan)

B. Models of the current system

1. Interface model (showing project scope)

2. Data model (showing project scope)

3. Geographic models (showing project scope)

4. Process model (showing functional decomposition only)

IV. Analysis of the current system (approximately 5–10 pages)

A. Performance problems, opportunities, and cause-effect analysis

B. Information problems, opportunities, and cause-effect analysis

C. Economic problems, opportunities, and cause-effect analysis

D. Control problems, opportunities, and cause-effect analysis

E. Efficiency problems, opportunities, and cause-effect analysis

F. Service problems, opportunities, and cause-effect analysis

V. Detailed recommendations (approximately 5–10 pages)

A. System improvement objectives and priorities

B. Constraints

C. Project plan

1. Scope reassessment and refinement

2. Revised master plan

3. Detailed plan for the definition phase

VI. Appendixes

A. Any detailed system models

B. Other documents as appropriate

The Requirements Analysis Phase

Many inexperienced analysts make a critical mistake after completing the problem
analysis phase.The temptation at that point is to begin looking at alternative solutions,
particularly technical solutions. One of the most frequently cited errors in new infor-
mation systems is illustrated in the statement,“Sure the system works, and it is tech-
nically impressive, but it just doesn’t do what we needed it to do.” The requirements

analysis phase defines the business requirements for a new system.
Did you catch the key word in the quoted sentence? It is “what,” not “how”! Ana-

lysts are frequently so preoccupied with the technical solution that they inadequately
define the business requirements for that solution. The requirements analysis phase
answers the question,“What do the users need and want from a new system?” The re-
quirements analysis phase is critical to the success of any new information system. In
different methodologies the requirements analysis phase might be called the definition

phase or logical design phase.

Can you ever skip the requirements analysis phase? Absolutely not! New systems
will always be evaluated, first and foremost, on whether or not they fulfill business ob-
jectives and requirements, regardless of how impressive or complex the technological
solution might be!

It should be acknowledged that some methodologies integrate the problem analysis
and requirements analysis phases into a single phase.

Once again, your information systems building blocks (Figure 5-14) can serve as a
useful framework for documenting the information systems requirements. Notice that
we are still concerned with the SYSTEM USERS’ perspectives. Requirements can be de-
fined in terms of the PIECES framework or in terms of the types of data, processes,
and interfaces that must be included in the system.

Figure 5-15 illustrates the typical tasks of the requirements analysis phase. The
final phase deliverable and milestone is producing a BUSINESS REQUIREMENTS STATEMENT that
will fulfill the system improvement objectives identified in the previous phase. One of
the first things you may notice in this task diagram is that most of the tasks are not as
sequential as those in previous task diagrams. Instead, many of these tasks occur in
parallel as the team works toward the goal of completing the requirements statement.
The requirements analysis phase typically includes the following tasks:

3.1 Identify and express system requirements.
3.2 Prioritize system requirements.
3.3 Update or refine the project plan.
3.4 Communicate the requirements statement.

Let’s now examine each of these tasks in greater detail.

> Task 3.1—Identify and Express System Requirements

The initial task of the requirements analysis phase is to identify and express require-

ments. While this may seem to be an easy or trivial task, it is often the source of many
errors, omissions, and conflicts. The foundation for this task was established in the
problem analysis phase when we identified system improvement objectives. Minimally,
this task translates those objectives into an outline of functional and nonfunctional

requirements that will be needed to meet the objectives. Functional requirements are
frequently identified in terms of inputs, outputs, processes, and stored data that are
needed to satisfy the system improvement objectives. Examples of nonfunctional
requirements include performance (throughput and response time); ease of learning
and use; budgets, costs, and cost savings; timetables and deadlines; documentation and
training needs; quality management; and security and internal auditing controls.

Rarely will this definition task identify all the functional or nonfunctional busi-
ness requirements. But the outline will frame your thinking as you proceed to later

Systems Analysis Chapter Five 185

functional requirement
a description of activities and

services a system must

provide.

nonfunctional
requirement a description

of other features, characteris-

tics, and constraints that

define a satisfactory system.

186 Part Two Systems Analysis Methods

F I G U R E 5 - 1 4 The Context of the Requirements Analysis Phase of Systems Analysis

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
B

L
E

M

A
N

A
L

Y
S

IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

& & &

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

TL
O

G
IC

A
L

D
E

S
IG

N
D

E
C

IS
IO

N

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N
C

O
N

S
T

R
U

C
T

IO
N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S
a

n
d

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 A
N

A
L
Y

S
T

S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

INFORMATION

SCOPE

VISION

FUNCTIONAL

SCOPE

VISION

COMMUNICATIONS

SCOPE

VISION

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

Prioritize
system

requirements

3.2

Repository

system improvement objectives,

functional and nonfunctional

requirements

validated

requirements

with priorities

SYSTEM OWNERS AND USERS

THE BUSINESS COMMUNITY

(approval to continue

the project—from

problem analysis phase)

Update or
refine the

project plan

3.3

project

plan

Completed

Requirements

and Priorities

BUSINESS
REQUIREMENTS

STATEMENT

Draft

Functional

and

Nonfunctional

Requirements

Communicate
requirements

statement

3.4

final

requirements

and priorities

Revised Plan Completed

Identify and
express

requirements

3.1

tasks that will add new requirements and details to the outline. Thus, neither com-
pleteness nor perfection is a goal of this task.

SYSTEMS ANALYSTS facilitate the task. They also document the results. Obviously,
SYSTEM USERS are the primary source of business requirements. Some SYSTEM OWNERS may
elect to participate in this task since they played a role in framing the system im-
provement objectives that will guide the task. SYSTEM DESIGNERS and BUILDERS should not
be involved because they tend to prematurely redirect the focus to the technology
and technical solutions.

As shown in Figure 5-15, this task (and phase) is triggered by the APPROVAL TO

CONTINUE THE PROJECT FROM THE PROBLEM ANALYSIS PHASE. The key input is the SYSTEM

IMPROVEMENT OBJECTIVES from the problem analysis phase (via the repository). Of course,
any and all relevant information from the problem analysis phase is available from the
repository for reference as needed.

The only deliverable of this task is the DRAFT FUNCTIONAL AND NONFUNCTIONAL

REQUIREMENTS. Various formats can work. In its simplest format, the outline could be
divided into four logical sections: the original list of system improvement objectives
and, for each objective, a sublist of (a) inputs, (b) processes, (c) outputs, and (d) stored
data needed to fulfill the objective. Increasingly, however, system analysts are

Systems Analysis Chapter Five 187

F I G U R E 5 - 1 5

Tasks for the
Requirements
Analysis Phase of
Systems Analysis

expressing functional requirements using a modeling tool called use cases. Use cases
model business scenarios and events that must be handled by a new system.They are
introduced in Chapter 7 and used throughout this book.

The PIECES framework that was used earlier to identify problems, opportunities,
and constraints can also be used as a framework for defining draft requirements.

Several techniques are applicable to this task. Joint requirements planning (JRP)
is the preferred technique for rapidly outlining business requirements. Alternatively,
the analysts could use other fact-finding methods such as surveys and interviews. Both
JRP and fact-finding are taught in the next chapter.

> Task 3.2—Prioritize System Requirements

We stated earlier that the success of a systems development project can be measured in
terms of the degree to which business requirements are met. But not all requirements
are created equal. If a project gets behind schedule or over budget, it may be useful to
recognize which requirements are more important than others. Thus, given the vali-
dated requirements, system owners and users should prioritize system requirements.

Prioritization of requirements can be facilitated using a popular technique called
timeboxing. Timeboxing attempts to divide requirements into “chunks” that can be
implemented within a period of time that does not tax the patience of the user and
management community.Timeboxing forces priorities to be clearly defined.

SYSTEMS ANALYSTS facilitate the prioritization task. SYSTEM OWNERS and USERS establish
the actual priorities. SYSTEM DESIGNERS and BUILDERS are not involved in the task.The task
is triggered by the VALIDATED REQUIREMENTS. It should be obvious that you cannot ade-
quately prioritize an incomplete set of requirements.The deliverable of this task is the
REQUIREMENTS WITH PRIORITIES. Priorities can be classified according to their relative
importance:

• A mandatory requirement is one that must be fulfilled by the minimal sys-
tem, version 1.0. The system is useless without it. Careful! There is a tempta-
tion to label too many requirements as mandatory. A mandatory requirement
cannot be ranked because it is essential to any solution. In fact, if an alleged
mandatory requirement can be ranked, it is actually a desirable requirement.

• A desirable requirement is one that is not absolutely essential to version 1.0.
It may still be essential to the vision of some future version. Desirable require-
ments can and should be ranked. Using version numbers as the ranking scheme
is an effective way to communicate and categorize desirable requirements.

> Task 3.3—Update or Refine the Project Plan

Here again, recall that project scope is a moving target. Now that we’ve identified the
business system requirements, we should step back and redefine our understanding
of the project scope and update our project plan accordingly.The team must consider
the possibility that the new system may be larger than originally expected. If so, the
team must adjust the schedule, budget, or scope accordingly. We should also secure
approval to continue the project into the next phase. (Work may have already started
on the design phases; however, the decisions still require review.)

The project manager, in conjunction with SYSTEM OWNERS and the entire project
team, facilitates this task. As usual, the project manager and SYSTEM OWNERS are the key in-
dividuals in this task.They should consider the possibility that the requirements now ex-
ceed the original vision that was established for the project and new system.They may
have to reduce the scope to meet a deadline or increase the budget to get the job done.

As shown in Figure 5-15, this task is triggered by completion of the COMPLETED

REQUIREMENTS AND PRIORITIES. The up-to-date PROJECT PLAN is the other key input, and
it is updated in the repository as appropriate. The tools, techniques, and steps for
maintenance of the project plan were covered in Chapter 4,“Project Management.”

188 Part Two Systems Analysis Methods

use case a business sce-

nario or event for which the

system must provide a

defined response. Use cases

evolved out of object-oriented

analysis; however, their use

has become common in many

other methodologies for

systems analysis and design.

timeboxing a technique

that delivers information sys-

tems functionality and require-

ments through versioning. The

development team selects the

smallest subset of the system

that, if fully implemented, will

return immediate value to the

system owners and users.

That subset is developed,

ideally with a time frame of six

to nine months or less. Subse-

quently, value-added versions

of the system are developed

in similar time frames.

> Task 3.4—Communicate the Requirements Statement

Communication is an ongoing task of the requirements analysis phase. We must com-
municate requirements and priorities to the business community throughout the
phase. Users and managers will frequently lobby for requirements and priority con-
sideration. Communication is the process through which differences of opinion must
be mediated. The project manager and executive sponsor should jointly facilitate
this task. Today, a project intranet or portal is frequently used to communicate
requirements. Some systems allow users and managers to subscribe to requirements
documents to ensure they are notified as changes occur. Interpersonal, communica-
tions, and negotiation skills are essential to this task.

> Ongoing Requirements Management

The requirements analysis phase is now complete. Or is it? It was once popular to
freeze the business requirements before beginning the system design and construc-
tion phases. But today’s economy has become increasingly fast-paced. Businesses are
measured on their ability to quickly adapt to constantly changing requirements and
opportunities. Information systems can be no less responsive than the business itself.
Thus, requirements analysis really never ends. While we quietly transition to the re-
maining phases of our project, there remains an ongoing need to continuously man-
age requirements through the course of the project and the lifetime of the system.

Requirements management defines a process for system owners, users, analysts,
designers, and builders to submit proposed changes to requirements for a system.The
process specifies how changes are to be requested and documented, how they will be
logged and tracked, when and how they will be assessed for priority, and how they
will eventually be satisfied (if they are ever satisfied).

The Logical Design Phase

Not all projects embrace model-driven development, but most include some amount
of system modeling. A logical design further documents business requirements using
system models that illustrate data structures, business processes, data flows, and user
interfaces (increasingly using object models, as introduced earlier in the chapter). In
a sense, they validate the requirements established in the previous phase.

Once again, your information systems building blocks (Figure 5-16) can serve as a
useful framework for documenting the information systems requirements. Notice that
we are still concerned with the SYSTEM USERS’ perspectives. In this phase, we draw vari-
ous system models to document the requirements for a new and improved system.The
models depict various aspects of our building blocks. Alternatively, prototypes could be
built to “discover requirements.” Discovery prototypes were introduced earlier in the
chapter. Recall that some prototypes can be reverse engineered into system models.

Figure 5-17 illustrates the typical tasks of the logical design phase.The final phase
deliverable and milestone is producing a BUSINESS REQUIREMENTS STATEMENT that will ful-
fill the system improvement objectives identified in the previous phase. One of the
first things you may notice in this task diagram is that most of the tasks are not as se-
quential as in previous task diagrams. Instead, many of these tasks occur in parallel as
the team works toward the goal of completing the requirements statement.

The logical design phase typically includes the following tasks:

4.1a Structure functional requirements.
4.1b Prototype functional requirements.
4.2 Validate functional requirements.
4.3 Define acceptance test cases.

Let’s now examine each of these tasks in greater detail.

Systems Analysis Chapter Five 189

190 Part Two Systems Analysis Methods

F I G U R E 5 - 1 6 The Context of the Logical Design Phase of Systems Analysis

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S
a

n
d

S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L

Y
S

IS

P
R

O
B

L
E

M

A
N

A
L

Y
S

IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

& & &

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

L
O

G
IC

A
L

D
E

S
IG

N

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

INFORMATION

SCOPE

VISION

FUNCTIONAL

VISION

COMMUNICATIONS

VISION

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S T A T E M E N T O F W O R K

SCOPE SCOPE

> Task 4.1a—Structure Functional Requirements

One approach to logical design is to structure the functional requirements. This means
that, using agile methods, you should draw or update one or more system models to
illustrate the functional requirement.These may include any combination of data,process,
and object models that accurately depict the business and user requirements (but not
any technical solution). System models are not complete until all appropriate functional
requirements have been modeled. Models are frequently supplemented with detailed log-
ical specifications that describe data attributes, business rules and policies, and the like.

SYSTEMS ANALYSTS facilitate the task. They also document the results. Obviously,
SYSTEM USERS are the primary source of factual details needed to draw the models. As
shown in Figure 5-17, this task (and phase) is triggered by each FUNCTIONAL REQUIREMENT.
The outputs are the actual SYSTEM MODELS AND DETAILED SPECIFICATIONS. The level of detail
required depends on the methodology being followed. Agile methods usually require
“just enough” documentation. How much is enough? That is arguable, but agile
methodologists hold that every deliverable should be essential to the forthcoming
design and programming phases. This textbook will teach you a variety of different
system modeling tools and techniques to apply to logical design.

Systems Analysis Chapter Five 191

F I G U R E 5 - 1 7

Tasks for the
Logical Design
Phase of Systems
Analysis

Structure
functional

requirement

4.1a

Prototype
functional

requirement

4.1b

system models and specifications

functional

prototype

THE BUSINESS

COMMUNITY

Each Functional

Requirement

Define
acceptance

tests

4.3 (rec)

system improvement objectives

and

acceptance test cases

System Models

and/or

Prototypes

Validate
functional

requirement

4.2

work-in-process

models and

prototypes

System

Models

SYSTEM OWNERS AND USERS

Repository

> Task 4.1b—Prototype Functional
Requirements (alternative)

Prototyping is an alternative (and sometimes a prerequisite) to system modeling. Some-
times users have difficulty expressing the facts necessary to draw adequate system
models. In such a case, an alternative or complementary approach to system modeling
is to build discovery prototypes. Prototyping is typically used in the requirements
analysis phase to build sample inputs and outputs. These inputs and outputs help to
construct the underlying database and the programs for inputting and outputting the
data to and from the database. Although discovery prototyping is optional, it is fre-
quently applied to systems development projects, especially in cases where the users
are having difficulty stating or visualizing their business requirements.The philosophy
is that the users will recognize their requirements when they see them.

SYSTEMS BUILDERS facilitate this analysis task. SYSTEM ANALYSTS document and analyze
the results. As usual, SYSTEM USERS are the primary source of factual input to the task.
Figure 5-17 demonstrates that this task is dependent on one or more FUNCTIONAL

REQUIREMENTS that have been identified by the users. The system builders and analysts
respond by constructing the PROTOTYPES. As described earlier in this chapter, it may
be possible to reverse engineer some SYSTEM MODELS directly from the prototype
databases and program libraries.

> Task 4.2—Validate Functional Requirements

Both SYSTEM MODELS and PROTOTYPES are representations of the users’ requirements.
They must be validated for completeness and correctness. SYSTEMS ANALYSTS facilitate
the prioritization task by interactively engaging system users to identify errors and
omissions or make clarifications.

> Task 4.3—Define Acceptance Test Cases

While not a required task, most experts agree that it is not too early to begin planning
for system testing. System models and prototypes very effectively define the process-
ing requirements, data rules, and business rules for the new system. Accordingly, these
specifications can be used to define TEST CASES that can ultimately be used to test pro-
grams for correctness. Either SYSTEM ANALYSTS or SYSTEM BUILDERS can perform this task
and validate the test cases with the SYSTEM USERS.

Recall that SYSTEM IMPROVEMENT OBJECTIVES were defined earlier in the project. Test
cases can be defined to test these objectives as well.

192 Part Two Systems Analysis Methods

The Decision Analysis Phase

Given the business requirements for an improved information system, we can finally
address how the new system—including computer-based alternatives—might be im-
plemented with technology.The purpose of the decision analysis phase is to identify
candidate solutions, analyze those candidate solutions, and recommend a target sys-
tem that will be designed, constructed, and implemented. Chances are that someone
has already championed a vision for a technical solution. But alternative solutions, per-
haps better ones, nearly always exist. During the decision analysis phase, it is impera-
tive that you identify options, analyze those options, and then sell the best solution
based on the analysis.

Once again, your information systems building blocks (Figure 5-18) can serve as a
useful framework for the decision analysis phase. One of the first things you should
notice is that information technology and architecture begin to influence the deci-
sions we must make. In some cases, we must work within standards. In other cases,

Systems Analysis Chapter Five 193

F I G U R E 5 - 1 8 The Context of the Decision Analysis Phase of Systems Analysis

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
B

L
E

M

A
N

A
L

Y
S

IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

& &

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T

L
O

G
IC

A
L

D
E

S
IG

N
D

E
C

IS
IO

N

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N
C

O
N

S
T

R
U

C
T

IO
N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S
a

n
d

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 A
N

A
L
Y

S
T

S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

D E S I G N P R O T O T Y P E S

T R A I N I N G M A T E R I A L S

P O S T - A U D I T R E V I E W

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

DATABASE

SPECIFICATIONS

BUSINESS PROCESS

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

M
ID

D
L

E
W

A
R

E

PHYSICAL

O P E R A T I O N A L S Y S T E M

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

INFORMATION

SCOPE

VISION

COMMUNICATIONS

VISION

SCOPE

F U N C T I O N A L S Y S T E M

FUNCTIONAL

VISION

SCOPE

&

DESIGN

DESIGN

USER

we can look to apply different or emerging technology. You should also notice that
the perspectives are in transition—from those of the SYSTEM USERS to those of the
SYSTEM DESIGNERS. Again, this reflects our transition from pure business concerns or
technology. But we are not yet designing. The building blocks indicate our goal as
developing a proposal that will fulfill requirements.

Figure 5-19 illustrates the typical tasks of the decision analysis phase. The final
phase deliverable and milestone is producing a SYSTEM PROPOSAL that will fulfill the
business requirements identified in the previous phase. The decision analysis phase
typically includes the following tasks:

5.1 Identify candidate solutions.
5.2 Analyze candidate solutions.
5.3 Compare candidate solutions.
5.4 Update the project plan.
5.5 Recommend a system solution.

Let’s now examine each of these tasks in greater detail.

> Task 5.1—Identify Candidate Solutions

Given the business requirements established in the definition phase of systems analy-
sis, we must first identify alternative candidate solutions. Some candidate solutions
will be posed by design ideas and opinions from SYSTEM OWNERS and USERS. Others may

194 Part Two Systems Analysis Methods

F I G U R E 5 - 19

Tasks for the
Decision Analysis
Phase of Systems
Analysis

Identify
candidate
solutions

5.1

Analyze
candidate
solution

5.2

Update
the project

plan

5.4

SYSTEM
PROPOSAL

business requirements,
candidate solutions

target
system
solution

feasibility
analysis

project schedule
and resource
assignments

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY TECHNOLOGY INDUSTRY

TECHNOLOGY INDUSTRY

Compare
condidate
solutions

5.3

all candidates'

feasibility
analyses

(no more
candidates)

Recommend
a system
solution

5.5

Internal
Ideas and
Opinions

Scope Changes

External
Ideas and
Opinions

(each)
Candidate
Solution

Solution(s)
to be

Recommended

Updated
Project Plan

(approval to

continue project

—from require-

ments analysis)

Repository

come from various sources including SYSTEMS ANALYSTS, SYSTEMS DESIGNERS, technical con-
sultants, and other IS professionals. And some technical choices may be limited by a
predefined, approved technology architecture. It is the intent of this task not to eval-
uate the candidates but, rather, simply to define possible candidate solutions to be
considered.

The SYSTEMS ANALYSTS facilitate this task. SYSTEM OWNERS and USERS are not normally
directly involved in this task, but they may contribute ideas and opinions that start the
task. For example, an owner or user may have read an article about, heard about, or
learned how some competitor’s or acquaintance’s similar system was implemented.
In any case, it is politically sound to consider the ideas. SYSTEM DESIGNERS and BUILDERS

such as database administrators, network administrators, technology architects, and
programmers are also a source of ideas and opinions.

As shown in Figure 5-19, this task is formally triggered by the APPROVAL TO CONTINUE

THE PROJECT FROM THE REQUIREMENTS ANALYSIS phase. In reality, ideas and opinions have
been generated and captured since the preliminary investigation phase—it is human
nature to suggest solutions throughout any problem-solving process. Notice that, in
addition to coming from the project team itself, IDEAS AND OPINIONS can be generated
from both internal and external sources. Each idea generated is considered to be a
CANDIDATE SOLUTION to the BUSINESS REQUIREMENTS.

The amount of information describing the characteristics of any one candidate so-
lution may become overwhelming. A candidate matrix, such as Figure 5-20, is a useful
tool for effectively capturing, organizing, and comparing the characteristics of differ-
ent candidate solutions.

As has been the case throughout this chapter, fact-finding and group facilitation
techniques like JRP are the principle techniques used to research candidate system
solutions. Fact-finding and group facilitation techniques are taught in the next chapter.
Also, Chapter 10,“Feasibility Analysis and the System Proposal,” will teach you how to
actually generate candidate system solutions and document them in the matrix.

> Task 5.2—Analyze Candidate Solutions

Each candidate system solution must be analyzed for feasibility. This can occur as each
candidate is identified or after all candidates have been identified. Feasibility analysis
should not be limited to costs and benefits. Most analysts evaluate solutions against at
least four sets of criteria:

• Technical feasibility—Is the solution technically practical? Does our staff
have the technical expertise to design and build this solution?

• Operational feasibility—Will the solution fulfill the user’s requirements? To
what degree? How will the solution change the user’s work environment?
How do users feel about such a solution?

• Economic feasibility—Is the solution cost-effective?
• Schedule feasibility—Can the solution be designed and implemented within

an acceptable time period?

When completing this task, the analysts and users must take care not to make
comparisons between the candidates.The feasibility analysis is performed on each in-
dividual candidate without regard to the feasibility of other candidates.This approach
discourages the analyst and users from prematurely making a decision concerning
which candidate is the best.

Again, the SYSTEMS ANALYSTS facilitate the task. Usually SYSTEMS OWNERS and USERS

analyze operational, economic, and schedule feasibility. SYSTEMS DESIGNERS and
BUILDERS usually contribute to the analyses and play the critical role in analyzing
technical feasibility.

Figure 5-19 shows that the task is triggered by the completion of each candidate
solution; however, it is acceptable to delay the task until all candidate solutions have
been identified. Input to the actual feasibility analyses comes from the various team

Systems Analysis Chapter Five 195

F I G U R E 5 - 2 0 A Candidate Systems Matrix

Characteristics Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Portion of System
Computerized

Brief description of that portion of
the system that would be
computerized in this candidate.

Benefits

Brief description of the business
benefits that would be realized for
this candidate.

Servers and Workstations

A description of the servers and
workstations needed to support this
candidate.

Software Tools Needed

Software tools needed to design and
build the candidate (e.g., database
management system, emulators,
operating systems, languages, etc.).
Not generally applicable if
applications software packages
are to be purchased.

Application Software

A description of the software to be
purchased, built, accessed, or some
combination of these techniques.

Method of Data Processing

Generally some combination of
online, batch, deferred batch,
remote batch, and real time.

Output Devices and
Implications

A description of output devices that
would be used, special output
requirements (e.g., network,
preprinted forms, etc.), and output
considerations (e.g., timing
constraints).

Input Devices and
Implications

A description of input methods to be
used, input devices (keyboard,
mouse, etc.), special input
requirements (e.g., new or revised
forms from which data would be
input), and input considerations
(e.g., timing of actual inputs).

Storage Devices and
Implications

Brief descriptions of what data
would be stored, what data would
be accessed from existing stores,
what storage media would be used,
how much storage capacity would
be needed, and how data would be
organized.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 3.1
Internet Explorer

Same as candidate 2.

Same as candidate 1.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

COTS package Platinum
Plus from Entertainment
Software Solutions would
be purchased and
customized to satisfy
Member Services required
functionality.

This solution can be
implemented quickly
because it’s a purchased
solution.

Technically, architecture
dictates Pentium Pro, MS
Windows NT class servers
and Pentium, MS Windows
NT 4.0 workstations
(clients).

MS Visual C and MS
Access for customization
of package to provide
report writing and
integration.

Package solution.

Client/server.

(2) HP4MV department
laser printers.

(2) HP5SI LAN laser
printers.

Keyboard & mouse.

MS SQL Server DBMS
with 100GB arrayed
capability.

Member Services and
warehouse operations in
relation to order fulfillment.

Fully supports user’s required
business processes for
SoundStage Inc. Plus more
efficient interaction with
member accounts.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 3.1
Internet Explorer

Custom solution

Same as candidate 1.

(2) HP4MV department
laser printers.

(2) HP5SI LAN laser printers.

(1) PRINTRONIX bar code
printer (includes software &
drivers).
Web pages must be
designed to VGA
resolution. All internal
screens will be designed
for SVGA resolution.

Apple “Quick Take” digital
camera and software.

(15) PSC Quickscan laser
bar code scanners.

(1) HP Scanjet 4C flatbed
scanner.

Keyboard & mouse.

Same as candidate 1.

participants; however, it is not uncommon for external experts (and influences) to
also provide data.The feasibility analysis for each candidate is saved in the repository
for later comparison to other candidates.

Fact-finding techniques, again, play a role in this systems analysis task. But the
ability to perform a feasibility analysis on a candidate system solution is essential.That
technique is taught in Chapter 10,“Feasibility Analysis and the System Proposal.”

> Task 5.3—Compare Candidate Solutions

Once the feasibility analysis has been completed for each candidate solution, we can
compare the candidates and select one or more solutions to recommend to the SYSTEM

OWNERS and USERS. At this point, any infeasible candidates are usually eliminated from
further consideration. Since we are looking for the most feasible solution of those re-
maining, we will identify and recommend the candidate that offers the best overall
combination of technical, operational, economic, and schedule feasibilities. It should
be noted that in selecting such a candidate, it is rare that a given candidate is found to
be the most operational, technical, economic, and schedule feasible.

Once again, the SYSTEMS ANALYSTS facilitate the task. SYSTEM DESIGNERS and BUILDERS

should be available to answer any technical feasibility questions. But ultimately,
the SYSTEMS OWNERS and USERS should be empowered to drive the final analysis and
recommendation.

In Figure 5-19, this task is triggered by the completion of the feasibility analysis of
all candidate solutions (NO MORE CANDIDATE SOLUTIONS).The input is ALL OF THE CANDIDATES’
FEASIBILITY ANALYSES. Once again, a matrix can be used to communicate the large vol-
ume of information about candidate solutions.The feasibility matrix in Figure 5-21 al-
lows a side-by-side comparison of the different feasibility analyses for a number of
candidates.

The deliverable of this task is the SOLUTION(S) TO BE RECOMMENDED. If more than one
solution is recommended, priorities should be established.

Again, feasibility analysis techniques (and the matrix) will be taught in Chapter 10,
“Feasibility Analysis and the System Proposal.”

> Task 5.4—Update the Project Plan

Hopefully, you noticed a recurring theme throughout this chapter. We are continually
updating our project plan as we learn more about a system, its problems, its require-
ments, and its solutions. We are adjusting scope accordingly. Thus, based on our rec-
ommended solution(s), we should once again reevaluate project scope and update

the project plan accordingly.
The project manager, in conjunction with SYSTEM OWNERS and the entire project

team, facilitates this task.The SYSTEMS ANALYSTS and SYSTEM OWNERS are the key individuals
in this task. But because we are transitioning into technical system design, we need to
begin involving the SYSTEM DESIGNERS and BUILDERS in the project plan updates.

As shown in Figure 5-19, this task is triggered by completion of the SOLUTION(S) TO

BE RECOMMENDED.The latest PROJECT SCHEDULE AND RESOURCE ASSIGNMENTS must be reviewed
and updated. The UPDATED PROJECT PLAN is the key output. The updated plan should
now include a detailed plan for the system design phase that will follow. The
techniques and steps for updating the project plan were taught in Chapter 4,“Project
Management.”

> Task 5.5—Recommend a System Solution

As with the preliminary investigation and problem analysis phases, the decision
analysis phase concludes with a communication task. We must recommend a system

solution to the business community.

Systems Analysis Chapter Five 197

The project manager and executive sponsor should jointly facilitate this task.
Other meeting participants should include the entire project team, including assigned
SYSTEM OWNERS, USERS,ANALYSTS, DESIGNERS, and BUILDERS. As usual, the meeting should be
open to any and all interested staff from the business community. Also, if an intranet
Web site was established for the project, it should have been maintained throughout
the problem analysis phases to ensure continuous communication of project progress.

This task is triggered by the completion of the UPDATED PROJECT PLAN. The TARGET

SYSTEM SOLUTION (from Task 4.3) is reformatted for presentation as a SYSTEM PROPOSAL.The
format may be a report, a verbal presentation, or an inspection by an auditor or peer
group (called a walkthrough). An outline for a written report is shown in Figure 5-22.

198 Part Two Systems Analysis Methods

F I G U R E 5 - 2 1 A Feasibility Analysis Matrix

Feasibility Criteria Weight Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Operational Feasibility 30% Only supports Member Fully supports user’s Same as candidate 2.
Services requirements, required functionality.

Functionality. A description and current business
of to what degree the processes would have
candidate would benefit the to be modified to take
organization and how well advantage of software
the system would work. functionality.

Political. A description of
how well received this
solution would be from user
management, user, and
organization perspectives.

Score: 60 Score: 100 Score: 100

Technical Feasibility 30% Current production release of Although current technical Although current technical
Platinum Plus package is staff has only Powerbuilder staff is comfortable with

Technology. An assessment version 1.0 and has been experience, the senior Powerbuilder, management
of the maturity, availability on the market for only 6 weeks. analysts who saw the MS is concerned with recent
(or ability to acquire), and Maturity of product is a risk, Visual Basic demonstration acquisition of Powerbuilder
desirability of the computer and company charges an and presentation have by Sybase Inc. MS SQL
technology needed to additional monthly fee for agreed the transition will be Server is a current company
support this candidate. technical support. simple and finding standard and competes

experienced VB programmers with SYBASE in the client/
Expertise. An assessment Required to hire or train C will be easier than finding server DBMS market.
of the technical expertise expertise to perform Powerbuilder programmers Because of this we have
needed to develop, operate, modifications for integration and at a much cheaper cost. no guarantee future
and maintain the candidate requirements. versions of Power-
system. MS Visual Basic 5.0 is a builder will “play well”

mature technology based with our current version
on version number. SQL Server.

Score: 50 Score: 95 Score: 60

Economic Feasibility 30%

Cost to develop: Approximately $350,000. Approximately $418,040. Approximately $400,000.

Payback period
(discounted): Approximately 4.5 years. Approximately 3.5 years. Approximately 3.3 years.

Net present value: Approximately $210,000. Approximately $306,748. Approximately $325,500.

Detailed calculations: See Attachment A. See Attachment A. See Attachment A.

Score: 60 Score: 85 Score: 90

Schedule Feasibility 10% Less than 3 months. 9–12 months. 9 months.
An assessment of how long
the solution will take to design
and implement.

Score: 95 Score: 80 Score: 85

Ranking 100% 60.5 92 83.5

199

F I G U R E 5 - 2 2 An Outline for a Typical System Proposal

I. Introduction

A. Purpose of the report

B. Background of the project leading to this report

C. Scope of the project

D. Structure of the report

II. Tools and techniques used

A. Solution generated

B. Feasibility analysis (cost-benefit)

III. Information systems requirements

IV. Alternative solutions and feasibility analysis

V. Recommendations

VI. Appendixes

Predicting the future of systems analysis is not easy, but
we’ll make an attempt. CASE technology will continue to
improve, making it easier to model system requirements.
First, CASE tools will include object modeling to support
emerging object-oriented analysis techniques. While
some CASE tools will be purely object-oriented, we be-
lieve that the demand for other types of modeling support
(e.g., data modeling for databases, process modeling for
BPR) will place a premium on comprehensive CASE tools
that can support many types of models. Second, the
reverse-engineering technology in CASE tools will continue
to improve our ability to more quickly generate first-draft
system models from existing databases and application
programs.

In the meantime, RAD technology will continue to en-
able accelerated analysis approaches such as prototyping.
We also expect the trend for RAD and CASE tools to inter-
operate through reverse and forward engineering to fur-
ther simplify both system modeling and discovery
prototyping.

Object-oriented analysis will eventually replace struc-
tured analysis and information engineering as the best
practice for systems analysis. This change may not occur as
rapidly as object purists would like, but it will occur all too
rapidly for a generation of systems analysts who are skilled
in the older methods. There is a grand opportunity for

talented young analysts to lead the transi-
tion; however, career opportunities will
remain strong for analysts who know data
modeling that will continue to be used for
database design. Also, the process mod-
eling renaissance will continue as BPR
projects continue to proliferate.

We also predict our systems proposals
will continue to get more interesting. As
the Internet, e-commerce, and e-business
become increasingly pervasive in our
economy, systems analysts will be
proposing new alternatives to old prob-
lems. There will be a fundamental
change in business and information sys-
tems to use these new technologies.

One thing will not change! We will
continue to need systems analysts who
understand how to fundamentally investi-
gate and analyze business problems and
define the logical business requirements
as a preface to system design. But we will
all have to do that with increased speed
and accuracy to meet the accelerated sys-
tems development schedules required in
tomorrow’s faster-paced economy.

The Next Generations: Systems Analysis

N
ext G

enera
tion

Interpersonal and communications skills are essential to this task. Soft skills such
as salesmanship and persuasion become important. (Many schools offer speech and
communications courses on these subjects.) Systems analysts should be able to write
a formal business report and make a business presentation without getting into tech-
nical issues or alternatives.

This concludes the decision analysis phase. And it also concludes our coverage of
systems analysis.

1. Formally, systems analysis is the dissection of a sys-
tem into its component pieces. As a problem-solving
phase, it precedes systems design. With respect
to information systems development, systems
analysis is the preliminary investigation of a pro-
posed project, the study and problem analysis of
the existing system, the requirements analysis of
business requirements for the new system, and the
decision analysis for alternative solutions to fulfill
the requirements.

2. The results of systems analysis are stored in a
repository for use in later phases and projects.

3. There are several popular or emerging strategies
for systems analysis.These techniques can be used
in combination with one another.

a. Model-driven analysis techniques emphasize the
drawing of pictorial system models that repre-
sent either a current reality or a target vision of
the system.

i) Structured analysis is a technique that
focuses on modeling processes.

ii) Information engineering is a technique
that focuses on modeling data.

iii) Object-oriented analysis is a technique that
focuses on modeling objects that encapsu-
late the concerns of data and processes that
act on that data.

b. Accelerated analysis approaches emphasize the
construction of working models of a system in
an effort to accelerate systems analysis.

i) Discovery prototyping is a technique that
focuses on building small-scale, functional
subsystems to discover requirements.

ii) Rapid architected analysis attempts to auto-
matically generate system models from
either prototypes or existing systems.The
automatic generation of models requires
reverse engineering technology.

Summary

200

Le
a
rn

in
g
 R

oa
d
m

a
p This chapter provided a detailed overview of the systems analysis phases of a project.

You are now ready to learn some of the systems skills introduced in this chapter. For

most students, this would be the ideal time to study the fact-finding techniques that

were identified as critical to almost every phase and task that was described in this

chapter. Chapter 6 teaches these skills. It is recommended that you read Chapter 7,

“Modeling System Requirements with Use Cases,” before proceeding to any of the

modeling chapters since use cases are commonly used to facilitate the activity of

modeling.

The sequencing of the system modeling chapters is flexible; however, we per-

sonally prefer and recommend that Chapter 8,“Data Modeling and Analysis,” be stud-

ied first. All information systems include databases, and data modeling is an essential

skill for database development. Also, it is easier to synchronize early data models

with later process models than vice versa. Your instructor may prefer that you first

study Chapter 9,“Process Modeling.” Advanced courses may elect to jump straight to

Chapter 10 to learn about object-oriented analysis and modeling with UML.

If you do jump straight to a system modeling chapter from this chapter, make a

commitment to return to Chapter 6 to study the fact-finding techniques. Regardless of

how well you master system modeling, that modeling skill is entirely dependent on

your ability to discover and collect the business facts that underlie the models.

For those of you who have already completed a systems analysis course, this

chapter was probably scheduled only as a review or context for systems design. We

suggest that you merely review the system modeling chapters and proceed directly to

Chapter 12,“Systems Design.” That chapter will pick up where this chapter left off.

c. Both model-driven and accelerated system
analysis approaches are dependent on require-
ments discovery techniques to identify or
extract problems and requirements from system
owners and users.

i) Fact-finding is the formal process of using
research, interviews, questionnaires, sam-
pling, and other techniques to collect
information.

ii) Joint requirements planning (JRP) tech-
niques use facilitated workshops to bring
together all interested parties and acceler-
ate the fact-finding process.

d. Business process redesign is a technique that
focuses on simplifying and streamlining funda-
mental business processes before applying in-
formation technology to those processes.

4. Each phase of systems analysis (preliminary investi-
gation, problem analysis, requirements analysis,
and decision analysis) can be understood in the
context of the information system building blocks:
KNOWLEDGE, PROCESSES, and COMMUNICATIONS.

5. The purpose of the preliminary investigation
phase is to determine the worthiness of the pro-
ject and to create a plan to complete those
projects deemed worthy of a detailed study and
analysis.To accomplish the preliminary investiga-
tion phase, the systems analyst will work with the
system owners and users to: (a) list problems, op-
portunities, and directives; (b) negotiate prelimi-
nary scope; (c) assess project worth; (d) plan the
project, and (e) present the project to the business
community.The deliverable for the preliminary in-
vestigation phase is a project charter that must be
approved by system owners and/or a decision-
making body, commonly referred to as the steering
committee.

6. The purpose of the problem analysis phase is to
answer the questions, Are the problems really
worth solving, and is a new system really worth
building? To answer these questions, the problem
analysis phase thoroughly analyzes the alleged
problems and opportunities first identified in the
preliminary investigation phase. To complete the
problem analysis phase, the analyst will continue
to work with the system owner, system users, and
other IS management and staff. The systems ana-
lyst and appropriate participants will (a) study
the problem domain; (b) thoroughly analyze
problems and opportunities; (c) optionally, ana-
lyze business processes; (d) establish system im-
provement objectives and constraints; (e) update
the project plan; and (f) present the findings
and recommendations. The deliverable for the

Systems Analysis Chapter Five 201

problem analysis phase is the system improvement
objectives.

7. The purpose of the requirements analysis phase is
to identify what the new system is to do without
the consideration of technology—in other words, to
define the business requirements for a new sys-
tem. As in the preliminary investigation and prob-
lem analysis phases, the analyst actively works
with system users and owners as well as other IS
professionals. To complete the requirements
analysis phase, the analyst and appropriate partic-
ipants will (a) define requirements, (b) analyze
functional requirements using system modeling
and/or discovery prototyping, (c) trace and com-
plete the requirements statement, (d) prioritize
the requirements, and (e) update the project plan
and scope. The deliverable of the requirements
analysis phase is the business requirements state-
ment. Because requirements are a moving target
with no finalization, requirements analysis also
includes the ongoing task of managing changes
to the requirements.

8. The purpose of the logical design phase is to doc-
ument business requirements using system mod-
els for the proposed system. These system models
can, depending on the methodology, be any com-
bination of process models, data models, and ob-
ject models. The models depict various aspects of
our building blocks. Alternatively, prototypes
could be built to “discover requirements.” Some
discovery prototypes can be reverse engineered
into system models. The systems analyst and ap-
propriate participants will (a) structure or proto-
type functional requirements, (b) validate
functional requirements, and (c) define accep-
tance test cases. These tasks are not necessarily
sequential; they can occur in parallel. The deliver-
able for the logical design phase is the business
requirements statement.

9. The purpose of the decision analysis phase is to
transition the project from business concerns to
technical solutions by identifying, analyzing, and
recommending a technical system solution. To
complete the decision analysis phase, the analyst
and appropriate participants will (a) define can-
didate solutions; (b) analyze candidate solutions
for feasibility (technical, operational, economic,
and schedule feasibility); (c) compare feasible
candidate solutions to select one or more recom-
mended solutions; (d) update the project plan
based on the recommended solution; and (e) pre-
sent and defend the target solution. The deliver-
able of the decision analysis phase is the system
proposal.

202 Part Two Systems Analysis Methods

1. What are the business factors that are driving
systems analysis? Based on these factors, what
should systems analysis address?

2. What is model-driven analysis? Why is it used?
Give several examples.

3. What is the major focus of structured analysis?
4. What is the major focus of information

engineering?
5. Why has object-oriented analysis become popu-

lar? What problems does it solve?
6. What are the five phases of systems analysis?
7. What is the goal of the scope definition

phase?
8. What are the five tasks that you do in the scope

definition phase?
9. What is the trigger for communicating the

project plan, and who is the audience? Why is
communicating the project plan important?

10. Why do many new systems analysts fail to effec-
tively analyze problems? What can they do to
become more effective?

11. What is a popular tool used to identify and ex-
press the functional requirements of a system?

12. What is a commonly used technique for prioritiz-
ing system requirements?

13. When could prototyping be used instead of
system modeling for determining functional
requirements?

14. Why is the decision analysis phase needed?
15. What are some ways to identify candidate

solutions?

1

2

1. There are many different approaches to systems
analysis. Despite these different approaches, what
is the universally accepted definition of systems
analysis? What is the general consensus as to
when systems analysis begins and when it ends?
As a project manager, what is important to know
regarding the definition of systems analysis, and
what is important to ensure in your organization
regarding the definition?

2. As a systems analyst, you will be exposed to
and use many different approaches to systems

analysis throughout your career. It is important
that you understand the conceptual basis of
each type of approach, and their essential differ-
ences, strengths and weaknesses. Consider the
differences in structured analysis, information
engineering and data modeling, and object-
oriented analysis, all of which represent model-
driven analysis, and fill in the matrix shown
below.

CENTRICITY TYPE OF ESSENTIAL

(data, process, etc.) MODELS USED DIFFERENCES

STRUCTURED

ANALYSIS

INFORMATION

ENGINEERING

AND DATA

MODELING

OBJECT-

ORIENTED

ANALYSIS

Review Questions

Problems and Exercises

3. Accelerated systems analysis approaches are
based on the premise that prototypes can help
reveal the most important business requirements
faster than other methods. Describe the two most
commonly used approaches to accelerated analy-
sis. What do they do and how do they do it? What
is one of the criticisms of prototyping? Do the ac-
celerated systems analysis approaches completely
replace more formal approaches, such as struc-
tured analysis?

4. During the scope definition phase, what is one
question that you should never lose sight of? And
how do you answer this question? What five tasks
should occur during the scope definition phase?

5. You are a new systems analyst and eager to prove
your abilities on your first project.You are at a
problem analysis meeting with the system own-
ers and users and find yourself saying,“We need
to do this to solve the problem.” Into what
common trap are you in danger of falling? What
technique could you use to avoid this trap?

6. Your project team has completed the scope defin-
ition phase, and is now at the point in the prob-
lem analysis phase for establishing system
improvement objectives. As the systems analyst
on the project team, you are the facilitator of a
brainstorming session to define the system im-
provement objectives. Since several of the project
owners and users have never done this before,
describe the characteristics of good system im-
provement objectives and provide some exam-
ples. Members of the project team suggest the
following objectives:

a. Reduce the time required to process the
order.

b. The new system must use Oracle to store data.
c. The data input screens must be redesigned so

they are more user-friendly.
d. The customer satisfaction rate with the online

ordering process must be increased by
10 percent.

Are these examples of good system improvement
objectives? Why or why not? If not, how could
they be reworded? Also, objectives frequently
have constraints that are tied to them; what, if
any, do you think the matching constraint might
be for each of these objectives?

7. You’ve made it through the problem analysis
phase of the project, and are now beginning the
requirements analysis phase. During the first
meeting on the business requirements, one of the
other analysts on the project team asks the sys-
tem users,“How should the new system meet

Systems Analysis Chapter Five 203

your needs?” What common mistake is the analyst
making? What are often the consequences of
making this mistake?

8. What is the difference between functional and
nonfunctional requirements, and what is the pur-
pose of categorizing them into these categories?
What are two formats that an analyst can use to
document the functional system requirements?

9. Is it important to prioritize system requirements,
and if so, when should the requirements be prior-
itized? What is one technique that can be used,
and what is the difference between mandatory
and desirable requirements? What is one way to
test whether a mandatory requirement is truly a
mandatory requirement?

10. Once the system requirements are identified and
prioritized, shouldn’t everything be frozen to pre-
vent scope or feature creep? Doesn’t updating
the project plan or allowing stakeholders to con-
tinue to request changes just delay system design
and construction, and maybe even project com-
pletion itself?

11. Why should acceptance test cases be defined dur-
ing the logical design phase? After all, the techni-
cal design hasn’t been done yet, let alone building
the system. Shouldn’t testing activities at least
wait until construction is actually underway?

12. How is the logical design phase different from
the requirements analysis phase?

13. Let’s say you are on the project team of a project
that had a great deal of difficulty during the re-
quirements analysis phase, and fell several weeks
behind schedule.The project manager wants to
try to catch up by either skipping or abbreviating
some of the tasks in the logical design phase.
After all, the project manager reasons, we really
have a clear idea of the requirements now, the
designers and builders are really experienced, and
they don’t really need the logical design in order
to do the technical design. Is this a legitimate
method to get back on schedule? What are the
possible consequences?

14. In identifying and defining possible candidate so-
lutions, what are the typical roles of the various
stakeholders who are involved in the project?

15. You are a systems analyst and have been asked to
facilitate the analysis and evaluation of several
candidate system solutions for their feasibility.
What sets of criteria would you typically use?
Who do you involve in this task? Should you com-
pare the candidate solutions against each other at
this point? Why or why not? What is the typical
deliverable coming out of this task?

204 Part Two Systems Analysis Methods

1. Select an information system with which you are
familiar, and which you feel needs to be improved,
based upon your experiences as an employee, cus-
tomer, other system user, or system owner. Switch
roles and perspectives as necessary to perform or
answer the following:

a. Describe the nature of the information system
you have selected.

b. Describe the organization that owns and main-
tains the information system.

c. Identify the baseline problems and opportuni-
ties, per Task 1.1.

d. Develop a preliminary problem statement, us-
ing the format shown in Figure 5-8.

2. Assume you are the now a systems analyst on the
project described in the preceding question. Exec-
utive management was extremely impressed by
your work on the problem statement. As a result,
they have given the project the go-ahead, the base-
line schedule and budget have been developed,
and the project plan has been approved by the ex-
ecutive steering committee. As the systems analyst,
you now have been tasked to do the following:

a. Develop and document your understanding of
the problem domain and business vocabulary,
using the textbook’s information system build-
ing blocks framework as described in Task 2.1.

b. Analyze problems and opportunities using
cause-and-effect analysis (Task 2.2).

c. Analyze business processes and develop
process models (Task 2.3).

d. Establish system improvement objectives
(Task 2.4).

e. Prepare a Problems, Opportunities, Objectives,
and Constraints Matrix, using Figure 5-12 as an
example.

3. Communicating findings and recommendations is
the final task in the problem analysis phase. As a
systems analyst on the project, you have been
tasked with preparing the System Improvement
Objectives and Recommendations Report. For this
exercise, prepare only the Executive Summary

portion of the report, using the format shown in
Figure 5-13.The executive steering committee will
use this summary to make its decisions regarding
the recommendations.

4. Your strong work on the project to date has con-
tinued to impress executive management.You
have received a pay increase and have been tasked
with conducting the requirements analysis phase.
Specifically:

a. Identify the system requirements, and prepare an
outline of functional and nonfunctional require-
ments, per Task 3.1. Since your organization uses
structured analysis and does not employ use
case modeling, list each system improvement ob-
jective, and the inputs, processes, outputs, and
stored data needed to meet each objective.

b. Assume that the requirements you identified in
the preceding step have been validated. Prioritize
the requirements according to their relative im-
portance, using the method described in Task 3.2.

5. Your work has helped keep the project well ahead of
schedule, so executive management gives you a cou-
ple of weeks of paid vacation.When you return, the
project is moving into the decision analysis phase.
Your next task is to identify candidate solutions.

a. Describe the process for identifying candidate
solutions. What should you be careful not to do
at this point?

b. Develop a candidate systems matrix, using the
format in Figure 5-20 as an example, and in-
clude three possible solutions.

6. After identifying candidate solutions, the next step
is to analyze these solutions.

a. Describe the process for analyzing candidate
solutions. What should the project team not do
in completing this task?

b. Develop a Feasibility Analysis Matrix, based
upon the candidate solutions identified in the
preceding question, and using the format
shown in Figure 5-21 as an example. Determine
what your weighting factors should be.

Projects and Research

1. You are the CIO of a major retailer. Recently, you
read “Spying on the Sales Floor” in the Wall Street

Journal on December 21, 2004.You see that your

competitors are using video mining to analyze con-
sumer behavior. Should your company also adopt
this tool (video mining)? What are the strategic

Minicases

implications to your company of your competitors’
move? What opportunities have been created?
Threats?

2. Read “Human Reengineering,” by Cooper and
Markus, in the Sloan Management Review, Sum-
mer 1995. In this article, Okuno works on institut-
ing a positive attitude toward change. How does
he do this? Discuss the importance of change ac-
ceptance by employees to the success of a tech-
nology implementation.

3. Refer to Minicase 1. You, as the CIO, believe that
the business gains for implementing video min-
ing in your retail stores will outweigh any nega-

tive customer perceptions. Your company is
Baby’s R Us, a child company of Toys R Us. Do an
economic feasibility study for this investment.
Be sure to include a listing of intangible costs
and benefits, as well as an argument for your
chosen discount rate. What is the ROI of the
video mining? Try to keep your analysis to under
15 pages.

4. Develop a project plan and schedule feasibility
study for the video-mining investment into Baby’s
R Us. Be sure to include a Gantt and PERT/CPM
chart, as well as a clear discussion of all tasks that
need to be completed.

Systems Analysis Chapter Five 205

1. How often do you think legal issues play a role in
project success? Think of an example of a potentially
good information system or program that was con-
strained or not feasible due to legal requirements.

2. As a team, brainstorm some ways to enhance em-
ployee change acceptance of new information
systems or business processes.

3. Think of an example when business process im-
provement is more appropriate than business
process reengineering. Share with the class.

Team and Individual Exercises

Application Development Trends (monthly periodical). Nat-

ick, MA: Software Productivity Group, a ULLO Interna-

tional company. This is our favorite systems development

periodical. It follows systems analysis and design strate-

gies, methodologies, CASE, and other relevant trends.Visit

its Web site at www.adtmag.com.

Gause, Donald C., and Gerald M. Weinberg. Are Your Lights

On? How to Figure Out What the Problem REALLY Is.

New York: Dorset House Publishing, 1990. Here’s a title

that should really get you thinking, and the entire book ad-

dresses one of the least published aspects of systems

analysis: problem solving.

Hammer, Mike.“Reengineering Work: Don’t Automate, Oblit-

erate.” Harvard Business Review, July–August 1990,

pp. 104–11. Dr. Hammer is a noted expert on business

process redesign.This seminal paper examines some clas-

sic cases where the technique dramatically added value to

businesses.

Wetherbe, James. Systems Analysis and Design: Best Prac-

tices, 4th ed. St. Paul, MN: West Publishing, 1994. We are

indebted to Dr. Wetherbe for the PIECES framework.

Wood, Jane, and Denise Silver. Joint Application Design: How

to Design Quality Systems in 40% Less Time. New York:

John Wiley & Sons, 1989.This book provides an excellent

in-depth presentation of joint application development

(JAD).

Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ: Yourdon Press, 1989. This update to the classic

DeMarco text on the same subject defines the current

state of the practice for the structured analysis approach.

Zachman, John A. “A Framework for Information System

Architecture.” IBM Systems Journal 26, no. 3 (1987).This

article presents a popular conceptual framework for

information systems surveys and the development of an

information architecture.

Suggested Readings

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

a
n

d
S

Y
S

T
E

M
S

 A
N

A
L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L
E

W
A

R
E

M
ID

D
L
E

W
A

R
E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
:

S
a
m

p
lin

g
R

e
s
e
a
rc

h
O

b
s
e
rv

a
tio

n
Q

u
e
s
tio

n
n

a
ire

In
te

rv
ie

w
P

ro
to

ty
p

in
g

J
R

P

6Fact-Finding Techniques for
Requirements Discovery

Chapter Preview and Objectives

Effective fact-finding techniques are crucial to the development of systems projects. In

this chapter you will learn about techniques to discover and analyze information system

requirements. You will learn how to use various fact-finding techniques to gather infor-

mation about the system’s problems, opportunities, and directives. You will know that you

understand fact-finding techniques and requirements discovery when you can:

❚ Define system requirements and differentiate between functional and nonfunctional

requirements.

❚ Understand the activity of problem analysis and be able to create an Ishikawa

(fishbone) diagram to aid in problem solving.

❚ Understand the concept of requirements management.

❚ Identify seven fact-finding techniques and characterize the advantages and

disadvantages of each.

❚ Understand six guidelines for doing effective listening.

❚ Understand what body language and proxemics are and why a systems analyst

should care.

❚ Characterize the typical participants in a JRP session and describe their roles.

❚ Complete the planning process for a JRP session, including selecting and equipping

the location, selecting the participants, and preparing an agenda to guide the JRP

session.

❚ Describe several benefits of using JRP as a fact-finding technique.

❚ Describe a fact-finding strategy that will make the most of your time with end users.

Bob Martinez has spent most of the week reading. He started with memos related to the
proposed Member Services System to better understand the problem. He then reviewed
SoundStage’s procedures manual for any policies related to member services and pro-
motions. He studied nearly 100 member order forms selected at random, noting the
kinds of data recorded in each blank and which blanks were always, sometimes, and
never used. He read the documentation for the present member services system. He re-
viewed data and process diagrams from the prior member service systems development
project, noting things that would probably need to be changed in the new system. It
was grueling work. But in the end he really felt like he was beginning to understand the
system. He produced a report for Sandra, his boss, of the key issues and questions that
would need to be answered at the upcoming joint requirements planning meeting.

208 Part Two Systems Analysis Methods

requirements discovery
the process and techniques

used by systems analysts to

identify or extract system

problems and solution

requirements from the user

community.

system requirement
something that the information

system must do or a property

that it must have. Also called a

business requirement.

functional requirement
something the information

system must do.

nonfunctional require-
ment a property or quality

the system must have. Exam-

ples include security, ease-of-

use, performance, etc.

1Donald C. Gause and Gerald M. Weinberg, Exploring Requirements: Quality before Design (New York: Dorset House

Publishing, 1989), pp. 17–18.

Introduction

An Introduction to Requirements Discovery

In Chapter 3 we discussed several phases of systems development. Each phase is im-
portant and necessary in order to effectively design, construct, and ultimately imple-
ment a system to meet the users’ (stakeholders’) needs. But to develop such a system,
we must first be able to correctly identify, analyze, and understand what the users’ re-
quirements are or what the users want the system to do.The process and techniques
that a systems analyst uses to identify, analyze, and understand system requirements
are referred to as requirements discovery. As suggested by the chapter’s home
page, requirements discovery primarily involves systems analysts working with
system users and owners during the earlier system development phases to obtain a
detailed understanding of the business requirements of an information system.

What are system requirements? System requirements specify what the infor-
mation system must do or what property or quality the system must have. System re-
quirements that specify what the information system must do are frequently referred
to as functional requirements. System requirements that specify a property or qual-
ity the system must have are frequently referred to as nonfunctional requirements.

The PIECES framework (Table 6-1), introduced in Chapter 3, provides an excellent
tool for classifying system requirements.The benefit of classifying the various types of
requirements is the ability to group requirements for reporting, tracking, and validation
purposes. Plus doing so aids in identifying possible overlooked requirements.

Essentially, the purpose of requirements discovery and management is to cor-
rectly identify the KNOWLEDGE, PROCESS, and COMMUNICATION requirements for the users
of a new system. Failure to correctly identify system requirements may result in one
or more of the following:

• The system may cost more than projected.
• The system may be delivered later than promised.
• The system may not meet the users expectations, and that dissatisfaction may

cause them not to use it.
• Once in production, the costs of maintaining and enhancing the system may

be excessively high.
• The system may be unreliable and prone to errors and downtime.
• The reputation of the IT staff on the team is tarnished because any failure,

regardless of who is at fault, will be perceived as a mistake by the team.

The impact in terms of cost can be staggering.Take, for example,Table 6-2, by Barry W.
Boehm, a noted expert in information technology economics.1 He studied several

T A B L E 6 - 1 PIECES Classification of System Requirements

Nonfunctional
Requirement Type

Performance

Information

Economy

Control (and security)

Efficiency

Service

Explanation

Performance requirements represent the performance the system is required to exhibit to meet
the needs of users.

• What is the acceptable throughput rate?

• What is the acceptable response time?

Information requirements represent the information that is pertinent to the users in terms of
content, timeliness, accuracy, and format.

• What are the necessary inputs and outputs? When must they happen?

• What is the required data to be stored?

• How current must the information be?

• What are the interfaces to external systems?

Economy requirements represent the need for the system to reduce costs or increase profits.

• What are the areas of the system where costs must be reduced?

• How much should costs be reduced or profits be increased?

• What are the budgetary limits?

• What is the timetable for development?

Control requirements represent the environment in which the system must operate, as well
as the type and degree of security that must be provided.

• Must access to the system or information be controlled?

• What are the privacy requirements?

• Does the criticality of the data necessitate the need for special handling (backups, off-site
storage, etc.) of the data?

Efficiency requirements represent the system’s ability to produce outputs with minimal waste.

• Are there duplicate steps in the process that must be eliminated?

• Are there ways to reduce waste in the way the system uses it resources?

Service requirements represent needs in order for the system to be reliable, flexible, and
expandable.

• Who will use the system, and where are they located?

• Will there be different types of users?

• What are the appropriate human factors?

• What training devices and training materials are to be included in the system?

• What training devices and training materials are to be developed and maintained separately
from the system, such as stand-alone computer-based training (CBT)
programs or databases?

• What are the reliability/availability requirements?

• How should the system be packaged and distributed?

• What documentation is required?

Fact-Finding Techniques for Requirements Discovery Chapter Six 209

T A B L E 6 - 2 Relative Coasts of Fixing an Error

Phase in which
Error Discovered Cost Ratio

Requirements 1

Design 3–6

Coding 10

Development Testing 15–40

Acceptance Testing 30–70

Operation 40–1,000

software development projects to determine the costs of errors in requirements that
weren’t discovered until later in the development process.

Based on Boehm’s findings, an erroneous requirement that goes undetected and un-
fixed until the operation phase may cost 1,000 times more than it would if it were de-
tected and fixed in the requirements phase.Therefore, in defining system requirements,
it is critical that they meet the following criteria:

• Consistent—The requirements are not conflicting or ambiguous.
• Complete—The requirements describe all possible system inputs and

responses.
• Feasible—The requirements can be satisfied based on the available resources

and constraints (feasibility analysis is covered in Chapter 11).
• Required—The requirements are truly needed and fulfill the purpose of the

system.
• Accurate—The requirements are stated correctly.
• Traceable—The requirements directly map to the functions and features of

the system.
• Verifiable—The requirements are defined so that they can be demonstrated

during testing.

This can be a time-consuming, difficult, and frustrating process that often leads orga-
nizations and individuals to take shortcuts to save time and money. But this short-
sightedness often leads to the problems mentioned before. Now that we understand
our goal, lets look at the process.

210 Part Two Systems Analysis Methods

The Process of Requirements Discovery

The process of requirements discovery consists of the following activities:

• Problem discovery and analysis.
• Requirements discovery.
• Documenting and analyzing requirements.
• Requirements management.

Let’s now examine each one of these activities in detail.

> Problem Discovery and Analysis

As previously stated, requirements solve problems. For systems analysts to be suc-
cessful, they must be skilled in the activity of problem analysis. To fully understand
problem analysis, let’s use the following example: A mother takes her young daughter
to the doctor because the child is ill. The first thing the doctor tries to do is identify

F I G U R E 6 - 1 Sample Fishbone Diagram

Member

Contract

Defaults

Materials

Methods

Policies

Unreasonable

pricing

People -

Members

Member unhappiness

Member not aware Fraud

Financial

problems

No automatic

default solution

No reminders

warning customers

Insufficient

incentives

No progress

tracking

Lack of

Enforcement

Policies

inadequate

Contracts

Enforcement

too costly

Lack of

flexibility

the problem.The child has an earache, a fever, and a runny nose. Are these the prob-
lems? The mother has been giving the child pain medicine to ease the pain, but
the child has not gotten better. It turns out the mother is treating the symptoms and
not the real problem. Fortunately, the doctor is trained to analyze further. After ex-
amining the child, the doctor has concluded that the child has an ear infection,
which is the root cause of the child’s symptoms. Now that the problem has been
identified and analyzed, it is time for the doctor to recommend a cure (solution).
Normally, an antibiotic is prescribed to cure an ear infection, but in order to do that,
the doctor first needs to determine if there are any constraints on the medicine that
he can prescribe. How old is the child, and how much does she weigh? Is the child
allergic to any medications? Can she swallow pills? Once these constraints are
known, a prescription can be generated. Systems analysts use the same problem-
solving process as a doctor uses, but instead of diagnosing medical problems they
diagnose system problems.

One of the most common mistakes inexperienced systems analysts make when
trying to analyze problems is identifying a symptom as a problem. As a result, they
may design and implement a solution that more than likely doesn’t solve the real
problem or that may cause new problems. A popular tool used by development teams
to identify, analyze, and solve problems is an Ishikawa diagram. The fishbone-
shaped diagram is the brainchild of Kaoru Ishikawa, who pioneered quality manage-
ment processes in the Kawasaki shipyards of Japan and, in the process, became one
of the founding fathers of modern management.

Drawing the fishbone diagram begins with the name of the problem of interest en-
tered at the right of the diagram (or the fish’s head).The possible causes of the problem
are then drawn as bones off the main backbone, each on an arrow pointing to the
backbone. Typically, these “bones” are labeled as four basic categories: materials, ma-
chines, manpower, and methods (the four Ms). Other names can be used to suit the
problem at hand. Alternative or additional categories include places, procedures, poli-
cies, and people (the four Ps) or surroundings, suppliers, systems, and skills (the four Ss).

The key is to have three to six main categories that encompass all possible ar-
eas of causes. Brainstorming techniques (defined later in the chapter) are commonly
performed to add causes to the main bones. When the brainstorming is complete,
the fishbone depicts a complete picture of all the possibilities about what could be
the root cause for the designated problem.The development team can then use the
diagram to decide and agree on what the most likely causes of the problem are and
how they should be acted on. Figure 6-1 is an example of a fishbone diagram

Fact-Finding Techniques for Requirements Discovery Chapter Six 211

Ishikawa diagram a

graphical tool used to identify,

explore, and depict problems

and the causes and effects of

those problems. It is often re-

ferred to as a cause-and-effect

diagram or a fishbone diagram

(because it resembles the

skeleton of a fish).

depicting the SoundStage problem of members defaulting on contracts. In the dia-
gram, notice that the problem to be solved is in the box at the far right. The five
areas that have been identified as categories of causes (People-Members, Methods,
Contracts, Materials, and Policies) are listed in boxes above and below the
fish’s skeleton and connected by arrows (bones) pointing to the fish’s backbone.The
actual causes of the problem for each category are depicted as arrows pointing to
the category arrow (bone).

> Requirements Discovery

Given an understanding of problems, the systems analyst can start to define require-
ments. For today’s systems analysts to be successful in defining system requirements,
they must be skilled in effective methods for gathering information—fact-finding.
Fact-finding is a technique that is used across the entire development cycle, but it is
extremely critical in the requirements analysis phase. Once fact-finding has been com-
pleted, tools such as use cases, data models, process models, and object models will
be used to document facts, and conclusions will be drawn from the facts. You will
learn about these tools and how to document requirements derived from fact-finding
in subsequent chapters of this textbook.

Facts are in the domain of the business application and its end users. Therefore,
the analyst must collect those facts in order to effectively apply the documentation
tools and techniques. During systems analysis phases, the analyst learns about the
vocabulary, problems, opportunities, constraints, requirements, and priorities of a
business and a system.

What types of facts must be collected? It would certainly be beneficial if we had
a framework to help us determine what facts need to be collected, no matter what
project we are working on. Fortunately, we have such a framework. As it turns out, the
facts that describe any information system also correspond nicely with the building
blocks highlighted on the chapter home page. Notice that fact-finding techniques are
used in the early systems development phases to identify information, functional, and
communication scopes and visions, as well as to identify business knowledge process,
and communication requirements for the system.

> Documenting and Analyzing Requirements

When the systems analyst is performing fact-finding activities, it is important that the
analyst assemble or document the gathered information (or draft requirements) in an
organized, understandable, and meaningful way.These initial documents will provide
direction for the modeling techniques the systems analyst will use to analyze the re-
quirements and determine the correct requirements for the project. Once those have
been identified, the systems analyst formalizes the requirements by presenting them
in a document that will be reviewed and approved by the users.

Documenting the Draft Requirements Systems analysts use various tools to doc-
ument their initial findings in draft form.They write use cases to describe the system
functions from the external users’ perspective and in a manner and terminology the
users understand. Decision tables are used to document an organization’s complex
business policies and decision-making rules, and requirements tables are used to doc-
ument each specific requirement. Each of these tools is examined in more detail later
in the chapter.

Analyzing Requirements More often than not, fact-finding activities produce
requirements that are in conflict with one another. This is because requirements are
solicited from many different sources and each person has his or her own opinions

212 Part Two Systems Analysis Methods

fact-finding the formal

process of using research,

meetings, interviews, ques-

tionnaires, sampling, and

other techniques to collect

information about system

problems, requirements, and

preferences. It is also called

information gathering or data

collection.

and desires for the functionality and features of the new system. The goal of the
requirements analysis activity is to discover and resolve the problems with the
requirements and reach agreement on any modifications to satisfy the stakeholders.
The process is concerned with the “initial” requirements gathered from the stake-
holders. These requirements are usually incomplete and documented in an informal
way in instruments such as use cases, tables, and reports.The focus at this stage is on
reaching agreement on the stakeholder’s needs; in other words, the analysis should
answer the question, “Do we have the right system requirements for the project?”
Inevitably, the draft requirements contain many problems, such as:

• Missing requirements
• Conflicting requirements
• Infeasible requirements
• Overlapping requirements
• Ambiguous requirements

These types of requirements problems are very common in many of the requirement
documents written today. If left unresolved, they can be extremely costly to fix later
in the development cycle.

It was previously mentioned that stakeholders should agree on the resulting sys-
tem requirements—thus there is an inevitable negotiation process that exists among
stakeholders during analysis. If multiple stakeholders submit requirements that are in
conflict with each other or if the proposed requirements are too ambitious, the stake-
holders must negotiate, often under the guidance of the systems analyst, to agree on
any modifications or simplifications to the system requirements.They also must agree
on the criticality and priority of the requirements.This is crucial to ensure the success
of the development effort.

The fact-finding and requirements analysis activities are very closely associated
with each other and in fact are often interwoven. If requirements discovered during
the fact-finding process are found to be problematic, the analyst may go ahead and
perform analysis activities on the select items in order to resolve the problems before
continuing to elicit additional system needs and desires.

This chapter focuses primarily on the business side of requirements, or, in other
words, the logical requirements, but it is important to note that additional technical
requirements exist that are physical in nature. Examples of technical requirements in-
clude specifying a required software package or hardware platform. These types of
requirements will be discussed in depth in Chapter 11.

Formalizing Requirements System requirements are usually documented in a for-
mal way to communicate the requirements to the key stakeholders of the system.This
document serves as the contract between the system owners and the develop-
ment team on what is going to be provided in terms of a new system.Thus, it may go
through many revisions and reviews before everyone agrees and authorizes its contents.
There is no standard name or format for this document. In fact, many organizations
use different names such as requirements statement, requirements specification,
requirements definition, functional specification, and the like, and the format is usu-
ally tailored to the organization’s needs. Companies that provide information systems
and software to the U.S. government must use the format and naming conventions
specified in the government’s published standards document MIL-STD-498.2 Many or-
ganizations have created their own standards adapted from MIL-STD-498 because of
its thoroughness and because many people are already familiar with it. In this book
we will use the term requirements definition document, and Figure 6-2 provides
a sample outline of one. Please note that this document will be consolidated with

Fact-Finding Techniques for Requirements Discovery Chapter Six 213

requirements definition
document a formal docu-

ment that communicates the

requirements of a proposed

system to key stakeholders

and serves as a contract

for the systems project. Syn-

onyms include requirements

statement, requirements

specification, and functional

specification.

2MIL-STD-498 is a standard that merges DOD-STD-2167A and DOD-STD-7935A to define a set of activities and documen-

tation suitable for the development of both weapon systems and automated information systems.

REQUIREMENTS DEFINITION DOCUMENT

3.1. Functional Requirements

3.2. Nonfunctional Requirements

4. Conclusion

3. Requirements and Constraints

2.1. Functional Requirements

2. General Project Description

1. Introduction

4.1. Outstanding Issues

1.2. Background

1.3. Scope

1.1. Purpose

1.4. Definitions, Acronyms, and Abbreviations

1.5. References

Appendix (optional)

other project information to form the requirements statement, which is the final de-
liverable of the requirements analysis phase. A requirements definition document
should consist of the following:

• The functions and services the system should provide.
• Nonfunctional requirements, including the system’s features, characteristics,

and attributes.
• The constraints, which restrict the development of the system or under

which the system must operate.
• Information about other systems with which the system must interface.

Who will read the requirements definition document? This document is probably
the most widely read and referenced document of all the project documentation.
System owners and users use it to specify their requirements and any changes that may
arise. Managers use it to prepare project plans and estimates, and developers use it to
understand what is required and to develop tests to validate the system. With this in
mind, it is important to note that requirements are read more often than they are writ-
ten. Therefore, taking the time to write them correctly, concisely, and clearly not only
will save time in terms of the schedule but is also more cost-efficient and reduces the
risk of costly requirements errors. Performing requirements validation, therefore, is a
necessary step toward achieving that goal. Requirements validation is performed on a fi-
nal draft of the requirements definition document after all input has been solicited from
the system owners and users. The purpose of this activity is for the systems analyst to
ensure the requirements are written correctly. Examples of errors the systems analyst
might find are:

• System models that contain errors.
• Typographical or grammatical errors.
• Conflicting requirements.
• Ambiguous or poorly worded requirements.
• Lack of conformance to quality standards required for the document.

> Requirements Management

Over the lifetime of the project it is very common for new requirements to emerge
and existing requirements to change after a requirements definition document has
been approved. Some studies have shown that over the life of a project as much as

214 Part Two Systems Analysis Methods

F I G U R E 6 - 2

Sample Require-
ments Definition
Outline

50 percent or more of the requirements will change before the system is put into pro-
duction. Obviously, this can be a major headache for the development team. To help
alleviate the many problems associated with changing requirements, it is necessary to
perform requirements management. Requirements management encompasses the
policies, procedures, and processes that govern how a change to a requirement is
handled. In other words, it specifies how a change request should be submitted, how
it is analyzed for impact to scope, schedule, and cost, how it is approved or rejected,
and how the change is implemented if approved.

Fact-Finding Techniques

In this section we present seven common fact-finding techniques:

• Sampling of existing documentation, forms, and databases.
• Research and site visits.
• Observation of the work environment.
• Questionnaires.
• Interviews.
• Prototyping.
• Joint requirements planning.

An analyst usually applies several of these techniques during a single systems pro-
ject. To be able to select the most suitable technique for use in any given situation,
systems analysts need to learn the advantages and disadvantages of each of the fact-
finding techniques.

Fact-Finding Ethics During fact-finding, systems analysts often come across or ana-
lyze information that is sensitive in nature. It could be a file of an aerospace com-
pany’s pricing structure for a contract bid or even employee profiles, including
salaries, performance history, medical history, and career plans. Analysts must take
great care to protect the security and privacy of any facts or data with which they
have been entrusted. Many people and organizations in this highly competitive at-
mosphere are looking for an “edge” to get ahead. Careless system analysts who leave
sensitive documents in plain view on their desks, or publicly discuss sensitive data
could cause great harm to the organization or to individuals. If such data should fall
into the wrong people’s hands, the systems analyst may lose the respect, credibility, or
confidence of users and management. In some cases, the analyst would be responsible
for the invasion of a person’s privacy and could be liable.

Most corporations make every effort to ensure they conduct business in an ethical
manner because the laws may require them to.There have been many cases where cor-
porations have incurred heavy fines for not conducting business properly.To this end,
many corporations require that their employees attend annual training seminars on
company ethics, and they reinforce the learning by displaying banners or signs that
contain the company’s code of conduct and ethics statements throughout the work-
place in highly visible locations. The company’s ethics policies may be in a hard-copy
format that is distributed to all employees, or they may be on the company’s Web
pages, making them easily accessible to employees no matter where they are currently
located. Ethics policies document expected and required behavior.Violations of these
policies could lead to disciplinary action or even termination. Ethics play a crucial role
in fact-finding.

Sampling of Existing Documentation, Forms, and Files

When studying an existing system, systems analysts develop a pretty good feel for the
system by studying existing documentation, forms, and files. A good analyst always
knows to get facts first from existing documentation rather than from people.

Fact-Finding Techniques for Requirements Discovery Chapter Six 215

requirements
management the process

of managing change to the

requirements.

Collecting Facts from Existing Documentation What kind of documents can
teach you about a system? The first document the analyst may wish to seek out is the
organization chart. An organization chart serves to identify key individual owners and
users for a project and their reporting relationships. The analyst may also want to
trace the history that led to the project.To accomplish this, the analyst should collect
and review documents that describe the problem.These include:

• Interoffice memoranda, studies, minutes, suggestion box notes, customer com-
plaints, and reports that document the problem area.

• Accounting records, performance reviews, work measurement reviews, and
other scheduled operating reports.

• Information systems project requests—past and present.

In addition to documents that describe the problem, there are usually documents that
describe the business function being studied or designed. These documents may
include:

• The company’s mission statement and strategic plan.
• Formal objectives for the organization subunits being studied.
• Policy manuals that may place constraints on any proposed system.
• Standard operating procedures (SOPs), job outlines, or task instructions for

specific day-to-day operations.
• Completed forms that represent actual transactions at various points in the

processing cycle.
• Samples of manual and computerized databases.
• Samples of manual and computerized screens and reports.

Also, analysts often check for documentation of previous system studies and designs per-
formed by former systems analysts and consultants.This documentation may include:

• Various types of flowcharts and diagrams.
• Project dictionaries or repositories
• Design documentation, such as inputs, outputs, and databases.
• Program documentation.
• Computer operations manuals and training manuals.

All documentation collected should be analyzed to determine whether or not the in-
formation is current. Outdated documentation should not be discarded; however, an-
alysts should keep in mind that additional fact-finding will be needed to verify or
update the facts collected. What is the analyst looking for in all this material? Things
that can be gleaned from these documents include:

• The symptoms and (possibly) causes of the problem.
• What persons in the organization have an understanding of the problem.
• The business functions that support the present system.
• The type of data that needs to be collected and reported by the system.
• Things in the documentation that the analyst does not understand and so

need to be covered in interviews.

Document and File Sampling Techniques Because it would be impractical to study
every occurrence of every form or record in a file or database, system analysts normally
use sampling techniques to get a large-enough cross section to determine what can
happen in the system.The systems analyst should seek to sample enough forms to rep-
resent the full nature and complexity of the data. Experienced analysts avoid the pitfalls
of sampling blank forms—blank forms tell little about how the form is actually used,
when it is not used, or how it is often misused. When studying documents or records
from a database table, analysts should study enough samples to identify all the possible
processing conditions and exceptions. Statistical sampling techniques can be used to
determine if the sample size is large enough to be representative of the total population
of records or documents.

216 Part Two Systems Analysis Methods

sampling the process of

collecting a representative

sample of documents, forms,

and records.

T A B L E 6 - 3 Partial Table of Certainty Factors

Desired Certainty Certainty Factor

95% 1.960

90 1.645

80 1.281

There are many sampling issues and factors, and this is a good reason for taking
an introductory statistics course. One simple and reliable formula for determining
sample size is

Sample size 0.25 (Certainty factor/Acceptable error)2

The certainty factor is a value that can simply be looked up in statistical tables
based on the desired certainty that the sample selected will be representative of the
total population. See Table 6-3 for a partial example.

Suppose an analyst wants to be 90-percent certain that a sample of invoices will
contain no unsampled variations.The sample size, SS, is calculated as follows:

SS 0.25(1.645/0.10)2
 68

The analyst will need to sample 68 invoices to get the desired accuracy. If a higher
level of certainty is desired, a larger number of invoices are needed.

If the analyst knows from experience that 1 in every 10 invoices varies from the
norm, then he or she can replace the heuristic 0.25 with p(1 p) where p is the pro-
portion of invoices with variances:

SS p(1 p)(1.645/0.10)2

By using this formula, the analyst can reduce the number of samples required to
get the desired accuracy:

SS 0.10(1 0.10)(1.645/0.10)2
 25

How are the 25 invoices chosen? Two commonly used sampling techniques are
randomization and stratification. Randomization involves randomly, or without con-
cern, selecting sample data.Therefore, we just randomly choose 25 invoices based on
the sample size calculated above. Stratification is a thoughtful and systematic ap-
proach aimed at reducing the variance of the sample data. For computerized files,
stratification sampling can be executed by writing a simple program. For instance,
suppose our invoices are in a database that has a volume of approximately 250,000
invoices. Recall that our sample size needs to include 25 invoices. We will simply
write a program that prints every 10,000th record (250,000/25). For manual files
and documents, we could execute a similar scheme.

> Research and Site Visits

A second fact-finding technique is thoroughly researching the problem domain. Most
problems are not completely unique. Other people have solved them before us. Many
times organizations contact or perform site visits with companies they know have
previously experienced similar problems. If these companies are “willing to share,”
valuable information can be obtained that may save tremendous time and cost in the
development process.

Computer trade journals and reference books are a good source of information.
They can provide information on how others have solved similar problems. With
recent advances in cyberspace, analysts rarely have to leave their desks to do research.

Fact-Finding Techniques for Requirements Discovery Chapter Six 217

randomization a sampling

technique characterized by

having no predetermined

pattern or plan for selecting

sample data.

stratification a systematic

sampling technique that

attempts to reduce the vari-

ance of estimates by spread-

ing out the sampling—for

example, choosing documents

or records by formula—and

by avoiding very high or very

low estimates.

218 Part Two Systems Analysis Methods

observation a fact-finding

technique wherein the sys-

tems analyst either partici-

pates in or watches a person

perform activities to learn

about the system.

Exploring the Internet and intranet via personal computer can provide immeasurable
amounts of information.

A similar type of research involves visiting other companies or departments that
have addressed similar problems. Memberships in professional societies such as the
Association for Information Technology Professionals (AITP) or Association for In-
formation Systems (AIS), among others, can provide a network of useful contacts.

> Observation of the Work Environment

Observation is one of the most effective data-collection techniques for learning about
a system. Observation involves the systems analyst becoming an observer of people
and activities in order to learn about the system. This technique is often used when
the validity of data collected through other methods is in question or when the com-
plexity of certain aspects of the system prevents a clear explanation by the end users.

Collecting Facts by Observing People at Work Even with a well-conceived
observation plan, the systems analyst is not assured that fact-finding will be successful.
The following story, which appears in a book by Gerald M. Weinberg called Rethink-

ing Systems Analysis and Design, gives us an entertaining yet excellent example of
some of the pitfalls of observation.3

The Railroad Paradox

About thirty miles from Gotham City lay the commuter community of Suburban-
town. Each morning, thousands of Surburbanites took the Central Railroad
to work in Gotham City. Each evening, Central Railroad returned them to their
waiting spouses, children, and dogs.

Suburbantown was a wealthy suburb, and many of the spouses liked to leave
the children and dogs and spend an evening in Gotham City with their mates.They
preferred to precede their evening of dinner and theater with browsing among
Gotham City’s lush markets. But there was a problem. To allow time for proper
shopping, a Suburbanite would have to depart for Gotham City at 2:30 or 3:00 in
the afternoon. At that hour, no Central Railroad train stopped in Suburbantown.

Some Suburbanites noted that a Central train did pass through their station at
2:30, but did not stop.They decided to petition the railroad, asking that the train
be scheduled to stop at Suburbantown. They readily found supporters in their
door-to-door canvass. When the petition was mailed, it contained 253 signatures.
About three weeks later, the petition committee received the following letter
from the Central Railroad:

Dear Committee

Thank you for your continuing interest in Central Railroad operations.We take se-
riously our commitment to providing responsive service to all the people living
among our routes, and greatly appreciate feedback on all aspects of our business.
In response to your petition, our customer service representative visited the Sub-
urbantown station on three separate days, each time at 2:30 in the afternoon.
Although he observed with great care, on none of the three occasions were there

any passengers waiting for a southbound train.

We can only conclude that there is no real demand for a southbound stop at
2:30, and must therefore regretfully decline your petition.

Yours sincerely,

Customer Service Agent

Central Railroad

3Gerald M. Weinberg, Rethinking Systems Analysis and Design, pp. 23–24. Copyright © 1988, 1982 by Gerald M.

Weinberg. Reprinted by permission of Dorset House Publishing, 353 W. 12th St., New York, NY 10014 (212-620-4053/

800-DH-BOOKS/www.dorsethouse.com). All rights reserved.

What are the lessons learned form the story above? For one, it is necessary to use the
appropriate fact-finding technique for the problem at hand. Observation, in this case,
was an incorrect choice. Why would anyone be waiting for a 2:30 train when all the
town’s people knew the train doesn’t stop? A second lesson to be learned is to verify
fact-finding results with users. Based on the user feedback, you may discover that you
need to try other fact-finding techniques to gather additional information. Never jump
to conclusions.

Observation Advantages and Disadvantages Observation can be a very useful
and beneficial fact-finding technique provided that you have the ability to observe all
aspects of the work being performed by the users and that the work is being per-
formed in the usual manner. You should become aware of the pros and cons of the
technique of observation. Advantages and disadvantages include:

Fact-Finding Techniques for Requirements Discovery Chapter Six 219

Advantages

• Data gathered based on observation
can be very reliable. Sometimes,
observations are conducted to
check the validity of data obtained
directly from individuals.

• The systems analyst is able to see
exactly what is being done. Complex
tasks are sometimes difficult to
clearly explain in words. Through
observation, the systems analyst can
identify tasks that have been missed
or inaccurately described by other
fact-finding techniques. Also, the
analyst can obtain data describing
the physical environment of the
task (e.g., physical layout, traffic,
lighting, noise level).

• Observation is relatively inexpensive
compared with other fact-finding
techniques. Other techniques usu-
ally require substantially more
employee release time and copying
expenses.

• Observation allows the systems
analyst to do work measurements.

Disadvantages

• Because people usually feel uncom-
fortable when being watched, they
may unwittingly perform differently
when being observed.

• The work being observed may not
involve the level of difficulty or vol-
ume normally experienced during
that time period.

• Some systems activities may take
place at odd times, causing a sched-
uling inconvenience for the systems
analyst.

• The tasks being observed are subject
to various types of interruptions.

• Some tasks may not always be per-
formed in the manner in which
they are observed by the systems
analyst. For example, the systems
analyst might have observed how a
company filled several customer
orders. However, the procedures
the systems analyst observed may
have been the steps used to fill a
number of regular customer orders.
If any of those orders had been
special orders (e.g., an order for
goods not normally kept in stock),
the systems analyst would have
observed a different set of proce-
dures being executed.

• If people have been performing
tasks in a manner that violates
standard operating procedures,
they may temporarily perform
their jobs correctly while you are
observing them. In other words,
people may let you see what they
want you to see.

Guidelines for Observation How does the systems analyst obtain facts through
observation? Does one simply arrive at the observation site and begin recording

everything that’s viewed? No. Much preparation should take place in advance. The
analyst must determine how data will actually be captured. Will it be necessary
to have special forms on which to quickly record data? Will the individuals being
observed be bothered by having someone watch and record their actions? When
are the low, normal, and peak periods of operations for the task to be observed?
The systems analyst must identify the ideal time to observe a particular aspect of
the system.

An analyst should plan to observe a site when there is a typical workload. Once a
typical workload has been observed, observations can be made during peak periods
to gather information for measuring the effects caused by the increased volume. As
part of the analyst’s observation, he or she should obtain samples of documents or
forms used by those being observed.

The sampling techniques discussed earlier are also useful for observation. In this
case, the technique is called work sampling, wherein a large number of observa-
tions may be conducted at random intervals.This technique is less threatening to the
people being observed because the observation period is not continuous.When using
work sampling, an analyst needs to predefine the operations of the job to be ob-
served. A sample size then needs to be calculated as was done for document and file
sampling. The analyst should make many random observations, being careful to ob-
serve activities at different times of the day. By counting the number of occurrences of
each operation during the observations, the analyst will get a feel for how employees
spend their days.

The following guidelines are key to honing observation skills:

• Determine the who, what, where, when, why, and how of the observation.
• Obtain permission to observe from appropriate supervisors or managers.
• Inform those who will be observed of the purpose of the observation.
• Keep a low profile.
• Take notes during or immediately following the observation.
• Review observation notes with appropriate individuals.
• Don’t interrupt individuals at work.
• Don’t focus heavily on trivial activities.
• Don’t make assumptions.

Living the System In this type of observation the systems analyst actively performs
the role of the user for a short period of time. This is one of the most effective ways
to learn about problems and requirements of the system. By filling the user’s “shoes,”
a systems analyst quickly gains an appreciation for what the user experiences and
what she or he has to do to perform the job. This type of role playing gives the sys-
tems analyst a firsthand education in the business processes and functions, as well as
the problems and challenges associated with them.

> Questionnaires

Another fact-finding technique is conducting surveys through questionnaires. The
document can be mass-produced and distributed to respondents, who can then com-
plete the questionnaire on their own time. Questionnaires allow the analyst to collect
facts from a large number of people while maintaining uniform responses.When deal-
ing with a large audience, no other fact-finding technique can tabulate the same facts
as efficiently.

Collecting Facts by Using Questionnaires Systems analysts have often criticized
the use of questionnaires. Many systems analysts claim that the responses lack reliable
and useful information. Nevertheless, questionnaires can be an effective means of fact
gathering, and many of these criticisms can be attributed to the inappropriate or

220 Part Two Systems Analysis Methods

work sampling a fact-

finding technique that

involves a large number of

observations taken at random

intervals.

questionnaire a document

that allows the analyst to

collect information and

opinions from respondents.

Fact-Finding Techniques for Requirements Discovery Chapter Six 221

ineffective use of the questionnaires. Before using questionnaires, an analyst should
understand the pros and cons associated with their use:

free-format
questionnaire a ques-

tionnaire designed to offer the

respondent greater latitude in

the answer. A question is

asked, and the respondent

records the answer in the

space provided after the

question.

fixed-format
questionnaire a question-

naire containing questions

that require selecting an

answer from predefined

available responses.

Advantages

• Most questionnaires can be answered
quickly. People can complete and
return questionnaires at their
convenience.

• Questionnaires are a relatively
inexpensive means of gathering
data from a large number of individuals.

• Questionnaires allow individuals to
maintain anonymity. Therefore,
individuals are more likely to provide
the real facts, rather than telling you
what they think their boss would
want them to.

• Responses can be tabulated and
analyzed quickly.

Disadvantages

• The number of respondents is
often low.

• There’s no guarantee that an indi-
vidual will answer or expand on
all of the questions.

• Questionnaires tend to be inflexi-
ble. There’s no opportunity for the
systems analyst to obtain volun-
tary information from individuals
or to reword questions that may
have been misinterpreted.

• It’s not possible for the systems
analyst to observe and analyze
the respondent’s body language.

• There is no immediate opportu-
nity to clarify a vague or incom-
plete answer to any question.

• Good questionnaires are difficult
to prepare.

Types of Questionnaires There are two formats for questionnaires: free format and
fixed format. Free-format questionnaires are designed to allow the users to exer-
cise more freedom or latitude in their answers to each question.

Here are two examples of free-format questions:

• What reports do you currently receive and how are they used?
• Are there any problems with these reports (e.g., are they inaccurate, is there

insufficient information, or are they difficult to read and/or use)? If so, please
explain.

Obviously, responses to such questions may be difficult to tabulate. It is also pos-
sible that the respondents’answers may not match the questions asked. In order to en-
sure useful responses in free-format questionnaires, the analyst should phrase the
questions in simple sentences and not use words—such as good—that can be inter-
preted differently by different respondents.The analyst should also ask questions that
can be answered with three or fewer sentences. Otherwise, the questionnaire may
take up more time than the respondent is willing to sacrifice.

The second type of questionnaire is fixed-format. Fixed-format questionnaires

are more rigid, requiring that the user select an answer from a predefined set of pos-
sible answers. Given any question, the respondent must choose from the available an-
swers. This makes the results much easier to tabulate. On the other hand, the
respondent cannot provide additional information that might prove valuable.

There are three types of fixed-format questions:

1. For multiple-choice questions, the respondent is given several answers from
which to choose.The respondent should be told if more than one answer can
be selected. Some multiple-choice questions allow for very brief free-format
responses when none of the standard answers apply. Examples of multiple-choice
fixed-format questions are:

Do you feel that backorders occur too frequently?
❑ YES ❑ NO

Is the current accounts receivable report that you receive useful?
❑ YES ❑ NO

If no, please explain.

2. For rating questions, the respondent is given a statement and asked to use
supplied responses to state an opinion.To prevent built-in bias, there should be
an equal number of positive and negative ratings.The following is an example of
a rating fixed-format question:

The implementation of quantity discounts would cause an increase in customer
orders.
❑ Strongly agree
❑ Agree
❑ No opinion
❑ Disagree
❑ Strongly disagree

3. For ranking questions, the respondent is given several possible answers, which
are to be ranked in order of preference or experience. An example of a ranking
fixed-format question is:

Rank the following transactions according to the amount of time you spend
processing them:
_________ new customer orders
_________ order cancellations
_________ order modifications
_________ payments

Developing a Questionnaire Good questionnaires can be difficult to develop.The
following procedure can prove helpful in developing an effective questionnaire:

1. Determine what facts and opinions must be collected and from whom you should
get them. If the number of people is large, consider using a smaller, randomly
selected group of respondents.

2. Based on the facts and opinions sought, determine whether free- or fixed-
format questions will produce the best answers. A combination format that
permits optional free-format clarification of fixed-format responses is often
used.

3. Write the questions. Examine them for construction errors and possible misin-
terpretations. Make sure that the questions don’t reveal your personal bias or
opinions. Edit the questions.

4. Test the questions on a small sample of respondents. If your respondents had
problems with them or if the answers were not useful, edit the questions.

5. Duplicate and distribute the questionnaire.

> Interviews

The personal interview is generally recognized as the most important and most
often used fact-finding technique. Personal interviews involve soliciting require-
ments through direct, face-to-face interaction. Interviewing can be used to achieve
any or all of the following goals: find facts, verify facts, clarify facts, generate en-
thusiasm, get the end user involved, identify requirements, and solicit ideas and
opinions. There are two roles assumed in an interview. The systems analyst is the
interviewer, responsible for organizing and conducting the interview. The system
user or system owner is the interviewee, who is asked to respond to a series of
questions.

There may be one or more interviewers and/or interviewees. In other words, in-
terviews may be conducted one-on-one or many-to-many. Unfortunately, many systems
analysts are poor interviewers. In this section you will learn how to conduct proper
interviews.

222 Part Two Systems Analysis Methods

interview a fact-finding

technique whereby the sys-

tems analyst collects informa-

tion from individuals through

face-to-face interaction.

Interview Types and Techniques There are two types of interviews, unstructured
and structured. Unstructured interviews are characterized as involving general
questions that allow the interviewee to direct the conversation.This type of interview
frequently gets off track, and the analyst must be prepared to redirect the interview
back to the main goal or subject. For this reason, unstructured interviews don’t usu-
ally work well for systems analysis and design. Structured interviews involve the in-
terviewer asking specific questions designed to elicit specific information from the
interviewee. Depending on the interviewee’s responses, the interviewer will direct
additional questions to obtain clarification or amplification. Some of these questions
may be planned and others spontaneous.

Unstructured interviews tend to involve asking open-ended questions. Such
questions give the interviewees significant latitude in their answers. An example of an
open-ended question is “Why are you dissatisfied with the report of uncollectable
accounts?” Structured interviews tend to involve asking more closed-ended questions

that are designed to elicit short, direct responses from the interviewee. Examples of
such questions are “Are you receiving the report of uncollectable accounts on time?”
and “Does the report of uncollectable accounts contain accurate information?” Real-
istically, most questions fall between the two extremes.

Fact-Finding Techniques for Requirements Discovery Chapter Six 223

Advantages

• Interviews give the analyst an
opportunity to motivate the
interviewee to respond freely and
openly to questions. By establishing
rapport, the systems analyst is able
to give the interviewee a feeling of
actively contributing to the systems
project.

• Interviews allow the systems analyst
to probe for more feedback from
the interviewee.

• Interviews permit the systems ana-
lyst to adapt or reword questions
for each individual.

• Interviews give the analyst an
opportunity to observe the inter-
viewee’s nonverbal communica-
tion. A good systems analyst may
be able to obtain information by
observing the interviewee’s body
movements and facial expressions
as well as by listening to verbal
replies to questions.

Disadvantages

• Interviewing is a very time-
consuming, and therefore a costly,
fact-finding approach.

• Success of interviews is highly
dependent on the systems analyst’s
human relations skills.

• Interviewing may be impractical
due to the location of interviewees.

unstructured interview
an interview that is conducted

with only a general goal or

subject in mind and with few,

if any, specific questions.

The interviewer counts on the

interviewee to provide a

framework and direct the

conversation.

structured interview an

interview in which the inter-

viewer has a specific set of

questions to ask of the

interviewee.

open-ended question a

question that allows the inter-

viewee to respond in any way

that seems appropriate.

closed-ended question a

question that restricts answers

to either specific choices or

short, direct responses.

Collecting Facts by Interviewing Users People are the most important element
of an information system. More than anything else, people want to be in on things.
No other fact-finding technique places as much emphasis on people as inter-
views. But people have different values, priorities, opinions, motivations, and
personalities. Therefore, to use the interviewing technique, a systems analyst must
possess good human relations skills for dealing effectively with different types of
people. As with other fact-finding techniques, interviewing isn’t the best method
for all situations. Interviewing has its advantages and disadvantages, which should
be weighed against those of other fact-finding techniques for every fact-finding
situation:

> How to Conduct an Interview

A systems analyst’s success is at least partially dependent on the ability to interview.
A successful interview will involve selecting appropriate individuals to interview,
preparing extensively for the interview, conducting the interview properly, and fol-
lowing up on the interview. Here we examine each of these steps in more detail. Let’s
assume that the analyst has identified the need for an interview and has determined
exactly what kinds of facts and opinions are needed.

Select Interviewees The systems analyst should interview the end users of the in-
formation system being studied. A formal organization chart will help identify these
individuals and their responsibilities. The analyst should attempt to learn as much as
possible about each individual prior to the interview, such as the person’s strengths,
fears, biases, and motivations. The interview can then be geared to take the charac-
teristics of the individual into account.

The analyst should make an appointment with the interviewee and never just
drop in. The appointment should be limited to somewhere between a half hour and
an hour.The higher the management level of the interviewee, the less time should be
scheduled. If the interviewee is a clerical, service, or blue-collar worker, the analyst
must get the supervisor’s permission before scheduling the interview. It is also im-
portant to ensure that the location for the interview will be available during the time
it is scheduled. Interviews should never be conducted in the presence of the analyst’s
officemates or the interviewee’s peers.

Prepare for the Interview Preparation is the key to a successful interview. An in-
terviewee can easily detect when an interviewer is unprepared and may resent the
lack of preparation because it wastes valuable time. When the appointment is made,
the interviewee should be notified about the subject of the interview. To ensure that
all pertinent aspects of the subject are covered, the analyst should prepare an interview

guide. The interview guide is a checklist of specific questions the interviewer
will ask the interviewee. The interview guide may also contain follow-up questions
that will be asked only if the answers to other questions warrant the additional an-
swers. A sample interview guide is presented in Figure 6-3. Notice that the agenda is
carefully laid out with the specific time allocated to each question. Time should also
be reserved for asking follow-up questions and redirecting the interview. Questions
should be carefully chosen and phrased. Most questions begin with the standard who,
what, when, where, why, and how much type of wording. The following types of
questions should be avoided:

• Loaded questions, such as “Do we have to have both of these columns on
the report?” The question conveys the interviewee’s personal opinion on the
issue.

• Leading questions, such as “You’re not going to use this OPERATOR CODE,
are you?” The question leads the interviewee to respond, “No, of course not,”
regardless of actual opinion.

• Biased questions, such as “How many codes do we need for FOOD CLASSIFI-
CATION in the INVENTORY FILE? I think 20 ought to cover it.” These types
of biased questions will influence an interviewee.

Interviewers should always avoid threatening or critical questions. The purpose
of the interview is to investigate, not to evaluate or criticize. Additional guidelines for
questions include:

• Use clear and concise language.
• Don’t include your opinion as part of the question.
• Avoid long or complex questions.
• Avoid threatening questions.
• Don’t use “you” when you mean a group of people.

224 Part Two Systems Analysis Methods

Time

Allocated

Interviewer

Question or Objective

Interviewee

Response

1 to 2 min.

Interviewee: Jeff Bentley, Accounts Receivable Manager

Date: January 19, 2003

Time: 1:30 P.M.

Place: Room 223, Admin. Bldg.

Subject: Current Credit-Checking Policy

Objective

Open the interview:

• Introduce ourselves.

• Thank Mr. Bentley for his valuable time.

• State the purpose of the interview — to obtain an understanding of the

existing credit-checking policies.

5 min. Question 1

What conditions determine whether a customer’s order is approved for credit?

Follow-up

5 min. Question 2

What are the possible decisions or actions that might be taken once these

conditions have been evaluated?

Follow-up

3 min. Question 3

How are customers notified when credit is not approved for their order?

Follow-up

1 min. Question 4

After a new order is approved for credit and placed in the file containing orders

that can be filled, a customer might request that a modification be made to the

order. Would the order have to go through credit approval again if the new total

order cost exceeds the original cost?

Follow-up

1 min. Objective

Conclude the interview:

• Thank Mr. Bentley for his cooperation and assure him that he will be

receiving a copy of what transpired during the interview.

1 min. Question 5

Who are the individuals who perform the credit checks?

Follow-up

1 to 3 min. Question 6

May I have permission to talk to those individuals to learn specifically how they

carry out the credit-checking process?

Follow-up

If so: When would be an appropriate time to meet with each of them?

21 minutes Time allotted for questions and objectives

9 minutes Time allotted for follow-up questions and redirection

30 minutes

General Comments and Notes:

Time allotted for interview (1:30 p.m. - 2:00 p.m.)

F I G U R E 6 - 3 Sample Interview Guide

Fact-Finding Techniques for Requirements Discovery Chapter Six 225

Conduct the Interview Respect your interviewee and his or her time. Dress to
match the interviewee. That generally means that you will dress differently to inter-
view managers than you will to interview workers on the loading dock. If the inter-
view will be held in a meeting room other than the interviewee’s office, arrive early
to make sure it is set up appropriately.

Open the interview by thanking the interviewee in advance. State the purpose
and length of the interview and how the gathered data will be used.Then monitor the
time so you will keep your promise.

Ask follow-up questions. Probe until you understand the system requirements.
Ask especially about exception conditions. As what-if questions, such as “What if the
check doesn’t clear?” or “What happens if a product is not in stock?”

Listen closely, observe the interviewee, and take notes concerning both verbal
and nonverbal responses from the interviewee. It’s very important to keep the inter-
view on track; this means anticipating the need to adapt the interview, if necessary.
Questions can often be bypassed if they have been answered earlier or they can be
deleted if determined to be irrelevant, based on previous answers.

Here is a set of rules that an interviewer should follow:

226 Part Two Systems Analysis Methods

Do

• Dress appropriately.
• Be courteous.
• Listen carefully.
• Maintain control of the interview.
• Probe.
• Observe mannerisms and nonverbal

communication.
• Be patient.
• Keep the interviewee at ease.
• Maintain self-control.
• Finish on time.

Avoid

• Assuming an answer is finished or
leading nowhere.

• Revealing verbal and nonverbal
clues.

• Using jargon.
• Revealing your personal biases.
• Talking instead of listening.
• Assuming anything about the topic

or the interviewee.
• Tape recording—a sign of poor

listening skills.

Conclude the interview by expressing appreciation and providing answers to any
questions posed by the interviewee.The conclusion is very important for maintaining
rapport and trust with the interviewee.

Follow Up on the Interview To help maintain good rapport and trust with inter-
viewees, the interviewer should send them a memo that summarizes the interview.
This memo should remind the interviewees of their contributions to the systems proj-
ect and allow them the opportunity to clarify any misinterpretations that the inter-
viewer may have derived during the interview. In addition, the interviewees should be
given the opportunity to offer additional information they may have failed to bring
out during the interview.

Listening When most people talk about communication skills, they think of speak-
ing and writing. The skill of listening is rarely mentioned, but it may be the most im-
portant skill during the interviewing process. In order to conduct a successful
interview, the interviewer must make a distinction between hearing and listening:“To
hear is to recognize that someone is speaking, to listen is to understand what the
speaker wants to communicate.”4

We have actually been conditioned most of our lives not to listen.Take, for exam-
ple, how we can ignore our quarreling brothers and sisters while we enjoy our
favorite CD or, as students, how we learn to study by blocking out distractions such as
noisy roommates. We have learned not to listen, but we can also learn how to listen
effectively and productively.

4Thomas R. Gildersleeve, Successful Data Processing Systems Analysis (Englewood Cliffs, NJ: Prentice Hall, 1978), p. 93.

When working with users trying to solve their problems, analysts may find that
getting the users to communicate can be difficult. The following guidelines can help
open the lines of communication:

• Approach the session with a positive attitude. The interviewer should make
the best of any situation, and look at it as a fun, pleasurable experience.

• Set the other person at ease. Presenting a nice, cheerful attitude can help
the person relax. The interviewer should start by talking about the person’s
interests or hobbies. Showing an interest in the interviewee’s personal life
sometimes can serve as an icebreaker and put the person more at ease.

• Let the other person know you are listening. The interviewer should always
maintain eye contact when listening and use a response such as a head nod
or an “uh-huh” to acknowledge what the person is saying. Good posture and
leaning forward will tell the speaker that the interviewer is really interested
in what the person is saying.

• Ask questions. The interviewer should ask questions to make sure he or she
clearly understands what the person is saying or to clarify a point. This will
show that the interviewer is listening; it will also give the other person the
opportunity to expand on the answer.

• Don’t assume anything. One of the worst things an interviewer can do is to
act as if he or she is in a hurry. For example, if an interviewer assumes what
the other person is going to say and cuts in and finishes the sentence, he or
she will possibly miss what the person intended to say and irritate the
speaker. Or if the speaker is interrupted because the interviewer has already
heard the information and believes it is not applicable to the topic of the
interview, a valuable piece of information may be missed. Don’t assume any-
thing! TV host Art Linkletter learned this lesson on his popular television
show, Kids Say the Darnedest Things, when he asked a child a philosophical
question:

On my show I once had a child tell me he wanted to be an airline pilot. I asked
him what he’d do if all the engines stopped out over the Pacific Ocean. He said
“First I would tell everyone to fasten their seatbelts, and then I’d find my para-
chute and jump out.”

While the audience rocked with laughter, I kept my attention on the young
man to see if he was being a smart alec.The tears that sprang into his eyes alerted
me to his chagrin more than anything he could have said, so I asked him why he’d
do such a thing. His answer revealed the sound logic of a child: “I’m going for
gas . . . I’m coming back!”5

• Take notes. The process of taking notes serves two purposes. First, by jotting
down brief notes while the other person is speaking, you give the person
the impression that what he or she has to say is important enough to be
written down. Second, the notes help the interviewer remember the major
points of the meeting later.

Body Language and Proxemics What is body language, and why should a sys-
tems analyst care about it during the interviewing process? Body language is all the
non-verbal information being communicated by an individual. Body language is a form
of nonverbal communication that we all use and of which we are usually unaware.

Studies have determined a startling fact: Of a person’s total feelings, only 7 percent
are communicated verbally (in words), whereas 38 percent are communicated by the
tone of voice used and 55 percent are communicated by facial and body expressions.
If you only listen to someone’s words, you are missing most of what the person has
to say.

Fact-Finding Techniques for Requirements Discovery Chapter Six 227

5Donald Walton, Are You Communicating? You Can’t Manage without It. (New York: McGraw-Hill, 1989), p. 31.

body language the

nonverbal information we

communicate.

For this discussion, we will focus on just three aspects of body language: facial dis-
closure, eye contact, and posture. Facial disclosure means you can sometimes under-
stand how a person feels by watching the expressions on his or her face. Many
common emotions have easily recognizable facial expressions associated with them.
However, the face is one of the most controlled parts of the body. Some people who
are aware that their expressions often reveal what they are thinking are very good at
disguising these expressions.

Another form of nonverbal communication is eye contact. Eye contact is the least
controlled aspect of facial expression. Have you ever spoken to someone who will not
look directly at you? How did it make you feel? A continual lack of eye contact may in-
dicate uncertainty. A normal glance is usually from three to five seconds in length;
however, direct-eye-contact time should increase with distance. Analysts need to be
careful not to use excessive eye contact with users who seem threatened so that they
won’t further intimidate them. Direct eye contact can cause strong feelings, either
positive or negative, in other people.

Posture is the least controlled aspect of the body. As such, body posture holds a
wealth of information for the astute analyst. Members of a group who are in agree-
ment tend to display the same posture. A good analyst will watch the audience for
changes in posture that could indicate anxiety, disagreement, or boredom. An analyst
should normally maintain an “open” body position, signaling approachability, accep-
tance, and receptiveness. In special circumstances, the analyst may choose to use a
confrontation angle of head-on or at a 90-degree angle to another person in order to
establish control and dominance.

In addition to the information communicated by body language, individuals also
communicate via proxemics. Proxemics, the relationship between people and the
space around them, is a factor in communications that can be controlled by the
knowledgeable analyst.

People still tend to be very territorial about their space. Observe where your
classmates sit in one of your courses that does not have assigned seats. Or the next
time you are involved in a conversation with someone, deliberately move much closer
or farther away from the person and see what happens. A good analyst is aware of
four spatial zones:

• Intimate zone—closer than 1.5 feet.
• Personal zone—from 1.5 feet to 4 feet.
• Social zone—from 4 feet to 12 feet.
• Public zone—beyond 12 feet.

Certain types of communications take place only in some of these zones. For ex-
ample, an analyst conducts most interviews with system users in the personal zone.
But the analyst may need to move back to the social zone if the user displays any signs
(body language) of being uncomfortable. Sometimes increasing eye contact can make
up for a long distance that can’t be changed. Many people use the fringes of the social
zone as a “respect” distance.

We have examined some of the informal ways that people communicate their
feelings and reactions. A good analyst will use all the information available, not just the
written or verbal communications of others.

> Discovery Prototyping

Another type of fact-finding technique is prototyping. Prototyping was introduced in
Chapter 3 for use in rapid application development (RAD). As you should recall, the
concept behind prototyping is building a small working model of the users’ require-
ments or a proposed design for an information system.This type of prototyping is usu-
ally a design technique, but the approach can be applied earlier in the system

228 Part Two Systems Analysis Methods

proxemics the relationship

between people and the

space around them.

development life cycle to perform fact-finding and requirements analysis.The process
of building a prototype for the purpose of identifying requirements is referred to as
discovery prototyping.

Discovery prototyping is frequently applied to systems development projects, es-
pecially in cases where the development team is having problems defining the system
requirements. The philosophy is that the users will recognize their requirements
when they see them. It is important that the prototype be developed quickly so that
it can be used during the development process. Usually, only the areas where the re-
quirements are not clearly understood are prototyped.This means that a lot of desired
functionality may be left out and quality assurance may be ignored. Also, nonfunc-
tional requirements such as performance and reliability may be less stringent than
they would be for the final product. Technologies other than the ones used for the
final software are frequently used to build the discovery prototypes. In these cases,
the prototypes are most likely discarded when the system is finished. This “throw-
away” approach is primarily used to gather information and develop ideas for the sys-
tem concept. Many areas of a proposed system may not be clearly understood, or
some features may be a technical challenge for the developers. Creating discovery
prototypes enables the developers as well as the users to better understand and refine
the issues involved with developing the system. This technique helps minimize the
risk of delivering a system that doesn’t meet the user’s needs or that can’t fulfill the
technical requirements.

Discovery prototyping has its advantages and disadvantages, which should
be weighed against those of other fact-finding techniques for every fact-finding
situation:

Fact-Finding Techniques for Requirements Discovery Chapter Six 229

discovery prototyping
the act of building a small-

scale representative or

working model of the users’

requirements in order to

discover or verify those

requirements.

Advantages

• Allows users and developers to
experiment with the software and
develop an understanding of how
the system might work.

• Aids in determining the feasibility
and usefulness of the system before
high development costs are
incurred.

• Serves as a training mechanism for
users.

• Aids in building system test plans
and scenarios to be used last in the
system testing process.

• May minimize the time spent on
fact-finding and help define more
stable and reliable requirements.

Disadvantages

• Developers may need to be trained
in the prototyping approach.

• Users may develop unrealistic
expectations based on the perfor-
mance, reliability, and features of
the prototype. Prototypes can only
simulate system functionality and
are incomplete in nature. Care must
be taken to educate the users about
this fact and not to mislead them.

• Doing prototyping may extend the
development schedule and increase
the development costs.

> Joint Requirements Planning

Many organizations are using the group work session as a substitute for numerous and
separate interviews. One example of the group work session approach is joint

requirements planning (JRP), wherein highly structured group meetings are con-
ducted for the purpose of identifying and analyzing problems and defining system re-
quirements. This and similar techniques generally require extensive training to work
as intended. However, they can significantly decrease the time spent on fact-finding in
one or more phases of the life cycle. JRP is becoming increasingly common in systems
planning and systems analysis to obtain group consensus on problems, objectives, and
requirements. In this section, you will learn about the participants of a JRP session

joint requirements
planning (JRP) a process

whereby highly structured

group meetings are conducted

for the purpose of analyzing

problems and defining

requirements.

and their roles. We will also discuss how to go about planning and conducting a JRP
session, the tools and techniques that are used during a JRP session, and the benefits
to be achieved through JRP.

JRP Participants Joint requirements planning sessions include a wide variety of
participants and roles. Each participant is expected to attend and actively participate
for the entire JRP session. Let’s examine the different types of individuals involved in
a typical JRP session and their roles:

• Sponsor—Any successful JRP session requires a single person, called the
sponsor, to serve as its champion. This person is normally an individual
who is in top management (not IT or IS management) and who has
authority that spans the different departments and users who are to be
involved in the systems project. The sponsor gives full support to the sys-
tems project by encouraging designated users to willingly and actively
participate in the JRP session. Recalling the “creeping commitment”
approach to systems development, it is the sponsor (system owner) who
usually makes final decisions regarding the go or no-go direction of the
project.

The sponsor plays a visible role during a JRP session by kicking off the
meeting by introducing the participants. Often, the sponsor will also make
closing remarks for the session. The sponsor also works closely with the JRP
leader to plan the session by helping identify individuals from the user com-
munity who should attend and determining the time and location for the JRP
session.

• Facilitator—JRP sessions involve a single individual who plays the role of the
leader or facilitator. The JRP facilitator is usually responsible for leading all
sessions that are held for a systems project. This individual is someone who
has excellent communication skills, possesses the ability to negotiate and
resolve group conflicts, has a good knowledge of the business, has strong
organizational skills, is impartial to decisions that will be addressed, and does
not report to any of the JRP session participants.

It is sometimes difficult to find an individual within the company who
possesses all these traits. Thus, companies often must provide extensive JRP
training or hire an expert from outside the organization to fill this role. Many
systems analysts are trained to become JRP facilitators.

The role of the JRP facilitator is to plan the JRP session, conduct the
session, and follow through on the results. During the session, the facilitator
is responsible for leading the discussion, encouraging the attendees to
actively participate, resolving issue conflicts that may arise, and ensuring that
the goals and objectives of the meeting are fulfilled. It is the JRP facilitator’s
responsibility to establish the ground rules that will be followed during the
meeting and ensure that the participants abide by these rules.

• Users and managers—Joint requirements planning includes a number of
participants from the user and management sectors of an organization who
are given release time from their day-to-day jobs to devote themselves to
active involvement in the JRP sessions. These participants are normally cho-
sen by the project sponsor, who must be careful to ensure that each person
has the business knowledge to contribute during the fact-finding sessions.
The project sponsor must exercise authority and encouragement to ensure
that these individuals will be committed to actively participating.

A typical JRP session may involve anywhere from a relatively small
number of user/management people to a dozen or more. The role of the
users during a JRP session is to effectively communicate business rules and
requirements, review design prototypes, and make acceptance decisions.
The role of the managers during a JRP session is to approve project objec-
tives, establish project priorities, approve schedules and costs, and approve

230 Part Two Systems Analysis Methods

identified training needs and implementation plans. Overall, both users and
managers are relied on to ensure that their critical success factors are
being addressed.

• Scribe(s)—A JRP session also includes one or more scribes, who are
responsible for keeping records pertaining to everything discussed in the
meeting. These records are published and disseminated to the attendees
immediately following the meeting in order to maintain the momentum
that has been established by the JRP session and its members. The need to
quickly publish the records is reflected by the fact that scribes are increas-
ingly using CASE tools to capture many facts (documented using data and
process models) that are communicated during a JRP session. Thus, it is
advantageous for scribes to possess strong knowledge of systems analysis
and design and be skilled with using CASE tools. Systems analysts
frequently play this role.

• IT staff—A JRP session may also include a number of IT personnel who
primarily listen and take notes regarding issues and requirements voiced by
the users and managers. Normally, IT personnel do not speak up unless
invited to do so. Rather, any questions or concerns they have are usually
directed to the JRP facilitator immediately after or before the JRP session. It
is the JRP facilitator who initiates and facilitates discussion of issues by users
and managers.

The IT staff in the JRP session usually consists of members of the proj-
ect team. These members may work closely with the scribe to develop
models and other documentation related to facts communicated during the
meeting. Specialists may also be called on to gain information regarding
special technical issues and concerns that may arise. When the situation
warrants, the JRP facilitator may prompt an IT professional to address the
technical issue.

How to Plan JRP Sessions Most JRP sessions span three to five days and occa-
sionally last up to two weeks. The success of any JRP session depends on properly
planning and effectively carrying out the plan. Some preparation is necessary well be-
fore the JRP session can be performed. Before planning a JRP session, the analyst must
work closely with the executive sponsor to determine the scope of the project that is
to be addressed through JRP sessions. It is also important that the high-level require-
ments and expectations of each JRP session be determined.This normally involves in-
terviewing selected individuals who are responsible for departments or functions that
are to be addressed by the systems project. Finally, before planning the JRP session,
the analyst must ensure that the executive sponsor is willing to commit people, time,
and other resources to the session.

Planning for a JRP session involves three steps: selecting a location for the JRP
session, selecting JRP participants, and preparing an agenda to be followed during
the JRP session. Let’s examine each of these planning steps in detail:

1. Selecting a location for JRP sessions—When possible, JRP sessions should be
conducted away from the company workplace. Most local hotels or universi-
ties have facilities designed to host group meetings. By holding the JRP ses-
sion at an off-site location, the attendees can concentrate on the issues and
activities related to the JRP session and avoid interruptions and distractions
that would occur at their regular workplace. Regardless of the location of the
JRP session, all attendees should be required to attend and be prohibited
from returning to their regular workplaces.

A JRP session typically requires several rooms. A conference room is
required in which the entire group can meet to address JRP issues. Also, if the
JRP session includes many people, several small breakout rooms may be needed
for separate groups of people to meet and focus discussion on specific issues.

Fact-Finding Techniques for Requirements Discovery Chapter Six 231

Flipchart

IT Professionals & Other Observers

Users

and
Managers

JRP

Facilitator

Scribe

Workstation

(for CASE tool)

Printer

Smartboard
Overhead Projector

Computer

Projection
Device

Food & Refreshments

IT Professionals & Other Observers

Workstation
(for prototyping tool)

Scribe

Scribe

Whiteboard

3
0
' -

 0
"

41' - 0"

F I G U R E 6 - 4 Typical Room Layout for JRP Session

The conference or main meeting room should comfortably hold all the
attendees. The room should be fully equipped with tables, chairs, and other
items that meet the needs of all attendees. Figure 6-4 depicts a typical room
layout for a JRP session. Typical visual aids for a JRP room should include a
whiteboard, smartboard, or blackboard; one or more flipcharts; and one or
more projectors.

The room should also include computer equipment needed by scribes to
record facts and issues communicated during the session. The computer itself
should include software packages to support the various types of records or
documentation to be captured and later published by the scribes. Such soft-
ware may include CASE tool, word processing, spreadsheet, presentation pack-
age, prototyping software, printer, copier (or quick access), and computer
projection capability. As a guideline, computer equipment (except that used
for prototyping) should be located at the rear of the room so that it doesn’t
interfere or become a distraction for the JRP participants. Personal interaction
of the participants, not technology, should be the focus of the session.

Finally, the room should be equipped for teleconferencing so that users at
distant locations can participate. The room should include notepads and pen-
cils for users, managers, and other attendees. Attendees should also be pro-
vided with nametags, place cards, snacks, and drinks so that they will be as

232 Part Two Systems Analysis Methods

comfortable as possible. Creature comforts are very important since JRP ses-
sions are very intensive and often run the entire day.

2. Selecting JRP participants—As mentioned earlier, participants selected include
the JRP facilitator, scribe(s), and representatives from the user community. The
users should be key individuals who are knowledgeable about their business
area. Unfortunately, managers are often very dependent on these individuals to
run their business areas and are often hesitant to release them from their
duties. Thus, the analyst must ensure that management is committed to the
JRP project and willing to not only permit but also require these key individu-
als to participate.

Various IT professionals may also be selected to be involved in the JRP
session. Usually all IT individuals assigned to the project team are involved in
the JRP session. Other IT specialists may also be assigned to address specific
technical issues pertaining to the project.

3. Preparing a JRP session agenda—Preparation is the key to a successful JRP
session. The JRP facilitator must prepare documentation to brief the partici-
pants about the scope and objectives of the sessions. In addition, an agenda
for each JRP session should be prepared and distributed before each session.
The agenda dictates issues to be discussed during the session and the amount
of time allotted to each item.

The agenda should contain three parts: the opening, body, and conclusion.
The opening is intended to communicate the expectations of the session, to
communicate the ground rules, and to influence or motivate the attendees to
participate. The body is intended to detail the topics or issues to be addressed
in the JRP session. Finally, the conclusion represents the time set aside to sum-
marize the day’s session and to remind the attendees of unresolved issues
(to be carried forward).

How to Conduct a JRP Session The JRP session begins with opening remarks, in-
troductions, and a brief overview of the agenda and objectives for the session. The
JRP facilitator will direct the session by following the prepared script.To successfully
conduct the session, the facilitator should follow these guidelines:

• Do not unreasonably deviate from the agenda.
• Stay on schedule (agenda topics are allotted specific times).
• Ensure that the scribe is able to take notes (this may mean having the users

and managers restate their points more slowly or clearly).
• Avoid the use of technical jargon.
• Apply conflict resolution skills.
• Allow for ample breaks.
• Encourage group consensus.
• Encourage user and management participation without allowing individuals to

dominate the session.
• Make sure that attendees abide by the established ground rules for the

session.

One of the goals of a JRP session is to generate possible ideas to solve a prob-
lem. One approach is brainstorming. Brainstorming involves encouraging partici-
pants to generate as many ideas as possible, without analyzing the validity of the
ideas.

Brainstorming is a formal technique that requires discipline.The following guide-
lines should be used to ensure effective brainstorming:

1. Isolate the appropriate people in a place that will be free from distractions
and interruptions.

2. Make sure that everyone understands the purpose of the meeting (to generate
ideas to solve the problem) and focuses on the problem(s).

Fact-Finding Techniques for Requirements Discovery Chapter Six 233

brainstorming a technique

for generating ideas by en-

couraging participants to offer

as many ideas as possible in

a short period of time without

any analysis until all the ideas

have been exhausted.

3. Appoint one person to record ideas. This person should use a flipchart, chalk-
board, or overhead projector that can be viewed by the entire group.

4. Remind everyone of the brainstorming rules:
a. Be spontaneous. Call out ideas as fast as they occur.
b. Absolutely no criticism, analysis, or evaluation of any kind is permitted

while the ideas are being generated. Any idea may be useful, if only to
spark another idea.

c. The goal is quantity of ideas, not necessarily quality.
5. Within a specified time period, team members call out their ideas as quickly

as they can think of them.
6. After the group has run out of ideas and all ideas have been recorded, then

and only then should the ideas be analyzed and evaluated.
7. Refine, combine, and enhance the ideas that were generated earlier.

With a little practice and attention to these rules, brainstorming can be a very effec-
tive technique for generating ideas to solve problems.

As mentioned earlier, the success of a JRP session is highly dependent on plan-
ning and the skills of the JRP facilitator and scribes. These skills improve through
proper training and experience.Therefore, JRP sessions are usually concluded with an
evaluation questionnaire for the participants to complete. The responses will help
ensure the likelihood of future JRP successes.

The end product of a JRP session is typically a formal written document. This
document is usually created by the JRP facilitator and scribes. It is essential for
confirming the specifications agreed on during the session by all participants. The
content and organization of the specifications are obviously dependent on the
objectives of the JRP session. The analyst may provide a different set of specifica-
tions to different participants based on their role—for example, a manager may re-
ceive more of a summary version of the document provided to the user participants
(especially in cases in which the system owners had minimal actual involvement in
the JRP session).

Benefits of JRP Joint requirements planning offers many benefits as an alternative
fact-finding and development approach. More and more companies are beginning to
realize its advantages and are incorporating JRP into their existing methodologies. An
effectively conducted JRP session offers the following benefits:

• JRP actively involves users and management in the development project
(encouraging them to take “ownership” in the project).

• JRP reduces the amount of time required to develop systems. This is achieved
by replacing traditional, time-consuming one-on-one interviewing of each user
and manager with group meetings. The group meetings allow for more easily
obtaining consensus among the users and managers, as well as resolving con-
flicting information and requirements.

• When JRP incorporates prototyping as a means for confirming requirements
and obtaining design approvals, the benefits of prototyping are realized.

Achieving a successful JRP session depends on the JRP facilitator and his or her
ability to plan and facilitate the JRP session.

234 Part Two Systems Analysis Methods

A Fact-Finding Strategy

An analyst needs an organized method for collecting facts. Inexperienced analysts
will frequently jump right into interviews. They believe,“Go to the people. That’s
where the real facts are!” Wrong! This approach fails to recognize an important
fact of life: People must complete their day-to-day jobs. You may be thinking,“But

Lea
rning

 Roa
d
m

a
p

This chapter introduced you to a wide range of techniques for discovering infor-

mation system requirements. Most systems development methodologies require

some level of documentation and analysis of system requirements. Accordingly, the

remaining chapters in this part present a number of systems documentation tools

and techniques that can be used during the analysis phase of systems development.

Most of you will proceed directly to Chapter 7,“Modeling System Requirements with

Use Cases.” Use-case models serve as a foundation for the development of subse-

quent models for modeling additional systems requirements and are presented in

Chapters 8 through 11.

I thought you’ve been saying that the system is for people and that direct end-
user involvement in systems development is essential. Aren’t you contradicting
yourselves?”

Not at all. Time is money. To waste end users’ time is to waste their company’s
money.To make the most of the time spent with end users, analysts should not jump
right into interviews. Analysts should first collect all the facts they can by using other
methods. Consider the following step-by-step strategy:

1. Learn from existing documents, forms, reports, and files. Analysts can learn a
lot without any people contact.

2. If appropriate, observe the system in action.
3. Given all the facts already collected, design and distribute questionnaires to

clear up things that aren’t fully understood.
4. Conduct interviews (or group work sessions). Because most of the pertinent

facts have already been collected by low-user-contact methods, interviews can
be used to verify and clarify the most difficult issues and problems. (Alterna-
tively, consider using JRP techniques to replace or complement interviews.)

5. (Optional). Build discovery prototypes for any functional requirements that are
not understood or for requirements that need to be validated.

6. Follow up. Use appropriate fact-finding techniques to verify facts (usually inter-
views or observation).

The strategy is not sacred. Although a fact-finding strategy should be developed
for every pertinent phase of systems development, every project is unique. Some-
times observation and questionnaires may be inappropriate. But the idea should
always be to collect as many facts as possible before using interviews.

Fact-Finding Techniques for Requirements Discovery Chapter Six 235

236 Part Two Systems Analysis Methods

1. The process and techniques that a systems analyst
uses to identify, analyze, and understand system
requirements are referred to as requirements
discovery.

2. System requirements specify what the information
system must do, or what property or quality the
system must have.

3. The process of requirements discovery consists of
the following activities:

a. Problem discovery and analysis.
b. Requirements discovery.
c. Documenting and analyzing requirements.
d. Requirements management.

4. Fact-finding is a technique that is used across the
entire development cycle, but it is extremely criti-
cal in the requirements analysis phase.

5. A popular tool used by development teams to
identify, analyze, and solve problems is an Ishikawa
diagram.

6. Conducting business in an ethical manner is a
required practice, and analysts need to be more
aware of the implications of not being ethical.

7. There are seven common fact-finding techniques:

a. The sampling of existing documents and files
can provide many facts and details with little
or no direct personal communication being
necessary.The analyst should collect historical
documents, business operations manuals and
forms, and information systems documents.

b. Research is an often-overlooked technique
based on the study of other similar applications.
It now has become more convenient with the
Internet and World Wide Web (WWW). Site vis-
its are a special form of research.

c. Observation is a fact-finding technique in which
the analyst studies people doing their jobs.

d. Questionnaires are used to collect similar facts
from a large number of individuals.

e. Interviews are the most popular but the most
time-consuming fact-finding technique. When
interviewing, the analyst meets individually
with people to gather information.

i) When most people talk about communica-
tion skills, they think of speaking and
writing.The skill of listening hardly gets
mentioned at all, but it may be the most
important, especially during the interview-
ing process.

ii) Research studies have determined a star-
tling fact: Of a person’s total feelings, only

7 percent are communicated verbally (in
words), whereas 38 percent are communi-
cated by the tone of voice used and 55 per-
cent are communicated by facial and body
expressions. If you only listen to someone’s
words, you are missing most of what the
person has to say. Experienced systems ana-
lysts pay close attention to body language
and proxemics.

f. Discovery prototyping is frequently applied to
systems development projects, especially in
cases where the development team is having
problems defining the system requirements.
The philosophy is that the users will recognize
their requirements when they see them. It is
important that the prototype be developed
quickly so that it can be used during the devel-
opment process.

g. Many analysts find flaws with interviewing—
separate interviews often lead to conflicting
facts, opinions, and priorities.The end result is
numerous follow-up interviews and/or group
meetings. For this reason, many organizations
are using a group work session known as the
joint requirements planning session as a substi-
tute for interviews.

i) Joint requirements planning sessions in-
clude a wide variety of participants and
roles. Each participant is expected to attend
and actively participate for the entire dura-
tion of the JRP session.

ii) An effective JRP session involves extensive
planning. Planning for a JRP session involves
three steps: selecting a location for the JRP
session, selecting JRP participants, and
preparing an agenda to be followed during
the JRP session.

8. To help alleviate the many problems associated
with changing requirements, it is necessary to per-
form requirements management. Requirements
management encompasses the policies, proce-
dures, and processes that govern how a change to
a requirement is handled.

9. Because “time is money,” it is wise and practical for
the systems analyst to use a fact-finding strategy to
maximize the value of time spent with the end
users.

a. Learn from existing documents, forms, reports,
and files. Analysts can learn a lot without any
people contact.

Summary

Fact-Finding Techniques for Requirements Discovery Chapter Six 237

b. If appropriate, observe the system in action.
c. Given all the facts already collected, design and

distribute questionnaires to clear up things that
aren’t fully understood.

d. Conduct interviews (or group work sessions).
Because most of the pertinent facts have al-
ready been collected by low-user-contact meth-
ods, interviews can be used to verify and clarify
the most difficult issues and problems. (Alterna-

tively, consider using JRP techniques to replace
or complement interviews.)

e. (Optional.) Build discovery prototypes for any
functional requirements that are not understood
or for requirements that need to be validated.

f. Follow up. Use appropriate fact-finding tech-
niques to verify facts (usually interviews or
observation).

1. What is the importance of conducting the re-
quirements discovery process?

2. What are the possible consequences if you fail
to identify system requirements correctly and
completely?

3. What are some of the criteria deemed to be criti-
cal in defining system requirements?

4. The requirements discovery process consists of
what activities?

5. Briefly describe the purpose and component
parts of an Ishikawa diagram.

6. What technique is commonly used in the require-
ments discovery phase? Why is it important?

7. Why is analyzing requirements essential?
8. When collecting facts from existing documenta-

tion, what kind of documents should system
analysts review?

9. What are some of the drawbacks of collecting
facts by observing employees in their work envi-
ronment? How can systems analysts deal with
these drawbacks?

10. What are the types of survey questionnaires that
systems analysts can use to collect information
and opinions?

11. What are some of the ways that you can use to help
open the lines of communication in an interview?

12. What is joint requirements planning (JRP)?
13. Why has JRP become popular?
14. Why is the facilitator in JRP so important?
15. What is the main concern in selecting a location

for JRP sessions?

Review Questions
1

2

1. You are managing a project that was postponed
twice because its funding was diverted to higher-
priority projects.The system owners do not want
that to happen again, so they are very anxious to
get the new system started and built as quickly as
possible.They are putting a great deal of pressure
on you to spend no more than a couple of days
on requirements discovery. If anything is missed,
they tell you, it can be fixed later on.You really
want to make them happy, but a little voice of
caution is going off. What are the potential conse-
quences and costs of rushing through the require-
ments discovery process?

2. You have learned the importance of making sure
that requirements are correctly identified. But
how do you know when you have a correct
requirement—that is, what criteria must each
requirement meet in order to be considered
correct?

3. What common error does a new systems analyst
often make when analyzing a problem? What are
the potential consequences of this error? What
tool can be used to help avoid this problem?

4. System developers use fact-finding techniques in
every project phase. Is fact-finding more impor-
tant during the requirements analysis phase than
for other phases? Why or why not?

5. What ethical issues might arise during the
fact-finding process, and how should they be
handled?

6. What are some of the common tools and tech-
niques a systems analyst can use to document the
initial findings? Should the systems analyst expect
the requirements to be complete and correct at
this point? If not, what are the common prob-
lems? What should be the focus of the project
team at this point?

Problems and Exercises

7. What is the deliverable that is created once re-
quirements analysis is completed? Why is this
deliverable needed, and what does it include?
Who are the audience and/or users of this deliver-
able, and for what reasons?

8. You are a systems analyst in a software develop-
ment company that has been hired to do the re-
quirements analysis phase for a large organization.
What are three categories of existing documenta-
tion that you should collect during requirement
discovery? What are some examples of each of
these three types of documentation? What should
the systems analyst watch out for in collecting
documentation?

9. Suppose that you are a systems analyst on a
project that involves modifying the sales order
process. Since your company receives in the neigh-
borhood of 2,500 sales orders per day, how many
do you need to sample if you want 95 percent
certainty that you have covered all variations?
What if the number of sales orders per day was
25,000 orders?

10. Surveys and questionnaires are frequently used to
gather facts. What are some of the advantages and
disadvantages of questionnaires? When might you
choose free-format questionnaires over fixed-
format questionnaires? What is one method of
determining the effectiveness of a questionnaire?

11. What are some of the reasons to use joint re-
quirements planning (JRP) as a fact-finding tech-
nique? What should be the basis for selecting
which users and managers will participate in
the JRP session, and who generally selects them?
What skills should the facilitator and scribe pos-
sess? What is the role of IT staff during JRP
sessions? What is the typical duration of the
JRP sessions?

12. Provide at least five of the critical success factors
for JRP sessions.

13. What one thing should an analyst not do when
beginning the fact-finding portion of require-
ments discovery, no matter how tempting?

238 Part Two Systems Analysis Methods

1. Systems analysts must have expertise in problem
analysis. When systems analysts are starting out,
they often find it difficult to differentiate symp-
toms from problems, and to identify the actual
causes of the problem. One tool that can help
analysts learn to do this is the Ishikawa, or
fishbone, diagram.

a. Find and select a problem that your organiza-
tion, school, or other organization is currently
attempting to resolve. Describe this problem.

b. Follow the process described in this chapter
and create an Ishikawa diagram.

c. Which categories did you start with in the dia-
gram, and which categories did you add during
the process?

d. Did this diagram help in finding the actual
cause(s) of the problem? Did the cause(s) turn
out to be what you originally thought, or some-
thing different?

2. Observing the work environment is a technique
that predates the information age, but that can still
be highly effective. Although not applicable for
every situation, observing what people actually do
and how they do it can be in some cases much
more accurate than asking them! Select a

system—whether hypothetical or real—and do
the following:

a. Provide an overview of the system and what you
are trying to learn about the system for a project.

b. Develop a work observation plan using the
guidelines in this chapter.The format is up to
you, but it generally should not need more than
1–2 pages.

c. Develop a work-sampling plan, and describe
the sampling procedures you will use.

d. What are your thoughts about this method
compared to other fact-finding methods?

3. You are a systems analyst working on a project to
develop an intranet for a large organization with
several thousand employees working in offices
throughout the United States.This will be the
organization’s first intranet, and executive manage-
ment wants it to help increase employee efficiency
and commitment to the organization. As part of
fact-finding, information needs to be gathered from
employees of the organization regarding intranet
content and functionality. Due to the size and geo-
graphic distribution of the organization, as well as
project time constraints, there is insufficient time

Projects and Research

and resources for personal interviews, so you have
decided that a questionnaire is needed.

a. What facts and opinions do you need to collect?
b. Should all employees in the organization be sur-

veyed? Why or why not? If not all employees
should be surveyed, how would you select the
employees to be surveyed?

c. What format do you think would work best for
this survey questionnaire? If fixed format, what
type(s) of fixed-format questions should be used?

d. How long should the survey questionnaire be in
order to get the necessary information without
discouraging employees from filling it out?

e. Create the survey questionnaire, using the
question-writing guidelines given in this chapter.

4. Based upon the responses to your intranet survey,
you feel that it would be helpful to interview
someone in another organization who has had ex-
perience in developing and/or maintaining com-
pany intranets.

a. What type of interview do you think would be
most appropriate in this situation—unstructured
or structured? Why?

b. Make an appointment with the intranet adminis-
trator in your organization or another organiza-
tion or school to discuss her or his experiences
in developing and/or maintaining an intranet.
Describe the organization and its intranet.

c. Prepare an interview guide using the format of
Figure 6-3 as an example, ensuring that ques-
tions are free of the problems discussed in
this chapter.

d. Conduct the interview, and record the responses.
e. What do you feel worked well in the interview,

and what would you do differently next time?

5. Body language is an extremely important part of
communication, as described in the textbook.
Analysts need to be aware of not only what is being
communicated through the body language of the
interviewee but also the impact that their own
body language may have upon the interview
process. Make an appointment with several

co-workers or fellow students to interview regarding
the features they would like to see in an intranet; if
possible, select interviewees you know well and
those that you don’t. Prepare for the interviews fol-
lowing the same steps as in the prior question.

a. Describe the interviewees you selected and the
questions you asked.

b. During each interview, observe the facial ex-
pressions of the interviewee. What did you ob-
serve? Were the facial expressions always
consistent with the responses?

c. During each interview, observe the eye contact.
How long did it last? Observe and describe what
happened when you made eye contact for more
than three to five seconds with the interviewee.

d. Try changing your spatial zone during the inter-
view. Did the interviewee show any signs of be-
ing uncomfortable? At what point did that occur?

e. Did you note any differences in body language
between those you knew well and those you
didn’t?

f. What did you do that was the most successful
and the least successful in eliciting information?

6. Analysts typically have access to confidential or
sensitive data during the requirements discovery
phase of a project, particularly during fact-finding.
Analysts need to be aware of situations where
there may be a breach of professional ethics,
whether by acts of commission or omission, and
the possible consequences. Search on the Web
and/or in business periodicals in your school li-
brary for articles on incidents involving breaches
of professional ethics.

a. What articles did you find?
b. What was the nature of each of these incidents?
c. What were the consequences?
d. What was the analyst’s personal responsibility

in each incident?
e. What could have been done at the organiza-

tional and/or individual level to prevent the
incident or to reduce its severity?

Fact-Finding Techniques for Requirements Discovery Chapter Six 239

1. Create a biased, leading, or loaded set of interview
questions. Pose them to another student in the
class.The other student, instead of answering the
questions, should tell you how you are biased and
what response you are looking for.

2. Class exercise: Create as unbiased a set of inter-
view questions as you can on a particular topic.
Pose the questions to the class. However, wear a
shirt, pins, and so on, that lead the class to respond

in a particular way. Have fun, and experiment with
visual aids, props, and the like.

3. It has been found in past research studies that em-
ployees who are allowed to telecommute actually
work approximately three extra unpaid hours a
week. But telecommuting is often used as a negoti-
ating tool by an employer—in order to telecom-
mute, employees must accept a lower salary,
typically 10 percent. What do you think about this?

Team and Individual Exercises

Andrews, D. C., and N. S. Leventhal. Fusion Integrating IE,

CASE and JAD: A Handbook for Reengineering the Sys-

tems Organization. Englewood Cliffs, NJ: Prentice Hall,

1993.

Berdie, Douglas R., and John F. Anderson. Questionnaires: De-

sign and Use. Metuchen, NJ: Scarecrow Press, 1974. A

practical guide to the construction of questionnaires. Par-

ticularly useful because of its short length and illustrative

examples.

Davis, William S. Systems Analysis and Design. Reading, MA:

Addison-Wesley, 1983. Provides useful pointers for prepar-

ing and conducting interviews.

Dejoie, Roy; George Fowler; and David Paradice. Ethical Issues

in Information Systems. Boston, MA: Boyd and Fraser,

1991. Focuses on the impact of computer technology on

ethical decision making in today’s business organizations.

Fitzgerald, Jerry; Ardra F. Fitzgerald; and Warren D. Stallings, Jr.

Fundamentals of Systems Analysis, 2nd ed. New York:

John Wiley & Sons, 1981. A useful survey text for the

systems analyst. Chapter 6, “Understanding the Existing

System,” does a good job of presenting fact-finding tech-

niques in the study phase.

Suggested Readings

240 Part Two Systems Analysis Methods

1. In Chapter 5, you developed feasibility studies for
a project. Economic feasibility assessments are im-
pacted significantly by intangibles, whose value is
obtained in part by interviews and questionnaires.
Develop interview questions to determine the
value to employees of telecommuting.

a. Begin with unstructured questions posed to one
group of employees to determine what matters
to the employees and how they view telecom-
muting.

b. Once you know what issues surround employee
perceptions of telecommuting and why they
might like/dislike it, create open-ended, but struc-
tured, questions on those issues, and interview a
second set of employees.Why are we using two
different groups of employees for this process?

2. Develop a questionnaire for mass employee distrib-
ution based on your findings from the previous
interviews. Why are we completing the analysis
with an anonymous survey?

3. You are in charge of developing a new online class
registration system for your school. Develop a set
of interview questions to determine issues and
needs of students, registration staff, and faculty for
an online registration system.

4. Discuss the impact that biased or leading ques-
tions may have on an analysis. Create one non-
biased interview question and one biased or
leading question. Pose each of those questions to
five people. What kind of responses did you get?
Were they what you expected?

Minicases

Gane, C. Rapid Systems Development. New York: Rapid Sys-

tems Development, Inc., 1987.This book provides a good

discussion on how to lead a group meeting/interview.

Gause, Donald C., and Gerald M. Weinberg. Exploring Re-

quirements: Quality before Design. New York: Dorset

House Publishing, 1989. An excellent book describing the

techniques of requirements discovery.

Gildersleeve, Thomas R. Successful Data Processing System

Analysis. Englewood Cliffs, NJ: Prentice Hall, 1978. Chap-

ter 4,“Interviewing in Systems Work,” provides a compre-

hensive look at interviewing specifically for the systems

analyst. A thorough sample interview is scripted and

analyzed in this chapter.

London, Keith R. The People Side of Systems. New York:

McGraw-Hill, 1976. Chapter 5,“Investigation versus Inqui-

sition,” provides a very good people-oriented look at fact-

finding, with considerable emphasis on interviewing.

Lord, Kenniston W., Jr., and James B. Steiner. CDP Review

Manual: A Data Processing Handbook, 2nd ed. New

York: Van Nostrand Reinhold, 1978. Chapter 8, “Systems

Analysis and Design,” provides a comprehensive compari-

son of the merits and demerits of each fact-finding tech-

nique.This material is intended to prepare data processors

for the Certificate in Data Processing examinations, one of

which covers systems analysis and design.

Miller, Irwin, and John F. Freund. Probability and Statistics for

Engineers. Englewood Cliffs, NJ: Prentice Hall, 1965. In-

troductory college textbook on probability and statistics.

Mitchell, Ian; Norman Parrington; Peter Dunne; and John

Moses.“Practical Prototyping, Part One,” Object Currents,

May 1996. First of a three-part series of articles that

explores prototyping and how you can benefit from it.

Prototyping is an integral part of JRP.

Robertson, Suzanne, and James Robertson. Mastering the Re-

quirements Process. Reading, MA: ACM Press/Addison-

Wesley, 1999. This book contains an in-depth coverage of

step-by-step procedures for requirements discovery.

Salvendy, G., ed. Handbook of Industrial Engineering. New

York: John Wiley & Sons, 1974. A comprehensive hand-

book for industrial engineers; systems analysts are, in a

way, a type of industrial engineer. Excellent coverage on

sampling and work measurement.

Stewart, Charles J., and William B. Cash, Jr. Interviewing:

Principles and Practices, 2nd ed. Dubuque, IA: Brown,

1978. Popular college textbook that provides broad expo-

sure to interviewing techniques, many of which are

applicable to systems analysis and design.

Walton, Donald. Are You Communicating? You Can’t Man-

age without It. New York: McGraw-Hill, 1989.This book is

an easy-to-use guidebook on the process of communica-

tions and a must for anyone who must work with people

and influence them.

Weinberg, Gerald M. Rethinking Systems Analysis and De-

sign. Boston: Little, Brown and Company, 1982. A book

created to stimulate a new way of thinking.

Wood, Jane, and Denise Silver. Joint Application Design. New

York: John Wiley & Sons, 1989.This book provides a com-

prehensive overview of IBM’s joint application design

technique.

Fact-Finding Techniques for Requirements Discovery Chapter Six 241

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterpr ise Informat ion Technology Archi tecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J
E

C
T

M
A

N
A

G
E

R
S

a
n

d
S

Y
S

T
E

M
S

A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

Use-Case Models

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n
d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
LY

S
IS

 a
n
d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L
E

W
A

R
E

M
ID

D
L
E

W
A

R
E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
:

S
a

m
p
lin

g
R

e
s
e
a
rc

h
O

b
s
e
rv

a
tio

n
Q

u
e
s
tio

n
n
a
ire

In
te

rv
ie

w
P

ro
to

ty
p
in

g
J
R

P

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

7Modeling System
Requirements with

Use Cases

Chapter Preview and Objectives

In this chapter you will learn about the tools and techniques necessary to perform use-

case modeling to document system requirements. Capturing and documenting system

requirements have proved to be critical factors in the outcome of a successful information

systems development project. Documenting the requirements from the perspective of the

users in a manner that they can understand promotes user involvement, which greatly en-

hances the probability for the success of the project. You will know that you understand

requirements use-case modeling when you can:

❚ Describe the benefits of use-case modeling.

❚ Define actors and use cases and be able to identify them from context diagrams and

other sources.

❚ Describe the four types of actors.

❚ Describe the relationships that can appear on a use-case model diagram.

❚ Describe the steps for preparing a use-case model.

❚ Describe how to construct a use-case model diagram.

❚ Describe the various sections of a use-case narrative and be able to prepare one.

❚ Define the purpose of the use-case ranking and priority matrix and the use-case

dependency diagram.

Following the joint requirements planning (JRP) meeting that was held as one task of
the requirements analysis phase, the SoundStage Member Services system project
team has built a list of use cases that specify all the required functionality of the sys-
tem. At first each use case was just a simple verb phrase (such as “Place New Order”)
that described something one or more users wanted to do with the system. Next,
each use case was documented with a narrative describing in detail the desired inter-
action between the user and the system. Then Bob Martinez and other systems ana-
lysts held a series of interviews with users to verify those use-case narratives. Finally
they are analyzing which use cases are the highest priority to the system. Bob’s boss,
Sandra, says that will identify for them what functionality has to be included in the
first build cycle of the system.The plan is to take those highest-priority use cases into
the logical design and later phases and implement a working version 1.0 of the system
on schedule and within budget.

244 Part Two Systems Analysis Methods

1The Standish Group International, Inc.,“CHAOS: A Recipe for Success” (electronic version), 1999. Retrieved December 5,

2002, from www.pm2go.com/sample_research/chaos1998.pdf.The Standish Group is best known for its independent

primary research and analysis of the IT industry.

Introduction

An Introduction to Use-Case Modeling

One of the primary challenges of vital importance to any information systems devel-
opment team, and especially the systems analyst, is the ability to elicit the correct and
necessary system requirements from the stakeholders and specify them in a manner
that is understandable to the stakeholders in order for those requirements to be veri-
fied and validated. In fact, this has been the case for many years, as the distinguished
author Fred Brooks wrote in his famous 1987 article:

The hardest single part of building a software system is deciding precisely what
to build. No other part of the conceptual work is as difficult as establishing the
detailed technical requirements, including all the interfaces to people, to ma-
chines, and to other software systems. No other work so cripples the resulting
system if done wrong. No other part is more difficult to rectify later.

The information technology community has always had problems trying to
specify requirements, especially functional requirements, to users. In the past we
have used tools such as data models, process models, prototypes, and requirements
specifications that we understood and were comfortable with, but they were hard
to understand for any user who wasn’t educated in software development practices.
Because of this, many development projects were and still are plagued with scope
creep, cost overruns, and schedule creep problems. Very often systems are devel-
oped and deployed that really don’t satisfy the user’s needs. Some are shelved and
not used at all, and a large percentage are canceled even before the development
effort is complete. A very well known research firm, the Standish Group, studied
23,000 IT applications in 1994, 1996, and 1998.1 As shown in Figure 7-1, the 1998
study found that only a little more than a quarter of the projects in 1998 were suc-
cessful (on budget, on time, and included all features). More than a quarter of them
failed (canceled before completion). A little less than half were what Standish con-
sidered challenged—the project was complete and operational, but it was com-
pleted either over budget, over the time estimate, or without all the features
specified by the users. The good news reflected in these studies and others is that
the ways and means we are using to develop information systems are improving.
The software development industry has learned that in order to successfully plan,

Project Success Rate

Year

100%

80%

60%

40%

20%

0%
1994 1996 1998

Succeeded

Challenged

Failed

31%

53%

16%

40%

33%

27%

28%

46%

26%

F I G U R E 7 - 1

Project Success
Rates As Reported
by the Standish
Group

analyze, design, construct, and deploy an information system, the systems analyst
first must understand the needs of the stakeholders and the reasons why the system
should be developed—a concept called user-centered development. By focusing
on the users of the system, the analyst can concentrate on how the system will be
used and not how it will be constructed. Use-case modeling is an approach that
facilitates usage-centered development.

Use-case modeling has its roots in object-oriented modeling, and you will learn
more about how to apply use-case modeling in the object-oriented analysis and design
chapters, but it has gained popularity in nonobject development environments. You
will learn throughout the remaining chapters of this book how use-case modeling
complements traditional systems analysis and design tools such as data modeling and
process modeling as well as provides a basis for architectural decisions and user
interface design decisions.

Use-case modeling was originally conceived by Dr. Ivar Jacobson in 1986 and
gained popularity after he published his book, Object-Oriented Software Engineer-

ing, in 1992. Dr. Jacobson used use-case modeling as the framework for his objectory
methodology, which he successfully used for developing object-oriented information
systems. Use-case modeling has proved to be a valuable aid in meeting the challenges
of determining what a system is required to do from a user and stakeholder perspec-
tive. It is now widely recognized as a best practice for the defining, documenting, and
understanding of an information system’s functional requirements.

Using use-case modeling facilitates and encourages user involvement, which is
one of the primary critical success factors for ensuring project success. In addition,
use-case modeling provides the following benefits:

• Provides a tool for capturing functional requirements.
• Assists in decomposing system scope into more manageable pieces.
• Provides a means of communicating with users and other stakeholders con-

cerning system functionality. Use cases present a common language that is
easily understood by various stakeholders.

• Provides a means of identifying, assigning, tracking, controlling, and managing
system development activities, especially incremental and iterative development.

• Provides an aid in estimating project scope, effort, and schedule.
• Provides a baseline for testing in terms of defining test plans and test cases.
• Provides a baseline for user help systems and manuals as well as system

development documentation.
• Provides a tool for requirements traceability.
• Provides a starting point for the identification of data objects or entities.
• Provides functional specifications for designing user and system interfaces.
• Provides a means of defining database access requirements in terms of adds,

changes, deletes, and reads.
• Provides a framework for driving the system development project.

Modeling System Requirements with Use Cases Chapter Seven 245

user-centered
development a process of

systems development based

on understanding the needs

of the stakeholders and the

reasons why the system

should be developed.

use-case modeling the

process of modeling a sys-

tem’s functions in terms of

business events, who initiated

the events, and how the sys-

tem responds to those events.

Source: The Standish Group Interna-

tional, Inc., “Chaos: A Recipe for

Success” (electronic version), 1999,

www.pm2go.com/sample_research/

chaos1998.pdf.

Use Case 3

Use Case 1

System

Use Case 2
Actor 1

Actor 3

Actor 2

F I G U R E 7 - 2

Sample Use-Case
Model Diagram

There are two primary artifacts involved when performing use-case modeling. The
first is the use-case diagram, which graphically depicts the system as a collection of
use cases, actors (users), and their relationships.This diagram communicates at a high
level the scope of the business events that must be processed by the system. An ex-
ample of a use-case diagram is shown in Figure 7-2. It shows each system function, or
business event (in the ellipses), and the actors, or system users, who interact with
those functions. As you can see in Figure 7-2, actors can be placed on either side of
the set of use-case figures and can interact with one or more use cases. The use-case
diagram is extremely simple. But it begins an important process called functional

decomposition, the act of breaking a system apart into its subcomponents. It is im-
possible to understand the entire system at once, but it is possible to understand and
specify each part of the system.

The second artifact, called the use-case narrative, fills in the details of each busi-
ness event and specifies how the users interact with the system during that event.The
use-case narrative will be discussed in detail later in the chapter.

> Use Cases

Use-case modeling identifies and describes the system functions by using a tool called
use cases. Use cases describe the system functions from the perspective of external
users and in a manner and terminology they understand.To accurately and thoroughly
accomplish this demands a high level of user involvement and a subject-matter expert
who is knowledgeable about the business process or event.

Use cases are represented graphically by a horizontal ellipse with the name of the
use case appearing above, below, or inside the ellipse. A use case represents a single
goal of the system and describes a sequence of activities and user interactions in try-
ing to accomplish the goal. The creation of use cases has proved to be an excellent
technique to better understand and document system requirements. A use case itself
is not considered a functional requirement, but the story (scenario) the use case tells
consists of one or more requirements.

Use cases are initially defined during the requirements stages of the life cycle
and will be additionally refined throughout the life cycle. During requirements

246 Part Two Systems Analysis Methods

use-case diagram a dia-

gram that depicts the inter-

actions between the system

and external systems and

users. In other words, it

graphically describes who

will use the system and in

what ways the user expects to

interact with the system.

functional
decomposition the act of

breaking a system into

subcomponents.

use-case narrative a

textual description of the

business event and how

the user will interact with the

system to accomplish the

task.

use case a behaviorally

related sequence of steps

(a scenario), both automated

and manual, for the purpose

of completing a single

business task.

Use Case

Symbol

System Concepts for Use-Case Modeling

discovery, use cases are used to capture the essence of the business problems and
to model (at a high level) the functionality of the proposed system. Additionally,
they are the starting point for identifying the data entities (covered in Chapter 8)
or objects of the system (covered in Chapter 11). During requirements analysis the
use cases are refined to model usage of the system in more detail. In other words,
they are updated to specify what the users are trying to accomplish and why.These
use cases aid in the definition of any prototypes or user interfaces. During design
the use cases are refined to model how the users will actually use the system
with regard to any interface and system constraints (covered in Chapter 18). These
types of use cases aid in identifying object or system behavior and in designing in-
terface and code specifications, as well as serve as the plan for testing the system.
In construction, use cases aid developers in programming and testing. These use
cases also serve as the baseline for preparing any user and system documentation,
plus they serve as tools for user training. And, because use cases contain an enor-
mous amount of system functionality detail, they will be a constant resource for
validating the system.

> Actors

Use cases are initiated or triggered by external users called actors. An actor initi-
ates system activity, a use case, for the purpose of completing some business task
that produces something of measurable value. Let’s use the example of a college
student enrolling for the fall semester’s courses. The actor would be the student,

and the business event, or use case, would be Enrolling in Course. An actor repre-
sents a role fulfilled by a user interacting with the system and is not meant to por-
tray a single individual or job title. In fact, an actor doesn’t have to be human. It can
be an organization, another information system, an external device such as a heat
sensor, or even the concept of time (which will be discussed a little later). An ac-
tor is represented graphically as a stick figure labeled with the name of the role the
actor plays.

It is important to note that there are primarily four types of actors:

• Primary business actor—the stakeholder that primarily benefits from the
execution of the use case by receiving something of measurable or observ-
able value. The primary business actor may or may not initiate the business
event. For example, in the business event of an employee receiving a pay-
check (something of measurable value) from the payroll system each Friday,
the employee does not initiate the event but is the primary recipient of the
something of value.

• Primary system actor—the stakeholder that directly interfaces with the sys-
tem to initiate or trigger the business or system event. Primary system actors
may interact with primary business actors for the purpose of using the actual
system. They facilitate the event through the direct use of the system for the
benefit of the primary business actor. Examples include a grocery store
clerk who scans the items for the customer buying groceries, a telephone
operator who gives directory assistance to a customer, and a bank teller who
processes a banking transaction. The primary business actor and primary
system actor may be the same person for events where the business actor
interfaces with the system directly—for example, a person reserving a rental
car via a Web site.

• External server actor—the stakeholder that responds to a request from the
use case (e.g., a credit bureau authorizing the charging by a credit card).

• External receiver actor—the stakeholder that is not the primary actor but
receives something of measurable or observable value (output) from the use
case (e.g., a warehouse receiving a packing order to prepare a shipment after
a customer has placed an order).

Modeling System Requirements with Use Cases Chapter Seven 247

actor anything that needs

to interact with the system to

exchange information.

Actor Symbol

Place New

Member Order

Club Member Distribution Center

1 2

In many information systems there are business events triggered by the calendar
or the time on a clock. Consider the following examples:

• The billing system for a credit card company automatically generates its bills
on the 5th day of the month (billing date).

• A bank reconciles its check transactions every day at 5 P.M.
• On a nightly basis a report is automatically generated listing which courses

have been closed to enrollment (no open seats available) and which courses
are still open.

These events are examples of temporal events. Who would be the actor? All of
the events listed above were performed (or triggered) automatically—when it
became a certain date or time. Because of that we say the actor of a temporal event
is time.

> Relationships

A relationship is depicted as a line between two symbols on the use-case diagram.The
meaning of the relationships may differ depending on how the lines are drawn and
what types of symbols they connect. In the following sections we will define the
different relationships found on a use-case diagram.

Associations A relationship between an actor and a use case exists whenever the
use case describes an interaction between them.This relationship is referred to as an
association. As indicated in Figure 7-3, an association is modeled as a solid line con-
necting the actor and the use case. An association that contains an arrowhead on the
end touching the use case () indicates the use case was imitated by the actor on the
other end of the line. Associations without arrowheads () indicate an interaction be-
tween the use case and an external server or receiver actor. When any actor is associ-
ated with a use case, we say the actor communicates with the use case. Associations
may be bidirectional or unidirectional.

Extends A use case may contain complex functionality consisting of several steps
making the use-case logic difficult to understand. For the purpose of simplifying
the use case and making it more easily understood, we can extract the more com-
plex steps into their own use case. The resulting use case is called an extension

use case in that it extends the functionality of the original use case. The relation-
ship between the extension use case and the use case it is extending is called an
extends relationship. A use case may have many extends relationships, but an ex-
tension use case can be invoked only by the use case it is extending. As depicted
in Figure 7-4, the extends relationship is represented as an arrowheaded line
(either solid or dashed) beginning at the extension use case and pointing to the
use case it is extending. Each extends relationship line is labeled “<<extends>>.”
Generally extension use cases are not identified in the requirements phase but in
the analysis phase.

2

1

248 Part Two Systems Analysis Methods

F I G U R E 7 - 3

Example of an
Association
Relationship

temporal event a system

event that is triggered by time.

association a relationship

between an actor and a use

case in which an interaction

occurs between them.

extension use case a use

case consisting of steps ex-

tracted from a more complex

use case in order to simplify

the original case and thus

extend its functionality. The

extension use case extends

the functionality of the original

use case.

Uses (or Includes) Very commonly, you may discover two or more use cases that
perform steps of identical functionality. It is best to extract these common steps
into their own separate use case called an abstract use case. An abstract use case
represents a form of “reuse” and is an excellent tool for reducing redundancy among
use cases. An abstract use case is available for referencing (or use) by any other use
case that requires its functionality.The relationship between the abstract use case and
the use case that uses it is called a uses relationship (some use-case modeling tools re-
fer to it as an includes relationship). The uses relationship as presented in Figure 7-5
is depicted as an arrowheaded line (either solid or dashed) beginning at the original
use case and pointing to the use case it is using. Each uses relationship line is labeled
“<<uses>>.” Generally abstract use cases are not identified in the requirements phase
but in the analysis phase.

Depends On As the project manager or lead developer, it is very helpful to know
which use cases have a dependency on other use cases in order to determine the se-
quence in which use cases need to be developed. Using the banking business as an
example, the use case Make a Withdrawal cannot be performed until the use case
Make a Deposit has been executed, and that use case cannot execute until the use
case Establish Bank Account has occurred. Because of these dependencies the devel-
opment team will most likely choose to develop the use case Establish Bank Account
first, the Make a Deposit use case second, and the Make a Withdrawal use case third
for usability and testing purposes. A use-case diagram modeling the system’s use-case
dependencies using the depends on relationship provides a model that is an excel-
lent tool for planning and scheduling purposes. The depends on relationship as

Modeling System Requirements with Use Cases Chapter Seven 249

F I G U R E 7 - 5

Example of a Uses
Relationship

F I G U R E 7 - 4

Example of an
Extends
Relationship

Generate Warehouse

Packing Order

Calculate Order

Subtotal & Sales Tax

Place New Member

Order

Extension Use
Case

<<extends>> <<extends>>

Submit Change

of Postal Address

Revise Postal

Address

Place New Member

Order

Abstract
Use Case

<<uses>>

<<uses>>

abstract use case a use

case that reduces redundancy

among two or more other use

cases by combining the com-

mon steps found in those

cases. Another use case uses

or includes the abstract use

case.

depends on a relationship

between use cases indicating

that one use case cannot be

performed until another use

case has been performed.

Apply for

membership

Apply for

membership

Search library

inventory

Search library

inventory

Check out

books
Check out

books

Abstract
Actor

Inheritance
relationship

AfterBefore

Customer

VisitorPatron

Visitor

Patron

F I G U R E 7 - 7

Example of an
Inheritance
Relationship

presented in Figure 7-6 is depicted as an arrowheaded line (either solid or dashed) be-
ginning at one use case and pointing to a use case it is dependent on.The depends on
relationship line is labeled “<<depends on>>.”

Inheritance When two or more actors share common behavior—in other words,
they can initiate the same use case—it is best to extrapolate this common behavior
and assign it to a new abstract actor in order to reduce redundant communication
with the system. For example, a library patron is a card-carrying member who is au-
thorized to “Search library inventory” as well as “Check out books” from the library.
Since many libraries are public institutions, they welcome visitors to use their
services onsite such as “Search library inventory,” but the visitors are not allowed the
extended services (such as “Check out books”) that are reserved for the patrons. By
creating an abstract actor called customer, from which patron and visitor will inherit,
we have to model only once the relationship initiating the use case Search Library
Inventory. In the use-case diagram the inheritance relationship is depicted by the
type of arrow shown in the “After” section of Figure 7-7.

250 Part Two Systems Analysis Methods

Make a Withdrawal

Make a Deposit

Establish Bank

Account

<<depends on>>

<<depends on>>

F I G U R E 7 - 6

Example of a
Depends On
Relationship

inheritance in use cases,

a relationship between actors

created to simplify the drawing

when an abstract actor inher-

its the role of multiple real

actors.

The objective of constructing the requirements use-case model is to elicit and analyze
enough requirements information to prepare a model that communicates what is re-
quired from a user perspective but is free of specific details about how the system
will be built and implemented. Following this approach will later produce a design
that is more robust and less likely to be impacted by change. But to effectively esti-
mate and schedule the project, the model may need to include preliminary “system
implementation assumptions” to aid in those activities. It is critical that the analyst
does not slip into a state of analysis paralysis when preparing this model. Speed is
the key. Not all of the facts will be learned during this phase of the life cycle, but
by utilizing iterative and incremental development, the methodology allows the in-
troduction of new requirements later in the project without seriously impacting
the deployment of the final solution.The steps required to produce this model are the
following:

1. Identify business actors.
2. Identify business requirements use cases.
3. Construct use-case model diagram.
4. Document business requirements use-case narratives.

> Step 1: Identify Business Actors

Why identify actors first? By focusing on the actors, you can concentrate on how the
system will be used and not how it will be built. Focusing on the actors helps to re-
fine and further define the scope and boundaries of the system. Actors also determine
the completeness of the system requirements.2 A benefit of identifying actors first is
that doing so identifies candidates we can later interview and observe to complete
the use-case modeling effort. Plus, those same individuals can be used to verify and
validate the use cases when they are finished.

Where do you look for potential actors? The following references are excellent
sources:

• A context diagram that identifies the scope and boundaries of the system.
• Existing system documentation and user manuals.
• Minutes of project meetings and workshops.
• Existing requirements documents, project charter, or statement of work.

When looking for actors, ask the following questions:

• Who or what provides inputs to the system?
• Who or what receives outputs from the system?
• Are interfaces required to other systems?
• Are there any events that are automatically triggered at a predetermined

time?
• Who will maintain information in the system?

Actors should be named with a noun or noun phrase.
When you identify an actor, create a textual definition of that actor according to

the users’ perspective and using their terms. Figure 7-8 is a template of an actor glos-
sary that can be used to document actors.This example contains a partial listing of the
SoundStage Member Services System’s actors.

Modeling System Requirements with Use Cases Chapter Seven 251

2Frank Armour and Granville Miller, Advance Use Case Modeling (Boston: Addison-Wesley, 2001).

The Process of Requirements Use-Case Modeling

> Step 2: Identify Business Requirements Use Cases

A typical information system may consist of dozens of use cases. During require-
ments analysis we strive to identify and document only the most critical, complex,
and important ones, often referred to as essential use cases because of time and
cost considerations. A business requirements use case captures the interactions
with the user in a manner that is free of technology and implementation details.
Since a use case describes how a real-world actor interacts with the system, an
excellent technique for finding business requirements use cases is to examine
actors and how they will use the system. When looking for use cases, ask the
following questions:

• What are the main tasks of the actor?
• What information does the actor need from the system?
• What information does the actor provide to the system?
• Does the system need to inform the actor of any changes or events that have

occurred?
• Does the actor need to inform the system of any changes or events that have

occurred?

Again, a context diagram is an excellent source for finding potential use cases.
Context diagrams were discussed in Chapter 5. They come from traditional process
modeling (Chapter 9) but are useful even for projects that take an object-oriented ap-
proach. Let’s examine the SoundStage Member Services System’s context diagram in
Figure 7-9. We can identify potential use cases by looking at the diagram and identify-
ing the primary inputs and outputs of the system and the external parties that submit
and receive them. The primary inputs that trigger business events (for example,
Submit Member Order) within the organization are considered use cases, and the
external parties that provide those inputs are considered actors (for example, Club

Member). It is important to note that inputs that are the result of system requests do

252 Part Two Systems Analysis Methods

Term Synonym Description

Potential

member

An individual or corporation that submits a subscription

order in order to join the club.

Club member An individual or corporation that has joined the club via

an agreement.

Past member A type of member that has fulfilled the agreement

obligation but has not placed an order within the last

six months but is still in good standing.

Marketing Organization responsible for creating promotion and

subscription programs and generating sales for the

company.

Member

services

Organization responsible for providing point of contact

for SoundStage Entertainment customers in terms of

agreements and orders.

Distribution

center

Entity that houses and maintains SoundStage

Entertainment product inventory and processes

customer shipments and returns.

Organization responsible for processing customer

payments and billing as well as maintaining customer

account information.

Actor concept responsible for triggering temporal events.

Member

Inactive

member

Warehouse

Accounts

receivable

Time

1.

2.

3.

4.

5.

6.

7.

8.

Actor Glossary
F I G U R E 7 - 8

Partial List of
SoundStage
Member Services
System’s Actors

business requirements
use case a use case created

during requirements analysis

to capture the interactions be-

tween a user and the system

free of technology and imple-

mentation details also called

an essential use case.

Send Promotion Offer

Submit Member Order

Club Member Marketing

Sales

Submit Promotion Information

Send Packing Order

Inquire Account (order & payment history)

Submit Subscription Order
(apply for membership)

Potential Club
Member

Member Services Context

Diagram

Submit Subscription
Program

Generate Various
Sales Reports

Accounts
Receivable

Submit Member
Credit Status

Response

Generate Various
Member Reports

Member Services

Generate Inquiry Responses

Send Subscription Offer

Past Member

Send
Resubscription

Offer

Submit Subscription
Renewal

Generate Various
Promotion Reports

Generate Various
Subscription Reports

Distribution
Center

(Warehouse)

Member
Services
System

F I G U R E 7 - 9 SoundStage Member Services System Context Diagram

not indicate a separate use case—such as a credit card company responding to an
authorization request or, as presented in Figure 7-9, the Accounts Receivable actor
responding with Member Credit Status Information.

Use cases are named with a verb phrase specifying the goal of the actor, such
as Submit Subscription Order. Use cases that are temporal events are usually

Modeling System Requirements with Use Cases Chapter Seven 253

identified as a result of analyzing the key outputs of the system. For example, any

output that is generated on the basis of time or a date, such as monthly or annual

reports, is considered a use case, and the actor, as you recall, is time. In Figure 7-9

let’s assume that one of the various reports that Member Services receives is a

10-30-60-day default agreement report that is automatically generated on a daily

basis. Since the generation of the report is triggered by time, a use case is required

to process the event, and we would name it Generate Daily 10-30-60-Day Default

Agreement Report. It is important to note that many times individual reports are not

listed on a context diagram because they are too numerous and would clutter the

diagram and make it hard to read. It is the system analyst’s responsibility to research

with the appropriate stakeholders the type of outputs they receive and their char-

acteristics, in terms of volume, frequency, and triggering mechanism, in order to

identify “hidden use cases.”

Figure 7-10 is a template of a use-case glossary that can be used to document use

cases. This example contains a partial listing of the SoundStage Member Services

System’s use cases and actors identified from the context diagram as well as from

other sources.

> Step 3: Construct Use-Case Model Diagram

Once the use cases and actors have been identified, a use-case model diagram can

be used to graphically depict the system scope and boundaries. The use-case

F I G U R E 7 - 1 0 Partial List of SoundStage Member Services System’s Use Cases

Use-Case Glossary

Use-Case Name Use-Case Description Participating Actors and Roles

254 Part Two Systems Analysis Methods

• Potential member (primary business)

• Distribution Center (external receiver)

• Past member (primary business)

• Distribution Center (external receiver)

• Club member (primary business)

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

Submit Subscription
Order

Submit Subscription
Renewal Order

Submit Member
Profile Changes

Place New Order

Revise Order

This use case describes the event of a
potential member requesting to join the club
by subscribing. (“Take any 12 CDs for one
penny and agree to buy 4 more at regular
prices within two years.”)

This use case describes the event of a past
member requesting to rejoin the club by
subscribing. (“Take any 12 CDs for one
penny and agree to buy 4 more at regular
prices within two years.”)

This use case describes the event of a club
member submitting changes to his or her
profile for such things as postal address,
e-mail address, privacy codes, and order
preferences.

This use case describes the event of a
club member submitting an order for
SoundStage products.

This use case describes the event of a club
member revising an order previously
placed. (Order must not have shipped.)

Modeling System Requirements with Use Cases Chapter Seven 255

*Considered primary because it receives something of measurable value.

F I G U R E 7 - 1 0 Concluded

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

• Club member (primary business)

• Club member (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Time (initiating actor)

• Member Services (primary*—external
receiver)

Cancel Order

Make Product Inquiry

Make Purchase
History Inquiry

Establish New Member
Subscription Program

Submit Subscription
Program Changes

Establish Past Member
Resubscription
Program

Submit Member
Profile Changes

Revise Promotion

Generate Daily
10-30-60-Day Default
Agreement Report

This use case describes the event of a club
member canceling an order previously
placed. (Order must not have shipped.)

This use case describes the event of a club
member viewing products for possible
purchase. (Driven by Web access
requirement.)

This use case describes the event of a club
member viewing her or his purchasing
history. (Three-year time limit.)

This use case describes the event of the
marketing department establishing a new
membership subscription plan to entice new
members

This use case describes the event of the
marketing department changing a
subscription plan for club members (e.g.,
extending the fulfillment period).

This use case describes the event of the
marketing department establishing a
resubscription plan to lure back former
members.

This use case describes the event of the
marketing department establishing a new
promotion plan to entice active and inactive
members to order the product. (Note: A
promotion features specific titles, usually
new, that the company is trying to sell at a
special price. These promotions are
integrated into a catalog sent (or
communicated) to all members.)

This use case describes the event of the
marketing department revising a promotion.

This use case describes the event of a report
that is generated on a daily basis to list the
members who have not fulfilled their
agreement by purchasing the required
number of products outlined when they
subscribed. This report is sorted by
members who are 10 days past due, 30
days past due, and 60 days past due.

diagram for the use cases listed in Figure 7-10 is shown in Figure 7-11. It was cre-
ated using Popkin Software’s System Architect and represents the relationships be-
tween the actors and the use cases. In addition, the use cases have been grouped
into business subsystems. The subsystems (UML’s package symbol) represent logi-
cal functional areas of business processes. The portioning of system behavior into
subsystems is very important in understanding the system architecture and is a key
to defining your development strategy—which use cases will be developed first
and by whom. We have labeled the associations between the actors and the use
cases “initiates” because the tool did not support lines with arrowheads at the
time. We also didn’t include the external server and receiver actors because of
space limitations. To model all the use cases of a particular system may require the
creation of several use-case model diagrams—as you recall, a system may contain
dozens of use cases. In that event you may want to create a separate use-case
model diagram for each subsystem.

> Step 4: Document Business Requirements
Use-Case Narratives

When you are preparing the narratives, it is wise to first document them at a high

level to quickly obtain an understanding of the events and magnitude of the system.
Then return to each use case and expand it to a fully documented business require-
ment narrative. Figure 7-12 represents a requirements use-case narrative for the

256 Part Two Systems Analysis Methods

Place New
Order

Revise
Promotion

Submit New
Promotion

Establish
New Member
Subscription

Program

Submit
Subscription

Renewal Order

Establish Past
Member

Resubscription
Program

Submit
Subscription

Program Changes

Submit Member
Profile Changes

Submit
Subscription Order

Revise Order

Cancel Order

Make Product
Inquiry

Make Purchase
History inquiry

Generate Daily10-
30-60 Day Default
Agreement Report

Operations Subsystem

Order Subsystem

Promotion Subsystem

Subscription Subsystem

Time M a r k e t i n g

Past Member

Club Member

Potential Member

initiates

initiates

initiates

initiates

initiatesinitiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

F I G U R E 7 - 1 1 SoundStage Member Services System’s Use-Case Model Diagram

F I G U R E 7 - 1 2 High-Level Version of Place New Order Use-Case Narrative

Member Services System

Author (s): Date:

Version:

Use-Case Name: Place New Order Use-Case Type

Use-Case ID: MSS-BUC002.00 Business Requirements: √

Priority: High

Source: Requirement — MSS-R1.00

Primary Business
Actor:

Club member

Other
Participating
Actors:

•
•

Warehouse (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products.

The member’s demographic information as well as his or her account standing is validated. Once the

products are verified as being in stock, a packing order is sent to the warehouse for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be sent

an order confirmation.

21

4

6

57

8

9

10

11

12

3

Member Services System’s Place New Order use case. Notice that it tersely describes
the event, which includes the following items:

Author—The names of the individuals who contributed to the writing of the
use case and who provide a point of contact for anyone requiring additional
information about the use case.
Date—The date the use case was last modified.
Version—The current version of the use case (e.g., 1.0).
Use-case name—The use-case name should represent the goal that the use
case is trying to accomplish. The name should begin with a verb (e.g., Enter
New Member Order).
Use-case type—In performing use-case modeling, business requirements use
cases, which focus on the strategic vision and goals of the various stakeholders,
are constructed first. This type of use case is business-oriented and reflects a
high-level view of the desired behavior of the system. It is free from technical
details and may include manual activities as well as the activities that will be
automated. Business requirements use cases provide a general understanding of
the problem domain and scope but don’t include the necessary detail to com-
municate to developers what the system should do.
Use-case ID—An identifier that uniquely identifies the use case.
Priority—The priority communicates the importance of the use case in terms
of high, medium, or low.
Source—The source defines the entity that triggered the creation of the use
case. This could be a requirement, a specific document, or a stakeholder.
Primary business actor—The primary business actor is the stakeholder that
primarily benefits from the execution of the use case by receiving something
of measurable or observable value.

9

8

7

6

5

4

3

2

1

Modeling System Requirements with Use Cases Chapter Seven 257

Other participating actors—Other actors that participate in the use case to
accomplish its goal include initiating actors, facilitating actors, server/receiver
actors, and secondary actors. Always include the manner in which the actor
participates.
Interested stakeholder(s)—A stakeholder is anybody who has a stake in the
development and operation of the software system. An interested stakeholder
is a person (other than an actor) who has a vested interest in the goal of
the use case.
Description—A short summary description that consists of a couple of
sentences outlining the purpose of the use case and its activities.

Documenting the Use-Case Course of Events For each high-level use case iden-
tified, we must now expand it to include the use case’s typical course of events and
its alternate courses. A use case’s typical course of events is a step-by-step description
starting with the actor initiating the use case and continuing until the end of the busi-
ness event. In this section we include only the major steps that occur the majority of
the time (its typical course). The alternate course documents the exceptions or the
conditional branching of the use case. Figure 7-13 represents a requirements use-case
narrative for the Member Services System’s Place New Order use case. Notice that it
includes the following additional items:

Precondition—A precondition is a constraint on the state of the system
before the use case can be executed. Typically this refers to another use case
that must be previously executed.
Trigger—The trigger is the event that initiated the execution of the use
case. This often is a physical action, such as a customer walking up to a
sales counter or a check arriving in the mail. Time can also trigger use
cases.
Typical course of events—The typical course of events is the normal
sequence of activities performed by the actor(s) and the system in order to
satisfy the goal of the use case. These include the interactions between the
system and the actor and the activities performed by the system in response
to the interactions. Note that the actions of the actor are recorded in the left
hand column while the actions of the systems are recorded in the right hand
column.
Alternate courses—Alternate courses document the behaviors of the use
case if an exception or variation to the typical course occurs. This can
happen when a decision point occurs within the use case or an exception
occurs that requires additional steps outside the scope of the typical
course.
Conclusion—The conclusion specifies when the use case successfully ends—in
other words, when the primary actor receives something of measurable value.
Postcondition—A postcondition is a constraint on the state of the system
after the use case has been successfully executed. This could be data
recorded in a database or a receipt delivered to a customer.
Business rules—Business rules specify policies and procedures of the
business that the new system must abide by. This could include the calcula-
tion of shipping charges or rules for granting credit terms.
Implementation constraints and specifications—Implementation constraints
and specifications specify any nonfunctional requirements that may impact
the realization of the use case and may be helpful in any architectural
planning and scoping. Items that may be included are security specifications,
interface requirements, and so on.
Assumptions—Any assumptions that were made by the creator when docu-
menting the use case.
Open issues—Any questions or issues that need to be resolved or investi-
gated before the use case can be finalized.

10

9

8

7

6

5

4

3

2

1

12

11

10

258 Part Two Systems Analysis Methods

Member Services System

Author (s): Date:

Version:

Use-Case Name: Place New Order Use-Case Type

Use-Case ID: MSS-BUC002.00 Business Requirements: √

Priority: High

Source: Requirement — MSS-R1.00

Primary Business
Actor:

Club member

Other
Participating
Actors:

•

•

Warehouse (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•

•

•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products.

The member’s demographic information as well as his or her account standing is validated. Once the

products are verified as being in stock, a packing order is sent to the warehouse for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

The party (individual or company) submitting the order must be a member.Precondition:

This use case is initiated when a new order is submitted.Trigger:

Actor Action System Response

Step 2: The system responds by verifying that all required

information has been provided.

Step 3: The system verifies the club member’s demographic

information against what has been previously recorded.

Step 4: For each product ordered, the system validates the

product identity.

Step 5: For each product ordered, the system verifies the product

availability.

Step 6: For each available product, the system determines the

price to be charged to the club member.

Step 7: Once all ordered products are processed, the system

determines the total cost of the order.

Step 8: The system checks the status of the club member’s account.

Step 9: The system validates the club member’s payment if

provided.

Step 10: The system records the order information and then

releases the order to the appropriate distribution center

(warehouse) to be filled.

Step 11: Once the order is processed, the system generates an

order confirmation and sends it to the club member.

Step 1: The club member

provides his or her demographic

information as well as order and

payment information.

Typical Course
of Events:

2

1

3

F I G U R E 7 - 1 3 Expanded Version of Place New Order Use-Case Narrative

Modeling System Requirements with Use Cases Chapter Seven 259

Business requirements use cases are excellent tools in that they describe the

events the organization must process and respond to, but they lack information re-

garding the interfaces and the activities that are targeted to be automated by informa-

tion technology. Later, in Chapter 11, you will learn how to evolve the use case to

include technical and implementation details.

•

•

•

The club member responding to a promotion or a member using credits may affect the price of

each ordered item.

Cash or checks will not be accepted with the orders. If provided, they will be returned to the

club member.

The club member is billed for products only when they are shipped.

Alt-Step 2: The club member has not provided all the information necessary to process the order. The

club member is notified of the discrepancy and prompted to resubmit.

Alt-Step 3: If the club member information provided is different from what was previously recorded,

verify what was recorded is current, then update the club member information accordingly.

Alt-Step 4: If the product information the club member provided does not match any of SoundStage’s

products, notify the club member of the discrepancy and request clarification.

Alt-Step 5: If the quantity ordered of the product is not available, a back order is created.

Alt-Step 8: If the status of the club member’s account is not in good standing, record the order

information and place it in hold status. Notify the club member of the account status and the reason the

order is being held. Terminate use case.

Alt-Step 9: If the payment the club member provided (credit card) cannot be validated, notify the club

member and request an alternative means of payment. If the club member cannot provide an alternate

means, cancel the order and terminate the use case.

Alternate
Courses:

This use case concludes when the club member receives a confirmation of the order.Conclusion:

Procurement will be notified of back orders by a daily report (separate use case).Assumptions:

The order has been recorded and if the ordered products were available, they were released. For any

product not available a back order has been created.

Postcondition:

Business Rules:

• GUI to be provided for Member Services associate, and Web screen to be provided for club

member.

Implementation
Constraints and
Specifications: 8

5

10

7

4

9

6

1. Need to determine how distribution centers are assigned.Open Issues:

F I G U R E 7 - 1 3 Conclued

As you recall, one of the benefits of use-case modeling is that the use-case model can be
used to drive the entire system development effort. Once the business requirements use-
case model is complete, the project manager or systems analyst uses the business re-
quirements use cases to plan (estimate and schedule) the build cycles of the project.This
is especially crucial when applying the iterative and incremental approach to software
development. A build cycle, which consists of the system analysis, design, and construc-
tion activities, is scoped on the basis of the importance of the use case and the time it
takes to implement the use case. In other words, one or more use cases will be devel-
oped in each build cycle. For a use case that is too large or complex to be completed in
one build cycle, a simplified version will be implemented initially, followed by the full
version in the next build cycle.To determine the importance of the use cases, the project
manager or systems analyst will complete a use-case ranking and evaluation matrix and
construct a use-case dependency diagram with input from the stakeholders and the de-
velopment team.You will learn how to use these tools in the following sections.

> Ranking and Evaluating Use Cases

In most software development projects the most important use cases are developed
first. In order to determine the priority of the use cases, the project manager uses a
tool called the use-case ranking and priority matrix. This matrix is completed

260 Part Two Systems Analysis Methods

use-case ranking and
priority matrix a tool used

to evaluate use cases and

determine their priority.

Use Cases and Project Management

F I G U R E 7 - 1 4 Partial Use-Case Ranking and Priority Matrix

with input from the stakeholders and the development team. This matrix, adapted
from Craig Larman’s work,3 evaluates use cases on a scale of 1 to 5 against six criteria.
They are as follows:

1. Significant impact on the architectural design.
2. Easy to implement but contains significant functionality.
3. Includes risky, time-critical, or complex functions.
4. Involves significant research or new or risky technology.
5. Includes primary business functions.
6. Will increase revenue or decrease costs.

Once each category has been scored, the individual scores are tallied, resulting in the
use case’s final score. The use cases with the highest scores are assigned the highest
priority and should be developed first.

Figure 7-14 is a partial use-case ranking and priority matrix for the Member
Services System. Based on the results of the analysis, the use case Submit Subscription
Order should be developed first. But we can’t be sure until we analyze the use-case
dependencies.

> Identifying Use-Case Dependencies

Some use cases may be dependent on other use cases, with one use case leaving the
system in a state that is a precondition for another use case. For example, a precondi-
tion of sending a club promotion is that the promotion must first be created. We use
a diagram called the use-case dependency diagram to model such dependencies.
The use-case dependency diagram provides the following benefits:

• The graphical depiction of the system’s events and their states enhances the
understanding of system functionality.

• It helps to identify missing use cases. A use case with a precondition that is
not satisfied by the execution of any other use case may indicate a missing
use case.

• It helps facilitate project management by depicting which use cases are more
critical (have the most dependencies) and thus need to have a higher priority.

Figure 7-15 is the use-case dependency diagram for the use cases listed in Fig-
ure 7-14.The use cases that are dependent on each other are connected with a dashed

Modeling System Requirements with Use Cases Chapter Seven 261

Use-Case Name Ranking Criteria, 1 to 5
Total
Score Priority

Build
Cycle

Submit Subscription Order

1 2 3 4 5 6

5 5 5 4 5 5

4 4 5 4 5 5

1 1 1 1 1 1

4 5 5 3 5 5

1 1 1 1 1 1

2 2 3 3 4 4

29

27

6

27

6

18

1

2

3

1

3

2

High

High

Low

High

Low

Medium

Place New Order

Make Product Inquiry

Establish New Member
Subscription Program

Generate Daily 10-30-60-Day
Default Agreement Report

Revise Order

use-case dependency
diagram a graphical depic-

tion of the dependencies

among use cases.

3Craig Larman, Applying UML Patterns (Upper Saddle River, NJ: Prentice Hall, 1998).

1. There are two primary artifacts involved when per-
forming use-case modeling.The first is the use-case
diagram, which graphically depicts the system as a
collection of use cases, actors (users), and their re-
lationships. Details of each business event and
how the users interact with the system are de-
scribed in the second artifact, called the use-case
narrative, which is the textual description of the

business event and how the user will interact with
the system to accomplish the task.

2. Use-case modeling utilizes two constructs: actors
and use cases. An actor represents anything that
needs to interact with the system to exchange in-
formation. An actor is a user, a role, which could
be an external system as well as a person. A use
case is a behaviorally related sequence of steps (a

Summary

F I G U R E 7 - 15

Sample Use-Case
Dependency
Diagram

Place New Order

Generate Daily 10-
30-60 Day Default
Agreement Report

Establish New
Member Subscription

Program

Submit
Subscription Order

Revise Order

Make Product
Inquiry

Depends on Depends on Depends on

Depends on

262 Part Two Systems Analysis Methods

Le
a
rn

in
g
 R

oa
d
m

a
p

This chapter provided an introduction to use cases and how they can be used to doc-

ument functional requirements. Also, you have learned that use-case modeling based

on object-oriented concepts is an excellent complementary tool for traditional sys-

tems analysis and design tools such as process modeling and data modeling. Many of

you will proceed directly to Chapter 8,“Data Modeling and Analysis.” All information

systems include databases, and data modeling is an essential skill for database devel-

opment. Also, it is easier to synchronize early data models with later process models

than vice versa. Your instructor may prefer that you first study Chapter 9, “Process

Modeling.” Process modeling is an effective way to analyze and document functional

system requirements. Courses that want to follow an object-oriented approach may

elect to jump straight to Chapter 10,“Object-Oriented Analysis and Modeling Using

the UML,” which teaches emerging object-modeling techniques using the unified

modeling language.

line labeled “Depends on.” In Figure 7-15, the use case Submit Subscription Order has
a dependency (precondition) on the use case Establish New Member Subscription
Program. Because of this dependency the use case Establish New Member Subscrip-
tion Program should be developed first even though Submit Subscription Order had
a higher score as reflected in Figure 7-14.

1. What is user-centered development and why is it
critical to the success of the system development
process?

2. How is use-case modeling related to user-centered
development?

3. In addition to encouraging user involvement, use-
case modeling provides numerous other benefits.
List the benefits that use-case modeling provides.

4. Use-case modeling uses two primary artifacts—
the use-case diagram and the use-case narrative.
How are these two artifacts used and what are
their differences?

5. Use case diagrams consist of three components.
What are these three components, and what is
their purpose?

6. How are use cases used throughout the entire
system development life cycle?

7. Of the four primary categories of actors, who is
the primary system actor?

8. What are the different types of relationships em-
ployed in a use-case diagram, and what is their
purpose?

9. What is the objective of constructing the require-
ments use-case model and what steps are to be
followed?

10. Why is identifying the actors the first step in use-
case modeling?

11. What should we be aware of when we are look-
ing for business requirements use cases?

12. What is a use case’s typical course of events?
13. Why is ranking and evaluating of use cases

essential?
14. What are the six criteria in the use-case ranking

and priority matrix?
15. What is the use-case dependency diagram, and

why do we use it?

Review Questions
1

2

scenario), both automated and manual, for the pur-
pose of completing a single business task.

3. There are primarily four types of actors:

a. Primary business actor—The stakeholder that
primarily benefits from the execution of the
use case by receiving something of measurable
or observable value.

b. Primary system actor—The stakeholder that
directly interfaces with the system to initiate or
trigger the business or system event.

c. External server actor—The stakeholder that
responds to a request from the use case.

d. External receiver actor—The stakeholder that
is not the primary actor but receives something
of measurable or observable value (output)
from the use case.

4. Temporal events are business events that are per-
formed (or triggered) automatically—when it be-
comes a certain date or time. Because of that, we
say the actor of a temporal event is time.

5. A relationship is depicted as a line between two
symbols on the use-case diagram.

a. An association is a relationship between an ac-
tor and a use case.

b. The relationship between the extension use
case and the use case it is extending is called an
extends relationship.

c. The relationship between the abstract use case
and the use case that uses it is called a uses
relationship.

d. The inheritance relationship occurs when an
actor inherits the ability to initiate a use case
from another.

e. The depends-on relationship indicates a depen-
dency between use cases. In other words, the
precondition of one use case is dependent on
the postcondition of another use case.

6. The steps required to produce a requirements use-
case model are the following:

a. Identify business actors.
b. Identify business requirements use cases.
c. Construct use-case model diagram.
d. Document business requirements use-case

narratives.

7. The use-case ranking and priority matrix and the
use-case dependency diagram are tools used by
project managers for prioritizing and scheduling
use-case development.

Modeling System Requirements with Use Cases Chapter Seven 263

1. According to author Fred Brooks, what is the sin-
gle most difficult thing to do in systems develop-
ment? How does use-case modeling help in this
area?

2. In use case modeling, what two main artifacts
does the systems analyst use? Describe each of
these artifacts and explain their purpose.

3. What should a systems analyst always keep in
mind in identifying and developing use cases re-
garding their purpose? Since requirements fact-
finding has been completed previously, is it really
necessary to spend much time with users at this
point? Just what should a use case represent? Is a
use case the same as a functional requirement?

4. During what part of the development life cycle
are use cases first defined? When are they used
during the development life cycle, and for what
purpose?

5. Match the following stakeholders and external
users with the correct actor. What is a temporal
event? Who or what is considered to be the actor
in a temporal event, and why?

system to see if an item is in stock, and an
actor created specifically to minimize duplica-
tive system communication.

• The relationship between the use case “Cal-
culate GPA” and the lengthy use case “Create
Transcript.”

• The relationship between the use case “Ship
Order” and the use case “Submit Order.”

7. Y&J Cookbooks is a fictional small business
owned and operated by a retired couple. Up to
this time,Y&J Cookbooks has sold its books by
mail order only.The owners now want to develop
an online system to sell rare and out-of-print
cookbooks over the Internet.Visitors will be able
to browse a variety of cookbooks, but they will
have to create a customer account before being
able to make a purchase. Payments will be ac-
cepted only online with a major credit card, and
the credit card will be verified before the order
can be approved. Based upon this information,
identify the main business actors.

8. In use-case modeling, once you identify the busi-
ness actors, what perspective and language
should you use in defining them? Use that per-
spective and language to construct an actor glos-
sary using Figure 7-8 as an example.

9. A context diagram can help tremendously in iden-
tifying different use cases. Prepare a high-level
context diagram for the Y&J Cookbooks Web site,
using Figure 7-9 as an example.

10. The next step in requirements use-case modeling
is to identify the business requirements use cases.
What should each use case capture? What effec-
tive technique can you use to identify use cases?
What questions might you ask in order to identify
use cases? What is the difference between a use
case and an essential use case?

11. The third step in use-case modeling is to con-
struct the use-case model diagrams. Based upon
the Y&J Cookbooks actor glossary and context
diagram, create a high-level use-case model dia-
gram, showing the interactions between the
shopper/customer actor and the system, includ-
ing searching and browsing for books, purchas-
ing, and managing the customer account. Make
sure to show the relationships between the actor
and each of these use cases.

12. The next step is creating use-case narratives to
document the business requirements. Why is
preparation of the narratives generally done in a
two-step process, and what are these two steps?
Based upon the preceding high-level use-case

Problems and Exercises

Stakeholders and

external users

• United States Postal
Service

• Computerized door
lock with key pad

• Rental car agent
• Sales manager gener-

ating regional sales
report

• Sales manager receiv-
ing regional sales
report

• Automatic lawn
sprinkler system

• Driver purchasing
gasoline with ATM
card

• Bank loan authoriza-
tion service

Actor

Primary business
actor
Primary system actor

External server actor
External receiver
actor

Time

264 Part Two Systems Analysis Methods

6. What is the type of relationship for each of the
following examples?

• The relationship between the use case “Print
Form” and several other use cases that
involve printing different types of forms.

• The relationship between a motorcycle offi-
cer and a handheld citation writing device.

• The relationship between a customer and a
sales clerk who can each query the inventory

1. At the beginning of Chapter 7, there is a quote
taken from an article by Frederick P. Brooks Jr.,
who is generally considered to be one of the lead-
ing authors and contributors to the field of project
management and software development. Search
the Web for this article and for other articles by
and/or about Fred Brooks.

a. In conducting your search, how many refer-
ences to the author did you find?

b. Based upon the information presented in the
previous chapters, explain Brooks’s statement
that “the hardest single part of building a soft-
ware system is deciding precisely what to
build.”

c. What was the name of the article in which
Brooks made the preceding statement, and
what was the article’s main theme?

d. What is Brooks’s best known book that is still in
print and widely read decades after its original
publication? What was the main theme of this
book?

e. What do you consider to be Brooks’s greatest
contribution to date? Why?

2. The Standish Group, which was mentioned in
Chapter 7, is an independent research group
that studies changes and trends in information
technology. In 1994, the Standish Group published
its groundbreaking CHAOS Report, which “ex-
pose[d] the overwhelming failure of IT application
development projects in today’s MIS environment.”
Since that time, the Standish Group has published
periodic updates to their original report. Go to
their Web site at www.standishgroup.com, and
follow the links to their public access area, where
you can find a summary of their latest CHAOS
research report, as well as the original 1994
report itself.

a. What criteria does the Standish Group use to
determine whether a project succeeded, was
challenged, or failed?

b. Based upon the latest research report, what
percentage of projects succeeded, were chal-
lenged, or failed?

c. How do these latest rates compare to the proj-
ect success, challenge, and failure rates shown
in Figure 7-1 of the textbook? How would you
describe the overall trends, if any?

d. Based upon your reading and experience, what
do you believe to be the reason(s) for the
changes in project success, challenge, and fail-
ure rates?

e. Do you think that current project management
and system development methodologies will re-
main essentially the same but continue to be re-
fined, or do you foresee the emergence of
dramatically different methodologies for manag-
ing projects and developing systems over the
next decade?

3. Select an information system used in your organi-
zation or in your school. Interview a systems ana-
lyst or designer who is familiar with the system.
Based upon the information provided, do the
following:

a. Describe the information system and organiza-
tion you selected.

b. Create a context diagram of the system.
c. Identify the business actors.
d. Create an actor glossary.
e. Identify the business requirements essential use

cases.
f. Create a use case glossary.

4. Based upon the information provided regarding
the system you selected in the preceding question:

a. Construct a use-case model diagram that in-
cludes all major subsystems.

b. Prepare expanded use-case narratives for three
of the essential use cases.

c. Prepare a use-case ranking and priority matrix,
then use it to rank and evaluate the use cases.

d. Identify use case dependencies.
e. Prepare a use-case dependency diagram.

Projects and Research

model diagram, create an expanded narrative, us-
ing Figure 7-13 as an example.

13. What is the relationship of use-case modeling to
project management? Why is this important? Why
are use cases ranked, and what tool is used to

rank them? Who provides the input for ranking
them? What criteria are used for ranking? Explain
why use-case dependencies need to be identified,
and provide an example. What tool is used to
identify dependencies?

Modeling System Requirements with Use Cases Chapter Seven 265

1. In a mincase for Chapter 6, you interviewed stake-
holders for an online class registration system. In
that exercise, you were to develop an understand-
ing of any issues and needs those stakeholders had
in regards to the system. Review your findings
from those interviews.

a. Visit other school registration systems. Is there
any functionality or ease of use differences?
Are there any features that you think the stake-
holders would particularly like/dislike? Make
notes and create screen dump examples of
other systems.

b. Create a follow-up interview with those stake-
holders you previously spoke to and determine
specific functionality and ease-of-use require-
ments for your school.

2. Create a use-case description for at least one of
the functionality requirements you found in the
previous problem. Follow the example shown in
Figure 7-10.

3. Identify all of the actors for the school registration
system. Which uses cases will each initiate?

4. Using your answer to the previous problem, draw a
use-case diagram of the school registration system.

Minicases

5. Search the Web or professional journals in your
school library for research articles on new and
emerging developments in use-case modeling.
Select two articles, then do the following:

a. Provide a bibliography for each article. (Use the
format used by your school.)

b. Create an abstract in your own words for each
article.

c. Compare and contrast the methodologies de-
scribed in each article. Describe which one
you feel is more viable and/or significant, and
explain why.

6. Conduct interviews with several developers
regarding their views on use-case modeling. If
possible, try to find developers from different organi-
zations and/or with different lengths of experience,
as well as different types of experience (i.e., a devel-
oper who has experience mostly as a systems ana-
lyst, one mostly as a designer, and one as a builder).

a. Describe the developers that you interviewed
in terms of their experience. For example, how
long have they worked in IT, what is their area
of expertise, and how familiar are they are with
use-case modeling?

b. What is the nature of their organization(s)?
c. What questions did you ask?
d. What are the viewpoints of each developer re-

garding the importance and value of use-case
modeling?

e. Do these developers actually employ use-case
modeling in their current organization? Why or
why not?

f. If they were CIOs of their organization for a
day, would they change their organization’s IT
architecture regarding use-case modeling? If
so, how?

g. Using the capability maturity model, how
would you rate the maturity level of their orga-
nization? Why?

h. What conclusions, if any, can you draw from the
interviews regarding the practical application
of use-case modeling?

i. What were your views regarding the impor-
tance and value of use-ease modeling before the
interviews? Did your views change any as a re-
sult of the interviews? If so, how did they
change and why?

266 Part Two Systems Analysis Methods

1. Roundtable discussion: Do you think people are al-
ways absolutely truthful in their responses to inter-
view questions?

2. Watch a silent movie. Roundtable discussion: What
communication is taking place other than words?

3. Roundtable discussion: When you determine re-
quirements for a system through a method such as

an interview, you assume that the person you are
interviewing and collecting information from
wants the system to be successful. Is this always
the case? How can you handle requirements
gathering if it is not?

Team and Individual Exercises

Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001.Very good information about doc-

umenting use cases and their use.

Armour, Frank, and Granville Miller. Advance Use Case Mod-

eling. Boston: Addison-Wesley, 2001. This book presents

excellent coverage of the use-case modeling process.

Brooks, Jr., F.P., 1987.“No SilverBullet—Essence and Accidents

of Software Engineering.” Computer 20(4), April, 10–19.

proc. IFIP Congress, Dublin, Ireland, 1986

Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and Gun-

nar Overgaard. Object-Oriented Software Engineering—

A Use Case Driven Approach. Workingham, England:

Addison-Wesley, 1992. This book presents detailed cover-

age of how to identify and document use cases.

Larman, Craig. Applying UML and Patterns. Upper Saddle

River, NJ: Prentice Hall, 1998. This book provides a com-

prehensive overview of a use-case modeling process.

Suggested Readings

Modeling System Requirements with Use Cases Chapter Seven 267

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

8Data Modeling
and Analysis

Chapter Preview and Objectives

In this chapter you will learn how to use a popular data-modeling tool, entity relationship

diagrams, to document the data that must be captured and stored by a system, indepen-

dently of showing how that data is or will be used—that is, independently of specific

inputs, outputs, and processing. You will also learn about a data analysis technique called

normalization that is used to ensure that a data model is a “good” data model. You will

know data modeling and data analysis as systems analysis tools and techniques when

you can:

❚ Define systems modeling and differentiate between logical and physical system

models.

❚ Define data modeling and explain its benefits.

❚ Recognize and understand the basic concepts and constructs of a data model.

❚ Read and interpret an entity relationship data model.

❚ Explain when data models are constructed during a project and where the models are

stored.

❚ Discover entities and relationships.

❚ Construct an entity relationship context diagram.

❚ Discover or invent keys for entities and construct a key-based diagram.

❚ Construct a fully attributed entity relationship diagram and describe all data structures

and attributes to the repository or encyclopedia.

❚ Normalize a logical data model to remove impurities that can make a database

unstable, inflexible, and nonscalable.

❚ Describe a useful tool for mapping data requirements to business operating locations.

As the SoundStage Member Services system project moves from requirements analy-
sis into logical design, the first task according to their methodology is to analyze the
data requirements for the new system. Bob Martinez remembers a favorite professor
in college who always said,“Get the data right and the system will be able to elegantly
support all your present requirements and even requirements users don’t yet envi-
sion; get the data wrong and it will be a pain in the neck to meet requirements today,
tomorrow, and forever.”

Bob enjoyed his database classes in college and always did well in them. Of
course, the member services system is larger and more detailed than any data project
he did in school. Fortunately, he has the database from the previous version of the sys-
tem to start with, plus forms and reports from the previous system, plus notes from
user interviews, plus use-case narratives created during the requirements analysis
phase. Sandra has asked Bob to take the first shot at pulling it all together into a logi-
cal data model. He’s determined to impress her.

270 Part Two Systems Analysis Methods

ORDER

Order Number (Primary Key)

Order Date

Order Total Cost

Customer Number (Foreign Key)

has placed

sold

has been

sold as

CUSTOMER

Customer Number (Primary Key)

Customer Name

Shipping Address

Billing Address

Balance Due

INVENTORY PRODUCT

Product Number (Primary Key)

Product Name

Product Unit of Measure

Product Unit Price

ORDERED PRODUCT

Ordered Product ID (Primary Key)

.Order Number (Foreign Key)

.Product Number (Foreign Key)

Quantity Ordered

Unit Price at Time of Order

F I G U R E 8 - 1

An Entity
Relationship Data
Model

data modeling a technique

for organizing and document-

ing a system’s data. Some-

times called database

modeling.

Introduction

What Is Data Modeling?

Systems models play an important role in systems development. This chapter will
present data modeling as a technique for defining business requirements for a data-
base. Data modeling is sometimes called database modeling because a data model is
eventually implemented as a database.

Figure 8-1 is an example of a simple data model called an entity relationship

diagram, or ERD. This diagram makes the following business assertions:

• We need to store data about CUSTOMERS, ORDERS, and INVENTORY PRODUCTS.
• The value of CUSTOMER NUMBER uniquely identifies one and only one CUSTOMER.

The value of ORDER NUMBER uniquely identifies one and only one ORDER. The
value of PRODUCT NUMBER uniquely identifies one and only one INVENTORY

PRODUCT.
• For a CUSTOMER we need to know the CUSTOMER NAME, SHIPPING ADDRESS, BILLING

ADDRESS, and BALANCE DUE. For an ORDER we need to know ORDER DATE and
ORDER TOTAL COST. For an INVENTORY PRODUCT we need to know PRODUCT NAME,
PRODUCT UNIT OF MEASURE, and PRODUCT UNIT PRICE.

• A CUSTOMER has placed zero, one, or more current or recent ORDERS.
• An ORDER is placed by exactly one CUSTOMER. The value of CUSTOMER NUMBER (as

recorded in ORDER) identifies that CUSTOMER.
• An ORDER sold one or more ORDERED PRODUCTS. Thus, an ORDER must contain at

least one ORDERED PRODUCT.
• An INVENTORY PRODUCT may have been sold as zero, one, or more ORDERED

PRODUCTS.
• An ORDERED PRODUCT identifies a single INVENTORY PRODUCT on a single ORDER.

The ORDER NUMBER (for an ORDERED PRODUCT) identifies the ORDER, and the PROD-
UCT NUMBER (for an ORDERED PRODUCT) identifies the INVENTORY PRODUCT.
Together, they identify one and only one ORDERED PRODUCT.

• For each ORDERED PRODUCT we need to know QUANTITY ORDERED and UNIT PRICE

AT TIME OF ORDER.

After you study this chapter, you will be able to read data models and construct them.

System Concepts for Data Modeling

There are several notations for data modeling.The actual model is frequently called an
entity relationship diagram (ERD) because it depicts data in terms of the entities
and relationships described by the data.There are several notations for ERDs. Most are
named after their inventor (e.g., Chen, Martin, Bachman, Merise) or after a published
standard (e.g., IDEF1X). These data modeling “languages” generally support the same
fundamental concepts and constructs. We have adopted the Martin (information
engineering) notation because of its widespread use and CASE tool support.

Let’s explore some basic concepts that underlie all data models.

> Entities

All systems contain data—usually lots of data! Data describes “things.” Consider a
school system. A school system includes data that describes things such as STUDENTS,
TEACHERS, COURSES, and CLASSROOMS. For any of these things, it is not difficult to imagine
some of the data that describes any given instance of the thing. For example, the data
that describes a particular student might include NAME,ADDRESS, PHONE NUMBER, DATE OF

BIRTH, GENDER, RACE, MAJOR, and GRADE POINT AVERAGE, to name a few.
We need a concept to abstractly represent all instances of a group of similar

things. We call this concept an entity. An entity is something about which the busi-
ness needs to store data. In system modeling, we find it useful to assign each ab-
stract concept to a shape. In this book, an entity will be drawn as a rectangle with
rounded corners (see margin). This shape represents all instances of the named
entity. For example, the entity STUDENT represents all students in the system. Thus,
an entity identifies specific classes of entities and is distinguishable from the other
entities.

Categories of entities (and examples) include:

Persons: AGENCY, CONTRACTOR, CUSTOMER, DEPARTMENT, DIVISION, EMPLOYEE,
INSTRUCTOR, STUDENT, SUPPLIER. Notice that a person entity class can
represent individuals, groups, or organizations.

Places: SALES REGION, BUILDING, ROOM, BRANCH OFFICE, CAMPUS.
Objects: BOOK, MACHINE, PART, PRODUCT, RAW MATERIAL, SOFTWARE LICENSE, SOFTWARE

PACKAGE,TOOL,VEHICLE MODEL,VEHICLE. An object entity can represent
actual objects (such as a specific software license) or specifications
for a type of object (such as specifications for different software
packages).

Events: APPLICATION,AWARD, CANCELLATION, CLASS, FLIGHT, INVOICE, ORDER,
REGISTRATION, RENEWAL, REQUISITION, RESERVATION, SALE,TRIP.

Concepts: ACCOUNT, BLOCK OF TIME, BOND, COURSE, FUND, QUALIFICATION, STOCK.

Data Modeling and Analysis Chapter Eight 271

entity relationship
diagram (ERD) a data

model utilizing several notations

to depict data in terms of

the entities and relationships

described by that data.

entity a class of persons,

places, objects, events, or

concepts about which we

need to capture and store

data.

STUDENT

An Entity

It is important to distinguish between an entity and its instances. An entity

instance is a single occurrence of an entity. For example, the entity STUDENT may have
multiple instances: Mary, Joe, Mark, Susan, Cheryl, and so forth. In data modeling, we
do not concern ourselves with individual students because we recognize that each
student is described by similar pieces of data.

> Attributes

If an entity is something about which we want to store data, then we need to identify
what specific pieces of data we want to store about each instance of a given entity.We
call these pieces of data attributes. As noted at the beginning of this section, each in-
stance of the entity STUDENT might be described by the following attributes: NAME,
ADDRESS,PHONE NUMBER,DATE OF BIRTH,GENDER,RACE,MAJOR,GRADE POINT AVERAGE, and others.

We can now extend our graphical abstraction of the entity to include attributes by
recording those attributes inside the entity shape along with the name (see margin).

Some attributes can be logically grouped into superattributes called compound

attributes. For example, a student’s NAME is actually a compound attribute that con-
sists of LAST NAME, FIRST NAME, and MIDDLE INITIAL. In the margin, we demonstrate one
possible notation for compound attributes. Notice that a period is placed at the
beginning of each primitive attribute that is included in the composite attribute.

Domains When analyzing a system, we should define those values for an attribute
that are legitimate or that make business sense. The values for each attribute are de-
fined in terms of three properties: data type, domain, and default.

The data type for an attribute defines what type of data can be stored in that at-
tribute. Data typing should be familiar to those of you who have written computer
programs; declaring types for variables is common to most programming languages.
For purposes of systems analysis and business requirements definition, it is useful to
declare logical (nontechnical) data types for business attributes. For the sake of argu-
ment, we will use the logical data types shown in Table 8-1.

An attribute’s data type constrains its domain.The domain of an attribute defines
what values the attribute can legitimately take on. Eventually, system designers must
use technology to enforce the business domains of all attributes. Table 8-2 demon-
strates how logical domains might be expressed for each data type.

272 Part Two Systems Analysis Methods

entity instance a single

occurrence of an entity.

attribute a descriptive

property or characteristic of

an entity. Synonyms include

element, property, and field.

STUDENT

Name

.Last Name

.First Name

.Middle Initial

Address

.Street Address

.City

.State or Province

.Country

.Postal Code

Phone Number

.Area Code

.Exchange Number

.Number Within Exchange

Date of Birth

Gender

Race

Major

Grade Point Average

Attributes and

Compound Attributes

T A B L E 8 - 1 Representative Logical Data Types for Attributes

Logical Data Type Logical Business Meaning

NUMBER Any number, real or integer.

TEXT A string of characters, inclusive of numbers. When numbers are
included in a TEXT attribute, it means we do not expect to perform
arithmetic or comparisons with those numbers.

MEMO Same as TEXT but of an indeterminate size. Some business
systems require the ability to attach potentially lengthy notes to
a given database record.

DATE Any date in any format.

TIME Any time in any format.

YES/NO An attribute that can assume only one of these two values.

VALUE SET A finite set of values. In most cases, a coding scheme would be
established (e.g., FR freshman, SO sophomore, JR junior,
SR senior, etc.).

IMAGE Any picture or image.

compound attribute an

attribute that consists of other

attributes. Synonyms in differ-

ent data modeling languages

are numerous: concatenated

attribute, composite attribute,

and data structure.

data type a property of an

attribute that identifies what

type of data can be stored in

the attribute.

domain a property of an

attribute that defines what

values the attribute can

legitimately take on.

Finally, every attribute should have a logical default value that represents the
value of an attribute if its value is not specified by the user. Table 8-3 shows possible
default values for an attribute. Notice that NOT NULL is a way to specify that each
instance of the attribute must have a value, while NULL is a way to specify that some
instances of the attribute may be optional, or not have a value.

Identification An entity has many instances, perhaps thousands or millions. There
exists a need to uniquely identify each instance based on the data value of one or
more attributes.Thus, every entity must have a key. For example, each instance of the
entity STUDENT might be uniquely identified by the key STUDENT NUMBER attribute. No
two students can have the same STUDENT NUMBER.

Sometimes more than one attribute is required to uniquely identify an instance of
an entity. A key consisting of a group of attributes is called a concatenated key. For
example, each DVD entity instance in a video store might be uniquely identified by the

Data Modeling and Analysis Chapter Eight 273

T A B L E 8 - 2 Representative Logical Domains for Logical
Data Types

Data Type Domain Examples

NUMBER For integers, specify the range: {10–99}
{minimum–maximum}

For real numbers, specify the range and precision: {1.000–799.999}
{minimum.precision–maximum.precision}

TEXT TEXT (maximum size of attribute) TEXT (30)

Actual values are usually infinite; however, users
may specify certain narrative restrictions.

MEMO Not applicable. There are no logical restrictions Not applicable.

on size or content.

DATE Variation on the MMDDYYYY format. To MMDDYYYY

accommodate the year 2000, do not
abbreviate year to YY.

Formatting characters are rarely stored; MMYYYY

therefore, do not include hyphens or slashes. YYYY

TIME For AM/PM times: HHMMT HHMMT

or

For military times: HHMM HHMM

YES/NO {YES, NO} {YES, NO} {ON, OFF}

VALUE SET {value#1, value#2, . . . value#n} {FRESHMAN, SOPHO-

or MORE, JUNIOR, SENIOR}

{table of codes and meanings} {FR FRESHMAN

SO SOPHOMORE

JR JUNIOR

SR SENIOR}

IMAGE Not applicable; however, any known Not applicable.
characteristics of the images will eventually
prove useful to designers.

default value the value that

will be recorded if a value is

not specified by the user.

key an attribute, or a group

of attributes, that assumes a

unique value for each entity

instance. It is sometimes

called an identifier.

concatenated key a group

of attributes that uniquely iden-

tifies an instance of an entity.

Synonyms include composite

key and compound key.

concatenation of TITLE NUMBER plus COPY NUMBER. TITLE NUMBER by itself would be inad-
equate because the store may own many copies of a single title. COPY NUMBER by itself
would also be inadequate since we presumably have a copy #1 for every title we own.
We need both pieces of data to identify a specific tape (e.g., copy #7 of Star Wars:

Revenge of the Sith). In this book, we will give a name to the group as well as the
individual attributes. For example, the concatenated key for DVD would be recorded as
follows:

DVD ID

.TITLE NUMBER

.COPY NUMBER

Frequently, an entity may have more than one key. For example, the entity EMPLOYEE

may be uniquely identified by SOCIAL SECURITY NUMBER, or company-assigned EMPLOYEE

NUMBER, or E-MAIL ADDRESS. Each of these attributes is called a candidate key. A candidate

key is a “candidate to become the primary key” of instances of an entity. It is sometimes
called a candidate identifier. (A candidate key may be a single attribute or a concate-
nated key.) A primary key is that candidate key that will most commonly be used to
uniquely identify a single entity instance. The default for a primary key is always NOT

NULL because if the key has no value, it cannot serve its purpose to identify an instance
of an entity. Any candidate key that is not selected to become the primary key is called
an alternate key. A common synonym is secondary key. In the margin, we demon-
strate our notation for primary and alternate keys. All candidate keys must be either
primary or alternate; therefore, we do not use a separate notation for candidate keys. All
attributes that are not part of the primary key are called nonkey attributes.

Sometimes, it is also necessary to identify a subset of an entity’s instances as op-
posed to a single instance. For example, we may require a simple way to identify all male
students and all female students. A subsetting criteria is an attribute (or concatenated
attribute) whose finite values divide all entity instances into useful subsets.This is some-
times referred to as an inversion entry. In our STUDENT entity, the attribute GENDER

divides the instances of STUDENT into two subsets: male students and female students.
In general, subsetting criteria are useful only when an attribute has a finite (meaning
“limited”) number of legitimate values. For example, GRADE POINT AVERAGE would not be a
good subsetting criteria because there are 999 possible values between 0.00 and 4.00
for that attribute.The margin art demonstrates a notation for subsetting criteria.

> Relationships

Conceptually, entities and attributes do not exist in isolation. The things they repre-
sent interact with and impact one another to support the business mission. Thus, we

274 Part Two Systems Analysis Methods

T A B L E 8 - 3 Permissible Default Values for Attributes

Default Value Interpretation Examples

A legal value from the For an instance of the attribute, if 0
domain (as described the user does not specify a value, 1.00
above) then use this value. FR

NONE or NULL For an instance of the attribute, if NONE

the user does not specify a value, NULL

then leave it blank.

REQUIRED or NOT NULL For an instance of the attribute, REQUIRED

requires that the user enter a legal NOT NULL

value from the domain. (This is used
when no value in the domain is
common enough to be a default
but some value must be entered.)

candidate key one of a

number of keys that may

serve as the primary key of an

entity. Also called candidate

identifier.

primary key a candidate

key that will most commonly

be used to uniquely identify a

single entity instance.

alternate key a candidate

key that is not selected to

become the primary key. A

synonym is secondary key.

subsetting criteria an

attribute(s) whose finite values

divide entity instances into

subsets. Sometimes called

inversion entry.

introduce the concept of a relationship. A relationship is a natural business associa-
tion that exists between one or more entities.The relationship may represent an event
that links the entities or merely a logical affinity that exists between the entities. Con-
sider, for example, the entities STUDENT and CURRICULUM. We can make the following
business assertions that link students and courses:

• A current STUDENT IS ENROLLED IN one or more CURRICULA.
• A CURRICULUM IS BEING STUDIED BY zero, one, or more STUDENTS.

The underlined verb phrases define business relationships that exist between the
two entities.

We can graphically illustrate this association between STUDENT and CURRICULUM as
shown in Figure 8-2. The connecting line represents a relationship.Verb phrases de-
scribe the relationship. Notice that all relationships are implicitly bidirectional, mean-
ing they can be interpreted in both directions (as suggested by the above business
assertions). Data modeling methods may differ in their naming of relationships—some
include both verb phrases, and others include a single verb phrase.

Cardinality Figure 8-2 also shows the complexity or degree of each relationship. For
example, if we know how to read it, Figure 8-2 can answer the following questions:

• Must there exist an instance of STUDENT for each instance of CURRICULUM? No!
• Must there exist an instance of CURRICULUM for each instance of STUDENT? Yes!
• How many instances of CURRICULUM can exist for each instance of STUDENT? Many!
• How many instances of STUDENT can exist for each instance of CURRICULUM?

Many!

We call this concept cardinality. Cardinality defines the minimum and maximum
number of occurrences of one entity that may be related to a single occurrence of
the other entity. Because all relationships are bidirectional, cardinality must be de-
fined in both directions for every relationship. A popular graphical notation for car-
dinality is shown in Figure 8-3. Sample cardinality symbols were demonstrated in
Figure 8-2.

Conceptually, cardinality tells us the following rules about the data entities shown
in Figure 8-2:

• When we insert a STUDENT instance in the database, we must link (associate)
that STUDENT to at least one instance of CURRICULUM. In business terms, “a stu-
dent cannot be admitted without declaring a major.” (Most schools would
include an instance of CURRICULUM called “undecided” or “undeclared.”)

• A STUDENT can study more than one CURRICULUM, and we must be able to store
data that indicates all CURRICULA for a given STUDENT.

• We must insert a CURRICULUM before we can link (associate) STUDENTS to that
CURRICULUM. That is why a CURRICULUM can have zero students—no students
have yet been admitted to that CURRICULUM.

• Once a CURRICULUM has been inserted into the database, we can link (associ-
ate) many STUDENTS with that CURRICULUM.

Degree Another measure of the complexity of a data relationship is its degree.The
degree of a relationship is the number of entities that participate in the relationship.
All the relationships we’ve explored so far are binary (degree 2). In other words,
two different entities participated in the relationship.

Data Modeling and Analysis Chapter Eight 275

STUDENT

Student Number
 (Primary Key)

Social Security Number

 (Alternate Key)
Name

.Last Name

.First Name

.Middle Initial

Address

.Street Address

.City

.State or Province

.Country

.Postal Code

Phone Number

.Area Code

.Exchange Number

.Number Within Exchange

Date of Birth

Gender (Subsetting Criteria 1)

Race (Subsetting Criteria 2)

Major (Subsetting Criteria 3)

Grade Point Average

Keys and Subsetting

Criteria

relationship a natural busi-

ness association between one

or more entities.

cardinality the minimum

and maximum number of

occurrences of one entity that

may be related to a single

occurrence of the other entity.

CURRICULUMSTUDENT is enrolled in is being studied by

F I G U R E 8 - 2

A Relationship
(Many-to-Many)

degree the number of

entities that participate in a

relationship.

Relationships may also exist between different instances of the same entity.We call
this a recursive relationship (degree 1). For example, in your school a course may
be a prerequisite for other courses. Similarly, a course may have several other courses
as its prerequisite. Figure 8-4 demonstrates this many-to-many recursive relationship.

Relationships can also exist between more than two different entities. These are
sometimes called N-ary relationships. An example of a 3-ary, or ternary, relationship

is shown in Figure 8-5. An N-ary relationship is illustrated with a new entity construct
called an associative entity. An associative entity is an entity that inherits its
primary key from more than one other entity (called parents). Each part of that con-
catenated key points to one and only one instance of each of the connecting entities.

In Figure 8-5 the associative entity ASSIGNMENT (notice the unique shape) matches
an EMPLOYEE, a LOCATION, and a PROJECT. For each instance of ASSIGNMENT, the key

276 Part Two Systems Analysis Methods

Exactly one

(one and only one)

CARDINALITY

INTERPRETATION

MINIMUM

INSTANCES

MAXIMUM

INSTANCES

GRAPHIC

NOTATION

1 1

– or –

Zero or one 0 1

One or more 1 many (>1)

Zero, one, or more 0 many (>1)

More than one >1 >1

F I G U R E 8 - 3

Cardinality
Notations

F I G U R E 8 - 4

A Recursive
Relationship

COURSE

Course ID (Primary Key)

.Subject Abbreviation

.Course Number

Course Title

Course Credit

is a prerequisite for

has as a prerequisite

recursive relationship a

relationship that exists between

instances of the same entity.

associative entity an entity

that inherits its primary key

from more than one other

entity.

indicates which EMPLOYEE ID, which LOCATION NUMBER, and which PROJECT NUMBER are
combined to form that assignment.

Also as shown in Figure 8-5, an associative entity can be described by its own
nonkey attributes. In addition to the primary key, an ASSIGNMENT is described by the
attributes BEGIN DATE and END DATE. If you think about it, none of these attributes
describes an EMPLOYEE, LOCATION, or PROJECT—they describe a single instance of the
relationship between an instance of each of those entities.

Foreign Keys A relationship implies that instances of one entity are related to in-
stances of another entity. We should be able to identify those instances for any given
entity. The ability to identify specific related entity instances involves establishing
foreign keys. A foreign key is a primary key of one entity that is contributed to
(duplicated in) another entity to identify instances of a relationship. A foreign key
(always in a child entity) always matches the primary key (in a parent entity). In
Figure 8-6(a), we demonstrate the concept of foreign keys with our simple data
model. Notice that the maximum cardinality for DEPARTMENT is “one,” whereas the max-
imum cardinality for CURRICULUM is “many.” In this case, DEPARTMENT is called the parent

entity and CURRICULUM is the child entity.The primary key is always contributed by the
parent to the child as a foreign key.Thus, an instance of CURRICULUM now has a foreign
key DEPARTMENT NAME whose value points to the instance of DEPARTMENT that offers that
curriculum. (Foreign keys are never contributed from child to parent.)

Data Modeling and Analysis Chapter Eight 277

F I G U R E 8 - 5

A Ternary
Relationship

EMPLOYEE

Employee ID (Primary Key)

Employee Name

.Last Name

.First Name

.Middle Initial

LOCATION

Location Number (Primary Key)

Address

.Street

.City

.State

.Zipcode

PROJECT

Project Number (Primary Key)

Description

Projected Start Date

Projected End Date

ASSIGNMENT

Assignment ID (Primary Key)

.Project Number

.Employee ID

.Location Number

Begin Date

End Date

offers

requires is given

foreign key a primary key

of an entity that is used in

another entity to identify

instances of a relationship.

child entity a data entity

that derives one or more at-

tributes from another entity,

called the parent. In a one-to-

many relationship the child is

the entity on the “many” side.

parent entity a data entity

that contributes one or more

attributes to another entity,

called the child. In a one-to-

many relationship the parent

is the entity on the “one” side.

In our example, the relationship between CURRICULUM and DEPARTMENT is referred
to as a nonidentifying relationship. Nonidentifying relationships are those in
which each of the participating entities has its own independent primary key. In
other words, none of the primary-key attributes is shared.The entities CURRICULUM and
DEPARTMENT are also referred to as strong or independent entities because neither de-
pends on any other entity for its identification. Sometimes, however, a foreign key may
participate as part of the primary key of the child entity. For example, in Figure 8-6(b)
the parent entity BUILDING contributes its key to the entity ROOM. Thus, BUILDING NAME

serves as a foreign key to relate a ROOM and BUILDING and in conjunction with ROOM ID

278 Part Two Systems Analysis Methods

nonidentifying
relationship a relationship

in which each participating

entity has its own independent

primary key.

CURRICULUM

 Program of Study Code (Primary Key)

 Title of Program

 Type of Degree Awarded (Subsetting Criteria 1)

 Department Number (Foreign Key)

DEPARTMENT

Department Number (Primary Key)

Department Name

offers is offered by

PARENT

ENTITY
CHILD

ENTITY(MAXIMUM CARDINALITY = 1) (MAXIMUM CARDINALITY = MANY)

(a)

ROOM

 Room ID (Primary Key)

 .Building Name (Foreign Key)

 .Room Number

BUILDING

Building Name (Primary Key)

is

located

in

contains

(b)

.

Identifying relationships have the

foreign key participating as part of

the child entity's primary key.

A parent always has

a maximum cardinality of

"many" children.

F I G U R E 8 - 6 Foreign Keys

PASSENGER

Passenger-ID (Primary Key)

Passenger-Name

(other attributes of PASSENGER)

FLIGHT

Flight-Number (Primary Key)

Flight-Date-Of-Departure

(other attributes of FLIGHT)

SEAT ASSIGNMENT

Seat-ID (Primary Key)

.Seat-Number

.Flight-Number (Foreign Key)

Passenger-ID (Foreign Key)

holds

has

WEAK

ENTITY

STRONG

ENTITY

STRONG

ENTITY

NONIDENTIFYING

RELATIONSHIP

IDENTIFYING

RELATIONSHIP

F I G U R E 8 - 7

Notations for Weak
Entity and
Nonidentifying
Relationship

to uniquely identify a given instance of ROOM. In those situations the relationship be-
tween the parent entity and the child entity is referred to as an identifying relation-

ship. Identifying relationships are those in which the parent entity contributes its
primary key to become part of the primary key of the child entity.The child entity of
any identifying relationship is frequently referred to as a weak entity because its iden-
tification is dependent on the parent entity’s existence.

Most popular CASE tools and data modeling methods use different notations to
distinguish between identifying and nonidentifying relationships and between strong
and weak entities. In Figure 8-7, we use a dashed line notation to represent the non-
identifying relationship between PASSENGER and SEAT ASSIGNMENT. Because part of the pri-
mary key of SEAT ASSIGNMENT is the foreign key FLIGHT NUMBER from the parent entity
FLIGHT, the relationship is an identifying relationship and is represented using a solid

line. Finally, seat assignment is a weak entity because it receives the primary key of
flight to compose its own primary key. A weak entity is represented using a symbol
composed of a rounded rectangle within a rounded rectangle.

NOTE: To reinforce the above concepts of identifying and nonidentifying rela-
tionships and strong versus weak entities and to be consistent with most popular
data modeling methods and most widely used CASE tools, the authors use the
above modeling notations on all subsequent data modeling examples presented
in the book.

What if you cannot differentiate between parent and child? For example, in
Figure 8-8(a) on page 280 we see that a CURRICULUM enrolls zero, one, or more STUDENTS.
At the same time, we see that a STUDENT is enrolled in one or more CURRICULA. The maxi-
mum cardinality on both sides is “many.” So, which is the parent and which is the child?
You can’t tell! This is called a nonspecific relationship. A nonspecific relationship

(or many-to-many relationship) is one in which many instances of one entity are
associated with many instances of another entity. Such relationships are suitable only
for preliminary data models and should be resolved as quickly as possible.

Data Modeling and Analysis Chapter Eight 279

identifying relationship
a relationship in which the

parent entity’s key is also part

of the primary key of the child

entity.

nonspecific relationship
a relationship where many

instances of an entity are

associated with many in-

stances of another entity.

Also called many-to-many

relationship.

Many nonspecific relationships can be resolved into a pair of one-to-many rela-
tionships. As illustrated in Figure 8-8(b), each entity becomes a parent. A new, associa-

tive entity is introduced as the child of each parent. In Figure 8-8(b), each instance of
MAJOR represents one STUDENT’s enrollment in one CURRICULUM. If a student is pursuing
two majors, that student will have two instances of the entity MAJOR.

Study Figure 8-8(b) carefully. For associative entities, the cardinality from child to
parent is always one and only one. That makes sense because an instance of MAJOR

must correspond to one and only one STUDENT and one and only one CURRICULUM. The
cardinality from parent to child depends on the business rule. In our example, a
STUDENT must declare one or more MAJORS. Conversely, a CURRICULUM is being studied by
zero, one, or more MAJORS—perhaps it is new and no one has been admitted to it yet.
An associative entity can also be described by its own nonkey attributes (such as DATE

ENROLLED and CURRENT CANDIDATE FOR DEGREE?). Finally, associative entities inherit the
primary keys of the parents; thus, all associative entities are weak entities.

Not all nonspecific relationships can and should be automatically resolved as
described above. Occasionally nonspecific relationships result from the failure of the
analyst to identify the existence of other entities. For example, examine the relation-
ship between CUSTOMER and PRODUCT in Figure 8-9(a). Recognize that the relationship

280 Part Two Systems Analysis Methods

MAJOR

Major ID (Primary Key)

.Student Number

.Program of Study Code

Date Enrolled

Current Candidate for

Degree?

STUDENT

Student Number (Primary Key)

Name (Alternate Key)

Address

Phone Number

Date of Birth

Gender

Race

Grade Poin t Average

CURRICULUM

Program of Study Code (Primary Key)

Title of Program

Type of Degree Awarded

is enrolled

in

CURRICULUM

Program of Study Code (Primary Key)

Title of Program

Type of Degree Awarded

declared

(b)

(a)

STUDENT

Student Number (Primary Key)

Name (Alternate Key)

Address

Phone Number

Date of Birth

Gender

Race

Grade Point Average

has

replaced byreplaced by

Many-to-Many Relationship

F I G U R E 8 - 8 Resolving Nonspecific Relationships with an Associative Entity

Data Modeling and Analysis Chapter Eight 281

CUSTOMER

Customer ID (Primary Key)

etc.

PRODUCT

orders

PRODUCT

places

(b)

(a)

CUSTOMER

contains

Many-to-Many Relationship

ORDER

Order Number (Primary Key)

etc.

The verb or verb phrase of a many-to-many

relationship sometimes suggests other entities. In this

example the many-to-many is resolved by recognizing

that the verb "orders" actually suggests an event entity

called ORDER that relates CUSTOMERs to

PRODUCTs. Notice that the new many-to-many

relationship between ORDER and PRODUCT would

need to be resolved.

ORDER

Order Number (Primary Key)

etc.

PRODUCT

Product Number (Primary

Key) etc.

ORDERED PRODUCT

ORDERED PRODUCT ID (Primary Key)

.Order Number

.Product Number
contains appears

 as

(c)

CUSTOMER

Customer ID (Primary Key)

etc.
places

Can be resolved with an associative entity.

Customer ID (Primary Key)

etc.

Product Number (Primary Key)

etc.

Product Number (Primary Key)

etc.

F I G U R E 8 - 9 Resolving Nonspecific Relationships by Recognizing a Fundamental
Business Entity

“orders” between CUSTOMER and PRODUCT suggests an event about which a user might
want to store data.That event represents an event entity called ORDER depicted in Fig-
ure 8-9(b). In reality, CUSTOMER and PRODUCT do not have a natural and direct relation-
ship as was depicted in Figure 8-9(a). Rather, they are related indirectly, by way of an
ORDER. Thus, our many-to-many relationship was replaced by separate relationships be-
tween CUSTOMER, ORDER, and PRODUCT. Notice that the relationship between ORDER and
PRODUCT is a many-to-many relationship. That relationship would need to be resolved
by replacing it with an associative entity and two one-to-many relationships, as is
illustrated in Figure 8-9(c).

Finally, some nonspecific relationships can be resolved by introducing separate re-
lationships. Notice the many-to-many relationship between TRANSFER and BANK ACCOUNT

shown in Figure 8-10(a).While it is true that a TRANSFER transaction involves many BANK

ACCOUNTS and a BANK ACCOUNT may be involved in many TRANSFER transactions, we must
be careful! Data modeling notations can sometimes mislead us. Technically, a single
TRANSFER transaction involves two BANK ACCOUNTs. When we know the specific maxi-
mum number of occurrences of a many-to-many relationship, it often suggests that our
original relationship is weak or too general. Notice in Figure 8-10(b) that our relation-
ship “involves” was replaced by two separate one-to-many relationships that more
accurately describe the business relationships between a TRANSFER and BANK ACCOUNTS.

282 Part Two Systems Analysis Methods

BANK ACCOUNT
TRANSFER

(b)

(a)
Many-to-Many Relationship

deposits

to

involves

TRANSFER

Transaction Number (Primary Key)

etc.

withdraws

from

While the above relationship is a many-to-many, the many

on the BANK ACCOUNT side is a known maximum of

“2”. This suggests that the relationship may actually

represent multiple relationships . . . in this case two

separate relationships.

Transaction Number (Primary Key)

etc.

Account Number ID (Primary Key)

etc.

BANK ACCOUNT

Account Number ID (Primary Key)

etc.

F I G U R E 8 - 1 0 Resolving Nonspecific Relationships by Recognizing Separate Relationships

Generalization Most people associate the concept of generalization with modern
object-oriented techniques. In reality, the concepts have been applied by data model-
ers for many years. Generalization is an approach that seeks to discover and exploit
the commonalities between entities. Generalization is a technique wherein the
attributes that are common to several types of an entity are grouped into their own
entity. Consider, for example, a typical school. A school enrolls STUDENTS and employs
EMPLOYEES (in a university, a person could be both).There are several attributes that are
common to both entities; for example, NAME, GENDER, RACE, MARITAL STATUS, and possibly
even a key based on SOCIAL SECURITY NUMBER. We could consolidate these common at-
tributes into an entity supertype called PERSON. An entity supertype is an entity
whose instances store attributes that are common to one or more entity subtypes.

The entity supertype will have one or more one-to-one relationships to entity
subtypes. These relationships are sometimes called “is a” relationships (or “was a,” or
“could be a”) because each instance of the supertype “is also an” instance of one or
more subtypes. An entity subtype is an entity whose instances inherit some common
attributes from an entity supertype and then add other attributes that are unique to
an instance of the subtype. In our example,“a PERSON is an employee, or a student, or
both.” The top half of Figure 8-11 illustrates this generalization as a hierarchy. Notice
that the subtypes STUDENT and EMPLOYEE have inherited attributes from PERSON, as well
as adding their own.

Extending the metaphor, we see that an entity can be both a supertype and a sub-
type. Returning to Figure 8-11, we see that a STUDENT (which was a subtype of PERSON)
has its own subtypes. In the diagram, we see that a STUDENT is either a PROSPECT, or a
CURRENT STUDENT, or a FORMER STUDENT (having left for any reason other than gradua-
tion), and a STUDENT could be an ALUMNUS. These additional subtypes inherit all the
attributes from STUDENT as well as those from PERSON. Finally, notice that all subtypes
are weak entities.

Through inheritance, the concept of generalization in data models permits us to
reduce the number of attributes through the careful sharing of common attributes.
The subtypes not only inherit the attributes but also the data types, domains, and
defaults of those attributes. This can greatly enhance the consistency with which we
treat attributes that apply to many different entities (e.g., dates, names, addresses,
currency, etc.).

In addition to inheriting attributes, subtypes also inherit relationships to other
entities. For instance, all EMPLOYEES and STUDENTS inherit the relationship between
PERSON and ADDRESS. But only EMPLOYEES inherit the relationship with CONTRACTs. And
only an ALUMNUS can be related to an AWARDED DEGREE.

The Process of Logical Data Modeling

Now that you understand the basic concepts of data models, we can examine the
process of data modeling. When do you do it? How many data models may be drawn?
What technology exists to support the process?

Data modeling may be performed during various types of projects and in multiple
phases of projects. Data models are progressive; there is no such thing as the “final”
data model for a business or application. Instead, a data model should be considered
a living document that will change in response to a changing business. Data models
should ideally be stored in a repository so that they can be retrieved, expanded,
and edited over time. Let’s examine how data modeling may come into play during
systems planning and analysis.

> Strategic Data Modeling

Many organizations select application development projects based on strategic infor-
mation systems plans. Strategic planning is a separate project. This project produces

6

5

4

3

2

1

Data Modeling and Analysis Chapter Eight 283

generalization a concept

wherein the attributes that are

common to several types of

an entity are grouped into

their own entity.

supertype an entity whose

instances store attributes that

are common to one or more

entity subtypes.

subtype an entity whose in-

stances may inherit common

attributes from its entity

supertype.

an information systems strategy plan that defines an overall vision and architecture for
information systems. Almost always, this architecture includes an enterprise data

model. Information engineering is a methodology that embraces this approach.
An enterprise data model typically identifies only the most fundamental of enti-

ties. The entities are typically defined (as in a dictionary), but they are not described

284 Part Two Systems Analysis Methods

PERSON

Personal ID Number (Primary Key 1)

Name

.Last Name

.First Name

.Middle Initial

Gender (Subsetting Criteria 1)

Race (Subsetting Criteria 2)

Marital Status (Subsetting Criteria 3)

can be

contacted at

CONTRACT

(attributes omitted)

AWARDED DEGREE

(attributes omitted)
has earned

is bound by

is a is a

is a

is a

is a

could be a

CURRENT STUDENT

all attributes from PERSON and STUDENT plus

Number of Credits Earned

Grade Point Average

Encumbrance Status

Financial Aid Eligibility Status

PROSPECT

all attributes from PERSON and STUDENT plus

First Contact Date

Last Contact Date

Has Visited Campus?

EMPLOYEE

Personal ID Number = Social Security Number

 (Primary Key 1)

all attributes from PERSON plus

Pension Plan Code

Life Insurance Plan Code

Medical Insurance Plan Code

Vacation Days Accumulated

Sick Days Accumulated

STUDENT

Personal ID Number = Student Number

 (Primary Key 1)

all attributes from PERSON

ALUMNUS

all attributes from PERSON and STUDENT plus

Member of Alumni Association?

Job in Field of Study?

Last Known Salary

FORMER STUDENT

all attributes from PERSON and STUDENT plus

Reason for Withdrawal

Plans to Return?

ADDRESS

(attributes omitted)

1

2

3

6

5

4

F I G U R E 8 - 1 1 A Generalization Hierarchy

in terms of keys or attributes.The enterprise data model may or may not include rela-
tionships (depending on the planning methodology’s standards and the level of detail
desired by executive management). If relationships are included, many of them will
be nonspecific (a concept introduced earlier in the chapter).

How does an enterprise data model affect subsequent applications development?
Part of the information strategy plan identifies application development projects and
prioritizes them according to whatever criteria management deems appropriate. As
those projects are started, the appropriate subsets of the information systems archi-
tecture, including a subset of the enterprise data model, are provided to the applica-
tions development team as a point of departure.

The enterprise data model is usually stored in a corporate repository. When the
application development project is started, the subset of the enterprise data model (as
well as the other models) is exported from the corporate repository into a project
repository. Once the project team completes systems analysis and design, the
expanded and refined data models are imported back into the corporate repository.

> Data Modeling during Systems Analysis

In systems analysis and in this chapter, we will focus on logical data modeling as a
part of systems analysis. The data model for a single information system is usually
called an application data model.

Data models are rarely constructed during the scope definition phase of systems
analysis. The short duration of that phase makes them impractical. If an enterprise
data model exists, the subset of that model that is applicable to the project might be
retrieved and reviewed as part of the phase requirement to establish context. Alter-
natively, the project team could identify a simple list of entities, the things about
which team members think the system will have to capture and store data.

Unfortunately, data modeling is rarely associated with the problem analysis phase
of systems analysis. Some analysts prefer to draw process models (Chapter 9) to doc-
ument the current system, but many analysts report that data models are far superior
for the following reasons:

• Data models help analysts to quickly identify business vocabulary more com-
pletely than process models.

• Data models are almost always built more quickly than process models.
• A complete data model can fit on a single sheet of paper. Process models

often require dozens of sheets of paper.
• Process modelers frequently and too easily get hung up on unnecessary

detail.
• Data models for existing and proposed systems are far more similar than

process models for existing and proposed systems. Consequently, there is less
work to throw away as you move into later phases.

We agree! A problem analysis phase model includes only entities and relationships,
but no attributes—it is called a context data model. The intent is to refine our
understanding of scope, not to get into details about the entities and business rules.
Many relationships may be nonspecific.

Many automated tools provide the ability to read existing system files and data-
bases and translate them into “physical” data models. These physical data models can
then be transformed into their equivalent “logical” data model. This translation capa-
bility benefits both the problem analysis and the requirements analysis phases.

The requirements analysis results in a logical data model that is developed in
stages as follows:

1. We begin by constructing the context data model to establish the project
scope. If a context data model was already developed during problem analysis,
that model may be revised to reflect new requirements and project scope.

Data Modeling and Analysis Chapter Eight 285

application data model
a data model for a complete,

single information system.

context data model a

data model that includes

entities and relationships but

no attributes.

2. Next, a key-based data model will be drawn. This model will eliminate non-
specific relationships, add associative entities, and include primary and alternate
keys. The key-based model will also include precise cardinalities and any gener-
alization hierarchies.

3. Next, a fully attributed data model will be constructed. The fully attributed
model includes all remaining descriptive attributes and subsetting criteria. Each
attribute is defined in the repository with data types, domains, and defaults (in
what is sometimes called a fully described data model).

4. The completed data model is analyzed for adaptability and flexibility through
a process called normalization. The final analyzed model is referred to as a
normalized data model.

This data requirements model requires a team effort that includes systems analysts,
users and managers, and data analysts. A data administrator often sets standards for
and approves all data models.

Ultimately, during the decision analysis phase, the data model will be used to
make implementation decisions—the best way to implement the requirements with
database technology. In practice, this decision may have already been standardized as
part of a database architecture. For example, SoundStage has already standardized on
two database management systems: Microsoft Access for personal and work-group
databases, and Microsoft SQL Server for enterprise databases.

Finally, data models cannot be constructed without appropriate facts and infor-
mation as supplied by the user community. These facts can be collected through a
number of techniques such as sampling of existing forms and files, research of similar
systems, surveys of users and management, and interviews of users and management.
The fastest method of collecting facts and information and simultaneously construct-
ing and verifying the data models is joint requirements planning. JRP uses a carefully
facilitated group meeting to collect the facts, build the models, and verify the models—
usually in one or two full-day sessions. Fact-finding and information-gathering tech-
niques were fully explored in Chapter 6. Table 8-4 summarizes some questions
that may be useful for fact-finding and information gathering as it pertains to data
modeling.

> Looking Ahead to Systems Design

During system design, the logical data model will be transformed into a physical
data model (called a database schema) for the chosen database management sys-
tem. This model will reflect the technical capabilities and limitations of that data-
base technology, as well as the performance tuning requirements suggested by the
database administrator. Any further discussion of database design is deferred until
Chapter 14.

> Automated Tools for Data Modeling

Data models are stored in a repository. In a sense, the data model is metadata—that
is, data about the business’s data. Computer-aided systems engineering (CASE) tech-
nology, introduced in Chapter 3, provides the repository for storing the data model
and its detailed descriptions. Most CASE products support computer-assisted data
modeling and database design. Some CASE products (such as Logic Works’ ERwin)
only support data modeling and database design. CASE takes the drudgery out of
drawing and maintaining these models and their underlying details.

Using a CASE product, you can easily create professional, readable data models
without the use of paper, pencil, erasers, and templates. The models can be easily
modified to reflect corrections and changes suggested by end users—you don’t have
to start over! Also, most CASE products provide powerful analytical tools that can
check your models for mechanical errors, completeness, and consistency. Some CASE

286 Part Two Systems Analysis Methods

key-based data model a

data model that includes enti-

ties and relationships with

precise cardinalities resolving

non-specific relationships into

associative entities, and also

including primary and alternate

keys.

fully attributed data
model a data model that

includes all entities, attributes,

relationships, subsetting crite-

ria, and precise cardinalities.

metadata data about data.

products can even help you analyze the data model for consistency, completeness,
and flexibility.The potential time and quality savings are substantial.

As mentioned earlier, some CASE tools support reverse engineering of existing
file and database structures into data models. The resulting data models represent
“physical” data models that can be revised and reengineered into a new file or
database, or they may be translated into their equivalent “logical” model. The logical
data model could then be edited and forward engineered into a revised physical data
model, and subsequently a file or database implementation.

CASE tools do have their limitations. Not all data modeling conventions are
supported by all CASE products. And different CASE tools adopt slightly different

Data Modeling and Analysis Chapter Eight 287

T A B L E 8 - 4 JRP and Interview Questions for Data Modeling

Purpose Candidate Questions

Discover the system entities What are the subjects of the business? In other words,
what types of persons, organizations, organizational
units, places, things, materials, or events are used in or
interact with this system about which data must be
captured or maintained? How many instances of each
subject exist?

Discover the entity keys What unique characteristic (or characteristics)
distinguishes an instance of each subject from other
instances of the same subject? Are there any plans to
change this identification scheme in the future?

Discover entity subsetting Are there any characteristics of a subject that divide
criteria all instances of the subject into useful subsets? Are there

any subsets of the above subjects for which you have no
convenient way to group instances?

Discover attributes and What characteristics describe each subject? For each
domains of these characteristics, (1) what type of data is stored?

(2) who is responsible for defining legitimate values for
the data? (3) what are the legitimate values for the data?
(4) is a value required? and (5) is there any default value
that should be assigned if you don’t specify otherwise?

Discover security and control Are there any restrictions on who can see or use the
needs data? Who is allowed to create the data? Who is allowed

to update the data? Who is allowed to delete the data?

Discover data timing needs How often does the data change? Over what period of
time is the data of value to the business? How long should
we keep the data? Do you need historical data or trends?
If a characteristic changes, must you know the former
values?

Discover generalization Are all instances of each subject the same? That is,
hierarchies are there special types of each subject that are described

or handled differently? Can any of the data be
consolidated for sharing?

Discover relationships and What events occur that imply associations between
degrees subjects? What business activities or transactions involve

handling or changing data about several different
subjects of the same or a different type?

Discover cardinalities Is each business activity or event handled the same way,
or are there special circumstances? Can an event occur
with only some of the associated subjects, or must all the
subjects be involved?

notations for the same data-modeling methods. Therefore, it is very likely that any
given CASE product may force a company to adapt its methodology’s data-modeling
symbols or approach so that it is workable within the limitations of the CASE tool.

All the SoundStage data models in the next section of this chapter were created
with Popkin Systems and Software’s CASE tool, System Architect 2001. For the case
study, we provide you with the printouts exactly as they came off our printers.We did
not add color. The only modifications by the artist were the bullets that call your
attention to specific items of interest on the printouts. All of the entities, attributes,
and relationships on the SoundStage data models were automatically cataloged into
System Architect’s project repository (which it calls an encyclopedia). Figure 8-12
illustrates some of System Architect’s screens as used for data modeling.

288 Part Two Systems Analysis Methods

F I G U R E 8 - 1 2 Screen Capture of System Architect CASE Tool

How to Construct Data Models

You now know enough about data models to read and interpret them. But as a sys-
tems analyst or knowledgeable end user, you must learn how to construct them. We
will use the SoundStage Entertainment Club project to teach you how to construct
data models.

NOTE: This example teaches you to draw the data model from scratch. In reality,
you should always look for an existing data model. If such models exist, the data
management or data administration group usually maintains them. Alternatively,
you could reverse engineer a data model from an existing database.

> Entity Discovery

The first task in data modeling is relatively easy. You need to discover the fundamen-
tal entities in the system that are or might be described by data. You should not re-
strict your thinking to entities about which the end users know they want to store
data.There are several techniques that may be used to identify entities:

• During interviews or JRP sessions with system owners and users, pay atten-
tion to key words in their discussion. For example, during an interview with
an individual discussing SoundStage’s business environment and activities, a
user may state, “We have to keep track of all our members and their bound
agreements.” Notice that the key words in this statement are MEMBERS and
AGREEMENTS. Both are entities!

• During interviews or JRP sessions, specifically ask system owners and users
to identify things about which they would like to capture, store, and produce
information. Those things often represent entities that should be depicted on
the data model.

• Another technique for identifying entities is to study existing forms, files, and
reports. Some forms identify event entities. Examples include ORDERS, REQUISI-
TIONS, PAYMENTS, DEPOSITS, and so forth. But most of these same forms also
contain data that describes other entities. Consider a registration form used
in your school’s course enrollment system. A REGISTRATION is itself an event
entity. But the average registration form also contains data that describes
other entities, such as STUDENT (a person), COURSES (which are concepts),
INSTRUCTORS (other persons), ADVISOR (yet another person), DIVISIONS (another
concept), and so forth. Studying the computerized registration system’s com-
puter files, databases, or outputs could also discover these same entities.

• If use-case narratives have been written during the requirements analysis phase,
they can be a source of data attributes and entities. Scan each use-case narrative
for nouns. Every noun is a potential data attribute or entity. You will have to
massage the resulting list of nouns because not all of them will be attributes or
entities. Some will be references to users or other information systems. Some
will be references to things that are part of the user interface, not data. Some
will be synonyms for other attributes or entities elsewhere on the list, and you
would not want to duplicate them. Chapter 10 explains how to do this, taking
an object-oriented approach to build a list of objects and their attributes. You
can use a very similar approach to discover data entities and their attributes.

• Technology may also help you identify entities. Some CASE tools can reverse
engineer existing files and databases into physical data models. The analyst
must usually clean up the resulting model by replacing physical names,
codes, and comments with their logical, business-friendly equivalents.

While these techniques may prove useful in identifying entities, they occasionally
play tricks on you. A simple, quick quality check can eliminate false entities. Ask your
user to specify the number of instances of each entity. A true entity has multiple
instances—dozens, hundreds, thousands, or more! If not, the entity does not exist.

As entities are discovered, give them simple, meaningful, business-oriented
names. Entities should be named with nouns that describe the person, event, place,
object, or thing about which we want to store data. Try not to abbreviate or use
acronyms. Names should be singular so as to distinguish the logical concept of the en-
tity from the actual instances of the entity. Names may include appropriate adjectives
or clauses to better describe the entity—for instance, an externally generated
CUSTOMER ORDER must be distinguished from an internally generated STOCK ORDER.

For each entity, define it in business terms. Don’t define the entity in technical
terms, and don’t define it as “data about . . . ” Try this: Use an English dictionary to cre-
ate a draft definition, and then customize it for the business at hand.Your entity names
and definitions should establish an initial glossary of business terminology that will
serve both you and future analysts and users for years.

Data Modeling and Analysis Chapter Eight 289

Our SoundStage management and users initially identified the entities listed in
Table 8-5. Notice how the definitions contribute to establishing the vocabulary of the
system.

> The Context Data Model

The next task in data modeling is to construct the context data model. The context
data model should include the fundamental business entities that were previously
discovered as well as their natural relationships.

Relationships should be named with verb phrases that, when combined with the
entity names, form simple business sentences or assertions. Some CASE tools, such as
System Architect, let you name the relationships in both directions. Otherwise, always
name the relationship from parent to child.

We have completed this task in Figure 8-13. This figure represents a data model
created in System Architect. Once we begin mapping attributes, new entities and rela-
tionships may surface.The numbers below reference the same numbers in Figure 8-13.
The ERD communicates the following:

An AGREEMENT binds one or more MEMBERS. While relationships may be named
in only one direction (parent to child), the other direction is implicit. For
example, it is implicit that a MEMBER is bound to one and only one AGREEMENT.
A MEMBER has conducted zero, one, or more TRANSACTIONS. Implicitly, a given
TRANSACTION was conducted by one and only one MEMBER.
A MEMBER ORDER is a TRANSACTION. In fact, a given MEMBER ORDER may correspond
to many TRANSACTIONS (for example, a new member order, a canceled member
order, a changed member order, etc.). But a given TRANSACTION may or may not
represent a MEMBER ORDER.
A PROMOTION features one or more PRODUCTS. Implicitly, a PRODUCT is featured
in zero, one, or more PROMOTIONS. For example, a CD that appeals to both

4

3

2

1

290 Part Two Systems Analysis Methods

T A B L E 8 - 5 Fundamental Entities for the SoundStage Project

Entity Name Business Definition

AGREEMENT A contract whereby a member agrees to purchase a certain
number of products within a certain time. After fulfilling that
agreement, the member becomes eligible for bonus credits that
are redeemable for free or discounted products.

MEMBER An active member of one or more clubs.

Note: A target system objective is to reenroll inactive members as
opposed to deleting them.

MEMBER ORDER An order generated for a member as part of a monthly
promotion, or an order initiated by a member.

Note: The current system only supports orders generated from
promotions; however, customer-initiated orders have been given a
high priority as an added option in the proposed system.

TRANSACTION A business event to which the Member Services System must
respond.

PRODUCT An inventoried product available for promotion and sale to
members.

Note: System improvement objectives include (1) compatibility
with new bar code system being developed for the warehouse,
and (2) adaptability to a rapidly changing mix of products.

PROMOTION A monthly or quarterly event whereby special product offerings
are made available to members.

F
I
G

U
R

E

8

-
1

3
T

h
e

S
o

u
n

d
S

ta
g

e
C

o
n

te
x

t
D

at
a

M
o

d
el

7

4

5

1

3

2

6

291

country/western and light-rock audiences might be featured in the promotion
for both. Since products greatly outnumber promotions, most products are
never featured in a promotion.
A PROMOTION generates many MEMBER ORDERS. Implicitly, a MEMBER ORDER is
generated for zero or one PROMOTION. Why zero? In the new system, a mem-
ber will be able to initiate his or her own order.
It is permissible for more than one relationship to exist between the same
two entities if the separate relationships communicate different business
events or associations. Thus, a MEMBER responds to zero, one, or more MEMBER

ORDERS. This relationship supports the promotion-generated orders. A MEMBER

places zero, one, or more MEMBER ORDERS. This relationship supports member-
initiated orders. In both cases, a MEMBER ORDER is placed by (is responded to
by) exactly one MEMBER.

Although we didn’t need it for this double relationship, some CASE tools
(including System Architect) provide a symbol for recording Boolean relation-
ships (such as AND, OR). Thus, for any two relationships, a Boolean symbol
could be used to establish that instances of the relationships must be mutu-
ally exclusive (OR) or mutually contingent (AND).
A MEMBER ORDER sells one or more PRODUCTS. Implicitly, a PRODUCT is sold on
zero, one, or more MEMBER ORDERS. Note that this is a nonspecific relationship,
which will later be resolved.

If you read each of the preceding items carefully, you probably learned a great
deal about the SoundStage system. Data models have become increasingly popular as
a tool for describing the business context for system projects.

> The Key-Based Data Model

The next task is to identify the keys of each entity. The following guidelines are sug-
gested for keys:1

1. The value of a key should not change over the lifetime of each entity instance.
For example, NAME would be a poor key since a person’s last name could
change by marriage or divorce.

2. The value of a key cannot be null.
3. Controls must be installed to ensure that the value of a key is valid. This can

be accomplished by precisely defining the domain and using the database
management system’s validation controls to enforce that domain.

4. Some experts (Bruce) suggest you avoid intelligent keys. An intelligent key is
a business code whose structure communicates data about an entity instance
(such as its classification, size, or other properties). A code is a group of char-
acters and/or digits that identifies and describes something in the business
system. Some experts argue that because those characteristics can change, it
violates rule 1 above.

We disagree. Business codes can return value to the organization because
they can be quickly processed by humans without the assistance of a
computer.
a. There are several types of codes. They can be combined to form effective

means for entity instance identification.
(1) Serial codes assign sequentially generated numbers to entity instances.

Many database management systems can generate and constrain serial
codes to a business’s requirements.

7

6

5

292 Part Two Systems Analysis Methods

1Adapted from Thomas A. Bruce, Designing Quality Databases with IDEF1X Information Models. Copyright © 1992

by Thomas A. Bruce. Reprinted by permission of Dorset House Publishing, 353 W. 12th St., New York, NY 10014

(212-620-4053/1-800-DH-BOOKS/www.dorsethouse.com). All rights reserved.

intelligent key a business

code whose structure commu-

nicates data about an entity

instance.

(2) Block codes are similar to serial codes except that block numbers are
divided into groups that have some business meaning. For instance, a
satellite television provider might assign 100–199 as PAY PER VIEW channels,
200–299 as CABLE channels, 300–399 as SPORT channels, 400–499 as ADULT

PROGRAMMING channels, 500–599 as MUSIC-ONLY channels, 600–699 as
INTERACTIVE GAMING channels, 700–799 as INTERNET channels, 800–899 as
PREMIUM CABLE channels, and 900–999 as PREMIUM MOVIE AND EVENT channels.

(3) Alphabetic codes use finite combinations of letters (and possibly numbers)
to describe entity instances. For example, each STATE has a unique two-
character alphabetic code. Alphabetic codes must usually be combined
with serial or block codes to uniquely identify instances of most entities.

(4) In significant position codes, each digit or group of digits describes a
measurable or identifiable characteristic of the entity instance. Significant
digit codes are frequently used to code inventory items.The codes you
see on tires and lightbulbs are examples of significant position codes.
They tell us about characteristics such as tire size and wattage,
respectively.

(5) Hierarchical codes provide a top-down interpretation for an entity
instance. Every item coded is factored into groups, subgroups, and so
forth. For instance, we could code employee positions as follows:
— First digit identifies classification (clerical, faculty, etc.).
— Second and third digits indicate level within classification.
— Fourth and fifth digits indicate calendar of employment.

b. The following guidelines are suggested when creating a business coding
scheme:
(1) Codes should be expandable to accommodate growth.
(2) The full code must result in a unique value for each entity instance.
(3) Codes should be large enough to describe the distinguishing characteristics

but small enough to be interpreted by people without a computer.

(4) Codes should be convenient. A new instance should be easy to create.
5. Consider inventing a surrogate key instead to substitute for large concatenated

keys of independent entities. This suggestion is not practical for associative
entities because each part of the concatenated key is a foreign key that must
precisely match its parent entity’s primary key.

Figure 8-14 is the key-based data model for the SoundStage project. Notice that
the primary key is specified for each entity.

Many entities have a simple, single-attribute primary key.
We resolved the nonspecific relationship between MEMBER ORDER and PRODUCT

by introducing the associative entity MEMBER ORDERED PRODUCT. Each associative
entity instance represents one product on one member order. The parent
entities contributed their own primary keys to comprise the associative
entity’s concatenated key. System Architect places a “PK1” next to ORDER

NUMBER to indicate that it is “part one” of the concatenated primary key and
a “PK2” beside PRODUCT NUMBER to indicate that it is “part two” of the concate-
nated key. Also notice that each attribute in that concatenated key, by itself,
is a foreign key that points back to the correct parent entity instance.

Likewise, the nonspecific relationship between PRODUCT and PROMOTION

was resolved using an associative entity, TITLE PROMOTION, that also inherits the
keys of the parent entities.

When developing this model, look out for a couple of things. If you cannot define
keys for an entity, it may be that the entity doesn’t really exist—that is, multiple
occurrences of the so-called entity do not exist.Thus, assigning keys is a good quality
check before fully attributing the data model. Also, if two or more entities have
identical keys, they are in all likelihood the same entity.

2

1

Data Modeling and Analysis Chapter Eight 293

294

F
I
G

U
R

E

8

-
1

4
T

h
e

S
o

u
n

d
S

ta
g

e
K

ey
-B

as
ed

 D
at

a
M

o
d

el

2

1 2

1

1

1

1

1

> Generalized Hierarchies

At this time, it would be useful to identify any generalization hierarchies in the busi-
ness domain. The SoundStage project at the beginning of this chapter identified at
least one supertype/subtype structure. Subsequent discussions did uncover a gener-
alization hierarchy. Thus, our key-based model was revised as shown in Figure 8-15.
We had to lay out the model somewhat differently because of the hierarchy; however,
the relationships and keys that were previously defined have been retained. We call
your attention to the following:

The SoundStage CASE tool automatically draws a dashed box around a general-
ization hierarchy.
The subtypes inherit the keys of the supertypes.
We disconnected PROMOTION from PRODUCT as it was shown earlier and recon-
nected it to the subtype TITLE. This was done to accurately assert the business
rule that MERCHANDISE is never featured on a PROMOTION—only TITLES.

> The Fully Attributed Data Model

It may seem like a trivial task to identify the remaining data attributes; however, ana-
lysts not familiar with data modeling frequently encounter problems. To accomplish
this task, you must have a thorough understanding of the data attributes for the sys-
tem. These facts can be discovered using top-down approaches (such as brainstorm-
ing) or bottom-up approaches (such as form and file sampling). If an enterprise data
model exists, some (perhaps many) of the attributes may have already been identified
and recorded in a repository.

The following guidelines are offered for attribution:

• Many organizations have naming standards and approved abbreviations. The
data administrator usually maintains such standards.

• Choose attribute names carefully. Many attributes share common base names
such as NAME, ADDRESS, DATE. Unless the attributes can be generalized into a
supertype, it is best to give each variation a unique name such as:

CUSTOMER NAME CUSTOMER ADDRESS ORDER DATE

SUPPLIER NAME SUPPLIER ADDRESS INVOICE DATE

EMPLOYEE NAME EMPLOYEE ADDRESS FLIGHT DATE

Also, remember that a project does not live in isolation from other projects,
past or future. Names must be distinguishable across projects.

Some organizations maintain reusable, global templates for these common
base attributes. This promotes consistent data types, domains, and defaults
across all applications.

• Physical attribute names on existing forms and reports are frequently abbrevi-
ated to save space. Logical attribute names should be clearer—for example,
translate the order form’s attribute COD into its logical equivalent, AMOUNT TO

COLLECT ON DELIVERY; translate QTY into QUANTITY ORDERED; and so forth.
• Many attributes take on only YES or NO values. Try naming these attributes as

questions. For example, the attribute name CANDIDATE FOR A DEGREE? suggests
the values are YES and NO.

Each attribute should be mapped to only one entity. If an attribute truly
describes different entities, it is probably several different attributes. Give
each a unique name.

• Foreign keys are the exception to the nonredundancy rule—they identify
associated instances of related entities.

3

2

1

Data Modeling and Analysis Chapter Eight 295

296

2 2

1

3

F
I
G

U
R

E

8

-
1

5
T

h
e

S
o

u
n

d
S

ta
g

e
K

ey
-B

as
ed

 D
at

a
M

o
d

el
 w

it
h

 a
 G

en
er

al
iz

at
io

n
 H

ie
ra

rc
h

y

• An attribute’s domain should not be based on logic. For example, in the
SoundStage case we learned that the values of MEDIA were dependent on the
type of product. If the product type is a video, the media could be VHS tape,
8mm tape, laserdisc, or DVD. If the product type is audio, the media could
be cassette tape, CD, or MD. The best solution would be to assign separate
attributes to each domain: AUDIO MEDIA and VIDEO MEDIA.

Figure 8-16 provides the mapping of data attributes to entities for the definition
phase of our SoundStage systems project.While the fully attributed model identifies all

Data Modeling and Analysis Chapter Eight 297

F I G U R E 8 - 1 6 The SoundStage Fully Attributed Data Model

the attributes to be captured and stored in our future database, the descriptions for
those attributes are incomplete; they require domains. Most CASE tools provide
extensive facilities for describing the data types, domains, and defaults for all attributes
to the repository. Additionally, each attribute should be defined for future reference.

298 Part Two Systems Analysis Methods

Analyzing the Data Model

While a data model effectively communicates database requirements, it does not neces-
sarily represent a good database design. It may contain structural characteristics that re-
duce flexibility and expansion or create unnecessary redundancy. Therefore, we must
prepare our fully attributed data model for database design and implementation.

This section will discuss the characteristics of a quality data model—one that will
allow us to develop an ideal database structure. We’ll also present the process used to
analyze data model quality and make necessary modifications before database design.

> What Is a Good Data Model?

What makes a data model good? We suggest the following criteria:

• A good data model is simple. As a general rule, the data attributes that
describe any given entity should describe only that entity. Consider, for exam-
ple, the following entity definition:

COURSE REGISTRATION COURSE REGISTRATION NUMBER (PRIMARY KEY)

COURSE REGISTRATION DATE

STUDENT ID NUMBER (A FOREIGN KEY)

STUDENT NAME

STUDENT MAJOR

One or more COURSE NUMBERS

Do STUDENT NAME and STUDENT MAJOR really describe an instance of course reg-
istration? Or do they describe a different entity, say, STUDENT? The same argu-
ment could be applied to STUDENT ID NUMBER, but on further inspection, that
attribute is needed to “point” to the corresponding instance of the STUDENT

entity. Another aspect of simplicity is stated as follows: Each attribute of
an entity instance can have only one value. Looking again at the previous
example, we see that COURSE NUMBER can have as many values for one COURSE

REGISTRATION as the student elects.
• A good data model is essentially nonredundant. This means that each data

attribute, other than foreign keys, describes at most one entity. In the prior
example, it is not difficult to imagine that STUDENT NAME and STUDENT MAJOR

might also describe a STUDENT entity. We should choose. Based on the previ-
ous bullet, the logical choice would be the STUDENT entity. There may also
exist subtle redundancies in a data model. For example, the same attribute
might be recorded more than once under different names (synonyms).

• A good data model should be flexible and adaptable to future needs. In
the absence of this criterion, we would tend to design databases to fulfill
only today’s business requirements. Then, when a new requirement becomes
known, we can’t easily change the databases without rewriting many or all of
the programs that used those databases. While we can’t change the reality
that most projects are application-driven, we can make our data models as
application-independent as possible to encourage database structures that can
be extended or modified without impact to current programs.

So how do we achieve the above goals? How can you design a database that
can adapt to future requirements that you cannot predict? The answer lies in data
analysis.

> Data Analysis

The technique used to improve a data model in preparation for database design is
called data analysis. Data analysis is a process that prepares a data model for im-
plementation as a simple, nonredundant, flexible, and adaptable database.The specific
technique is called normalization. Normalization is a data analysis technique that
organizes data attributes such that they are grouped to form nonredundant, stable,
flexible, and adaptive entities. Normalization is a three-step technique that places the
data model into first normal form, second normal form, and third normal form.2 Don’t
get hung up on the terminology—it’s easier than it sounds. For now, let’s establish an
initial understanding of these three formats:

• Simply stated, an entity is in first normal form (1NF) if there are no attrib-
utes that can have more than one value for a single instance of the entity.
Any attributes that can have multiple values actually describe a separate
entity, possibly an entity and relationship.

• An entity is in second normal form (2NF) if it is already in 1NF and if the
values of all non-primary-key attributes are dependent on the full primary
key—not just part of it. Any nonkey attributes that are dependent on only
part of the primary key should be moved to any entity where that partial key
is actually the full key. This may require creating a new entity and relation-
ship on the model.

• An entity is in third normal form (3NF) if it is already in 2NF and if the
values of its non-primary-key attributes are not dependent on any other non-
primary-key attributes. Any nonkey attributes that are dependent on other
nonkey attributes must be moved or deleted. Again, new entities and relation-
ships may have to be added to the data model.

> Normalization Example

There are numerous approaches to normalization. We have chosen to present a non-
theoretical and nonmathematical approach. We’ll leave the theory, relational algebra,
and detailed implications to the database courses and textbooks.

As usual, we’ll use the SoundStage case study to demonstrate the steps. Let’s
begin by referring to the fully attributed data model that was developed earlier (see
Figure 8-16). Is it a normalized data model? No. Let’s identify the problems and
walk through the steps of normalizing our data model.

First Normal Form The first step in data analysis is to place each entity into 1NF. In
Figure 8-16, which entities are not in 1NF?

You should find two—MEMBER ORDER and PROMOTION. Each contains a repeating

group, that is, a group of attributes that can have multiple values for a single instance
of the entity {denoted by the brackets}. These attributes repeat many times “as a
group.” Consider, for example, the entity MEMBER ORDER. A single MEMBER ORDER may
contain many products; therefore, the attributes ORDERED PRODUCT NUMBER, ORDERED

PRODUCT DESCRIPTION, ORDERED PRODUCT TITLE, QUANTITY ORDERED, QUANTITY SHIPPED, QUANTITY

BACKORDERED,PURCHASED UNIT PRICE, and EXTENDED PRICE may (and probably do) repeat for
each instance of MEMBER ORDER.

Similarly, since a PROMOTION may feature more than one PRODUCT TITLE, the PRODUCT

NUMBER and TITLE OF WORK attributes may repeat. How do we fix these anomalies in our
model?

Figures 8-17 and 8-18 demonstrate how to place these two entities into 1NF. The
original entity is depicted on the left side of the page.The 1NF entities are on the right

Data Modeling and Analysis Chapter Eight 299

data analysis a technique

used to improve a data model

for implementation as a

database.

normalization a data

analysis technique that orga-

nizes data into groups to form

nonredundant, stable, flexible,

and adaptive entities.

first normal form (1NF)
an entity whose attributes

have no more than one value

for a single instance of that

entity.

second normal form
(2NF) an entity whose

non-primary-key attributes are

dependent on the full primary

key.

third normal form
(3NF) an entity whose non-

primary-key attributes are not

dependent on any other non-

primary-key attributes.

2Database experts have identified additional normal forms.Third normal form removes most data anomalies. We leave a

discussion of advanced normal forms to database textbooks and courses.

PRODUCT (1NF)

Product-Number (Primary Key)

Universal-Product-Code (Alternate Key)
Quantity-in-Stock

Product-Type

Suggested-Retail-Price

Default-Unit-Price

Current-Special-Unit-Price

Current-Month-Units-Sold

Current-Year-Units-Sold

Total-Lifetime-Units-Sold

CORRECTION

sells

sold

as

MEMBER ORDERED PRODUCT (1NF)

Order-Number (Primary Key 1 and Foreign Key)

PRODUCT-NUMBER (PRIMARY KEY 2 AND FOREIGN KEY)
ORDERED-PRODUCT-DESCRIPTION

ORDERED-PRODUCT-TITLE

QUANTITY-ORDERED

PURCHASED-UNIT-PRICE

EXTENDED-PRICE

QUANTITY-SHIPPED

QUANTITY-BACKORDERED

MEMBER ORDER (unnormalized)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date
Member-Number (Foreign Key)

Member-Name
Member-Address

Shipping-Address
Shipping Instructions

Promotion-Number (Foreign Key)

0 {ORDERED-PRODUCT-DESCRIPTION } N

0 {ORDERED-PRODUCT-TITLE } N
1 {QUANTITY-ORDERED } N

1 {PURCHASED -UNIT-PRICE } N

1 {EXTENDED-PRICE } N
Order-Sub-Total-Cost

Order-Sales-Tax
Ship-Via-Method

Shipping-Charge
Order-Status

Prepaid-Amount
Prepaid-Method

1 {QUANTITY-BACKORDERED } N
1 {QUANTITY-SHIPPED } N

Member-Number-2 (Foreign Key)

1 {ORDERED-PRODUCT-NUMBER } N

MEMBER ORDER (1NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Automatic-Fill-Date

Member-Number (Foreign Key)

Member-Name

Member-Address

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Member-Number-2 (Foreign Key)

Promotion-Number (Foreign Key)

Prepaid-Method

F I G U R E 8 - 1 7 First Normal Form (1NF)

300 Part Two Systems Analysis Methods

F I G U R E 8 - 1 8 First Normal Form (1NF)

generated for

TITLE PROMOTION (1NF)

Promotion-Number (Primary Key 1 & Foreign Key)

PRODUCT-NUMBER (PRIMARY KEY 2 &FOREIGN KEY)

TITLE-OF-WORK

CORRECTION

generates

PROMOTION (unnormalized)

Promotion-Number (Primary Key)
Promotion-Release-Date
Promotion-Status
Promotion-Type
1 { PRODUCT-NUMBER } N
1 { TITLE-OF-WORK } N

PROMOTION (1NF)

Promotion-Status
Promotion-Type

Promotion-Number (Primary Key)
Promotion-Release-Date

TITLE (1NF)

Product-Number (Primary Key)
Title-of-Work
Title-Cover
Catalog-Description
Copyright-Date
Entertainment-Category
Credit-Value

side of the page. Each figure shows how normalization changed the data model and
attribute assignments. For your convenience, the attributes that are affected are in
boldface type and in small capital letters.

In Figure 8-17, we first removed the attributes that can have more than one value
for an instance of the MEMBER ORDER entity. That alone places MEMBER ORDER in 1NF. But
what do we do with the removed attributes? We can’t remove them entirely from the
model—they are part of the business requirements! Therefore, we moved the entire
group of attributes to a new entity, MEMBER ORDERED PRODUCT. Each instance of these at-
tributes describes one PRODUCT on a single MEMBER ORDER. Thus, if a specific order con-
tains five PRODUCTS, there will be five instances of the MEMBER ORDERED PRODUCT entity.
Each entity instance has only one value for each attribute; therefore, the new entity is
also in first normal form.

Data Modeling and Analysis Chapter Eight 301

Another example of 1NF is shown in Figure 8-18 for the PROMOTION entity. As
before, we moved the repeating attributes to a different entity, TITLE PROMOTION.

All other entities are already in 1NF because they do not contain any repeating
groups.

Second Normal Form The next step of data analysis is to place the entities into
2NF. Recall that it is required that you have already placed all entities into 1NF. Also
recall that 2NF looks for an attribute whose value is determined by only part of the
primary key—not the entire concatenated key. Accordingly, entities that have a
single-attribute primary key are already in 2NF. That takes care of PRODUCT (and its
subtypes), MEMBER ORDER,MEMBER, PROMOTION,AGREEMENT, and TRANSACTION. Thus, we need
to check only those entities that have a concatenated key—MEMBER ORDERED PRODUCT

and TITLE PROMOTION.
First, let’s check the MEMBER ORDERED PRODUCT entity. Most of the attributes are

dependent on the full primary key. For example, QUANTITY ORDERED makes no sense
unless you have both an ORDER NUMBER and a PRODUCT NUMBER. Think about it! By it-
self, ORDER NUMBER is inadequate since the order could have as many quantities or-
dered as there are products on the order. Similarly, by itself, PRODUCT NUMBER is
inadequate since the same product could appear on many orders. Thus, QUANTITY

ORDERED requires both parts of the key and is dependent on the full key. The same
could be said of QUANTITY SHIPPED, QUANTITY BACKORDERED, PURCHASE UNIT PRICE, and
EXTENDED PRICE.

But what about ORDERED PRODUCT DESCRIPTION and ORDERED PRODUCT TITLE? Do we re-
ally need ORDER NUMBER to determine a value for either? No! Instead, the values of these
attributes are dependent only on the value of PRODUCT NUMBER.Thus, the attributes are
not dependent on the full key; we have uncovered a partial dependency anomaly that
must be fixed. How do we fix this type of normalization error?

Refer to Figure 8-19 on the next page. To fix the problem, we simply move the
nonkey attributes, ORDERED PRODUCT DESCRIPTION and ORDERED PRODUCT TITLE, to an entity
that has only PRODUCT NUMBER as its key. If necessary, we would have to create this en-
tity, but the PRODUCT entity with that key already exists. But we have to be careful be-
cause PRODUCT is a supertype. Upon inspection of the subtypes, we discover that the
attributes are already in the MERCHANDISE and TITLE entities, albeit under a synonym.
Thus, we didn’t actually have to move the attributes from the MEMBER ORDERED PRODUCT

entity; we just deleted them as redundant attributes.
Next, let’s examine the TITLE PROMOTION entity. The concatenated key is the com-

bination of PROMOTION NUMBER and PRODUCT NUMBER. TITLE OF WORK is dependent on the
PRODUCT NUMBER portion of the concatenated key.Thus, TITLE OF WORK is removed from
TITLE PROMOTION (see Figure 8-20). Notice that TITLE OF WORK already existed in the
entity TITLE, which has a product number as its primary key.

Third Normal Form We can further simplify our entities by placing them into 3NF.
Entities are required to be in 2NF before beginning 3NF analysis. Third normal form
analysis looks for two types of problems, derived data and transitive dependencies.

In both cases, the fundamental error is that nonkey attributes are dependent on other
nonkey attributes.

The first type of 3NF analysis is easy—examine each entity for derived attributes.
Derived attributes are those whose values can be either calculated from other at-
tributes or derived through logic from the values of other attributes. If you think
about it, storing a derived attribute makes little sense. First, it wastes disk storage
space. Second, it complicates what should be simple updates. Why? Every time you
change the base attributes, you must remember to reperform the calculation and also
change its result.

For example, look at the MEMBER ORDERED PRODUCT entity in Figure 8-21. The at-
tribute EXTENDED PRICE is calculated by multiplying QUANTITY ORDERED by PURCHASED UNIT

PRICE. Thus, EXTENDED PRICE (a nonkey attribute) is not dependent on the primary key

302 Part Two Systems Analysis Methods

derived attribute an

attribute whose value can be

calculated from other attrib-

utes or derived from the

values of other attributes.

sold as

is a

MEMBER ORDERED PRODUCT (1NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

ORDERED-PRODUCT-DESCRIPTION

ORDERED-PRODUCT-TITLE

Quantity-Ordered

Purchased-Unit-Price

Extended-Price

Quantity-Backordered

Quantity-Shipped

CORRECTION

MEMBER ORDERED PRODUCT (2NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

Extended-Price

Quantity-Backordered

Quantity-Shipped

PRODUCT (2NF)

Product-Number (Primary Key)

Universal-Product-Code (Alternate Key)

Quantity-in-Stock

Product-Type

Suggested-Retail-Price

Default-Unit-Price

Current-Special-Unit-Price

Current-Month-Units-Sold

Current-Year-Units-Sold

Total-Lifetime-Units-Sold

MERCHANDISE (2NF)

Product-Number (Primary Key)

Merchandise-Name

MERCHANDISE-DESCRIPTION

Merchandise-Type
Unit-of-Measure

TITLE (2NF)

Product-Number (Primary Key)

TITLE-OF-WORK

Title-Cover

Catalog-Description

Copyright-Date

Entertainment-Category

Credit-Value

is a

F I G U R E 8 - 1 9 Second Normal Form (2NF)

as much as it is dependent on the nonkey attributes, QUANTITY ORDERED and PURCHASED

UNIT PRICE. Thus, we correct the entity by deleting EXTENDED PRICE.
Sounds simple, right? Well, not always! There is disagreement on how far you take

this rule. Some experts argue that the rule should be applied only within a single en-
tity.Thus, these experts would not delete a derived attribute if the attributes required
for the derivation were assigned to different entities.We agree based on the argument
that a derived attribute that involves multiple entities presents a greater danger for

Data Modeling and Analysis Chapter Eight 303

TITLE PROMOTION (2NF)

Promotion-Number (Primary Key 1 & Foreign Key)

Product-Number (Primary Key 2 & Foreign Key)

TITLE-OF-WORK

CORRECTION

generates

TITLE (2NF)

Product-Number (Primary Key)
Title-of-Work
Title-Cover
Catalog-Description
Copyright-Date
Entertainment-Category
Credit-Value

TITLE PROMOTION (1NF)

Promotion-Number (Primary Key 1 & Foreign Key)

Product-Number (Primary Key 2 & Foreign Key)

TITLE-OF-WORK

F I G U R E 8 - 2 0 Second Normal Form (2NF)

F I G U R E 8 - 2 1 Third Normal Form (3NF)

304 Part Two Systems Analysis Methods

data inconsistency caused by updating an attribute in one entity and forgetting to
subsequently update the derived attribute in another entity.

Another form of 3NF analysis checks for transitive dependencies. A transitive

dependency exists when a nonkey attribute is dependent on another nonkey at-
tribute (other than by derivation).This error usually indicates that an undiscovered
entity is still embedded within the problem entity. Such a condition, if not cor-
rected, can cause future flexibility and adaptability problems if a new requirement
eventually requires that we implement that undiscovered entity as a separate data-
base table.

MEMBER ORDERED PRODUCT (2NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

EXTENDED-PRICE

Quantity-Backordered

Quantity-Shipped

CORRECTION

MEMBER ORDERED PRODUCT (3NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

EXTENDED-PRICE

Quantity-Backordered

Quantity-Shipped

transitive dependency
when the value of a nonkey

attribute is dependent on

the value of another nonkey

attribute other than by

derivation.

F I G U R E 8 - 2 2 Third Normal Form (3NF)

places responds to

CORRECTION

MEMBER ORDER (3NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date

Member Number (Foreign Key)

MEMBER-NAME

MEMBER-ADDRESS

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Promotion Number (Foreign Key)

Prepaid-Method

Member-Number-2 (Foreign Key)

MEMBER ORDER (2NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date

Member Number (Foreign Key)

MEMBER-NAME

MEMBER-ADDRESS

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Promotion Number (Foreign Key)

Prepaid-Method

Member-Number-2 (Foreign Key)

MEMBER (2NF)

Member-Number (Primary Key)
Member-Name
Member-Status
Member-Street-Address
Member-Daytime-Phone-Number
Date-of-Last-Order
Member-Balance-Due
Member-Bonus-Balance-Available
Member-Credit-Card-Information
Agreement-Number (Foreign Key)
Taste-Code
Audio-Category-Preference
Audio-Media-Preference
Game-Category-Preference
Game-Media-Preference
Video-Category-Preference
Video-Media-Preference
Date-Enrolled
Expiration-Date
Number of Credits-Earned
Privacy-Code
Email-Address

Transitive analysis is performed only on entities that do not have a concatenated
key. In our example, this includes PRODUCT, MEMBER ORDER, PROMOTION,AGREEMENT, MEMBER,
and TRANSACTION. For the entity PRODUCT, all the nonkey attributes are dependent on
the primary key and only the primary key. Thus, PRODUCT is already in third normal
form. A similar analysis of PROMOTION,AGREEMENT, and TRANSACTION reveals that they are
also in third normal form.

But look at the entity MEMBER ORDER in Figure 8-22. In particular, examine the at-
tributes MEMBER NAME and MEMBER ADDRESS. Are these attributes dependent on the pri-
mary key, ORDER NUMBER? No! The primary key ORDER NUMBER in no way determines the
value of MEMBER NAME and MEMBER ADDRESS. On the other hand, the values of MEMBER NAME

Data Modeling and Analysis Chapter Eight 305

and MEMBER ADDRESS are dependent on the value of another non-primary key in the
entity, MEMBER NUMBER.

How do we fix this problem? MEMBER NAME and MEMBER ADDRESS need to be moved
from the MEMBER ORDER entity to an entity whose primary key is just MEMBER NUMBER. If
necessary, we would create that entity, but in our case we already have a MEMBER entity
with the required primary key. As it turns out, we don’t need to really move the prob-
lem attributes because they are already assigned to the MEMBER entity.We did, however,
notice that MEMBER ADDRESS was a synonym for MEMBER STREET ADDRESS. We elected to
keep the latter term in MEMBER.

Several normal forms beyond 3NF exist. Each successive normal form makes the
data model simpler, less redundant, and more flexible. However, systems analysts (and
most database experts) rarely take data models beyond 3NF. Consequently, we will
leave further discussion of normalization to database textbooks.

The first few times you normalize a data model, the process will appear slow and
tedious. However, with time and practice, it becomes quick and routine. Many expe-
rienced modelers significantly reduce the modeling time and effort by doing normal-
ization during attribution (they are able to do normalization at the time they
are developing the fully attributed data model). It may help to always remember the
following ditty (source unknown), which nicely summarizes first, second, and third
normal forms:

An entity is said to be in third normal form if every non-primary-key attribute
is dependent on the primary key, the whole primary key, and nothing but the
primary key.

Simplification by Inspection Normalization is a fairly mechanical process. But it is
dependent on naming consistencies in the original data model (before normalization).
When several analysts work on a common application, it is not unusual to create prob-
lems that won’t be taken care of by normalization. These problems are best solved
through simplification by inspection, a process wherein a data entity in 3NF is further
simplified by such efforts as addressing subtle data redundancy.

The final, normalized data model is presented in Figure 8-23 on the next page.

CASE Support for Normalization Many CASE tools claim to support normaliza-
tion concepts.They read the data model and attempt to isolate possible normalization
errors. On close examination, most CASE tools can normalize only to first normal
form. They accomplish this in one of two ways. They look for many-to-many relation-
ships and resolve those relationships into associative entities. Or they look for attrib-
utes specifically described as having multiple values for a single entity instance. (One
could argue that the analyst should have recognized that as a 1NF error and not
described the attributes as such.)

It is exceedingly difficult for a CASE tool to identify second and third normal form
errors. That would require that the CASE tool have the intelligence to recognize par-
tial and transitive dependencies. In reality, such dependencies can be discovered only
through less-than-routine examination by the systems analysts or database experts.

306 Part Two Systems Analysis Methods

Mapping Data Requirements to Locations

While a logical data model is effective for describing what data is to be stored for
a new system, it does not communicate the requirements on a business operating
location basis. We need to identify what data and access rights are needed at which
locations. Specifically, we might ask the following business questions:

• Which subsets of the entities and attributes are needed to perform the work
at each location?

• What level of access is required?

F
I
G

U
R

E

8

-
2

3
S

o
u

n
d

S
ta

g
e

L
o

g
ic

al
 D

at
a

M
o

d
el

 i
n

 T
h

ir
d

 N
o

rm
al

 F
o

rm
 (

3N
F

)

307

Entity . Attribute

Lo
c
a
ti

o
n

Customer

 .Customer Number

 .Customer Name

 .Customer Address

 .Customer Credit Rating

 .Customer Balance Due

Order

 .Order Number

 .Order Date

 .Order Amount

Ordered Product

 .Quantity Ordered

 .Ordered Item Unit Price

Product

 .Product Number

 .Product Name

 .Product Description

 .Product Unit of Measure

 .Product Current Unit Price

 .Product Quantity on Hand

INDV

R

RU

RU

X

R

INDV

SRD

SRD

SRD

INDV

SUD

SUD

ALL

R

R

R

R

R

X

ALL

R

R

R

ALL

R

R

ALL

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

ALL

R

R

RU

R

R

R

R

R

SS

R

R

SS

R

ALL

R

R

R

R

RU

ALL

CRUD

CRUD

CRUD

R

R

ALL

CRUD

CRUD

CRUD

ALL

CRUD

CRUD

ALL

R

R

R

R

R

R

ALL

R

R

R

RU

RU

R

R

R

R

R

SS

CRUD

CRUD

CRUD

R

R

SS

CRUD

CRUD

CRUD

SS

CRUD

CRUD

ALL

R

R

R

R

R

R

SS

R

R

R

SS

R

R

R

SS

ALL

R

R

R

R

R

RU

SS

CRUD

CRUD

CRUD

R

R

SS

CRUD

CRUD

CRUD

SS

CRUD

CRUD

ALL

R

R

R

R

R

R

SS

R

R

R

SS

R

R

R

SS

ALL

R

R

R

R

R

RU

INDV individual ALL ALL SS subset

C createS submit R read U update D delete

X no access

C
u
st

o
m

e
rs

K
an

sa
s

C
it
y

.
M

ar
ke

ti
n
g

.
A

d
ve

rt
is

in
g

.
W

ar
e
h
o

u
se

.
W

ar
e
h
o

u
se

.
W

ar
e
h
o

u
se

.
S
al

e
s

.
S
al

e
s

.
S
al

e
s

.
A

/R

B
o

st
o

n

S
an

 F
ra

n
c
is

c
o

S
an

 D
ie

g
o

F I G U R E 8 - 2 4 Data-to-Location-CRUD Matrix

• Can the location create instances of the entity?
• Can the location read instances of the entity?
• Can the location delete instances of the entity?
• Can the location update existing instances of the entity?

Systems analysts have found it useful to define these logical requirements in
the form of a data-to-location-CRUD matrix. A data-to-location-CRUD matrix is
a table in which the rows indicate entities (and possible attributes); the columns
indicate locations; and the cells (the intersection of rows and columns) document
level of access where C create, R read, U update or modify, and D delete
or deactivate. Figure 8-24 illustrates a typical data-to-location-CRUD matrix. The
decision to include or not include attributes is based on whether locations need to
be restricted as to which attributes they can access. Figure 8-24 also demonstrates the
ability to document that a location requires access only to a subset (designated SS) of
entity instances. For example, each sales office might need access only to those
customers in its region.

In some methodologies and CASE tools, you can define views of the data model
for each location. A view includes only the entities and attributes to be accessible for
a single location. If views are defined, they must also be kept in sync with the master
data model. (Most CASE tools do this automatically.)

308 Part Two Systems Analysis Methods

data-to-location-CRUD
matrix a matrix that is used

to map data requirements to

locations.

1. Data modeling is a technique for organizing and
documenting a system’s DATA. Data modeling is
sometimes called database modeling because a
data model is usually implemented as a database.

2. There are several notations for data modeling.The
actual model is frequently called an entity rela-
tionship diagram (ERD) because it depicts data in
terms of the entities and relationships described
by the data.

3. An entity is something about which the business
needs to store data. Classes of entities include
persons, places, objects, events, and concepts.

4. An entity instance is a single occurrence of an
entity class.

5. Pieces of data we want to store about each in-
stance of a given entity are called attributes. An
attribute is a descriptive property or characteris-
tic of the entity. Some attributes can be logically
grouped into superattributes called compound
attributes.

6. When analyzing a system, we should define those
values for an attribute that are legitimate or that

make business sense.The values for each attribute
are defined in terms of three properties—data
type, domain, and default:

a. The data type defines what class of data can
be stored in the attribute.

b. The domain of an attribute defines what val-
ues an attribute can legitimately take on.

c. The default value for an attribute is the value
that will be recorded if not specified by the
user.

7. Every entity must have an identifier or key. A key
is an attribute, or a group of attributes, that as-
sumes a unique value for each entity instance.

a. A group of attributes that uniquely identifies
an instance of an entity is called a concate-
nated key.

b. A candidate key is a “candidate to become
the primary identifier” of instances of an
entity.

Summary

Lea
rning

 Roa
d
m

a
p

Most of you will proceed directly to Chapter 9, “Process Modeling.” Whereas data

modeling was concerned with data independently from how that data is captured and

used (data at rest), process modeling shows how the data will be captured and used

(data in motion). To take an object-oriented approach, you may jump to Chapter 10,

“Object-Oriented Analysis and Modeling with UML.” Object modeling has many paral-

lels with data modeling. An object includes attributes, but it also includes all the

processes that can act on and use those methods.

If you want to immediately learn how to implement data models as databases, you

should skim or read Chapter 14, “Designing Databases.” In that chapter, the logical

data models are transformed into physical database schemas. With CASE tools, the

code for creating the database can be generated automatically.

309

c. A primary key is the candidate key that will
most commonly be used to uniquely identify a
single entity instance.

d. Any candidate key that is not selected to
become the primary key is called an alter-
nate key.

e. Sometimes, it is also necessary to identify a
subset of entity instances as opposed to a sin-
gle instance. A subsetting criteria is an at-
tribute (or concatenated attribute) whose
finite values divide all entity instances into
useful subsets.

8. A relationship is a natural business association
that exists between one or more entities.The rela-
tionship may represent an event that links the en-
tities or merely a logical affinity that exists
between the entities. All relationships are implic-
itly bidirectional, meaning they can be inter-
preted in both directions.

9. Cardinality defines the minimum and maximum
number of occurrences of one entity for a single
occurrence of the related entity. Because all rela-
tionships are bidirectional, cardinality must be de-
fined in both directions for every relationship.

10. The degree of a relationship is the number of en-
tity classes that participate in the relationship.
Not all relationships are binary. Some relation-
ships may be recursive relationships, wherein the
relationship exists between different instances of
the same entity. Relationships can also exist be-
tween more than two different entities, as in the
case of a 3-ary, or ternary, relationship.

11. An associative entity is an entity that inherits its
primary key from more than one other entity
(parents). Each part of that concatenated key
points to one and only one instance of each of
the connecting entities.

12. A foreign key is a primary key of one entity that is
contributed to (duplicated in) another entity to
identify instances of a relationship. A foreign key
(always in a child entity) always matches the
primary key (in a parent entity).

13. Nonidentifying relationships are those in which
each of the participating entities has its own inde-
pendent primary key, of which none of the
primary-key attributes is shared.The entities in a
nonidentifying relationship are referred to as
strong or independent entities because neither
depends on any other entity for its identification.
Identifying relationships are those in which the
parent entity contributes its primary key to
become part of the primary key of the child

entity.The child entity of any identifying relation-
ship is referred to as a weak entity because its
identification is dependent on the existence of
the parent entity’s existence.

14. A nonspecific relationship (or many-to-many rela-
tionship) is one in which many instances of one
entity are associated with many instances of an-
other entity. Such relationships are suitable only
for preliminary data models and should be re-
solved as quickly as possible.

15. Generalization is an approach that seeks to dis-
cover and exploit the commonalities between
entities. It is a technique wherein the attributes
are grouped to form entity supertypes and
subtypes.

a. An entity supertype is an entity whose in-
stances store attributes that are common to
one or more entity subtypes.

b. An entity subtype is an entity whose instances
inherit some common attributes from an en-
tity supertype and then add other attributes
that are unique to an instance of the subtype.

16. A logical data model is developed in the follow-
ing stages:

a. Entities are discovered and defined.
b. A context data model is built. A context data

model contains only business entities and rela-
tionships identified by the system owners and
users.

c. A key-based data model is built.The key-based
model eliminates nonspecific relationships
and adds associative entities. All entities in the
model are given keys.

d. A fully attributed model is built.This model
shows all the attributes to be stored in the
system.

e. A fully described model is built. Each attribute is
defined in the dictionary and described in terms
of properties such as domain and security.

f. The completed data model is then analyzed
for adaptability and flexibility through a
process called normalization.The final ana-
lyzed model is referred to as a third normal
form data model.

17. A logical data model does not communicate data re-
quirements on a business operating location basis.
Systems analysts have found it useful to define
these requirements in the form of a data-to-location-
CRUD matrix.

310 Part Two Systems Analysis Methods

1. What is the difference between logical and physi-

cal models?

2. Why is it important to create an implementation-

independent model of a system?

3. Why is it necessary to create an implementation-

dependent model of a system?

4. What is an entity? What are entity instances?

5. A relationship is a natural business association be-

tween entities. What is the relationship between

student and teacher? Does it depend on how many

classes a student can take, or how many classes a

teacher can teach?

6. What is cardinality? Give an example.

Review Questions
1

2

1. What is a reasonable domain for the data attribute

for a student’s last name?

2. What default value would you choose for a

student’s last name?

3. What default value would you choose for gender?

4. The student table you are working with contains

the attributes: STUDENT ID, NAME, PHONE NUMBER, and

MAJOR. Normalize to 3NF.

5. What attributes would you have in a table to

describe a movie?

6. A many-to-many relationship (also called a non-

specific relationship) can and generally should be

resolved into a pair of one-to-many relationships

with an associative entity. When is this not the

case?

7. Give an example of a many-to-many relationship.

Resolve using an entity or an associative entity.

Which did you use? Why?

8. Describe each of the first three normal forms.

Give an example of each.

9. A customer goes to a shoe store and purchases

several pairs of shoes. Diagram this relationship.

10. Give an example each of ternary, identifying, and

nonidentifying relationships.

11. On the surface, data modeling appears not to re-

quire much creativity. Why is this incorrect?

12. Can a well-designed database give a business a

strategic advantage? How?

Problems and Exercises

1. Go to the school library. Ask the librarian at the cir-

culation desk to print out a copy of the informa-

tion they keep on you. What types of data are

being stored? Is there anything that surprises you

or seems irrelevant to checking out books? If so,

ask why the information is collected.

2. Create a list of attributes for the student entity

from the information you found in the previous

problem. Normalize to third normal form.

3. Go to a grocery store and make a purchase. What

type of data would a good information system

maintain on a transaction? What does a good infor-

mation system do for a business?

4. Compare your answer from the above question

(grocery store) to that of at least one other

student. How were your answers different?

5. What legal and privacy issues are related to data-

bases used by grocery stores? Go to http://www.

findlaw.com and research some recent court

cases on the topic. Present your work in a short

(five-page) paper to your class.

6. How can databases, and the information kept in

databases, be used by businesses for a strategic ad-

vantage? In a small group, go to a business of your

choosing. Brainstorm to create a database that of-

fers that company either a solution to an existing

problem, or exploits an existing opportunity in

business. Remember to be creative.

Projects and Research

Data Modeling and Analysis Chapter Eight 311

1. Consider a fictitious online grocery store called
Wow Munchies.This is a national franchise, com-
plete with marketing, accounting, shipping, and
customer service departments.The CIO has de-
cided to update the database corresponding to the
Web store so that it collects pertinent transaction
and shopping information for the different depart-
ments. She is undecided what software or hard-
ware will support this database.

Step l. How will you determine what data is
important to collect and maintain in
the new database? Be specific.

Step 2. Create surveys, questionnaires, and the
like, and administer them to appropri-
ate personnel in the affected depart-
ments. Review the forms that each
department uses.

Step 3. What kind of responses did you get?
Go to an online grocery store, and see
what data is being collected by “rival”
companies. Did you miss anything? Did
any of the responses you get require a
secondary meeting with department
personnel? If so, revise your surveys
and questions and reinterview.

Step 4. Utilize the methods you outlined in
the above question, and ascertain the
entities and attributes you will need to
include in your data.

Step 5. Draft the relationships and cardinality
between the entities. What kind of data
model are you using? Implementation
specific or nonspecific? Why?

Step 6. Revise your data model so that there
are no many-to-many relationships,
and the model is normalized to third
normal form.

Step 7. Submit all questionnaires, surveys,
forms, and responses to your professor,
along with your final data model draft.
Include a short explanation as to how
you derived your entities and attributes
and the relationships and any assump-
tions or limitations your data model
may have.

2. Research a car rental agency and create a data
model for its database for car rentals. What de-
partments are affected by the rental of a car? Re-
view any forms publicly available and create
surveys and interviews as necessary to help you
determine what your database should contain. Be
sure to normalize to third normal form and to re-
solve any many-to-many relationships. Submit your
data model and all supporting documents to your
professor.

3. Consider the Mafia. Assuming that organized crime
groups maintain databases to evade capture and to
run their businesses, what information would they
keep? Why?

4. What legal, ethical, and privacy issues are associ-
ated with databases used in crime fighting? Re-
search and present a short paper (ten pages or
less) to your class.

Minicases

1. Project management in a geographically and cul-
turally dispersed team is difficult. For each team
member, assign the member to a country with a
different time zone and different languages. As-
sume all members share one common language,
although that language will not be a first language
for all members. Example countries: USA, India,
Israel, China, Pakistan, Iran, France, Peru, and
Japan.

2. Individual exercise: It is said that the boundaries of
our own creativity are ourselves, and our experi-
ences.That is, the very things that make us who

we are also constrain us. What does it mean to be
creative? How do you become creative and to
think freely?

3. Individual or team exercise: Reengineer a com-
mon life process. If the “sky was the limit,” how
would you change this process? Identify each of
the steps in the old process and then each step in
the new process (e.g., putting on makeup, clean-
ing the house, going to the grocery store, going to
class). Bring your notes to class for a roundtable
discussion.

Team and Individual Exercises

312 Part Two Systems Analysis Methods

Bruce, Thomas A. Designing Quality Databases with

IDEF1X Information Models. New York: Dorset House

Publishing, 1992. We actually use this book as a textbook

in our database analysis and design course. IDEF1X is a

rich, standardized syntax for data modeling (which Bruce

calls information modeling).The graphical language looks

different, but it communicates the same system concepts

presented in our book. The language is supported by at

least two CASE tools: Logic Works’ ERwin and Popkin’s

System Architect. The book includes two case studies.

Hay, David C. Data Model Patterns: Conventions of Thought.

New York: Dorset House Publishing, 1996. What a novel

book! This book starts with the premise that most busi-

ness data models are derivatives of some basic, repeatable

patterns. CASE vendors, how about including these

patterns in CASE tools as reusable templates?

Martin, James, and Clive Finkelstein. Information Engineer-

ing, 3 vols. New York: Savant Institute, 1981. Information

engineering is a formal, database, and fourth-generation

language-oriented methodology.The graphical data model-

ing language of information engineering is virtually iden-

tical to ours. Data modeling is covered in Volumes I and II.

Reingruber, Michael, and William Gregory. The Data Modeling

Handbook. New York: John Wiley & Sons, 1994. This is an

excellent book on data modeling and is particularly helpful

in ensuring the quality and accuracy of data models.

Schlaer, Sally, and Stephen J. Mellor. Object-Oriented Systems

Analysis: Modeling the World in Data. Englewood Cliffs,

NJ:Yourdon Press, 1988. Forget the title! “Object-oriented”

means something different today than it did in 1988, but

the book is still one of the easiest-to-read books on the

subject of data modeling.

Teorey, Toby J. Database Modeling & Design: The Funda-

mental Principles, 2nd ed. San Francisco: Morgan Kauf-

man Publishers, 1994. This book is somewhat more

conceptual than the others in the list, but it provides

useful insights into the practice of data modeling.

Suggested Readings

Data Modeling and Analysis Chapter Eight 313

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M AT E R I A L S

O P E R AT I O N A L S Y S T E M P O S T - A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

F
E

A
S

IB
IL

IT
Y

 A
N

A
LY

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
LY

S
IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION
SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE
SOLUTIONS

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e

a
rc

h
 O

b
s
e

rv
a

tio
n

 Q
u

e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T

S
Y

S
T

E
M

O
W

N
E

R
S

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 B
U

IL
D

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

9Process Modeling

Chapter Preview and Objectives

In this chapter you will learn how to draw data flow diagrams, a popular process model

that documents a system’s processes and their data flows. You will know process

modeling as a systems analysis tool when you can:

❚ Define systems modeling and differentiate between logical and physical system

models.

❚ Define process modeling and explain its benefits.

❚ Recognize and understand the basic concepts and constructs of a process model.

❚ Read and interpret a data flow diagram.

❚ Explain when to construct process models and where to store them.

❚ Construct a context diagram to illustrate a system’s interfaces with its environment.

❚ Identify use cases and external and temporal business events for a system.

❚ Perform event partitioning and organize events in a functional decomposition diagram.

❚ Draw event diagrams and then merge those event diagrams into system diagrams.

❚ Draw primitive data flow diagrams and describe the elementary data flows and

processes in terms of data structures and procedural logic (Structured English and

decision tables), respectively.

❚ Document the distribution of processes to locations.

❚ Synchronize data and process models using a CRUD matrix.

316 Part Two Systems Analysis Methods

model a pictorial represen-

tation of reality.

logical model a nontechni-

cal pictorial representation

that depicts what a system

is or does. Synonyms are

essential model, conceptual

model, and business model.

physical model a technical

pictorial representation that

depicts what a system is or

does and how the system is

implemented. Synonyms are

implementation model and

technical model.

Introduction

Bob Martinez has been working on the SoundStage Member Services system for sev-
eral weeks. He understands the system pretty well, but it is still easy to get confused
and to forget details.

“The problem,” Bob said to his boss, Sandra Shepherd,“is that the system is too
big to keep it all in your head at one time.”

“I’m glad you said that,” Sandra answered, “because your next assignment is to
break the system down into parts that you can get your head around. Each part is
called a process, and you’ll need to define the inputs and outputs to that process plus
who or what each input and output comes from or goes to. And, by the way, you’ll
need to specify the logic for the process.”

“I thought the use cases did all that,” Bob replied.
“They aren’t specific enough,” Sandra stated. “Would you like to turn a project

over to a programmer located across the country with no more specifics than what a
use case has? Who knows what you’d end up with? Welcome to the world of process
modeling, Bob. Get to work.”

An Introduction to Process Modeling

In Chapter 5 you were introduced to systems analysis activities that called for draw-
ing system models. System models play an important role in system development. As
a systems analyst or user, you will constantly deal with unstructured problems. One
way to structure such problems is to draw models. A model is a representation of
reality. Just as a picture is worth a thousand words, most system models are pictorial
representations of reality. Models can be built for existing systems as a way to better
understand those systems or for proposed systems as a way to document business
requirements or technical designs. An important concept is the distinction between
logical and physical models.

Logical models show what a system is or does. They are implementation-
independent; that is, they depict the system independent of any technical implemen-
tation. As such, logical models illustrate the essence of the system. Popular synonyms
include essential model, conceptual model, and business model. Physical models

show not only what a system is or does but also how the system is physically and
technically implemented. They are implementation-dependent because they reflect
technology choices and the limitations of those technology choices. Synonyms
include implementation model and technical model.

Systems analysts have long recognized the value of separating business and tech-
nical concerns. That is why they use logical system models to depict business re-
quirements and physical system models to depict technical designs. Systems analysis
activities tend to focus on the logical system models for the following reasons:

• Logical models remove biases that are the result of the way the current sys-
tem is implemented or the way that any one person thinks the system might
be implemented. Thus, we overcome the “we’ve always done it that way”
syndrome. Consequently, logical models encourage creativity.

• Logical models reduce the risk of missing business requirements because we
are too preoccupied with technical details. Such errors can be costly to cor-
rect after the system is implemented. By separating what the system must do
from how the system will do it, we can better analyze the requirements for
completeness, accuracy, and consistency.

• Logical models allow us to communicate with end users in nontechnical or
less technical languages. Thus, we don’t lose requirements in the technical
jargon of the computing discipline.

In this chapter we will focus exclusively on logical process modeling during sys-
tems analysis. Process modeling is a technique for organizing and documenting the
structure and flow of data through a system’s PROCESSES and/or the logic, policies, and
procedures to be implemented by a system’s PROCESSES. In the context of information
system building blocks (see the home page at the beginning of the chapter), logical

process models are used to document an information system’s PROCESS focus from the
system owners’ and users’ perspective (the intersection of the PROCESS column with
the system owner and system user rows). Also notice that one special type of process
model, called a context diagram, illustrates the COMMUNICATION focus from the system
owners’ and users’ perspective.

Process modeling originated in classical software engineering methods; there-
fore, you may have encountered various types of process models such as program
structure charts, logic flowcharts, or decision tables in an application program-
ming course. In this chapter, we’ll focus on a systems analysis process model, data

flow diagrams.

A data flow diagram (DFD) is a tool that depicts the flow of data through a sys-
tem and the work or processing performed by that system. Synonyms include bubble

chart, transformation graph, and process model. We’ll also introduce a DFD planning
tool called decomposition diagrams. Finally, we’ll also study context diagrams, a
processlike model that actually illustrates a system’s interfaces to the business and
outside world, including other information systems.1

A simple data flow diagram is illustrated in Figure 9-1. In the design phase, some
of these business processes might be implemented as computer software (either
built in-house or purchased from a software vendor). If you examine this data flow
diagram, you should find it easy to read, even before you complete this chapter—
that has always been the advantage of DFDs. There are only three symbols and one
connection:

• The rounded rectangles represent processes or work to be done. Notice
that they are illustrated in the PROCESS color from your information system
framework.

• The squares represent external agents—the boundary of the system. Notice
that they are illustrated in the INTERFACE color from your information system
framework.

• The open-ended boxes represent data stores, sometimes called files or data-
bases. If you have already read Chapter 8, these data stores correspond to all
instances of a single entity in a data model. Accordingly, they have been illus-
trated with the DATA color from your information systems framework.

• The arrows represent data flows, or inputs and outputs, to and from the
processes.

There is sometimes a tendency to confuse data flow diagrams with flowcharts be-
cause program design frequently involves the use of flowcharts. However, data flow
diagrams are very different. Let’s summarize the differences.

• Processes on a data flow diagram can operate in parallel. Thus, several
processes might be executing or working simultaneously. This is consistent
with the way businesses work. On the other hand, processes on flowcharts
can execute only one at a time.

• Data flow diagrams show the flow of data through the system. Their arrows
represent paths down which data can flow. Looping and branching are not
typically shown. On the other hand, flowcharts show the sequence of processes
or operations in an algorithm or program. Their arrows represent pointers to
the next process or operation. This may include looping and branching.

Process Modeling Chapter Nine 317

process modeling a

technique used to organize

and document a system’s

processes.

data flow diagram (DFD)
a process model used to

depict the flow of data through

a system and the work or

processing performed by the

system. Synonyms are bubble

chart, transformation graph,

and process model.

1In classic structured analysis, context diagrams are considered to be another type of process model. But in object-

oriented analysis, they illustrate scope and interfaces. In this edition, we have chosen the latter definition.

Author’s Note: there are

several competing symbol

sets for DFDs. Throughout

this chapter, the authors have

chosen to use the Gane and

Sarson notation because of

its wide popularity.

F I G U R E 9 - 1 A Simple Data Flow Diagram

Reconcile

Account

Balances

Pay

a

Bill

Withdraw

Funds from

an Account

Deposit Funds

into an

Account

Bank

Creditor

Employer

Other

Income

Source

Bank

Account

Transactions

Bank Accounts

Account

Transactions

Bill

Payment

Monthly

Statement

Account

Balance

Transaction

Prior Monthly

Statement

New or Modified

Monthly Statement

Credit

Pay

Reimbursement

Withdraw or Transfer

Deposit

Payment

Credit

Current

Balance

Debit

Monthly Account

Statements

* Data store duplicated only to prevent crossing lines

318 Part Two Systems Analysis Methods

• Data flow diagrams can show processes that have dramatically different tim-
ing. For example, a single DFD might include processes that happen hourly,
daily, weekly, yearly, and on demand. This doesn’t happen in flowcharts.

Data flow diagrams have been popular for more than 20 years, but the interest in
DFDs has been recently renewed because of their applicability in business process

redesign (BPR). As businesses have come to realize that most data processing systems
have merely automated outdated, inefficient, and bureaucratic business processes,
there is renewed interest in streamlining the business processes.This is accomplished
by first modeling the business processes for the purpose of analyzing, redesigning,
and/or improving them. Subsequently, information technology can be applied to the
improved business processes in creative ways that maximize the value returned to the
business. We’ll revisit this trend at the end of the chapter.

System Concepts for Process Modeling

> External Agents

All information systems respond to events and conditions in the system’s environ-
ment. The environment of an information system includes external agents that form
the boundary of the system and define places where the system interfaces with its en-
vironment. An external agent defines a person, an organization unit, another system,
or another organization that lies outside the scope of the project but that interacts
with the system being studied. External agents provide the net inputs into a system
and receive net outputs from a system. A common synonym is external entity (not to
be confused with data entity as introduced in Chapter 8).

The term external means “external to the system being analyzed or designed.” In
practice, an external agent may actually be outside of the business (such as govern-
ment agencies, customers, suppliers, and contractors), or it may be inside the business
but outside the project and system scope (such as other departments, other business
functions, and other internal information systems). An external agent is represented
by a square on the data flow diagram.The DeMarco/Yourdon equivalent is a rectangle
(see margin).

It is important to recognize that work and activities are occurring inside the
external agent, but that work and those activities are said to be “out of scope” and not
subject to change. Thus, the data flows between your system and these boundaries
should not cause substantive change to the work or activities performed by the
external agents.

The external agents of an information system are rarely fixed. As project scope
and goals change, the scope of an information system can either grow or shrink. If the
system scope grows, it can consume some of the original external agents—in other
words, what was once considered outside the system is now considered inside the
system (as new processes).

Similarly, if the system scope shrinks (because of budget or schedule constraints),
processes that were once considered to be inside the system may become external
agents.

External agents on a logical data flow diagram may include people, business units,
other internal systems with which a system must interact, and external organizations.
Their inclusion on the logical DFD means that your system interacts with these
agents.They are almost always one of the following:

• An office, department, division, or individual within your company that pro-
vides net inputs to that system, receives net outputs from that system, or both.

• An organization, agency, or individual that is outside your company but that
provides net inputs to, or receives net outputs from, your system. Examples
include CUSTOMERS, SUPPLIERS, CONTRACTORS, BANKS, and GOVERNMENT AGENCIES.

Process Modeling Chapter Nine 319

external agent an outside

person, organization unit, sys-

tem, or organization that inter-

acts with a system. Also called

external entity.

External

Agent

Gane and Sarson shape

External

Agent

DeMarco/Yourdon shape

External Agent
Symbols

• Another business or information system—possibly, though not necessarily,
computer-based—that is separate from your system but with which your
system must interface. It is becoming common to interface information sys-
tems with those of other businesses.

• A system’s end users or managers. In this case, the user or manager is either
a net source of data to be input to a system and/or a net destination of out-
puts to be produced by a system.

External agents should be named with descriptive, singular nouns, such as REGIS-
TRAR, SUPPLIER, MANUFACTURING SYSTEM, or FINANCIAL INFORMATION SYSTEM. External agents
represent fixed, physical systems; therefore, they can have physical names or
acronyms—even on a logical DFD. For example, an external agent representing our
school’s financial management information system would be called FMIS. If an external
agent describes an individual, we recommend job titles or role names instead of
proper names (for example, use ACCOUNT CLERK, not Mary Jacobs).

To avoid crossing data flow lines on a DFD, it is permissible to duplicate external
agents on DFDs. But as a general rule, external agents should be located on the
perimeters of the page, consistent with their definition as a system boundary.

> Data Stores

Most information systems capture data for later use. The data is kept in a data store,
the last symbol on a data flow diagram. It is represented by the open-end box (see
margin). A data store is an “inventory” of data. Synonyms include file and database

(although those terms are too implementation-oriented for essential process model-
ing). If data flows are data in motion, think of data stores as data at rest.

Ideally, essential data stores should describe “things” about which the business
wants to store data.These things include:

Persons: AGENCY, CONTRACTOR, CUSTOMER, DEPARTMENT, DIVISION, EMPLOYEE, INSTRUCTOR,
OFFICE, STUDENT, SUPPLIER. Notice that a person entity can represent either
individuals, groups, or organizations.

Places: SALES REGION, BUILDING, ROOM, BRANCH OFFICE, CAMPUS.
Objects: BOOK, MACHINE, PART, PRODUCT, RAW MATERIAL, SOFTWARE LICENSE, SOFTWARE

PACKAGE,TOOL,VEHICLE MODEL,VEHICLE. An object entity can represent actual
objects (such as SOFTWARE LICENSE) or specifications for a type of object (such
as SOFTWARE PACKAGE).

Events: APPLICATION,AWARD, CANCELLATION, CLASS, FLIGHT, INVOICE, ORDER, REGISTRATION,
RENEWAL, REQUISITION, RESERVATION, SALE,TRIP.

Concepts: ACCOUNT, BLOCK OF TIME, BOND, COURSE, FUND, QUALIFICATION, STOCK.

NOTE: If the above list looks familiar, it should: A data store represents all occur-

rences of a data entity—defined in Chapter 8 as something about which we want
to store data. As such, the data store represents the synchronization of a system’s
process model with its data model.

If data modeling is done before process modeling, identification of most data
stores is simplified by the following rule:

There should be one data store for each data entity on an entity relationship dia-
gram. (We even include associative and weak entity data stores on our models.)

If, on the other hand, process modeling is done before data modeling, data store
discovery tends to be more arbitrary. In that case, our best recommendation is to iden-
tify existing implementations of files or data stores (e.g., computer files and databases,
file cabinets, record books, catalogs) and then rename them to reflect the logical
“things” about which they store data. Consistent with information engineering strate-
gies, we recommend that data models precede the process models.

Generally, data stores should be named as the plural of the corresponding data
model entity. Thus, if the data model includes an entity named CUSTOMER, the process

320 Part Two Systems Analysis Methods

data store stored data

intended for later use.

Synonyms are file and

database.

Data Store

Gane and Sarson shape

DeMarco/Yourdon shape

Data Store

Data Store Symbols

F I G U R E 9 - 2

The Classic Process
Model of a System

The System's Environment

(constantly changing)

The

System as

a Process

input

input

input

output

output

output

Feedback and

Control Loop

models will include a data store named CUSTOMERS. This makes sense because the data
store, by definition, stores all instances of the entity. Avoid physical terms such as file,

database, file cabinet, file folder, and the like.
As was the case with boundaries, it is permissible to duplicate data stores on a

DFD to avoid crossing data flow lines. Duplication should be minimized.

> Process Concepts

Recall from Chapter 2 that a fundamental building block of information systems is
PROCESSES. All information systems include processes—usually many of them. Information
system processes respond to business events and conditions and transform DATA (another
building block) into useful information. Modeling processes helps us to understand
interactions with the system’s environment, other systems, and other processes.

A System Is a Process We have used the word system throughout this book to de-
scribe almost any orderly arrangement of ideas or constructs. People speak of educa-
tional systems, computer systems, management systems, business systems, and, of
course, information systems. In the oldest and simplest of all system models, a system
is a process.

In systems analysis, models are used to view or present a system. As shown in
Figure 9-2, the simplest process model of a system is based on inputs, outputs, and the
system itself—viewed as a process. The process symbol defines the boundary of the
system.The system is inside the boundary; the environment is outside that boundary.
The system exchanges inputs and outputs with its environment. Because the envi-
ronment is always changing, well-designed systems have a feedback and control loop
to allow the system to adapt itself to changing conditions.

Consider a business as a system. It operates within an environment that includes
customers, suppliers, competitors, other industries, and the government. Its inputs
include materials, services, new employees, new equipment, facilities, money, and
orders (to name but a few). Its outputs include products and/or services, waste

Process Modeling Chapter Nine 321

Process name

Gane & Sarson shape;

used throughout

this book

materials, retired equipment, former employees, and money (payments). It monitors
its environment to make necessary changes to its product line, services, operating
procedures, competitors, and the economy.

A rounded rectangle (the Gane and Sarson notation) is used throughout this chap-
ter to represent a process (see margin). A process is work performed on, or in re-
sponse to, incoming data flows or conditions. A synonym is transform. Different
process modeling notations use a circle (the DeMarco/Yourdon notation) or a rectan-
gle (the SSADM/IDEF0 notation).The choice is often dependent on your methodology
and CASE tool features.

Although processes can be performed by people, departments, robots, machines,
or computers, we once again want to focus on what work or action is being per-
formed (the logical process), not on who or what is doing that work or activity (the
physical process). For instance, in Figure 9-1 we included the logical process WITH-
DRAW FUNDS FROM AN ACCOUNT. We did not indicate how this would be done. Intuitively,
we can think of several physical implementations such as using an ATM, using a
bank’s drive-through service, or actually going inside the bank.

Process Decomposition A complex system is usually too difficult to fully under-
stand when viewed as a whole (meaning as a single process). Therefore, in systems
analysis we separate a system into its component subsystems, which are decomposed
into smaller subsystems, until we have identified manageable subsets of the overall
system (see Figure 9-3).We call this technique decomposition. Decomposition is the
act of breaking a system into its component subsystems, processes, and subprocesses.
Each level of abstraction reveals more or less detail (as desired) about the overall sys-
tem or a subset of that system. You have already applied decomposition in various
ways. Most of you have outlined a term paper—this is a form of decomposition. Many
of you have partitioned a medium- to large-size computer program into subprograms
that could be developed and tested independently before they are integrated. This is
also decomposition.

In systems analysis, decomposition allows you to partition a system into logical
subsystems of processes for improved communication, analysis, and design. A dia-
gram similar to Figure 9-3 can be a little difficult to construct when dealing with all

322 Part Two Systems Analysis Methods

process work performed

by a system in response to

incoming data flows or condi-

tions. A synonym is transform.

F I G U R E 9 - 3

A System Consists
of Many
Subsystems and
Processes

decomposition the act of

breaking a system into sub-

components.

0

The System

1

A Function of the System

2

Another Function of the System

Task 1.1.3

Task 1.1.1 Task 1.1.2

1.1

Activity of the Function

Task 1.2.2

Task 1.2.1

1.2

Another Activity of the Function

Task 2.2.3

Task 2.2.1 Task 2.2.2

Task 2.1.3 Task 2.1.4

Task 2.1.1 Task 2.1.2

2.1

Activity of this Function

2.2

Another Activity of this Function

but the smallest of systems. Figure 9-4 demonstrates an alternative layout that is
supported by many CASE tools and development methodologies. It is called a
decomposition diagram. We’ll use it extensively in this chapter. A decomposition

diagram, also called a hierarchy chart, shows the top-down functional decompo-
sition and structure of a system. A decomposition diagram is essentially a planning

Process Modeling Chapter Nine 323

F I G U R E 9 - 4 A Decomposition Diagram (for Figure 9-3)

decomposition diagram
a tool used to depict the

decomposition of a system.

Also called hierarchy chart.

0

The System

1

A Function

2

Another

Function

1.1

Activity of the

Function

1.2

Another Activity

of the Function

Task 1.2 .2

Task 2.1 .1Task 1.1 .1

Task 1.1 .2

Task 1.1 .3

Task 1.2 .1

2.2

Another Activity

of This Function

2.1

Activity of This

Function

Task 2.1 .2

Task 2.1 .3

Task 2.1 .4

Task 2.2 .1

Task 2.2 .2

Task 2.2 .3

tool for more detailed process models, namely, data flow diagrams. The following
rules apply:

• Each process in a decomposition diagram is either a parent process, a child

process (of a parent), or both.
• A parent must have two or more children—a single child does not make

sense because that would not reveal any additional detail about the system.
• In most decomposition diagramming standards, a child may have only one

parent.
• Finally, a child of one parent may be the parent of its own children.

The upper and lower halves of the decomposition diagram in Figure 9-4 demon-
strate two styles for laying out the processes and connections. You may use either or
both as necessary to present an uncluttered model. Some models may require multi-
ple pages for maximum clarity.

The connections on a decomposition diagram do not contain arrowheads be-
cause the diagram is meant to show structure, not flow. Also, the connections are not
named. Implicitly they all have the same name—CONSISTS OF—since the sum of the
child processes for a parent process equals the parent process.

Logical Processes and Conventions Logical processes are work or actions that
must be performed no matter how you implement the system. Each logical process
is (or will be) implemented as one or more physical processes that may include
work performed by people, work performed by robots or machines, or work per-
formed by computer software. It doesn’t matter which implementation is used,
however, because logical processes should only indicate that there is work that
must be done.

Naming conventions for logical processes depend on where the process is in the
decomposition diagram/data flow diagram and the type of process depicted. There
are three types of logical processes: functions, events, and elementary processes.

A function is a set of related and ongoing activities of the business. A function
has no start or end; it just continuously performs its work as needed. For example, a
manufacturing system may include the following functions (subsystems): PRODUCTION

PLANNING, PRODUCTION SCHEDULING, MATERIALS MANAGEMENT, PRODUCTION CONTROL, QUALITY

MANAGEMENT, and INVENTORY CONTROL. Each of these functions may consist of dozens or
hundreds of more discrete processes to support specific activities and tasks. Function
names are nouns that describe the entire function. Additional examples are ORDER

ENTRY, ORDER MANAGEMENT, SALES REPORTING, CUSTOMER RELATIONS, and RETURNS AND REFUNDS.
An event is a logical unit of work that must be completed as a whole. An event is

triggered by a discrete input and is completed when the process has responded with
appropriate outputs. Events are sometimes called transactions. Functions consist of
processes that respond to events. For example, the MATERIALS MANAGEMENT function may
respond to the following events: TEST MATERIAL QUALITY, STOCK NEW MATERIALS, DISPOSE OF

DAMAGED MATERIALS, DISPOSE OF SPOILED MATERIALS, REQUISITION MATERIALS FOR PRODUCTION,
RETURN UNUSED MATERIALS FROM PRODUCTION,ORDER NEW MATERIALS, and so on. Each of these
events has a trigger and response that can be defined by its inputs and outputs.

Using modern structured analysis techniques such as those advocated by
McMenamin, Palmer,Yourdon, and the Robertsons (see the Suggested Readings at the
end of the chapter), analysts decompose system functions into business events. Each
business event is represented by a single process that will respond to that event.
Event process names tend to be very general. We will adopt the convention of nam-
ing event processes as follows: PROCESS , RESPOND TO , or
GENERATE , where the blank would be the name of the event (or its cor-
responding input). Sample event process names are PROCESS CUSTOMER ORDER, PROCESS

CUSTOMER ORDER CHANGE, PROCESS CUSTOMER CHANGE OF ADDRESS, RESPOND TO CUSTOMER

COMPLAINT,RESPOND TO ORDER INQUIRY,RESPOND TO PRODUCT PRICE CHECK,GENERATE BACK-ORDER

REPORT, GENERATE CUSTOMER ACCOUNT STATEMENT, and GENERATE INVOICE.

324 Part Two Systems Analysis Methods

function a set of related

and ongoing activities of a

business.

event a logical unit of work

that must by completed as a

whole. Sometimes called a

transaction.

An event process can be further decomposed into elementary processes that
illustrate in detail how the system must respond to an event. Elementary processes

are discrete, detailed activities or tasks required to complete the response to an event.
In other words, they are the lowest level of detail depicted in a process model. A com-
mon synonym is primitive process. Elementary processes should be named with
a strong action verb followed by an object clause that describes what the work is
performed on (or for). Examples of elementary process names are VALIDATE CUSTOMER

IDENTIFICATION, VALIDATE ORDERED PRODUCT NUMBER, CHECK PRODUCT AVAILABILITY, CALCULATE

ORDER COST, CHECK CUSTOMER CREDIT, SORT BACK ORDERS, GET CUSTOMER ADDRESS, UPDATE

CUSTOMER ADDRESS,ADD NEW CUSTOMER, and DELETE CUSTOMER.
Logical process models omit any processes that do nothing more than move or

route data, thus leaving the data unchanged. Thus, you should omit any process that
corresponds to a secretary or clerk receiving and simply forwarding a variety of
documents to the next processing location. In the end, you should be left only with
logical processes that:

• Perform computations (calculate grade point average).
• Make decisions (determine availability of ordered products).
• Sort, filter, or otherwise summarize data (identify overdue invoices).
• Organize data into useful information (generate a report or answer a

question).
• Trigger other processes (turn on the furnace or instruct a robot).
• Use stored data (create, read, update, or delete a record).

Be careful to avoid three common mechanical errors with processes (illustrated
in Figure 9-5):

• Process 3.1.2 has inputs but no outputs. We call this a black hole because
data enters the process and then disappears. In most cases, the modeler
simply forgot the output.

• Process 3.1.3 has outputs but no input. In this case, the input flows were
likely forgotten.

• In Process 3.1.1 the inputs are insufficient to produce the output. We call this a
gray hole. There are several possible causes, including (1) a misnamed process,
(2) misnamed inputs and/or outputs, or (3) incomplete facts. Gray holes are the
most common errors—and the most embarrassing. Once handed to a program-
mer, the input data flows to a process (to be implemented as a program) must
be sufficient to produce the output data flows.

> Data Flows

Processes respond to inputs and generate outputs. Thus, at a minimum, all processes
have at least one input and one output data flow. Data flows are the communications
between processes and the system’s environment. Let’s examine some of the basic
concepts and conventions of data flows.

Data in Motion A data flow is data in motion. The flow of data between a system
and its environment or between two processes inside a system is communication.

Let’s study this form of communication.
A data flow represents an input of data to a process or the output of data (or in-

formation) from a process. A data flow is also used to represent the creation, reading,
deletion, or updating of data in a file or database (called a data store on the DFD).
Think of a data flow as a highway down which packets of known composition travel.
The name implies what type of data may travel down that highway. This highway is
depicted as a solid line with arrow (see margin).

The packet concept is critical. Data that should travel together should be shown
as a single data flow, no matter how many physical documents might be included.The

Process Modeling Chapter Nine 325

elementary process
discrete, detailed activity or

task required to complete the

response to an event. Also

called primitive process.

data flow data that is input

or output to or from a process.

Data flow name

Data Flow Symbol

packet concept is illustrated in Figure 9-6, which shows the correct and incorrect
ways to show a logical data flow packet.

The known composition concept is equally important. A data flow is composed
of either actual data attributes (also called data structures—more about them later)
or other data flows. A composite data flow is a data flow that consists of other data
flows. They are used to combine similar data flows on high-level data flow diagrams

326 Part Two Systems Analysis Methods

F I G U R E 9 - 5 Common Errors on Data Flow Diagrams

composite data flow a

data flow that consists of other

data flows.

F I G U R E 9 - 6

The Data Flow
Packet Concept

3.1.2

Create a new

member account

3.1.1

Generate an

employee bank

statement

3.1.3

Freeze member

account number

Accounts

Receivable

Department

Employee

Member Accounts Employees

Existing account

New account status

Employee

status

Frozen account notification

Employee address

Bank statement

Membership

application

This process has

no inputs.

This process has

no outputs.

Where will the

accounting data come from?

Telephone

Service

Provider

Pay

phone

bill

Itemized

calls

and

invoice

Itemized calls

Invoice

Correct use of the

packet concept

Incorrect use of

the packet concept

F I G U R E 9 - 7 Composite and Elementary Data Flows

(b) More Detailed DFD

(a) High-Level DFD

Process

orderCustomer
...Order

Accepted

Order

Process

order

Customer

Process

standard

order

Order

Standing

Order

Standard

Order
...

...
Accepted

Standing

Order

Process

rush

order

Rush

Order
...

Accepted

Rush

Order

Accepted

Standard

Order

standing

to make those diagrams easier to read. For example, in Figure 9-7(a), a high-level
DFD consolidates all types of orders into a composite data flow called ORDER. In
Figure 9-7(b), a more detailed data flow diagram shows specific types of orders:
STANDING ORDER, RUSH ORDER, and STANDARD ORDER. These different orders require some-
what different processing. (The small, black circle is called a junction. It indicates that
any given ORDER is an instance of only one of the order types.)

Another common use of composite data flows is to consolidate all reports and
inquiry responses into one or two composite flows. There are two reasons for this.
First, these outputs can be quite numerous. Second, many modern systems provide
extensive user-defined reports and inquiries that cannot be predicted before the
system’s implementation and use.

Some data flow diagramming methods also recognize nondata flows called con-

trol flows. A control flow represents a condition or nondata event that triggers a
process.Think of it as a condition to be monitored while the system works.When the
system realizes that the condition meets some predetermined state, the process to

Process Modeling Chapter Nine 327

control flow a condition or

nondata event that triggers a

process.

Control Flow
Symbol

Control flow name which it is input is started. The classic information system example is time. For
example, a report generation process may be triggered by the temporal event END-OF-
MONTH. In real-time systems, control flows often represent real-time conditions such
as TEMPERATURE and ALTITUDE. In most methodologies that distinguish between data and
control flows, the control flow is depicted as a dashed line with arrow (see margin).

Typically, information systems analysts have dealt mostly with data flows; how-
ever, as information systems become more integrated with real-time systems (such as
manufacturing processes and computer-integrated manufacturing), the need to
distinguish the concept of control flows becomes necessary.

Logical Data Flows and Conventions While we recognize that data flows can be
implemented a number of ways (e.g., telephone calls, business forms, bar codes,
memos, reports, computer screens, and computer-to-computer communications), we
are interested only in logical data flows. Thus, we are only interested that the flow is
needed (not how we will implement that flow). Data flow names should discourage
premature commitment to any possible implementation.

Data flow names should be descriptive nouns and noun phrases that are singular,
as opposed to plural (ORDER—not ORDERS). We do not want to imply that occurrences
of the flow must be implemented as a physical batch.

Data flow names also should be unique. Use adjectives and adverbs to help to de-
scribe how processing has changed a data flow. For example, if an input to a process
is named ORDER, the output should not be named ORDER. It might be named VALID

ORDER, APPROVED ORDER, ORDER WITH VALID PRODUCTS, ORDER WITH APPROVED CREDIT, or any
other more descriptive name that reflects what the process did to the original order.

Logical data flows to and from data stores require special naming considerations
(see Figure 9-8). (Data store names are plural, and the numbered bullets match the
note to the figure.)

• Only the net data flow is shown. Intuitively, you may realize that you have to
get a record to update it or delete it. But unless data is needed for some
other purpose (e.g., a calculation or decision), the “read” action is not shown.
This keeps the diagram uncluttered.

A data flow from a data store to a process indicates that data is to be “read”
for some specific purpose. The data flow name should clearly indicate what
data is to be read. This is shown in Figure 9-8.
A data flow from a process to a data store indicates that data is to be created,
deleted, or updated in/from that data store. Again, as shown in Figure 9-8, these
data flows should be clearly named to reflect the specific action performed
(such as NEW CUSTOMER, CUSTOMER TO BE DELETED, or UPDATED ORDER ADDRESS).

Notice that the names suggest the classic actions that can be performed on a file,
namely, CREATE, READ, UPDATE, and DELETE (CRUD). In a real DFD, we would not actually
record these action names on the diagram.

No data flow should never go unnamed. Unnamed data flows are frequently the re-
sult of flowchart thinking (step 1, step 2, etc.). If you can’t give the data flow a reason-
able name, it probably does not exist. Consistent with our goal of logical modeling, data
flow names should describe the data flow without describing how the flow is or could
be implemented. Suppose, for example, that end users explain their system as follows:
“We fill out Form 23 in triplicate and send it to . . .” The logical name for the “Form 23”
data flow might be COURSE REQUEST. This logical name eliminates physical, implementation
biases—the idea that we must use a paper form and the notion that we must use carbon
copies. Ultimately, this will free us to consider other physical alternatives such as Touch-
Tone phone responses, online registration screens, or even e-business Internet pages.

Finally, all data flows must begin and/or end at a process because data flows are
the inputs and outputs of a process. Consequently, all the data flows on the left side
of Figure 9-9 are illegal.The corrected diagrams are shown on the right side.

2

1

328 Part Two Systems Analysis Methods

2

2

2

1

Orders

Process

Order

Cancel

Order

Change

Order

Address

Summarize

Unfilled

Orders

Order Canceled Order

Change of Address

New

Order

Address

Unfilled

Order

New

Order

Order

to Be

Deleted

Summary of

Unfilled Orders

“create”

“delete”

“update”

“read”

Data Flow Conservation For many years we have tried to improve business
processes by automating them. It hasn’t always worked or worked well because the
business processes were designed to process data flows in a precomputing era. Con-
sider the average business form. It is common to see the form divided into sections
that are designed for different audiences.The first recipient completes his part of the
form, the next recipient completes her part, and so forth. At certain points in this pro-
cessing sequence, a copy of the form might even be detached and sent to another re-
cipient who initializes a new multiple-part form that requires transcribing much of
the same data from the initial form. In our own university, we’ve seen examples where
poor form design requires that the same data be typed a dozen times.

Now, if the flow of current data is computerized based on the current business
forms and processes, the resulting computer programs will merely automate these in-
efficiencies.This is precisely what has happened in most businesses! Today, a new em-
phasis on business process redesign encourages management, users, and systems
analysts to identify and eliminate these inefficiencies before designing any new infor-
mation system. We can support this trend in logical data flow diagrams by practicing
data conservation. Data conservation, sometimes called “starving the processes,”
requires that a data flow contain only the data that is truly needed by the receiving
process. By ensuring that processes receive only as much data as they really need, we
simplify the interface between those processes. To practice data conservation, we
must precisely define the data composition of each (noncomposite) data flow. Data
composition is expressed in the form of data structures.

Process Modeling Chapter Nine 329

F I G U R E 9 - 8

Data Flows to and
from Data Stores

data conservation the

practice of ensuring that a

data flow contains only data

needed by the receiving

process.

F I G U R E 9 - 9 Illegal Data Flows

DS1

DS2

DS1

B1 B2 B1 B1

B1 B1

B1 B1

DS2

a process is

needed to

exchange data

flows between

a process is

needed to

update (or

use) a data

store

a process is

needed to

present data

from a data

store

a process is

needed to

move data

from one data

store to

another

DS1

Illegal

data

flows

Corrected

data

flows

external

agents

DS1DS1

DS1

Data Structures Ultimately, a data flow contains data items called attributes. A data

attribute is the smallest piece of data that has meaning to the end users and the busi-
ness. (This definition also applies to attributes as they were presented in Chapter 8.)
Sample attributes for the data flow ORDER might include ORDER NUMBER, ORDER DATE,
CUSTOMER NUMBER, SHIPPING ADDRESS (which consists of attributes such as STREET ADDRESS,
CITY, and ZIP CODE), ORDERED PRODUCT NUMBERS, QUANTITY(ies) ORDERED, and so on. Notice
that some attributes occur once for each instance of ORDER, while others may occur
several times for a single instance of ORDER.

The data attributes that comprise a data flow are organized into data structures.

Data flows can be described in terms of the following types of data structures:

• A sequence or group of data attributes that occur one after another.
• The selection of one or more attributes from a set of attributes.
• The repetition of one or more attributes.

The most common data structure notation is a Boolean algebraic notation that is
required by many CASE tools. Other CASE tools and methodologies support proprietary,

330 Part Two Systems Analysis Methods

data attribute the smallest

piece of data that has meaning

to the users and the business.

data structure a specific

arrangement of data attributes

that define a single instance

of a data flow.

F I G U R E 9 - 1 0 A Data Structure for a Data Flow

Data Structure English Interpretation

ORDER

ORDER NUMBER

ORDER DATE

[PERSONAL CUSTOMER NUMBER,

CORPORATE ACCOUNT NUMBER]

SHIPPING ADDRESS ADDRESS

(BILLING ADDRESS ADDRESS)

1 {PRODUCT NUMBER

PRODUCT DESCRIPTION

QUANTITY ORDERED

PRODUCT PRICE

PRODUCT PRICE SOURCE

EXTENDED PRICE} N

SUM OF EXTENDED PRICES

PREPAID AMOUNT

(CREDIT CARD NUMBER EXPIRATION DATE)

(QUOTE NUMBER)

ADDRESS

(POST OFFICE BOX NUMBER)

STREET ADDRESS

CITY

[STATE MUNICIPALITY]

(COUNTRY)

POSTAL CODE

An instance of ORDER consists of:

ORDER NUMBER and

ORDER DATE and

Either PERSONAL CUSTOMER NUMBER

or CORPORATE ACCOUNT NUMBER

and SHIPPING ADDRESS (which is equivalent
to ADDRESS)

and optionally: BILLING ADDRESS (which is
equivalent to ADDRESS)

and one or more instances of:

PRODUCT NUMBER and

PRODUCT DESCRIPTION and

QUANTITY ORDERED and

PRODUCT PRICE and

PRODUCT PRICE SOURCE and

EXTENDED PRICE

and SUM OF EXTENDED PRICES and

PREPAID AMOUNT and

optionally: both CREDIT CARD NUMBER and

EXPIRATION DATE

and optionally: QUOTE NUMBER

An instance of ADDRESS consists of:

optionally: POST OFFICE BOX NUMBER and

STREET ADDRESS and

CITY and

Either STATE OR MUNICIPALITY

and optionally: COUNTRY

and POSTAL CODE

but essentially equivalent, notations. A sample data structure for the data flow ORDER is
presented in Figure 9-10.This algebraic notation uses the following symbols:

 Means “consists of” or “is composed of.”
 Means “and” and designates sequence.

[. . .] Means “only one of the attributes within the brackets may be present”—
designates selection. The attributes in the brackets are separated by
commas.

{. . .} Means that the attributes in the braces may occur many times for one
instance of the data flow—designates repetition. The attributes inside the
braces are separated by commas.

(. . .) Means the attribute(s) in the parentheses are optional—no value—for
some instances of the data flow.

In our experience, all data flows can be described in terms of these fundamental
constructs. Figure 9-11 demonstrates each of the fundamental constructs using exam-
ples. Returning to Figure 9-10, notice that the constructs are combined to describe the
data content of the data flow.

Process Modeling Chapter Nine 331

332

F
I
G

U
R

E

9

-
1

1
D

at
a

S
tr

u
ct

u
re

 C
o

n
st

ru
ct

s

Fo
rm

a
t

b
y
 E

x
a
m

p
le

E
n
g
li
sh

 I
n
te

rp
re

ta
ti
o
n

D
a
ta

 S
tr

u
ct

u
re

(r
el

ev
an

t p
or

tio
n

is
b
o
ld

fa
ce

d
)

(r
el

ev
an

t p
or

tio
n

is
 b

o
ld

fa
ce

d
)

S
e
q
u
e
n
ce

 o
f

A
tt

ri
b
u
te

s—
Th

e
se

qu
en

ce
 d

at
a

st
ru

ct
ur

e
in

di
ca

te
s

on
e

or
 m

or
e

at
tr

ib
ut

es
 th

at
 m

ay
(o

r
m

us
t)

be
 in

cl
ud

ed
 in

 a
 d

at
a

flo
w

.

S
e
le

ct
io

n
 o

f
A

tt
ri

b
u
te

s—
Th

e
se

le
ct

io
n

da
ta

 s
tr

uc
tu

re
al

lo
w

s
yo

u
to

 s
ho

w
 s

itu
at

io
ns

 w
he

re
 d

iff
er

en
t s

et
s

of
at

tr
ib

ut
es

 d
es

cr
ib

e
di

ffe
re

nt
 in

st
an

ce
s

of
 th

e
da

ta
 fl

ow
.

R
e
p
e
ti
ti
o
n
 o

f
A

tt
ri

b
u
te

s—
Th

e
re

pe
tit

io
n

da
ta

 s
tru

ct
ur

e
is

 u
se

d
to

 s
et

 o
ff

a
da

ta
 a

ttr
ib

ut
e

or
 g

ro
up

 o
f d

at
a

at
tri

bu
te

s
th

at
 m

ay
 (o

r
m

us
t)

re
pe

at
 th

em
se

lv
es

 a
 s

pe
ci

fie
d

nu
m

be
r

of
tim

es
 fo

r
a

si
ng

le
 in

st
an

ce
 o

f t
he

 d
at

a
flo

w
.

Th
e

m
in

im
um

 n
um

be
r

of
 r

ep
et

iti
on

s
is

 u
su

al
ly

 z
er

o
or

on
e. Th

e
m

ax
im

um
 n

um
be

r
of

 r
ep

et
iti

on
s

m
ay

 b
e

sp
ec

ifi
ed

as
 “

n”
 m

ea
ni

ng
 “

m
an

y”
 w

he
re

 th
e

ac
tu

al
 n

um
be

r
of

in
st

an
ce

s
va

ri
es

 fo
r

ea
ch

 in
st

an
ce

 o
f t

he
 d

at
a

flo
w

.

O
p
ti
o
n
a
l
A

tt
ri

b
u
te

s—
Th

e
op

tio
na

l n
ot

at
io

n
in

di
ca

te
s

th
at

 a
n

at
tr

ib
ut

e,
 o

r
gr

ou
p

of
 a

ttr
ib

ut
es

 in
 a

 s
eq

ue
nc

e
or

se
le

ct
io

n
da

ta
 s

tr
uc

tu
re

m
ay

 n
ot

 b
e

in
cl

ud
ed

 in
 a

ll
in

st
an

ce
s

of
 a

 d
at

a
flo

w
.

N
ot

e:
 F

or
 th

e
re

pe
tit

io
n

da
ta

 s
tru

ct
ur

e,
 a

 m
in

im
um

 o
f “

ze
ro

”
is

 th
e

sa
m

e
as

 m
ak

in
g

th
e

en
tir

e
re

pe
at

in
g

gr
ou

p
“o

pt
io

na
l.”

R
e
u
sa

b
le

 A
tt

ri
b
u
te

s—
Fo

r
gr

ou
ps

 o
f a

ttr
ib

ut
es

 th
at

 a
re

co
nt

ai
ne

d
in

 m
an

y
da

ta
 fl

ow
s,

 it
 is

 d
es

ir
ab

le
 to

 c
re

at
e

a
se

pa
ra

te
 d

at
a

st
ru

ct
ur

e
th

at
 c

an
 b

e
re

us
ed

 in
 o

th
er

 d
at

a
st

ru
ct

ur
es

.

W
A

G
E

A
N

D
TA

X
ST

A
TE

M
EN

T

TA
X

P
A
Y

ER
ID

EN
TI

FI
C
A

TI
O

N
N

U
M

B
ER

TA
X

P
A
Y

E
R

N
A

M
E

TA
X

P
A
Y

E
R

A
D

D
R
E
S
S

W
A

G
E
S
,

TI
P
S
,

A
N

D
C
O

M
P
E
N

S
A

TI
O

N

FE
D

E
R
A

L
TA

X
W

IT
H

H
E
LD

.
.
.

O
RD

ER

(P
E
R
S
O

N
A

L
C
U

S
TO

M
E
R

N
U

M
B
E
R
,

C
O

R
P
O

R
A

TE
A

C
C
O

U
N

T
N

U
M

B
E
R
)

O
RD

ER
D

A
TE

.
.
.

C
LA

IM
 PO

LI
C

Y
N

U
M

BE
R

PO
LI

C
YH

O
LD

ER
N

A
M

E

PO
LI

C
YH

O
LD

ER
A

D
D

RE
SS

0
 {

D
E
P
E
N

D
E
N

T
N

A
M

E

D
E
P
E
N

D
E
N

T’
S

R
E
LA

TI
O

N
S
H

IP
}

N

1
 {

E
X

P
E
N

S
E

D
E
S
C
R
IP

TI
O

N

S
E
R
V

IC
E

P
R
O

V
ID

E
R

E
X

P
E
N

S
E

A
M

O
U

N
T}

 N

C
LA

IM
 PO

LI
C

Y
N

U
M

BE
R

PO
LI

C
YH

O
LD

ER
N

A
M

E

PO
LI

C
YH

O
LD

ER
A

D
D

RE
SS

(S
P
O

U
S
E

N
A

M
E

D
A

TE
O

F
B
IR

TH
)

.
.
.

D
A

TE
 M

O
N

TH

D
A

Y

YE
A

R

A
n

in
st

an
ce

 o
f W

A
G

E
A

N
D

TA
X

ST
A

TE
M

EN
T

co
ns

is
ts

 o
f:

TA
X

P
A
Y

E
R

ID
E
N

TI
FI

C
A

TI
O

N
N

U
M

B
E
R

a
n
d

TA
X

P
A
Y

E
R

N
A

M
E

a
n
d

TA
X

P
A
Y

E
R

A
D

D
R
E
S
S

a
n
d

W
A

G
E
S
,

TI
P
S
,

A
N

D
C
O

M
P
E
N

S
A

TI
O

N
a
n
d

FE
D

E
R
A

L
TA

X
W

IT
H

H
E
LD

a
n
d
 .
 .
 .

A
n

in
st

an
ce

 o
f O

RD
ER

co
ns

is
ts

 o
f:

E
it
h
e
r

P
E
R
S
O

N
A

L
C
U

S
TO

M
E
R

N
U

M
B
E
R

o
r

C
O

R
P
O

R
A

TE
A

C
C
O

U
N

T
N

U
M

B
E
R
;

an
d

O
RD

ER
D

A
TE

an
d

.
.
.

A
n

in
st

an
ce

 o
f C

LA
IM

co
ns

is
ts

 o
f:

PO
LI

C
Y

N
U

M
BE

R
an

d
PO

LI
C

YH
O

LD
ER

N
A

M
E

an
d

PO
LI

C
YH

O
LD

ER
A

D
D

RE
SS

an
d

z
e
ro

 o
r

m
o
re

 i
n
st

a
n
ce

s
o
f:

D
E
P
E
N

D
E
N

T
N

A
M

E
a
n
d

D
E
P
E
N

D
E
N

T’
S

R
E
LA

TI
O

N
S
H

IP
a
n
d

o
n
e
 o

r
m

o
re

 i
n
st

a
n
ce

s
o
f:

E
X

P
E
N

S
E

D
E
S
C
R
IP

TI
O

N
a
n
d

S
E
R
V

IC
E

P
R
O

V
ID

E
R

a
n
d

E
X

P
E
N

S
E

A
C
C
O

U
N

T

A
n

in
st

an
ce

 o
f C

LA
IM

co
ns

is
ts

 o
f:

PO
LI

C
Y

N
U

M
BE

R
an

d
PO

LI
C

YH
O

LD
ER

N
A

M
E

an
d

PO
LI

C
YH

O
LD

ER
A

D
D

RE
SS

an
d

o
p
ti
o
n
a
ll
y,

S
P
O

U
S
E

N
A

M
E

a
n
d

D
A

TE
O

F
B
IR

TH
a
n
d
 .
 .
 .

Th
en

,
th

e
re

us
ab

le
 s

tr
uc

tu
re

s
ca

n
be

 in
cl

ud
ed

 in
 o

th
er

 d
at

a
flo

w
 s

tr
uc

tu
re

s
as

 fo
llo

w
s:

O
RD

ER

O
RD

ER
N

U
M

BE
R

.
.
.

D
A

TE

IN
V

O
IC

E

IN
V

O
IC

E
N

U
M

BE
R

.
.
.

D
A

TE

PA
YM

EN
T

C
U

ST
O

M
ER

N
U

M
BE

R
.
.
.

D
A

TE

2

33

1

2

1

3 Process

data flow A

data flow B

data flow C

converging

data flow

A + B + C

data flow D

data flow E

data flow F

converging

data flow

D or E or F

diverging

data flow

U + V + W

diverging

data flow

X or Y or Z

data flow U

data flow V

data flow W

data flow X

data flow Y

data flow Z

data flow H

data flow J

data flow R

data flow T

data flow I data flow S3

F I G U R E 9 - 1 2 Diverging and Converging Data Flows

The importance of defining the data structures for every data flow should be
apparent—you are defining the business data requirements for each input and output!
These requirements must be determined before any process could be implemented as
a computer program.This standard notation provides a simple but effective means for
communicating between end users and programmers.

Domains An attribute is a piece of data. In analyzing a system, it makes sense that
we should define those values for an attribute that are legitimate, or that make sense.
The values for each attribute are defined in terms of two properties: data type and do-
main. The data type for an attribute defines what class of data can be stored in that
attribute, whereas the domain of an attribute defines what values an attribute can le-
gitimately take on.The concepts of data type and domain were introduced in Chapter
8. See that discussion and Tables 8-1 and 8-2 for a more complete description of data
type and domain.

Divergent and Convergent Flows It is sometimes useful to depict diverging or
converging data flows on a data flow diagram. A diverging data flow is one that
splits into multiple data flows. Diverging data flows indicate that all or parts of a sin-
gle data flow are routed to different destinations.2 A converging data flow is the
merger of multiple data flows into a single data flow. Converging data flows indicate
that data flows from different sources can (must) come together as a single packet for
subsequent processing.

Diverging and converging data flows are depicted as shown in Figure 9-12. Notice
that we do not include a process to “route” the flows. The flows simply diverge from

Process Modeling Chapter Nine 333

2Some experts suggest that diverging data flows should be used only when all data in the flow is routed to all destina-

tions. We prefer the classic DeMarco definition that allows all or parts of the flow to be routed to different processes.

data type a class of data

that can be stored in an

attribute.

domain the legitimate val-

ues for an attribute.

diverging data flow a

data flow that splits into multi-

ple data flows.

converging data flow the

merger of multiple data flows

into a single data flow.

or converge to a common flow. The following notations, not supported by all CASE
tools, are used in this book:

The small square junction means “and.” This means that each time the process
is performed, it must input (or output) all the diverging or converging data
flows. (Some DFD notations simply place a between the data flows.)

The small black junction means “exclusive or.” This means that each time the
process is performed, it must input (or output) only one of the diverging or
converging data flows. (Some DFD notations simply place an * between the

data flows.)

In the absence of one diverging or converging data flow, the reader should
assume an “inclusive or.” This means that each time the process is performed,
it may input any or all of the depicted data flows.

With the above rules, the most complex of business process and data flow combina-
tions can be depicted.

3

2

1

334 Part Two Systems Analysis Methods

The Process of Logical Process Modeling

Now that you understand the basic concepts of process models, we can examine
building a process model. When do you do it? How many process models may be
drawn? What technology exists to support the development of process models?

> Strategic Systems Planning

Many organizations select application development projects based on strategic infor-
mation system plans. Strategic planning is a separate project that produces an
information systems strategy plan that defines an overall vision and architecture for
information systems. This architecture frequently includes an enterprise process

model. (The plan usually has other architectural components that are not important
to this discussion.)

An enterprise process model typically identifies only business areas and functions.
Events and detailed processes are rarely examined. Business areas and functions are
identified and mapped to other enterprise models such as the enterprise data model
(Chapter 8). Business areas and functions are subsequently prioritized into application
development projects. Priorities are usually based on which business areas, functions,
and supporting applications will return the most value to the business as a whole.

An enterprise process model is stored in a corporate repository. Subsequently, as
application development projects are started, subsets of the enterprise process model
are exported to the project teams to serve as a starting point for building more
detailed process models (including data flow diagrams). Once the project team
completes systems analysis and design, the expanded and refined process models are
returned to the corporate repository.

> Process Modeling for Business Process Redesign

Business process redesign (BPR) has been discussed several times in this book and
chapter. Recall that BPR projects analyze business processes and then redesign them
to eliminate inefficiencies and bureaucracies before any (re)application of informa-
tion technology. To redesign business processes, we must first study the existing
processes. Process models play an integral role in BPR.

Each BPR methodology recommends its own process model notations and docu-
mentation. Most of the models are a cross between data flow diagrams and flow-
charts.The diagrams tend to be very physical because the BPR team is trying to isolate
the implementation idiosyncrasies that cause inefficiency and reduce value. BPR data

flow diagrams/flowcharts may include new symbols and information to illustrate tim-
ing, throughput, delays, costs, and value. Given this additional data, the BPR team then
attempts to simplify the processes and data flows in an effort to maximize efficiency
and return the most value to the organization.

Opportunities for the efficient use of information technology may also be
recorded on the physical diagrams. If so, the BPR diagram becomes an input to
systems analysis (described next).

> Process Modeling during Systems Analysis

In systems analysis and in this chapter, we focus exclusively on logical process
modeling as a part of business requirements analysis. In your information system
framework, logical process models have a process focus and a SYSTEM OWNER and/or
SYSTEM USER perspective. They are typically constructed as deliverables of the re-
quirements analysis phase of a project. While logical process models are not con-
cerned with implementation details or technology, they may be constructed
(through reverse engineering) from existing application software, but this tech-
nology is much less mature and reliable than the corresponding reverse data engi-
neering technology.

In the heyday of the original structured analysis methodologies, process mod-
eling was also performed in the problem analysis phase of systems analysis. Ana-
lysts would build a physical process model of the current system, a logical model

of the current system, and a logical model of the target system. Each model would
be built top-down—from very general models to very detailed models. While con-
ceptually sound, this approach led to modeling overkill and significant project de-
lays, so much so that even structured techniques guru Ed Yourdon called it
“analysis paralysis.”

Today, most modern structured analysis strategies focus exclusively on the logical

model of the target system being developed. Instead of being built either top-down
or bottom-up, they are organized according to a commonsense strategy called event

partitioning. Event partitioning factors a system into subsystems based on business
events and responses to those events.This strategy for event-driven process modeling
is illustrated in Figure 9-13 and described as follows:

A system context data flow diagram is constructed to establish initial project
scope. This simple, one-page data flow diagram shows only the system’s main
interfaces with its environment.
A functional decomposition diagram is drawn to partition the system
into logical subsystems and/or functions. (This step is omitted for very small
systems.)
An event-response or use-case list is compiled to identify and confirm the
business events to which the system must provide a response. The list will
also describe the required or possible responses to each event.
One process, called an event handler, is added to the decomposition diagram
for each event. The decomposition diagram now serves as the outline for the
system.
Optionally, an event diagram is constructed and validated for each event.
This simple data flow diagram shows only the event handler and the inputs
and outputs for each event.
One or more system diagrams are constructed by merging the event
diagrams. These data flow diagrams show the “big picture” of the system.
Primitive diagrams are constructed for event processes that require
additional processing details. These data flow diagrams show all the elemen-
tary processes, data stores, and data flows for single events. The logic of
each elementary process and the data structure of each elementary data
flow are described using the tools described earlier in the chapter.

9

8

7

6

5

4

3

2

1

Process Modeling Chapter Nine 335

event partitioning a struc-

tured analysis strategy in

which a system is factored

into subsystems based on

business events and re-

sponses to those events.

context data flow
diagram a diagram that

shows the system as a “black

box” and its main interfaces

with its environment.

functional
decomposition diagram
a diagram that partitions the

system into logical subsystems

and/or functions.

event-response list a list

of the business events to

which the system must pro-

vide a response similar to a

use-case list.

event handler a process

that handles a given event in

the event-response list.

event diagram a data flow

diagram for a single event

handler and the agents and

data stores that provide inputs

or receive outputs.

system diagram a data

flow diagram that merges

event diagrams for the entire

system or part of the system.

primitive diagram a data

flow diagram that depicts the

elementary processes, data

stores, and data flows for a

single event.

F I G U R E 9 - 1 3 Event-Driven Process Modeling Strategy

31

7

6

5

4

2

. . .

. . .

.

Task

2.2

Task

2.1
Task

2.4

Task

2.3

Use Cases List

event 1 response

event 2 response

event 3 response

event 4 response

 ...

response

response

response

. . .

The

System

The

System

Function 1 Function n

Event 1 Event 2 Event 3 Event 4 Event 5 Event n-2 Event n-1 Event n

Function 2

Event 1 Event 5 Event n

Event 3

Event 4

Event n-2

Event n-1

Event 2

Event n

Event 5

Event 1

Structured

English and/or

Decision Table

Data

Structure

8

9

Context DFD

Decomposition Diagram

Event Diagram Event Diagram Event Diagram

System Diagram

Primitive Diagram

The above process models collectively document all the business processing require-
ments for a system. We’ll demonstrate the technique in our SoundStage case study.

The logical process model from systems analysis describes business processing
requirements of the system, not technical solutions. Recall from Chapter 5 that the
purpose of the decision analysis phase is to determine the best way to implement

336 Part Two Systems Analysis Methods

those requirements with technology. In practice, this decision may have already been
standardized as part of an application architecture. For example, the SoundStage
application architecture requires that the development team first determine if an
acceptable system can be purchased. If not, the current application architecture
specifies that software built in-house be written in either Microsoft’s Visual Basic

.NET or C#.

> Looking Ahead to Systems Design

During system design, the logical process model will be transformed into a physical
process model (called an application schema) for the chosen technical architecture.
This model will reflect the technical capabilities and limitations of the chosen tech-
nology. Any further discussion of physical process/application design is deferred until
Chapter 13.

> Fact-Finding and Information Gathering
for Process Modeling

Process models cannot be constructed without appropriate facts and information as
supplied by the user community. These facts can be collected through a number of
techniques such as sampling of existing forms and files, research of similar systems,
surveys of users and management, and interviews of users and management. The
fastest method of collecting facts and information and simultaneously constructing
and verifying the process models is joint requirements planning (JRP). JRP uses a
carefully facilitated group meeting to collect the facts, build the models, and verify the
models—usually in one or two full-day sessions.

Fact-finding, information gathering, and JRP techniques were explored in Chapter 6.

> Computer-Aided Systems Engineering (CASE)
for Process Modeling

Like all system models, process models are stored in the repository. Computer-aided sys-
tems engineering (CASE) technology, introduced in Chapter 3, provides the repository
for storing the process model and its detailed descriptions. Most CASE products support
computer-assisted process modeling. Most support decomposition diagrams and data
flow diagrams. Some support extensions for business process analysis and redesign.

Using a CASE product, you can easily create professional, readable process mod-
els without using paper, pencil, eraser, and templates.The models can be easily modi-
fied to reflect corrections and changes suggested by end users. Also, most CASE
products provide powerful analytical tools that can check your models for mechani-
cal errors, completeness, and consistency. Some CASE products can even help you an-
alyze the data model for consistency, completeness, and flexibility.The potential time
savings and quality are substantial.

CASE tools do have their limitations. Not all process model conventions are sup-
ported by all CASE products. Therefore, any given CASE product may force the com-
pany to adapt its methodology’s process modeling symbols or approach so that it is
workable within the limitations of its CASE tool.

All the SoundStage process models in the next section of this chapter were cre-
ated with Popkin’s CASE tool, System Architect 2001. For the case study, we provide
you with the printouts exactly as they came off our printers.We did not add color.The
only modifications by the artist were the occasional bullets that call your attention to
specific items of interest on the printouts. All the processes, data flows, data stores,
and boundaries on the SoundStage process models were automatically cataloged into
System Architect’s project repository (which it calls an encyclopedia). Figure 9-14
illustrates some of System Architect’s screens as used for data modeling.

Process Modeling Chapter Nine 337

F I G U R E 9 - 1 4 CASE for Process Modeling (using System Architect 2001 by Popkin
Software & Systems)

338 Part Two Systems Analysis Methods

How to Construct Process Models

As a systems analyst or knowledgeable end user, you must learn how to draw de-
composition and data flow diagrams to model business process requirements. We
will use the SoundStage Entertainment Club project to teach you how to draw these
process models.

Let’s assume the preliminary investigation and problem analysis phases of the
project have been completed and the project team understands the current system’s
strengths, weaknesses, limitations, problems, opportunities, and constraints.The team
has also already built the data model (in Chapter 8) to document business data re-
quirements for the new system. Team members will now build the corresponding
process models.

> The Context Data Flow Diagram

First, we need to document the initial project scope. All projects have scope. A
project’s scope defines what aspect of the business a system or application is supposed

to support and how the system being modeled must interact with other systems and
the business as a whole. In your information system framework, scope is defined as
the COMMUNICATION focus from the SYSTEM OWNERS’ perspective. It is documented with
a context data flow diagram. Because the scope of any project is always subject
to change, the context diagram is also subject to constant change. A synonym is
environmental model [Yourdon, 1990].

We suggest the following strategy for documenting the system’s boundary and
scope:

1. Think of the system as a container in order to distinguish the inside from the
outside. Ignore the inner workings of the container.This is sometimes called
“black box” thinking.

2. Ask your end users what business transactions a system must respond to.These
are the net inputs to the system. For each net input, determine its source.
Sources will become external agents on the context data flow diagram.

3. Ask your end users what responses must be produced by the system.These are
the net outputs to the system. For each net output, determine its destination.
Destinations will also become external agents. Requirements for reports and
queries can quickly clutter the diagram. Consider consolidating them into
composite data flows.

4. Identify any external data stores. Many systems require access to the files or
databases of other systems.They may use the data in those files or databases.
Sometimes they may update certain data in those files and databases. But
generally, they are not permitted to change the structure of those files and
databases—therefore, they are outside the project scope.

5. Draw a context diagram from all of the preceding information.

If you try to include all the inputs and outputs between a system and the rest of
the business and outside world, a typical context data flow diagram might show as
many as 50 or more data flows. Such a diagram would have little, if any, communica-
tion value. Therefore, we suggest you show only those data flows that represent the
main objective or most important inputs and outputs of the system. Defer less
common data flows to more detailed DFDs to be drawn later.

The context data flow diagram contains one and only one process (see
Figure 9-15). Sometimes, this process is identified by the number “0”; however, our
CASE tool did not allow this. External agents are drawn around the perimeter. Data
flows define the interactions of your system with the boundaries and with the
external data stores.

As shown in the context data flow diagram, the main purpose of the system is to
process NEW SUBSCRIPTIONS in response to SUBSCRIPTION OFFERS, create NEW PROMOTIONS for
products, and respond to MEMBER ORDERS by sending PACKING ORDERS to the warehouse
to be filled. (Notice that we made all data flow names singular.) Management has also
emphasized the need for VARIOUS REPORTS. Finally, the Web extensions to this system
require that the system provide members with VARIOUS INQUIRY RESPONSES regarding
orders and accounts.

> The Functional Decomposition Diagram

Recall that a decomposition diagram shows the top-down functional decomposition
or structure of a system. It also provides us with the beginnings of an outline for draw-
ing our data flow diagrams.

Figure 9-16 on page 341 is the functional decomposition diagram for the Sound-
Stage project. Let’s study this diagram. First, notice that the processes are depicted as
rectangles, not rounded rectangles.This is merely a limitation of our CASE tool’s imple-
mentation of decomposition diagrams—you also may have to adapt to your CASE tool.

Process Modeling Chapter Nine 339

context data flow
diagram a process model

used to document the scope

for a system. Also called

environmental model.

The following is an item-by-item discussion of the decomposition diagram. The
circled numbers correspond to specific points of interest on the diagram.

The root process corresponds to the entire system.
The system is initially factored into subsystems and/or functions. These sub-
systems and functions do not necessarily correspond to organization units on
an organization chart. Increasingly, analysts and users are being asked to
ignore organizational boundaries and to build cross-functional systems that
streamline processing and data sharing.
We like to separate the operational and reporting aspects of a system. Thus,
we factored each subsystem accordingly. Later, if this structure doesn’t make
sense, we can change it.

Larger systems might have first been factored into subsystems and functions.
There is no limit to the number of child processes for a parent process. Many authors
used to recommend a maximum of five to nine processes per parent, but any such limit
is too artificial. Instead, structure the system such that it makes sense for the business!

Factoring a parent process into a single child process doesn’t make sense. It
would provide no additional detail. Therefore, if a process is to be factored, it should
be factored into at least two child processes.

3

2

1

340 Part Two Systems Analysis Methods

F I G U R E 9 - 1 5 The Context Data Flow Diagram (created with System Architect 2001)

1

2 2 2

3 3 3

> The Event-Response or Use-Case List

After constructing the decomposition diagram, we next determine what business
events the system must respond to and what responses are appropriate. Events are
not hard to find. Some of the inputs on the context diagram are associated with
events, but the context diagram rarely shows all the events. Essentially, there are three
types of events:

• External events are so named because they are initiated by external agents.
When these events happen, an input data flow occurs for the system. For
example, the event CUSTOMER PLACES A NEW ORDER is recognized in the form of
the input data flow ORDER from the external agent CUSTOMER.

• Temporal events trigger processes on the basis of time, or something that
merely happens. When these events happen, an input control flow occurs.
Examples of temporal events include TIME TO REMIND CUSTOMERS TO PAY PAST

INVOICES or END OF MONTH.
• State events trigger processes based on a system’s change from one state or

condition to another. Like temporal events, state events will be illustrated as
an input control flow.

Information systems usually respond mostly to external and temporal events. State
events are usually associated with real-time systems such as elevator or robot control.

Process Modeling Chapter Nine 341

F I G U R E 9 - 1 6 A Functional Decomposition Diagram (created with System Architect 2001)

One of the more popular and successful approaches for finding and identifying
events and responses is a technique called use cases (Chapter 7) developed by
Dr. Ivar Jacobson. This technique is rooted in object-oriented analysis but is easily
adapted to structured analysis and data flow diagramming. Use-case analysis is the
process of identifying and modeling business events, who initiated them, and how the
system responds to them.

Use cases identify and describe necessary system processes from the perspective
of users. Each use case is initiated by users or external systems called actors. An actor
is anything that needs to interact with the system to exchange information and so is
analogous to external agents in DFDs.

The context data flow diagram identifies the key actors as external agents. It also
identifies some of the use cases. The key word is “some.” Recall that the context dia-
gram shows only the main inputs and outputs of a system. There are almost always
more inputs and outputs than are depicted—usually many more. Some of the inputs
and outputs depicted are really composites of many types of and variations on those
inputs and outputs (e.g., the “various reports” on our context diagram). Also, the con-
text diagram may not illustrate the many exception inputs and outputs such as errors,
inquiries, and follow-ups.

One way to expand the use cases is to interview the external agents (actors)
depicted on the diagram. The agents can (1) identify the events (use cases) for
which they believe the system may have to provide a response and (2) identify
other actors (new external agents) that were not originally shown on the context
diagram.

Another way to identify use cases (events) is to study the data model, assuming a
data model was developed before drawing data flow diagrams, and study the life his-
tory of each entity on that data model. Instances of these entities must be created, up-
dated, and eventually deleted. Events or use cases trigger these actions on the entity.
It is not difficult to get users talking about the events that could create, update, and
delete entity instances. After all, they live these events daily. This approach was used
to build the use-case list for the SoundStage project.

A partial table of use cases is illustrated in Figure 9-17 (pages 343–344). For each
use case, you will find:

• The actor that initiates the event (which will become an external agent on
our DFDs).

• The event (which will be handled by a process on our DFDs).
• The input or trigger (which will become a data or control flow on our

DFDs).
• All outputs and responses (which will also become data flows on our DFDs).

Notice that we used parentheses to denote temporal events.
• Outputs (but be careful not to imply implementation). When we used the

term report we were not necessarily implying a paper-based document.
Notice that our responses include changes to stored data about entities from
the data model. These include create new instances of the entity, update
existing instances of the entity, and delete instances of the entity.

The number of use cases for a system is usually quite large.This is necessary to en-
sure that the system designers build a complete system that will respond to all the busi-
ness events. As a final step, consider assigning each event to one of the subsystems and
functions identified in the decomposition diagram (drawn in the previous step).

> Event Decomposition Diagrams

To further partition our functions in the decomposition diagram, we simply add event
handling processes (one per use case) to the decomposition (see Figure 9-18 on
page 345). If the entire decomposition diagram will not fit on a single page, add
separate pages for subsystems or functions. The root process on a subsequent page

342 Part Two Systems Analysis Methods

use case an analysis tool for

finding and identifying busi-

ness events and responses.

F I G U R E 9 - 1 7 A Partial Use-Case Table

Actor/External Agent Event (or Use Case) Trigger Responses

Marketing

Marketing

Marketing

(time)

Marketing

Member

Member

Accounts Receivable

Generate SUBSCRIPTION

PLAN CONFIRMATION.

Create AGREEMENT in the
database.

Generate SUBSCRIPTION

PLAN CONFIRMATION.

Create AGREEMENT in the
database.

Generate AGREEMENT

CHANGE CONFIRMATION.

Update AGREEMENT in the
database.

Generate AGREEMENT

CHANGE CONFIRMATION.

Logically Delete (void)
AGREEMENT in the
database.

Generate AGREEMENT

CHANGE CONFIRMATION.

Logically Delete (void)
AGREEMENT in the
database.

Generate MEMBER

DIRECTORY UPDATE

CONFIRMATION.

Create MEMBER in the
database.

Create first MEMBER

ORDER and MEMBER

ORDERED PRODUCTS in the
database.

Generate MEMBER

DIRECTORY UPDATE

CONFIRMATION.

Update MEMBER in the
database.

Generate CREDIT

DIRECTORY UPDATE

CONFIRMATION.

Update MEMBER in the
database.

Establishes a new
membership subscription
plan to entice new
members.

Establishes a new
membership resubscrip-
tion plan to lure back
former members.

Changes a subscription
plan for current members
(e.g., extending the
fulfillment period).

A subscription plan
expires.

Cancels a subscription plan
before its planned
expiration date.

Joins the club by
subscribing. (“Take any 12
CDs for one penny
and agree to buy 4 more
at regular prices within two
years.”)

Changes address
(including e-mail and
privacy code).

Changes member’s credit
status.

NEW MEMBER

SUBSCRIPTION PROGRAM

PAST MEMBER

RESUBSCRIPTION

PROGRAM

SUBSCRIPTION PLAN

CHANGE

(current date)

SUBSCRIPTION PLAN

CANCELLATION

NEW SUBSCRIPTION

CHANGE OF ADDRESS

CHANGE OF CREDIT

STATUS

Process Modeling Chapter Nine 343

F I G U R E 9 - 1 7 (Concluded)

Actor/External Agent Event (or Use Case) Trigger Responses

(time)

Member

Member

Member

Member

(time)

Member

(each) Club

Generate CATALOG

CHANGE CONFIRMATION.

Logically Delete
(deactivate) PRODUCT

in the database.

Generate CATALOG

DESCRIPTION.

Generate MEMBER ORDER

CONFIRMATION.

Create MEMBER ORDER

and MEMBER ORDERED

PRODUCT in the
database.

Generate MEMBER ORDER

CONFIRMATION.

Update MEMBER ORDER

and/or MEMBER ORDERED

PRODUCTS in the
database.

Generate MEMBER ORDER

CONFIRMATION.

Logically Delete MEMBER

ORDER and MEMBER

ORDERED PRODUCTS in the
database.

Physically Delete MEMBER

ORDER and MEMBER

ORDERED PRODUCTS in the
database.

Generate MEMBER

PURCHASE HISTORY.

Generate MONTHLY SALES

ANALYSIS.

Generate MONTHLY

MEMBER AGREEMENT

EXCEPTION ANALYSIS.

Generate MEMBERSHIP

ANALYSIS REPORT.

90 days after Marketing
decides to no longer sell a
product.

Wants to pick products for
possible purchase. (Logical
requirement is driven by
vision of Web-based
access to information.)

Places order.

Revises order.

Cancels order.

90 days after the order.

Inquires about his or her
purchase history (three-year
time limit).

(end of month).

(current date)

PRODUCT INQUIRY

NEW MEMBER ORDER

MEMBER ORDER

CHANGE REQUEST

MEMBER ORDER

CANCELLATION

(current date)

MEMBER PURCHASE

INQUIRY

(current date)

344 Part Two Systems Analysis Methods

F I G U R E 9 - 1 8 A Partial Event Decomposition Diagram (created with System Architect 2001)

should be duplicated from an earlier page to provide a cross-reference. Figure 9-18
shows only the event processes for the MEMBERSHIPS subsystem. Events for the PROMO-
TIONS and ORDERS functions would be on separate pages.

There is no need to factor the decomposition diagram beyond the events and
reports. That would be like outlining down to the final paragraphs or sentences in a
paper. The decomposition diagram, as constructed, will serve as a good outline for
the later data flow diagrams.

> Event Diagrams

Using our decomposition diagram as an outline, we can draw one event diagram for
each event process. This is an optional, but useful, step. An event diagram is a con-
text diagram for a single event. It shows the inputs, outputs, and data store interac-
tions for the event. By drawing an event diagram for each process, users do not
become overwhelmed by the overall size of the system. They can examine each use
case as its own context diagram.

Before drawing any event diagrams, you may find it helpful to have a list of all the
data stores available. Because SoundStage already completed the data model for this
project, team members simply created a list of each entity name on that data model

Process Modeling Chapter Nine 345

event diagram a data flow

diagram that depicts the con-

text for a single event.

(see margin). It is useful to review the definition and attributes for each entity/data
store on the list.

Most event diagrams contain a single process—the same process that was named
to handle the event on the decomposition diagram. For each event, illustrate the
following:

• The inputs and their sources. Sources are depicted as external agents. The
data structure for each input should be recorded in the repository.

• The outputs and their destinations. Destinations are depicted as external agents.
The data structure for each output should be recorded in the repository.

• Any data stores from which records must be “read” should be added to the
event diagram. Data flows should be added and named to reflect what data is
read by the process.

• Any data stores in which records must be created, deleted, or updated should
be included in the event diagram. Data flows to the data stores should be
named to reflect the nature of the update.

The simplicity of event diagramming makes the technique a powerful communication
tool between users and technical professionals.

A complete set of event diagrams for the SoundStage case study would double the
length of this chapter without adding substantive educational value. Thus, we will
demonstrate the model with three simple examples.

Figure 9-19 illustrates a simple event diagram for an external event. Most systems
have many such simple event diagrams because all systems must provide for routine
maintenance of data stores.

Figure 9-20 depicts a somewhat more complex external event, one for the busi-
ness transaction MEMBER ORDER. Notice that business transactions tend to use and up-
date more data stores and have more interactions with external agents.

Can an event diagram have more than one process on it? The answer is maybe.
Some event processes may trigger other event processes. In this case, the combina-
tion of events should be shown on a single event diagram. In our experience, most
event diagrams have one process. An occasional event diagram may have two or per-
haps three processes. If the number of processes exceeds three, you are probably
drawing what is called an activity diagram (prematurely), not an event diagram—in
other words, you’re getting too involved with details. Most event processes do not di-
rectly communicate with one another. Instead, they communicate across shared data
stores. This allows each event process to do its job without worrying about other
processes keeping up.

Figure 9-21 on page 348 shows an event diagram for a temporal event. We added
an external entity CALENDAR or TIME to serve as a source for this control flow.

346 Part Two Systems Analysis Methods

DATA STORES
(ENTITIES)

AGREEMENTS

MEMBERS

MEMBER ORDERS

MEMBER ORDERED PRODUCTS

PRODUCTS

PROMOTIONS

TITLE PROMOTIONS

F I G U R E 9 - 1 9 A Simple External Event Diagram (created with System Architect 2001)

Each event process should be described to the CASE repository with the follow-
ing properties:

• Event sentence—for business perspective.
• Throughput requirements—the volume of inputs per some time period.
• Response time requirements—how fast the typical event must be handled.
• Security, audit, and control requirements.
• Archival requirements (from a business perspective).

For example, consider the event diagram in Figure 9-19: “A member submits a
change of address.”

• Occurs 25 times per month.
• Should be processed within 15 days.
• Must protect privacy of addresses unless the member authorizes release.
• Should retain a semipermanent record of some type.

All the above properties can be added to the descriptions associated with the appro-
priate processes, data flows, and data stores on the model.

> The System Diagram(s)

The event diagrams serve as a meaningful context to help users validate the accuracy
of each event to which the system must provide a response. But these events do not

Process Modeling Chapter Nine 347

F I G U R E 9 - 2 0 A More Complex External Event Diagram (created with System Architect 2001)

exist in isolation. They collectively define systems and subsystems. It is, therefore,
useful to construct one or more system diagrams that show all the events in the
system or a subsystem.

The system diagram is said to be “exploded” from the single process that we cre-
ated on the original context diagram (Figure 9-15). The system diagram shows either
(1) all the events for the system on a single diagram or (2) all the events for a single
subsystem on a single diagram. Depending on the size of the system, a single diagram
may be too large.

While the SoundStage project is moderate in size, it still responds to too many
events to squeeze all those processes onto a single diagram. Instead, Bob Martinez
elected to draw a subsystem diagram for each of the major subsystems. Figure 9-22
(pages 350–351) shows the subsystem diagram for the ORDERS SUBSYSTEM. It consoli-
dates all the transaction and report-writing events for that subsystem onto a single
diagram. (The reporting events may be omitted or consolidated into composites if the
diagram is too cluttered.) Notice that the system diagram demonstrates how event
processes communicate using shared data stores.

If necessary, and after drawing the four subsystem diagrams for this project, Bob
could have drawn a system diagram that illustrates only the interactions between
those four subsystems.This is a relic of the original top-down data flow diagramming
strategy of the original structured analysis methodology. In practice, this higher-level
diagram requires so much consolidation of data flows and data stores that its com-
munication value is questionable.To Bob, this was busywork, and his time was better
spent on the next set of data flow diagrams.

We now have a set of event diagrams (one per business event) and one or more
system/subsystem diagrams.The event diagram processes are merged into the system
diagrams. It is very important that each of the data flows, data stores, and external
agents that were illustrated on the event diagrams be represented on the system dia-
grams. Notice that we duplicate data stores and external agents to minimize crossing
of lines. Most CASE tools include facilities to check for balancing errors.

Before we leave this topic, we should introduce the concept of balancing.
Balancing is the synchronizing of data flow diagrams at different levels of detail to
preserve consistency and completeness of the models. Balancing is a quality assurance
technique. Balancing requires that, if you explode a process to another DFD to reveal

348 Part Two Systems Analysis Methods

F I G U R E 9 - 2 1 A Temporal Event Diagram (created with System Architect 2001)

balancing a concept that

requires that data flow dia-

grams at different levels of

detail reflect consistency and

completeness.

Process Modeling Chapter Nine 349

more detail, you must include the same data flows and data stores on the child diagram
that you included in the parent diagram’s original process (or their logical equivalents).

> Primitive Diagrams

Some event processes on the system diagram may be exploded into a primitive data
flow diagram to reveal more detail. This is especially true of the more complex busi-
ness transaction processes (e.g., order processing). Other events, such as generation
of reports, are simple enough that they do not require further explosion.

Event processes with more complex event diagrams should be exploded into a
more detailed, primitive data flow diagram such as that illustrated in Figure 9-23 on
page 352. This primitive DFD shows detailed processing requirements for the event.
This DFD shows several elementary processes for the event process. Each elementary
process is cohesive—that is, it does only one thing. On a primitive diagramming it is
permissable to have flows connecting the elementary processes.

When Bob drew this primitive data flow diagram, he had to add new data flows
between the processes. In doing so, he tried to practice good data conservation, mak-
ing sure each process has only the data it truly needs.The data structure for each data
flow had to be described in his CASE tool’s repository. Also notice that he used data
flow junctions to split and merge appropriate data flows on the diagram.

Note that the primitive DFD contains some new exception data flows that were
not introduced in Figure 9-22. It should not be hard to imagine a computer program
structure when examining this DFD.

The combination of the context diagram, system diagram, event diagrams, and prim-
itive diagrams completes our process models. Collectively, this is the process model. A
well-crafted and complete process model can effectively communicate business re-
quirements between end users and computer programmers, eliminating much of the
confusion that often occurs in system design, programming, and implementation.

> Completing the Specification

The data flow diagrams are complete. Where do you go from here? That depends on
your choice of methodology. If you are practicing the pure structured analysis method-
ology (from which data flow diagramming was derived), you must complete the spec-
ification. To do so, each data flow, data store, and elementary process (meaning one
that is not further exploded into a more detailed DFD) must be described to the ency-
clopedia or data dictionary. CASE tools provide facilities for such descriptions.

Data flows are described by data structures, as explained earlier in this chapter.
Figure 9-24 (page 353) demonstrates how System Architect 2001, the SoundStage
CASE tool, can be used to describe a data flow. Notice that this CASE tool uses an alge-
braic notation for data structures, as described in this chapter. Ultimately, each data el-
ement or attribute should also be described in the data dictionary to specify data type,
domain, and default value (as was described in Chapter 8). Data stores correspond to
all instances of a data entity from our data model.Thus, they are best described in the
data dictionary that corresponds to each entity and its attributes, as was taught in
Chapter 8. Some analysts like to translate each data store’s content into a relational data
structure similar to that used in Figure 9-24 to describe data flows.We consider this to
be busywork—let the entity descriptions from the data model describe the contents of
a data store. Besides, defining data structures for data stores could lead to synchronization
errors between the data and process models—if you would make any changes to an
entity in the data model, you would be forced to remember to make those same
changes in the corresponding data store’s data structure.This requires too much effort
(unless you have a CASE tool capable of doing it automatically for you).

Process Logic Decomposition diagrams and data flow diagrams will prove very effec-
tive tools for identifying processes, but they are not good at showing the logic inside

350 Part Two Systems Analysis Methods

F I G U R E 9 - 2 2 A System Diagram (created with System Architect 2001)

Process Modeling Chapter Nine 351

352 Part Two Systems Analysis Methods

F I G U R E 9 - 2 3 A Primitive Diagram (created with System Architect 2001)

those processes. Eventually, we will need to specify detailed instructions for the ele-
mentary processes on a data flow diagram. Consider, for example, an elementary process
named CHECK CUSTOMER CREDIT. By itself, the named process is insufficient to explain the
logic needed to CHECK CUSTOMER CREDIT. We need an effective way to model the logic of an
elementary process. Ideally, our logic model should be equally effective for communi-
cating with users (who must verify the business accuracy of the logic) and programmers
(who may have to implement the business logic in a programming language).

We can rule out flowcharts. While they do model process logic, most end users
tend to be extremely intimidated by them. The same would be true of pseudocode
and other popular programming logic tools. We can also rule out natural English. It is
too often imprecise and frequently subject to interpretation (and misinterpretation).
Figure 9-25 summarizes some common problems encountered by those who attempt
to use natural English as a procedural language.

To address this problem, we require a tool that marries some of the advantages of
natural English with some of the rigor of programming logic tools. Structured English

is a language and syntax, based on the relative strengths of structured programming
and natural English, for specifying the underlying logic of elementary processes on
process models (such as data flow diagrams). An example of Structured English is
shown in Figure 9-26. (The numbers and letters at the beginning of each statement
are optional. Some end users like them because they further remove the programming
“look and feel” from the specification.)

Process Modeling Chapter Nine 353

F I G U R E 9 - 2 4 A Data Flow (created with System Architect 2001)

Structured English a

language syntax for specifying

the logic of a process.

F I G U R E 9 - 2 5 Problems with Natural English as a Procedure
Specification Language

• Many of us do not write well, and we also tend not to question our writing abilities.

• Many of us are too educated! It’s often difficult for a highly educated person to
communicate with an audience that may not have had the same educational
opportunities. For example, the average college graduate (including most analysts) has
a working vocabulary of 10,000 to 20,000 words; on the other hand, the average
noncollege graduate has a working vocabulary of around 5,000 words.

• Some of us write everything like it was a program. If business procedures required such
precision, we’d write everything in a programming language.

• Too often, we allow the jargon and acronyms of computing to dominate our language.

• English statements frequently have an excessive or confusing scope. How would you carry
out this procedure: “If customers walk in the door and they do not want to withdraw
money from their account or deposit money to their account or make a loan payment,
send them to the trust department.” Does this mean that the only time you should not send
the customer to the trust department is when he or she wishes to do all three of the
transactions? Or does it mean that if a customer does not wish to perform at least one of
the three transactions, that customer should not be sent to the trust department?

• We overuse compound sentences. Consider the following procedure: “Remove the
screws that hold the outlet cover to the wall. Remove the outlet cover. Disconnect each
wire from the plug, but first make sure the power to the outlet has been turned off.” An
unwary person might try to disconnect the wires before turning off the power!

• Too many words have multiple definitions.

• Too many statements use imprecise adjectives. For example, a loan officer asks a
teacher to certify that a student is in good academic standing. What is “good”?

• Conditional instructions can be imprecise. For example, if we state that “all applicants
under the age of 19 must secure parental permission,” do we mean less than 19, or
less than or equal to 19?

• Compound conditions tend to show up in natural English. For example, if credit
approval is a function of several conditions—credit rating, credit ceiling, annual dollar
sales for the customer in question—then different combinations of these factors can
result in different decisions. As the number of conditions and possible combinations
increases, the procedure becomes more and more tedious and difficult to write.

Source: Adapted from Leslie Matthies, The New Playscript Procedure (Stamford, CT: Office Publications, Inc., 1977)

1. For each CUSTOMER NUMBER in the data store CUSTOMERS:

 a. For each LOAN in the data store LOANS that matches the above CUSTOMER NUMBER:

 1) Keep a running total of NUMBER OF LOANS for the CUSTOMER NUMBER.

 2) Keep a running total of ORIGINAL LOAN PRINCIPAL for the CUSTOMER NUMBER.

 3) Keep a running total of CURRENT LOAN BALANCE for the CUSTOMER NUMBER.

 4) Keep a running total of AMOUNTS PAST DUE for the CUSTOMER NUMBER.

 b. If the TOTAL AMOUNTS PAST DUE for the CUSTOMER NUMBER is greater than 100.00 then

 1) Write the CUSTOMER NUMBER and data in the data flow LOANS AT RISK.

 Else

 1) Exclude the CUSTOMER NUMBER and data from the data flow LOANS AT RISK.

F I G U R E 9 - 2 6

Using Structured
English to
Document an
Elementary Process

Structured English is not pseudocode. It does not concern itself with declara-
tions, initialization, linking, and such technical issues. It does, however, borrow some
of the logical constructs of structured programming to overcome the lack of struc-
ture and precision in the English language. Think of it as the marriage of natural
English language with the syntax of structured programming.

354 Part Two Systems Analysis Methods

The overall structure of a Structured English specification is built using the fun-
damental constructs that have governed structured programming for nearly three
decades.These constructs (summarized in Figure 9-27) are:

• A sequence of simple, declarative sentences—one after another. Compound
sentences are discouraged because they frequently create ambiguity. Each
sentence uses strong, action verbs such as GET, FIND, RECORD, CREATE, READ,
UPDATE, DELETE, CALCULATE, WRITE, SORT, MERGE, or anything else recognizable or
understandable to users. A formula may be included as part of a sentence
(e.g., CALCULATE GROSS PAY HOURS WORKED HOURLY WAGE).

• A conditional or decision structure indicates that a process must perform
different steps under well-specified conditions. There are two variations
(and a departure) on this construct.
— The IF-THEN-ELSE construct specifies that one set of steps should be taken if

a specified condition is true but that a different set of steps should be
specified if the specified condition is false. The steps to be taken are typi-
cally a sequence of one or more sentences as described above.

— The CASE construct is used when there are more than two sets of steps to
choose from. Once again, these steps usually consist of the aforementioned
sequential statements. The case construct is an elegant substitute for an
IF-THEN-ELSE IF-THEN-ELSE IF-THEN . . . construct (which is very convoluted to
the average user).

— For logic based on multiple conditions and combinations of conditions
(which programmers call a nested IF), decision tables are a far more ele-
gant logic modeling tool. Decision tables will be introduced shortly.

• An iteration, or repetition, structure specifies that a set of steps should be
repeated based on some stated condition. There are two variations on this
construct:
— The DO-WHILE construct indicates that certain steps are repeated zero, one,

or more times based on the value of the stated condition. Note that these
steps may not execute at all if the condition is not true when the condi-
tion is first tested.

— The REPEAT-UNTIL construct indicates that certain steps are repeated one or
more times based on the value of the stated condition. Note that a REPEAT-
UNTIL set of steps must execute at least once, unlike the DO-WHILE set of
actions.

Additionally, Structured English places the following restrictions on process logic:

• Only strong, imperative verbs may be used.
• Only names that have been defined in the project dictionary may be used.

These names may include those of data flows, data stores, entities (from data
models; see Chapter 8), attributes (the specified data fields or properties con-
tained in a data flow, data store, or entity), and domains (the specified legal
values for attributes).

• Formulas should be stated clearly using appropriate mathematical notations.
In short, you can use whatever notation is recognizable to the users. Make
sure each operand in a formula is either input to the process in a data flow
or a defined constant.

• Undefined adjectives and adverbs (the word good, for instance) are not per-
mitted unless clearly defined in the project dictionary as legal values for data
attributes.

• Blocking and indentation are used to set off the beginning and ending of
constructs and to enhance readability. (Some authors and models encourage
the use of special verbs such as ENDIF, ENDCASE, ENDDO, and ENDREPEAT to termi-
nate constructs. We dislike this practice because it gives the Structured
English too much of a pseudocode or programming look and feel.)

• When in doubt, user readability should always take priority over programmer
preferences.

Process Modeling Chapter Nine 355

Structured English Procedural Structures

Construct Sample Template

Sequence of steps – Unconditionally perform a

sequence of steps.

Simple condition steps – If the specified condition is

true, then perform the first set of steps. Otherwise,

perform the second set of steps.

Use this construct if the condition has only two

possible values.

(Note: The second set of conditions is optional.)

Complex condition steps – Test the value of the

condition and perform the appropriate set of steps.

Use this construct if the condition has more than two

values.

One-to-many iteration – Repeat the set of steps until

the condition is false.

Use this construct if the set of steps must be performed

at least once, regardless of the condition’s initial value.

Zero-to-many iteration – Repeat the set of steps until

the condition is false.

Use this construct if the set of steps is conditional

based on the condition’s initial value.

Multiple conditions – Test the value of multiple

conditions to determine the correct set of steps.

Use a decision table instead of nested if-then-else

Structured English constructs to simplify the

presentation of complex logic that involves

combinations of conditions.

A decision table is a tabular presentation of complex

logic in which rows represent conditions and possible

actions and columns indicate which combinations of

conditions result in specific actions.

[Step 1]

[Step 2]

…

[Step n]

If [truth condition]

 then

 [sequence of steps or other conditional steps]

else

 [sequence of steps or other conditional steps]

End If

Do the following based on [condition]:

 Case 1: If [condition] = [value] then

 [sequence of steps or other conditional steps]

Case 2: If [condition] = [value] then

 [sequence of steps or other conditional steps]

…

 Case n: If [condition] = [value] then

 [sequence of steps or other conditional steps]

End Case

Repeat the following until [truth condition]:

 [sequence of steps or conditional steps]

End Repeat

Do while [truth condition]:

 [sequence of steps or conditional steps]

End Do

 - OR -

For [truth condition]:

 [sequence of steps or conditional steps]

End For

Although it isn’t a Structured English construct, a decision

table can be named, and referenced within a Structured English

procedure.

DECISION TABLE

[Condition]

[Condition]

[Condition]

[Sequence of steps or

conditional steps]

[Sequence of steps or

conditional steps]

[Sequence of steps or

conditional steps]

 Rule Rule Rule Rule

 value value value value

 value value value value

 value value value value

X

X X

X

F I G U R E 9 - 2 7 Structured English Constructs

356 Part Two Systems Analysis Methods

A SIMPLE POLICY STATEMENT

CHECK CASHING IDENTIFICATION CARD

A customer with check cashing privileges is entitled to cash

personal checks of up to $75.00 and payroll checks from companies

pre-approved by LMART. This card is issued in accordance with the

terms and conditions of the application and is subject to change

without notice. This card is the property of LMART and shall be

forfeited upon request of LMART.

SIGNATURE

EXPIRES May 31, 2003

THE EQUIVALENT POLICY DECISION TABLE

Conditions and Actions

C1: Type of check

C2: Check amount less than or equal to $75.00

C3: Company accredited by LMART

A1: Cash the check

A2: Don’t cash the check

Rule 1

personal

yes

doesn’t

matter

X

Rule 2

payroll

doesn’t

matter

yes

X

Rule 3

personal

no

doesn’t

matter

X

Rule 4

payroll

doesn’t

matter

no

X

Condition
Stubs

Action
Stubs

Rules

F I G U R E 9 - 2 8 A Sample Decision Table

Structured English should be precise enough to clearly specify the required busi-
ness procedure to a programmer or user. Yet it should not be so inflexible that a pro-
grammer or user spends hours arguing over syntax.

Many processes are governed by complex combinations of conditions that are
not easily expressed with Structured English. This is most commonly encountered
in business policies. A policy is a set of rules that governs some process in the
business.

In most firms, policies are the basis for decision making. For instance, a credit
card company must bill cardholders according to various policies that adhere to re-
strictions imposed by state and federal governments (maximum interest rates and
minimum payments, for instance). Policies consist of rules that can often be translated
into computer programs if the users and systems analysts can accurately convey those
rules to the computer programmer.

There are ways to formalize the specification of policies and other complex com-
binations of conditions. One such logic modeling tool is a decision table. While peo-
ple who are unfamiliar with them tend to avoid them, decision tables are very useful
for specifying complex policies and decision-making rules. Figure 9-28 illustrates the
three components of a simple decision table:

• Condition stubs (the upper rows) describe the conditions or factors that will
affect the decision or policy.

Process Modeling Chapter Nine 357

policy a set of rules that

governs how a process is to

be completed.

decision table a tabular

form of presentation that

specifies a set of conditions

and their corresponding

actions.

• Action stubs (the lower rows) describe, in the form of statements, the possi-
ble policy actions or decisions.

• Rules (the columns) describe which actions are to be taken under a specific
combination of conditions.

The figure depicts a check-cashing policy that appears on the back of a check-
cashing card for a grocery store. This same policy has been documented with a deci-
sion table. Three conditions affect the check-cashing decision: the type of check,
whether the amount of the check exceeds the maximum limit, and whether the com-
pany that issued the check is accredited by the store. The actions (decisions) are ei-
ther to cash the check or to refuse to cash the check. Notice that each combination
of conditions defines a rule that results in an action, denoted by an x.

Both decision tables and Structured English can describe a single elementary
process. For example, a legitimate statement in a Structured English specification
might read DETERMINE WHETHER OR NOT TO CASH THE CHECK USING THE DECISION TABLE, LMART

CHECK CASHING POLICY.
Elementary processes can be described by Structured English and/or decision

tables. Because they are “elementary,” they should be described in one page or less of
either tool. Figure 9-29, demonstrates how System Architect 2001 can be used to
describe an elementary process. Like many CASE tools, System Architect does not
support decision table construction. Fortunately, decision tables are easily constructed
using the table features in most word processors and spreadsheets.

358 Part Two Systems Analysis Methods

F I G U R E 9 - 2 9 An Elementary Process (created with System Architect 2001)

Synchronizing of System Models

Data and process models represent different views of the same system, but these
views are interrelated. Modelers need to synchronize the different views to ensure
consistency and completeness of the total system specification. In this section, we’ll
review the basic synchronization concepts for data and process models.

> Data and Process Model Synchronization

The linkage between data and process models is almost universally accepted by all
major methodologies. In short, there should be one data store in the process models
for each entity in the data model. Some methodologies exempt associative entities
from this requirement, but we believe it is simpler (and more consistent) to apply the
rule to all entities on the data model.

Figure 9-30 illustrates a typical data-to-process-CRUD matrix. The decision to
include or not include attributes is based on whether processes need to be restricted
as to which attributes they can access.

Process Modeling Chapter Nine 359

F I G U R E 9 - 3 0 Sample Data-to-Process-CRUD Matrix

Data -to-Process-CRUD Matrix

Entity . Attribute Pr
o

c
e

ss
 C

u
st

o
m

e
r

A
p

p
lic

at
io

n

Pr
o

c
e

ss
 C

u
st

o
m

e
r

C
re

d
it

 A
p

p
lic

at
io

n

Pr
o

c
e

ss
 C

u
st

o
m

e
r

C
h

an
g

e
 o

f
A

d
d

re
ss

Pr
o

c
e

ss
 I
n

te
rn

al
 C

u
st

o
m

e
r

C
re

d
it

 C
h

an
g

e

Pr
o

c
e

ss
 N

e
w

 C
u

st
o

m
e

r
O

rd
e

r

Pr
o

c
e

ss
 C

u
st

o
m

e
r

O
rd

e
r

C
an

c
e

lla
ti

o
n

Pr
o

c
e

ss
 I
n

te
rn

al
 C

h
an

g
e

 t
o

 C
u

st
o

m
e

r
O

rd
e

r

Pr
o

c
e

ss
 N

e
w

 P
ro

d
u

c
t

A
d

d
it

io
n

Pr
o

c
e

ss
 P

ro
d

u
c

t
W

it
h

d
ra

w
al

 f
ro

m
 M

ar
ke

t

Pr
o

c
e

ss
 P

ro
d

u
c

t
Pr

ic
e

 C
h

an
g

e

Pr
o

c
e

ss
 C

h
an

g
e

 t
o

 P
ro

d
u

c
t

S
p

e
c

if
ic

at
io

n

Pr
o

c
e

ss
 P

ro
d

u
c

t
In

ve
n

to
ry

 A
d

ju
st

m
e

n
t

Customer C C R R R R

 .Customer Number C C R R R R

 .Customer Name C C U R R R

 .Customer Address C C U RU RU RU

 .Customer Credit Rating C U R R R

 .Customer Balance Due RU U R R

Order C D RU RU

 .Order Number C R R

 .Order Date C U U

 .Order Amount C U U

Ordered Product C D CRUD CRUD RU

 .Quantity Ordered C CRUD CRUD

 .Ordered Item Unit Price C CRUD CRUD

Product R R R R C D RU RU RU

 .Product Number R R R R C R

 .Product Name R R R C RU

 .Product Description R R R C RU

 .Product Unit of Measure R R R C RU RU

 .Product Current Unit Price R R R U

 .Product Quantity on Hand RU U RU RU RU

C = create R = read U = update D = delete

Pr
o

c
e

ss
 C

u
st

o
m

e
r

C
h

an
g

e
 t

o
 O

u
ts

ta
n

d
in

g

O
rd

e
r

Process-to-Location-Association Matrix

C
u

st
o

m
e

rs

K
an

sa
s

C
it

y

 .
 M

ar
ke

ti
n

g

 .
 A

d
ve

rt
is

in
g

 .
 W

ar
e

h
o

u
se

 .
 S

al
e

s

 .
 A

c
c

o
u

n
ts

 R
e

c
e

iv
ab

le

B
o

st
o

n

Process Customer Application X X

Process Customer Credit Application X X

Process Customer Change of Address X X

Process Internal Customer Credit Change X

Process New Customer Order X X

Process Customer Order Cancellation X X

Process Customer Change to Outstanding Order X X

Process Internal Change to Customer Order X

Process New Product Addition X

Process Product Withdrawal from Market X

Process Product Price Change X

Process Change to Product Specification X X

Process Product Inventory Adjustment X X X

 .
 S

al
e

s

 .
 W

ar
e

h
o

u
se

S
an

 F
ra

n
c

is
c

o

 .
 S

al
e

s

S
an

 D
ie

g
o

 .
 W

ar
e

h
o

u
se

X

X

X

X

X

X

X

X

X

X

X

X

Process

F I G U R E 9 - 3 1 Sample Process-to-Location-Association Matrix

The synchronization quality check is stated as follows:

Every entity should have at least one C, one R, one U, and one D entry for system
completeness. If not, one or more event processes were probably omitted from
the process models. More importantly, users and management should validate that
all possible creates, reads, updates, and deletes have been included.

The matrix provides a simple quality check that is simpler to read than either the data
or process models. Of course, any errors and omissions should be recorded both
on the matrix and in the corresponding data and process models to ensure proper
synchronization.

> Process Distribution

Process models illustrate the essential work to be performed by the system as a
whole. However, processes must be distributed to locations where work is to be per-
formed. Some work may be unique to one location. Other work may be performed at
multiple locations. Before we design the information system, we should identify and
document what processes must be performed at which locations.This can be accom-
plished through a process-to-location-association matrix. A process-to-location-

association matrix is a table in which the rows indicate processes (event or
elementary processes), the columns indicate locations, and the cells (the intersection
of rows and columns) document which processes must be performed at which loca-
tions. Figure 9-31 illustrates a typical process-to-location-association matrix. Once it is
validated for accuracy, the system designer will use this matrix to determine which
processes should be implemented centrally or locally.

Some methodologies and CASE tools may support views of the process model
that are appropriate to a location. If so, these views (subsets of the process models)
must be kept in sync with the master process models of the system as a whole.

360 Part Two Systems Analysis Methods

process-to-location-
association matrix a table

used to document processes

and the locations at which

they must be performed.

Lea
rning

 Roa
d
m

a
p

If you are taking a traditional approach you will proceed directly to Chapter 11,“Fea-

sibility Analysis and the System Proposal.” Given data and process models that de-

scribe logical system requirements, Chapter 11 will examine the methods and

techniques for identifying candidate physical solutions that will fulfill the logical re-

quirements, techniques for analyzing the feasibility of each of those solutions, and ap-

proaches for presenting the solution that you deem most feasible. This system

proposal culminates systems analysis in our FAST methodology.

At your instructor’s discretion, some of you may jump to Chapter 10, “Object-

Oriented Modeling and Analysis with UML.” This alternative to data and process mod-

eling is rapidly gaining acceptance in industry and may eventually make both data and

process modeling obsolete. Of course, object modeling presents many parallels with

data and process modeling.You’ll see some similar constructs because an object is de-

fined as the encapsulation of related data and the processes that will be allowed to

create, read, update, and use that data.

If you are interested in how we will use the logical DFDs in this chapter during

systems design, you might want to preview Chapter 13,“Process Design and Modeling.”

In that chapter, we will teach you how to transform the logical data flow diagrams

into physical data flow diagrams that model the technology architecture of a system

to be designed and implemented.

1. We construct logical models to better under-
stand business problem domains and business
requirements.

2. Process modeling is a technique for organizing
and documenting the process requirements and
design for a system.This chapter focused on a
process model called a data flow diagram, which
depicts the flow of data through a system’s
processes.

3. External agents are entities that are outside the
scope of a system and project but that provide
net inputs to or net outputs from a system. As
such, they form the boundary of the system.

4. Data stores present files of data to be used and
maintained by the system. A data store on a
process model corresponds to all instances of an
entity on a data model.

5. A system is a process. A process is work
performed on, or in response to, inputs and
conditions.

6. Just as systems can be recursively decomposed
into subsystems, processes can be recursively
decomposed into subprocesses. A decomposition
diagram shows the functional decomposition of a
system into processes and subprocesses. It is a
planning tool for subsequent data flow diagrams.

7. Logical processes show essential work to be per-
formed by a system without showing how the
processes will be implemented.There are three
types of logical processes: functions (very high
level), events (middle level of detail), and elemen-
tary processes (very detailed).

8. Elementary processes are further described by
procedural logic. Structured English is a tool for
expressing this procedural logic. Structured
English is a derivative of structured programming
logic constructs married to natural English.

9. Complex elementary processes may be described
by policies that are expressed in decision tables,
which show complex combinations of conditions
that result in specific actions.

10. Data flows are the inputs to and the outputs from
processes.They also illustrate data store accesses
and updates.

11. All data flows consist of either other data flows
or discrete data structures that include descrip-
tive attributes. A data flow should contain only
the amount of data needed by a process; this is
called data conservation.

12. Process modeling may be used in different types
of projects, including business process redesign
and application development. For application

Chapter Review

361

development projects, this chapter taught an
event-driven data flow diagramming strategy as
follows:

a. Draw a context data flow diagram that shows
how the system interfaces to other systems,
the business, and external organizations.

b. Draw a functional decomposition diagram that
shows the key subsystems and/or functions
that comprise the system.

c. Create an event list that identifies the external
and temporal events to which the system must
provide a response. External events are trig-
gered by the external agents of a system.Tempo-
ral events are triggered by the passing of time.

d. Update the decomposition diagram to include
processes to handle the events (one process
per event).

e. For each event, draw an event diagram that
shows its interactions with external entities,

data stores, and, on occasion, other triggers to
other events.

f. Combine the event diagrams into one or more
system diagrams.

g. For each event on the system diagram, either
describe it as an elementary process using
Structured English or explode it into a primi-
tive data flow diagram that includes elemen-
tary processes that must be subsequently
described by either Structured English or deci-
sion tables, or by both. When processes are
exploded on data flow diagrams to reveal
greater detail, it is important to maintain con-
sistency between the different types of dia-
grams; this is called synchronization.

13. Most computer-aided software engineering tools
support both decomposition diagramming and
data flow diagramming.

1. What is a logical model, and what are its common
synonyms?

2. Why are logical models valuable tools for systems
analysts?

3. What is a data flow diagram, and what are its
common synonyms?

4. How is a data flow diagram different from a flow-
chart?

5. Why is a system considered to a process?
6. What is decomposition, and why is it needed?

What is the tool used to depict the decomposi-
tion of a system?

7. What are the three types of logical processes?
8. What are the common mechanical errors when

depicting processes on a data flow diagram and
other process models?

9. What is Structured English, and why is it used
when constructing process logic?

10. What are the naming conventions of logical data
flows?

11. What is data conservation and why is it needed?
12. What are external agents and why can the exter-

nal agents of an information system change?
13. What are some examples of the event-driven

modeling used in systems analysis?
14. What process model is used to document the

scope for an information system, and what is
depicted in this process model?

15. Why is it important to synchronize data and
process models?

Review Questions
1

2

1. You are working as a student assistant for an engi-
neering firm and are paid by the hour. Every two
weeks, you turn in a time sheet to your supervi-
sor, and three workdays later, your paycheck is di-
rect deposited into your checking account. List
the different entities or objects, logical processes,
data flows, and data stores that are involved, start-
ing from the time you submit your time sheet.

2. Match the terms in the first column with the defi-
nitions or examples in the second column:

1. Structured English A. Disassembling a system
into its components

2. Process B. Logical unit of work
that must be com-
pleted as a whole

3. Logical model C. Tool for logic modeling
4. Primitive process D. Set of business activi-

ties that are related
and ongoing

Problems and Exercises

362 Part Two Systems Analysis Methods

5. Policy E. Technique for organi-
zing and documenting
a system’s processes

6. DFD F. Procedure specifica-
tion language

7. Decision table G. Depiction of what a
system is or does

8. Decomposition H. Depiction of system
data flow

9. Event I. Depiction of system
decomposition

10. Physical model J. Work performed by
system in response to
incoming data flows

11. Function K. Detailed, separate
activity/task needed
to complete event
response

12. Hierarchy chart L. Process completion
rules

13. Process modeling M. Depiction of what a
system is or does, and
how it is implemented

3. In a decomposition diagram, how do you show
one child for a parent, and how do you show
more than one parent for a child? Why don’t the
connections on a decomposition diagram show
arrowheads, like most other diagrams? Why aren’t
the connections named?

4. Consider carpool lanes in Sacramento, California.
Between the hours of 6:00 a.m. and 10:00 a.m.
and 3:00 p.m. and 7:00 p.m., Monday through
Friday, they are restricted to passenger vehicles
with two or more people of any age, motorcy-
cles, and hybrid (gas/electric) vehicles with one
or more persons. For all other vehicles or condi-
tions, the driver is subject to a traffic citation.
Outside those time periods, there are no restric-
tions as to their usage. Based upon this informa-
tion, write a policy decision table for use by
highway patrol officers.

5. You work in the headquarters office of the
investigation division of a law enforcement
agency and are developing an automated case-
tracking system for your headquarters office to
replace the current manual system. Cases are
opened when a request-for-investigation form is
received from other divisions in your agency; no
cases are initiated internally. A new case folder is
created, containing any criminal record informa-
tion based upon checking various criminal jus-
tice databases, then sent to the appropriate field
investigation office. When the case is com-
pleted, headquarters receives an investigation re-
port from the field office, the case is closed, and

a copy of the completed investigation report is
sent to the originating office. Every week, a list-
ing showing cases opened, completed, and in
progress is sent to each field office. What are
some of the strategies you might use for setting
the scope and boundaries of the system?

6. Based upon the preceding question, what did you
determine are the system’s:

a. Net inputs
b. Net outputs
c. External agents
d. External stores

7. Now that you have your net inputs, net outputs,
external agents, and external stores, draw a con-
text data flow diagram.

8. You are now modeling the logic of each elemen-
tary process for the case-tracking system and
have decided to write it in Structured English in
order to communicate effectively with both users
and programmers. For the Open/Closed/In
Progress Case Listing Report to Field Office, write
a Structured English statement to document the
process of keeping a running total of cases
opened, closed, and in progress. Additionally, you
want to add another column to the report show-
ing the number of cases still in progress that are
over six months old.

9. You are now ready to create the functional de-
composition diagram for the case-tracking
system. What is the root process for the function
decomposition diagram? What subsystems would
you typically include? What processes would you
show, and to what subsystem would they belong?
Use this information to create a functional
decomposition diagram.

10. Your next step, after drawing the decomposition
diagram, is creating the event-response or use-
case list.There should be a use case for each
event initiated by an external agent.Temporal
events should also be shown. For each external
agent, there should be at least one use case. Start
a partial use-case table that includes the events
OTHER DIVISION SENDS REQUEST FOR INVESTIGATION and
FIELD OFFICE SENDS COMPLETED INVESTIGATION REPORT.
Also include the event GENERATE OPEN/CLOSED/IN

PROGRESS CASE LISTING REPORT.
11. An event diagram is equivalent to a context dia-

gram for one event. The event diagram includes
the inputs, outputs, and data store interactions
related to that specific event. Its purpose is to
help users focus on a single event without be-
coming overwhelmed or confused by a picture
of the entire system. Select one of the events
from the case-tracking system, and draw an
event diagram.

Process Modeling Chapter Nine 363

1. Suppose you are starting work on a project for an
organization that has never used any modeling
techniques or tools in designing a system. (Yes, it is
hard to imagine, but it does exist.) Your manager is
reluctant to change from the way they have always
done things. Write a one- to two-page issue paper
(or a PowerPoint presentation as an alternative)
on why systems modeling is worth the time and
resources involved.

2. The textbook uses the Gane and Sarson process
modeling notations and compares them to the
notations used by the DeMarco/Yourdon and
SSADM/IDEF0 process modeling methodologies.
Research at least two of these or other process
modeling methodologies, then compare and
contrast them.

a. What other process modeling methodologies
did you find?

b. What, if any, are the significant differences in
their process modeling methodologies, other
than in their notation methods?

c. What are their similarities?

d. Which notation method does your organization
use?

e. If you were asked to recommend one of these
methodologies for your organization, which
one would you choose? Why?

3. Until fairly recently, magazines and periodicals
were available in printed versions only. Publishers
are now offering an increasing number of periodi-
cals in either the traditional printed version or in a
digital format that can be downloaded over the
Internet. Consider the processes involved in these
two methods and:

a. Create a high-level data flow diagram describing
the typical traditional methods of renewing a
subscription via mail to the print version of a
magazine.

b. Create another high-level data flow diagram de-
scribing the processes for renewing a subscrip-
tion via the Internet to the digital format
version of a magazine.

Projects and Research

12. Match the definitions or examples in the first col-
umn with the terms in the second column:

A. Smallest meaningful 1. Domain
data segment

B. Combination of data 2. Junction
flows that are similar

C. Expressed in the form 3. External agent
of data structures

D. Condition to be 4. Event partitioning
monitored

E. An attribute’s 5. Composite data
legitimate values flow

F. “Starving the 6. Control flow
processes”

G. Output of data from a 7. Data composition
process or input to
the process

H. Data class that can be 8. Data attribute
stored in an attribute

I. Arrangement of data 9. Data conservation
attributes that
comprise a data flow

J. Outside entity that 10. Data flow
interacts with a
system

K. Symbol that given 11. Data structure
data flow is instance
of only one type

L. Data at rest 12. Data type
M. System broken into 13. Data store

subsystems based
on business events

13. Although data and process models depict the
same system with different views, system design-
ers must synchronize these different views to
make sure that their models are consistent and
complete. One way to ensure this is through a
data-to-process-CRUD matrix. Select a system
with which you are familiar. Identify at least three
of the entities used in that system and their attrib-
utes. Next, identify the processes associated with
those entities.Then build a data-to-process-CRUD
matrix, using Figure 9-30 as your template. As a
quality check, show your matrix to someone else
who is familiar with the system, and have her or
him review it for completeness and correctness.

364 Part Two Systems Analysis Methods

c. What, if any, are the essential differences be-
tween the two diagrams?

d. Based upon the data flow diagrams, which for-
mat is more efficient in renewing a magazine
subscription? Do you think the same holds true
from the perspective of the subscriber? What
about from the perspective of the publisher?

e. What about receiving and reading the maga-
zine? From your own perspective, what are the
advantages and disadvantages of a magazine
published in digital format versus the traditional
print version?

4. In 1978,Tom DeMarco wrote what is considered
to be the classic text on structured systems analy-
sis methodology—Structured Analysis and System

Specification. James Wetherbe is considered by the
authors of the textbook to be “one of the strongest
advocates of system concepts and system thinking
as part of the discipline of systems analysis and
design,” and has written numerous articles and
books on “systems think.” Edward Yourdon is
another widely acknowledged leader in systems
design and is noted for formalizing the event-driven
approach methodology in his 1989 book, Modern

Structured Analysis. Search the Internet for their
Web sites, if any, and for recent articles and/or
books by these three leaders in systems analysis
and design.

a. What articles and/or Web sites did you find?
b. Describe some of their more recent work.
c. Compare and contrast each of these authors in

terms of their perspective on systems analysis

and design; specifically, do you see their ap-
proaches as complementary or opposed?

d. What emerging changes or trends in systems
analysis and design do they foresee?

e. Do you feel that they still represent the leading
thinkers in systems analysis and design? Why or
why not?

5. Look at the different information systems used in
your school or organization. Find a system with in-
complete and/or outdated documentation (this
should not be hard to do in most organizations!).
Update and complete the documentation for this
system using data flow diagrams, data structures, and
other process models described in this chapter. Use
the Gane and Sarson notation method, unless your
organization supports a different notation method.

6. At the conclusion of this chapter, the textbook men-
tions that data and process modeling may eventually
become obsolete due to the increasing popularity
and usage of object-oriented modeling and analysis
with UML. Research articles discussing this topic in
your school library and/or the Internet.

a. What articles did you find?
b. What were the authors’ positions on this topic?
c. Compare and contrast the articles you found;

which one made the more convincing case?

As you gaze into your crystal ball, what modeling
methodology do you think will be the most widely
used one 10 years from now? Do you predict it
will be either of these two methodologies or a
different one entirely? Why?

Process Modeling Chapter Nine 365

1. Go to a small company of your choice. What does
the business do? Write a one- to two-page paper
describing the business and its existing system.
Then draw a context-level diagram and a system-
level diagram for the existing system. Do you see
any inefficiencies or weaknesses in the current
system? Describe.

2. In the previous case, you documented (at a high
level) an existing information system at a business
of your choice. Now describe the system you think
is appropriate for this business. Consider effi-
ciency, flow of information from one department
to another, and so forth. Is there pertinent informa-
tion that the previous system did not utilize? How
can your new system offer a business advantage?
Document this advantage in a two-page paper, as
well as in a context- and system-level diagram.

3. In Chapter 2 you addressed the following problem:
Government service departments are deeply bur-
dened by the amount of data that they hold and
process. Interview someone from a service depart-
ment and draft a short essay. Example service de-
partments that must sift through vast amounts of
data are those that deal with, for example, missing
persons, child protective services, DMV, and track-
ing of persons on probation following a crime.You
should include, but are not limited to topics such as:

• What is the department (or person’s) job?
• What kind of data do they collect and analyze?
• What kind of analyses do they do on the data?
• How much information do they collect and from

whom, and what programs do they use?

Minicases

In this exercise, utilize the information you gath-
ered from your interview and draft a complete
DFD of the existing information system for that
department.You may need to go back and reinter-
view your contact or get forms, reports, and soon,
so that you have a complete picture of the flow
of data.

4. In the previous case, you documented the existing
information system of a government department.

Now think about what the flow of information
should be like. Discuss in a short paper the exist-
ing flow of information, and what type of informa-
tion you think should be in the system. Is there a
big difference between what you think they
should have and what they do have?

366 Part Two Systems Analysis Methods

1. Individual/class roundtable discussion: It has been
said that information is power and that the separa-
tion between the economically well-off nations, in-
dividuals, companies, and the like, and those that
are not (economically well-off) is the use and con-
trol of information. What is the value of informa-
tion? How does it affect the viability and
competitiveness of nations or companies? How
does your access to and use of information affect
your ability to be successful in a work-related
setting?

2. Individual/class roundtable discussion: Suppose a
software company is hired to create a very com-
plex and groundbreaking software package for a
company.The company would like to own the

rights (including modification and sale) of that
software, but the software company also wants the
rights to the software. Find an example of this situ-
ation in real life. Who do you think should own
the software? Why? Whose side does the law take?
Why?

3. Roundtable discussion:Tech start-ups were known
in the late 1990s for having a culture of extended
workdays.That is, many times programmers would
be expected to work 60–80 hours a week without
overtime pay. Find out about the labor laws in your
state and then discuss in a class roundtable format
the impact of labor laws and corporate culture on
tech employees.

Team and Individual Exercises

Copi, I. R. Introduction to Logic. New York: Macmillan, 1972.

Copi provides a number of problem-solving illustrations

and exercises that aid in the study of logic.The poker chip

problem in our exercises was adapted from one of Copi’s

reasoning exercises.

DeMarco, Tom. Structured Analysis and System Specifica-

tion. Englewood Cliffs, NJ: Prentice Hall, 1978. This is the

classic book on the structured systems analysis methodol-

ogy, which is built heavily around the use of data flow di-

agrams. The progression through (1) current physical

system DFDs, (2) current logical system DFDs, (3) target

logical system DFDs, and (4) target physical system DFDs

is rarely practiced anymore, but the essence of DeMarco’s

pioneering work lives on in event-driven structured analy-

sis. DeMarco created the data structure and logic nota-

tions used in this book.

Gildersleeve, T. R. Successful Data Processing Systems

Analysis. Englewood Cliffs, NJ: Prentice Hall, 1978. The

first edition of this book includes an entire chapter on the

construction of decision tables. Gildersleeve does an

excellent job of demonstrating how narrative process

descriptions can be translated into condition and action

entries in decision tables. Unfortunately, the chapter was

deleted from the second edition.

Harmon, Paul, and Mark Watson. Understanding UML: The

Developers Guide. San Francisco: Morgan Kaufman Pub-

lishers, 1998.This book does an excellent job of introduc-

ing use cases.

Martin, James, and Carma McClure. Action Diagrams: To-

wards Clearly Specified Programs. Englewood Cliffs, NJ:

Prentice Hall, 1986.This book describes a formal grammar

of Structured English that encourages the natural progres-

sion of a process (program) from Structured English to

code. Action diagrams are supported directly in some

CASE tools.

Matthies, Leslie H. The New Playscript Procedure. Stamford,

CT: Office Publications, 1977. This book provides a thor-

ough explanation and examples of the weaknesses of

the English language as a tool for specifying business

procedures.

McMenamin, Stephen M., and John F. Palmer. Essential Sys-

tems Analysis. New York: Yourdon Press, 1984. This was

Suggested Readings

the first book to suggest event partitioning as a formal

strategy to improve structured analysis. The book also

strengthened the distinction between logical and physical

process models and the increased importance of the

logical models (which they called essential models).

Robertson, James, and Suzanne Robertson. Complete Systems

Analysis (Vols. 1 and 2). New York: Dorset House Publish-

ing, 1994. This is the most up-to-date and comprehensive

book on the event-driven approach to structured analysis,

even though we feel it still overemphasizes the current

system and physical models more than the Yourdon book

described below.

Seminar notes for Process Modeling Techniques. Atlanta:

Structured Solutions, Inc., 1991. You probably can’t get a

copy of these notes, but we wanted to acknowledge the

instructors of the AD/Method methodology course that

stimulated our thinking and motivated our departure from

classical structured analysis techniques to the event-driven

structured analysis techniques taught in this chapter.

Structured Solutions was acquired by Protelicess, Inc.

Wetherbe, James, and Nicholas P. Vatarli. Systems Analysis

and Design: Best Practices, 4th ed. St. Paul, MN:West Pub-

lishing, 1994. Jim Wetherbe has always been one of the

strongest advocates of system concepts and system think-

ing as part of the discipline of systems analysis and design.

Jim has shaped many minds, including our own. The au-

thors provide a nice chapter on system concepts in this

book—and the rest of the book is must reading for those

of you who truly want to learn to “systems think.”

Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ:Yourdon Press, 1989.This was the first mainstream

book to abandon classic structured analysis’s overemphasis

on the current physical system models and to formalize

McMenamin and Palmer’s event-driven approach.

Process Modeling Chapter Nine 367

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J
E

C
T

 M
A

N
A

G
E

R
S

 a

n
d

 S

Y
S

T
E

M
S

 A
N

A
L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n
d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n
d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n
a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p
in

g
 J

R
P

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

STATIC

STRUCTURE

MODELS

DYNAMIC

BEHAVIOR

MODELS

INTERFACE

MODELS

OBJECT-ORIENTED ANALYSIS MODEL

10Object-Oriented Analysis and
Modeling Using the UML

Chapter Preview and Objectives

This is the first of two chapters on object-oriented tools and techniques for systems

development. This chapter focuses on object modeling during systems analysis. You will

know object modeling as a systems analysis technique when you can:

❚ Define object modeling and explain its benefits.

❚ Recognize and understand the basic concepts and constructs of object modeling.

❚ Define the UML and its various types of diagrams.

❚ Evolve a business requirements use-case model into a system analysis use-case model.

❚ Construct an activity diagram.

❚ Discover objects and classes and their relationships.

❚ Construct a class diagram.

Let’s suppose that SoundStage had a policy that all new information systems would be
developed using object-oriented technologies. After all, object-oriented programming
languages, such as Java and the .NET languages, are growing in popularity.The reason
is because object-oriented programming can promote better code reuse to hold down
programming costs. Also, an object-oriented approach is more appropriate for proj-
ects where geographically separated groups of programmers have to collaborate to
produce an integrated system. Each team can be responsible for developing indepen-
dent pieces of programming code to implement one or more objects with a defined
interface. We’ll learn more about objects later.

An object-oriented (OO) approach to programming requires techniques for object-

oriented analysis (OOA) and object-oriented design (OOD). Some of the object-
oriented diagrams, such as class diagrams (taught in this chapter) and sequence
diagrams (taught in Chapter 18) would be inappropriate except when the system will
be implemented in an object-oriented environment. Other diagrams developed for
object-oriented analysis and design can be used in any kind of environment. Use cases,
for example, are now used in both object-oriented and traditional, structured analysis.
Activity diagrams (taught in this chapter) and deployment diagrams (Chapter 18),
though developed for object-oriented analysis and design, can be used in any kind of
methodology.

So if the SoundStage Member Services system project took an OO approach, how
would Bob’s path be different? Would Bob have done traditional process modeling
(Chapter 9)? Probably not. Information systems developed with OO technologies
have processes like all information systems. But those processes (called behaviors in
OOA) would be designed as part of the object classes rather than separately and often
not until the systems design phase (Chapter 18). Would Bob have done traditional
data modeling (Chapter 8)? Perhaps, but not in the same way. During the systems
analysis phase, Bob would have analyzed and documented the data attributes of the
system using a class diagram (as taught in this chapter) instead of an ERD. If the sys-
tem data was to be stored in a relational database, then during the systems design
phase, Bob would translate the class diagram into an ERD and follow the steps for data
design taught in Chapter 14. But with either approach, Bob would have still followed
the same phases of requirements analysis, systems analysis, and so on. Regardless of
the tools and techniques, systems analysis and design is still systems analysis and
design.

370 Part Two Systems Analysis Methods

object-oriented analysis
(OOA) an approach used to

(1) study existing objects to

see if they can be reused or

adapted for new uses and

(2) define new or modified

objects that will be combined

with existing objects into a

useful business computing

application.

object modeling a tech-

nique for identifying objects

within the systems environ-

ment and identifying the

relationships between those

objects.

An Introduction to Object-Oriented Analysis

History of Object Modeling

The object-oriented approach is centered around a technique referred to as object

modeling. The object modeling technique prescribes the use of methodologies and
diagramming notations that are completely different from the ones used for data mod-
eling and process modeling. In the late 80s and early 90s many different object-
oriented methods were being used throughout industry. The most notable of these
were Grady Booch’s Booch Method, James Rumbaugh’s Object Modeling Technique

(OMT), and Ivar Jacobson’s Object-Oriented Software Engineering (OOSE). The exis-
tence of so many methods and associated modeling techniques was a major problem
for the object-oriented system development industry. It was not uncommon for a
developer to have to learn several object modeling techniques depending on what
was being used on the project at the time. Because so many were being used, this was
limiting the ability to share models across projects (reduced reusability) and develop-
ment teams. Consequently, it hampered communication between team members and
users, which led to many errors being introduced into the project. These problems
and others led to the effort to design a standard modeling language.

In 1994 Grady Booch and James Rumbaugh joined forces, merging their respec-
tive object-oriented development methods with the goal of creating a single, standard
process for developing object-oriented systems. Ivar Jacobson joined them in 1995,
and the three altered their focus to create a standard object modeling language
instead of a standard object-oriented approach or method.1 Referencing their own
work as well as that of countless others in the OO industry, the Unified Modeling

Language (UML) version 1.0 was released in 1997.The current version is 2.0.
The UML does not prescribe a method for developing systems—only a nota-

tion that is now widely accepted as a standard for object modeling. The Object
Management Group (OMG), the industry’s standards body, adopted the UML in
November 1997 and has continually worked to improve it based on industry needs.
In this chapter and Chapter 18, “Object-Oriented Design and Modeling Using the
UML,” we will present an introduction to the UML and some of its diagrams.2

There are many underlying concepts for object modeling. In the next section you
will learn about those concepts and how to apply them while developing object mod-
els during systems analysis.

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 371

Unified Modeling
Language a set of modeling

conventions that is used to

specify or describe a software

system in terms of objects.

1Booch, Rumbaugh, and Jacobson created an object modeling methodology called the Rational Unified Process,

marketed by IBM.
2 There are excellent books dedicated to the detailed use of the UML, and many are listed at the end of this chapter.

System Concepts for Object Modeling

Object-oriented analysis is based on several concepts. Some of these concepts require
a new way of thinking about systems and the development process. As depicted on
the home page at the beginning of the chapter, object-oriented analysis is concerned
with defining the static structure and dynamic behavior models of the information
system instead of defining data and process models, which is the goal of traditional de-
velopment approaches. These OOA concepts have presented a formidable challenge
to veteran developers, who must relearn how they have traditionally viewed systems.
As you will soon see, these concepts are not foreign to how you have already come to
view your own environment.

> Objects, Attributes, Methods, and Encapsulation

The object-oriented approach to system development is based on the concept of ob-
jects that exist within a system’s environment. Objects are everywhere. Let’s consider
your environment. Look around.What are some of the objects present within your en-
vironment? Perhaps you see a door, a window, or the room itself. What about this
book—it’s an object, as is the very page you are reading. Perhaps you also have a stu-
dent workbook, which is also an object. If there are other individuals in the room,
they are objects too. You may also see a phone, a chair, and perhaps a table. All these
are objects that may be clearly visible within your immediate environment.

Consider the Webster’s Dictionary definition of object: “something that is or is
capable of being seen, touched, or otherwise sensed.”

The objects mentioned above are those that one would be able to see or touch.
What about objects that you might sense? Perhaps you are waiting for a phone call.
That phone call is something that you are sensing.You may be waiting for a meeting.
Once again, that meeting is something that you can identify, relate to, and antici-
pate even though you can’t actually see the meeting. Thus, according to Webster’s

Dictionary, an anticipated phone call or meeting may be considered an object.
The previous examples pertain to objects that may exist within your immediate

environment. Similarly, in the object-oriented approach to systems development,
it is important to identify the objects that exist within a system’s environment. In

object-oriented approaches to systems development, the definition of an object is as
presented in the margin.

Three aspects of this definition need to be examined closely. First, let’s consider
the term something, which can be characterized as a type of object much like the ob-
jects that we identified within your current environment.The types of objects may in-
clude a person, place, thing, or event. An employee, customer, instructor, and student
are examples of person objects. A particular warehouse, regional office, building, and
room are examples of place objects. Examples of thing objects include a product, a
vehicle, a computer, a videotape, or a window appearing on a user’s display monitor.
Finally, examples of event objects include an order, payment, invoice, application,
registration, and reservation.

Now let’s consider the data aspect of our definition. In object-oriented circles,
this part of our definition refers to what are called attributes.

For example, we might be interested in the following attributes for an object
called “customer”: CUSTOMER NUMBER, FIRST NAME, LAST NAME, HOME ADDRESS,WORK ADDRESS,
TYPE OF CUSTOMER, HOME PHONE, WORK PHONE, CREDIT LIMIT, AVAILABLE CREDIT, ACCOUNT

BALANCE, and ACCOUNT STATUS. In reality, there may be many customer objects for which
we would be interested in these attributes. Each individual customer is referred to
as an object instance. For example, for each customer the attributes would assume
values specific to that customer—such as 412209, Lonnie, Bentley, 2625 Darwin
Drive, West Lafayette, Indiana, 47906, and so forth. Let’s consider your current envi-
ronment. Perhaps there’s another person in the room. Each of you represents an
instance of a person object. Each of you can be described according to some common
attributes such as LAST NAME, SOCIAL SECURITY NUMBER, PHONE NUMBER, and ADDRESS.

Thus, object-oriented approaches to systems development are concerned with
identifying attributes that are of interest regarding an object. With advances in tech-
nology, attributes have evolved to include more than simple data characteristics
as those represented in the previous example. Today, objects may include newer
attribute types, such as a picture, sound, or even video.

Let’s now consider the last aspect of our definition for an object—the behavior

of an object. This represents a substantially different way of viewing objects. When
you look at the door object within your environment, you may simply see a motion-
less object that is incapable of thinking—much less carrying out some action. In
object-oriented approaches to systems development, that door can be associated with
behavior that it is assumed can be performed. For example, the door can open, it can
shut, it can lock, or it can unlock. All of these behaviors are associated with the door
and are accomplished by the door and no other object.

Consider another object—a telephone. What behaviors can be associated with a
phone? With advances in technology we actually have phones that are voice-activated
and can answer, dial, hang up, and carry out other behaviors. Thus, object-oriented
approaches to systems development simply require an adjustment to how we com-
monly perceive objects.

Another important object-oriented principle is that an object is solely responsible
for carrying out any functions or behaviors that act on its own data (or attributes). For
example, only YOU (an object) may CHANGE (behavior) your LAST NAME and HOME ADDRESS

(attributes about you). This leads us to an important concept in understanding ob-
jects: encapsulation. Applied to an object, both attributes and behavior of the object
are packaged together.They are considered part of that object.The only way to access
or change an object’s attributes is through that object’s specific behaviors.

In object-oriented development, models depicting objects are often drawn. Let’s ex-
amine the modeling notation (signs and symbols) used to represent an object in these
object models. Figure 10-1(a) shows two object instances, each drawn using a rectangle
with the name of the object instance. The name consists of the value of the attribute
that uniquely identifies it, followed by a colon, and then the name of the class in which
the object has been categorized. The entire name phrase is centered in the rectangle
and is also underlined. In Figure 10-1(a) the attribute CUSTOMER NUMBER, whose value is

372 Part Two Systems Analysis Methods

attribute the data that

represents characteristics of

interest about an object.

behavior the set of things

that an object can do and that

correspond to functions that

act on the object’s data (or

attributes). In object-oriented

circles, an object’s behavior is

commonly referred to as a

method, operation, or service

(we may use the terms inter-

changeably throughout our

discussion).

object instance each

specific person, place, thing,

or event, as well as the values

for the attributes of that object.

Sometimes referred to simply

as an object.

encapsulation the packag-

ing of several items together

into one unit.

object something that is or

is capable of being seen,

touched, or otherwise sensed

and about which users store

data and associate behavior.

F I G U R E 1 0 - 1

Object Instances

customerNumber = 412209

lastName = Bentley

firstName = Lonnie

homePhone = 765-463-9593

street = 2625 Darwin Dr.

city = West Lafayette

state = Indiana

zipcode = 47906

etc.

412209 : Customer

orderNumber = 3221345

orderDate = 10/28/2002

shippingMethod = fedex

shippingCost = 12.75

totalCost = 574.35

etc.

3221345 : Order

(a)
412209 : Customer 3221345 : Order

(b)

A “CUSTOMER”

Object Instance

An “ORDER”

Object Instance

412209, uniquely identifies that instance of CUSTOMER. Thus, 412209 is the name of the
object instance and CUSTOMER is its classification. Optionally, the object instance can also
be drawn as shown in Figure 10-1(b). The attribute values for the object instance are
recorded within the symbol and are separated from the object name by a line.

> Classes, Generalization, and Specialization

Another important concept of object modeling is the concept of categorizing objects
into object classes. Let’s consider some of the objects within your current environ-
ment. It would be natural for you to classify both your Systems Analysis and Design

Methods textbook and another textbook, such as Introduction to Programming, as
BOOKs [see Figure 10-2(a)]. Both these object instances have some similar attributes
and behavior. For example, similar attributes might be ISBN NUMBER, TITLE, COPYRIGHT

DATE, EDITION, and so on. Likewise, they have similar behavior, such as being able to
OPEN and CLOSE. There may be several other objects within your environment that
could be classified because of their similarities. For example, you and other individu-
als in the room might be classified as PERSON.

How are object classes represented in object modeling using the UML notation? As
depicted in Figure 10-2(b), they are drawn very similar to an object instance, except that
the values of the attributes are omitted and the name of the class is not underlined. In ad-
dition, the class symbol may include a list of behaviors. Also, as shown in Figure 10-2(b),
to simplify the appearance of diagrams containing numerous object class symbols, some-
times the object classes are drawn without the list of behaviors and attributes. Most ob-
ject modeling tools allow you to do this in order to customize the model to your liking.

We can also recognize subclasses of objects [see Figure 10-3(a)]. For example,
some of the individuals in the room might be classified as STUDENTS and others
as TEACHERS. Thus, STUDENT and TEACHER object classes are members of the object class
PERSON. When levels of object classes are identified, the concept of inheritance

is applied.
The approach that seeks to discover and exploit the commonalities between object

classes is referred to as generalization/specialization. In examining Figure 10-3(b),
you notice that the object classes STUDENT and TEACHER contain attributes and behaviors

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 373

object class a set of object

instances that share the same

attributes and behaviors.

Often referred to simply as

a class.

inheritance the concept

wherein methods and/or

attributes defined in an object

class can be inherited or

reused by another

object class.

generalization/
specialization a technique

wherein the attributes and

behaviors that are common to

several types of object classes

are grouped (or abstracted)

into their own class, called a

supertype. The attributes

and methods of the supertype

object class are then inherited

by those object classes

(subtypes). Sometimes

abbreviated as gen/spec.

(a)

(b)

A "Book"
Object Instance

ISBN = 0-07-231-539-3

title = Systems Analysis and Design Methods

copyrightDate = 2001

edition = 5th

0-07-231539-3 : Book

-ISBN

-title

-copyrightDate

-edition

Book

ISBN = 0-09-425685-4

title = Introduction to Programming

copyrightDate = 2001

edition = 2nd

0-09-425685-4 : Book

A "Book"
Object Instance

A "Book"
Object Class

Book

+open()

+close()

-ISBN

-title

-copyrightDate

-edition

Book

(Displaying name only)

(Displaying name and

attributes)

(Displaying name,

attributes, and

behaviors)

F I G U R E 1 0 - 2 Representing Object Classes in the UML

which are unique to them (making them more specialized) but that they also have
access to the generalized attributes and behaviors of the PERSON object class via
inheritance.

In our example, the object class PERSON is referred to as a supertype (or general-
ization class) whereas STUDENT and TEACHER are referred to as subtypes (or specializa-
tion classes). The object class supertype will have one or more one-to-one

relationships to object class subtypes because, in our example, any one person (object
instance) will be at most one teacher or one student or possibly both. Also, any
one teacher will be only one person. These relationships are sometimes called “is a”
relationships because of how you express the relationship in a sentence. For example,
“A STUDENT is a type of PERSON” or “A TEACHER is a type of PERSON.”

In object-oriented systems development, objects are categorized according to
classes and subclasses. Identifying classes realizes numerous benefits. For example,
consider the fact that a new attribute of interest, called GENDER, needs to be added to
both the teacher and the student object classes. Because the attribute is common to
both, the attribute could be added once, to the class PERSON—implying that both the
teacher and the student object classes will inherit that attribute. Looking down the
road toward program maintenance, we note that the implication is substantial. Pro-
gram maintenance is enhanced by the need to simply make modifications in one
place. For example, let’s assume the attribute LAST NAME currently had a field size of
15 characters. Let’s also assume that through analysis of our data we found many last

374 Part Two Systems Analysis Methods

supertype an entity that

contains attributes and behav-

iors that are common to one

or more class subtypes. Also

referred to as abstract or

parent class.

subtype an object class that

inherits attributes and

behaviors from a supertype

class and then may contain

other attributes and behaviors

that are unique to it. Also re-

ferred to as child class and,

if it exists at the lowest level

of the inheritance hierarchy,

as concrete class.

Person Class

(supertype)

Student Class

(subtype)

Teacher Class

(subtype)

Student A Student B Student C Teacher A Teacher B

(a)

(b)

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

Person

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

Person

enroll

display GPA

GPA

classification

Student

enroll

display GPA

GPA

classification

Student

lecture

rank

Teacher

lecture

rank

Teacher

Inheritable

Attributes

and

Behaviors

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

+ +

Generalization Specialization

F I G U R E 1 0 - 3 Supertype and Subtype Relationships between Object Classes

names that were more than 15 characters. Because of this we need to change the LAST

NAME attribute field size to 25 to be able to hold the entire values of all last names. By
taking advantage of inheritance, we have to make that change only once in the PERSON

class. Without inheritance, we would have had to make a change to both the STUDENT

and the TEACHER classes.The preceding example is fairly simple, but considering that a
large application may contain dozens of classes with hundreds of attributes and

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 375

walk()

jump()

talk()

sleep()

eat()

etc.()

lastName

firstName

birthdate

gender

Person

enroll()

displayGPA()

GPA

classification

Student

lecture()

rank

Teacher

Arrowhead indicates

generalization/specialization

relationship

F I G U R E 1 0 - 4

Representing a
Generalization/
Specialization
Relationship Using
the UML

behaviors, the time and money saved by having to make modifications in only one
place is considerable.

How is generalization/specialization (supertype, subtype classes) depicted using
the UML notation? Figure 10-4 illustrates how to depict the supertype-subtype rela-
tionship between the PERSON, STUDENT, and TEACHER object classes. All the attributes and
behaviors of the PERSON object class are inherited by the STUDENT and TEACHER object
classes. The attributes and behaviors that uniquely apply to a STUDENT or TEACHER are
recorded directly in the subtype class symbol.

> Object Class Relationships

Conceptually, objects do not exist in isolation. The things that they represent interact
with and impact one another to support the business mission. Thus an object class

relationship is inevitable.You, for example, interact with this textbook by reading it,
a telephone by using it, and perhaps other individuals in the room by communicating
with them. Similarly, objects interact with other objects within a systems environment.
Consider, for example, the object classes CUSTOMER and ORDER that may exist in a typi-
cal information system. We can make the following business assertions about how
customers and orders are associated (or interact):

• A CUSTOMER PLACES zero or more ORDERS.
• An ORDER IS PLACED BY one and only one CUSTOMER.

We can graphically illustrate this association between CUSTOMER and ORDER as
shown in Figure 10-5(a). The connecting line represents a relationship between the

376 Part Two Systems Analysis Methods

object class relationship
a natural business association

that exists between one or

more objects and classes.

(a)

(b)

Multiplicity

UML

Multiplicity

Notation

Association with Multiplicity
Association

Meaning

1

— or —

— or —

leave blank

DepartmentEmployee
1Works for

DepartmentEmployee

Works for

 0..1

SpouseEmployee
0..1Has

0..*

*

PaymentCustomer

Makes 0..*

PaymentCustomer

Makes *

 1..*

CourseUniversity

Offers 1..*

Exactly 1

Zero or 1

Zero or

more

1 or more

Specific

range
7..9

GameTeam
7..9

Has

scheduled

An employee

works for one

and only one

department.

An employee has

either one or no

spouse.

A customer can

make no payment

up to many

payments.

A university

offers at least 1

course up to

many courses.

A team has either

7, 8, or 9 games

scheduled.

0..*
Customer Order

Places

F I G U R E 1 0 - 5 Object/Class Associations and Multiplicity Notations

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 377

378 Part Two Systems Analysis Methods

classes. UML refers to this line as an association, and we will use this term through
the remaining parts of this chapter. The verb phrase describes the association. All
relationships are implicitly bidirectional, meaning that they can be interpreted in both
directions (as suggested by the above business assertions).

Figure 10-5(a) also shows the complexity or degree of each association. For
example, for the above business assertions, we must also answer the following
questions:

• Must there exist an instance of CUSTOMER for each instance of ORDER? (Yes)
• Must there exist an instance of ORDER for each instance of CUSTOMER? (No)
• How many instances of ORDER can exist for each instance of CUSTOMER? (Many)
• How many instances of CUSTOMER can exist for each instance of ORDER? (One)

We call this concept multiplicity. Because all associations are by default bidirec-
tional, meaning the CUSTOMER class “knows about” the ORDER class and the ORDER class
“knows about” the CUSTOMER class, multiplicity must be defined in both directions for
every association. The possible UML graphical notation for multiplicity between
classes is shown in Figure 10-5(b). If you have learned data modeling in Chapter 8,
you will realize that multiplicity is essentially the same concept as cardinality. The
notations are different, but the relationships are nearly the same.

Some objects are made up of other objects. For example if you buy something
over the Internet, your one order could be composed of multiple items (a CD, a DVD,
a book, etc.). Other examples include a club, which is made up of several club mem-
bers, and a computer contains a case, CPU, motherboard, power supply, and so on.
This kind of relationship is called aggregation. This relationship is characterized by
the phrases “whole-part” and “is part of.”

Composition is a stronger form of aggregation. Think of the word component

for composition. In composition the “whole” is completely responsible for the cre-
ation and destruction of its parts, and each “part” is associated to only one “whole” ob-
ject. The relationship between club and club member would not be composition,
because members have a life outside the club and can, in fact, belong to multiple
clubs. But the Internet order and order items would be composition. If you cancel the
order, then all the items on that order will get canceled with it. A behavior performed
on the whole will also be performed on all its parts. For example, if we printed the
order, each order item would be automatically printed also.

In earlier versions of UML, aggregation was drawn with a hollow diamond, with
the diamond connected to the “whole” object class, as shown in Figure 10-6(a). Notice
that multiplicity must be specified for both sides of the relationship.

Composition is drawn with a filled diamond, as shown in Figure 10-6(b). Because
each “part” can belong to only one “whole,” multiplicity needs to be specified only for
the “part.” Figure 10-6(b) also illustrated multilevel composition. A book is composed
of chapters, which are each composed of pages, and so forth.

In UML 2.0 the notation for aggregation has been dropped. Why? While the com-
position relationship has definite distinctions that play out in programming, aggrega-
tion has always been more indistinct. For example, couldn’t the relationship between
club and club member simply be a one-or-more association between independent ob-
ject classes? Because of this, some practitioners consider aggregation (the weaker
form) to be essentially meaningless in any practical sense.

> Messages and Message Sending

Object classes interact or “communicate” with one another by passing messages.

Recall the concept of encapsulation, wherein an object is a package of attributes and
behavior. Only that object can perform its behavior and act on its data.

Let’s consider the CUSTOMER and ORDER objects mentioned earlier. A CUSTOMER

object checking the current status of an ORDER sends a message to an ORDER object by

multiplicity the minimum

and maximum number of oc-

currences of one object class

for a single occurrence of the

related object class.

aggregation a relationship

in which one larger “whole”

class contains one or more

smaller “parts” classes.

Conversely, a smaller “part”

class is part of a “whole”

larger class.

composition an aggrega-

tion relationship in which the

“whole” is responsible for the

creation and destruction of its

“parts.” If the “whole” were to

die, the “part” would die with it.

message communication

that occurs when one object

invokes another object’s

method (behavior) to request

information or some action.

Book

Cover Table of Contents Chapter Index

Page

Paragraph

Word

1 1..*0..1 0..1

1..*

0..*

1..*

(a)

Team

Player

0..*

12..18

(b)

Solid diamond indicates

composition aggregation

relationship.

Hollow diamond indicates

basic aggregation

relationship. UML 1.X notation.

(Whole)

(Part)

F I G U R E 1 0 - 6 Aggregation Relationships

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 379

Customer
addOrder

modifyOrder

deleteOrder

displayStatus

etc.

orderNumber

orderDate

orderStatus

etc.

Order

display order status

of order 23161

MESSAGE

REQUEST
(containing name of requested behavior

plus criteria needed by ORDER)

invoking the ORDER object’s display status behavior (a behavior that accesses and
displays the ORDER STATUS attribute).

The object sending a message does not need to know how the receiving object
is organized internally or how the behavior is to be accomplished, only that it
responds to the request in a predefined way.This concept of messaging is illustrated
in Figure 10-7. A message can be sent only between two objects that have an
association. Chapter 18 presents a discussion on how to document and specify
messages.

> Polymorphism

An important concept that is closely related to messaging is polymorphism. Let’s
consider the WINDOW and DOOR objects within your environment. Both objects have a
common behavior that they may perform; they may both close. How a DOOR object
carries out that behavior may differ substantially from the way in which a WINDOW car-
ries out that behavior. A DOOR “swings shut”; a WINDOW “slides downward.” Thus, the
behavior close may take on two different forms. Once again, let’s consider the WINDOW

object. Not all WINDOWS would actually accomplish the close behavior in the same
way. Some WINDOW objects, like DOOR objects, swing shut! Thus, the close behavior
takes on different forms for a given object class.

Polymorphism is applied in object-oriented applications when a behavior in the
supertype needs to be overridden by a behavior in the subtype. Examine the gener-
alization/specialization relationship in Figure 10-8. The EMPLOYEE class contains a
behavior called “compute pay” to calculate how much each EMPLOYEE will be paid.
Because FULL-TIME EMPLOYEES and PART-TIME EMPLOYEES get paid differently (full-time em-
ployees receive an annual salary in 52-week increments, and part-time employees get
paid only for the hours they work), two behaviors that perform different calculations
are required. But because of polymorphism, the behaviors can be named the same to
simplify message sending.The subtype that requires the unique behavior will contain
in its behavior list the same behavior that is listed for its parent (supertype).When the
PART-TIME EMPLOYEE object receives a message to “compute pay,” it will automatically use
the compute-pay behavior in its own behavior list because it overrides what it inher-
its from its parent. Polymorphism is very useful when making enhancements to an ex-
isting system, because adding new classes to an existing generalization/specialization
relationship in order to satisfy new business rules or requirements may not be possible
or practical.

So how is polymorphism related to message sending? Once again, the request-
ing object knows what service (or behavior) to request and from which object.
However, the requesting object does not need to worry about how a behavior is
accomplished.

380 Part Two Systems Analysis Methods

F I G U R E 1 0 - 7

Messaging

polymorphism literally

meaning “many forms,” the

concept that different objects

can respond to the same

message in different ways.

override a technique

whereby a subclass (subtype)

uses an attribute or behavior

of its own instead of an attri-

bute or behavior inherited

from the class (supertype).

F I G U R E 1 0 - 8

Overriding
Behaviors

computePay()

employeeID

lastName

firstName

birthdate

gender

Employee

computeTaxDeduction

annualSalary

Full-Time Employee

computePay(hours)

hourlyWage

Part-Time Employee

The UML Diagrams

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 381

Think of the UML diagrams as if they were blueprints for constructing a house.Where
a set of blueprints typically provides the builder with perspectives for plumbing, elec-
tricity, heating, air conditioning, and the like, each UML diagram provides the devel-
opment team with a different perspective on the information system.

Figure 10-9 describes the 13 diagrams of UML 2.0. This list is organized not
alphabetically but in an order that allows the description of each diagram to build on
the descriptions of those above it. It would take an entire college course to cover
each diagram in depth. As we study an overview of the systems analysis life cycle,
three chapters will delve into the core UML diagrams:

Chapter 7—FAST requirements analysis phase.
• Use-case diagrams.

Chapter 10—FAST logical design phase.
• Activity diagrams.
• System sequence diagrams (a high-level kind of sequence diagram).
• Class diagrams.

Chapter 18—FAST physical design phase.
• Sequence diagrams.
• Class diagrams (with more detail).
• State machine diagrams.
• Communication diagrams.
• Component diagrams.
• Deployment diagrams.

382 Part Two Systems Analysis Methods

F I G U R E 1 0 - 9 UML 2.0 Diagrams

Diagram Description

Use case Depicts the interactions between the system and external systems and users. In other words,
it graphically describes who will use the system and in what ways the user expects to interact
with the system. The use-case narrative is used, in addition, to textually describe the
sequence of steps of each interaction.

Activity Depicts the sequential flow of activities of a use-case or business process. It can also be used
to model logic with the system.

Class Depicts the system’s object structure. It shows object classes that the system is composed of as
well as the relationships between those object classes.

Object Similar to a class diagram, but instead of depicting object classes, it models actual object
instances with current attribute values. The object diagram provides the developer with a
snapshot of the system’s object at one point in time.

State machine Models how events can change the state of an object over its lifetime, showing both the
various states that an object can assume and the transitions between those states.

Composite structure Decomposes the internal structure of a class, component, or use case.

Sequence Graphically depicts how objects interact with each other via messages in the execution of a
use case or operation. It illustrates how messages are sent and received between objects and
in what sequence.

Communication Called a collaboration diagram in UML 1.X, it depicts the interaction of objects via
messages. Thus, it is similar to a sequence diagram. But while a sequence diagram focuses
on the timing or sequence of messages, a communication diagram focuses on the structural
organization of objects in a network format.

Interaction overview Combines features of sequence and activity diagrams to show how objects interact within
each activity of a use case.

Timing Another interaction diagram that focuses on timing constraints in the changing state of a
single object or group of objects. A timing diagram is especially useful when designing
embedded software for devices.

Component Depicts the organization of programming code divided into components and how the
components interact.

Deployment Depicts the configuration of software components within the physical architecture of the
system’s hardware “nodes.”

Package Depicts how classes or other UML constructs are organized into packages (corresponding to
Java packages or C++ and .NET namespaces) and the dependencies of those packages.

The Process of Object Modeling

As mentioned earlier, in performing object-oriented analysis (OOA), as with any other sys-
tems analysis method, the purpose is to gain a better understanding of the system and its
functional requirements. In other words, OOA requires that we identify the required sys-
tem functionality from the user’s perspective and identify the objects, along with their
data attributes, associated behavior, and relationships, which support the required system
functionality. In Chapter 7 you were introduced to use-case modeling, which is used to
identify required system functionality. In this chapter you will learn to refine the use-case
model created in Chapter 7, learn to document complex use cases with activity dia-
grams, and learn to perform object modeling to document the identified objects and the
data and behavior they encapsulate, plus their relationships with other objects.

There are three general activities in performing object-oriented analysis:

1. Modeling the functions of the system.
2. Finding and identifying the business objects.
3. Organizing the objects and identifying their relationships.

> Modeling the Functional Description of the System

Recall that in Chapter 7 you were taught the process of use-case modeling to docu-
ment functional system requirements using business requirements use cases. During
this activity the use cases were documented to contain only general information
about the business event.The goal was to quickly document all of the business events
(use cases) in order to define and validate requirements. In performing object-
oriented analysis, each previously defined use case will be refined to include more
and more detail based on the facts we learned throughout the development process,
such as user interface requirements.To prepare to perform object modeling, we need
to evolve the business requirements use-case model into the analysis use-case model.

> Constructing the Analysis Use-Case Model

In object-oriented analysis we evolve the requirements use-case model into the analysis
use-case model by performing the following steps:

1. Identify, define, and document new actors.
2. Identify, define, and document new use cases.
3. Identify any reuse possibilities.
4. Refine the use-case model diagram (if necessary).
5. Document system analysis use-case narratives.

Step 1: Identify, Define, and Document New Actors Between the time the busi-
ness requirements use-case model was created and the time it is subsequently ap-
proved by the system owners, the systems analyst and the rest of the development
team, through talking with stakeholders and researching project artifacts, continue to
learn more about what is required in order for the system to be successful. During
these efforts it is possible that additional actors may be discovered and thus need to
be defined and documented. For example, when analyzing the Place New Order use
case (see Figure 7-13) initiated by the CLUB MEMBER, we identified the need for the CLUB

MEMBER to be able to enter the order information via the Internet, but the member
could also submit orders by mail. For the order information to be input into the sys-
tem, someone else would have to interact with the system to accomplish this, thus the
need for another actor.The newly identified actor named Member Services Associate,

along with any other new actors, would need to be defined in the actor glossary
previously prepared (Figure 7-8).

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 383

Step 2: Identify, Define, and Document New Use Cases The new actor MEMBER

SERVICES ASSOCIATE, discovered in step 1, leads to a new interaction with the system—
thus a new use case. As a general rule of thumb, each type of user interface used to
process a business event will require its own use case. Using the banking industry as
an example, the use case of making a deposit at an ATM machine will be different
from the use case of making a deposit using a bank teller. The goal of the process is
the same and many of the steps will be the same, but the actual system user may be
different or how the user interacts with the system using a specific technology (ATM
machine versus a workstation with a GUI designed for a bank teller) may be different.
The newly identified use cases would need to be defined in the use-case actor glos-
sary previously prepared.

Step 3: Identify Any Reuse Possibilities As stated in step 2 above, when you
have two use cases that have the same business goal but the interface technology or
the actual system user may be different, both use cases may share common steps. As
you recall from Chapter 7, to eliminate redundant steps, we can extract these com-
mon steps into their own separate use case called an abstract use case. In addition,
when we analyze the use cases and find a use case that contains complex function-
ality consisting of several steps, making it difficult to understand, we can extract the
more complex steps into their own use case called an extension use case. These
new use cases would also be defined in the use-case glossary previously prepared.

Step 4: Refine the Use-Case Model Diagram (if Necessary) With the discov-
ery of new actors and/or use cases, we now would update the use-case model dia-
gram previously constructed (see Figure 7-10) to include these items. Figure 10-10

384 Part Two Systems Analysis Methods

Determine
Distribution Center

& Release

Enter New
Member Order

Revise
Promotion

Submit New
Promotion

Establish
New Member
Subscription

Program

Submit
Subscription

Renewal Order

Establish Past
Member

Resubscription
Program

Submit
Subscription

Program Changes

Submit Member
Profile Changes

Submit
Subscription Order

Revise Order Place New Order

Cancel Order

Make Product
Inquiry

Make Purchase
History inquiry

Generate Daily 10-
30-60-Day Default
Agreement Report

Operations Subsystem

Order Subsystem

Promotion Subsystem

Subscription Subsystem

Time
M a r k e t i n g

Past Member

Club

Member

Member Services

Associate

Potential Member

initiates

initiates

initiates

initiates

initiatesinitiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

<<uses>>

<<uses>>

initiates

F I G U R E 1 0 - 1 0 Revised Member Services System Use-Case Model Diagram

is the revised use-case model diagram, which includes the newly identified actor
MEMBER SERVICES ASSOCIATE and the newly identified use cases Enter New Member

Order and Determine Appropriate Distribution Center and Release Order to Be

Filled.

Step 5: Document System Analysis Use-Case Narratives Once all business
requirements use cases have been reviewed and approved by the users, each use
case will be refined to include more information in order to specify the system
functionality in detail. The resulting use cases are called system analysis use

cases and still should be free of most implementation details except high-level
information describing the means (Windows GUI, Internet browser, telephony,
etc.) the system user will use to interact with the system. System analysis use
cases include a narrative from the perspective of the system user and are more
conversational (with the system) in nature than business requirements use cases.
Figures 10-11 and 10-12 are evolutions of the business requirements use case Place

New Order. Figure 10-11 depicts the CLUB MEMBER as the primary system actor, using
the system to enter the order, and Figure 10-12 depicts the MEMBER SERVICES ASSOCIATE

using the system to enter the order from the information received from the club
member.

System analysis use cases will be further refined during the design phases of the
life cycle to specify the how or implementation specifics. It is important that all open
issues and to be determines (TBDs) be resolved before going forward into design be-
cause such decisions may impact the nature of the design. Please note the additional
elements found in system analysis use cases.

Use-case type—In performing use-case modeling, the first cases to be con-
structed are business requirements use cases, which focus on the strategic
vision and goals of the various stakeholders. This type of use case is business-
oriented and reflects a high-level view of the desired behavior of the system.
It is free from technical details and may include both manual activities and
the activities that will be automated. Business requirements use cases provide
a general understanding of the problem domain and scope, but they don’t
include the necessary detail to communicate to developers what the system
should do.

To reflect implementation details such as user interface constraints, tacti-
cal use cases, called system use cases, are derived from the business use
cases. One or more system analysis use cases may evolve from a single busi-
ness use case. Developers use this type of use case to specify detailed
requirements, assist in estimating and planning, communicate programming
requirements, and form the basis for user documentation. Each system use
case corresponds to a test case that will be executed to verify that the
system satisfies the customer’s requirements.

System use cases continue to be refactored throughout the systems
development life cycle. In following an iterative approach to development, it
is wise to track where each use case is in terms of its evolution from the
requirements level through analysis and on to design.
Primary system actor—The primary system actor is the stakeholder that
actually uses and interfaces with the system. It is for this stakeholder that the
interface must be designed.
Abstract use case—Example of calling an abstract use case.

Documenting Abstract and Extension Use-Case Narratives Documenting the
narratives of extension and abstract use cases is very similar to documenting regular
use cases, but there are a few major differences. Abstract and extension use cases
are not initiated by actors; they are invoked by other use cases. Also, abstract and
extension use cases tend to be much shorter and don’t require as many data fields.

3

2

1

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 385

system analysis use case
a use case that documents

the interaction between the

system user and the system. It

is highly detailed in describing

what is required but is free of

most implementation details

and constraints.

Member Services System
Author(s): K. Dittman 11/01/02

1.00

Date:

Version:

Use Case Name: Place New Order Use Case Type

Use Case ID: MSS-SUC002.00 Business Requirements:

Priority: High

Source: Requirement — MSS-R1.00

Requirements Use Case — MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias — Active Member, Member)

Club Member (Alias — Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias — Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products via

the World Wide Web. The member selects the items he or she wishes to purchase. Once the member

has completed shopping, the member’s demographic information as well as account standing will be

validated. Once the products are verified as being in stock, a packing order is sent to the warehouse for

it to prepare the shipment. For any product not in stock, a back order is created. On completion, the

member will be sent an order confirmation.

The individual submitting the order must be an active club member.

The member must log in to the system (provide identification) to enter an order.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by displaying the catalog of the

SoundStage products.

Step 4: Once the member has completed the selections, the

system retrieves from file and presents the member’s demographic

information (shipping and billing addresses).

Step 6: For each product ordered, the system verifies the product

availability and determines an expected ship date, determines the

price to be charged to the member, and determines the cost of the

total order. If an item is not immediately available, it indicates the

product is back-ordered or that it has not been released for shipping

(for preorders). If an item is no longer available, that is indicated also.

The system then displays a summary of the order to the member for

verification.

Step 7: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 8: The system checks the status of the member’s account. If

satisfactory, the system prompts the member to select the desired

payment option (to be billed later or pay immediately with a credit

card).

Step 9: The member responds by

selecting the desired payment

option.

Step 10: The system displays a summary of the order, including the

desired payment option, to the member for verification.

Step 12: The system records the order information (including back

orders if necessary).

Step 13: Invoke abstract use case MSS-AUC001.00, Determine

Appropriate Distribution Center and Release Order to Be Filled.

Step 14: Once the order is processed, the system generates an

order confirmation and displays it to the member as well as sending

it to the member via e-mail.

Step 1: The member requests the

option to enter a new order.

Step 11: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 3: The member browses

the available items and selects

the ones he or she wishes to

purchase, along with the quantity.

Step 5: The member verifies

demographic information

(shipping and billing addresses).

If no changes are necessary, the

member responds accordingly

(to continue).

Typical Course
of Events:

System Analysis: √
1

2

3

386 Part Two Systems Analysis Methods

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 3: The member enters search criteria to retrieve a specific item or to display a reduced list of

items to browse and order from.

Alt-Step 12: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 11: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail

addresses and tells the system to store them accordingly. The system will validate the changes and, if

successful, will store the new information to file.

Alt-Step 7: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 8: If the member’s account is not in good standing, display to the member the account status,

the reason the order is being held, and what actions are necessary to resolve the problem. In addition,

an e-mail is sent to the member with the same information. The system prompts the member to hold the

order for later processing or cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alt-Step 10: If the member selects the option to pay by credit card, the system prompts the member to

enter the credit card information (number and expiration date) and reminds the member that the billing

address on file must match the billing address of the credit card provided. The member enters the

required information and requests that the system continue. The system validates the credit card account

provided. If the account cannot be validated, the system notifies the member and requests an alternative

means of payment. If the member cannot provide an alternative means at this time, he or she can choose

either to hold or to cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released to the distribution

center. For any product not available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the member 24 ⫻ 7.

Frequency — It is estimated that this use case will be executed 3,500 times per day. It should

support up to 50 concurrent members.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

F I G U R E 1 0 - 1 1 Place New Order Use Case

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 387

Member Services System
Author(s): K. Dittman 11/01/02

1.00

Date:

Version:

Use Case Name: Enter New Member Order Use Case Type

Use Case ID: MSS-SUC003.00 Business Requirements:

Priority: High

Source: Requirement — MSS-R1.00

Requirements Use Case — MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias — Active Member, Member)

Member Services Associate (Alias — User)

Other
Participating
Actors:

•
•

Warehouse (Alias — Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a Member Services Associate entering a new order for SoundStage

products that either has been submitted by mail by a member or is being telephoned in by a member.

The member’s demographic information as well as account standing will be validated. Once the products

are verified as being in stock, a packing order is sent to the distribution center for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

The individual submitting the order must be a member.

The Member Services Associate must be logged in to the system.

This use case is initiated when the Member Services Associate selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by prompting the user to enter the ID or
name of the member submitting the order.

Step 4: The system retrieves the member’s demographic information
on file and displays it to the user. If there are multiple members who
match the criteria provided by the user, the system displays a list and
prompts the user to select the correct one.

Step 6: The system responds by prompting the user to enter the ID
and quantity of each item to be ordered.

Step 7: The Member Services
Associate enters the ID and
quantity of each item provided.

Step 8: For each product ordered, the system validates the product
identity.

Step 10: The Member Services
Associate verifies the order with
the information provided by the
member. If no changes are
necessary, the associate responds
accordingly (to continue).

Step 9: For each product ordered, the system verifies the product
availability and determines an expected ship date, determines the
price to be charged to the member, and determines the cost of the
total order. If an item is not immediately available, it indicates that the
product is back-ordered or that it has not been released for shipping
(for preorders). If an item is no longer available, that is indicated also.
The system then displays a summary of the order to the user for
verification.
Step 11: The system checks the status of the member’s account. If
satisfactory, the system prompts the user to select the desired payment
option (to be billed later or pay immediately with a credit card).

Step 1: The Member Services
Associate request the option to
enter a new order.

Step 3: The Member Services
Associate provides the member
name or ID.

Step 5: The Member Services
Associate verifies demographic
information (shipping and billing
addresses). If no changes are
necessary, the associate responds
accordingly (to continue).

Typical Course
of Events:

System Analysis: √

Precondition:

388 Part Two Systems Analysis Methods

F I G U R E 1 0 - 1 2 Enter New Member Order Use Case

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 4: If the member cannot be found on file, notify user of discrepancy.

Alt-Step 4: If the order requires changes, the user can delete any item no longer wanted or change the
order quantity. Once the member has completed the order changes, the system reprocesses the order
(go to step 8)

Alt-Step 15: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 14: If the order requires changes, the user can delete any item no longer wanted or change
the order quantity. Once the member has completed the order changes, the system reprocesses the
order (go to step 8).

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail
addresses and tells the system to store them accordingly. The system will validate the changes and, if
successful, will store the new information to file.

Alt-Step 8: If the product information the member provided does not match any of SoundStage”s
products, the system displays the discrepancy to the user and prompts the user for clarification.
(Member Services Associate may have to contact member to resolve at a later time; if so, order may have
to be placed in hold status.)

Alt-Step 11: If the member’s account is not in good standing, display to the user the member account
status, the reason the order is being held, and what actions are necessary to resolve the problem.
(The Member Services Associate may have to contact the member to resolve at a later time. In addition, an
e-mail is sent to the member with the same information if the member has a valid e-mail account on file.)
The system prompts the user to hold the order for later processing or cancel the order. If the user wishes
to hold the order, the system records the order information and places it in hold status. If the user chooses
to cancel the order, the system clears the inputted information. Terminate the use case.

Alt-Step 13: If the user selects the option to pay by credit card, the system prompts the member to
enter the credit card information (number and expiration date) provided by the member and reminds the
user that the billing address on file must match the billing address of the credit card provided. The user
enters the required information and requests that the system continue. The system validates the credit
card account provided. If the account cannot be validated, the system notifies the user and requests an
alternative means of payment. If the user cannot provide an alternative means at this time, the user can
choose either to hold or to cancel the order. If the user wishes to hold the order, the system records the
order information and places it in hold status. If the user chooses to cancel the order, the system clears
the inputted information. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released. For any product not

available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the Member Services Associate from 7:00 A.M. to 9:00 P.M. EST.

Frequency — It is estimated that this use case will be executed 4,500 times per day. It should

support up to 25 concurrent users.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

Step 17: Once the order is processed, the system generates an
order confirmation and displays it to the Member Services Associate
as well as sending it to the member via e-mail or U.S. mail.

Step 16: Invoke abstract use case MSS-AUC001.00, Determine
Appropriate Distribution Center and Release Order to Be F illed.

Step 13: The system displays a final summary of the order, including
the desired payment option, to the user for verification.

Step 15: The system records the order information (including back
orders if necessary).

Step 12: The Member Services
Associate responds by selecting
the desired payment option
indicated by the member.

Step 14: The Member Services
Associate verifies the order. If no
changes are necessary they
respond accordingly
(to continue).

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 389

activity diagram a diagram

that can be used to graphically

depict the flow of a business

process, the steps of a use

case, or the logic of an object

behavior (method).

Member Services System

Author(s): K. Dittman 11/01/02

1.00

Date:

Version:

Use Case Name: Determine Appropriate Distribution Center and Release

Order to Be Filled.

Use Case Type

Use Case ID: MSS-AUC001.00

Abstract:

Priority: High

Source: MSS-SUC002.00

MSS-SUC003.00

Participating
Actors:

Warehouse (Alias — Distribution Center) (external receiver)•

Description: This use case describes the event of selecting the distribution center that services the shipping address

provided by the club member for a particular order. The order information (packing order) is then sent

(released) to that distribution center to be filled.

The order is ready to be released to the appropriate distribution center.Precondition:

Step 1: The system selects the appropriate distribution center based on the state and zip code of the

shipping address.

Step 2: Once the distribution center has been selected, a packing order containing the items to ship is

formatted.

Step 3: The packing order is transmitted to the distribution center (shipping and receiving system) to be

used to prepare the shipment.

Typical Course
of Events:

Alt-Step 1: If the shipping address is an international address, route the packing order to the

Indianapolis, IN, location.

Alternate
Courses:

The packing slip has been transmitted (released) to the appropriate distribution center.Postcondition:

Extension:

√

1

2

F I G U R E 1 0 - 1 3 Example of an Abstract Use-Case Narrative

Figure 10-13 is an example of an abstract use case. Please note the differences in
elements of the narrative.

Use-case type—An abstract use case is used when it’s invoked by two or
more use cases. An extension use case is used when it extends the function-
ality of a single use case.
Invoked by—The IDs or names of the use cases that invoke this particular
use case.

Please be aware that an abstract use case can invoke other abstract and/or extension
use cases and that an extension use case can invoke other abstract and/or extension
use cases—thus providing many avenues for use-case reusability.

After the system analysis use cases have been defined, they contain a level of
detail that is adequate for the objects involved in the use cases to be realistically iden-
tified. These objects represent things or entities in the business domain—things of
interest about which we would like to capture information. At this point, we will con-
centrate on describing these objects with a sentence or two. Later, we will expand
our definitions to contain more detailed facts that we learn about each object.

> Modeling the Use-Case Activities

The UML offers an additional diagram called an activity diagram to model the process
steps or activities of the system. They are similar to flowcharts in that they graphically
depict the sequential flow of activities of either a business process or a use case.They
are different from flowcharts in that they provide a mechanism to depict activities that

2

1

390 Part Two Systems Analysis Methods

occur in parallel. Because of this they are very useful to model actions that will be
performed when an operation is executing as well as the results of those actions—such
as modeling the events that cause windows to be displayed or closed. Activity diagrams
are flexible in that they can be used during both analysis and design. Figure 10-14 is an
example of an activity diagram constructed on the use case Enter New Member Order.

At least one activity diagram can be constructed for each use case. More than one can
be constructed if the use case is long or contains complex logic. System analysts use ac-
tivity diagrams to better understand the flow and sequencing of the use-case steps.

Figure 10-14 illustrates the following activity diagram notations:

Initial node—the solid circle representing the start of the process.
Actions—the rounded rectangles representing individual steps. The sequence
of actions makes up the total activity shown by the diagram.
Flow—the arrows on the diagram indicating the progression through the
actions. Most flows do not need words to identify them unless coming out of
decisions.
Decision—the diamond shapes with one flow coming in and two or more
flows going out. The flows coming out are marked to indicate the conditions.
Merge—the diamond shapes with two or more flows coming in and one
flow going out. This combines flows that were previously separated by deci-
sions. Processing continues with any one flow coming into the merge.
Fork—a black bar with one flow coming in and two or more flows going
out. Actions on parallel flows beneath the fork can occur in any order or
concurrently.
Join—a black bar with two or more flows coming in and one flow going
out, noting the end of concurrent processing. All actions coming into the
join must be completed before processing continues.
Activity final—the solid circle inside the hollow circle representing the end
of the process.

The activity diagram shown in Figure 10-14 graphically illustrates the steps of the
use case, but it does not specify who is doing those steps.That may not be a problem.
Often you draw an activity diagram just to get a handle on the logic. But if you want
to specify who does what, you can divide the activity diagram into partitions show-
ing the actions performed by a specific class or actor. Figure 10-15 is an activity dia-
gram for the Place New Order use case (Figure 10-11) with a simple one-dimensional
partitioning of actions by member and system. The partitions are often called swim

lanes because they resemble the lanes used by competition swimmers. An activity
diagram might have three or more swim lanes showing receiver actors.You could also
partition an activity diagram into a two-dimensional grid.

Figure 10-15 illustrates two additional features of activity diagrams:

Subactivity indicator—the rake symbol in an action indicates that this action
is broken out in another separate activity diagram. This helps you keep the
activity diagram from becoming overly complex.
Connector—A letter inside a circle gives you another tool for managing com-
plexity. A flow coming into a connector jumps to the flow coming out of a
connector with a matching letter.

These two examples do not exhaust all the functionality of activity diagrams. Ac-
tions can be invoked by signals based on time or an outside process. Actions can also
send signals as well as receive them.You can even indicate the passing of parameters
and other special kinds of information. But we have covered enough to get you
started in drawing activity diagrams.

So would you draw an activity diagram for every use case? No, save them for the
use cases (or even just sections of use cases) that have complex logic. Activity diagrams
can help you think through system logic.They also are useful for communicating that

10

9

8

7

6

5

4

3

2

1

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 391

F I G U R E 1 0 - 1 4 Activity Diagram of the Enter New Member Order Use Case

Receive New Member Order

Route to

Member Services Associate

Verify Club Member’s

Demographic Information

Update Club Member’s

Demographic Information

Record Ordered Product

Create Back Order

Contact Club Member

for Resolution

Finalize Order

Cancel Order
Send Order Confirmation Release Order to be Filled

Check Club Member’s

Account Status

[account status

not satisfactory]

[changes required]

[resolved]

[additional ordered

products to record]

[no changes required]

[product not in stock]

[problem not resolved]

2

1

3

4

5

6

7

8

F I G U R E 1 0 - 1 5 Activity Diagram with Partitioning of the Place New Order Use Case

Request Option to

Enter New Order

Display Products Matching

Search Criteria

Display Catalog of Products

Selects Products to Purchase

and Enters Quantity

Enter Search Criteria

Select Payment Option

Display Account

Status

Enter Credit

Card Information

Approve Order

Record Order

Cancel Order

Hold Order

Change Order

Display Payment

Options

Prompt for Credit

Card Information

Display Final

Order

Invoke Use Case

MSS-AUC001.00

Generate Order

Confirmation

[no search criteria]

[more

shopping]

[no changes required]

[opt to hold order

until problem resolved]

[opt to cancel order]

[credit card]

[credit card

validation problem]

[unsatisfactory]

[satisfactory]

[change

demographic

information]

Enter Changes to

Demographic Information

Validate Changes and

Update Stored Information

Check Member

Account Status

Retrieve Member Demographic

Information from File

B

A

A

9

10

A

B

Member Computer System

Process Order Request

Validate Credit Card

logic to programmers. Be careful, however, of trying to use them to communicate
logic to users. Nontechnical users may have trouble following them.You are better off
to employ use-case narratives with users.

> Guidelines for Constructing Activity Diagrams

The following list presents an excellent process for constructing activity diagrams:

• Start with one initial node as a starting point.
• Add partitions if they are relevant to your analysis.
• Add an action for each major step of the use case (or each major step an

actor initiates).
• Add flows from each action to another action, a decision point, or an end

point. For maximum precision of meaning, each action should have only one
flow coming in and one flow going out, with all forks, joins, decisions, and
merges shown explicitly.

• Add decisions where flows diverge with alternating routes. Be sure to bring
them back together with a merge.

• Add forks and joins where activities are performed in parallel.
• End with a single notation for activity final.

> Drawing System Sequence Diagrams

Another tool used by some OO methodologists in the logical design phase is the
system sequence diagram. As discussed earlier, a sequence diagram depicts how
objects interact with each other via messages in the execution of a use case or opera-
tion. We have not yet started analyzing the individual object classes; that will come
next as we build our first version of the class diagram. For now we are still thinking
about the system as a whole.

As we have said, the object-oriented world is driven by messages sent between
objects. A system sequence diagram helps us begin to identify the high-level messages
that enter and exit the system. Later these messages will become the responsibility of
individual objects, which will fulfill those responsibilities by communicating with
other objects. We will save that for Chapter 18.

Figure 10-16 shows a system sequence diagram for the Place New Order use case.
Note that the system sequence diagram does not include any of the alternative courses
of the use case. It depicts a single scenario, a single path through the use case. So a full
set of system sequence diagrams might have several diagrams for a single use case.

Figure 10-16 illustrates the following system sequence diagram notations:

Actor—the initiating actor of the use case is shown with the use case actor
symbol.
System—the box indicates the system as a “black box” or as a whole. The
colon (:) is standard sequence diagram notation to indicate a running
“instance” of the system.
Lifelines—the dashed vertical lines extending downward from the actor and
system symbols, which indicate the life of the sequence.
Activation bars—the bars that are set over the lifelines indicate the period of
time when the participant is active in the interaction. Some methodologists
leave them off the system sequence diagram, but we have included them to
be consistent with the full sequence diagram.
Input messages—horizontal arrows from the actor to the system indicate the
message inputs. The UML convention for messages is to begin the first word
with a lowercase letter and append additional words with an initial uppercase
letter and no space. In parentheses include any parameters that you know at
this point, following the same naming convention and separating individual

5

4

3

2

1

394 Part Two Systems Analysis Methods

system sequence
diagram a diagram that de-

picts the interaction between

an actor and the system for a

use case scenario.

F I G U R E 10-16

System Sequence
Diagram for Place

New Order Use Case

itemSelections(items,quantities)

Shipping and Billing Address

verifyDemographic(shipAddr,billAddr)

: MemberServicesSystem

Member

Order Summary

verifyOrder()

Payment Options

selectPayment(pymtType,ccNum,ccExpireDate)

Final Order Summary

finalizeOrder()

Order Confirmation

5

2

1

3

4

6

parameters with commas. You might wonder how the user will pass these
messages. The answer is that the user will interact with the user interface,
which will pass the messages for the user in the appropriate format. We’ll
say more about that in Chapter 18.
Output messages—horizontal arrows from the system to the actor are shown
as dashed lines. Since these take the form of Web forms, reports, e-mails, etc.
these messages do not need to use the standard notation, though you can if
you want.

Figure 10-17 is a system sequence diagram for a login validation illustrating the
following additional notations:

Receiver Actor—other actors or external systems that receive messages from
the system can be included.
Frame—a box can enclose one or more messages to divide off a fragment of
the sequence. These can show loops, alternate fragments, or optional (opt)
steps. For an optional fragment, the condition shown in square brackets indi-
cates the conditions under which the steps will be performed.

> Guidelines for Constructing System Sequence Diagrams

• Identify which scenario of the use case you will depict. The purpose of the
diagram is to discover messages, not to model logic. So though you can
include optional and alternate messages for an entire use case, it is more
important to clearly communicate a single scenario.

8

7

6

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 395

[numTries <= 3]

submitLogin(username,password)

[numTries > 3]

submitLogin(username,password)

failedAttempt(datetime,ip)

Invalid Login

: MemberServicesSystem

User

opt

opt

Sys Admin

7

8

F I G U R E 1 0 - 1 7 System Sequence Diagram for Login Validation

396 Part Two Systems Analysis Methods

• Draw a rectangle representing the system as a whole and extend a lifeline
under it.

• Identify each actor who directly provides an input to the system or directly
receives an output from the system. Extend lifelines under the actor(s).

• Examine the use-case narrative to identify system inputs and outputs. Ignore
messages inside the system. Draw each external message as a horizontal
arrow from the actor’s lifeline to the system or from the system to the actor.
Label inputs according to UML convention, which will help identify behav-
iors and attributes in business objects.

• Add frames to indicate optional messages with conditions. Frames can also
indicate loops and alternate fragments (these will be discussed in Chapter 18).

• Confirm that the messages are shown in the proper sequence from top to
bottom.

> Finding and Identifying the Business Objects

In trying to identify objects, many methodology experts recommend the technique of
searching the requirements document or other associated documentation and under-
lining the nouns that may represent potential objects. This could be a monumental
task. There are just too many nouns. Use-case modeling provides a solution to this
problem by breaking down the entire scope of a system into use cases.This abridged
format simplifies the technique and makes underlining the nouns more efficient. Let’s
now examine the steps involved to identify and find business objects for object mod-
eling during systems analysis.

Step 1: Find the Potential Objects This step is accomplished by reviewing each
use case to find nouns that correspond to business entities or events. For example,
Figure 10-18 depicts the use case Place New Order with all the nouns highlighted.
Each noun that is found in reviewing the use case is added to a list of potential objects
that will be analyzed further (see Figure 10-19).

Member Services System
Author(s): Date:

Version:

Use Case Name: Use Case Type

Use Case ID: MSS-SUC002.00 Business Requirements:

Priority: High

Source: Requirement — MSS-R1.00

Requirements Use Case — MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias — Active Member, Member)

Club Member (Alias — Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias — Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — interested in sales activity in order to plan new promotions.

Procurement — interested in sales activity in order to replenish inventory.

Management — interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a member submitting a new order for SoundStage products via the

World Wide Web. The member selects the items he or she wishes to purchase. Once the member has

completed shopping, the member’s demographic information as well as account standing will be

validated. Once the products are verified as being in stock, a packing order is sent to the distribution

center for it to prepare the shipment. For any product not in stock, a back order is created. On

completion, the member will be sent an order confirmation.

The individual submitting the order must be an active club member.

The member must log in to the system (provide identification) to enter an order.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by displaying the catalog of the

SoundStage products.

Step 4: Once the member has completed the selections, the

system retrieves from file and presents the member’s demographic

information (shipping and billing addresses).

Step 6: For each product ordered, the system verifies the product

availability and determines an expected ship date, determines the

price to be charged to the member, and determines the cost of the

total order. If an item is not immediately available, it indicates the

product is back-ordered or that it has not been released for shipping

(for preorders). If an item is no longer available, that is indicated also.

The system then displays a summary of the order to the member for

verification.

Step 7: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 8: The system checks the status of the member’s account. If

satisfactory, the system prompts the member to select the desired

payment option (to be billed later or pay immediately with a credit

card).

Step 9: The member responds by

selecting the desired payment

option.

Step 10: The system displays a summary of the order, including the

desired payment option, to the member for verification.

Step 12: The system records the order information (including back

orders if necessary).

Step 1: The member requests the

option to enter a new order.

Step 11: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 3: The member browses

the available items and selects

the ones he or she wishes to

purchase, along with the quantity.

Step 5: The member verifies

demographic information

(shipping and billing addresses).

If no changes are necessary, the

member responds accordingly

(to continue).

Typical Course
of Events:

System Analysis: √

Place New Order

F I G U R E 1 0 - 1 8 Sample Use-Case Narrative with Nouns Highlighted

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 397

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 3: The member enters search criteria to retrieve a specific item or to display a reduced list of

items to browse and order from.

Alt-Step 12: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 11: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail

addresses and tells the system to store them accordingly. The system will validate the changes and, if

successful, will store the new information to file.

Alt-Step 7: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 8: If the member’s account is not in good standing, display to the member the account status,

the reason the order is being held, and what actions are necessary to resolve the problem. In addition,

an e-mail is sent to the member with the same information. The system prompts the member to hold the

order for later processing or cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alt-Step 10: If the member selects the option to pay by credit card, the system prompts the member to

enter the credit card information (number and expiration date) and reminds the member that the billing

address on file must match the billing address of the credit card provided. The member enters the

required information and requests that the system continue. The system validates the credit card account

provided. If the account cannot be validated, the system notifies the member and requests an alternative

means of payment. If the member cannot provide an alternative means at this time, he or she can choose

either to hold or to cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released to the distribution

center. For any product not available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the member 24 ⫻ 7.

Frequency — It is estimated that this use case will be executed 3,500 times per day. It should

support up to 50 concurrent members.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

Step 13: Invoke abstract use case MSS-AUC001.00, Determine

Appropriate Distribution Center and Release Order to Be F illed.

Step 14: Once the order is processed, the system generates an

order confirmation and displays it to the member as well as sending

it to the member via e-mail.

F I G U R E 1 0 - 1 8 (Concluded)

398 Part Two Systems Analysis Methods

F I G U R E 1 0 - 1 9 Member Services System Potential Object List

Accounts receivable

Actions

Active Member

Available Items

Back Order

Back-Ordered

Billing Addresses

Catalog

Club Member

Company Performance

Credit Card

Credit Card Expiration Date

Credit Card Number

Credits

Customer Satisfaction

Daily Report

Demographic Information

Distribution Center

E-Mail

E-Mail Addresses

Event

Expected Ship Date

External Receiver

External Server

File

Hold Status

Identification

In Stock

Individual

Inventory

Items

Main Page

Management

Marketing

Member

Member Account Standing

Member’s Account Status

New Order

New Promotions

Option

Order Activity

Order Confirmation

Order Total Cost

Ordered Products

Packing Order

Payment Option

Preorders

Price to Be Charged

Problem

Procurement

Product Availability

Product Ordered

Promotion

Purchase

Quantity

Reason

Requirement

Requirements Use Case

Sales Activity

Search Criteria

Selections

Shipment

Shipping Address

Shopping

SoundStage Products

Summary of the Order

System

Warehouse

World Wide Web

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 399

Step 2: Select the Proposed Objects Not all of the candidates (nouns) on our list
represent useful business objects that are within the scope of our problem domain.
By analyzing each candidate and asking the following questions, we can determine
whether the candidate should stay or be removed from the list:

• Is the candidate a synonym of another object? In other words, is it really the
same object with a different name?

• Is the candidate outside the scope of the system?
• Is the candidate a role without unique behavior, or is it an external role?
• Is the candidate unclear and in need of focus?
• Is the candidate an action or an attribute that describes another object?

400 Part Two Systems Analysis Methods

If you answer yes to any of the questions above during the analysis of a candidate,
the candidate should be removed from the list. If you find that any of the candidates
are attributes, make sure you record them on a separate list so that they won’t be
forgotten.They are used later in the process to construct the class diagram. If you are
unsure about a particular candidate, it is better to leave the candidate on the list; it is
much easier to remove candidates later if we determine they are not objects than it
would be to add them back after the class diagram has been constructed.

Figure 10-20 shows the process of cleaning up our list of candidate objects. An
“x” marks the candidates we are discarding, and a “✓” marks the candidates we are
keeping as objects. Also listed is the explanation of why we are keeping or discarding
each candidate. Finally, Figure 10-21 presents the results of our cleaning-up process,
as well as other objects discovered from the other use cases.

> Organizing the Objects and Identifying
Their Relationships

Now that we have identified the business objects of the system, it is time to organize
those objects and document any major conceptual relationships between the objects.
A class diagram is used to graphically depict the objects and their associations. On
this diagram we will also include multiplicity, generalization/specialization relation-
ships, and aggregation relationships.

Step 1: Identifying Associations and Multiplicity In this step, we need to iden-
tify associations that exist between object classes. Recall that an association between
two object classes is what one object “needs to know” about the other.This allows for
one object class to cross-reference another and to be able to send it messages. Once
the associations have been identified, the multiplicity that governs the association
must be defined.

It is very important that the analyst identify not only associations that are obvious
or recognized by the users. One way to help ensure that possible relationships are
identified is to use an object class matrix.This matrix lists the object classes as column
headings as well as row headings.The matrix can then be used as a checklist to ensure
that each object class appearing on a row is checked against each object class
appearing in a column for possible associations. The name of the association and
the multiplicity can be recorded directly in the intersection cell of the matrix. Fig-
ure 10-22 is a matrix that includes a sample of the proposed objects of the Member
Services System.To interpret the contents of the cells, start with the object on the left
(heading of row), read the contents of the cell, and then finish with the object at the
top of the column. For example:

• A CLUB MEMBER places zero to many MEMBER ORDERs.
• A CLUB MEMBER has purchased zero to many MEMBER ORDERED PRODUCTS.
• A CLUB MEMBER and PRODUCT have no association between them.
• A MEMBER ORDER is placed by one and only one CLUB MEMBER.
• And so on . . .

Step 2: Identifying Generalization/Specialization Relationships Once we
have identified the basic associations and their multiplicity, we must determine if
any generalization/specialization relationships exist. Recall that generalization/spe-
cialization relationships, also known as classification hierarchies or “is a” relation-
ships, consist of supertype (abstract or parent) classes and subtype (concrete or
child) classes. The supertype class is general in that it contains the common attrib-
utes and behaviors of the hierarchy. The subtype class is specialized in that it con-
tains attributes and behaviors unique to the object but it inherits the supertype
class’s attributes and behaviors.

class diagram a graphical

depiction of a system’s static

object structure, showing ob-

ject classes that the system is

composed of as well as the

relationships between those

object classes.

F I G U R E 1 0 - 2 0 Analyzing the Potential Object List

Potential Object Reason

Accounts Receivable x Not relevant for current project

Actions x Needs better focus—probably will be a comments
attribute in MEMBER ORDER

Active Member ✓ Type of MEMBER

Available Items x Synonym of PRODUCT

Back Order x Responsibility of Procurement system - Not relevant
for current project

Back-Ordered x Responsibility of Procurement system - Not relevant
for current project

Billing Addresses ✓ Type of ADDRESS

Catalog x Same as PRODUCT. Potential Interface item to be
addressed in object-oriented design

Club Member ✓ Type of MEMBER

Company Performance x Not relevant for current project

Credit Card ✓ CREDIT CARD ACCOUNT

Credit Card Expiration Date x Attribute of CREDIT CARD ACCOUNT

Credit Card Number x Attribute of CREDIT CARD ACCOUNT

Credits x Attribute of MEMBER

Customer Satisfaction x Not relevant for current project

Daily report x Potential Interface item to be addressed in object-
oriented design

Demographic Information x Attribute of MEMBER

Distribution Center ✓ DISTRIBUTION CENTER

E-Mail x Potential Interface item to be addressed in object-
oriented design

E-Mail Addresses ✓ Type of ADDRESS

Event x Not relevant for current project

Expected Ship Date x Attribute of MEMBER ORDERED PRODUCT

External Receiver x Not relevant for current project

External Server x Not relevant for current project

File x Not relevant for current project

Hold Status x Attribute of MEMBER ORDER

Identification x Attribute of MEMBER

In Stock x Attribute of PRODUCT

Individual x Synonym of MEMBER

Inventory x Attribute of PRODUCT

Items x Synonym of PRODUCT

List x Potential Interface item to be addressed in object-
oriented design

Main Page x Potential Interface item to be addressed in object-
oriented design

Management x Not relevant for current project

Marketing x Not relevant for current project

Member ✓ MEMBER

Member Account Standing x Attribute of MEMBER

Member’s Account Status x Attribute of MEMBER

New Order ✓ MEMBER ORDER

New Promotions ✓ PROMOTION

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 401

F I G U R E 1 0 - 2 0 (Concluded)

Option x Potential Interface item to be addressed in object-
oriented design

Order Activity x Potential Interface item to be addressed in object-
oriented design (report)

Order Confirmation x Potential interface item to be addressed in object-
oriented design

Order Total Cost x Attribute of MEMBER ORDER

Ordered Products ✓ MEMBER ORDERED PRODUCT

Packing Order x Potential Interface item to be addressed in object-
oriented design

Payment Option x Attribute of MEMBER ORDER

Preorders ✓ Type of MEMBER ORDER

Price to Be Charged x Attribute of MEMBER ORDERED PRODUCT

Problem x Needs better focus—probably will be a comments
attribute in MEMBER ORDER

Procurement x Not relevant for current project

Product Availability x Attribute of PRODUCT

Product Ordered x Synonym of MEMBER ORDERED PRODUCT

Promotion ✓ PROMOTION

Purchase x Synonym of MEMBER ORDER

Quantity x Attribute of MEMBER ORDERED PRODUCT

Reason x Needs better focus—probably will be a comments
attribute in MEMBER ORDER

Requirement x Not relevant for current project

Requirements Use Case x Not relevant for current project

Sales Activity x Potential Interface item to be addressed in object-
oriented design (report)

Search Criteria x Potential Interface item to be addressed in object-
oriented design

Selections x Synonym of MEMBER ORDERED PRODUCT

Shipment x Not relevant for current project—responsibility of
shipping and receiving

Shipping Address ✓ Type of ADDRESS

Shopping x Potential Interface item to be addressed in object-
oriented design

SoundStage Products x Synonym of PRODUCT

Summary of the Order x Potential interface item to be addressed in object-
oriented design

System x Not relevant for current project

Warehouse x Synonym of DISTRIBUTION CENTER

World Wide Web x Potential Interface item to be addressed in object-
oriented design

402 Part Two Systems Analysis Methods

Generalization/specialization relationships may be discovered by looking at the
class diagram. Do any associations exist between two classes that have a one-to-one
multiplicity? If so, can you say the sentence “Object X is a type of object Y” and it be
true? If it is true, you may have a generalization/specialization relationship. Also look
for classes that have common attributes and behaviors. It may be possible to combine
the common attributes and behaviors into a new supertype class. Why do we want

F I G U R E 1 0 - 2 1 Member Services System Proposed Object List

Proposed Object List

ACTIVE MEMBER

BILLING ADDRESS

CLUB MEMBER

CREDIT CARD ACCOUNT

DISTRIBUTION CENTER

E-MAIL ADDRESS

MEMBER

MEMBER ORDER

PROMOTION

MEMBER ORDERED PRODUCT

PREORDER

PRODUCT

SHIPPING ADDRESS

PLUS

AGREEMENT

AUDIO TITLE

FORMER MEMBER

GAME TITLE

INACTIVE MEMBER

MERCHANDISE

RETURN

TITLE

TRANSACTION

VIDEO TITLE

CLUB MEMBER MEMBER ORDER

MEMBER

ORDERED

PRODUCT

CLUB MEMBER

MEMBER ORDER

PRODUCT

MEMBER ORDERED

PRODUCT

PRODUCT

Places zero to

many

Is part of one and

only one

Is placed by one and

only one

Was purchased by one

and only one

Has purchased

zero to many

Contains one to

many

Sold as zero to

many

XX
Relates to one

and only one

XX

XXXX

F I G U R E 1 0 - 2 2 Sample Object Association Matrix

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 403

Product

Merchandise Title

Audio Title Video Title Game Title

Customer

Potential Member Club Member

Active Member Inactive Member Former member

Transaction

Member Order Return

Preorder

1 2

3

F I G U R E 1 0 - 2 3 Generalization/Specialization Hierarchies in the Member Services System

generalization/specialization relationships? They allow us to take advantage of inheri-
tance, which facilitates the reuse of objects and programming code.

Please draw your attention to Figure 10-23.When analyzing the class diagram, we
identified three generalization/specialization hierarchies:

A PRODUCT hierarchy that allows us to keep track of all SoundStage products
that can be purchased and enables us to add different types of products in
the future, such as BOOK TITLES.
A CUSTOMER hierarchy that allows us to keep track of all MEMBERS (past, present,
and potential). It allows us to send special promotions to inactive members
to encourage them to start ordering products again. It also allows us to identify
former members who terminated their membership or whose membership was

2

1

404 Part Two Systems Analysis Methods

terminated because their account was in bad standing, as in the case of
members who defaulted on their agreement. It also enables us to add differ-
ent types of customers in the future, such as corporate customers.
A TRANSACTION hierarchy that allows us to keep track of the various transac-
tions CUSTOMERS conduct. Currently, MEMBER ORDERS, PREORDERS, and RETURNS are
recorded, but the hierarchy could be modified to include reservations of
TITLES to be released in the future.

Step 3: Identifying Aggregation/Composition Relationships In this step, we
must determine if any basic aggregation or composition relationships exist. Recall that
aggregation is a unique type of relationship in which one object “is part of” another
object. It is often referred to as a whole/part relationship and can be read as “Object
A contains object B and object B is part of object A.” Aggregation relationships are
asymmetric, in that object B is part of object A but object A is not part of object B.
These relationships do not imply inheritance, in that object B does not inherit behav-
ior or attributes from object A. However, behavior applied to the whole is automatically
applied to the parts. For example, if I want to send object A to a customer, object B
would be sent also.

When analyzing the class diagram, we identified one composition relationship,
the relationship between a MEMBER ORDER and the ORDERED PRODUCTS it contains.

Step 4: Prepare the Class Diagram Figure 10-24 is a partial UML class diagram for
the Member Services System.3 Notice that the model depicts business object classes
within the domain of the SoundStage Member Services system.The object/class nota-
tion on the model does not depict behaviors (methods). These will be identified and
defined in Chapter 18.

The model also reflects the associations and multiplicity that were identified in
step 1, three generalization/specialization relationships that were discovered in step
2, and one aggregation/composition relationship discovered in step 3. Notice at the
bottom of each class the word persistent appears. Typically, this means that the ob-
jects the class describes will be stored permanently in a database. All business domain
classes tend to be persistent. Objects that are created temporarily by a software pro-
gram are called transient objects. In an object-oriented programming language, all
code exists inside an object class. So there is class code for the user interface and for
controlling the system. These transient objects are created while the program is run-
ning and discarded later when no longer needed. Transient objects are usually mod-
eled during object-oriented design, which we will cover in Chapter 18.

Finally, if you have learned data modeling from Chapter 8 or a previous course,
you should note the following differences between object class attributes and data
entity attributes

• There is no need in a class diagram to include a primary key attribute unless
it is a real business attribute. For example, the Product class has attributes for
productNumber and UPC. While either of them could be a primary key if
this class’s data was stored in a relational database, neither of them are
included for that purpose. They are included because that information is rele-
vant to one or more use cases. An artificial primary key, such as an auto-
incrementing ID value, would not be included in a class diagram.

• There is no need for foreign keys in a class diagram. If the data attributes in the
class will eventually be stored in a relational database, then the database will
have foreign keys. But in object-oriented programming languages, there will be
transient objects between your business class and the database that will
handle that, so there is no need to include them in your business class.
We will learn more about those transient objects in Chapter 18.

3

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 405

3 The diagram was constructed using Popkin Software’s System Architect.

persistent class a class

that describes an object that

outlives the execution of the

program that created it.

transient object class a

class that describes an object

that is created temporarily by

the program and lives only

during that program’s

execution.

F I G U R E 1 0 - 2 4 Member Services System Class Diagram

Customer

Potential Member

- StreetAddress

- City

- state

- zipCode

Address

- memberNumber

- memberLastName

- memberFirstName

- memberStatus

Club Member

- agreementNumber

- agreementExpireDate

- agreementActiveDate

- fulfillmentPeriod

- requiredNumberOfCredits

Agreement

- productNumber

- UPC

- quantityInStock

- productType

- suggestedRetailPrice

- defaultUnitPrice

- currentSpecialUnitPrice

- currentMonthUnitsSold

- currentYearUnitsSold

- totalLifetimeUnitsSold

Product

- merchandiseName

- merchandiseDescription

- merchandiseType

- unitOfMeasure

Merchandise

- artist

- audioSubCategory

- numberofUnitsInPackage

- audioMediaCode

- contentAdvisoryCode

Audio Title

- producer

- directory

- videoSubCategory

- closedCaptioned

- language

- runningTime

- videoMediaType

- videoEncoding

- screenAspect

- rating

Video Title

- manufacturer

- gameCategory

- gameSubCategory

- gamePlatform

- gameMediaType

- numberOfPlayers

- parentAdvisoryCode

Game Title

- titleOfWork

- titleCover

- catalogDescription

- copyrightDate

- entertainmentCompany

- creditValue

Title

- promotionNumber

- promotionReleaseDate

- promotionStatus

- promotionType

Promotion

- orderNumber

- orderCreationDate

- orderFillDate

- shippingInstructions

- orderSubTotal

- orderSalesTax

- orderShippingMethod

- orderShipping&HandlingCost

- orderStatus

- orderPrepaidAmount

- orderPrepaymentMethod

Member Order

- transactionReferenceNumber

- transactionDate

- transactionType

- transactionDescription

- transactionAmount

Transaction

features

is associated with

0...*1

1

1
1...*

1...*

1

Billing Address Email Address Shipping Address

Return

- memberDateOfLastOrder

- memberDaytimePhoneNumber

- memberBalanceDue

- memberBonusBalanceAvailable

- audioCategoryPreference

- dtaeEnrolled

- gameCategoryPreference

- gameMediaPreference

- numberOfCreditsEarned

- privacyCode

- videoCategoryPreference

- videoMediaPreference

Active Member

- expirationDate

Inactive Member

- terminationDate

- reason

Former Member

is billed to

binds

has purchased

is shipped to

0...*

0...* 0...*1

0...*

0...1

0...*

1

1

- quantityOrdered

- quantityShipped

- quantityBackordered

- purchaseUnitPrice

- creditsEarned

Member Ordered Product

0...*

0...1

1...*

1
contains

generates

places

406

1. The approach of using object modeling during sys-
tems analysis and design is called object-oriented
analysis (OOA). Object-oriented analysis tech-
niques are used (1) to study existing objects to see
if they can be reused or adapted for new uses and
(2) to define new or modified objects that will be
combined with existing objects into a useful busi-
ness computing application.

2. The object-oriented approach is centered around
a technique referred to as object modeling. Object
modeling is a technique for identifying objects
within the systems environment and identifying
the relationships between those objects.

3. There are many underlying concepts for object
modeling, including:

a. Systems consist of objects, where an object is
something that is or is capable of being seen,
touched, or otherwise sensed and about which
users store data and associate behavior.The data,
or attributes, represent characteristics of interest
about an object.The behavior of an object refers
to those things that the object can do and that
correspond to functions that act on the object’s
data (or attributes). Each object encapsulates the
attributes and behavior together as a single unit.

b. Objects can be categorized into classes. A class
is a set of objects that share common attributes
and behavior. Objects may be grouped into mul-
tiple levels of classes.The most general class in
the grouping is the supertype (or generalization
of the class).The more refined class is referred

to as the subtype class (or specialization class).
All subtype classes “inherit” the attributes and
behavior of the supertype class.

c. Objects and classes have relationships. A relation-
ship is a natural business association that exists
between one or more objects and classes.The de-
gree, or multiplicity, of a relationship specifies the
business rules governing the relationship. Some
relationships are more “structural,” meaning that a
class may be related to another class in that one
class may represent an assembly of one or more
other class types.This type of relationship is re-
ferred to as an aggregation structure.

d. Objects communicate by passing messages. A
message is passed when one object invokes an-
other object’s behavior to request information
or some action.

e. A type of behavior may be completed differ-
ently for different objects/classes.This concept
is referred to as polymorphism.

4. One of the most critical aspects of performing
object-oriented development is correctly identifying
the objects and their relationships early in the de-
velopment process. Use-case modeling is a popular
approach that assists in object identification.

5. In trying to identify objects, many methodology
experts recommend the technique of searching
the requirements document or other associated
documentation and underlining the nouns that
may represent potential objects.This could be a
monumental task! There are just too many nouns.

Chapter Review

Lea
rning

 Roa
d
m

a
p

This chapter introduced the newer object-oriented approach to systems develop-

ment. Specifically, this chapter focused on object modeling tools and techniques for

systems analysis.You are now ready to learn about the object-oriented approach as it

applies to systems design. Object-oriented design is covered in Chapter 18. In that

chapter, you will learn how the object models developed in this chapter are expanded

to include design decisions for a new system.

407

1. What is the most commonly accepted notation
standard for object modeling?

2. Object is defined as “something that is or is capa-
ble of being seen, touched or otherwise sensed
and about which users store data and associate
behavior.” Please explain what it means by some-

thing, data, and behavior in this definition.
3. What is encapsulation?
4. Consider that textbooks and cookbooks are both

objects belonging to the class of Book. Please
give an example of a class and its objects.

5. What is the relationship between inheritance and
supertype/subtype?

6. In object-oriented analysis and modeling, objects
and classes do not exist in isolation. Why is this?

7. How should analysts show the object or class
relationship using UML?

8. In terms of aggregation relationships, what is the
difference between the use of a hollow diamond
and the use of a solid diamond?

9. What is polymorphism, and when is it applied?
10. What are the five groups of UML diagrams?
11. What are the differences between sequence dia-

grams and collaboration diagrams?
12. What are the three major activities in performing

object-oriented analysis?
13. What is an activity diagram? When is the diagram

used?
14. What are some ways to determine if a candidate

object is useful and should be kept, or whether it
should be discarded?

15. What are the steps in organizing the objects and
identifying their relationships?

Review Questions
1

2

1. Since its inception in 1997, the Unified Modeling
Language (UML) has quickly gained wide accep-
tance and usage throughout the world.

a. In terms of object modeling, what does UML
provide to designers? What doesn’t UML
provide?

b. What was the reason that UML was developed?
c. What might object modeling look like today if

UML had not been developed?

2. Object-oriented analysis (OOA) and object model-
ing have become familiar terms in many organiza-
tions, but their underlying concepts are not
always intuitive and can be difficult to under-
stand, especially by nontechnical users who are
involved in a systems development project.

a. In nontechnical terms, explain what an object
is and what the object-oriented analysis
approach is.

b. Also in nontechnical terms, explain the tech-
nique of object modeling.

c. What are the main differences between object-
oriented analysis and traditional systems analysis
in how they approach system development?

d. Do you think it would be easier to learn
object-oriented analysis methods if you were a
systems designer experienced in traditional
development methods, or if this was the first
analysis method you were learning? Explain
your answer.

3. Consider a movie DVD as an example of an object.

a. Using the textbook’s terminology, what type
of object is a movie DVD?

b. What are some of the attributes of a movie
DVD?

c. What is an object instance of a movie DVD?
d. Represent the class of Movie DVD in an object

model using UML notation, as shown in Figure
11-2. Include the class name, attributes, and
behaviors.

e. Would the object class of Movie DVD be a con-
sidered a supertype or subtype? Give examples.

4. For this exercise, consider a different example of
an object—a dog.

a. What type of object is a dog?
b. What are some of the attributes of a dog?

Problems and Exercises

Use-case modeling provides a solution to this prob-
lem by breaking down the entire scope of system
functionality into many smaller statements of sys-
tem functionality called use cases.This smaller
format simplifies and makes more efficient the
technique of underlining the nouns.

6. Activity diagrams are used to better understand the
use-case logic in terms of the flow of steps and
their sequencing.

7. A class diagram is used to organize the objects
found as a result of use-case modeling and to docu-
ment the relationships between the objects.

408 Part Two Systems Analysis Methods

c. Show an object instance of Dog, using
Figure 10-1 as an example.

d. What are some of the behaviors of the class of
Dog?

e. Represent the class of Dog in the UML, using
Figure 10-2(b) as an example.

5. Again, consider the class of Dog.

a. Provide five or six examples of the association
between the class of Dog and the class of
Person.

b. Show the object class associations and multi-
plicity notations for the class of Dog.

c. What type of aggregation relationships might
exist for the class of Dog?

6. Objects and classes can send messages to each
other in order to interact.

a. Give an example of a message request from
the object classes of Dog to Person, and the
return behavior of Person.

b. In message sending, what doesn’t the sending
object need to know about the receiving
object?

c. What needs to exist in order to be able to
send a message between the two objects?

7. Polymorphism is a concept that is important to
understand in object-oriented analysis.You need
to explain the concept to the system users who
are on the project team. In nontechnical terms:

a. Define the concept of polymorphism.
b. Explain how polymorphism is related to

messaging.
c. Explain what overriding behaviors are.

8. You are teaching an introductory class in object-
oriented analysis and design. Explain:

a. The different groups of UML diagrams, and what
each group of diagrams depicts and/or models.

b. What use-case modeling identifies.
c. What the three major tasks are in conducting

object-oriented analysis.
d. How and why business requirements use-case

models are refined and changed into analysis
use-case models.

9. During the design phase, abstract and extension
use-case narratives are also developed.

a. Why are different narratives used for abstract
and extension use cases?

b. What are some of the differences in document-
ing abstract and extension use-case narratives
compared to documenting regular use cases?

c. Can an abstract use case be invoked by a
single use case?

d. Is an extension use case reusable?
e. Can an extension use case be invoked by a

single use case?
f. Can an abstract use case invoke a regular use

case?

10. UML activity diagrams are used to model system
process activities and to help system analysts
visualize the flow and sequencing of use cases.

a. How are they different from flowcharts, and
how is this difference useful?

b. How are they similar?
c. What does the solid black bar in an activity

diagram represent?

11. In object-oriented analysis and modeling, it is ex-
tremely important to identify all potential objects.
This can be accomplished, as suggested by a num-
ber of experts, by going through the require-
ments documentation to find all the nouns, since
each one can represent a possible object.

a. What is the problem with this method?
b. How does use-case modeling help identify

potential objects?
c. Once potential (candidate) objects are identi-

fied, should each one become an actual object?
d. How should candidate objects be selected?
e. What if a candidate object turns out to actu-

ally be an attribute?

12. The last step in conducting the object-oriented
analysis is organizing the objects and identifying
their relationships.

a. Does a class diagram show the structure of a
system as dynamic or static?

b. Why are associations between objects identi-
fied before defining multiplicity?

c. What is the purpose of an object class matrix?
d. If you have 72 objects and classes, how many

empty (null) cells will there be in the matrix?

13. After identifying object class associations and
multiplicity, you must perform several other steps
before organization of the objects can be consid-
ered to be complete.

a. What are these other steps?
b. Why are generalization/specialization relation-

ships important to identify during the design
phase?

c. What are two techniques for identifying possi-
ble generalization/specialization relationships?

d. What is the essential difference between gen-
eralization/specialization relationships and
aggregation relationships.

e. Can a business domain class contain a tran-
sient object?

Object-Oriented Analysis and Modeling Using the UML Chapter Ten 409

410 Part Two Systems Analysis Methods

1. Since its introduction in 1997, the Unified Model-
ing Language (UML) has quickly become a com-
monly accepted standard and a widely used tool for
object modeling. Go to www.omg.org, which is the
Web site of the Object Management Group (OMG),
the standards body for UML, and take a look at its
UML Resource Page, as well as its links to other
sites such as IBM and Popkin Software.

a. What is the most current version of UML?
b. What is the Object Management Group?
c. In reviewing some of the historical articles on the

Web site, why do you think that UML became a
leading tool for object modeling so quickly?

d. Review the specifications for UML 2.0 (they are
available for download or viewing free of
charge)—what did you find most interesting
and/or valuable about the new version?

e. Many languages used in information technology
have come and gone, but certain ones, such as
COBOL, are still in wide use decades after they
were introduced. Based upon the articles avail-
able on the Web site, what do you think will be
the life span for UML? Why?

f. Does UML have any new or emerging competi-
tors at this time?

2. Find and talk to a system designer who is experi-
enced in modeling with UML.

a. What types of systems does the designer work
on with UML?

b. Does the designer use UML via a CASE tool? If
so, which one?

c. What does the designer like best about UML?
d. What does the designer like least?
e. If the designer could choose a modeling lan-

guage, would it be UML? Why or why not?
f. What features would the designer like to see

added to UML?

3. You are currently working as a freelance systems
designer and have been asked to do some of the
design work for a case-tracking information system
that is being developed for a local law firm which
specializes in civil cases.The business objective is
to implement a system that tracks a civil case from
the time that the law firm begins working on the
lawsuit through its final adjudication.

What are some of the main objects and classes
you would expect to find in a law firm that special-
izes in civil filings?

a. Describe each these classes, including their name
and attributes, using Figure 10-2 as an example.

b. Describe any generalization/specialization rela-
tionships, using Figure 10-4 as an example.

c. Identify the object/class associations, and
create an object/class association table, using
Figure 10-5 as an example. Make sure to include
the multiplicity for each association.

d. Identify the aggregation relationships, and
prepare an aggregation relationship table, using
Figure 10-6 as an example.

4. The law firm likes your work and wants to extend
your contract so you can continue designing its
case-tracking system. Assuming you negotiate an
acceptable rate, for your next tasks:

a. Create at least two detailed use-case narratives,
using Figure 10-11 as an example.

b. Create an abstract use-case narrative, using
Figure 10-12 as an example.

c. Create an activity diagram for each of these use
case narratives, using Figure 10-13 as an example.

5. At this point, you want to make sure that you have
included everything and haven’t left anything out.
So for your next task:

a. Find potential objects, using the techniques
described in the textbook.

b. Create the potential (candidate) object list, us-
ing Figure 10-16 as an example, and determine
whether each candidate should be kept or
discarded.

c. Create a proposed object list, using Figure 10-17
as an example.

d. Create an object association matrix, using Fig-
ure 10-18 as an example, and identify the asso-
ciations and multiplicity that exist between
objects and classes.

e. Did you find objects and classes that you had
not previously identified?

6. You are almost done with your object-oriented
analysis and modeling of the case-tracking system
for the law firm. Based upon your design work in
the preceding questions, your final tasks are to:

a. Create a generalization/specialization hierar-
chies diagram, using Figure 10-19 as an example.

b. Create a class diagram, using Figure 10-20 as an
example.

c. At this point, if you could choose between us-
ing object-oriented analysis and modeling with
UML, or a traditional structured design method,
which would you choose? Why?

Projects and Research

1. Take the information you have gathered and your
assessment of needs so far and suggest a system to
meet the department’s current needs, as well as fu-
ture needs and opportunities. Prepare a paper that
includes a situation background, an overview of
the system you are suggesting, and the specific
technological requirements of said system.Your
paper should be no more than 12 pages long
(1.5 spacing).

2. Prepare a full feasibility analysis, including Eco-
nomic, Operational, Schedule, Legal, and Technical
analyses for the system you are suggesting in

problem 1.Your analysis should be no more than
30 pages long (1.5 spaced).

3. Create the use-case descriptions and diagram(s) for
the system in problems 1 and 2. Be sure to create
your use cases so that they are complete and clear.
Remember, in real life, the system analyst/designer
is often not the person who develops the system,
and, in fact, the teams rarely meet at all. Clarity and
completeness are essential.

4. Prepare a presentation on the material from prob-
lems 1–3 and present it to your class. Utilize interest-
ing presentation media (such as video, sound, etc.).

Minicases

1. Roundtable discussion:There is a big difference be-
tween can create or implement a technology and
should create or implement a technology. How
can we determine if we should implement or cre-
ate a technology (or information system)?

2. Team exercise: As of the writing of this question,
the government is considering developing and im-
plementing a tracking system to follow the college

careers of anyone who receives government grants
or aid to go to college. What are the ethical, eco-
nomic, and technical issues associated with this?
Do you think the government should do this?

3. Team exercise: What are the legal, ethical, and tech-
nical issues associated with videomining? Do you
think retail stores, such as the Gap (just an example
for discussion), should implement such a system?

Team and Individual Exercises

Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001.Very good information about doc-

umenting use cases and their use.

Armour, Frank, and Granville Miller. Advance Use Case Mod-

eling. Boston: Addison-Wesley, 2001. This book presents

excellent coverage of the use-case modeling process.

Booch, G. Object-Oriented Design with Applications. Menlo

Park, CA: Benjamin Cummings, 1994. Many Booch con-

cepts were integrated into the UML.

Coad, P., and E. Yourdon. Object-Oriented Analysis, 2nd ed.

Englewood Cliffs, NJ: Prentice Hall, 1991. This book pro-

vides a very good overview of object-oriented concepts.

However, the object model techniques are somewhat lim-

ited in comparison to UML and other object-oriented

modeling approaches.

Eriksson, Hans-Erik, and Magnus Penker. UML Toolkit. New

York: John Wiley & Sons, 1998. This book provides de-

tailed coverage of the UML.

Fowler, Martin, and Kendall Scott. UML Distilled—Applying

the Standard Object Modeling Language. Reading, MA:

Addison-Wesley, 1997. A good short guide introducing the

concepts and notation of the UML.

Harman, Paul, and Mark Watson. Understanding UML—The

Developer’s Guide. San Francisco: Morgan Kaufmann Pub-

lishers, 1997. This is an excellent reference book. The ex-

amples were prepared using Popkin’s System Architect.

Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and Gun-

nar Overgaard. Object-Oriented Software Engineering—

A Use Case Driven Approach. Wokingham, England:

Addison-Wesley, 1992. This book presents detailed cover-

age of how to identify and document use cases.

Larman, Craig. Applying UML and Patterns—An Introduc-

tion to Object-Oriented Analysis and Design. Englewood

Cliffs, NJ: Prentice Hall, 1997. This is an excellent refer-

ence book explaining the concepts of OO development

utilizing the UML.

Martin, J., and J. Odell. Object-Oriented Analysis and Design.

Englewood Cliffs, NJ: Prentice Hall, 1992.

Rumbaugh, James; Michael Blaha;William Premerlani; Frederick

Eddy; and William Lorensen. Object-Oriented Modeling and

Design. Englewood Cliffs, NJ: Prentice Hall, 1991.This book

presents detailed coverage of the object modeling technique

and its application throughout the entire systems develop-

ment life cycle. Many OMT constructs are now in the UML.

Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fied Modeling Language Reference Manual. Reading, MA:

Addison-Wesley, 1999. This book presents detailed cover-

age of the UML by the primary authors who created it.

Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fied Modeling Language Users Guide. Reading, MA:

Addison-Wesley, 1999. This book presents detailed cover-

age of the UML by the primary authors who created it.

Taylor, David A. Object-Oriented Information Systems—

Planning and Implementation. New York: John Wiley &

Sons, 1992. This book is a very good entry-level resource

for learning the concepts of object-oriented technology

and techniques.

Suggested Readings

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L
A
T

IO
N

&
 D

E
L
IV

E
R

Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

11Feasibility Analysis and the
System Proposal

Chapter Preview and Objectives

Good systems analysts thoroughly evaluate alternative solutions before proposing change.

In this chapter you will learn how to analyze and document those alternatives on the basis

of four feasibility criteria: operational, technical, schedule, and economic. You will also

learn how to make a system proposal in the form of a written report and a formal presen-

tation. You will know that you understand the feasibility analysis and recommendation

skills needed by the systems analyst when you can:

❚ Identify feasibility checkpoints in the system’s life cycle.

❚ Identify alternative system solutions.

❚ Define and describe six types of feasibility and their respective criteria.

❚ Perform various cost-benefit analyses using time-adjusted costs and benefits.

❚ Write suitable system proposal reports for different audiences.

❚ Plan for a formal presentation to system owners and users.

As all the analysis has been going on for the SoundStage Member Services system pro-
ject, Bob Martinez has been getting more and more excited about it.The programmer
in Bob would like to jump in and start coding the information system. But Sandra, his
boss, had him research packaged solutions on the market.They were pricey. But then
Sandra ran the numbers for the labor costs of in-house programming. Bob realized that
the packaged solutions weren’t that expensive relatively and could be put in place a
whole lot faster.There would still be programming to do, because the packaged solu-
tions would need to be customized to meet all their requirements.

The final decision on which solution to select would be made by the steering com-
mittee that was overseeing the project. Sandra said the executives on the steering com-
mittee were currently very budget conscious.They would be scrutinizing the numbers
and would approve the project to continue only if it showed a solid return on invest-
ment. Bob would have a small part in the system proposal presentation. He rehearsed
and studied up on the facts to make sure he was ready for any question. He didn’t want
to blow it. He was surprised to realize he was now glad that some of his college
courses required him to dress in a business suit and make a formal presentation.

414 Part Two Systems Analysis Methods

feasibility the measure of

how beneficial or practical an

information system will be to

an organization.

feasibility analysis the

process by which feasibility is

measured.

Introduction

Feasibilty Analysis and the System Proposal

In today’s business world, it is becoming increasingly apparent that analysts must
learn to think like business managers. Computer applications are expanding at a
record pace. Now more than ever, management expects information systems to pay
for themselves. Information is a major capital investment that must be justified, just as
marketing must justify a new product and manufacturing must justify a new plant or
equipment. Systems analysts are called on more than ever to help answer the follow-
ing questions: Will the investment pay for itself? Are there other investments that will
return even more on their expenditure?

This chapter deals with feasibility analysis issues of interest to the systems ana-
lyst and users of information systems. It also emphasizes the importance of making
recommendations to management in the form of a system proposal that is a formal
written report and/or oral presentation. As is illustrated in the chapter home page,
feasibility analysis is appropriate to the systems analysis phases but particularly
important to the decision analysis phase.The system proposal represents the deliver-
able and presents the technical KNOWLEDGE, PROCESS, and COMMUNICATION solution.

> Feasibility Analysis—A Creeping Commitment
Approach

Let’s begin with a formal definition of feasibility and feasibility analysis. Feasibility is the
measure of how beneficial or practical the development of an information system will be
to an organization. Feasibility analysis is the process by which feasibility is measured.

Feasibility should be measured throughout the life cycle. In earlier chapters we
called this a creeping commitment approach to feasibility.The scope and complexity
of an apparently feasible project can change after the initial problems and opportuni-
ties are fully analyzed or after the system has been designed. Thus, a project that is
feasible at one point may become infeasible later.

Figure 11-1 shows feasibility checkpoints during the systems analysis phases of
our life cycle. The checkpoints are represented by red diamonds. The diamonds indi-
cate that a feasibility reassessment and management review should be conducted at
the end of the prior phase (before the next phase). A project may be canceled or re-
vised at any checkpoint, despite whatever resources have been spent.

F I G U R E 1 1 - 1 Feasibility Checkpoints during Systems Analysis

SCOPE

DEFINITION

1

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYSIS

3

DECISION

ANALYSIS

5

PHYSICAL

DESIGN &

INTEGRATION

6

CONSTRUCTION

&

TESTING

7

INSTALLATION

&

DELIVERY

8

Problem

Statement

Logical

Design

Design

Specs

Functional

System

Operational

System

Statement

of

Work

LOGICAL

DESIGN

4

Business

Requirements

Statement

System

Proposal

Scope & Vision

Problems,

Opportunities,

& Directives

System

Improvement

Objectives

Application

Architecture

Feasibility Analysis and the System Proposal Chapter Eleven 415

The idea of canceling a project is often difficult to face. A natural inclination may
be to justify continuing a project based on the time and money that has already been
spent. However, a fundamental principle of management is never to throw good
money after bad—cut your losses and move on to a more feasible project. Deciding to
cancel doesn’t mean the costs already spent are not important. Costs must eventually
be recovered if the investment is ever to be considered a success. Let’s briefly examine
the checkpoints in Figure 11-1.

> Systems Analysis—Scope Definition Checkpoint

The first feasibility analysis is conducted during the scope definition phase. At this
early stage of the project, feasibility is rarely more than a measure of the urgency of
the problem and the first-cut estimate of development costs. It answers the question,
Do the problems (or opportunities) warrant the cost of a detailed study and analysis
of the current system? Realistically, feasibility can’t be accurately measured until the
problems (and opportunities) and requirements are better understood.

After estimating the benefits of solving the problems and opportunities, analysts
estimate the costs of developing the expected system. Experienced analysts routinely
increase these costs by 50 to 100 percent (or more) because experience tells them
the problems are rarely well defined and user requirements are typically understated.

> Systems Analysis—Problem Analysis Checkpoint

The next checkpoint occurs after a more detailed study and problem analysis of the cur-
rent system. Because the problems are better understood, the analysts can make better
estimates of development costs and of the benefits to be obtained from a new system.
The minimum value of solving a problem is equal to the cost of that problem. For ex-
ample, if inventory carrying costs are $35,000 over acceptable limits, then the minimum
value of an acceptable information system would be $35,000. It is hoped an improved
system will be able to do better than that; however, it must return this minimum value.

Development costs, at this point, are still just guesstimates. Analysts have yet to
fully define user requirements or to specify a design solution to those requirements.

If the cost estimates significantly increase from the preliminary investigation
phase to the problem analysis phase, the likely culprit is scope. Scope has a tendency
to increase in many projects. If increased scope threatens feasibility, then scope might
be reduced.

> Systems Design—Decision Analysis Checkpoint

The decision analysis phase represents a major feasibility analysis activity since it
charts one of many possible implementations as the target for systems design.

Problems and requirements should be known by now. During the decision analy-
sis phase, alternative solutions are defined in terms of their input/output methods,
data storage methods, computer hardware and software requirements, processing
methods, and people implications. The following list presents the typical range of
options that can be evaluated by the analyst:

• Do nothing. Leave the current system alone. Regardless of management’s
opinion or your own opinion, this option should be considered and analyzed
as a baseline option against which all others can and should be evaluated.

• Reengineer the (manual) business processes, not the computer-based processes.
This may involve streamlining activities, reducing duplication and unnecessary
tasks, reorganizing office layouts, and eliminating redundant and unnecessary
forms and processes, among others.

• Enhance existing computer processes.
• Purchase a packaged application.
• Design and construct a new computer-based system.

416 Part Two Systems Analysis Methods

After defining these options, each is analyzed for operational, technical, schedule,
and economic feasibility. One alternative is recommended to system owners for ap-
proval and the basis for general and detailed design.

Six Tests for Feasibility

So far, we’ve defined feasibility and feasibility analysis, and we’ve identified feasibility
checkpoints during systems analysis. Feasibility can be viewed from multiple per-
spectives. Below we present six categories of feasibility tests.

• Operational feasibility is a measure of how well a solution meets the identi-
fied system requirements to solve the problems and take advantage of the
opportunities envisioned for the system.

• Cultural (or political) feasibility is a measure of how people feel about a
solution and how well it will be accepted in a given organizational climate.

• Technical feasibility is a measure of the practicality of a specific technical
solution and the availability of technical resources and expertise to imple-
ment and maintain it.

• Schedule feasibility is a measure of how reasonable the project timetable is.
• Economic feasibility is a measure of the cost-effectiveness of a project or

solution.
• Legal feasibility is a measure of how well a solution can be implemented

within existing legal and contractual obligations.

Actually, few systems are infeasible. Instead, different solution options tend to be more
or less feasible than others. Let’s take a closer look at the four feasibility criteria.

> Operational Feasibility

Operational feasibility is the measure of how well a proposed system solves the
problems and takes advantage of the opportunities identified during the scope defin-
ition and problem analysis phases and how well it satisfies the system requirements
identified in the requirements analysis phase. Operational feasibility also asks if, given
what is now known about the problem and the cost of the solution, the problem is
still worth solving.The PIECES framework (Chapter 3) can be used as the basis for an-
alyzing the urgency of a problem or the effectiveness of a solution.

> Cultural (or Political) Feasibility

This is related to operational feasibility. But where operational feasibility deals more
with how well the solution will meet system requirements, cultural/political feasi-

bility deals with how the end users feel about the proposed system. You could say
that operational feasibility evaluates whether a system can work, and cultural/political
feasibility asks whether a system will work in a given organizational climate.

In an information age, knowledge is power. It is common for an information sys-
tem to change the structure of how information is routed and controlled, changing to
some extent the power structure of the organization. Some users and managers may
feel threatened and fight implementation of the system.

Recognize that increasingly the culture of an organization is multicultural.
Employees and divisions may have been merged in from different companies with
widely varying perspectives on how work should be structured and what information
systems should do and not do. With international organizations, the information
system must also be accepted by multiple national cultures. The following questions
address this concern:

• Does management support the system?
• How do the end users feel about their role in the new system?

Feasibility Analysis and the System Proposal Chapter Eleven 417

operational feasibility
a measure of how well a solu-

tion meets the identified sys-

tem requirements to solve the

problems and take advantage

of the opportunities envi-

sioned for the system.

cultural (or political)
feasibility a measure of

how well the solution will be

accepted in a given organiza-

tional climate.

• What end users or managers may resist or not use the system? Can this prob-
lem be overcome? If so, how?

• How will the working environment of the end users change? Can or will end
users and management adapt to the change?

> Technical Feasibility

Today, very little is technically impossible. Consequently, technical feasibility looks at
what is practical and reasonable.Technical feasibility addresses three major issues:

1. Is the proposed technology or solution practical?
2. Do we currently possess the necessary technology?
3. Do we possess the necessary technical expertise?

Is the Proposed Technology or Solution Practical? The technology for any de-
fined solution is normally available.The question is whether that technology is mature
enough to be easily applied to our problems. Some firms like to use state-of-the-art
technology, but most firms prefer to use mature and proven technology. A mature
technology has a larger customer base for obtaining advice concerning problems and
improvements.

Do We Currently Possess the Necessary Technology? Assuming the solution’s
required technology is practical, we must next ask ourselves, Is the technology avail-
able in our information systems shop? If the technology is available, we must ask if we
have the capacity. For instance, will our current printer be able to handle the new
reports and forms required of a new system?

If the answer to either of these questions is no, then we must ask ourselves, Can
we get this technology? The technology may be practical and available, and, yes, we
need it. But we simply may not be able to afford it at this time. Although this argument
borders on economic feasibility, it is truly technical feasibility. If we can’t afford the
technology, then the alternative that requires the technology is not practical and is
technically infeasible!

Do We Possess the Necessary Technical Expertise? This consideration of tech-
nical feasibility is often forgotten during feasibility analysis. Even if a company has the
technology, that doesn’t mean it has the skills required to properly apply that tech-
nology. For instance, a company may have a database management system (DBMS).
However, the analysts and programmers available for the project may not know that
DBMS well enough to properly apply it. True, all information systems professionals
can learn new technologies; however, that learning curve will impact the technical
feasibility of the project—specifically, it will impact the schedule.

> Schedule Feasibility

Given the available technical expertise, are the project deadlines reasonable—that is,
what is the schedule feasibility of the project? Some projects are initiated with spe-
cific deadlines. It is necessary to determine whether the deadlines are mandatory
or desirable. For instance, a project to develop a system to meet new government
reporting regulations may have a deadline that coincides with when the new reports
must be initiated. Penalties associated with missing such a deadline may make
meeting it mandatory. If the deadlines are desirable rather than mandatory, the analyst
can propose alternative schedules.

It is preferable (unless the deadline is absolutely mandatory) to deliver a properly
functioning information system two months late than to deliver an error-prone, useless
information system on time! While missing deadlines can be problematic, developing
inadequate systems can be disastrous. It’s a choice between the lesser of two evils.

418 Part Two Systems Analysis Methods

schedule feasibility a

measure of how reasonable a

project timetable is.

technical feasibility a

measure of the practicality

of a technical solution and the

availability of technical

resources and expertise.

> Economic Feasibility

The bottom line in many projects is economic feasibility. During the early phases
of the project, economic feasibility analysis amounts to little more than judging
whether the possible benefits of solving the problem are worthwhile. Costs are prac-
tically impossible to estimate at that stage because the end user’s requirements and al-
ternative technical solutions have not been identified. However, as soon as specific
requirements and solutions have been identified, the analyst can weigh the costs and
benefits of each alternative. This is called a cost-benefit analysis. Cost-benefit analysis
is discussed later in this chapter.

> Legal Feasibility

Information systems have a legal impact. First of all, there are copyright restrictions.
For any system that includes purchased components, one has to make sure that the
license agreements are not violated. For one thing this means installing only licensed
copies. But license agreements and copy protection can also restrict how you inte-
grate the data and processes with other parts of the system. If you are working with
contract programmers, the ownership of the program source code and nondisclosure
agreements have to be worked out in advance.

Union contracts can add constraints to the information system on how workers
are paid and how their work is monitored. Legal requirements for financial reporting
must be met. System requirements for sharing data with partners could even run up
against antitrust laws. Finally, many information systems today are international in
scope. Some countries mandate where data on local employees and local transactions
must be stored and processed. Countries differ on the number of hours that make up
a workweek or how long employees break for lunch.

> The Bottom Line

We have now discussed the fact that any alternative solution can be evaluated
according to six criteria: operational, cultural/political, technical, schedule, eco-
nomic, and legal feasibility. How does an analyst pick the best solution? It’s not
easy. Operational and economic issues often conflict. For example, the solution
that provides the best operational impact for end users may also be the most ex-
pensive and, therefore, the least economically feasible. The final decision can be
made only by sitting down with end users, reviewing the data, and choosing the
best overall alternative.

Cost-Benefit Analysis Techniques

Economic feasibility has been defined as a cost-benefit analysis. How can costs and
benefits be estimated? How can those costs and benefits be compared to determine
economic feasibility? Most schools offer complete courses on these subjects—courses
on financial management, financial decision analysis, and engineering economics and
analysis.This section presents an overview of the techniques.

> How Much Will the System Cost?

Costs fall into two categories.There are costs associated with developing the system,
and there are costs associated with operating a system. The former can be estimated
from the outset of a project and should be refined at the end of each phase of the

Feasibility Analysis and the System Proposal Chapter Eleven 419

economic feasibility a

measure of the cost-

effectiveness of a project or

solution.

legal feasibility is a

measure of how well a solution

can be implemented within

existing legal and contractual

obligations.

project.The latter can be estimated only after specific computer-based solutions have
been defined. Let’s take a closer look at the costs of information systems.

The costs of developing an information system can be classified according to the
phase in which they occur. Systems development costs are usually onetime costs that
will not recur after the project has been completed. Many organizations have standard
cost categories that must be evaluated. In the absence of such categories, the follow-
ing list should help:

• Personnel costs—The salaries of systems analysts, programmers, consultants,
data entry personnel, computer operators, secretaries, and the like, who work
on the project make up the personnel costs. Because many of these individu-
als spend time on many projects, their salaries should be prorated to reflect
the time spent on the projects being estimated.

• Computer usage—Computer time will be used for one or more of the follow-
ing activities: programming, testing, conversion, word processing, maintaining
a project dictionary, prototyping, loading new data files, and the like. If a com-
puting center charges for usage of computer resources such as disk storage or
report printing, the cost should be estimated.

• Training—If computer personnel or end users have to be trained, the train-
ing courses may incur expenses. Packaged training courses may be charged
out on a flat fee per site, a student fee (such as $395 per student), or an
hourly fee (such as $75 per class hour).

• Supply, duplication, and equipment costs.

• Cost of any new computer equipment and software.

Sample development costs for a typical solution are displayed in Figure 11-2.When
analysts are estimating development costs, it is important that money be set aside for
the possibility that a system will incur costs after it is operating. The lifetime benefits
must recover both the developmental and the operating costs. Unlike system develop-
ment costs, operating costs tend to recur throughout the lifetime of the system. The
costs of operating a system over its useful lifetime can be classified as fixed or variable.

Fixed costs occur at regular intervals but at relatively fixed rates. Examples of
fixed operating costs include:

• Lease payments and software license payments.
• Prorated salaries of information systems operators and support personnel

(although salaries tend to rise, the rise is gradual and tends not to change
dramatically from month to month).

Variable costs occur in proportion to some usage factor. Examples include:

• Costs of computer usage (e.g., CPU time used, terminal connect time used,
storage used), which vary with the workload.

• Supplies (e.g., preprinted forms, printer paper used, punched cards, floppy
disks, magnetic tapes, and other expendables), which vary with the workload.

• Prorated overhead costs (e.g., utilities, maintenance, and telephone service),
which can be allocated throughout the lifetime of the system using standard
techniques of cost accounting.

Sample operating cost estimates for a solution are also displayed in Figure 11-2.

> What Benefits Will the System Provide?

Benefits normally increase profits or decrease costs, both highly desirable character-
istics of a new information system. As much as possible, benefits should be quantified
in dollars and cents; they should also be classified as tangible or intangible.

Tangible benefits are those that can be easily quantified. Tangible benefits are
usually measured in terms of monthly or annual savings or of profit to the firm. For ex-
ample, consider the following scenario:

420 Part Two Systems Analysis Methods

fixed cost a cost that

occurs at a regular interval

and at a relatively fixed rate.

variable cost a cost that

occurs in proportion to some

usage factor.

tangible benefit a benefit

that can be easily quantified.

Estimated Costs for Client-Server System Alternative

DEVELOPMENT COSTS

Personnel:

2 Systems Analysts (400 hours/ea $50.00/hr) $40,000

4 Programmer/Analysts (250 hours/ea $35.00/hr) $35,000

1 GUI Designer (200 hours/ea $40.00/hr) $8,000

1 Telecommunications Specialist (50 hours/ea $50.00/hr) $2,500

1 System Architect (100 hours/ea $50.00/hr) $5,000

1 Database Specialist (15 hours/ea $45.00/hr) $675

1 System Librarian (250 hours/ea $15.00/hr) $3,750

Expenses:

4 Smalltalk training registration ($3,500.00/student) $14,000

New Hardware & Software:

1 Development Server $18,700

1 Server software (operating system, misc.) $1,500

1 DBMS server software $7,500

7 DBMS client software ($950.00 per client) $6,650

Total Development Costs: $143,275

PROJECTED ANNUAL OPERATING COSTS

Personnel:

2 Programmer/Analysts (125 hours/ea $35.00/hr) $8,750

1 System Librarian (20 hours/ea $15.00/hr) $300

Expenses:

1 Maintenance Agreement for server $995

1 Maintenance Agreement for server DBMS software $525

Preprinted forms (15,000/year @ .22/form) $3,300

Total Projected Annual Costs: $13,870

While processing student housing applications, we discover that considerable
data is being redundantly typed and filed. An analysis reveals that the same data is
typed seven times, requiring an average of 44 additional minutes of clerical work
per application. The office processes 1,500 applications per year. That means a
total of 66,000 minutes or 1,100 hours of redundant work per year. If the average
salary of a secretary is $15 per hour, the cost of this problem and the benefit of
solving the problem is $16,500 per year.

Alternatively, tangible benefits might be measured in terms of unit cost savings or
profit. For instance, an alternative inventory valuation scheme may reduce inventory
carrying cost by $0.32 per unit of inventory. Some examples of tangible benefits are
listed in the margin.

Other benefits are intangible. Intangible benefits are those that are believed to
be difficult or impossible to quantify. Unless these benefits are at least identified, it is
entirely possible that many projects would not be feasible. Examples of intangible
benefits are listed in the margin on the next page.

Feasibility Analysis and the System Proposal Chapter Eleven 421

F I G U R E 1 1 - 2 Costs for a Proposed Systems Solution

TANGIBLE
BENEFITS

Fewer Processing Errors

Increased Throughput

Decreased Response Time

Elimination of Job Steps

Increased Sales

Reduced Credit Losses

Reduced Expenses

Unfortunately, if a benefit cannot be quantified, it is difficult to accept the validity
of an associated cost-benefit analysis that is based on incomplete data. Some analysts
dispute the existence of intangible benefits. They argue that all benefits are quantifi-
able; some are just more difficult to quantify than others. Suppose, for example, that
improved customer goodwill is listed as a possible intangible benefit. Can we quantify
goodwill? You might try the following analysis:

1. What is the result of customer ill will? The customer will submit fewer (or no)
orders.

2. To what degree will a customer reduce orders? A user may find it difficult to
specifically quantify this impact, but you could try to have the end user esti-
mate the possibilities (or invent an estimate to which the end user can react).
For instance:
a. There is a 50 percent (.50) chance that the regular customer would send a

few orders—fewer than 10 percent of all its orders—to competitors to test
their performance.

b. There is a 20 percent (.20) chance that the regular customer would send as
many as half its orders (.50) to competitors, particularly those orders we
are historically slow to fulfill.

c. There is a 10 percent (.10) chance that a regular customer would send us an
order only as a last resort. That would reduce that customer’s normal busi-
ness with us to 10 percent of its current volume (90 percent, or .90, loss).

d. There is a 5 percent (.05) chance that a regular customer would choose
not to do business with us at all (100 percent or 1.00 loss).

3. We can calculate an estimated business loss as follows:

Loss .50 (.10 loss of business)
 .20 (.50 loss of business)
 .10 (.90 loss of business)
 .50 (1.00 loss of business)

 .29
 29% statistically estimated loss of business

4. If the average customer does $40,000 per year of business, then we can
expect to lose 29 percent, or $11,600, of that business. If we have 500 cus-
tomers, this can be expected to amount to a total of $5,800,000.

5. Present this analysis to management, and use it as a starting point for quantify-
ing the benefit.

> Is the Proposed System Cost-Effective?

There are three popular techniques for assessing economic feasibility, also called cost-

effectiveness: payback analysis, return on investment, and net present value.
The choice of techniques should consider the audiences that will use them.

Virtually all managers who have come through business schools are familiar with all
three techniques. One concept that should be applied to each technique is the
adjustment of cost and benefits to reflect the time value of money.

The Time Value of Money A concept shared by all three techniques is the time

value of money—a dollar today is worth more than a dollar one year from now.You
could invest that dollar today and, through accrued interest, have more than one
dollar a year from now. Thus, you’d rather have that dollar today than in one year.
That’s why your creditors want you to pay your bills promptly—they can’t invest
what they don’t have.The same principle can be applied to costs and benefits before

a cost-benefit analysis is performed.

422 Part Two Systems Analysis Methods

intangible benefit a

benefit that is believed to be

difficult or impossible to

quantify.

INTANGIBLE
BENEFITS

Improved Customer
Goodwill

Improved Employee Morale

Better Service to
Community

Better Decision Making

F I G U R E 11-3

Payback Analysis
for a Project

Some of the costs of a system will be accrued after implementation. Additionally,
all benefits of the new system will be accrued in the future. Before cost-benefit analy-
sis, these costs should be brought back to current dollars. An example should clarify
the concept.

Suppose we are going to realize a benefit of $20,000 two years from now.What is
the current dollar value of that $20,000 benefit? If the current return on investments
is running about 10 percent, an investment of $16,528 today would give us our
$20,000 in two years (we’ll show you how to calculate this later). Therefore, the cur-
rent value of the estimated benefit is $16,528—that is, we’d rather have $16,528 today
than the promise of $20,000 two years from now.

Because projects are often compared against other projects that have different
lifetimes, time-value analysis techniques have become the preferred cost-benefit meth-
ods for most managers. By time-adjusting costs and benefits, you can improve the
following cost-benefit techniques.

Payback Analysis The payback analysis technique is a simple and popular
method for determining if and when an investment will pay for itself. Because system
development costs are incurred long before benefits begin to accrue, it will take some
time for the benefits to overtake the costs. After implementation, you will incur addi-
tional operating expenses that must be recovered. Payback analysis determines how
much time will elapse before accrued benefits overtake accrued and continuing costs.
This period of time is called the payback period.

In Figure 11-3 we see an information system that will be developed at a cost of
$418,040. The estimated net operating costs for each of the next six years are also
recorded in the table.The estimated net benefits over the same six operating years are
also shown. What is the payback period?

First, we need to adjust the costs and benefits for the time value of money (that
is, adjust them to current dollar values). Here’s how: The present value of a dollar in
year n depends on something typically called a discount rate. The discount rate is a
percentage similar to interest rates that you earn on your savings account. In most
cases the discount rate for a business is the opportunity cost of being able to invest
money in other projects, including the possibility of investing in the stock market,
money market funds, bonds, and the like. Alternatively, a discount rate could represent

Feasibility Analysis and the System Proposal Chapter Eleven 423

payback analysis a tech-

nique for determining if and

when an investment will pay

for itself.

payback period the period

of time that will elapse before

accrued benefits overtake

accrued costs.

what the company considers an acceptable return on its investments. This number
can be learned by asking any financial manager, officer, or comptroller.

Let’s say the discount rate for our sample company is 12 percent. The current
value, actually called the present value, of a dollar at any time in the future can be
calculated using the following formula:

PV
n
 1/(1 i)n

where PV
n

is the present value of $1.00 n years from now and i is the discount rate.
Therefore, the present value of a dollar two years from now is

PV
2
 1/(1 .12)2

 0.797

Earlier we stated that a dollar today is worth more than a dollar a year from now.
But it looks as if it is worth less.This is an illusion.The present value is interpreted as
follows. If you have 79.7 cents today, it is better than having 79.7 cents two years from
now. How much better? Exactly 20.3 cents better since that 79.7 cents would grow
into one dollar in two years (assuming our 12 percent discount rate).

To determine the present value of any cost or benefit in year 2, you simply multi-
ply 0.797 times the estimated cost or benefit. For example, the estimated operating
expense in year 2 is $16,000.The present value of this expense is $16,000 0.797, or
$12,752 (rounded up). Fortunately, you don’t have to calculate discount factors.There
are tables similar to the partial one shown in Figure 11-4 that show the present value
of a dollar for different time periods and discount rates. Simply multiply this number
times the estimated cost or benefit to get the present value of that cost or benefit.
More detailed versions of this table can be found in many accounting and finance
books as well as in spreadsheet functions.

Better still, most spreadsheets include built-in functions for calculating the pres-
ent value of any cash flow, be it cost or benefit. All the examples in this module were
done with Microsoft Excel. The same tables can be prepared with Lotus 1-2-3. The
beauty of a spreadsheet is that once the rows, columns, and functions have been set
up, you simply enter the costs and benefits and let the spreadsheet discount the num-
bers to present value. (In fact, you can also program the spreadsheet to perform the
cost-benefit analysis.)

In Figure 11-3, notice that we have brought all costs and benefits for our example
back to present value. Also notice that the discount rate for year 0 is 1.000. Why? The
present value of a dollar in year 0 is exactly $1. In other words, if you hold a dollar
today, it is worth exactly $1.

Now that we’ve discounted the costs and benefits, we can complete our payback
analysis. Look at the cumulative lifetime costs and benefits. The lifetime costs are
gradually increasing over the six-year period because operating costs are being
incurred. But also notice that the lifetime benefits are accruing at a much faster pace.

424 Part Two Systems Analysis Methods

F I G U R E 1 1 - 4 Partial Table For Present Value Of A Dollar

Periods 8% 9% 10% 11% 12% 13% 14%

1 0.926 0.917 0.909 0.901 0.893 0.885 0.877

2 0.857 0.842 0.826 0.812 0.797 0.783 0.769

3 0.794 0.772 0.751 0.731 0.712 0.693 0.675

4 0.735 0.708 0.683 0.659 0.636 0.613 0.592

5 0.681 0.650 0.621 0.593 0.567 0.543 0.519

6 0.630 0.596 0.564 0.535 0.507 0.480 0.456

7 0.583 0.547 0.513 0.482 0.452 0.425 0.400

8 0.540 0.502 0.467 0.434 0.404 0.376 0.351

present value the current

value of a dollar at any time in

the future.

Lifetime benefits will overtake the lifetime costs between years 3 and 4. By charting
the cumulative lifetime time-adjusted costs and benefits, we can estimate that the
break-even point (when Costs Benefits 0) will occur approximately 3.5 years af-
ter the system begins operating.

Is this information system a good or bad investment? It depends. Many companies
have a payback period guideline for all investments. In the absence of such a guide-
line, you need to determine a reasonable guideline before you determine the payback
period. Suppose that the guideline states that all investments must have a payback pe-
riod less than or equal to four years. Because our example has a payback period of 3.5
years, it is a good investment. If the payback period for the system were greater than
four years, the information system would be a bad investment.

It should be noted that you can perform payback analysis without time-adjusting
the costs and benefits.The result, however, would show a 2.8-year payback that looks
more attractive than the 3.5-year payback that we calculated.Thus, non-time-adjusted
paybacks tend to be overly optimistic and misleading.

Return-on-Investment Analysis The return-on-investment (ROI) analysis

technique compares the lifetime profitability of alternative solutions or projects. The
ROI for a solution or project is a percentage rate that measures the relationship
between the amount the business gets back from an investment and the amount
invested.The lifetime ROI for a potential solution or project is calculated as follows:

Lifetime ROI (Estimated lifetime benefits Estimated lifetime costs) /
Estimated lifetime costs

Let’s calculate the lifetime ROI for the same systems solution we used in our discus-
sion of payback analysis. Once again, all costs and benefits should be time-adjusted over
a period of six years.The time-adjusted costs and benefits were presented in rows 9 and
16 of Figure 11-3. The estimated lifetime benefits minus estimated lifetime costs equal

$795,440 $488,692 $306,748

Therefore, the lifetime ROI is

Lifetime ROI $306,748/$488,692 .628 63%

This is a lifetime ROI, not an annual ROI. Simple division by the lifetime of the sys-
tem (63 6) yields an average ROI of 10.5 percent per year. This solution can be
compared with alternative solutions.The solution offering the highest ROI is the best
alternative. However, as was the case with payback analysis, the business may set a
minimum acceptable ROI for all investments. If none of the alternative solutions
meets or exceeds that minimum standard, then none of the alternatives is economi-
cally feasible. Once again, spreadsheets can greatly simplify ROI analysis through their
built-in financial analysis functions.

As with payback analysis, we could have calculated the ROI without time-adjusting
the costs and benefits. This would, however, result in a misleading 129.4 percent
lifetime or a 21.6 percent annual ROI. Consequently, we recommend time-adjusting all
costs and benefits to current dollars.

Net Present Value The net present value of an investment alternative is consid-
ered the preferred cost-benefit technique by many managers, especially those who
have substantial business schooling. Once again, you initially determine the costs and
benefits for each year of the system’s lifetime. And once again, we need to adjust all
the costs and benefits back to present dollar values.

Figure 11-5 illustrates the net present value technique. Costs are represented by
negative cash flows, while benefits are represented by positive cash flows. We have
brought all costs and benefits for our example back to present value. Notice again that
the discount rate for year 0 (used to accumulate all development costs) is 1.000 be-
cause the present value of a dollar in year 0 is exactly $1.

Feasibility Analysis and the System Proposal Chapter Eleven 425

return-on-investment
(ROI) analysis a technique

that compares the lifetime

profitability of alternative

solutions.

net present value an

analysis technique that com-

pares the annual discounted

costs and benefits of alterna-

tive solutions.

After discounting all costs and benefits, subtract the sum of the discounted costs
from the sum of the discounted benefits to determine the net present value. If it is pos-
itive, the investment is good. If negative, the investment is bad. When comparing mul-
tiple solutions or projects, the one with the highest positive net present value is the
best investment. (This works even if the alternatives have different lifetimes!) In our ex-
ample the solution being evaluated yields a net present value of $306,748.This means
that if we invest $306,748 at 12 percent for six years, we will make the same profit that
we’d make by implementing this information systems solution. This is a good invest-
ment provided no other alternative has a net present value greater than $306,748.

Once again, spreadsheets can greatly simplify net present value analysis through
their built-in financial analysis functions.

426 Part Two Systems Analysis Methods

candidate systems
matrix a tool used to

document similarities and

differences between

candidate systems.

F I G U R E 11-5

Net Present Value
Analysis for a
Project

Feasibility Analysis of Candidate Systems

During the decision analysis phase of system analysis, the systems analyst identifies
candidate system solutions and then analyzes those solutions for feasibility. We dis-
cussed the criteria and techniques for analysis in this chapter. In this section, we
evaluate a pair of documentation techniques that can greatly enhance the compari-
son and contrast of candidate system solutions. Both use a matrix format. We have
found these matrices useful for presenting candidates and recommendations to
management.

> Candidate Systems Matrix

The first matrix allows us to compare candidate systems on the basis of several char-
acteristics. The candidate systems matrix documents similarities and differences
between candidate systems; however, it offers no analysis.

The columns of the matrix represent candidate solutions. Experienced analysts al-
ways consider multiple implementation options. At least one of those options should
be the existing system because it serves as a baseline for comparing alternatives.

The rows of the matrix represent characteristics that differentiate the candidates.
For purposes of this book, we based some of the characteristics on the information
system building blocks.The breakdown is as follows:

• Stakeholders—Identify how the system will interact with people and other
systems.

• Knowledge—Identify how data stores will be implemented (e.g., conventional
files, relational databases, other database structures), how inputs will be

captured (e.g., online, batch, etc.), how outputs will be generated (e.g., on a
schedule, on demand, printed, on screen, etc.).

• Processes—Identify how (manual) business processes will be modified, how
computer processes will be implemented. For the latter, we have numerous
options, including online versus batch processes and packaged versus built-in-
house software.

• Communications—Identify how processes and data will be distributed. Once
again, we might consider several alternatives—for example, centralized versus
decentralized versus distributed (or duplicated) versus cooperative (client/
server) solutions. Network distribution types and strategies will be discussed
in Chapter 13.

The cells of the matrix document whatever characteristics help the reader un-
derstand the differences between options. Figure 11-6 illustrates the basic structure of
the matrix.

Before considering any solutions, we must consider any constraints on solutions.
Solution constraints take the form of architectural decisions intended to bring order
and consistency to applications. For example, a technology architecture may restrict
solutions to relational databases or client/server networks.

There are several approaches for identifying candidate solutions, including:

• Recognizing users’ ideas and opinions—Throughout a systems project, users
may suggest manual or technology-related solutions. They should be given
consideration.

• Consulting methodology and architecture standards—Many organizations’
development methodology and architecture standards may dictate how technol-
ogy solutions are to be selected and what technology(ies) may be represented.

• Brainstorming possible solutions—Brainstorming is an effective technique
for identifying possible solutions. It is particularly effective when done using
an organized approach or framework, such as the IS building blocks or other
IS characteristics. Brainstorming should encompass solutions that represent
buy, build, and a combination of buy and build options.

• Seeking references—The analyst should solicit ideas and opinions from other
persons and organizations that have implemented similar systems.

• Browsing appropriate journals and periodicals—Such literature may feature
advertisements and articles concerning automation strategies, successes, fail-
ures, and technologies.

A combination of the above approaches could be used independently by the devel-
opment team members to derive a number of possible alternative system solutions.

A sample, partially completed candidate systems matrix listing three of the five
candidates is shown in Figure 11-7. In the figure, the matrix is used to provide

Feasibility Analysis and the System Proposal Chapter Eleven 427

F I G U R E 1 1 - 6 Candidate Systems Matrix Template

Candidate 1 Name Candidate 2 Name Candidate 3 Name

Stakeholders

Knowledge

Processes

Communications

F I G U R E 1 1 - 7 Sample Candidate Systems Matrix

Characteristics Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Portion of System
Computerized

Brief description of that portion of
the system that would be
computerized in this candidate.

Benefits

Brief description of the business
benefits that would be realized for
this candidate.

Servers and Workstations

A description of the servers and
workstations needed to support this
candidate.

Software Tools Needed

Software tools needed to design and
build the candidate (e.g., database
management system, emulators,
operating systems, languages). Not
generally applicable if applications
software packages are to be
purchased.

Application Software

A description of the software to be
purchased, built, accessed, or some
combination of these techniques.

Method of Data Processing

Generally some combination of
online, batch, deferred batch,
remote batch, and real time.

Output Devices and
Implications

A description of output devices that
would be used, special output
requirements (e.g., network,
preprinted forms, etc.), and output
considerations (e.g., timing
constraints).

Input Devices and
Implications

A description of input methods to be
used, input devices (e.g., keyboard,
mouse, etc.), special input
requirements (e.g., new or revised
forms from which data would be
input), and input considerations
(e.g., timing of actual inputs).

Storage Devices and
Implications

Brief descriptions of what data
would be stored, what data would
be accessed from existing stores,
what storage media would be used,
how much storage capacity would
be needed, and how data would
be organized.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 2001
Internet Explorer

Same as candidate 2.

Same as candidate 1.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

COTS package Platinum
Plus from Entertainment
Software Solutions would
be purchased and
customized to satisfy
Member Services required
functionality.

This solution can be
implemented quickly
because it’s a purchased
solution.

Technically, architecture
dictates Pentium III, MS
Windows 2000 class
servers and workstations
(clients).

MS Visual C++ and MS
Access for customization
of package to provide
report writing and
integration.

Package solution

Client/Server

(2) HP4MV department
laser printers

(2) HP5SI LAN laser
printers

Keyboard & mouse

MS SQL Server DBMS
with 100GB arrayed
capability.

Member Services and
warehouse operations in
relation to order fulfillment.

Fully supports user-required
business processes for
SoundStage Inc. Plus more
efficient interaction with
member accounts.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 2001
Internet Explorer

Custom solution

Same as candidate 1.

(2) HP4MV department
laser printers
(2) HP5SI LAN laser printers
(1) PRINTRONIX bar code
printer (includes software &
drivers)
Web pages must be
designed to VGA
resolution. All internal
screens will be designed
for SVGA resolution.

Apple “Quick Take” digital
camera and software
(15) PSC Quickscan laser
bar code scanners
(1) HP Scanjet 4C flatbed
scanner
Keyboard & mouse

Same as candidate 1.

overview characteristics concerning the portion of the system to be computerized,
the business benefits, and the software tools and/or applications needed. Subsequent
pages would provide additional details concerning other characteristics such as those
mentioned previously. Two columns can be similar except for their entries in one or
two cells. Multiple pages would be used if we were considering more than three
candidates. A simple word processing “table” template can be duplicated to create a
candidate systems matrix.

> Feasibility Analysis Matrix

The second matrix complements the candidate systems matrix with an analysis and
ranking of the candidate systems. It is called a feasibility analysis matrix.

The columns of the matrix correspond to the same candidate solutions as shown
in the candidate systems matrix. Some rows correspond to the feasibility criteria pre-
sented in this chapter. Rows are added to describe the general solution and a ranking
of the candidates.The general format is shown in Figure 11-8.

The cells contain the feasibility assessment notes for each candidate. Each row
can be assigned a rank or score for each criterion (for operational feasibility, candi-
dates can be ranked 1, 2, 3, etc.). After ranking or scoring all candidates on each cri-
terion, a final ranking or score is recorded in the last row. Not all feasibility criteria are
necessarily equal in importance; consequently, before assigning final rankings, candi-
dates for which any criterion is deemed infeasible can be eliminated. In reality, this
doesn’t happen very often.

A completed feasibility analysis matrix is presented in Figure 11-9. In the figure,
the feasibility assessment is provided for each candidate solution. In this example, a
score is recorded directly in the cell for each candidate’s feasibility criteria assess-
ment. The weightings allow you to quantify the analysis. But be aware that any solu-
tion that is completely infeasible on any criteria should be eliminated. For instance, a
solution that could be implemented only by violating contracts with suppliers could
not be considered.

Feasibility Analysis and the System Proposal Chapter Eleven 429

F I G U R E 1 1 - 8 Feasibility Analysis Matrix Template

Weighting Candidate 1 Candidate 2 Candidate 3

Description

Operational feasibility

Cultural feasibility

Technical feasibility

Economic feasibility

Schedule feasibility

Legal feasibility

Weighted score

feasibility analysis
matrix a tool used to rank

candidate systems.

F I G U R E 1 1 - 9 Sample Feasibility Analysis Matrix

Wt Candidate 1 Candidate 2 Candidate 3

Description Purchase commercial Write new application Rewrite current in-house
off-the-shelf package for in-house using new application using Powerbuilder.
member services. company standard VB. NET

and SQL Server database

Operational 15% Supports only Member Fully supports user-required Fully supports user-required
feasibility Services requirements. functionality. functionality.

Current business process
would have to be modified
to take advantage of
software functionality.
Also, there is concern about
security in the system.

Score: 60 Score: 100 Score: 100

Cultural 15% Possible user resistance to No foreseeable problems No foreseeable problems
feasibility nonstandard user interface

of proposed purchased
package.

Score: 70 Score: 100 Score: 100

Technical 20% Current production release Solution requires writing Although current technical
feasibility of Platinum Plus package is application in VB. NET. staff is comfortable with

version 1.0 and has been on Although current technical Powerbuilder, management is
the market for only 6 weeks. staff has only Powerbuilder concerned about acquisition
Maturity of product is a risk, experience, it should be of Powerbuilder by Sybase Inc.
and company charges and relatively easy to find MS SQL Server is the current
additional monthly fee for programmers with VB. NET company standard for database,
technical support. experience. which competes with Sybase

DBMS. We have no guarantee
Required to hire or train that future versions of
Java J2EE expertise to Powerbuilder will “play well”
perform modifications for with our current version
integration requirements. of SQL Server.

Score: 50 Score: 95 Score: 60

Economic 30%
feasibility

Cost to develop: Approx. $350,000 Approx. $418,000 Approx. $400,000

Payback Approx. 4.5 years Approx. 3.5 years Approx. 3.3 years
(discounted):

Net present Approx. $210,000 Approx. $307,000 Approx. $325,000
value:

Detailed See Attachment A See Attachment A See Attachment A
calculations:

Score: 60 Score: 85 Score: 90

Schedule 10% Less than 3 months 9–12 months 9 months
feasibility

Score: 95 Score: 80 Score: 85

Legal 10% No foreseeable problems No foreseeable problems No foreseeable problems
feasibility

Score: 100 Score: 100 Score: 100

Weighted 100% 67 92.5 87.5
score

F I G U R E 1 1 - 1 0 Formats For Written Reports

Factual Format Administrative Format

I. Introduction I. Introduction

II. Methods and procedures II. Conclusions and recommendations

III. Facts and details III. Summary and discussion of facts and details

IV. Discussion and analysis of facts IV. Methods and procedures

and details

V. Recommendations V. Final conclusion

VI. Conclusion VI. Appendixes with facts and details

The System Proposal

Recall from Chapter 5 that the decision analysis phase involves identifying candidate
solutions, analyzing those solutions, comparing and then selecting the best overall so-
lution, and then recommending a solution. We’ve just learned how to do the first
three tasks. Let’s now learn about recommending a solution.

Recommending a solution involves producing a system proposal. This deliver-
able is usually a formal written report or oral presentation intended for system owners
and users.Therefore, the systems analysts should be able to write a formal business re-
port and make a business presentation without getting into technical issues or alterna-
tives. Let’s survey some important concepts of written reports and presentations.

> Written Report

The written report is the most abused method used by analysts to communicate with
system users. There is a tendency to generate large, voluminous reports that look im-
pressive. Sometimes such reports are necessary, but often they are not. If a manager
receives a 300-page technical report, the manager may skim it but not read it—and
you can be certain it won’t be studied carefully.

Length of the Written Report Trial and error has taught us about report size. The
following are general guidelines on limiting report size:

• To executive-level managers—one or two pages.
• To middle-level managers—three to five pages.
• To supervisory-level managers—less than 10 pages.
• To clerk-level personnel—less than 50 pages.

It is possible to organize a larger report to include subreports for managers who
are at different levels.These subreports are usually included as early sections in the re-
port and summarize the report, focusing on the bottom line.

Organization of the Written Report There is a general pattern to organizing any
report. Every report consists of both primary and secondary elements. Primary ele-

ments present the actual information that the report is intended to convey. Examples
include the introduction and the conclusion.

While the primary elements present the actual information, all reports also con-
tain secondary elements. Secondary elements package the report so that the reader
can easily identify the report and its primary elements. Secondary elements also add
a professional polish to the report.

As indicated in Figure 11-10, the primary elements can be organized in one of two
formats: factual and administrative.The factual format is traditional and best suited to

Feasibility Analysis and the System Proposal Chapter Eleven 431

system proposal a report

or presentation of a recom-

mended solution.

readers who are interested in facts and details as well as conclusions. This is the for-
mat we would use to specify detailed requirements and design specifications to sys-
tem users. But the factual format is not appropriate for most managers and executives.

The administrative format is a modern, results-oriented format preferred by
many managers and executives.This format is designed for readers who are interested
in results, not facts. It presents conclusions or recommendations first. Any reader can
read the report straight through, until the point at which the level of detail exceeds
the reader’s interest.

Both formats include some common elements. The introduction should include
four components: purpose of the report, statement of the problem, scope of the proj-
ect, and a narrative explanation of the contents of the report. The methods and pro-

cedures section should briefly explain how the information contained in the report
was developed—for example, how the study was performed or how the new system
will be designed. The bulk of the report will be in the facts section. This section
should be named to describe the type of factual data presented (e.g., “Existing Sys-
tems Description,”“Analysis of Alternative Solutions,” or “Design Specifications”). The
conclusion should briefly summarize the report, verifying the problem statement,
findings, and recommendations.

Figure 11-11 shows the secondary, or packaging, elements of the report and their
relationship to the primary elements. Many of these elements are self-explanatory.We
briefly discuss here those that may not be. No report should be distributed without a
letter of transmittal to the recipient. This letter should be clearly visible, not inside
the cover of the report. A letter of transmittal states what type of action is needed on
the report. It can also call attention to any features of the project or report that de-
serve special attention. In addition, it is an appropriate place to acknowledge the help
you’ve received from various people.

The abstract or executive summary is a one- or two-page summary of the entire re-
port. It helps readers decide if the report contains information they need to know. It can
also serve as the highest-level summary report.Virtually every manager reads these sum-
maries. Most managers will read on, possibly skipping the detailed facts and appendixes.

Writing the Report Figure 11-12 illustrates the proper procedure for writing a for-
mal report. Here are some guidelines to follow:

• Paragraphs should convey a single idea. They should flow nicely, one to
the next. Poor paragraph structure can almost always be traced to outlining
deficiencies.

• Sentences should not be too complex. The average sentence length should
not exceed 20 words. Studies suggest that sentences longer than 20 words
are difficult to read and understand.

• Write in the active voice. The passive voice becomes wordy and boring
when used consistently.

432 Part Two Systems Analysis Methods

F I G U R E 1 1 - 1 1 Secondary Elements for a Written Report

Letter of transmittal

Title page

Table of contents

List of figures, illustrations, and tables

Abstract or executive summary

(The primary elements—the body of the report in either the factual or administrative
format—are presented in this portion of the report.)

Appendixes

F I G U R E 11-12

Steps in Writing a
Report

Source: Copyright Keith London.

Check

Outline

• Headings
• Illustration titles

Initial preparation

• Define objectives, scope, and strategy
• Clarify material
• Define readership and method
 (length and standards)

Draft
illustrations

Draft text

Rewrite/
edit

Final type

Proofread

Reproduce/
bind

Distribute

• Eliminate jargon, big words, and deadwood. For example, replace “DBMS”

with “database management system,” substitute “so” for “accordingly,” try “use-

ful” instead of “advantageous,” and use “clearly” instead of “it is clear that.”

Every businessperson should have a copy of The Elements of Style by William

Strunk, Jr., and E. B. White. This classic paperback may set a record in value-to-cost

ratio. Barely bigger than a pocket-size book, it is a gold mine of information.

> Formal Presentation

To communicate information to the many different people involved in a systems de-

velopment project, a systems analyst is frequently required to make formal presenta-

tions. Formal presentations are special meetings used to sell new ideas and gain

approval for new systems.They may also be used for any of these purposes: sell a new

system, sell new ideas, sell change, head off criticism, address concerns, verify con-

clusions, clarify facts, and report progress. In many cases, a formal presentation may

set up or supplement a more detailed written report.

Effective and successful presentations require significant preparation. The time

allotted to presentations is frequently brief; therefore, organization and format are

critical issues.You cannot improvise and expect acceptance.

Presentations offer the advantage of impact through immediate feedback and

spontaneous responses. The audience can respond to the presenter, who can use

Feasibility Analysis and the System Proposal Chapter Eleven 433

formal presentation a

special meeting used to sell

new ideas and gain approval

for new systems.

emphasis, timed pauses, and body language to convey messages not possible with the
written word.The disadvantage to presentations is that the material presented is easily
forgotten because the words are spoken and the visual aids are transient. That’s why
presentations are often followed by a written report, either summarized or detailed.

Preparing for the Formal Presentation Presenters must know their audience.
This is especially crucial when your presentation is trying to sell new ideas and a new
system.The systems analyst is frequently thought of as the dreaded agent of change in
an organization. As Machiavelli wrote in his classic book The Prince,

There is nothing more difficult to carry out, nor more dangerous to handle, than
to initiate a new order of things. For the reformer has enemies in all who profit by
the old order, and only lukewarm defenders in all those who would profit from
the new order, this lukewarmness arising partly from fear of their adversaries—
and partly from the incredulity of mankind, who do not believe in anything new
until they have had actual experience of it.1

People tend to be opposed to change. There is comfort in the familiar way things
are today. Yet a substantial amount of the analyst’s job is to bring about change—in
methods, procedures, technology, and the like. A successful analyst must be an effec-
tive salesperson. It is entirely appropriate (and strongly recommended) for an analyst
to formally study salesmanship.To effectively present and sell change, you must be con-
fident in your ideas and have the facts to back them up. Again, preparation is the key!

First, define expectations of the presentation—for instance, that the goal is to
seek approval to continue the project, that another goal is to confirm facts, and so
forth. A presentation is a summary of ideas and proposals that is directed toward the
presenter’s expectations.

Executives are usually put off by excessive detail. To avoid this, a presentation
should be carefully organized around the allotted time (usually 30 to 60 minutes). Al-
though each presentation differs, the organization and time allocation suggested in
Figure 11-13 provide an idea of how this works. This figure illustrates some typical

434 Part Two Systems Analysis Methods

1Niccolo Machiavelli, The Prince and Discourses, trans. Luigi Ricci (New York: Random House, 1940, 1950). Reprinted

by permission of Oxford University Press.

F I G U R E 1 1 - 1 3 Typical Outline and Time Allocation for an
Oral Presentation

I. Introduction (one-sixth of total time available)

A. Problem statement

B. Work completed to date

II. Part of the presentation (two-thirds of total time available)

A. Summary of existing problems and limitations

B. Summary description of the proposed system

C. Feasibility analysis

D. Proposed schedule to complete project

III. Questions and concerns from the audience (Time here is not to be included in the time
allotted for presentation and conclusion; it is determined by those asking the questions
and voicing their concerns.)

IV. Conclusion (one-sixth of total time available)

A. Summary of proposal

B. Call to action (request for whatever authority you require to continue systems
development)

FIGURE 11-14

Guidelines for
Visual Aids

Source: Copyright Keith London.

WHEW!

not too much

END

?

not too little

not too many

4

HOURS?

BUY

OUR

SYSTEM!

not too few

IT'S NOT

MUCH, BUT

IT'S ALL

WE COULD

THINK OF.

not too small not too soon

YOUR NEW

SYSTEM WILL

COST £25K

AND TAKE

FIVE YEARS.

ANY

QUESTIONS?

not too late

IS

ANYONE

STILL

AWAKE?

not too fast

END-USER

EDUCATION

AND

TRAINING

CURSES

not too slow

TEMPORARY

FAULT

DO NOT

ADJUST

YOUR SET

IF YOU CAN READ

THIS, YOU'RE THE

ONLY ONE WHO

KNOWS OUR SECRET.

CONGRATULATIONS

topics of an oral presentation and the amount of time to allow for each. Note that this

particular outline is for a systems analysis presentation. Other types of presentations

might be slightly different.

What else can you do to prepare for the presentation? Because of the limited

time, use visual aids—predrawn flipcharts, overhead slides, Microsoft PowerPoint

slides, and the like—to support your position. Just like a written paragraph, each vi-

sual aid should convey a single idea.When preparing pictures or words, use the guide-

lines shown in Figure 11-14.

Microsoft PowerPoint contains software guides called wizards to assist the most

novice users with creating professional-looking presentations. The wizard steps the

user through the development process by asking a series of questions and tailoring

the presentation based on responses.To hold your audience’s attention, consider dis-

tributing photocopies of the visual aids at the start of the presentation. This way, the

audience doesn’t have to take as many notes.

Feasibility Analysis and the System Proposal Chapter Eleven 435

Finally, practice the presentation in front of the most critical audience you can as-
semble. Play your own devil’s advocate, or, better yet, get somebody else to raise crit-
icisms and objections. Practice your responses to these issues.

Conducting the Formal Presentation A few additional guidelines may improve
the actual presentation:

• Dress professionally. The way you dress influences people. John T. Malloy’s
books, Dress for Success and The Woman’s Dress for Success Book, are excel-
lent reading for both wardrobe advice and the results of studies regarding the
effects of clothing on management.

• Avoid using the word “I” when making the presentation. Use “you” and
“we” to assign ownership of the proposed system to management.

• Maintain eye contact with the group and keep an air of confidence. If you
don’t show management that you believe in your proposal, why should man-
agement believe in it?

• Be aware of your own mannerisms. Some of the most common mannerisms
include using too many hand gestures, pacing, and repeatedly saying “you
know” or “OK.” Although mannerisms alone don’t contradict the message,
they can distract the audience.

Sometimes while you are making a presentation, some members of the audience
may not be listening.This lack of attention may take several forms. Some people may
be engaged in competing conversations, some may be daydreaming, some may be
busy glancing at their watches, some who are listening may have puzzled expressions,
and some may show no expression. The following suggestions may prove useful for
keeping people listening:

• Stop talking. The silence can be deafening. The best public speakers know
how to use dramatic pauses for special emphasis.

• Ask a question, and let someone in the audience answer it. This involves
the audience in the presentation and is a very effective way of stopping a
competing conversation.

• Try a little humor. You don’t have to be a talented comedian. But everybody
likes to laugh. Tell a joke on yourself.

• Use props. Use some type of visual aid to make your point clearer. Draw on
the chalkboard, illustrate on the back of your notes, or create a physical
model to make the message easier to understand.

• Change your voice level. By making your voice louder or softer, you force
the audience to listen more closely or make it easier for the audience to
hear. Either way, you’ve made a change from what the audience was used to,
and that is the best way to get and hold attention.

• Do something unexpected. Drop a book; toss your notes; jingle your keys.
Doing the unexpected is almost always an attention grabber.

A formal presentation will usually include time for questions from the audience.
This time is very important because it allows you to clarify any points that were un-
clear and draw additional emphasis to important ideas. It also allows the audience to
interact with you. However, sometimes answering questions after a presentation may
be difficult and frustrating. We suggest the following guidelines when answering
questions:

• Always answer a question seriously, even if you think it is a silly question.

Remember, if you make someone feel stupid for asking a “dumb” question,
that person will be offended. Also, other members of the audience won’t ask
their questions for fear of the same treatment.

• Answer both the individual who asked the question and the entire audi-

ence. If you direct all your attention to the person who asked the question,

436 Part Two Systems Analysis Methods

1. Feasibility is a measure of how beneficial the devel-
opment of an information system would be to an
organization. Feasibility analysis is the process by
which we measure feasibility. It is an ongoing evalu-
ation of feasibility at various checkpoints in the life
cycle. At any of these checkpoints, the project may
be canceled, revised, or continued.This is called a
creeping commitment approach to feasibility.

2. There are six feasibility tests: operational, cultural/
political, technical, schedule, economic, and legal.

a. Operational feasibility is a measure of problem
urgency or solution acceptability. It includes a
measure of how the end users and managers
feel about the problems or solutions.

b. Cultural (or political) feasibility is a measure of
how people feel about a solution and how well
it will be accepted.

c. Technical feasibility is a measure of how practi-
cal solutions are and whether the technology
is already available within the organization. If
the technology is not available to the firm,
technical feasibility also looks at whether it can
be acquired.

d. Schedule feasibility is a measure of how reason-
able the project schedule or deadline is.

e. Economic feasibility is a measure of whether a
solution will pay for itself or how profitable a so-
lution will be. For management, economic feasi-
bility is the most important of our four measures.

f. Legal feasibility is a measure of how well a solu-
tion can be implemented within existing legal
and contractual obligations.

3. To analyze economic feasibility, you itemize bene-
fits and costs. Benefits are either tangible (easy to
measure) or intangible (hard to measure).To prop-
erly analyze economic feasibility, try to estimate
the value of all benefits. Costs fall into two cate-
gories: development and operating.

a. Development costs are onetime costs associ-
ated with analysis, design, and implementation
of the system.

b. Operating costs may be fixed over time or vari-
able with respect to system usage.

4. Given the costs and benefits, economic feasibility
is evaluated by the techniques of cost-benefit
analysis. Cost-benefit analysis determines if a proj-
ect or solution will be cost-effective—if lifetime
benefits will exceed lifetime costs.There are three
popular ways to measure cost-effectiveness: pay-
back analysis, return-on-investment analysis, and
net present value analysis.

a. Payback analysis defines how long it will take
for a system to pay for itself.

b. Return-on-investment and net present value
analyses determine the profitability of a system.

Chapter Review

the rest of the audience will be bored. If you don’t direct enough attention
to the person who asked the question, that person won’t be satisfied. Try to
achieve a balance. If the question is not of general interest to the audience,
answer it later with that specific person.

• Summarize your answers. Be specific enough to answer the question, but
don’t get bogged down in details.

• Limit the amount of time you spend answering any one question. If addi-
tional time is needed, wait until after the presentation is over.

• Be honest. If you don’t know the answer to a question, admit it. Never try to
bluff your way out of a question. The audience will eventually find out, and
you will destroy your credibility. Instead, promise to find out and report
back. Or ask someone in the audience to do some research and present the
findings later.

Following Up the Formal Presentation As mentioned earlier, it is extremely im-
portant to follow up a formal presentation because the spoken word and impressive
visual aids used in a presentation often do not leave a lasting impression. For this rea-
son, most presentations are followed by written reports that provide the audience
with a more permanent copy of the information that was communicated.

Feasibility Analysis and the System Proposal Chapter Eleven 437

c. Net present value analysis is preferred because
it can compare alternatives with different
lifetimes.

5. A candidate systems matrix is a useful tool for doc-
umenting the similarities and differences between
candidate systems being considered.

6. A feasibility analysis matrix is used to evaluate and
rank candidate systems. Both the candidate sys-
tems matrix and the feasibility analysis matrix are
useful for presenting the results of a feasibility
analysis as part of a system proposal.

7. Written reports are the most common communica-
tions vehicle used by analysts. Reports consist of
both primary and secondary elements. Primary

elements contain factual information. Secondary el-
ements package the report for ease of use. Reports
may be organized in either the factual or adminis-
trative format.The factual format presents the de-
tails before conclusions; the administrative format
reverses that order. Managers like the administra-
tive format because it is results-oriented and gets
right to the bottom-line question.

8. Formal presentations are a special type of meeting
at which a person presents conclusions, ideas, or
proposals to an interested audience. Preparation is
the key to effective presentations.

9. The system proposal may be a formal written re-
port or an oral presentation.

438 Part Two Systems Analysis Methods

1. What does a creeping commitment approach to
feasibility analysis mean?

2. What are the feasibility analysis checkpoints in
the development cycle? What should be done at
each checkpoint?

3. What are the objectives of the operational feasi-
bility test?

4. Why is it important to find out how the end users
and managers feel about the problem solution
that the system analyst has identified?

5. When is usability analysis performed? What is the
objective of the usability analysis?

6. What is the objective of the technical feasibility test?
7. What are the characteristics of development costs

and operating costs? List three examples of each
kind of cost.

8. List five examples of tangible benefits.
9. Why is the time-value-of-money concept an essen-

tial consideration when accessing economic
feasibility?

10. What are the most commonly used techniques to
determine the cost-effectiveness of a project?

11. For what are the candidate systems matrix and
feasibility analysis matrix used?

12. For written reports, what is the difference be-
tween the factual format and the administrative
format?

13. What are the steps in writing a report?
14. What are the advantages and disadvantages of

presentations?
15. What should be done to follow up the formal

presentation?

Review Questions
1

2

1. The textbook describes a creeping commitment
approach to feasibility.

a. Explain this approach and why the textbook
recommends it.

b. What are the some of the changes or events
that might occur which make this approach
advisable?

c. Should an organization cancel a project if it
becomes infeasible?

2. The textbook describes three checkpoints for
measuring feasibility.

a. What are these checkpoints?
b. Typically, how accurately can feasibility be

determined at each checkpoint?

c. Which checkpoint, if any, is the most critical
one?

3. What are the four categories of feasibility tests,
and what is the criteria each of them uses to mea-
sure feasibility?

4. You are a systems designer on a project which is
getting close to finishing the systems design phase.
A working prototype has been developed, and
you’ve been tasked with doing a usability analysis.
Draft a one- or two-page plan detailing your ap-
proach to conducting the usability analysis.

5. You are a systems analyst working in the IT
shop of a medium-size organization with about
300 employees. The organization is in the sys-
tem design phase of a project to develop an

Problems and Exercises

electronic activity reporting system for all em-
ployees, replacing the current hard copy
method. All of the work is being done in-house
except for several consultants, who are provid-
ing ancillary services, such as IV&V. The applica-
tion will use employees’ existing desktops,
although several dedicated servers will need to
be acquired. The user interface is very intuitive,
but the project calls for about a half day of train-
ing for all employees on policies and proce-
dures for using the new application. The system
is not using any new technology, and the IT
technical staff have a great deal of expertise.
Create a worksheet, detailing the estimated one-
time development costs and ongoing operating
costs. By the way, in your organization, salary
and benefits for systems analysts average $40
per hour; you can use this as a basis for estimat-
ing salary and benefits for other classifications
involved in the project.

6. In the project described above, it was noted that
the electronic activity reporting system will be re-
placing the current manual system. Describe the
tangible benefits that might be expected.Take a
“best guess” approach, and calculate the annual
savings to the organization. Show your assump-
tions in the calculations.

7. You are designing a Web-based system where
your regional offices can submit their sales re-
ports online instead of filling them out by hand
and mailing them in.Three candidate solutions
have been identified.Their estimated lifetime
benefits and estimated lifetime costs are shown
below. All have been time-adjusted over the
projected five-year lifetime of each alternative.

Estimated Estimated

Lifetime Lifetime

Benefits Costs

Candidate Solution 1: $640,000 $172,000

Candidate Solution 2: $640,000 $160,000

Candidate Solution 3: $640,000 $185,000

According to return-on-investment analysis,
which candidate solution offers the highest ROI?
If the organization sets a minimum lifetime ROI of

80 percent, which of these solutions is economi-
cally feasible?

8. What are the different techniques or methods for
identifying candidate solutions? If you had to
choose just one of these methods, which would it
be and why?

9. You are working as a system designer for a com-
pany that manufactures heavy-duty power tools
used by contractors. Every month, your regional
sales and service centers batch together the hard
copy repair orders for work performed under
warranty.They are sent to headquarters, where
they are run through a legacy mainframe batch
process. A report is then generated, which the en-
gineers analyze for signs of any problem trends in
the new models.The company’s CEO has decided
that this process is far too slow in today’s highly
competitive business environment and wants to
replace the legacy system as soon as possible
with something more contemporary. Identify at
least three candidate solutions, and describe them
in a candidate systems matrix, using Figure 11-7
as an example.

10. Prepare a feasibility analysis matrix, using the can-
didate solutions you identified and described in
the preceding question. Use Figure 11-9 as your
template, but choose the weighting factors that
you feel would be most appropriate in this situa-
tion. For purposes of this exercise, you may pro-
vide an estimate of the economic feasibility.

11. Once the feasibility analysis matrix has been com-
pleted, it is time to write the feasibility report.
For this exercise, prepare a feasibility report to
executive-level managers, using the appropriate
format shown in Figure 11-10.

12. You have been asked to present the feasibility
analysis and recommendation to the executive
managers of every department in your organiza-
tion at their weekly meeting. Prepare a set of
PowerPoint slides to be used as a visual aid
during your presentation.

13. Name at least 10 things you should not do if you
want your presentation to be informative, persua-
sive, and well-received.

Feasibility Analysis and the System Proposal Chapter Eleven 439

1. Steve McConnell is an author who has written
numerous books on software engineering and
development. In his book Rapid Development,

McConnell points out that in engineering, design
is usually a much smaller part of the total project

than the actual construction. He compares bridge
building projects, where design is about 10 per-
cent of the total effort and construction about 90
percent, to software development projects, where
design is generally at least 50 percent of the total

Projects and Research

project effort. Explore and expand on this theme
of the unique differences in software engineering
compared to other types of engineering, and sum-
marize your analysis and findings in a one- to two-
page paper. What do other software engineering
leaders have to say on this topic?

2. You work as a system analyst in the headquarters
of your state’s highway patrol, which has field
offices throughout the state. Currently, traffic
accident reports are handwritten in the field by
the highway patrol officers, reviewed by their
sergeant, stored temporarily, then batched and sent
monthly to headquarters. Each one is entered into
a legacy mainframe system by key data operators,
then after the reports from the patrol offices in
each county have been input, a computer operator
runs the edit program using JCL.

Reports with major errors or omissions are re-
jected and returned to the county highway patrol
office of origin for correction. After the edit pro-
gram is completed for all the counties, an update
program is run adding the monthly batch of traffic
accident reports to the master file of reports. Sta-
tistical reports are generated quarterly and yearly.
The entire process from the time the batches of re-
ports are received to the point the master file is
updated generally takes about three months. Exec-
utive management is interested in replacing the
system with something that is more modern, less
labor-intensive, more accurate, and easier for users
to access and that will reduce turnaround time for
preparing statistical reports.Your assignment, as a
member of the project team, is to prepare the fea-
sibility study report (FSR).

a. What are some of the options or alternatives
that you think should be considered? (Identify
at least three in addition to “do nothing” or
“maintain the status quo”).

b. Prepare a candidate systems matrix describing
the characteristics of each of these alternatives,
using the candidate systems matrix template
shown in Figure 11-6.

c. Expand the candidate systems matrix, using the
template shown in Figure 11-7.

d. Evaluate each of these alternatives for opera-
tional, technical, and schedule feasibility, using
the techniques described in the textbook and
using the template shown in Figure 11-9.

3. Based upon the scenario described in the preced-
ing question:

a. Prepare an estimated-costs worksheet for
each alternative, using the format shown in
Figure 11-2.

b. Assess the economic feasibility of each alterna-
tive, using one of the three techniques de-
scribed in the textbook. Which technique did
you use and why?

c. Add the economic feasibility analysis to the
feasibility analysis matrix from the preceding
question.

d. Compare and score each of these alternatives.
Use different weighting factors for each of the
feasibility criteria than those used in the
textbook.

e. What weighting factors did you choose for the
different criteria in your feasibility analysis ma-
trix? Why?

4. Management was impressed by your excellent
work on the feasibility analysis matrix and has
asked you to prepare the system proposal report.
Write a system proposal whose primary audience
will be the midlevel business and IT managers, but
which also will be read by the executive sponsor
and chief information officer. Use the appropriate
format shown in Figure 11-10.

5. Midlevel management was extremely impressed by
your system proposal.They now want you to pre-
pare and present a formal presentation to the top
management of the department.

a. Describe the steps you should go through to
prepare for the formal presentation.

b. Prepare a PowerPoint slide presentation, using
the guidelines suggested in the textbook, or
in other books and articles on the do’s and
don’ts of PowerPoint presentations.

c. What do you consider to be the most critical
thing to know in preparing for the formal pre-
sentation? Why

6. A wide variety of formats, templates, and methods
exist for preparing system proposals and feasibility
study reports. Search the Web to see what other
tools and techniques you can find.

a. Describe the formats that you found and their
sources.

b. Compare the different formats that you found
to each other and to the one in the textbook.
What are some of the differences?

c. Do you think there is one format with clear-cut
advantages over the others? If so, describe
which one, and why you feel it is better.

d. Create what you believe to be the ideal FSR
template for your organization.

440 Part Two Systems Analysis Methods

The grocery store, Wow Munchies, from an earlier
chapter is considering developing an online site for
customers to purchase food.The owner of the store
believes that this capability will enable the store to
grab market share from nearby Fast Food Co., which
has a Web site and delivers food to the customer.This
site will allow customers to purchase any item that is
currently in stock in the store.The store will not de-
liver the food, but will have the food bagged and
ready for pickup at the time designated by the cus-
tomer. Wow Munchies has a single storefront.

1. Conduct an operational feasibility study. Do you
think the Web site will enable Wow Munchies to
gain market share, as is its purpose? What factors
will affect the operational success of this site? Sub-
mit your paper, supporting documents, charts, and
any interviews you conducted.

2. Conduct a technical feasibility study. What would
you recommend the company use in the creation
and maintenance of their site (e.g. languages, spe-
cific host, encryption)? Why does your choice af-
fect the feasibility of said site? Submit your paper,
supporting documents, charts, and any interviews
you conducted.

3. Conduct an economic feasibility study for the in-
vestment into an e-commerce site. What discount
rate are you using? Why? Submit your paper, sup-
porting documents, charts, and any interviews you
conducted.

4. Develop a timeline and schedule feasibility study
for completion of this Web site. Do you see any
mitigating factors that might cause a delay in the
timeline or deadline overrun? Submit both a short
paper and a Gantt chart.

Minicases

1. Roundtable discussion: ROI analyses are often
done with a consideration of a technology “life-
time” of 3–5 years. Do you think that technology
has an impact on business after that time period?
Why or why not?

2. Individual: In the last chapter, you discussed (in a
roundtable format) the importance of knowledge
and information on economic success. Every year,
grants for college go unawarded because students
do not apply for them (possibly because they do

not know they exist). Research college grants avail-
able to you, and apply for at least one.

3. Team/class discussion: What does it mean to have
an attitude for success? Do you think that people’s
belief in their own capabilities can influence their
actual success? On the flip side, do you think that
people’s lack of belief in themselves will impact
their ability to be successful? What can you do to
further develop/enhance your own attitude for
success?

Team and Individual Exercises

Bovee, Courtland L., and John V.Thill. Business Communica-

tions Today, 2nd ed. New York: Random House, 1989.

Gildersleeve,Thomas R. Successful Data Processing Systems

Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall,

1985. This book provides an excellent chapter on cost-

benefit analysis techniques. Chapter 5 discusses presenta-

tions. We are indebted to Gildersleeve for the creeping

commitment concept.

Gore, Marvin, and John Stubbe. Elements of Systems Analy-

sis, 4th ed. Dubuque, IA: Brown, 1988. The feasibility

analysis chapter suggests an interesting matrix approach

to identifying, cataloging, and analyzing the feasibility of

alternative solutions for a system.

Smith, Randi Sigmund. Written Communications for Data

Processing. New York:Van Nostrand Publishing, 1976.

Stuart, Ann. Writing and Analyzing Effective Computer Sys-

tem Documentation. New York: Holt, Rinehart and Win-

ston, 1984.

Uris, Auren. The Executive Deskbook, 3rd ed. New York:Van

Nostrand Reinhold, 1988.

Walton, Donald. Are You Communicating? You Can’t Man-

age without It. New York: McGraw-Hill, 1989.

Wetherbe, James. Systems Analysis and Design: Traditional,

Structured, and Advanced Concepts and Techniques,

2nd ed. St. Paul, MN: West, 1984. Wetherbe pioneered the

PIECES framework for problem classification. In this chap-

ter we extended that framework to analyze operational

feasibility of solutions.

Suggested Readings

Feasibility Analysis and the System Proposal Chapter Eleven 441

Systems Design Methods

The chapters in Part Three introduce

you to systems design methods.

Chapter 12, “Systems Design,” pro-

vides the context for all the subse-

quent chapters by introducing the

activities of systems design. Systems

design includes the preparation of de-

tailed computer-based specifications

that will fulfill the requirements spec-

ified during systems analysis and

construction of system prototypes.

With respect to information systems

development, systems design consists

of the configuration, procurement,

and design and integration phases.

Chapter 13, “Application Archi-

tecture and Modeling,” introduces

physical process and data design. It

specifically addresses design deci-

sions regarding distribution issues for

shared data and processes. This re-

sults in an application architecture

that consists of design units that can

be assigned to different team mem-

bers for detailed design, construction,

and unit testing.

Chapter 14, “Database Design,”

introduces the design of physical data

stores from the data model developed

in Chapter 8.

Chapter 15, “Output Design and

Prototyping,” teaches output design

and prototyping. Different types, for-

mats, and media for outputs are pre-

sented. The use of the most common

types of graphs is discussed. The

chapter demonstrates how to design

and prototype printed and display

outputs.

Chapter 16, “Input Design and

Prototyping,” teaches input design

and prototyping. Formats, methods,

media, human factors, and internal

controls for inputs are stressed.

The proper usage of screen-based

controls for data input on graphical

user interface (GUI) screen designs is

discussed. The chapter also empha-

sizes prototyping as a way of finding,

documenting, and communicating

input design requirements.

Chapter 17, “User Interface

Design,” teaches user interface design

and prototyping. You will learn how

to develop a friendly and effective in-

terface for an application. The design

of the user interface is crucial be-

cause user acceptance of the system

is frequently dependent on a friendly,

easy-to-use interface. A GUI-based

interface for obtaining the inputs and

outputs designed in Chapters 15 and

16 is demonstrated.

Finally, Chapter 18, “Object-

Oriented Design and Modeling Using

the UML,” introduces you to tools

and techniques used to perform sys-

tems design using an object-oriented

approach to systems development.

Part Three

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S TAT E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J
E

C
T

 M
A

N
A

G
E

R
S

 a

n
d

 S

Y
S

T
E

M
S

 A
N

A
L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

S
Y

S
T

E
M

O
W

N
E

R
S

12Systems Design

Chapter Preview and Objectives

In this chapter you will learn more about the design phase of systems development. You

will know that you understand the process of systems design when you can:

❚ Describe the design phase in terms of your information building blocks.

❚ Identify and differentiate between several systems design strategies.

❚ Describe the design phase tasks in terms of a computer-based solution for an in-house

development project.

❚ Describe the design phase in terms of a computer-based solution involving

procurement of a commercial systems software solution.

Although some techniques of systems design are introduced in this chapter, it is not the

intent of this chapter to teach the techniques of systems design. This chapter teaches only

the process of systems design and introduces you to some techniques that will be taught

in later chapters.

The system proposal for the SoundStage Member Services system has been approved.
Now the systems project team is converting from logical design (specifying “what”
the system must do) to physical design (specifying “how” the system will work).There
are many tasks to do, including designing the database, specifying how the system will
work, and prototyping the user interface. Parts of the member services system are be-
ing assembled from purchased components. That will save programming time, but
add steps to the process to design and test how the components will interface with
components they write. Bob Martinez will be given several tasks during the process.
He is anxious to get started. The system is finally starting to take shape, if only on
paper and in prototypes.

446 Part Three Systems Design Methods

system design the

specification of a detailed

computer-based solution.

Introduction

What Is Systems Design?

In Chapter 3 you learned about the systems development process. In that chapter we
purposefully limited our discussion to only briefly examining each phase. In this chap-
ter, we take a much closer look at the systems design phase that follows systems
analysis. Information systems design is defined as those tasks that focus on the spec-
ification of a detailed computer-based solution. It is also called physical design. Thus,
whereas systems analysis emphasized the business problem, systems design focuses
on the technical or implementation concerns of the system.

As was illustrated in the chapter home page at the start of this chapter, systems
design is driven by the technical concerns of SYSTEM DESIGNERS. Hence, it addresses the
IS building blocks from the SYSTEM DESIGNERS’ perspective.The SYSTEMS ANALYSTS serve as
facilitators of systems design.

Most of us define the process of design too restrictively. We envision ourselves
drawing blueprints of the computer-based systems to be programmed and devel-
oped by ourselves or our own programmers.Thus, we design inputs, outputs, files,
databases, and other computer components. Recruiters of computer-educated
graduates refer to this restrictive definition as the “not-invented-here syndrome.”
In reality, many companies purchase more software than they write in-house. That
shouldn’t surprise you. Why reinvent the wheel? Many systems are sufficiently
generic that computer vendors have written adequate—but rarely, if ever, perfect—
software packages that can be bought and possibly modified to fulfill end-user
requirements.

This chapter examines systems design from the perspectives of both in-house
development, or “build,” projects and software procurement, or “buy,” projects. Let’s
begin our study by first examining some overall strategies for systems design.

Systems Design Approaches

There are many strategies or techniques for performing systems design.They include
modern structured design, information engineering, prototyping, JAD, RAD, and
object-oriented design. These strategies are often viewed as competing alternative ap-
proaches to systems design, but in reality certain combinations complement one an-
other. Let’s briefly examine these strategies and the scope or goals of the projects to
which they are suited. The intent is to develop a high-level understanding only. The
subsequent chapters will teach you the actual techniques.

NOTE: Recall from Chapter 3 that methodology “routes” are sometimes defined
for these approaches.

> Model-Driven Approaches

Structured design, information engineering, and object-oriented design are examples
of model-driven approaches. Model-driven design emphasizes the drawing of pic-
torial system models to document the technical or implementation aspects of a new
system.

The design models are often derived from logical models that were developed
earlier, in model-driven analysis (discussed in Chapter 5). Ultimately, the system design
models become the blueprints for constructing and implementing the new system.

Today, model-driven approaches are almost always enhanced by the use of auto-
mated tools. Some designers draw system models with general-purpose graphics soft-
ware such as Visio Professional or Corel Flow. Other designers and organizations
require the use of repository-based CASE or modeling tools such as System Architect,

Microsoft Visio, Visible Analyst, or IBM’s Rational. CASE tools offer consistency and
completeness as well as rule-based error checking.

Let’s briefly examine the most commonly encountered model-driven design ap-
proaches. Model-driven design approaches are featured in the model-driven method-
ologies and routes (introduced in Chapter 3).

Modern Structured Design Structured design techniques help developers deal
with the size and complexity of programs. Modern structured design is a process-
oriented technique for breaking up a large program into a hierarchy of modules,
which results in a computer program that is easier to implement and maintain (change).
Synonyms (although technically inaccurate) are top-down program design and struc-

tured programming.
The concept is simple. Design a program as a top-down hierarchy of modules. A

module is a group of instructions—a paragraph, block, subprogram, or subroutine.
The top-down structure of these modules is developed according to various design
rules and guidelines. (Thus, merely drawing a hierarchy or structure chart for a
program is not structured design.)

Structured design is considered a process-oriented technique because its empha-
sis is on the PROCESS building blocks in our information system—specifically, software
processes. Structured design seeks to factor a program into the top-down hierarchy of
modules that have the following properties:

• Modules should be highly cohesive; that is, each module should accomplish
one and only one function. This makes the modules reusable in future
programs.

• Modules should be loosely coupled; in other words, modules should be mini-
mally dependent on one another. This minimizes the effect that future changes
in one module will have on other modules.

As will be discussed in Chapter 18, cohesion and coupling are important concepts
also in the objected-oriented world. The software model derived from structured de-
sign is called a structure chart (Figure 12-1). The structure chart is derived by study-
ing the flow of data through the program. Structured design is performed during
systems design. It does not address all aspects of design—for instance, structured
design will not help you design inputs, outputs, or databases.

Structured design has lost some of its popularity with many of today’s applica-
tions that call for newer techniques that focus on event-driven and object-oriented

programming techniques. However, it is still a popular technique involving the
design of mainframe-based application software and is used to address coupling and
cohesion issues at the “system” level.

Information Engineering In Chapter 5 you learned that information engineering

(IE) is a model-driven and DATA-centered, but PROCESS-sensitive, technique for planing,
analyzing, and designing information systems. The primary tool of IE is a data model

Systems Design Chapter Twelve 447

model-driven design a

system design approach that

emphasizes drawing system

models to document technical

and implementation aspects

of a system.

modern structured
design a system design

technique that decomposes

the system’s processes into

manageable components.

F I G U R E 1 2 - 1 The End Product of Structured Design

Past Member

Rejected
applications Members

Rejected

application

Rejected
application

New
member

details
New
member

details

Subscriber's
name

Standing and

time account

closed

Standing and
time account
closed

Standing and
time account
closed

Standing and

time account

closed

Acceptance

decision

Acceptance
decision

Reviewed

application

1.2

Approve

applicant

1.2.3

Record

reviewed

application

1.2.2

Determine

acceptance

1.2.1

Get past

member account

standing

1.2.3.1

Reject

applicant

1.2.3.2

Accept

applicant

diagram (see Figure 12-2). IE involves conducting a business area requirements analy-
sis from which information system applications are carved out and prioritized.The ap-
plications identified in IE become projects to which other systems analysis and

design methods are intended to be applied in order to develop the production sys-
tems. These methods may include some combination of modern structured analysis
(discussed in Chapter 5), modern structured design, prototyping, and object-oriented
analysis and design.

Prototyping Traditionally, physical design has been a paper-and-pencil process.
Analysts drew pictures that depicted the layout or structure of outputs, inputs, and
databases and the flow of dialogue and procedures.This is a time-consuming process
that is prone to considerable errors and omissions. Frequently, the resulting paper
specifications were inadequate, incomplete, or inaccurate.

448 Part Three Systems Design Methods

F I G U R E 1 2 - 2 Sample Information Engineering Physical Entity Relationship Diagram

makes

owns

handles

can_make

is_reserved_by

Travel_Agent

Agency_Id

Agency_Name

Agent

Phone

YTD_Commission

INTEGER [PK1]

CHAR(30)

CHAR(30)

CHAR(20)

INTEGER

Owner

Owner_Id

Owner_Name

Balance_Due

Balance_Fwd

Owner_Tel_No

INTEGER [PK1]

CHAR(32)

INTEGER

INTEGER

CHAR(20)

Shift

Shift_Num

Date_Today

Sales_Clerk

Starting_Cash

Ending_Cash

INTEGER [PK1]

DATE

CHAR(3) [PK2]

INTEGER

INTEGER

Property

Property_Code

Unit_Type

Unit_Number

Owner_Id

CHAR(10) [PK1]

CHAR(10)

CHAR(5) [PK2]

INTEGER [PK1]

manages

Vehicle

Year

Make

Model

Registration_Num

Owner

CHAR(4)

CHAR(10)

CHAR(10)

CHAR(12)

CHAR(10) [PK1]

Guest

Guest_Number

Name

Title

Company

Address

City

Post_Code

Guest_Phone_No

Last_Stay

Rate

Number_Of_Nights

Number_Of_Stays

CHAR(10) [PK1]

CHAR(16)

CHAR(2)

CHAR(20)

CHAR(20)

CHAR(15)

CHAR(10)

CHAR(20)

DATE

CHAR(10)

INTEGER

INTEGER

Reservation

Code

Number_Of_Nights

Rate_Type

Discount

Deposit_Due

No_Of_Guests

Notes

Guarantee

Sales_Clerk

Shift_Num

Property_Code

Unit_Number

Guest_Number

Agency_Id

Checked_In

Paid

CHAR(20) [PK1]

INTEGER

CHAR(10)

CHAR(10)

CHAR(1)

INTEGER

CHAR(200)

CHAR(1)

CHAR(3) [FK]

INTEGER [FK]

CHAR(10) [FK]

CHAR(5) [FK]

CHAR(10) [FK]

INTEGER [FK]

CHAR(1)

CHAR(1)

Today many analysts and designers prefer prototyping, a modern engineering-
based approach to design.The prototyping approach is an iterative process involving
a close working relationship between the designer and the users. This approach has
several advantages:

• Prototyping encourages and requires active end-user participation. This increases
end-user morale and support for the project. End users’ morale is enhanced
because the system appears real to them.

• Iteration and change are a natural consequence of systems development—
that is, end users tend to change their minds. Prototyping better fits this nat-
ural situation because it assumes that a prototype evolves, through iteration,
into the required system.

• It has often been said that end users don’t fully know their requirements
until they see them implemented. If so, prototyping endorses this philosophy.

• Prototypes are an active, not passive, model that end users can see, touch,
feel, and experience.

• An approved prototype is a working equivalent to a paper design specifica-
tion, with one exception—errors can be detected much earlier.

• Prototyping can increase creativity because it allows for quicker user feed-
back, which can lead to better solutions.

• Prototyping accelerates several phases of the life cycle, possibly bypassing the
programmer. In fact, prototyping consolidates parts of phases that normally
occur one after the other.

Systems Design Chapter Twelve 449

There are also disadvantages or pitfalls to using the prototyping approach. Most
of these can be summed up in one statement: Prototyping encourages ill-advised
shortcuts through the life cycle. Fortunately, the following pitfalls can all be avoided
through proper discipline:

• Prototyping encourages a return to the “code, implement, and repair” life
cycle that used to dominate information systems. As many companies have
learned, systems developed in prototyping languages can present the same
maintenance problems that have plagued legacy systems developed in lan-
guages such as COBOL.

• Prototyping does not negate the need for the systems analysis phases. A pro-
totype can solve the wrong problems and opportunities just as easily as a
conventionally developed system can.

• You cannot completely substitute any prototype for a paper specification. No
engineer would prototype an engine without some paper design. Yet many
information systems professionals try to prototype without a specification.
Prototyping should be used to complement, not replace, other methodolo-
gies. The level of detail required of the paper design may be reduced, but it
is not eliminated.

• Numerous design issues are not addressed by prototyping. These issues can
be inadvertently forgotten if you are not careful.

• Prototyping often leads to premature commitment to a design (usually the
first design that is developed).

• During prototyping, the scope and complexity of the system can quickly
expand beyond original plans. This can easily get out of control.

• Prototyping can reduce creativity in designs. The very nature of any
implementation—for instance, a prototype of a report—can prevent
analysts, designers, and end users from looking for better solutions.

• Prototypes often suffer from slower performance than their third-generation-
language counterparts (albeit this difference is rapidly becoming a nonissue).

Prototypes can be quickly developed using many of the 4GLs and object-
oriented programming languages available today. Figure 12-3 depicts a prototype
screen for a system. Prototypes can be built for simple outputs, computer
dialogues, key functions, entire subsystems, or even the entire system. Each proto-
type system is reviewed by end users and management, who make recommenda-
tions about requirements, methods, and formats. The prototype is then corrected,
enhanced, or refined to reflect the new requirements. Prototyping technology
makes such revisions in a relatively straightforward manner. The revision and
review process continues until the prototype is accepted. At that point, the end
users are accepting both the requirements and the design that fulfills those
requirements.

Design by prototyping doesn’t necessarily fulfill all design requirements. For
instance, prototypes don’t always address important performance issues and storage
constraints. Prototypes rarely incorporate internal controls. The analyst or designer
must still specify these.

Object-Oriented Design Object-oriented design (OOD) is the newest design strat-
egy. The concepts behind this strategy (and technology) are covered extensively in
Chapter 18,“Object-Oriented Design and Modeling Using the UML,” but a simplified
introduction is appropriate here.This technique is an extension of the object-oriented
analysis strategy presented in Chapter 10. Figure 12-4 shows one of the many dia-
grams used in object-oriented design.

Object technologies and techniques are an attempt to eliminate the separation of
concerns about DATA and PROCESS. OOD techniques are used to refine the object

450 Part Three Systems Design Methods

F I G U R E 1 2 - 3 Sample Prototype Screen

requirements definitions identified earlier during analysis and to define design-specific
objects.

For example, based on a design implementation decision, during OOD the designer
may need to revise the data or process characteristics for an object that was defined dur-
ing systems analysis. Likewise, a design implementation decision may necessitate that
the designer define a new set of objects that will make up an interface screen that the
user(s) may interact with in the new system.

> Rapid Application Development

Another popular design strategy used today is rapid application development. Rapid

application development (RAD) is the merger of various structured techniques
(especially the data-driven information engineering) with prototyping techniques and
joint application development techniques to accelerate systems development.

RAD calls for the interactive use of structured techniques and prototyping to de-
fine the users’ requirements and design the final system. Using structured techniques,
the developer first builds preliminary data and process models of the business re-
quirements. Prototypes then help the analyst and users to verify those requirements
and to formally refine the data and process models. The cycle of models, then proto-
types, then models, then prototypes, and so forth, ultimately results in a combined
business requirements and technical design statement to be used for constructing the
new system.

The expedition of the design effort is enhanced through the emphasis on user
participation in joint application development sessions. Recall that joint application

development (JAD), introduced in Chapter 5 and discussed in more detail in Chapter 6,
is a technique that complements other systems analysis and design techniques by
emphasizing participative development among SYSTEM OWNERS, USERS, DESIGNERS, and

Systems Design Chapter Twelve 451

rapid application
development (RAD) a

systems design approach that

utilizes structured, prototyp-

ing, and JAD techniques to

quickly develop systems.

F
I
G

U
R

E

1

2
-
4

S
am

p
le

 O
b

je
ct

-O
ri

en
te

d
 D

es
ig

n
 M

o
d

el

S
y
st
e
m

B
o
rd
er

M
a
in

W
in
d
o
w

O
r
d
e
r

P
r
o
c
e
ss
o
r

O
r
d
e
r

P
r
o
c
e
ss
in
g

W
in
d
o
w

M
e
m
b
e
r

M
e
m
b
e
r

O
r
d
e
r

M
e
m
b
e
r

O
r
d
e
r
e
d

P
ro
d
u
ct

P
ro
d
u
ct

U
se

r
se

le
ct

s
“n

ew
 m

em
b
er

 o
rd

er
”

o
p
ti

o
n

D
o
 u

n
ti

l
n
o
 m

o
re

 m
em

b
er

 o
rd

er
s

U
se

r
en

te
rs

 m
em

b
er

 n
u
m

b
er

If
 m

em
b
er

 n
u
m

b
er

 v
al

id

G
et

 c
u
rr

en
t

m
em

b
er

 o
rd

er
 h

ea
d
er

D
o
 u

n
ti

l
n
o
 m

o
re

 o
rd

er
ed

 p
ro

d
u
ct

s

G
et

 o
rd

er
ed

 p
ro

d
u
ct

 i
n
fo

rm
at

io
n

G
et

 p
ro

d
u
ct

 i
n
fo

rm
at

io
n

D
is

p
la

y
 o

rd
er

E
ls

e

D
is

p
la

y
 e

rr
o
r

m
es

sa
g
e

C
le

ar
 m

es
sa

g
e

E
n
d
if

C
le

ar

D
is

p
la

y
 e

rr
o
r

m
es

sa
g
e

D
is

p
la

y
 o

rd
er

N
ew

 m
em

b
er

 n
u
m

b
er

R
eq

u
es

t
m

em
b
er

 n
u
m

b
er

S
ta

rt
 o

rd
er

p
ro

ce
ss

S
ta

rt

V
al

id
at

e
m

em
b
er

n
u
m

b
er

is
M

em
b
er

re
p
o
rt

O
rd

er
re

p
o
rt

O
rd

er
P

ro
d
u
ct

re
p
o
rt

P
ro

d
u
ct

452

BUILDERS. During the JAD sessions for systems design, the systems designer will take on
the role of facilitator for possibly several full-day workshops intended to address dif-
ferent design issues and deliverables. JAD is an essential element contributing greatly
to the acceleration emphasis of RAD.

> FAST Systems Design Strategies

Like most commercial methodologies, our hypothetical FAST methodology does not
impose a single approach on systems design. Instead, it integrates all the popular ap-
proaches introduced in the preceding paragraphs. The SoundStage case study will
demonstrate these methods in the context of a typical first assignment for a systems
analyst.The systems analysis techniques will be applied within the framework of:

• Your information system building blocks (from Chapter 2).
• The systems development phases (from Chapter 3).
• The tasks that implement a phase (described in this chapter).

Given this context, we can now study systems design. We will begin by studying
systems design as it relates to an in-house development, or “build,” project. Afterward,
we will examine how the systems design phases are affected when a decision has
been made to acquire, or “buy,” a commercial software package as a solution.

Systems Design for In-House Development—
The “Build” Solution

Let’s begin by placing systems design for in-house development projects into context
relative to the system life cycle. As is illustrated in Figure 12-5, an approved system
proposal from the decision analysis phase triggers the design phase. The goal of the
design phase is twofold. First, the analyst seeks to design a system that both fulfills re-
quirements and will be friendly to its end users. Human engineering will play a pivotal
role during design. Second, and still very important, the analyst seeks to present clear
and complete specifications to the computer programmers and technicians. As is
shown is Figure 12-5, the approved physical design specifications will trigger the
construction phase of our in-house development project.

Figure 12-6 is a task diagram depicting the work (tasks) that should be per-
formed to complete the design phase. This task diagram does not mandate any
specific methodology, but we will describe in the accompanying paragraphs the
approaches, tools, and techniques you might want to consider for each design task.
This task diagram is only a template. The project team and project manager may
expand on or alter the template to reflect the unique needs of any given project.

Let’s now examine each systems design task in detail.

> Task 5.1—Design the Application Architecture

The purpose of this first design task is to specify an application architecture. An
application architecture defines the technologies to be used by (and used to
build) one, more, or all information systems in terms of their data, processes,
interfaces, and network components. Thus, designing the application architecture
involves considering network technologies and making decisions on how the
systems’ DATA, PROCESSES, and INTERFACES are to be distributed among the business
locations.

This task is accomplished by analyzing the data models and process models that
were initially created during requirements analysis. Given the data models, process
models, and target solution, distribution decisions will need to be made. As decisions
on data, processes, and interfaces are made, they are documented. An example is the

Systems Design Chapter Twelve 453

application architecture
a specification of the tech-

nologies to be used to imple-

ment information systems.

F
I
G

U
R

E

1

2
-
5

T
h

e
C

o
n

te
x

t
o

f
S

y
st

em
s

D
es

ig
n

 f
o

r
In

-H
o

u
se

 D
ev

el
o

p
m

en
t

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l

D
e
s
ig

n
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s
,
O

p
p

o
rt

u
n

it
ie

s
,

D
ir

e
c
ti

v
e
s
,
C

o
n

s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e
s
ig

n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e
 &

 V
is

io
n

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

T
ra

in
in

g

M
a
te

ri
a
ls

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

B
u

s
i

n
e

s
s

D

r
i

v
e

r
s

T
e

c
h

n
o

l
o

g
y

D

r
i

v
e

r
s

I
N

F
O

R
M

A
T

I
O

N

S
Y

S
T

E
M

S
ta

k
e

h
o

ld
e

rs

SYSTEMOWNERS SYSTEMUSERS SYSTEMDESIGNERS SYSTEMBUILDERS

SYSTEMSANALYSTSandPROJECTMANAGERS

D
e
v

e
lo

p
m

e
n

t

P R O J E C T a n d P R O C E S S M A N A G E M E N T

SYSTEM

ANALY SIS

SYSTEM

INITIATION
SYSTEM

DESIGN

SYSTEM

IM PLEM ENTATION

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

P
R

O
C

E
S

S
E

S

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

K
N

O
W

L
E

D
G

E

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

C
O

M
M

U
N

IC
A
T

IO
N

S

IN
F

O
R

M
A
T

IO
N

S
C

O
P

E

&

V
IS

IO
N

F
U

N
C

T
IO

N
A

L

S
C

O
P

E

&

V
IS

IO
N

C
O

M
M

U
N

IC
A
T

IO
N

S

S
C

O
P

E

&

V
IS

IO
N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

D
A
T
A

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

IN
T

E
R

F
A

C
E

R
E

Q
U

IR
E

M
E

N
T

S

D
A
T
A

B
A

S
E

D
E

S
IG

N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

D
E

S
IG

N

S
O

F
T

W
A

R
E

D
E

S
IG

N

IN
T

E
R

F
A

C
E

D
E

S
IG

N

C
O

M
M

E
R

C
IA

L

S
O

F
T

W
A

R
E

P
A

C
K

A
G

E
S

a
n

d
 /

 o
r

C
U

S
T

O
M

 B
U

IL
T

A
P

P
L

IC
A
T

IO
N

P
R

O
G

R
A

M
S

D
A
T
A

B
A

S
E

S
O

L
U

T
IO

N

S
O

F
T

W
A

R
E

T
E

C
H

N
O

L
O

G
IE

S

D
A
T
A

B
A

S
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

S
O

L
U

T
IO

N

N
E

T
W

O
R

K
 T

E
C

H
N

O
L

O
G

IE
S

454

F I G U R E 1 2 - 6 The Systems Design Tasks for In-House Development

Design

the

Application

Architecture

5.1

Design

the

System

Database

5.2

Design

the

System

Interface

5.3

Package

Design

Specifications

5.4

Application Architecture

and Distribution Analysis

Database, Input, and Output Specifications

Revised

Project

Plan

Database Schemas

Approved System Proposal

Application Schema

Database

Schemas

User

Interface

Specifications

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS AND

TECHNICAL COMMUNITY
(approval to continue project

after decision analysis phase)

Facts, Recommendations,

 and Opinions

System

Interface

Specifications

Update

Project

Plan

5.5

Revised Project Plan

Design Specifications

Design Complete

Repository

physical data flow diagram (PDFD) that is used to establish physical processes
and data stores (databases) across a network (see Figure 12-7). You will learn about
PDFDs to document application architecture in Chapter 13.

To complete this activity, the analyst may involve a number of SYSTEM DESIGNERS and
SYSTEM USERS. System users may be involved in this activity to help address business
data, process, and location issues. Several different SYSTEM DESIGNER specialists may be
instrumental in the completion of this activity, including a data and database ad-

ministrator, network administrator and engineers, applications administrator, and
various other experts, as needed (e.g., an expert on automatic data capture for
addressing bar-coding technology and issues).

Systems Design Chapter Twelve 455

physical data flow
diagram a process model

used to communicate the

technical implementation

characteristics of an informa-

tion system.

F
I
G

U
R

E

1

2
-
7

A
S

am
p

le
 P

h
y

si
ca

l
D

at
a

F
lo

w
 D

ia
g

ra
m

V
e
ri
fy

 b
a
la

n
c
e
s

a
n
d
 t
ra

n
s
a
c
ti
o
n
s

(Y
o
u
)

B
e
g
in

n
in

g
 a

n
d
 E

n
d
in

g
 B

a
la

n
c
e

(W
in

d
o
w

s
 D

ia
lo

g
 B

o
x
)

C
re

d
it
o
r

P
a
y
 a

 b
ill

Y
o
u

Y
o
u

B
a
n
k

M
o
n
th

ly

S
ta

te
m

e
n
t

(P
ri
n
te

d
 F

o
rm

)

C
le

a
re

d

T
ra

n
s
a
c
ti
o
n
s

(W
in

d
o
w

 C
h
e
c
k
 B

o
x
e
s
)

R
e
v
is

e
d
 T

ra
n
s
a
c
ti
o
n
s

(C
re

a
te

,
D

e
le

te
,
U

p
d
a
te

)

T
ra

n
s
a
c
ti
o
n
s

a
n
d

B
a
la

n
c
e
s

(R
e
a
d
)

D
e
p
o
s
it
 S

lip

(F
o
rm

)

W
it
h
d
ra

w
a
l

(v
e
rb

a
l)

M
a
k
e
 a

 d
e
p
o
s
it
 o

r

w
it
h
d
ra

w
a
l
a
t
th

e

b
a
n
k

(Y
o
u
)

T
e
lle

r
R

e
c
e
ip

t

(P
ri
n
to

u
t
F

o
rm

)

R
e
c
o
rd

 d
e
p
o
s
it
 o

r

w
it
h
d
ra

w
a
l

T
ra

n
s
a
c
ti
o
n

(C
re

a
te

,

U
p
d
a
te

)

A
c
c
o
u
n
t
R

e
g
is

te
r

(Q
u
ic

k
e
n
 F

ile
)

R
e
c
o
n
c
ili

a
ti
o
n
 R

e
p
o
rt

(W
in

d
o
w

 a
n
d
/o

r
P

ri
n
te

d
 R

e
p
o
rt

)

T
h

is
 d

ia
g

ra
m

is
 i
n

te
n

ti
o

n
a

lly

in
c
o

m
p

le
te

 a
n

d

o
v
e

rs
im

p
lif

ie
d

B
ill

(P
a
p
e
r

In
v
o
ic

e
)

B
ill

(E
le

c
tr

o
n
ic

 I
n
v
o
ic

e
)

M
e
m

o
ri
z
e
d
 o

r
S

c
h
e
d
u
le

d
 T

ra
n
s
a
c
ti
o
n

(C
re

a
te

,
D

e
le

te
,
o
r

U
p
d
a
te

)

T
ra

n
s
a
c
ti
o
n

(C
re

a
te

,
D

e
le

te
,
o
r

U
p
d
a
te

)

D
ir
e
c
t

D
e
p
o
s
it

R
e
m

in
d
e
r

(r
e
a
d
)

A
T

M
 R

e
c
e
ip

t

(A
T

M
 p

ri
n
to

u
t)

M
a
k
e
 a

w
it
h
d
ra

w
a
l

(A
T

M
)

C
u
s
to

m
e
r

P
IN

 (
b
a
n
k
 c

a
rd

)

a
n
d

W
it
h
d
ra

w
a
l
In

fo
 (

k
e
y
p
a
d
)

P
a
id

 T
ra

n
s
a
c
ti
o
n

(U
p
d
a
te

)

T
ra

n
s
a
c
ti
o
n
 D

u
e

(R
e
a
d
)

T
im

e
 t
o
 p

a
y
 a

 b
ill

C
h
e
c
k

(H
a
n
d
)

C
h
e
c
k

(P
ri
n
te

d
)

C
h
e
c
k

(E
le

c
tr

o
n
ic

F
u
n
d
 T

ra
n
s
fe

r)

R
e
u
s
a
b
le

T
ra

n
s
a
c
ti
o
n

D
e
ta

ils

(R
e
a
d
)

M
e
m

o
ri
z
e
d
 a

n
d
 S

c
h
e
d
u
le

d

T
ra

n
s
a
c
ti
o
n
s

(Q
u
ic

k
e
n
 F

ile
)

C
le

a
re

d
 T

ra
n
s
a
c
ti
o
n
s

(U
p
d
a
te

)

R
e
c
o
n
c
ile

 a
c
c
o
u
n
t

b
a
la

n
c
e
s

(Q
u
ic

k
e
n
)

P
la

n
 p

a
y
m

e
n
t
o
f

th
e
 b

ill

(Y
o
u
)

S
c
h
e
d
u
le

 a

p
a
y
m

e
n
t

(Q
u
ic

k
e
n
)

456

The key inputs to this task are the facts, recommendations, and opinions that are
solicited from various sources and the approved system proposal from the decision
analysis phase.The principal deliverable of the task is the application architecture and
distribution analysis that serves as a blueprint for subsequent detailed design phase
activities.

> Task 5.2—Design the System Database(s)

Typically the next system design task is to develop the corresponding database design
specifications. The design of data goes far beyond the simple layout of records. Data-
bases are a shared resource. Many programs will typically use them. Future programs
may use databases in ways not originally envisioned. Consequently, the designer must
be especially attentive to designing databases that are adaptable to future require-
ments and expansion.

The designer must also analyze how programs will access the data in order to
improve performance. You may already be somewhat familiar with various pro-
gramming data structures and their impact on performance and flexibility. These
issues affect database organization decisions. Other issues to be addressed during
database design include record size and storage volume requirements. Finally,
because databases are shared resources, the designer must also design internal con-
trols to ensure proper security and disaster recovery techniques, in case data is lost
or destroyed.

The purpose of this task is to prepare technical design specifications for a data-
base that will be adaptable to future requirements and expansion. While the SYSTEMS

ANALYSTS who may participate in database modeling facilitate this task, the SYSTEM

DESIGNERS are responsible for the completion of this activity. The data administrator

may participate (or complete) the database design. Recognize that the new system
most likely uses some portion of an existing database.This is where the knowledge of
the database administrator is crucial. Finally, SYSTEM BUILDERS may also participate when
asked to build a prototype database for the project.

As is illustrated in Figure 12-6, a key input to this activity is the application ar-
chitecture and distribution analysis decisions from the prior design task. The deliv-
erable of the task includes the resulting database schemas. An example of a database
schema was presented earlier, in Figure 12-2. A database schema is the structural
model for a database. It is a picture or map of the records and relationships to be im-
plemented by the database. You will learn how to develop database schemas in
Chapter 14.

> Task 5.3—Design the System Interface

Once the database has been designed and possibly a prototype built, the systems de-
signer can work closely with system users to develop input, output, and dialogue
specifications. Because end users and managers will have to work with inputs and
outputs, the designers must be careful to solicit their ideas and suggestions, especially
regarding format. Their ideas and opinions must also be sought regarding an easy-to-
learn and easy-to-use dialogue for the new system.

Transaction outputs will frequently be designed as preprinted forms onto
which transaction details will be printed. Reports and other outputs are usually
printed directly onto paper or displayed on a terminal screen. The precise format
and layout of the outputs must be specified. Finally, internal controls must be spec-
ified to ensure that the outputs are not lost, misrouted, misused, or incomplete.
Figure 12-8 is a sample output design. You will learn how to design outputs in
Chapter 15.

For inputs, it is crucial to design the data capture method to be used. For instance,
you may design a form on which data to be input will be initially recorded.You want

Systems Design Chapter Twelve 457

F I G U R E 1 2 - 8

A Sample Output
Prototype Screen

to make it easy for the data to be recorded on the form, but you also want to simplify
the entry of the data from the form into the computer or onto a computer-readable
medium. This is particularly true if the data is to be input by people who are not fa-
miliar with the business application. Also, any time you input data to the system, you
can make mistakes.We need to define editing controls to ensure the accuracy of input
data. A sample input prototype screen was depicted earlier, in Figure 12-3. You will
learn how to design inputs in Chapter 16.

For interface or dialogue design, the design must consider such factors as termi-
nal familiarity, possible errors and misunderstandings that the end user may have or
may encounter, the need for additional instructions or help at certain points, and
screen content and layout. You are trying to anticipate every little error or keystroke
that an end user might make—no matter how improbable. Furthermore, you are try-
ing to make it easy for the end user to understand what the screen is displaying at any
given time. Figure 12-9 is a sample interface design.You will learn how to do interface
design in Chapter 17.

SYSTEM USERS should be involved in this activity! The inputs, outputs, and interface
dialogues are what they will see and work with. The degree to which they are in-
volved is emphasized in design efforts that involve prototyping.They will be asked to
provide feedback regarding each input/output prototype. SYSTEM DESIGNERS are re-
sponsible for the completion of this activity. They may draw on the expertise of sys-
tems designers that specialize in graphical user interface design. In addition, SYSTEM

BUILDERS may construct the various screen designs for the users to review during
design by prototyping.

As was illustrated in Figure 12-6, the key input to this activity is the database
schema(s) from the previous task and the user and system interface specifications that
are available from the project’s repository. The deliverable of the design task is the
completed database, input, and output specifications.

458 Part Three Systems Design Methods

F I G U R E 1 2 - 9

A Sample Dialogue
Interface Prototype
Screen

> Task 5.4—Package Design Specifications

This final design task involves packaging all the specifications from the previous de-
sign tasks into a set of specifications that will guide the computer programmer’s
activities during the construction phase of the systems development methodology.

There is more to this task than packaging, however. How much more depends
on two things: (1) where you draw the line between the system designer’s and com-
puter programmer’s responsibilities, and (2) whether the methodology and solution
calls for the design of the overall program structure. Most organizations have
adopted accelerated systems development approaches that do not require the latter.
Program structure dealt with quality issues that were of concern to developers of
systems that used older programming languages and tended to be mainframe-based
applications.

The SYSTEMS ANALYST, who may be aided by the SYSTEM DESIGNERS, usually completes
this task. Before proceeding with the packaging of the design specifications and the
construction phase, the systems design should be reviewed with all appropriate audi-
ences. While SYSTEM USERS have already seen and approved the outputs, inputs, and di-
alogue for the new system, the overall work and data flow for the new system should
get a final walkthrough and approval. SYSTEM OWNERS should get a final chance to ques-
tion the project’s feasibility and determine whether the project should be adjusted,
terminated, or approved to proceed to construction. At this stage of a project the
company’s audit staff may become heavily involved. The staff will pass judgment on
the internal controls in a new system.

As was illustrated in Figure 12-6, the inputs to this task are the various data-
base, input, and output specifications that were created earlier. Once these speci-
fications have been reviewed, approved, and organized as design specifications
that are suitable for constructing the new system, they are made available to
the team of system builders via the project repository. It is more common for a
project manager to make design specifications available via a shared repository
than to provide each individual developer with a copy of a printed set of organized
specifications.

Systems Design Chapter Twelve 459

> Task 5.5—Update the Project Plan

Now that we’re approaching the completion of the design phase, we should reevalu-
ate project feasibility and update the project plan accordingly. The project manager,

in conjunction with SYSTEM OWNERS and the entire project team, facilitates this task.The
SYSTEMS ANALYSTS and SYSTEM OWNERS are the key individuals in this task.The analysts and
owners should consider the possibility that, based on the completed design work, the
overall project schedule, cost estimates, and other estimates may need to be adjusted.

As shown in Figure 12-6, this task is triggered when the project manager deter-
mines that the design is complete.The key deliverable of the task is the updated proj-
ect plan. The updated plan should now include a detailed plan for the construction
phase that should follow. Recall that the techniques and steps for updating the project
plan were taught in Chapter 4, Project Management.

460 Part Three Systems Design Methods

Systems Design for Integrating Commercial Software—
The “Buy” Solution

Let’s now examine systems design for solutions that involve acquiring a commercial
off-the-shelf (COTS) software product. The life cycle for projects that involve pur-
chase, or “buy,” solutions is illustrated in Figure 12-10. Notice that the business re-
quirements statement (for software) and its integration as a business solution trigger
a series of phases absent from the in-house development process we just learned
about. The most notable differences between the buy and the in-house development
projects is the inclusion of a new procurement phase and a special decision analysis
phase (process labeled “5A”) to address software and services.

When new software is needed, the selection of appropriate products is often dif-
ficult. Decisions are complicated by technical, economic, and political considerations.
A poor decision can ruin an otherwise successful analysis and design. The systems
analyst is becoming increasingly involved in the procurement of software packages
(as well as peripherals and computers to support specific applications being devel-
oped by that analyst). The purpose of the procurement and decision analysis phases
is to do the following:

1. Identify and research specific products that could support our recommended
solution for the target information system.

2. Solicit, evaluate, and rank vendor proposals.
3. Select and recommend the best vendor proposal.
4. Contract with the awarded vendor to obtain the product.

In this section we will examine the tasks involved in completing the procurement
and decision analysis phases for a buy solution. As is depicted in Figure 12-10, a buy
solution affects how other phases in the life cycle are also completed (phases that are
impacted are shaded in light blue). After examining the procurement and decision
analysis phases, we will explore the impacts that a buy solution would have on how
those phases would be completed.

Figure 12-11 is a task diagram depicting the work (tasks) that should be per-
formed to complete the procurement and decision analysis phases for a buy project
solution. This task diagram does not mandate any specific methodology, but we will
describe in the accompanying paragraphs the approaches, tools, and techniques you
might want to consider for each design task.This task diagram is only a template.The
project team and project manager may expand on or alter the template to reflect the
unique needs of any given project.

The first two tasks (4.1 and 4.2) are procurement phase tasks, and the remaining
tasks (5A.1, 5A.2, and 5A.3) are decision analysis–related tasks. Let’s now examine
each task in detail.

F I G U R E 1 2 - 1 0 The Context of Systems Design for Commercial Off-the-Shelf Software Solution

SCOPE

DEFINITION

1

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYSIS

3

DECISION

ANALYSIS

(FOR SOFTWARE

AND SERVICES)

5A

DESIGN

(AND

INTEGRATION)

6B

CONSTRUCTION

AND

TESTING

7

IMPLEMENTATION

(OF INTEGRATED

SYSTEM)

8

OPERATION

SYSTEM

AND

MAINTENANCE

STAGE

Functional

System

Problems,

Opportunities,

and Directives

SYSTEM OWNERS AND

USERS

THE USER

COMMUNITY

Problem

Statement

System

Improvement

Objectives

PROCUREMENT

(OF SOFTWARE

AND

SERVICES)

4
Business

Requirements

Statement

(for software)

IMPLEMENTATION

(OF SOFTWARE)

6A

SYSTEM OWNERS, USERS, DESIGNERS,

BUILDERS, AND ANALYSTS

(involved in all activities)

THE PROJECT TEAM

Request

for

Proposal

Proposal

or

Quotation

DECISION

ANALYSIS

(FOR

INTEGRATION)

5B

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

AND TECHNOLOGY INTEGRATORS

(involved in many activities)

market research

capabilities

integration problems

Design and Integration

Requirements

Business

Requirements

Statement

(for integration)

Redesigned

Business

Processes

Design and

Integration

Specifications

Installed

Software

technical specifications

Operational System

Business

Solution

Working

Software

and

Services

Contract

and

Order

Systems Design Chapter Twelve 461

F I G U R E 1 2 - 1 1 Tasks for the Procurement Phase

AWARD

CONTRACT &

DEBRIEF

VENDORS

5A.3

RESEARCH

TECHNICAL

CRITERIA &

OPTIONS

4.1

VALIDATE VENDOR

CLAIMS &

PERFORMANCES

5A.1

Business

Requirements

Statement

(for software)

EVALUATE AND

RANK VENDOR

PROPOSALS

5A.2

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

SOLICIT

PROPOSALS (OR

QUOTES)

4.2

Repository

H/W & S/W

Requirements

Potential

Vendors, Options,

& Technical

Criteria

From the

Requirements

Analysis

Phase

Potential Vendors,

Options, & Technical

Criteria

RFP or RFQ and

Selection Criteria

RFP

or

RFQ

Proposal

and/or

Quotation

Validation Criteria

Validated

Proposals

Not Validated Proposals

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

H/W & S/W

Recommendations

H/W & S/W

Specifications Evaluation

Criteria

Contract & Order

or

Debrief of Proposal

> Task 4.1—Research Technical Criteria and Options

The first task is to research technical alternatives. This task identifies specifications
that are important to the software and/or hardware that is to be selected.The task in-
volves focusing on the software and/or hardware requirements established in the re-
quirements analysis phase.These requirements specify the functionality, features, and
critical performance parameters for our new software/hardware.

Most analysts read appropriate magazines and journals and search the Internet to
help them identify the technical and business issues and specifications that will
become important to the selection decision. Other sources of information for
conducting research include the following:

• Internal standards may exist for hardware and software selection. Some com-
panies insist that certain technology will be bought from specific vendors if

462 Part Three Systems Design Methods

those vendors offer it. For instance, some companies have standardized on
specific brands of microcomputers, terminals, printers, database management
systems, network managers, data communications software, spreadsheets, and
programming languages. A little homework here can save you a lot of unnec-
essary research.

• Information services are primarily intended to constantly survey the market-
place for new products and advise prospective buyers on what specifications
to consider. They also provide information such as the number of installations
and general customer satisfaction with the products.

• Trade newspapers and periodicals offer articles and experiences on various
types of hardware and software that you may be considering. Many can be
found in school and company libraries. Subscriptions (sometimes free) are
also available.

The research should also identify potential vendors that supply the products to be
considered. After the analysts have completed their homework, they will initiate con-
tact with these vendors. Thus, the analysts will be better equipped to deal with ven-
dor sales pitches after doing their research!

The purpose of this task is to research technical alternatives to specify important
criteria and options that will be important for the new hardware and/or software that
is to be selected. This task is facilitated by the project manager. SYSTEM DESIGNERS are
responsible for the completion of this task.The designer may seek input from various
technical experts, including data and database administrators, network administrators,
and applications administrators.

As is illustrated in Figure 12-11, a key input to this task is the business require-
ments statement (for software) established in the requirements analysis phase. The
designer will also obtain additional product and vendor facts from various sources.
Designers are careful not to get their information solely from a salesperson—not that
sales representatives are dishonest, but the number-one rule of salesmanship is to
emphasize the product’s strengths and deemphasize its weaknesses. The principal
deliverable of this task includes a list of potential vendors, product options, and
technical criteria.

To complete this task, designers must conduct extensive research to gain im-
portant facts concerning the hardware/software product and vendor. They must be
careful to screen their various sources. The sources are used to identify potential
vendors from which the products might be obtained. This step may be optional if
your company has a commitment or contract to acquire certain products from a
particular source. Finally, the designer must review the product, vendor, and sup-
plier findings.

> Task 4.2—Solicit Proposals or Quotes from Vendors

The next task is to solicit proposals or quotes from vendors. If your company is com-
mitted to buying from a single source (IBM, for example), the task is quite informal.
You simply contact the supplier and request price quotations and terms. But most de-
cisions offer numerous alternatives. In this situation, good business sense dictates that
you use the competitive marketplace to your advantage.

The solicitation task requires the preparation of one of two documents: a request

for quotations (RFQ) or a request for proposals (RFP). The request for quota-
tions is used when you have already decided on the specific product but that product
can be acquired from several distributors. Its primary intent is to solicit specific con-
figurations, prices, maintenance agreements, conditions regarding changes made by
buyers, and servicing. The request for proposals is used when several different ven-
dors and/or products are candidates and you want to solicit competitive proposals
and quotes. RFPs can be thought of as a superset of RFQs. Both define selection
criteria that will be used in a later validation.

Systems Design Chapter Twelve 463

request for quotation
(RFQ) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to a single

vendor that has been deter-

mined as being able to supply

that application package and

services.

request for proposal
(RFP) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to vendors

that may wish to compete for

the sale of that application

package and services.

464 Part Three Systems Design Methods

F I G U R E 1 2 - 1 2 Request for Proposals

Request for Proposals (RFP)

I. Introduction

A. Background

B. Brief summary of needs

C. Explanation of RFP document

D. Call for action on part of vendor

II. Standards and instructions

A. Schedule of events leading to contract

B. Ground rules that will govern selection decision

1. Who may talk with whom and when

2. Who pays for what

3. Required format for a proposal

4. Demonstration expectations

5. Contractual expectations

6. References expected

7. Documentation expectations

III. Requirements and features

A. Hardware

1. Mandatory requirements, features, and criteria

2. Essential requirements, features, and criteria

3. Desirable requirements, features, and criteria

B. Software

1. Mandatory requirements, features, and criteria

2. Essential requirements, features, and criteria

3. Desirable requirements, features, and criteria

C. Service

1. Mandatory requirements

2. Essential requirements

3. Desirable requirements

IV. Technical questionnaires

V. Conclusion

The primary purpose of the RFP is to communicate requirements and desired fea-
tures to prospective vendors. Requirements and desired features must be categorized
as mandatory (must be provided by the vendor), extremely important (desired from
the vendor but can be obtained in-house or from a third-party vendor), or desirable
(can be done without). Requirements might also be classified by two alternate criteria:
those that satisfy the needs of the systems and those that satisfy our needs from the
vendor (for example, service).

This task is facilitated by the project manager. The SYSTEM DESIGNER is also respon-
sible for completing this activity and may seek the input from data and database

administrators, network administrators, and applications administrators when
writing the RFP or RFQ.

The key input to this task is the potential vendors, options, and technical criteria
that resulted from previous research. The principal deliverable of this task is the RFP
or RFQ that is to be received by candidate vendors.The quality of an RFP has a signif-
icant impact on the quality and completeness of the resulting proposals. A suggested
outline for an RFP is presented in Figure 12-12, since an actual RFP is too lengthy to
include in this book.

Many of the skills you developed in Part Two, such as process and data modeling,
can be very useful for communicating requirements in the RFP. Vendors are very
receptive to these tools because they find it easier to match products and options and
package a proposal that is directed toward your needs. Other important skills include
report writing (discussed in Chapter 11) and questionnaires (covered in Chapter 6).

> Task 5A.1—Validate Vendor Claims and Performances

Soon after the RFPs or RFQs are sent to prospective vendors, you will begin receiving
proposal(s) and/or quotation(s). Because proposals cannot and should not be taken at
face value, claims and performance must be validated. This task is performed inde-
pendently for each proposal; proposals are not compared with one another.

The purpose of this task is to validate requests for proposals and/or quotations
received from vendors. SYSTEM DESIGNERS are responsible for the completion of this
activity. Once again, the designer may involve the following individuals in validating
the proposals: data and database administrators, network administrators, and
applications administrators.

This task is triggered by the receipt of proposal(s) and/or quotation(s) from
prospective vendors. The key outputs of this task are those vendor proposals that
proved to be validated proposals or claims and others whose claims were not
validated.

To complete this task, the designer must collect and review all facts pertaining to
the product requirements and features.The designer must review the vendor propos-
als and should eliminate any proposal that does not meet all the mandatory require-
ments. If the requirements were clearly specified, no vendor should have submitted
such a proposal. For proposals that cannot meet one or more extremely important
requirements, verify that the requirements or features can be fulfilled by some other
means. For each vendor proposal not eliminated, the designer must validate the
vendor claims and promises against validation criteria. Claims about mandatory,
extremely important, and desirable requirements and features can be validated by
completed questionnaires and checklists (included in the RFP) with appropriate
vendor-supplied references to user and technical manuals. Promises can be validated
only by ensuring that they are written into the contract. Finally, performance is best
validated by a demonstration, which is particularly important when you are evaluat-
ing software packages. Demonstrations allow you to obtain test results and findings
that confirm capabilities, features, and ease of use.

> Task 5A.2—Evaluate and Rank Vendor Proposals

The validated proposals can now be evaluated and ranked.The evaluation and ranking is,
in reality, another cost-benefit analysis performed during systems development.The eval-
uation criteria and scoring system should be established before the actual evaluation oc-
curs so as not to bias the criteria and scoring to subconsciously favor any one proposal.

The executive sponsor, ideally, should facilitate this task. SYSTEM DESIGNERS are
responsible for the completion of this activity. The designer may involve several
experts in evaluating and ranking the proposals, including data and database

administrators, network administrators, and applications administrators.

The inputs to this task include validated proposals and the evaluation criteria to
be used to rank the proposals.The key deliverable of this task is the hardware and/or
software recommendations.

The ability to perform a feasibility assessment is an extremely important skill re-
quirement for completing this task. Feasibility assessment techniques and skills were
covered in Chapter 11. To complete this task, designers must first collect and review
all details concerning the validated proposals.They must then establish an evaluation
criteria and scoring system. There are many ways to go about this. Some methods

Systems Design Chapter Twelve 465

suggest that requirements be weighted on a point scale. Better approaches use dollars
and cents! Monetary systems are easier to defend to management than points. One
such technique is to evaluate the proposals on the basis of “hard” and “soft” dollars.
Hard-dollar costs are the costs you will have to pay to the selected vendor for the
equipment or software. Soft-dollar costs are additional costs you will incur if you se-
lect a particular vendor (for instance, if you select vendor A, you may incur an addi-
tional expense to vendor B to overcome a shortcoming of vendor A’s proposed
system). This approach awards the contract to the vendor who fulfills all essential re-
quirements while offering the lowest total hard-dollar cost plus soft-dollar penalties
for desired features not provided (for a detailed explanation of this method, see
Isshiki, 1982, or Joslin, 1977, in the Suggested Readings). Once the evaluation criteria
and scoring system have been established, the last step toward completing our task is
to do the actual evaluation and ranking of the vendor proposals.

> Task 5A.3—Award (or Let) Contract and
Debrief Vendors

Having ranked the vendor proposals, the next activity usually includes presenting a
recommendation to management for final approval. Once again, communication
skills, especially salesmanship, are important if the analyst is to persuade manage-
ment to follow the recommendations. Given management’s approval of the recom-
mendation, a contract must then be drawn up and awarded to the winning vendor.
This activity often also includes debriefing losing vendors, being careful not to burn
bridges.

The purpose of this activity is to negotiate a contract with the vendor who sup-
plied the winning proposal and to debrief the vendors that submitted losing propos-
als. Ideally, the executive sponsor who must approve recommendations and project
continuation should facilitate the activity. But it is the SYSTEM DESIGNER who must make
and defend the recommendation and award the contract. In doing so, the system
designer may involve a company lawyer in drafting the contract. Report writing and
presentation skills are important for completing this task.

The key inputs include the hardware and software recommendation and the non-
validated proposals from the previous evaluation tasks. Pending the approval of the
executive sponsor, a contract order would subsequently be produced for the winning
vendor. A debriefing of proposals would be provided for the losing vendors.

To complete this task, the designer must first present a hardware and software
recommendation for final approval. Once the final hardware and software approval
decision is made, a contract must then be negotiated with the winning vendor. Cer-
tain special conditions and terms may have to be written into the standard contract
and order. Ideally, no computer contract should be signed without the advice of a
lawyer. The analyst must be careful to read and clarify all licensing agreements. No
final decision should be approved without the consent of a qualified accountant or
management. Purchasing, leasing, and leasing with a purchase option involve complex
tax considerations. Finally, out of common courtesy and to maintain good relation-
ships, provide a debriefing of proposals for losing vendors.The purpose of this meet-
ing is not to allow the vendors a second chance to be awarded the contract; rather,
the briefing is intended to inform the losing vendors of precise weaknesses in their
proposals and/or products.

> Impact of Buy Decision on Remaining
Life-Cycle Phases

It is not enough merely to purchase or build systems that fulfill the target system re-
quirements. The analyst must integrate or interface the new system to the myriad of

466 Part Three Systems Design Methods

Lea
rning

 Roa
d
m

a
p

This chapter provided a detailed overview of systems design for a project. You are

now ready to learn some of the systems design skills introduced in this chapter. Be-

cause systems design is dependent on requirements specified during systems analysis,

we recommend that you first complete Chapters 5 through 11. Chapter 5 gives you

an overview of systems analysis. Chapters 6 through 11 teach different system analy-

sis tools and techniques that provide for basic inputs to the systems design activities

presented in Part Three.

The order of the system design chapters that follow is flexible.

other existing systems that are essential to the business. Many of these systems may
use dramatically different technology, techniques, and file structures.

The analyst must consider how the target system fits into the federation of sys-
tems of which it is a part. The integration requirements that are specified are vital to
ensuring that the target system will work in harmony with those systems.

As was depicted in Figure 12-10, the decision to buy a commercial software pack-
age solution can impact additional phases (denoted in light blue) of the life cycle.
Upon completion of the decision analysis (for software and services) phase and its in-
tensive evaluation of the commercial product, we have become knowledgeable about
the product’s capabilities (or shortcomings). During decision analysis for integration
we will need to make revisions to reflect this new knowledge in our data and process
models that comprised the business requirements statement. When software and ser-
vices are received from the vendor(s), the software must be implemented. During
implementation we may encounter integration problems that must also be reflected
in our business requirements statement. These capabilities and integration problems
are reflected in the design and integration requirements.

Finally, given the design and integration requirements we must now complete the
design phase. Completion of the design phase involves many of the same tasks that
were discussed earlier in the chapter.The primary difference is that we are not simply
“developing” an entire system. Rather, we may be designing technical specifications
for developing a small subset of programs, software utilities, and other components
necessary for the business processes and the commercial software product to be in-
tegrated and work together properly. Let’s consider an example. Our existing business
system may use bar-coding technology to capture data.Yet our software product may
require that data be entered via the keyboard.We may need to customize the software
product to allow data to be entered via the keyboard or from a batch file containing
scanned data.

Systems Design Chapter Twelve 467

1. Formally, information systems design is defined as
those tasks that focus on the specifications of a de-
tailed computer-based solution. Whereas systems
analysis emphasizes the business problem, systems
design focuses on the technical or implementation
concerns of the system.

2. Systems design is driven by the technical concerns
of system designers.Therefore, with respect to the
information systems building blocks, systems de-
sign addresses the information system building
blocks from the system designer’s perspective.

3. Systems design differs for in-house development,
or “build” projects, versus “buy” projects, where a
systems software package is bought.

4. There are many popular strategies or techniques
for performing systems design.These techniques
can be used in combination with one another.

a. Modern structured design, a technique that
focuses on processes.

b. Information engineering (IE), a technique that
focuses on data and strategic planning to pro-
duce application projects.

c. Prototyping, a technique that is an iterative
process involving a close working relationship
between designers and users to produce a
model of the new system.

d. Joint application development (JAD), a tech-
nique that emphasizes participative develop-
ment among system owners, users, designers,
and builders. During JAD sessions for systems
design, the system designer takes on the role of
the facilitator.

e. Rapid application development (RAD), a tech-
nique that represents a merger of various struc-
tured techniques with prototyping and JAD to
accelerate systems development.

f. Object-oriented design (OOD), a new design
strategy that follows up object-oriented analysis
to refine object requirement definitions and to
define new design-specific objects.

5. For in-house development (build) projects, the sys-
tems design involves developing technical design
specifications that will guide the construction and
implementation of the new system.To complete
the design phase, the system designer must com-
plete the following tasks:

a. Design the application architecture.
b. Design the system database(s).
c. Design the system interface.
d. Package the design specifications.
e. Update the project plan.

6. Systems design for solutions that involve acquiring
a commercial off-the-shelf (COTS) software prod-
uct include a procurement and decision analysis
phase that addresses software and services. Com-
pletion of these phases involves the following
tasks:

a. Research technical criteria and options.
b. Solicit proposals (or quotes) from vendors.
c. Validate vendor claims and performances.
d. Evaluate and rank vendor proposals.
e. Award (or let) contract and debrief vendors.

7. It is not enough merely to purchase or build sys-
tems that fulfill the target system requirements.
The analyst must integrate or interface the new
system to the myriad of other existing systems that
are essential to the business. Many of these sys-
tems may use dramatically different technology,
techniques, and file structures.

Chapter Review

1. What is the essential difference between systems
analysis and systems design?

2. What are some of the different model-driven
methodologies?

3. What are some of the benefits of prototyping?
4. What are the five high-level tasks involved in con-

ducting system design for a development project
to be built in-house?

5. Why is it necessary to design the application
architecture?

6. In designing the system database(s), what should
designers always keep in mind?

7. What is a database schema?
8. What is the goal when designing the system

interface?
9. What specific factors should system designers

focus on when designing the system interface?
10. What is the phase needed in systems design if

the software is being purchased instead of being
developed in-house? What is the purpose of this
additional phase?

11. What is a request for quotations (RFQ)?

Review Questions
1

2

468 Part Three Systems Design Methods

1. What is the primary target of systems design and
what phases are included in systems design? If
the systems analysis was poorly done or incom-
plete, can a good systems design effort overcome
that?

2. Match the terms in the first column with the defi-
nitions or examples in the second column.

1. Information A. Information
engineering engineering

2. JAD B. Structured design
module properties

3. Modern structured C. Participative develop-
design ment emphasis

4. Prototyping D. IBM’s Rational
5. System design E. Derived model from

structured design
6. Physical Entity F. Combined data and

Relationship process
7. Coupling and G. Model-driven,

cohesion data-centered,
process-sensitive
technique

8. RAD H. Pictorial system
models emphasis

9. Model-driven I. Functional incomplete
design model built using RAD

10. Code, implement, J. Process decomposition
and repair technique

11. Repository-based K. Computer-based
CASE tool solution specification

tasks
12. OOD L. Merger of JAD,

prototyping, and
structured techniques

13. Structure chart M. Potential prototyping
pitfall

3. Prototyping has many strengths, but it also has a
number of weaknesses and hazards. Discuss some
of these weaknesses and hazards. What strategies
could be implemented to reduce the risk of their
occurring?

4. Consider the issues raised by the preceding ques-
tion and write a one- or two-page policy and
procedures memorandum to all systems analysts
and designers in your organization regarding
prototyping.

5. You are a systems designer in an organization.
One of the other designers on your team has
recently retired.Your manager comes to you and
asks you to sit in on the interviews to find a re-
placement. What qualities should you look for
when you do the interviews?

6. You are designing a data interface screen for a
new system that is under development.The
purpose of this data interface screen is to enter
changes of address submitted by drivers to their
state’s DMV. Each key data operator will enter on
this screen from these hand-printed forms about
a thousand changes of address per day. What is
one very important principle to keep in mind?

7. In your organization, it is traditional to give every-
one involved in the project a printed copy of the
design specifications after they have been ap-
proved. It costs more, but management feels this
is one way to acknowledge everyone’s effort on
the project and to keep people committed. If the
organization doesn’t mind the cost, is there any-
thing wrong with this?

8. Complete the following sentences:

A critical part of designing the __________ is
deciding how to distribute the system’s data,
__________ and __________ to different
__________.

Databases are a resource typically __________

by many __________ and they may be used by
future __________ not yet known for purposes
__________.

In designing __________, the key is to make it
__________ for the __________ to understand
what to do next, and to anticipate every type of
__________ that a user could make.

9. You are a systems designer who is responsible
for reviewing vendor proposals. A vendor who has
done satisfactory work for your company in the

past has submitted a proposal that does not meet
several critical requirements. What should you do?

10. Match the definitions or examples in the first col-
umn with the terms in the second column.

A. Procurement phase 1. DBA
B. Shows physical 2. Distribution

processes and analysis
databases across
network

C. Replaced text-based 3. Application
display architecture

D. Vendor evaluation 4. Database
criteria and scoring schema
system

E. Competitive proposal 5. RFQ
solicitation document

F. Part of a blueprint for 6. Auditor
detailed design phase
activities

Problems and Exercises

Systems Design Chapter Twelve 469

1. You are a systems analyst who has been working
for several years in the IT shop of a cabinet manu-
facturing company.The company is known for the
quality of its products and for being an industry
leader.The former chief information officer (CIO),
who was from the “old school,” recently retired
and has just been replaced by a new, more dy-
namic and progressive CIO.The new CIO, in an ef-
fort to raise the maturity level of the organization,
is conducting a series of brainstorming sessions to
develop its first IT architecture plan.You and the
other systems analysts and designers have each
been asked to provide input on which systems
design approach or approaches the organization
should adopt as its approved standard. Use the
information in the textbook, your own experience,
and any supplemental research you conduct to
write a memo to your CIO that:

a. Provides relevant background regarding your
organization—for example, its vision, mission,
strategic goals objectives, level of maturity,
organizational structure, and culture.

b. Describes the different systems design
approaches.

c. Compares and contrasts their methods,
strengths, and weaknesses.

d. Recommends a specific approach or combina-
tion of approaches for adoption as the standard
for your organization.The recommendation
should also include a justification for the basis
of your recommendation.

2. You are one of a large team of systems analysts
and designers on an enterprise-level project that
touches every part of your organization, both in
its headquarters office and in regional offices
throughout the country. Following the recommen-
dation of its staff, executive management has de-
cided to do the systems design in-house. Due to
the scale of this project and the size of your orga-
nization, this project involves the participation of
hundreds of system owners and users who are
located both in headquarters and in the regional
offices. For many of these system owners and
users, this is the first time they have been involved
in a project of this nature. One of your responsibili-
ties is to make sure that they understand their re-
spective roles in this phase, and its importance
relative to the overall success of the project.

a. Write an e-mail (or e-mails) to the system own-
ers and users in your organization regarding
the design phase and their roles in it, using

Projects and Research

G. Specialist responsible 7. COTS
for database architecture

H. Solicitation document 8. PDFD
for specific product

I. Specialist responsible 9. Hard dollar
for internal controls costs

J. Technologies used to 10. “Buy” solution
build information system

K. Structural model for 11. GUI
database

L. Commercial software 12. RFP
product

11. The life cycle for a project that you are work-
ing on involves a “buy” solution to purchase a com-
mercial off-the-shelf product for the company’s
marketing specialists.Your company wants to so-
licit competitive proposals. Use the format shown
in Figure 12–12 to prepare a request for proposal
(REP). (Note: For purposes of this exercise, it is not
necessary to develop a fully detailed RFP, but your
RFP should contain at least the high-level details
and information called for in each section.)

12. You work for a consulting company that has been
hired to do the systems design portion of the
project.The systems analysis portion was done
by another consulting company. During systems
design, you find what you are definitely sure is a
mistake in the requirements.You are not sure
just how serious it is, but you know this for sure:
if this mistake, made by another company, is
pointed out to the project manager, systems de-
sign work will have to be halted until the mistake
is fixed.This will put your company behind
schedule and either it will have to pay you and its
other consultants for sitting around while the
mistake is being fixed, or it will lay all of you off.
What is your ethical obligation in this situation?

13. Data security and privacy are increasingly impor-
tant issues. What are some examples of security
and privacy issues that systems analysts, system
designers, and database administrators need to
be aware of in developing and maintaining a
relational database system?

470 Part Three Systems Design Methods

1. In the previous chapter, you worked on designing
a system for a government department. Pick a spe-
cific task in the creation of that system (e.g. de-
velop a Web site), and gather at least two proposals
from different vendors for it.Validate claims and
performances that the vendors submit to you. Ana-
lyze your findings and submit your results and rec-
ommendations to your professor.

2. You are developing a complex system for a large
company. The code will be complex, and the lan-
guage is fairly new to the programming team.
Your boss has requested that you use an evolu-
tionary prototype in the development. Is this the

appropriate prototype model to use? If it is not,
how should you handle your boss’s request?

3. In Chapter 8, you researched a car rental agency,
and created a data model for the rental of cars. Uti-
lize the work you previously did, as well as prelimi-
nary interviews, to create a prototype for a system
that rents cars.

Note (to student): Why do you need to do
more interviews? This is so that you can develop
an interface as well as functionality that the user

wants and needs. Remember, aside from process
functionality, the user will determine the success
or failure of a system. What do they want the

Minicases

Tasks 5.1–5.5 as a guide.Your objective is to
ensure that they understand their roles and are
committed to the success of the project.

b. After you compose the e-mail(s), explain the
scenario to several people in your organization.
Have them read and critique your e-mail(s) for
clarity, completeness, and persuasiveness. What
were the results? If this were a real situation,
would they have understood their roles and
would your explanation have had a positive
impact upon their commitment?

3. In the first question, you were asked to look at a
variety of approaches to systems design, includ-
ing prototyping. In the past several years, the
number of prototyping methodologies and appli-
cation tools appears to have increased exponen-
tially. Research on the Internet some of the
different prototype technologies that are avail-
able. In addition, talk with several systems de-
signers who use prototyping, and ask them for
their thoughts regarding the different prototyp-
ing application tools on the market. Prepare a
written analysis describing your research and
reporting your findings.

4. You work in the IT shop of a sales organization
with a half dozen satellite offices located in your
state.The organization wants to develop and im-
plement a Web-based information system so that
its satellite offices can submit their sales reports on
a real-time basis. But your IT shop is small, every-
one is already fully committed to maintenance and
support activities or to other projects, and besides,
no one has any experience in developing a Web-
based information system. So your management
has decided to outsource the design and develop-
ment.Your job is to do the following:

a. Interview IT vendors in your local community
regarding their experiences with requests for
proposals (RFPs); that is, find out what com-
mon deficiencies they see in RFPs, and what
key things need to be included in order to pre-
pare an appropriate proposal. Prepare a short
memorandum to your management describing
the interviews.

b. Research some of the different RFP templates
that are available, including the template used
in Figure 12-12. Select one, and explain why
you chose the one that you did.

c. Using your selected template, write a request
for proposal.

5. Now that you have completed the request for
proposal in the preceding question, your next
assignment is to plan the systems design phase of
this project. Using what you have read to date re-
garding systems design, prepare a high-level proj-
ect plan showing the major tasks, resources and
estimated hours required, time frames, and depen-
dencies (refer back to Chapter 4).

6. Numerous evaluation criteria and scoring systems
are used by organizations in the public and private
sectors to evaluate and rank vendor proposals.
For instance, California has an optional “best value”
approach that state agencies can use for vendor
ranking and selection. In addition, the textbook
references books on other methods in its list of
Suggested Readings. Research on the Internet
these and/or other approaches or methods used
by private and public sector agencies. Also, try to
interview the staff members in these organizations
who are responsible for evaluating and ranking
vendor proposals, as well as vendors that prepare
the proposals.

Systems Design Chapter Twelve 471

1. Create an exercise to improve creativity. It can be
something such as a puzzle, an art project, an ex-
perience, and the like. Submit your idea to your
professor.The professor will then hand out the cre-
ativity exercises to the class, so that everyone has
an exercise, but no one has their own exercise.
Complete the task you were given.

2. Visit a few Web sites, and document features and
interface characteristics that you particularly like
(and dislike). Bring this information to class, and
share. Considering everyone’s experiences, what

do you think are particularly good characteristics
for a Web site to have? What shouldn’t it do
(or have)?

3. Suppose you are team-leader of a team that is con-
sistently falling behind schedule. Assume the
schedule slippage is due to poor planning and time
management, rather than to resource allocation
issues. Barring asking your manager to reorganize
the team, what can you do to encourage the team
members to meet their schedule?

Team and Individual Exercises

Application Development Strategies (monthly periodical).

Arlington, MA: Cutter Information Corporation.This is our

favorite theme-oriented periodical that follows system de-

velopment strategies, methodologies, CASE, and other rel-

evant trends. Each issue focuses on a single theme.

Boar, Benard. Application Prototyping: A Requirements Def-

inition Strategy for the 80s. New York: John Wiley &

Sons, 1984.This is one of the first books to appear on the

subject of systems prototyping. It provides a good discus-

sion of when and how to do prototyping, as well as thor-

ough coverage of the benefits that may be realized

through this approach.

Coad, Peter, and Yourdon, Edward. Object-Oriented De-

sign, 2nd ed. Englewood Cliffs, NJ: Yourdon Press, 1991.

Chapter 1 is a great way to expose yourself to objects and

the relationship of object methods to everything that pre-

ceded them.

Connor, Denis. Information System Specification and De-

sign Road Map. Englewood Cliffs, NJ: Prentice Hall, 1985.

This book compares prototyping with other popular

analysis and design methodologies. It makes a good case

for not prototyping without a specification.

Gane, Chris. Rapid Systems Development. Englewood Cliffs:

NJ: Prentice Hall, 1989. This book presents a nice

overview of RAD that combines model-driven develop-

ment and prototyping in the correct balance.

Isshiki, Koichiro R. Small Business Computers: A Guide to

Evaluation and Selection. Englewood Cliffs, NJ: Prentice

Hall, 1982. Although it is oriented toward small comput-

ers, this book surveys most of the better-known strategies

for evaluating vendor proposals. It also surveys most of

the steps of the selection process, although they are not

put in the perspective of the entire systems development

life cycle.

Joslin, Edward O. Computer Selection, rev. ed. Fairfax Station,

VA: Technology Press, 1977. Although somewhat dated,

the concepts and selection methodology originally sug-

gested in this classic book are still applicable. The book

provides keen insights into vendor, customer, and end-

user relations.

Suggested Readings

472 Part Three Systems Design Methods

interface to be and act like? What format do they

want to handle data in?
4. In the previous problem, you created a prototype

for a car rental system based on a previous chap-
ter’s work and preliminary interviews. Now that
you have created your prototype, return to your
client and present your prototype.

a. What is the client’s reaction? Does the client
like the functionality? What about the interface
design? Document the responses, as well as the
body language.

b. Rework your system to incorporate the client’s
suggestions and wishes. Is there anything the
client wanted that was unreasonable, or not fea-
sible at this time? If there is, document it.

c. Submit your initial prototype, your revised sys-
tem prototype, and a paper discussing client
needs, their response to your prototype, how
you addressed their suggestions into your re-
vised system, and any additional background
information on your system.

Lantz, Kenneth E. The Prototyping Methodology. Englewood

Cliffs, NJ: Prentice Hall, 1986. This book provides excel-

lent coverage of the prototyping methodology.

Wood, Jane, and Denise Silver. Joint Application Design: How

to Design Quality Systems in 40% Less Time. New York:

John Wiley & Sons, 1989.This book provides an excellent

in-depth presentation of joint application development

(JAD).

Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ: Yourdon Press, 1989. Chapter 4, “Moving into

Design,” shows how modern structured design picks up

from modern structured analysis.

Zachman, John A. “A Framework for Information System

Architecture,” IBM Systems Journal 26, no. 3 (1987).This

article presents a popular conceptual framework for

information systems design.

Systems Design Chapter Twelve 473

D E S I G N P R O T O T Y P E S

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J

E
C

T
 a

n
d

 P
R

O
C

E
S

S
 M

A
N

A
G

E
M

E
N

T
F

E
A

S
IB

IL
IT

Y
 A

N
A

L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

APPLICATION ARCHITECTURE

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

13Application Architecture
and Modeling

Chapter Preview and Objectives

This chapter teaches you techniques for designing the overall information system applica-

tion architecture with a focus on physical process models. Information application archi-

tecture and physical process modeling include techniques for distributing knowledge,

processes, and communications to network locations in a distributed computing environ-

ment. Physical data flow diagrams are used to document the architecture and design in

terms of design units—cohesive collections of data and processes at specific locations—

that can be designed, prototyped, or constructed in greater detail and subsequently imple-

mented as stand-alone subsystems. You will know that you understand application

architecture and process design when you can:

❚ Define an information system’s architecture in terms of KNOWLEDGE, PROCESSES, and

COMMUNICATIONS—the building blocks of all information systems. Consistent with

modern trends, these building blocks will be distributed across a NETWORK.

❚ Differentiate between logical and physical data flow diagrams and explain how

physical data flow diagrams are used to model an information system’s architecture.

❚ Describe both centralized and distributed computing alternatives for information

system design, including various client/server and Internet-based computing options.

❚ Describe database and data distribution alternatives for information system design.

❚ Describe user and system interface alternatives for information system design.

❚ Describe various software development environments for information system design.

❚ Describe strategies for developing or determining the architecture of an information

system.

❚ Draw physical data flow diagrams for an information system’s architecture and

processes.

476 Part Three Systems Design Methods

application architecture
a specification of the technolo-

gies to be used to implement

information systems.

It had been decided that part of the SoundStage Member Services system would be
purchased, and part of it would be programmed in house. The question remained of
what the architecture would be for the programmed part of the system. Bob Martinez
had learned C# .NET in college and was a big fan. He pointed out that using the same
language and the same .NET framework, they could program both a client/server
desktop application for the in-house part of the application and a Web application for
the e-commerce part of the application.The two applications could even share some
components. And since the C# syntax was essentially the same as JavaScript, the
server-side and client-side Web application code would be very similar.

Bob convinced his boss, Sandra. However, as she pointed out, SoundStage’s approved
application architecture was written before .NET was released and did not include it as a
development option. Sandra had Bob research and write up a variance request for the
technology committee. It took a couple of drafts, but he finally got it written in a way she
thought the committee would approve. She was right. Now they could start designing
“how” to implement the system, integrating the purchased components with .NET.

Introduction

Chapter 12 presented a high-level overview of the entire systems design process.You
learned that early during system design you develop an architectural blueprint that
will serve as an outline for subsequent internal and external design. This chapter fo-
cuses exclusively on that blueprint and current alternatives for application architec-
ture. (Subsequent chapters focus on the detailed internal and external design of each
architectural component.) The architectural blueprint will communicate the follow-
ing design decisions:

• The degree to which the information system will be centralized or distributed—
Most contemporary systems are distributed across networks, including both
intranets and the Internet.

• The distribution of stored data across a network—Most modern databases are
either distributed or duplicated across networks, either in a client/server or
network computing pattern.

• The implementation technology for all software to be developed in-house—
Which programming language and tools will be used?

• The integration of any commercial off-the-shelf software—And the need for
customization of that software.

• The technology to be used to implement the user interface—Including inputs
and outputs.

• The technology to be used to interface with other systems.

These considerations define the application architecture for the information system.
An application architecture specifies the technologies to be used to implement
one or more (possibly all) information systems. It serves as an outline for detailed
design, construction, and implementation.

In most chapters, we have initially taught concepts and principles before intro-
ducing tools and techniques. For this chapter, we are going to first introduce the pri-
mary tool, physical data flow diagrams. This will work for two reasons. First, you
already know the system concepts and basic constructs of data flow diagrams from
Chapter 9. Second, the tool is an elegant and relatively simple way to introduce the
different types of application architecture that we want you to learn.

Although you will learn a new technique in this chapter, physical data flow
diagrams, this is not as important as the application architecture concepts used to
partition an information system across a computer network.

Application Architecture

Physical Data Flow Diagrams

Data flow diagrams (DFDs) were introduced in Chapter 9 as a systems analysis tool for

modeling the logical (meaning “nontechnical”) business requirements of an informa-

tion system. With just a few extensions of the graphical language, DFDs can also be

used as a systems design tool for modeling the physical (meaning “technical”) archi-

tecture and design of an information system. Physical data flow diagrams model

the technical and human design decisions to be implemented as part of an informa-

tion system.They communicate technical choices and other design decisions to those

who will actually construct and implement the system. In other words, physical DFDs

serve as a technical blueprint for system construction and implementation.

Physical data flow diagrams were conceived by Gane, Sarson, and DeMarco as

part of a formal software engineering methodology called structured analysis and

design. This methodology was especially well suited to mainframe COBOL transaction-

based information systems and software. The methodology required rigorous and

detailed specification of both logical and physical representations of an information

system. In sequence, systems analysts or software engineers would develop the

following system models and associated detailed specifications:

1. Physical DFDs of the current system—These physical DFDs were intended to help

analysts identify and analyze physical problems in the existing system during the

problem analysis phase of systems analysis.

2. Logical DFDs of the current system—These logical DFDs were merely a

transformation of the above physical DFDs that remove all physical detail.They

were used as a point of departure for the requirements analysis phase of systems

analysis.

3. Logical DFDs of the target system—These logical DFDs and their accompanying

specifications (data structures and Structured English) were intended to represent

the detailed nontechnical requirements for the new system.

4. Physical DFDs of the target system—These physical DFDs were intended to

propose and model the technology choices and design decisions for all logical

processes, data flows, and data stores.These diagrams (the focus of this chapter)

are developed during the systems design stage of the project.

5. Structure charts of the software elements of the target system—The above

physical DFDs would be transformed into structure charts that illustrate a top-

down hierarchy of software modules that would conform to accepted principles

of good software design.

The above methodology was labor-intensive and required significant precision and

rigor to accomplish its intended result.Today, the complete structured analysis and de-

sign methodology as described above is rarely practiced—it is not as well suited to to-

day’s object-oriented and component-based software technologies—but data flow

diagramming (both logical and physical) remains a useful and much practiced legacy

of the structured analysis and design era of systems development.

In this chapter, we will examine the graphical conventions for physical DFDs. Phys-

ical DFDs use the same basic shapes and connections as logical DFDs (Chapter 9),

namely: (a) processes, (b) external agents, (c) data stores, and (d) data flows. A sample

physical DFD is shown in Figure 13-1. For now, just notice that the physical DFD pri-

marily shows more technical and implementation detail than its logical DFD equivalent.

> Physical Processes

Recall that processes are the key shapes on any DFD. That’s why they are called

process models. Physical DFDs depict the planned, physical implementation of each

process. A physical process is either a processor, such as a computer or person, or the

Application Architecture and Modeling Chapter Thirteen 477

physical data flow
diagram a process model

used to communicate the

technical implementation

characteristics of an

information system.

Bank

System

Clock

Customer

7

Verify

Transactions

and Balances

Customer

MS ACCESS

TABLE:

Account Register

PRINTED FORM:
Monthly

Statement

8

Reconcile

Account

Visual Basic

READ:

Balances

and

Transactions

UPDATE:

Cleared

Transactions

UPDATE: Balances

and Transactions

WIN 2000 GUI:

Cleared

Transaction

WIN 2000 GUI:

Reconcile

Dialogue

WIN 2000 GUI and

PRINTED REPORT:

Reconciliation Report

This diagram is

intentionally

incomplete and

oversimplified.

6

Record

Personal

Transaction

Visual Basic

CHECKBOOK:

Check Written

BANK FORM:

Deposit Receipt

PRINTED FORM:

Bank Machine

Receipt

6

Record

Scheduled

Transaction

Visual Basic

WIN 2000 GUI:

Scheduled

Transaction

MS ACCESS

TABLE:

Account Register

UPDATE:

Scheduled

Transaction

6

Record

Scheduled

Transaction SYSTEM BOOT:

Date and Time

UPDATE:

Post

Transaction

F I G U R E 1 3 - 1

A Sample Physical
Data Flow Diagram

technical implementation of specific work to be performed, such as a computer
program or manual process.

Earlier in the project, during requirements analysis, we specified logical

processes needed to fulfill essential business requirements. These logical processes
were modeled in the logical data flow diagrams in Chapter 9. Now, during system de-
sign, we must specify how these logical processes will be physically implemented. As
implied in the above definition for physical processes, there are two characteristics of
physical data flow diagrams:

• Logical processes are frequently assigned to specific physical processors such
as PCs, servers, mainframes, people, or other devices in a computer network.
To this end, we might draw a physical DFD to model the network’s structure.

• Each logical process must be implemented as one or more physical processes
as some logical processes must be split into multiple physical processes for
one or more of the following reasons:
— To split the process into a portion to be performed by people and a

portion to be performed by the computer.

478 Part Three Systems Design Methods

ID (optional)

Action Verb

+

Noun or Object

Phrase

Implementation

— To split the process into a portion to be implemented with one technol-
ogy and a portion to be implemented with a different technology.

— To show multiple but different implementations of the same logical process
(such as one process for paper orders and a different process for Internet
orders).

— To add processes that are necessary to handle exceptions or to implement
security requirements and audit trails.

In all cases, if you split a logical process into multiple physical processes, or add
additional physical processes, you have to add all necessary data flows to preserve the
essence of the original logical process. In other words, the physical processes must
still meet the logical process requirements.

IDs are optional, but they can be useful for matching physical processes with
their logical counterparts (especially if the logical process is to be implemented with
multiple physical processes). Process names use the same action verb noun/object
clause convention as the one we introduced in Chapter 9. This name is recorded in
the center of the shape (see margin). In the bottom of the shape, the implementation
is recorded.This convention may have to be adjusted depending on the capabilities of
your CASE or automated diagramming tool.The following names demonstrate various
possible implementations of the same logical process:

Application Architecture and Modeling Chapter Thirteen 479

If your CASE tool limits the size of names, you may have to develop and use a set of
abbreviations for the technology (and possibly abbreviate your action verbs and
object clauses).

If a logical process is to be implemented partially by people and partially by soft-
ware, it must be split into separate physical processes, and appropriate data flows must
be added between the physical processes. The name of a physical process to be per-
formed by people, not software, should indicate who would perform that process. We
recommend you use titles or roles, not proper names.The following is an example:

Logical Process

Check

Customer

Credit

Check

Customer

Credit

Visual Basic

Reconsider

Credit

Decision

Credit Mgr

Credit Rejection

Credit

Approval

4.3 4.3.A 4.3.B

Title or
Role

Name

Sample Physical Process Implementation

Logical Process

Check

Customer

Credit

4.3 4.3

Check

Customer

Credit

Acct Clerk

4.3

Check

Customer

Credit

COBOL/CICS

4.3

Check

Customer

Credit

Visual Basic

4.3

Check

Customer

Credit

Quickbooks

Sample Physical Process Implementations

ID (optional)

Action Verb

+

Noun/Object

Phrase

Implementation

Logical Process

Check

Customer

Credit

4.3 4.3.A

CHK_CREDIT.COB

COBOL + CICS

4.3.B

appCheckCredit.vbx

Visual Basic

Sample Physical Process Implementations

We didn’t just change the manual process, RECONSIDER CREDIT DECISION, to an external
agent, CREDIT MANAGER, because the entire logical process, CHECK CUSTOMER CREDIT is in
the project scope. For that reason, both aspects of the physical implementation are
also in the scope.The design is not complete until we specify the process for both the
automated and the manual aspects of the business requirement.

For computerized processes, the implementation method is, in part, chosen from
one of the following possibilities:

• A purchased application software package (e.g., Sap, an enterprise software
application, or Ariba, an Internet-based procurement/purchasing software
application).

• A system or utility program (e.g., Microsoft’s Exchange Server, an e-mail/
messaging system, or IBM’s WebSphere Commerce Business, an electronic
commerce framework).

• An existing application program from a program library, indicated simply as
LIBRARY or NAME of library.

• A program to be written. Typically, the implementation method specifies the
language or tool to be used to construct the program. Example implementa-
tion methods include VB, .NET, C , JAVA, MS ACCESS, PERL, or ORACLE DEVELOPER.

One final physical process construct should be introduced, the multiprocess (see
margin). The multiprocess indicates multiple implementations of the same physical
processor or process. For example, we can use this symbol to indicate multiple PCs,
the implementation of a named program on multiple PCs, or the implementation of
work to be performed by multiple people. Some CASE tools do not support this con-
struct. If they do not, you may need to resort to plural names to imply multiplicity of
a process or processor.

Many designers prefer a more physical naming convention for computer
processes. Instead of a noun verb phrase, they would substitute the file name of the
computer program’s physical source code. Consider the following examples:

480 Part Three Systems Design Methods

Many organizations have naming conventions and standards for program names.
Again, the number of physical processes on a physical DFD will almost always

be greater than the number of logical processes on its equivalent logical DFD. For
one thing, processes may be added to reflect data collection, filtering, forwarding,
preparation, or quality checks—all in response to the implementation vision that
has been selected. Also, some logical processes may be split into multiple physical
processes to reflect portions of a process to be done manually versus by a com-
puter, to be implemented with different technology, or to be distributed to clients,
servers, or different host computers. It is important that the final physical DFDs
reflect all manual and computer processes required for the chosen implementation
strategy.

Implementation method:

data flow name

Data flow name

(implementation method)

OR

ID

(opt)

Implementation

Method:
Data Store Name

ID

(opt)

Data Store Name

(Implementation

Method)

> Physical Data Flows

Recall that all processes on any DFD must have at least one input and one output data
flow. A physical data flow represents any of the following: (1) the planned
implementation of an input to or output from a physical process; (2) a database com-
mand or actions such as create, read, update, or delete; (3) the import of data from or
the export of data to another information system across a network; or (4) the flow of
data between two modules or subroutines within the same program.

Physical data flows are named as indicated by the templates in the margin.
Figure 13-2 demonstrates the application of one of these naming conventions as ap-
plied to several types of physical data flows.

Physical DFDs must also indicate any data flows to be implemented as business
forms. For instance, FORM 23: COURSE REQUEST might be a one-part business form used
by students to register for classes. Business forms frequently use a multiple-copy (car-
bon or carbonless) implementation. At some point in processing, the different copies
are split and travel to different manual processes.This is shown on a physical DFD as
a diverging data flow (introduced in Chapter 9). Each copy should be uniquely
named. For example, at a restaurant, the customer receives FORM: CREDIT CARD VOUCHER

(CUSTOMER COPY) and the merchant retains FORM: CREDIT CARD VOUCHER (MERCHANT COPY).
Most logical data flows are carried forward to the physical DFDs. Some may be

consolidated into single physical data flows that represent business forms. Others may
be split into multiple flows as a result of having split logical processes into multiple
physical processes. Still others may be duplicated as multiple flows with different
technical implementations. For example, the logical data flow ORDER might be imple-
mented as all of the following: FORM: ORDER, PHONE: ORDER (verbal order taken over the
phone), HTML: ORDER (order submitted over the Internet), FAX: ORDER (order received by
fax), and MESSAGE: ORDER (an order submitted via e-mail).

> Physical External Agents

External agents are carried over from the logical DFD to the physical DFD unchanged.
Why? By definition, external agents were classified during systems analysis as outside
the scope of the systems and therefore not subject to change. Only a change in
requirements can initiate a change in external agents.

> Physical Data Stores

From Chapter 9 you know that each data store on the logical DFD now represents all in-
stances of a named entity on an entity relationship diagram (from Chapter 9). Physical
data stores implement the logical data stores. A physical data store represents the im-
plementation of one of the following: (1) a database, (2) a table in a database, (3) a com-
puter file, (4) a tape or media backup of anything important, (5) any temporary file or
batch as needed by a program (e.g., TAX TABLES), or (6) any type of noncomputerized file.

When most people think of data stores, they think of computer files and databases.
But many data stores are not computerized. File cabinets of paper records immediately
come to mind; however, most businesses are replete with more subtle forms of manual
data stores such as address cards, paper catalogs, cheat sheets of various important and
reusable information, standards manuals, standard operating procedures manuals, direc-
tories, and the like. Despite predictions about the demise of paper files, they will remain
a part of many systems well into the foreseeable future—if for no other reasons than
(1) there is psychological comfort in paper and (2) the government frequently requires it.

The name of a physical data store uses the format indicated in the margin. Some
examples of physical data stores are shown in Figure 13-3 (see page 483).

Some designs require that temporary files be created to act as a queue or buffer
between physical processes that have different timing. Such files are documented in
the same manner, except their names indicate their temporary status.

Application Architecture and Modeling Chapter Thirteen 481

Logical Data Flow Implementation Sample Physical Data Flow

Order Computer Input

(Keyboard)
WIN 2000 GUI:

Order Form

Order Computer Input

(Internet)
HTML:

Order Form

Product

Sold
Computer Input

(Keyless)
BAR CODE:

Product UPC

Hours

Worked
Computer Input

(Batch File)

KEY-TO-DISK:

Hours Worked

Salary Equity

Analysis
Computer Output

(Printed)

PRINTOUT:

Salary Equity

Report

Account

History
Computer Output

(Online)

WIN 2000 GUI:

Account

History

Create

Order

Create a record

in a database
SQL Insert:

New Order

Unfilled

Orders
Read records

in a database

SQL Select:

Unfilled

Orders

Update

Credit rating
Update a record

in a database

SQL Update:

Credit

Rating

Delete

Employee

Delete a record

in a database SQL Delete:

Employee

Insurance

Accident

Claim

Import a data file
IMAGE FILE:

Insurance

Accident

Claim

Schedule

of Classes Export a data file

Comma

Delimited

File:

Schedule

of Classes

Extended

Cost
Pass data between

modules of a program

Extended

Cost

Course

Request
Pass a manual form

Form 23:

Course

Request

Physical processes, data flows, external agents, and data stores make up the phys-
ical data flow diagrams. And these physical DFDs model the proposed or planned
architecture of an information system application.We can subsequently use that phys-
ical model to design the internal and external details for each data store (Chapter 14)
and data flow (Chapters 15–17). Now that you understand the basic components of
physical DFDs, let’s use them to introduce some of today’s architectural choices for
information system design.

482 Part Three Systems Design Methods

F I G U R E 1 3 - 2

Physical Data
Flows

F I G U R E 1 3 - 3

Physical Data
Stores

Logical Data Store Implementation Physical Data Store

Human

Resources

A database

(multiple tables)

Oracle :

Human

Resources DB

Marketing
A database view

(subset of a database)

SQL Server:

Northeast

Marketing DB

Purchase Orders
A table in a database MS Access:

Purchase Orders

Accounts

Receivable

A legacy file VSAM File:

Accounts

Receivable

Tax Rates
Static data ARRAY:

Tax Table

Orders
An off-line archive TAPE Backup:

Closed Orders

Employees
A file of paper records File Cabinet:i

Personnel

Records

Faculty/Staff

Contact Data

A directory Handbook:

Faculty/Staff

Directory

Course

Enrollments

By Date

Archived reports

(for reuse and recall)
REPORT MGR:

Course

Enrollment

Reports

Information Technology Architecture

Information technology (IT) architecture can be a complex subject worthy of its own
course and textbook. (See the Suggested Readings at the end of this chapter.) In this
section, we will attempt to summarize contemporary IT alternatives and trends that
are influencing design decisions as we go to press. It should be noted that new alter-
natives are continuously evolving. The best systems analysts will not only learn more
about these technologies but will also understand how they work and their limita-
tions. Such a level of detail is beyond the scope of this book. Systems analysts must
continuously read popular trade journals to stay abreast of the latest technologies and
techniques that will keep their customers and their information systems competitive.

The information system framework provides one suitable framework for under-
standing IT architecture. Accordingly, our building blocks are being distributed or
duplicated across networks. We call the approach distributed systems architecture:

• Architectural standards and/or technology constraints are represented in the
bottom row of the framework of this chapter’s home page. Notice that these
standards or decisions are determined either as part of a separate architecture
project (preferred and increasingly common) or as part of each system devel-
opment project.

• The upward-pointing arrows indicate the technology standards that will influ-
ence or constrain the design models.

Application Architecture and Modeling Chapter Thirteen 483

> Distributed Systems

Today’s information systems are no longer monolithic, mainframe computer-based sys-
tems. Instead, they are built on some combination of networks to form distributed
systems. A distributed system is one in which the components of an information
system are distributed to multiple locations in a computer network. Accordingly, the
processing workload required to support these components is also distributed across
multiple computers on the network.

The opposite of distributed systems are centralized systems. In centralized

systems, a central, multiuser computer (usually a mainframe) hosts all components
of an information system. The users interact with this host computer via terminals
(or, today, a PC emulating a terminal), but virtually all of the actual processing and
work is done on the host computer.

Distributed systems are inherently more complicated and more difficult to im-
plement than centralized solutions. So why is the trend toward distributed systems?

• Modern businesses are already distributed, and, thus, they need distributed
system solutions.

• Distributed computing moves information and services closer to the customers
that need them.

• Distributed computing consolidates the incredible power resulting from the
proliferation of personal computers across an enterprise (and society in gen-
eral). Many of these personal computers are only used to a fraction of their
processing potential when used as stand-alone PCs.

• In general, distributed system solutions are more user-friendly because they
use the PC as the user interface processor.

• Personal computers and network servers are much less expensive than main-
frames. (But admittedly, the total cost of ownership is at least as expensive
once the networking complexities are added in.)

There is a price to be paid for distributed systems. Network data traffic can cause con-
gestion that actually slows performance. Data security and integrity can also be more
easily compromised in a distributed solution. Still, there is no arguing the trend to-
ward distributed systems architecture. While many centralized, legacy applications
still exist, they are gradually being transformed into distributed information systems.

Figure 13-4 compares various distributed systems architectures. Conceptually, any
information system application can be mapped to five layers:

• The presentation layer is the actual user interface—the presentation of
inputs and outputs to the user.

• The presentation logic layer is any processing that must be done to generate
the presentation. Examples include editing input data and formatting output
data.

• The application logic layer includes all the logic and processing required to
support the actual business application and rules. Examples include credit
checking, calculations, data analysis, and the like.

• The data manipulation layer includes all the commands and logic required
to store and retrieve data to and from the database.

• The data layer is the actual stored data in a database.

Figure 13-4 shows these conceptual layers as rows.The columns in the figure illustrate
how the layers can be implemented in different distributed information system archi-
tectures.There are three types of distributed systems architecture:

• File server architecture.

• Client/server architecture.

• Internet-based architecture.

Let’s discuss each in greater detail.

484 Part Three Systems Design Methods

distributed system a

system in which components

are distributed across

multiple locations and

computer networks.

centralized system a

system in which all compo-

nents are hosted by a central,

multiuser computer.

F I G U R E 1 3 - 4 Types of Distributed Computing and Systems

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

File

Server

DATA

LAYER

FILE

SERVER

SOLUTION DISTRIBUTED

PRESENTATION

(2 TIER)

DISTRIBUTED

DATA

(2 TIER)

DISTRIBUTED

DATA &

APPLICATION

(N TIER)

NETWORK

COMPUTING

SOLUTION

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Client

DATA

MANIPULATION

LAYER

Executed

on the

Client

Executed

on the

Application

Server

Executed

on the

Application

Server

Executed

on the

Server

Executed

on the

Client

APPLICATION

LOGIC

LAYER

Executed

on the

Client

Executed

on the

Client

Distribited

from the

Web

Server

Executed

on the

Client

Executed

on the

Client

PRESENTATION

LOGIC

LAYER

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

PRESENTATION

LAYER

CLIENT / SERVER SOLUTIONS

Application Architecture and Modeling Chapter Thirteen 485

File Server Architecture Today very few personal computers and workstations are
used to support stand-alone information systems. Organizations need to share data and
services. Local area networks allow many PCs and workstations to be connected to
share resources and communicate with one another. A local area network (LAN) is a
set of client computers (usually PCs) connected to one or more servers (usually a more
powerful PC or larger computer) through either cable or wireless connections over
relatively short distances—for instance, in a single department or in a single building.

In the simplest LAN environments, a file server architecture is used to implement
information systems. A file server system is a LAN-based solution in which a server
computer hosts only the data layer. All other layers of the information system application

local area network (LAN)
a set of client computers con-

nected over a relatively short

distance to one or more

servers.

file server system a LAN

in which a server hosts the

data of an information system.

F I G U R E 1 3 - 5

A File Server
Architecture

User Presentation,

Application,

and Data

Manipulation

Logic all

executed here

Client PC

File Server

Database

(e.g. MS Access)

Presentation

Only serves to

store data. No

service other

than storage and

transport

provided here

File Server

Entire

tables

Updated tables

Response

to request

returns

entire

tables

Request to

create,

read,

update,

or delete

1 or more

records

Table

locked

until

client

returns

table

Entire

tables

with any

updated

records
Unlock tables

1

2

3

4

5

6

7

8

are implemented on the client PC. (Note: File servers are also typically used to share
other nondatabase files across networks—examples include word processing docu-
ments, spreadsheets, images and graphics, engineering drawings, presentations, etc.)
A file server architecture is illustrated in Figure 13-5. This architecture is typical of
those used for many PC database engines such as Microsoft Access and FoxPro. While
your Access database may be stored on a network server, the actual Access program
must be installed or executed from each PC that uses the database.

File server architectures are practical only for small database applications shared
by relatively few users because the entire file or table of records must be first down-
loaded to the client PC, where the data manipulation logic will be executed to read a
single desired record.There are several disadvantages to this approach:

• Large amounts of unnecessary data must be moved between the client and
the server. This data traffic can significantly reduce network and application
performance.

• The client PC must be robust (a so-called fat client). It is doing virtually all
of the actual work, including data manipulation, application logic, presenta-
tion logic, and presentation. It must also have enough disk capacity to store
the downloaded tables.

• Database integrity can be easily compromised. Think about it. If any record
has been downloaded to be updated, the entire file has been downloaded.
Other users (clients) must be prevented (or locked) from making changes to
any other record in that file. The greater the number of simultaneous users,
the more this locking requirement slows response time.

Very few mission critical information systems can be implemented with file server
technology. So why are file server database management systems such as MS Access so
popular? First, file server tools such as Access can be used to develop fairly robust ap-
plications for individuals and small work groups. Second, and perhaps more signifi-
cantly, file server databases such as Access can be used to rapidly construct prototypes
for more robust client/server architectures.

Client/Server Architectures The prevailing distributed computing model of the
current era is called client/server computing (although it is rapidly giving way to

486 Part Three Systems Design Methods

Internet-based models). A client/server system is a solution in which the presen-
tation, presentation logic, application logic, data manipulation, and data layers are
distributed between client PCs and one or more servers.

The client computers may be any combination of personal computers or work-
stations, “sometimes connected” notebook computers, handheld computers (e.g.,
Palm or Windows Mobile Platforms),Web TVs, or any devices with embedded proces-
sors that could connect to the network (e.g., robots or controllers on a manufacturing
shop floor). Clients may be thin or fat. A thin client is a personal computer that does
not have to be very powerful (or expensive) in terms of processor speed and memory
because it only presents the interface (screens) to the user—in other words, it acts
only as a terminal. Examples include Remote Desktop and X/Windows. In thin-client
computing, the actual application logic executes on a remote application server. A fat

client is a personal computer, notebook computer, or workstation that is typically
more powerful (and expensive) in terms of processor speed, memory, and storage
capacity. Almost all PCs are considered fat clients.

A server in the client/server model must be more powerful and capable than a
server in the file server model. In fact, a mainframe computer can play the role of
server in a client/server solution. More typical, however, are network servers running
client/server-capable operating systems such as UNIX, Windows Server 2003, or
Linux. Several types of servers may be used in a client/server solution. These may
reside on separate physical servers or be consolidated into fewer servers:

• A database server hosts one or more shared databases (like a file server) but
also executes all database commands and services for information systems
(unlike a file server). Most database servers host an SQL database engine such
as Oracle, Microsoft SQL Server, or IBM DB2 Universal Database.

• A transaction server hosts services that ultimately ensure that all database
updates for a single business transaction succeed or fail as a whole. Examples
include IBM CICS and BEA.

• An application server hosts application logic and services for an informa-
tion system. It must communicate on the front end with the clients (for pre-
sentation) and on the back end with database servers for data access and
update. An application server is often integrated with the transaction server.
Most application servers are based on either the CORBA object-sharing stan-
dard or the Microsoft COM standard.

• A messaging or groupware server hosts services for e-mail, calendaring,
and other work group functionality. This type of functionality can actually be
integrated into information system applications. Examples include Lotus Notes

and Microsoft Exchange Server.

• A Web server hosts Internet or intranet Web sites. It communicates with
fat and thin clients by returning to them documents (in formats such as
HTML) and data (in formats such as XML). Some Web servers are specifi-
cally designed to host e-commerce applications (e.g., IBM’s WebSphere

Commerce Business).

Client/server architecture itself comes in several types, each of which deserves its
own explanation. Each of these C/S types is also compared to the others in Figure 13-4.

Client/Server—Distributed Presentation Most centralized (or mainframe) com-
puting applications use an older character user interface (CUI) that is cumbersome
and awkward when compared to today’s graphical user interfaces (GUIs) such as
Microsoft Windows and UNIX X/Windows (not to mention Web browsers such as
Mozilla Firefox and Microsoft Internet Explorer). As personal computers rapidly
replaced dumb terminals, users became increasingly comfortable with this newer
technology. And as they developed familiarity and experience with PC productivity
tools such as word processors and spreadsheets, they wanted their centralized, legacy
computing applications to have a similar look and feel using the GUI model.

Application Architecture and Modeling Chapter Thirteen 487

client/server system a

distributed computing solution

in which the presentation,

presentation logic, application

logic, data manipulation, and

data layers are distributed

between client PCs and one

or more servers.

thin client a personal

computer that does not have

to be very powerful.

fat client a personal com-

puter, notebook computer, or

work station that is typically

powerful.

database server a server

that hosts one or more

databases.

transaction server a

server that hosts services

which ensure that all data-

base updates for a transaction

succeed or fail as a whole.

application server a

server that hosts application

logic and services for an

information system.

messaging or groupware
server a server that hosts

services for groupware.

Web server a server that

hosts Internet or intranet Web

sites.

F I G U R E 1 3 - 6

Building a GUI
from a CUI

Enter distributed presentation. A distributed presentation client/server system
is a solution in which the presentation and presentation logic layers are shifted from
the server of a legacy system to reside on the client. The application logic, data ma-
nipulation, and data layers remain on the server (usually a mainframe). Sometimes
called the “poor person’s client/server,” this alternative builds on and enhances cen-
tralized computing applications. Essentially, the old CUIs are stripped from the legacy
applications and regenerated as GUIs that will run on the PC. In other words, only the
user interface (or presentation layer) is distributed to the client.

Distributed presentation offers several advantages. First, it can be implemented
relatively quickly because most aspects of the legacy application remain unchanged.
Second, users get a fast, friendly, and familiar user interface to legacy systems—one
that looks at least somewhat familiar to their PC productivity tools. Finally, the useful
lifetime of legacy applications can be extended until resources warrant a wholesale
redevelopment of the application. The disadvantages are that the application’s func-
tionality cannot be significantly improved and the solution does not maximize the
potential of the client’s desktop computer by dealing only with the user interface.

A class of CASE tools, sometimes called screen scrapers, automatically read the
CUI and generate a first-cut GUI that can be modified by a GUI editor. Figure 13-6
demonstrates this technology. Figure 13-7 shows a physical DFD for a distributed
presentation solution.

488 Part Three Systems Design Methods

distributed presentation
a client/server system in

which presentation and pre-

sentation logic are shifted

from the server to reside on

the client.

F I G U R E 1 3 - 8

Client/Server
System: Distributed
Data (Two Tiers)

1

2

3

4

5

6

7

8

User
Presentation

and

Application,

Logic

 executed here

Client PC

C/S Database

stored here

Presentation

Data

Manipulation

Logic

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Response

to request

returns

only the

rows and

columns

needed

Request to

create,

read,

update,

or delete

1 or more

records

Records (only)

locked

until

client

releases

table

Application

returns only

any data to

be updated
Unlock records

F I G U R E 1 3 - 7

Client/Server
System: Distributed
Presentation

User
Presentation

Logic

only

executed here

Client PC

Conventional Files

(e.g., VSAM)

or

Database (e.g.,

Oracle)

Presentation

Legacy App

(e.g., COBOL)

Application and

Data

Manipulation

Logic executed

here

Mainframe

Reads

and/or

updates

Output and

Instructions

for

translation

to GUI

GUI:

input

and/or

commands

for

processing

Client/Server—Distributed Data This is the simplest form of true client/server
computing. A local area network usually connects the clients to the server. A
distributed data client/server system is a solution in which the data and data
manipulation layers are placed on the server(s), and the application logic, presen-
tation logic, and presentation are placed on the clients. This is also called two-

tiered client/server computing. A two-tiered, distributed data client/server system
is illustrated as a physical DFD in Figure 13-8.

It is important to understand the difference between file server systems and dis-
tributed data client/server systems. Both store their actual database on a server. But
only client/server systems execute all data manipulation commands (e.g., SQL instruc-
tions to create, read, update, and delete records) on a server. Recall that in file server

Application Architecture and Modeling Chapter Thirteen 489

distributed data a

client/server system in which

the data and data manipula-

tion layers are placed on

servers and other layers are

placed on clients. Also called

two-tiered client/server

computing.

systems, those data manipulation commands must be implemented on the client. Dis-
tributed data client/server solutions offer several advantages over file server solutions:

• There is much less network traffic because only the database requests and
the database records that are needed are actually transported to and from the
client workstations.

• Database integrity is easier to maintain. Only the records in use by a client
must typically be locked. Other clients can simultaneously work on other
records in the same table or database.

The client workstation must still be fairly robust (“fat”) to provide the processing
for the application logic layer.This logic is usually written in a client/server program-
ming language such as Sybase Corporation’s PowerBuilder, Microsoft’s Visual Basic

.NET or C#. Those programs must be compiled for and execute on the client. To
improve application efficiency and reduce network traffic, some business logic may
be distributed to the database server in the form of stored procedures (discussed in
the next chapter).

The database server is fundamental to this architecture. Database servers store the
database, but they also execute the database instructions directly on those servers.
The clients merely send their database instructions to the server.The server returns only
the result of the database command processing—not entire databases or tables. All high-
end database engines such as Oracle and Microsoft SQL Server use this approach. A
distributed data architecture may involve more than one database server. Data may be
distributed across several database servers or duplicated on several database servers.

The key potential disadvantage to the two-tiered client/server is that the applica-
tion logic must be duplicated and thus maintained on all the clients, possibly hun-
dreds or thousands.The designer must plan for version upgrades and provide controls
to ensure that each client is running the most current release of the business logic, as
well as ensure that other software on the PC (purchased or developed in-house) does
not interfere with the business logic.

Client/Server—Distributed Data and Application When the number of clients
grows, two-tiered systems frequently suffer performance problems associated with
the inefficiency of executing all the application logic on the clients. Also, in multiple-
user transaction processing systems (also called online application processing, or
OLAP), transactions must be managed by software to ensure that all the data associ-
ated with the transaction is processed as a single unit.This generally requires a distri-
bution that uses a multitiered client/server approach. A distributed data and

application client/server system is a solution in which (1) the data and data manip-
ulation layers are placed on their own server(s), (2) the application logic is placed on
its own server, and (3) only the presentation logic and presentation are placed on the
clients.This is also called three-tiered, or n-tiered, client/server computing.

The three-tiered client/server solution uses the same database servers as those in
the two-tiered approach. Additionally, the three-tiered system introduces an applica-
tion and/or transaction server. By moving the application logic to its own server, that
logic now only needs to be maintained on the server. The three-tiered solution is
depicted as a physical data flow diagram in Figure 13-9.

Three-tiered client/server logic can be written and partitioned across multiple
servers using languages such as Microsoft Visual Basic .NET and C# in combination
with a transaction monitor. High-end tools such as Forté provide an even greater
opportunity to distribute application logic and data across a complex network. As
with the database server solution, some business logic could be distributed to the
database server in the form of stored procedures.

In a three-tiered system, the clients execute a minimum of the overall system’s
components. Only the user interface and some relatively stable or personal applica-
tion logic need be executed on the clients. This simplifies client configuration and
management.

490 Part Three Systems Design Methods

distributed data and
application a client/server

system in which the data and

manipulation layers are placed

on their own server(s), the

application logic is placed on

its own server, and the pre-

sentation logic and presenta-

tion are placed on the clients.

Also called three-tiered, or

n-tiered, client/server

computing.

F I G U R E 1 3 - 9

Client/Server
System: Distributed
Data and
Application (Three
Tiers)

User

Presentation

Logic

only

executed here

Client PC

C/S Database

stored here

Presentation

Data

Manipulation

Logic

only

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Records (only)

locked

until

client

releases

table

Unlock records

Application

Logic

only

executed here

Application

Server

Request to create,

read, update, or

delete 1 or more records

Response to data

manipulation

request

Data

and

service

requests

Information

and

service

responses

The biggest drawback of the three-tiered client/server is its complexity in design
and development.The most difficult aspect of a three-tiered client/server application
design is partitioning. Partitioning is the act of determining how to best distribute
or duplicate application components across the network. Fortunately, CASE tools are
constantly improving to provide greater assistance with partitioning.

Internet-Based Computing Architectures Some consider Internet-based system
architectures to be the latest evolution of client/server. We present Internet-based
computing alternatives in this section as a fundamentally different form of distributed
architecture that is rapidly reshaping the design thought processes of systems analysts
and information technologists.

A network computing system is a multitiered solution in which the presenta-
tion and presentation logic layers are implemented in client-side Web browsers using
content downloaded from a Web server.The presentation logic layer then connects to
the application logic layer that runs on an application server, which subsequently con-
nects to the database server(s) on the backside. Think about it! All information sys-
tems running in browsers—financials, human resources, operations—all of them!
E-commerce is part of this formula, and as we go to press, e-commerce applications
are getting most of the attention. But the same Internet technologies being used to
build e-commerce solutions are being used to reshape the internal information sys-
tems of most businesses—we call it e-business (although that term is also subject to
multiple interpretations). Network computing is, in our view, a fundamental shift
away from what we just described as client/server.

Application Architecture and Modeling Chapter Thirteen 491

partitioning the act of

determining how to best dis-

tribute or duplicate application

components across a

network.

network computing
system a multitiered solution

in which the presentation and

presentation logic layers are

implemented in client-side

Web browsers using content

downloaded from a Web

server.

Very few new technologies have witnessed as explosive a growth in business and
society as the Internet or the World Wide Web.The Internet extends the reach of our
information and transaction processing systems to include potential customers, cus-
tomers, partners, remotely located employees, suppliers, the government, and even
competitors. During the late 1990s the Internet was largely being used to establish a
company’s presence in a virtual marketplace and to disseminate public information
about products and services and provide a new foundation for customer-focused ser-
vice. Today, however, most businesses are focused on developing e-commerce solu-
tions that will allow customers to directly interact with and conduct business on the
Web (such as direct-to-consumer shopping).We’ve even seen the invention of the vir-
tual business, a business that “does business”entirely on the Web, such as Amazon.com
(books and media), ETrade (stocks and bonds), eBay (auctions), and Buy.com (elec-
tronics and appliances). One of the most intriguing debates is whether these “click-
and-mortar” virtual companies can turn a profit and actually compete with more
traditional “brick-and-mortar” companies—many of which are diversifying rapidly to
enter cybermarkets.

But the greatest potential of this Internet technology may actually be its applica-
tion to traditional information systems applications and development on intranets. An
intranet is a secure network, usually corporate, that uses Internet technology to in-
tegrate desktop, work group, and enterprise computing into a single cohesive frame-
work. Everything runs in (or at least from) a browser—your productivity applications
such as word processing and spreadsheets; any and all traditional information systems
applications you need for your job (financials, procurement, human resources, etc.);
all e-mail, calendaring, and work group services (allowing, for example, virtual meet-
ings and group editing of documents); and of course all of the external Internet links
that are relevant to your job.

The appeal of this concept should not be hard to grasp. Each employee’s “start
page” is a portal into all computer information systems and services he or she needs
to do his or her entire job. Because everything runs in a Web browser, there is no
longer a need to worry about, or develop for, multiple different computer architectures
(Intel versus Motorola versus RISC) or worry about different desktop operating sys-
tems. A physical data flow diagram for network computing is shown in Figure 13-10.
Notice that a Web server is added to the prior three-tiered model.The DFD also shows
both e-commerce (business-to-consumer) and e-business (business-to-business) dimen-
sions of network computing.

Does this all sound too good to be true? Something of a cyber-Camelot? By the
time you read this, our own institution will have likely implemented its first mission
critical e-business information system. Purdue, like all enterprises, has a procurement
(or purchasing) function. We buy everything from pencils to furniture to computers
to radioactive isotopes—literally tens of thousands of different supplies, materials, and
other products. As we go to press, Purdue has redesigned its procurement system to
be a combination intranet/Internet/extranet application. Here’s how it works:

The entire application runs in a Web browser. Any employee of the university,
once authenticated, can initiate a purchase requisition via his or her Web
browser (the intranet dimension). Employees can even “shop” for items from a
Web-mall of approved suppliers with which the university has standing con-
tracts (the Internet dimension). When a requisition is submitted, it will be
smart enough to know who must approve it (at every level) based on cost and
type of items ordered. The system will be able to automatically check for avail-
able funds to pay for the purchase. Employees will be able to audit the elec-
tronic flow of the requisition through the approval process and into purchase
order status. Managers will be able to revise the approval flow to get additional
input as needed. Most final orders will be transmitted electronically over a se-
cure business-to-businesses extranet between the university and its suppliers.

492 Part Three Systems Design Methods

intranet a server network

that uses Internet technology

to integrate desktop, work

group, and enterprise

computing.

User

Authentication

Presentation

distributed

from here

Web Server

C/S Database

stored here

Presentation

Data

Manipulation

Logic

only

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Records (only)

locked

until

client

releases

table

Unlock records

Application

Logic

only

executed here

Application

Server

Request to create,

read, update, or

delete 1 or more records

Response to data

manipulation

request

Information

and

service

responses

Web browser

Only Java

applets and

Web scripts

executed here

Client PC

 (thin or fat)

Navigation commands

transaction data,

and service requests

HTML: Page Content

and

XML: Data Content

Data

and

service

requests

F I G U R E 13-10

Network
Computing System:
Internet/Intranet

When ordered goods are received, the recipient will indicate receipt via the
same Web-based system, and payment, via electronic funds in most cases, will
be made. At any time, managers will be able to generate useful procurement
information for employees, departments, suppliers, whatever! A paperless
office? Very close!

Such intriguing system development possibilities are being fueled by some
fundamental emerging technologies that you should make a part of your curriculum
plan of study if possible:

• The programming language of choice for the application logic in network
computing architectures is likely to be Java. Essentially, Java is a reasonably
platform-independent programming language designed specifically to exploit
both Internet and object-oriented programming standards. Java is designed to
execute in your Internet browser, making it less susceptible to differences in
computing platforms and operating systems (but it’s not yet perfect).

Application Architecture and Modeling Chapter Thirteen 493

• The interface language of choice for the presentation and presentation logic
layers in network computing architectures is currently HTML, or hypertext
markup language. HTML is used to create the pages that run in your browser.
Soon another player in this layer will dominate—XML, the extensible markup
language. This widely embraced standard allows developers to also define the
structure of the data to be passed to Web pages, a critical requirement for
Web-based e-commerce and intranet-based information systems. XML may
eventually replace HTML, or the two standards may merge into one very
powerful language.

• As with traditional information systems, the data and data manipulation layers
will likely continue to be implemented with SQL database engines.

• Web browsers will continue to be important. In fact, Web browsers may ulti-
mately be more important than your choice of a desktop operating system. Is
it any wonder that Windows, with each new version, looks and feels more
like a browser.

All of these Internet and intranet solutions involve leading-edge technologies
and standards that have no doubt changed even since these words were written.
Technology vendors will undoubtedly play a significant role in the evolution of the
technology. However the specific technologies play out, we expect the Internet
and intranets to become the most common architectural models for tomorrow’s
information systems.

So where are we in our study of information technology architecture? You’ve
learned that several distributed systems and network options exist for modern infor-
mation systems. Most can be broadly classified as either client/server or network com-
puting architectures. To be sure, there is much more for you to learn about the
underlying communications technology, but that is the subject of at least one addi-
tional book. The AIS/ACM/AITP Model Curriculum for Undergraduate Information
Systems recommends that all information systems graduates complete at least one
course in information technology architecture and one course in fundamental data
communications.

> Data Architectures—Distributed Relational Databases

The underlying technology of client/server and network computing has made it
possible to distribute data without loss of control. This control is accomplished
through advances in distributed relational database technology. A relational data-

base stores data in a tabular form. Each file is implemented as a table. Each field is
a column in the table. Each record in the file is a row in the table. Related records
between two tables (e.g., CUSTOMERS and ORDERS) are implemented by intentionally
duplicating columns in the two tables (in this example, CUSTOMER NUMBER is stored
in both the CUSTOMERS and ORDERS tables). A distributed relational database

distributes or duplicates tables to multiple database servers located in geographi-
cally important locations (such as different sales regions).The software required to
implement distributed relational databases is called a distributed relational data-

base management system. A distributed relational database management

system (or distributed RDBMS) is a software program that controls access to
and maintenance of the stored data in the relational format. It also provides for
backup, recovery, and security. It is sometimes called a client/server database

management system.

In a distributed RDBMS, the underlying database engine that processes all data-
base commands executes on the database server. This arrangement reduces the data
traffic on the network. This is a significant advantage for all but the smallest systems
(as measured in number of users). A distributed relational DBMS also provides more
sophisticated backup, recovery, security, integrity, and processing (although the
differences seem to erode with each new PC RDBMS release).

494 Part Three Systems Design Methods

distributed relational
database management
system software that imple-

ments distributed relational

databases.

Logical Data Store
Using Partitioning

Physical Data Stores
Using Replication

1 CUSTOMERS 1P.#

Oracle 7:

REGION 1

CUSTOMERS

1P.#

Oracle 7:

REGION 2

CUSTOMERS

Not applicable. Branch offices do not

need access to data about customers

outside of their own sales region.

2 PRODUCTS

Not applicable. All branch offices need

access to data for all products,

regardless of sales region.

2M

Oracle 8i:

PRODUCTS

(Master)

2R

Oracle 8i:

PRODUCTS

(Replicated Copy)

Physical Data Stores

Examples of distributed RDBMSs include Oracle Corporation’s Oracle, IBM’s
DB2 Universal Database family, Microsoft’s SQL Server, and Sybase Corporation’s
Sybase. Most RDBMSs support two types of distributed data:

• Data partitioning truly distributes rows and columns to specific database
servers with little or no duplication between servers. Different columns can
be assigned to different database servers (vertical partitioning) or different
rows in a table can be allocated to different database servers (horizontal

partitioning).
• Data replication duplicates some or all tables (rows and columns) on more

than one database server. Entire tables can be duplicated on some database
servers, while subsets of rows in a table can be duplicated to other data-
base servers. The RDBMS with replication technology not only controls
access to and management of each database server database but also propa-
gates updates on one database server to any other database server where
the data is duplicated.

For a given information system application, the data architecture must specify the
RDBMS technology and the degree to which data will be partitioned or replicated.
One way to document these decisions is to record them in the physical data stores as
shown below. Notice how we used the ID area to indicate codes for partitioning (P)
and replication (M for the master copy and R for the replicated copy). In the case of
the former, we should specify which rows and/or columns are to be partitioned to the
physical database.

Application Architecture and Modeling Chapter Thirteen 495

An application’s DATA architecture is selected based on the desired client/server
or network computing model and the database technology needed to support that
model. Many organizations have standardized on both their PC RDBMS of choice and
their preferred distributed, enterprise RDBMS of choice. For example, SoundStage has
standardized on Microsoft Access and SQL Server. Generally, a qualified database ad-
ministrator should be included in any discussions about the database technology to be
used and the design implications for any databases that will use that technology.

> Interface Architectures—Inputs, Outputs,
and Middleware

Another fundamental information technology decision must be made regarding
inputs, outputs, and intersystem connectivity.The decision used to be simple—batch

Logical Data Flow (output)
(as batch output on preprinted forms)

PAYCHECK

Preprinted Form

Batch:

PAYCHECKS

Physical Data Flow Implementation

TIME CARD

KTD Batch:

TIME CARDS
batch

Comma delimited

file:TIMECARDS

KTD Batch:

TIME CARDS

End of Month

ⴚ1 day

Logical Data Flow (input)
(as batch input)

Physical Data Flow Implementation

inputs versus online inputs. Today we must consider modern alternatives such as au-
tomatic identification, pen data entry, various graphical user interfaces, electronic data
interchange, imaging, and voice recognition, among others. Let’s briefly examine
these alternatives and their physical DFD constructs.

Batch Inputs or Outputs In batch processing, transactions are accumulated into
batches for periodic processing. The batch inputs are processed to update databases
and produce appropriate outputs. Most outputs tend to be generated to paper or mi-
crofiche on a scheduled basis. Others might be produced on demand or within a spec-
ified time period (e.g., 24 hours).

Contrary to popular belief, batch input technologies are not quite obsolete. You
rarely see punched cards and tape batches today, but some application requirements lend
themselves to batch processing. Perhaps the inputs arrive in natural batches (e.g., mail),
or perhaps outputs are generated in natural batches (e.g., invoices). Many organizations
still collect and process time cards in batches. There is, however, a definite trend away
from batch input to online approaches. In the meantime, key-to-disk file is the most com-
mon, and its physical data flow construct would look as shown below. First, notice that
the logical name is singular, but the batch name is plural. Also notice that the batch goes
into a temporary data store, which is read by a payroll process triggered by date.

496 Part Three Systems Design Methods

Batch output is quite another story. Many applications lend themselves to batch
output. Examples include generation of invoices, account statements, grade reports,
paychecks, W-2 tax forms, and many others. Batch outputs often share one common
physical characteristic, the use of a preprinted form. It should not be difficult for you
to envision a preprinted form to be loaded in the printer to produce any of the afore-
mentioned output examples. A physical data flow construct would look something
like the following. Again, note the plural name reflective of batch processing.

As older batch-based systems become candidates for replacement, other physical
implementation alternatives should be explored.

Online Inputs and Outputs The majority of systems have slowly evolved from
batch processing to online or real-time processing. Online inputs and outputs provide

Logical Data Flow (input and output)
(as online input and output;

2 alternatives shown)

INSURANCE

CLAIM

Win 2000 Form:

INSURANCE

CLAIM

ORDER

CONFIRMATION

HTML Form:

ORDER CONFIRMATION

MAPI E-mail Message:

ORDER CONFIRMATION

Physical Data Flow Implementation

Access Form:

COURSE

ASSIGNMENT
Access Table:

SCHEDULED

COURSES

Read:

SCHEDULED

COURSES

(schedule

finished)

Access Form:

SCHEDULE

CONFLICT

Update:

SCHEDULED

COURSES

batch

Batch CDF:

SCHEDULED

COURSES

Create:

SCHEDULED

COURSES

Read:

SCHEDULED

COURSES

E-mail, CDF:

SCHEDULED

COURSES

for a more conversational dialogue between the user and computer applications.They
also provide nearly immediate feedback in response to transactions, problems, and in-
quiries. In today’s fast-paced economy, most business transactions and inquiries are
best processed as soon as possible. Errors are identified and corrected more quickly
because there is no time lapse between data entry and input (as was the case in batch
processing). Furthermore, online methods permit greater human interaction in deci-
sion making.

Today most systems are being designed for online processing, even if the data ar-
rives in natural batches. Technically, all GUI and Web applications are online or real-
time, and since we’ve already learned that those architectures are preferred in
client/server and network computing, then we can expect that most physical data
flows will be implemented with some type of GUI technology.The physical data flow
constructs would look something like the following. For the physical output, notice
that two formats of the physical output are possible. We could have added the junc-
tion symbols (Chapter 9) to make the flows mutually contingent (both required) or
mutually exclusive (either/or, but not both).

Application Architecture and Modeling Chapter Thirteen 497

Remote Batch Remote batch combines the best aspects of batch and online inputs
and outputs. Distributed online computers handle data input and editing. Edited trans-
actions are collected into a batch file for later transmission to host computers that
process the file as a batch. Results are usually transmitted as a batch back to the orig-
inal computers.

Remote batch is hardly a new alternative, but personal computers have given the
option new life. For example, one of the authors’ colleagues uses a Microsoft Access

program to input and test the feasibility of a schedule of classes for his academic de-
partment each semester.When finished, he generates a comma delimited file to trans-
mit to the academic scheduling unit for batch processing. The entire physical input
model looks something like this:

Logical Data Flow (input)
(optimal mark form batch input)

EXAMINATION

ANSWERS

Optimal Mark

Form Batch:

EXAMINATIONS'

ANSWERS

Physical Data Flow Implementation

Logical Data Flow (input)
(automatic ID input)

NEWLY STOCKED

PRODUCT

Bar code:

NEWLY STOCKED

PRODUCT

Physical Data Flow Implementation

Remote batch using PCs should get another boost with the advances in hand-
held and subnotebook computer technology. These four-ounce to four-pound com-
puters can be used to collect batches of everything from inventory counts to
mortgage applications. The inputs are remotely batched on the device for later
transmission as a batch.

Keyless Data Entry (and Automatic Identification) Keying in data has always
been a major source of errors in computer inputs (and inquiries). Any technology that
reduces or eliminates the possibility of keying errors should be considered for system
design. In batch systems, keying errors can be eliminated through optical character
reading (OCR) and optical mark reading (OMR) technology. Both are still viable
options for input design.The physical data flow construct is shown below.

498 Part Three Systems Design Methods

The real advances in keyless data entry are coming for online systems in the
form of auto-identification systems. For example, bar-coding schemes (such as the
Universal Product Codes that are common in the retail industry) are widely avail-
able for many modern applications. For example, Federal Express creates a bar
code–based label for all packages when you take the package to a center for deliv-
ery.The bar codes can be read and traced as the package moves across the country
to its final destination. Bar code technology is being constantly improved to com-
press greater amounts of data into smaller labels. The physical data flow construct
is shown below. (The receiving physical process would be named for the function
it performs.)

Pen Input As pen-based operating systems (e.g., the Palm OS and Microsoft’s Win-

dows Mobile) become more widely available and used, and the tools for building pen-
based applications become available and standardized, we expect to see more system
designs that exploit this technology.

Some businesses already use this technology for remote data collection. For
example, UPS uses pen-based notebook systems to help track packages through
the delivery system. The driver calls up the package tracking number on the spe-
cial tablet computer. The customer signs the pad in the designated area. When the
driver returns to the truck and places the tablet computer back in its docking
cradle, the updated delivery data is transmitted by cellular modem to the distribu-
tion center where the package tracking system updates the database (ultimately
enabling the shipper to know that you have received the package via a simple
Web inquiry).

STUDENT

APTITUDE

SCORE

EDI:

STUDENT

APTITUDE

SCORES

Logical Data Flow (input)
(automatic ID input)

Physical Data Flow Implementation

Pen:

Customer

Signature

Pen:

Package

Delivery

Cellular:

Package Delivery

Electronic Messaging and Work Group Technology Electronic mail has grown
up! No longer merely a way to communicate more effectively, information systems are
being designed to directly incorporate the technology. For example, Microsoft
Exchange Server and IBM Lotus Notes allow for the construction of intelligent elec-
tronic forms that can be integrated into any application. Basic messaging services can
also be integrated into applications.

For example, any employee via an e-mail-based form could initiate travel re-
quests.The system takes the data submitted on the form and follows predefined rules
to automatically route the request to the appropriate decision makers. For example,
less expensive travel requests might be routed directly to a business officer. More ex-
pensive requests might be routed first to a department head for approval and then to
a business officer. Eventually, approved forms can be automatically input to the ap-
propriate reimbursement processing information system for normal processing. And
at each step, the messaging system automatically informs the initiator of progress
via e-mail. A physical DFD that included an e-mail message implementation was
presented earlier.

Electronic Data Interchange Businesses that operate in many locations and
businesses that seek more efficient exchange of transactions and data with other busi-
nesses often utilize electronic data interchange. Electronic data interchange (EDI)

is the standardized electronic flow of business transactions or data between busi-
nesses.Typically, many businesses must commit to a data format to make EDI feasible.

With EDI, a business can eliminate its dependence on paper documents and mail.
For example, most colleges now accept SAT or ACT test scores via EDI from national
testing centers.This has been made possible because college registrars have agreed to
a standard format for these test scores.

Application Architecture and Modeling Chapter Thirteen 499

Imaging and Document Interchange Another emerging I/O technology is based
on image and document interchange. This is similar to EDI except that the actual im-
ages of forms and data are transmitted and received. It is particularly useful in appli-
cations in which the form images or graphics are required. For example, the insurance
industry has made great strides in electronically transmitting, storing, and using claims
images. Other imaging applications combine data with pictures or graphs. For example,
a law enforcement application can store, transmit, and receive photographic images
and fingerprints.

Middleware Most of the above subsections focused on input and output—the user
interface. But many system designs require process-to-process physical data flows.

electronic data
interchange (EDI) the

standardized electronic flow of

business transactions or data

between businesses.

Earlier in this chapter, we described various client/server and network computing sce-
narios that automatically include process-to-process data flows because clients and
servers must talk to one another. They do this through middleware. Middleware is
utility software that enables communication between different processors in a sys-
tem. It may be built into the respective operating systems or added through pur-
chased middleware products. Middleware products allow the programmers to ignore
underlying communication protocols.

Middleware is said to be the “slash” in “client/server.” There are three classes of
middleware that happen to correspond to the middle three layers of our distributed
systems framework—presentation logic, application logic, and data manipulation logic:

• Presentation middleware allows a programmer to build user interface com-
ponents that can talk to Web browsers or a desktop GUI. For example, HTTP
allows the programmer to communicate with a Web browser through a stan-
dard application programmer interface (API).

• Application middleware enables two programmer-written processes on different
processors to communicate with one another in whatever way is best suited to
the overall application. Application middleware is essential to multitier applica-
tion development. Examples of application middleware are numerous: remote
procedure calls (RPCs), message queues, and object request brokers.

• Database middleware allows a programmer to pass SQL commands to a
database engine for processing through a standard API.

Another common type of middleware is ODBC (object database connec-
tivity) and JDBC (Javabean database connectivity), which automatically trans-
late the SQL commands of one database server for use on a different data-
base server (for example, Oracle to SQL Server, or vice versa).

On a physical data flow diagram, middleware can be depicted by specifying the
middleware class name on the physical data flow (e.g., ODBC).

> Process Architectures—The Software
Development Environment

The process architecture of an application is defined in terms of the software lan-
guages and tools that will be used to develop the business logic and application pro-
grams for that process. Typically, this is expressed as a menu of choices because
different software development environments are suited to different applications. A
software development environment (SDE) is a language and tool kit for con-
structing information system applications. One way to classify SDEs is according to
the type of client/server or network computing architecture they support.

SDEs for Centralized Computing and Distributed Presentation Not that long
ago, the software development environment for centralized computing was very
simple. It consisted of the following:

• An editor and compiler, usually COBOL, to write programs.
• A transaction monitor, usually CICS, to manage any online transactions and

terminal screens.
• A file management system, such as VSAM, or a database management system,

such as DB2, to manage stored data.

That was it! Because all these tools executed on the mainframe, only that computer’s
operating system (more often than not, MVS) was critical.

The personal computer brought many new COBOL development tools down to the
mainframe. A PC-based COBOL SDE such as the Micro Focus COBOL Workbench usually
provided the programmer with more powerful editors and testing and debugging tools
at the workstation level. A programmer could do much of the development work at that

500 Part Three Systems Design Methods

middleware utility software

that enables communication

between different processors

in a system.

software development
environment (SDE) a

language and tool kit for

developing applications.

level and then upload the code to the central computer for system testing, performance
tuning, and production. Frequently, the SDE could be interfaced with a CASE tool and
code generator to take advantage of process models developed during systems analysis.

Eventually, SDEs provided tools to develop distributed presentation client/server
systems. For example, the Micro Focus Dialog Manager provided COBOL Workbench

users with tools to build Windows-based user interfaces that could cooperate with the
CICS transaction monitors and the mainframe COBOL programs.

SDEs for Two-Tier Client/Server Today the typical SDE for two-tiered client/server
applications (also called distributed data) consists of a client-based programming lan-
guage with built-in SQL connectivity to one or more server database engines. Exam-
ples of two-tiered client/server SDEs include Sybase’s PowerBuilder, Microsoft’s
Visual Studio, and Borland’s Delphi (Client/Server Edition). Typically, these SDEs
provide the following:

• Rapid application development (RAD) for quickly building the graphical user
interface that will be replicated and executed on all the client PCs.

• Automatic generation of the template code for the above GUI and associated
system events (such as mouse-clicks, keystrokes, etc.) that use the GUI. The
programmer only has to add the code for the business logic.

• A programming language that is compiled for replication and execution on
the client PCs.

• Connectivity (in the above language) for various relational database engines
and interoperability with those engines. Interoperability is achieved by includ-
ing SQL database commands (e.g., to create, read, update, delete, and sort
records) that will be sent to the database engine for execution on the server.

• A sophisticated code testing and debugging environment for the client.
• A system testing environment that helps the programmer develop, maintain,

and run a reusable test script of user data, actions, and events against the
compiled programs to ensure that code changes do not introduce new or
unforeseen problems.

• A report writing environment to simplify the creation of new end-user
reports off a remote database.

• A help authoring system for the client PCs.

Today most of these tools come in the bundled SDE, but independent software
tool vendors have emerged to produce replacement tools that often provide still
greater functionality and/or productivity than those provided in the basic SDE. To
learn more about such add-on tools, search the Internet for Programmers Paradise, a
software development tool Web storefront.

Some of the process logic of any two-tiered client/server application can be off-
loaded to the database server in the form of stored procedures. In this case, stored
procedures are written in a superset of the SQL language.These procedures are then
“called” from the client for execution on the server. Different experts seem to love or
hate stored procedures. On the plus side, stored procedures can be made to better en-
force data integrity in database tables. They are reusable and verifiable. On the nega-
tive side, they blur the distinction between the application and data manipulation
layers of our framework—they are application logic that executes on the database
servers. Many designers prefer a more cohesive design strategy called clean layering.

Clean layering requires that the presentation, application, and data layers of an
application be physically separated. Clean layering is said to allow components of
each layer to be revised and enhanced without affecting other layers in the system.

SDEs for Multitier Client/Server The current state of the art in enterprise appli-
cation development is occurring in SDEs for three-tiered (and beyond) client/server
architectures. Unlike two-tiered applications, n-tiered applications must support more
than 100 users with mainframelike transaction response time and throughput, with

Application Architecture and Modeling Chapter Thirteen 501

clean layering a design

strategy that requires that

presentation, application, and

data layers be physically

separated.

100 gigabyte or larger databases. While the two-tiered SDEs described earlier are try-
ing to expand in this market, a different class of SDEs currently dominates the market.
Typically, the SDEs in this class must provide all the capabilities typically associated
with two-tiered SDEs plus the following:

• Support for heterogeneous computing platforms, both client and server.
• Code generation and programming for both clients and servers.
• A strong emphasis on reusability using software application frameworks,

templates, components, and objects.
• Bundled minicase tools for analysis and design that interoperate with code

generators and editors.
• Tools that help analysts and programmers partition application components

between the clients and servers.
• Tools that help developers deploy and manage the finished application to

clients and servers. This generally includes security management tools.
• The ability to automatically scale the application to larger and different

platforms, client and server.
• Sophisticated software version control and application management.

Examples of n-tiered client/server SDEs include Dynasty’s Dynasty, and IBM’s
VisualAge (a family of products). Again, a large number of independent software tool
vendors are building add-on and replacement tools for these SDEs.

SDEs for Internet and Intranet Client/Server Rapid application development
tools are emerging to enable client/server Internet and intranet applications. Most of
these languages are built around four core standard technologies:

HTML (hypertext markup language)—the language used to construct most
Internet and intranet page content and hyperlinks.

XML (extensible markup language)—an extensible language for transporting
data and properties across the Web.

CGI (Computer Gateway Interface)—a standard for publishing graphical World
Wide Web components, constructs, and links.

Java—a general-purpose programming language for creating platform-
independent programs, servlets, and applets that can execute from within a
browser’s Java Virtual Machine.

Examples of Java-specific SDEs include IBM’s WebSphere and Borland’s Jbuilder.
These SDEs can create Internet, intranet, and non-Internet/intranet applications.
Virtually all existing two-tiered and n-tiered SDEs are also evolving to support HTML,

XML, CGI, and Java.

502 Part Three Systems Design Methods

Regardless of what it is called, all information systems have an application architec-
ture. Different organizations apply different strategies to determining application
architecture. Let’s briefly classify the two most common approaches.

> The Enterprise Application Architecture Strategy

In the enterprise application architecture strategy, the organization develops an en-
terprisewide information technology architecture to be followed in all subsequent in-
formation systems development projects.This IT architecture defines the following:

• The approved network, data, interface, and processing technologies and devel-
opment tools (inclusive of hardware and software, and clients and servers).

Application Architecture Strategies for Systems Design

• A strategy for integrating legacy systems and technologies into the applica-

tion architecture.

• An ongoing process for continuously reviewing the application architecture

for currency and appropriateness.

• An ongoing process for researching emerging technologies and making rec-

ommendations for their inclusion in the application architecture.

• A process for analyzing requests for variances from the approved application

architecture.

An initial application architecture is usually developed as a separate project or as

part of a strategic information systems planning project.The ongoing maintenance of

the application architecture is usually assigned to a permanent information technol-

ogy research group or to an enterprise application architecture committee.

Subsequent to the approval of the application architecture, every information sys-

tem development project is expected to use or choose technologies based on that ar-

chitecture. In most cases, this greatly simplifies the architecture phase of a system

development methodology. You simply select from the approved technologies ac-

cording to the architecture’s rules or guidelines.

Of course, even if a technology is approved in the application architecture, it is

subject to a feasibility analysis, as described in the next subsection.

> The Tactical Application Architecture Strategy

In the absence of an enterprisewide application architecture, each project must

define its own architecture for the information system being developed. There still

may exist some sort of information technology research and deployment group.

While the proposed application architecture for any new information system

may be influenced by existing technologies, the developers usually have somewhat

greater latitude in requesting new technologies. Of course, the final decision must

be defended and approved as feasible. IT feasibility usually includes the following

aspects:

• Technical feasibility—This can be either a measure of a technology’s maturity,

a measure of the technology’s suitability to the application being designed, or

a measure of the technology’s ability to work with other technologies.

• Operational feasibility—This is a measure of how comfortable the business

management and users are with the technology and how comfortable the

technology managers and support personnel are with the technology.

• Economic feasibility—This a measure of both whether or not the technology

can be afforded and whether it is cost-effective, meaning the benefits out-

weigh the costs.

Feasibility criteria and techniques for measuring them were covered in Chapter 11.

Application Architecture and Modeling Chapter Thirteen 503

Modeling the Application Architecture of an Information System

The use of logical DFDs to model process requirements is a fairly accepted practice.

However, the transition from analysis-oriented logical DFDs to design-oriented physi-

cal DFDs has historically been somewhat mysterious and elusive. We desire a high-

level general design that can serve as an application architecture for the system and a

general design for the processes that make up the system. At the same time, we don’t

want to get caught up in a counterproductive modeling exercise that slows our

progress in systems design and rapid application development. Simply stated, we

want a blueprint to guide us through detailed design and construction.The blueprint

will identify design units for detailed specification or rapid development, whichever
is most productive in our project.

> Drawing Physical Data Flow Diagrams

The mechanics for drawing physical DFDs are virtually identical to those for logical
DFDs.The rules of correctness are also identical. An acceptable design results in:

• A system that works.
• A system that fulfills user requirements (specified in the logical DFDs).
• A system that provides adequate performance (throughput and response time).
• A system that includes sufficient internal controls (to eliminate human and com-

puter errors, ensure data integrity and security, and satisfy auditing constraints).
• A system that is adaptable to ever-changing requirements and enhancements.

We could develop a single physical DFD for the entire system or a set of physical
DFDs for the target system. Our methodology suggests the following:

• A physical data flow diagram should be developed for the network architec-
ture. Each process on this diagram is a physical processor (client or server)
in the system. Each server is its own processor; however, it is usually imprac-
tical to show each client. Instead, each class of clients (e.g., an order entry
clerk) is represented by a single processor.

• For each processor on the above model, a physical data flow diagram should
be developed to show the event processes (see Chapter 9) that will be
assigned to that processor. It is possible that you would choose to duplicate
some event processes on multiple processors. For instance, orders may be
processed on each region’s servers and clients.

• For all but the simplest event processes, they should be factored into design
units and modeled as a single physical data flow diagram. A design unit is a
self-contained collection of processes, data stores, and data flows that share
similar design attributes. A design unit serves as a subset of the total system
whose inputs, outputs, files and databases, and programs can be designed,
constructed, and unit tested as a single subsystem.

An example would be a set of processes (one or more) to be designed as a single
program.The design unit could then be assigned to a single programmer (or team) who
(which) can work independently of other programmers and teams without adversely
affecting the work of the other programmers. The implemented units would then be
assembled into the final application system. Design units can also be prioritized for
implementing versions of a system.

> Prerequisites

Let’s set the table by describing the prerequisites to creating physical DFDs. They
include:

• A logical data model (entity relationship diagram created in Chapter 8).
• Logical process models (data flow diagrams created in Chapter 9).
• Repository details for all of the above.

Given these models and details, we can distribute data and processes to create a
general design. Your general design will normally be constrained by one or more of
the following:

• Architectural standards that predetermined the choice of database manage-
ment systems, network topology and technology, user interface(s), and/or
processing methods.

• Project objectives that were defined at the beginning of systems analysis and
refined throughout systems analysis.

504 Part Three Systems Design Methods

design unit a self-contained

collection of processes, data

stores, and data flows that

share similar design attributes.

F I G U R E 1 3 - 1 1 Network Architecture DFD

• The feasibility of chosen or desired technology and methods. (Feasibility
analysis techniques were covered in Chapter 11.)

Within any restrictions of those constraints, the ensuing techniques can be applied.

> The Network Architecture

The first physical DFD to be drawn is the network architecture DFD. A network ar-

chitecture DFD is a physical data flow diagram that allocates processors (clients and
servers) and devices (e.g., machines and robots) to a network and establishes (1) the
connectivity between the clients and the servers and (2) where users will interact
with the processors (usually only the clients).

To identify the processors and their locations, the developer utilizes two resources:

• If an enterprise information technology architecture exists, that architecture
likely specifies the client/server vision that should be targeted.

• The advice of competent network managers and/or specialists should be
solicited to determine what’s in place, what’s possible, and what impact the
system may have on the computer network.

Network architecture DFDs (see Figure 13-11) need to be labeled to show some-
what different information than normal DFDs. They don’t show specific data flows

Application Architecture and Modeling Chapter Thirteen 505

per se. Instead, they show highways over which data flows may travel in either direc-
tion. Also, network topology DFDs indicate the following:

• Servers and their physical locations—Servers are not always located at the
sites indicated on a location connectivity diagram. Network staff access to
servers is usually an issue. Some network management tasks can be accom-
plished remotely, and some tasks also require hands-on access.

• Clients and their physical locations—In this case, the location connectivity
diagram is useful in identifying “groups” of like users (e.g., ORDER CLERKS, SALES

REPRESENTATIVES, etc.) who will be serviced by similar clients. A single proces-
sor should represent the entire group at a single location. The same group
may be replicated in multiple locations. For example, you would expect each
SALES REGION to have similar types of employees.

• Processor specifications—The repository descriptions of processors can be used
to define processor specifications such as RAM, hard-disk capacity, and display.

• Transport protocols—Connections are labeled with transport protocols (e.g.,
TCP/IP) and other relevant physical parameters.

The network topology DFD can be used to either design a computer network or
document the design of an existing computer network. In either case, the network is
being modeled so that we can subsequently assign information system processes, data
stores, and data flows to servers on the network.

> Data Distribution and Technology Assignments

The next step is to distribute data stores to the network processors.The required log-
ical data stores are already known from systems analysis—as data stores on the logical
DFDs (Chapter 9) or as entities on the logical ERDs (Chapter 8). We need only deter-
mine where each will be physically stored and how they will be implemented.

To distribute the data and assign their implementation methods, the developers
utilize three resources:

• If available, the data distribution matrices from systems analysis (Chapters 8
and 9) model the data needs at business locations from a technology inde-
pendent perspective.

• If an enterprise information technology architecture exists, that architecture
likely specifies the database vision and technologies that should be targeted.

• The advice of data and database administrators should be solicited to deter-
mine what’s in place, what’s possible, and what impact the database may
have on the overall system.

The distribution options were described earlier in the chapter and are summarized
as follows:

• Store all data on a single server. In this case, the database (consisting of
multiple tables) should be named, and that named database and its implemen-
tation method (e.g., Oracle: dbmemberServices) should be added to the phys-
ical DFD and connected to the appropriate processor.

• Store specific tables on different servers. In this case, and for clarity’s sake,
we should record each table as a data store on the physical DFD and con-
nect each to the appropriate server.

• Store subsets of specific tables on different servers. In this case we record the
tables exactly as above except that we indicate which tables are subsets of the
total set of records. For example, the label DB2: ORDERS TABLE (REG SUBSET) would
indicate that a subset of all orders for a region is stored in a DB2 database table.

• Replicate (duplicate) specific tables or subsets on different servers. In this
case, replicated data stores are shown on the physical DFD. One copy of any
replicated table is designated as the MASTER, and all other copies are desig-
nated as COPY or REPLICANT.

506 Part Three Systems Design Methods

F I G U R E 1 3 - 1 2 Data Distribution and Technology Assignments for SoundStage

Why distribute data storage? There are many possible reasons. First, some data in-
stances are of local interest only. Second, performance can often be improved by sub-
setting data to multiple locations. Finally, some data needs to be localized to assign
custodianship of that data. The data distribution and technology assignments for the
SoundStage case study are shown in Figure 13-12.

Data distribution decisions can be very complex—normally the decisions are
guided by data and database professionals and taught in data management courses
and textbooks. In this book we want to consider only how to document the partition
and duplication decisions.

> Process Distribution and Technology Assignments

Information system processes can now be assigned to processors as follows:

• For two-tiered client/server systems, all the logical event diagrams (Chapter 6)
are assigned to the client.

• For three-tiered client/server and network computing systems, you must
closely examine each event’s primitive (detailed) data flow diagram. You need
to determine which primitive processes should be assigned to the client and
which should be assigned to an application server. In general, data capture
and editing are assigned to clients and other business logic is assigned to
servers. If you partition different aspects of a logical DFD to different clients
and servers, you should draw separate physical DFDs for the portions on
each client and server.

After partitioning, each physical DFD corresponds to a design unit for a given busi-
ness event. (Business events, or use cases, were discussed in Chapter 7.) For each of these

Application Architecture and Modeling Chapter Thirteen 507

F I G U R E 1 3 - 1 3 A Physical DFD for an Event

design units, you must assign an implementation method, the SDE that will be used to im-
plement that process.You must also assign implementation methods to the data flows.

SoundStage’s Member Services system will be implemented with a multitiered
client/server and network computing architecture. A sample DFD for one event to be
assigned to a client is shown in Figure 13-13. Notice that the data stores are shown

508 Part Three Systems Design Methods

Performed
by

People

Performed by Computer

F I G U R E 1 3 - 1 4 The Person/Machine Boundary

Application Architecture and Modeling Chapter Thirteen 509

F I G U R E 1 3 - 1 5 A Manual Design Unit

even though we know they have been partitioned to a database server.This is for the
benefit of the programmers who must implement the DFD.

> The Person/Machine Boundaries

The last step of process design is to factor out any portion of the physical DFDs
that represent manual, not computerized, processes. This is sometimes called es-
tablishing a person/machine boundary. Establishing a person/machine boundary is
not difficult, but it is not as simple as you might first think. The difficulty arises
when the person/machine boundary cuts through a logical process—in other
words, part of the process is to be manual and part is to be computerized. This
situation is common on logical DFDs because they are drawn without regard to
implementation alternatives.

Figure 13-14 adds the person/machine boundary to a physical DFD. Notice that
our boundary cuts through several processes, including the CHECK MEMBER CREDIT

process.The solution to this process requires two steps:

1. The manual process portions are pulled out as a separate design unit (see Figure
13-15). All these processes are completely manual.The interfaces of the manual
design units to the computerized processes (on Figure 13-14) are depicted as
external agents. Ultimately, the manual processes in the design unit must be
clearly described to those people who will have to perform them.

2. If necessary, the processes on the original diagram should be renamed to reflect
only the computerized portion. (In practice, the processes were already named
that way.)

510 Part Three Systems Design Methods

Lea
rning

 Roa
d
m

a
p

In this chapter, you have learned how to outline the design of a new information sys-

tem to fulfill the requirements identified and modeled during systems analysis. This

general design for the new system will guide the detailed design and construction of

that system.

Most readers will now progress to the detailed design chapters that build on the

general design for the new system. For most of you, we recommend you start with

Chapter 14,“Database Design.” Most design-by-prototyping and rapid application devel-

opment techniques are absolutely dependent on the existence of the planned informa-

tion system’s database. Databases must be carefully designed to ensure adaptability and

flexibility during the system’s lifetime.Thus, Chapter 14 is the best place to begin your

study of detailed design. Subsequently, you can move on to chapters that cover other

aspects of detailed design, including inputs, outputs, and programs.

1. Physical data flow diagrams model the technical
and human design decisions to be implemented
as part of an information system.They communi-
cate technical choices and other design decisions
to those who will actually construct and imple-
ment the system.

2. An information technology architecture defines
the technologies to be used by one, more, or all
information systems.There are four categories of
technology architectures: network, data, inter-
face, and process.

3. A distributed system is one in which the compo-
nents of an information system are distributed to
multiple locations in a computer network.The
five layers of distributed systems architecture are
(a) presentation, (b) presentation logic, (c) appli-
cation logic, (d) data manipulation, and (e) data.

4. A local area network is a set of client computers
connected to one or more servers through either
cable or wireless connections over relatively
short distances.

5. A file server system is a LAN-based solution in
which a server computer hosts only the data
layer. All other layers are implemented on the
client.

6. The prevailing computing model is currently
client/server in which the presentation, presenta-
tion logic, application logic, data manipulation,

and data layers are distributed between client PCs
and one or more servers. Clients are classified by
their power as thin or fat. Servers are dedicated
to functions such as database, transactions, appli-
cations, messaging or work group, or Web.

7. Distributed presentation, distributed data, and dis-
tributed data and logic are types of client/server
systems.

8. Network computing uses Internet technology to
build Internet or intranet applications.

9. Data storage is typically implemented using dis-
tributed relational database technology that ei-
ther partitions data to different servers or
replicates data on multiple servers.

10. User interface options include batch, online, re-
mote batch, keyless data entry (including optical
character/mark and bar-coding methods), pen in-
put, electronic messaging, electronic data inter-
change, and imaging.

11. System interfacing is typically implemented using
middleware, software that enables processes to
communicate with one another.

12. Processes are implemented using highly inte-
grated tool kits called software development
environments.

13. Application architectures may be developed and
enforced strategically, or they may tactically
evolve on a project-by-project basis.

Chapter Review

511

1. In traditional structured analysis and design, what
system models are developed, and in what order?

2. Why is the complete structured analysis and de-
sign methodology seldom employed anymore?

3. When a logical process is divided into multiple
physical processes, or if more physical processes
are added, what is it important for designers to
check?

4. Why is the number of physical processes shown
on a physical DFD generally greater than the
number of the logical processes?

5. What does a physical data flow represent?
6. What type of data store is often overlooked by

designers in conducting systems design?
7. Although centralized systems are less complex

and easier to implement, distributed systems have

pretty much taken over from centralized systems.
What were some of the reasons for this?

8. What is the difference between the presentation
layer and the presentation logic layer?

9. What is a file server system, and what kind of
network environment does it use?

10. What are some of the inherent limitations and
disadvantages of a file server system?

11. What is the difference between a thin client and
a fat client?

12. What is the network architecture used in
e-commerce? Please explain how each layer
is related.

13. What is the sequence of high-level tasks for
modeling the application architecture of an
information system?

Review Questions
1

2

1. You are in the middle of the system design phase
for a project to develop a corporate intranet, and
the project team is holding a planning meeting.
One of the system users on the project, who has
said very little during the meeting, finally speaks up
and says,“All you techies keep talking about the ap-
plication architecture we’re going to be designing. I
don’t have a clue what you’re talking about.” Define
and explain what application architecture is to the
nontechnical system users in the group.

2. What is the purpose of the physical data flow
diagram? In general, how are they different from
logical data flow diagrams? What basic shapes
and connections do physical DFDs use? Are physi-
cal DFDs a legacy design tool, or are they still a
viable tool in today’s object-oriented world?

3. You are working on a project to design a new order
system for a distributor of auto supplies.You are de-
veloping the physical DFD, and one of the logical
processes is “Check Inventory in Stock.” If this
process is to be performed both by people and by
computer, how would you show this as a physical
process? (Note: Use the diagram formats shown af-
ter Figure 13-1.) What if the process is completely
done by computer, but using different technologies?

4. Explain data replication and its purpose. In what
type of database system would you find data
replication?

5. Complete the following sentences:

A __________ system is also called a distributed
data and application client/server system or

__________.The __________ resides on an
__________, the __________ resides on the client
server, and the data and __________ on the
__________.

A __________-tiered system is also called
__________, and the __________ resides on the
clients, and the data and data manipulation layers
on the server.

A __________ client/server system please the
presentation and the presentation logic layers
on the __________, and the __________ on the
server.

6. What do file server systems and client/server
systems have in common? What is different?
What are the most important advantages of a
client/server solution?

7. You are working in the IT shop of a rapidly grow-
ing organization that is planning to implement a
new client/server system. Initially, there will be
slightly fewer than 100 clients, with a substantial
amount of data input and data analysis activity
across the network.The business drivers are to be
able to get data in and to “crunch” it quickly.The
budget for the project is robust and allows for the
purchase of powerful workstations and personal
computers.The designers on the team are pretty
well evenly divided between a two-tiered and
three-tiered client/server architecture.They are
looking to you for advice. What would you rec-
ommend? Why?

Problems and Exercises

512 Part Three Systems Design Methods

1. Although your friends tease you about it, you are
an unabashed collector of vintage folk songs from
the 1950s and 1960s.Your collection now totals
several thousand recordings in various formats.To
help keep better track of the recordings, you have
decided to develop a simple inventory system in
Microsoft Access.You want to be able to add new
recordings to the system, update information on
the ones that you have, search on multiple fields
for a particular recording or artist, and generate
various reports. Design the system, using the tech-
niques learned to date, then draw a context data
flow diagram and logical data flow diagram.

2. Many organizations have implemented intranets.
Contact or visit several local organizations in the
public and private sector that have intranets. Find
the unit or person who is responsible for the
organization’s intranet, and discuss its application
architecture, features, policies, issues, and so on.

a. Describe each of the organizations you contacted.
b. Describe each of their intranets and how they

are used by employees.
c. Are they primarily informational intranets, or

are any of them being used as a portal where
everything—their desktop applications and any

Projects and Research

8. Internet technology has grown at an explosive
rate over the past decade. In the view of many,
network computing architectures represents a
major move in a radically different direction away
from client/server architectures. Why is this?

9. Match the terms in the first column with the defi-
nitions or examples in the second column.

1. Thin client A. Patient Treatment
Records

2. Logical Data Store B. Data input screen
3. Groupware server C. SQL Insert: New

Account
4. Processor D. Data terminal
5. Transaction server E. SAS File: Waiting List

Report
6. Mainframe F. CORBA
7. Presentation Layer G. Report-formatting

application
8. Physical data flow H. Distributed system
9. Physical Data Store I. Centralized system

10. Presentation Logic J. Microsoft Exchange
Layer

11. Wide Area K. Tuxedo
Network (WAN)

12. Object-sharing L. Customer
standard

13. Application logic M. Statistical analysis
layer application

10. Batch processing has been in use since the 1950s
and many people consider batch processing to be
an obsolete method of processing data. But if batch
processing is obsolete, why then are new batch
processing applications still being developed?

11. Match the terms in the first column with the defi-
nitions or examples in the second column.

1. Two-tiered client/ A. HTTP
server SDE

2. Design unit B. CICS

3. EDI C. Physically separated
presentation, data,
and application
layers

4. Application D. Employee’s “start
middleware page”

5. Multitier client/ E. Determining
server SDE distribution of

application
components

6. Virtual business F. Windows CE

7. Intranet Client/. G. Allegris

Server SDE
8. Partitioning H. PowerBuilder

9. Presentation I. Self-contained
middleware collection of data

flows, stores, and
processes

10. Clean layering J. Object request
brokers

11. Pen-input K. Online commercial
banking

12. Intranet portal L. XML

13. Transaction M. Amazon.com
monitor

12. You are working on a complex project to imple-
ment an enterprise-level information system in
your organization. You are almost finished with
creating the physical data flow diagram from
the logical DFD, and realize there are a number
of manual processes intertwined with comput-
erized processes. What caused this to occur?
How should you show the manual processes
on the physical DFD, or do you need to show
them at all?

13. You have been given a set of physical DFDs for a
new system to review for acceptability. What
questions should you ask yourself when review-
ing them?

Application Architecture and Modeling Chapter Thirteen 513

1. Consider an e-commerce site that you previously
researched for Wow Munchies (the grocery store).
Make any necessary assumptions, and conduct any
new research that is needed. Create a network
computing architecture model for Wow Munchies.
State your assumptions, along with any back-
ground research you have done, in a short paper.

2. You will find, as a systems analyst, that the person
who designs a system is often not the one who
develops the program for it. On page 504, the book

states that an acceptable design of a physical data
flow results in:

a. A system that works
b. A system that fulfills user requirements.
c. A system that provides adequate performance.
d. A system that includes sufficient internal

controls.
e. A system that is adaptable to ever-changing

requirements.

Minicases

information system applications they use for
their job—runs from the intranet browser?

d. Who “owns” the intranet in the organization,
and who is responsible for posting content or
keeping it current?

e. Do your discussions make you feel that the orga-
nizations’employees and intranet owners under-
stand the potential of their intranet and are using
it to its full potential? Explain your -answer.

3. You are a consultant who has been hired by a com-
pany to help update its IT architecture plan.The
company manufactures electric generators and has
sales offices and service facilities throughout North
America and Central America. One of your tasks is
to recommend a data distribution strategy to the
company. Although you are familiar with the princi-
ples of application architectures and the methods
for documenting them, it has been a while since
you’ve been in a position of recommending a data
distribution approach. Research on the Web or in
your school library the questions you should ask
and the criteria to use in order to make an appropri-
ate recommendation regarding the data distribution
approach the company should take.

4. Mainframe computers once dominated informa-
tion technology, but have slipped into the shadow
of other technologies such as client/server sys-
tems. Every so often there seems to be a spate of
articles reporting the final death of the mainframe.
But just as often there seems to be another burst
of articles reporting the resurgence of the main-
frame. Research the topic of trends in mainframe
computing in your school library, on the Internet,
and/or with some experienced IT managers.

a. Describe your research sources and their
positions.

b. Were you able to find “hard” information, such
as the number of sales per year of mainframes?

c. Did you find any differences in the usage of
mainframe computers between the public and
private sectors? Describe.

d. On the basis of the information you found, what
conclusions would you draw about the state of
mainframe computing today?

e. What about 10 years from now? What role, if
any, do you think that mainframe computing
will play in the public and private sectors? Sup-
port your answer.

5. New development tools to enable client/server In-
ternet applications seem to be emerging almost
every day (a slight exaggeration). Research one of
these new development tools, and the core tech-
nology, such as .NET or XML, around which it is
built.Then prepare an analysis for your chief infor-
mation officer (real or hypothetical) evaluating this
new tool and/or technology and the potential for
usage by your organization. Note: since the target
audience for this analysis is an executive, your
document should touch on the salient points at an
appropriately high level, though references or
links to detailed technical documentation should
also be included.

6. Visit or study a large corporation or government
agency in your area, and ask about its application
architectures. See if you can obtain a copy of its IT
architecture plan or an equivalent document.

a. Describe the organization you studied.
b. Describe its application architecture(s). What is

its predominant application architecture?
c. What type of Internet-based computing architec-

ture(s) does it use? How large a role does it play?
d. Does the organization still use mainframe or

minicomputer technology? If so, describe how
it is currently used.

e. What changes in application architecture tech-
nology does it envision will take place over
the next five years. What is the organization’s
strategy for dealing with these technological
changes? Do you think its strategy will be
effective?

f. Draw a high-level context diagram of its overall
information system architecture.

514 Part Three Systems Design Methods

1. What is the difference between a manager and a
leader? Find an example of someone who you
think is (or was) a truly great leader and an exam-
ple of someone you think is (was) an excellent
manager. What are that individual’s characteristics?
Do you think someone who is a great leader would
also be a great manager? Discuss in class.

2. Do you think that it is easier, harder, or about the
same level of difficulty to hack a two-tiered versus a
three-tiered client server system? Find out specific

security vulnerabilities in each architecture, and
share with the class. (Note: We are not trying to
create hackers here. But it is difficult to create a
reasonable system and choose appropriate architec-
tures, languages, encryption standards, software,
etc., without being cognizant of security threats
and inherent weaknesses of the choices.)

3. Roundtable discussion: Do you think that there is
such a thing as ethical hacking? If there was, what
would it be?

Team and Individual Exercises

Berstein, Phillip, and Eric Newcomer. Principles of Transaction

Processing: For the Systems Professional. San Francisco:

Morgan Kaufman Publishers, 1997.This book covers virtu-

ally every transaction processing model, transaction moni-

tor, and transaction server currently implemented.

Gane, Chris, and Trish Sarson. Structured Systems Analysis:

Tools and Techniques. Englewood Cliffs, NJ: Prentice Hall,

1979. This classic on process modeling became the basis

of physical data flow diagrams.

Goldman, James. Applied Data Communications: A Business-

Oriented Approach, 2nd ed. New York: John Wiley &

Sons, 1998. Our colleague at Purdue has written an excel-

lent textbook for those seeking to learn about data com-

munications and networking from a business perspective.

Goldman, James; Phillip Rawles; and Julie Mariga. Client/Server

Information Systems: A Business-Oriented Approach. New

York: John Wiley & Sons, 1999. Our colleagues have written

an outstanding textbook that introduces students to infor-

mation technology architecture for information systems.

Kara, Dan. “Why Partition? Multitiered Application Architec-

ture.” In Application Development Trends. Natick, MA: Soft-

ware Productivity Group, May 1997, pp. 38–46.This article

stimulated our interest and research on the need to develop

and teach partitioning techniques as part of this book.

Kara, Daniel A., et al.“Enterprise Application Development:

Seminar Notes.” Chicago: Software Productivity Group,

November 12, 1996. This seminar and the writings of the

SPG have strengthened our understanding of two-tiered

and n-tiered software application development tech-

niques and technologies.

Orfali, Robert; Dan Harkey; and Jeri Edwards. Client/Server

Survival Guide, 3rd ed. New York: John Wiley & Sons,

1999. This professional reference manual has served us

well for three editions of client/server technology and ter-

minology evolution.

Renaud, Paul. Introduction to Client/Server Systems, 2nd ed.

New York: John Wiley & Sons, 1996. This is another refer-

ence book on the primary distributed computing archi-

tecture of our time.

Smith, Patrick, and Steve Guengerich. Client/Server Comput-

ing, 2nd ed. Indianapolis, IN: SAMS Publishing, 1994.This

professional book has been used to teach the basics of

client/server technology and architecture to our students

at Purdue. Given the rapid evolution of this technology,

there may now exist a third edition. Check out the tech-

nology case studies in the appendixes.

Theby, Stephen E.“Derived Design: Bridging Analysis and De-

sign.” McDonnell Douglas Professional Services: Improved

System Technologies, 1987. The techniques described in

this paper are the basis for a phase in STRADIS (Structured

Analysis, Design, and Implementation of Information

Systems), a systems development methodology. The tech-

nique was altered and simplified to make it suitable to the

level of this textbook. As authors, we were quite impressed

with the full derived design technique as advocated in the

STRADIS methodology.

Suggested Readings

Find an example of a system DFD design that
seemed acceptable, but did not result in a system
that met the stated requirements. Was the problem
one of design or technical complications? Did the
programmers understand what the analysts were
requesting? Share with the class.

3. You are on a team that has been directed to design
a system for VideoStore, a movie rental company.
This company rents movies only in stores (not on-
line) and has about 10 stores throughout the state
of Ohio. Discuss, step by step, how you would go

through the life cycle process up to and including
the design phase to create this system. Be as de-
tailed as you can, and use specific examples.

4. Return to the Chapter 6 material on PIECES and
the material in Chapter 11 on the candidate sys-
tems matrix. What are the strengths of each? Uti-
lize them together to consider three potential
systems for the video rental store you researched
in the previous problem. How does using multiple-
perspective matrices give you a more thorough
view of system options?

Application Architecture and Modeling Chapter Thirteen 515

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M

A
N

A
LY

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L
A
T

IO
N

&
 D

E
L
IV

E
R

Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

14Database Design

Chapter Preview and Objectives

Data storage is a critical component of most information systems. This chapter teaches

the design and construction of physical databases. You will know that you have mastered

the tools and techniques of database design when you can:

❚ Compare and contrast conventional files and modern, relational databases.

❚ Define and give examples of fields, records, files, and databases.

❚ Describe a modern data architecture that includes files, operational databases, data

warehouses, personal databases, and work group databases.

❚ Compare the roles of systems analyst, data administrator, and database administrator

as they relate to databases.

❚ Describe the architecture of a database management system.

❚ Describe how a relational database implements entities, attributes, and relationships

from a logical data model.

❚ Transform a logical data model into a physical, relational database schema.

❚ Generate SQL code to create the database structures in a schema.

In the decision analysis phase of the SoundStage Member Services system project it
was decided to implement the data for the system in SQL Server. Now in the physical
design phase, Bob Martinez has been working on the physical design of the database.

To maximize throughput, the entire database will be replicated at each distribu-
tion center. Each instance of the database will be stored on a Dell PowerEdge server
with quad Xeon processors and RAID level 5 hard drives. Fortunately, SQL Server has
built-in capability to synchronize replicated data.

Bob refined the normalized entity relationship diagram he created during the log-
ical design phase. Using the CASE tool, System Architect, he revised table and field
names according to accepted SoundStage naming conventions. He created indexes on
all key fields as well as nonkey fields wth subsetting criteria requirements. He created
primary key and foreign key constraints on the tables. He also created other con-
straints to implement business rules that require default values for some fields, require
non-null values in some fields, or limit field entries to a certain domain of values.

System Architect automatically generated the SQL code that will be used to con-
struct the actual database. In the meantime, Bob used that SQL code to create a desk-
top prototype of the database in the Microsoft Data Engine (MSDE), an SQL

Server-compatible development database engine. The prototype will give developers
something they can test their SQL and programs against.

518 Part Three Systems Design Methods

file a collection of similar

records.

database a collection of

interrelated files.

Introduction

Conventional Files versus the Database

All information systems create, read, update, and delete (sometimes abbreviated
CRUD) data. This data is stored in files and databases. A file is a collection of similar
records. Examples include a CUSTOMER FILE, ORDER FILE, and PRODUCT FILE. A database is
a collection of interrelated files.The key word is interrelated. A database is not merely
a collection of files. The records in each file must allow for relationships (think of
them as “pointers”) to the records in other files. For example, a SALES database might
contain order records that are linked to their corresponding CUSTOMER and PRODUCT

records.
Let’s compare the file and database alternatives. Figure 14-1 illustrates the funda-

mental difference between the file and database environments. In the file environ-
ment, data storage is built around the applications that will use the files. In the
database environment, applications will be built around the integrated database. Ac-
cordingly, the database is not necessarily dependent on the applications that will use
it. In other words, given a database, new applications can be built to share that data-
base. Each environment has its advantages and disadvantages.

As shown in the chapter home page, this chapter is concerned with the design
and (initial) construction of the database for an information system. The prerequisite
is a data (requirements) model from Chapter 8. The deliverables are a database
(design) schema and database (definition) program.

> The Pros and Cons of Conventional Files

In most organizations, many existing information systems and applications are built
around conventional files. You may already be familiar with various conventional file
organizations (e.g., indexed, hashed, relative, and sequential) and their access meth-
ods (e.g., sequential and direct) from a programming course.These conventional files
will likely be in service for quite some time.

Conventional files are relatively easy to design and implement because they are nor-
mally designed for use with a single application or information system, such as ACCOUNTS

RECEIVABLE or PAYROLL. If you understand the end user’s output requirements for that

F I G U R E 1 4 - 1 Conventional Files versus the Database

Information

(a) Conventional Files (b) Database

System
File File

Information

System

Information

System

File

File

Information

System

Information

System

Database

(consolidated &

integrated data

from files)

system, you can easily determine the data that will have to be captured and stored to
produce those outputs and define the best file organization for those requirements.

Historically, another advantage of conventional files has been processing speed.
They can be optimized for the access of the application. At the same time, they can
rarely be optimized for shared use by different applications or systems. Still, files have
generally outperformed their database counterparts; however, this limitation of data-
base technology is rapidly disappearing thanks to cheaper and more powerful com-
puters and more efficient database technology.

Conventional files also have numerous disadvantages. Duplication of data items in
multiple files is normally cited as the principal disadvantage of file-based systems. Files
tend to be built around single applications without regard to other (future) applica-
tions. Over time, because many applications have common data needs, the common
data elements get stored redundantly in many different files.This duplicate data results
in duplicate inputs, duplicate maintenance, duplicate storage, and possibly data in-
tegrity problems (different files showing different values for the same data item).

And what happens if the data format needs to change? Consider the problem
faced by many firms if all systems must support a nine-digit zip code or four-digit
years. Because these fields may be stored in many files (with different names), each
file would have to be studied and identified. Subsequently, all of the programs that use
these zip code and date fields would have to be changed.

A significant disadvantage of files is their inflexibility and nonscalability. Files are
typically designed to support a single application’s current requirements and pro-
grams. Future needs—such as new reports and queries—often require that these files
be restructured because the original file structure cannot effectively or efficiently sup-
port the new requirements. But if we elect to restructure those files, all programs us-
ing those files would also have to be rewritten. In other words, the current programs
have become dependent on the current files, and vice versa.This usually makes reor-
ganization impractical; therefore, we elect to create new, redundant files (same data,
structured differently) to meet the new requirements. But that exacerbates the afore-
mentioned redundancy problem. Thus, the inflexibility and redundancy problems
tend to complicate one another!

As legacy file-based systems and applications become candidates for reengineer-
ing, the trend is overwhelmingly in favor of replacing file-based systems and applica-
tions with database systems and applications. For that reason, we have elected to
focus this chapter on database design.

Database Design Chapter Fourteen 519

> The Pros and Cons of Databases

We’ve already stated the principal advantage of databases—the ability to share the
same data across multiple applications and systems. A common misconception about
the database approach is that you can build a single superdatabase that contains all
data items of interest to an organization. This notion, however desirable, is not cur-
rently practical.1 The reality of such a solution is that it would take forever to build
such a complex database. Realistically, most organizations build several databases,
each one sharing data with several information systems. Thus, there will be some re-
dundancy between databases. However, this redundancy is both greatly reduced and,
ultimately, controlled.

Database technology offers the advantage of storing data in flexible formats.This
is possible because databases are defined separately from the information systems and
application programs that will use them. Theoretically, this allows us to use the data
in ways not originally specified by the end users. Care must be taken to truly achieve
this data independence. If the database is well designed, different combinations of
the same data can be easily accessed to fulfill future report and query needs.The data-
base scope can even be extended without changing existing programs that use it. In
other words, new fields and record types can be added to the database without af-
fecting current programs.

Database technology provides superior scalability, meaning that the database and
the systems that use it can be grown or expanded to meet the changing needs of an or-
ganization. Database technology provides better technology for client/server and net-
work computing architectures. Such architectures typically require that the database
run on its own server. Client/server and network computing was covered in Chapter 13.

On the other hand, database technology is more complex than file technology.
Special software, called a database management system (DBMS), is required. While
a DBMS is still somewhat slower than file technology, the performance limitations are
rapidly disappearing. Considering the long-term benefits described earlier, most new
information systems development is using database technology.

But the advantages of data independence, greatly reduced data redundancy, and in-
creased flexibility come at a cost. Database technology requires a significant investment.
The cost of developing databases is higher because analysts and programmers must
learn how to use the DBMS. Finally, to achieve the benefits of database technology, ana-
lysts and database administrators and experts must adhere to rigorous design principles.

Another potential problem with the database approach is the increased vulnera-
bility inherent in the use of shared data. You are placing all your eggs in one basket.
Therefore, backup and recovery and security and privacy become important issues in
the world of databases.

Despite the problems discussed, database usage is growing by leaps and bounds.
The technology will continue to improve, and performance limitations will all but dis-
appear. Design methods and tools will also improve. For these reasons, this chapter
will focus on database design as an important skill for systems analysts.

520 Part Three Systems Design Methods

1Enterprise resource planning (ERP) applications provide a common, customizable database that truly supports almost

all the core, operational, and managerial data required in many organizations. For example, SAP R/3 provides several

thousand tables.

Database Concepts for the Systems Analyst

We should begin with a disclaimer. Many of the concepts and issues that are impor-
tant to database design are also taught in database and data management courses.
Most information systems curricula include at least one such course. It is not our
intent in this chapter to replace that course. Students of information systems should
actively seek out courses that focus on data management and database techniques;

those courses will cover many more relevant technologies and techniques than we
can cover in this single chapter.

That said, we will first introduce (or, for some of you, review) the database con-
cepts and issues that are pertinent to the systems analyst’s responsibilities in informa-
tion system design. Although the chapter focus is on database design, experienced
readers will immediately notice that many of the concepts transcend the choice
between files and databases.

> Fields

Fields are common to both files and databases. A field is the physical implementation
of a data attribute (introduced in Chapter 8). Fields are the smallest unit of meaning-

ful data to be stored in a file or database. There are four types of fields that can be
stored: primary keys, secondary keys, foreign keys, and descriptive fields.

A primary key is a field whose values identify one and only one record in a data
entity. (This concept was introduced previously in Chapter 8.) For example, CUSTOMER

NUMBER uniquely identifies a single CUSTOMER record in a database, and ORDER NUMBER

uniquely identifies a single ORDER record in a database. Also recall from Chapter 8
that a primary key might be created by combining two or more fields (called a
concatonated key).

A secondary key is an alternate identifier for a database. A secondary key’s
value may identify either a single record (as with a primary key) or a subset of all
records (such as all ORDERS that have the ORDER STATUS of back-ordered). A single file in
a database may have only one primary key, but it may have several secondary keys.To
facilitate searching and sorting, an index is frequently created for keys.

Foreign keys (also introduced in Chapter 8) are pointers to the records of a dif-
ferent file in a database. Foreign keys enable the database to link the records of one
type to those of another type. For example, an ORDER RECORD contains the foreign key
CUSTOMER NUMBER to “identify” or “point to” the CUSTOMER record that is associated with
the ORDER. Notice that a foreign key in one file requires the existence of the corre-
sponding primary key in another table—otherwise, it does not point to anything!
Thus, the CUSTOMER NUMBER in an ORDERS file requires the existence of a CUSTOMER NUMBER

in the CUSTOMERS file in order to link those files.
A descriptive field is any other (nonkey) field that stores business data. For

example, given an EMPLOYEES file, some descriptive fields include EMPLOYEE NAME, DATE

HIRED, PAY RATE, and YEAR-TO-DATE WAGES.
The business requirements for both keys and descriptors were defined when you

performed data modeling in systems analysis (Chapter 8).

> Records

Fields are organized into records. Records are common to both files and databases. A
record is a collection of fields arranged in a predefined format. For example, a CUS-
TOMER RECORD may be described by the following fields (notice the common notation):

CUSTOMER (NUMBER, LAST-NAME, FIRST-NAME, MIDDLE-INITIAL, POST-OFFICE-BOX-NUMBER, STREET-
ADDRESS,CITY,STATE,COUNTRY,POSTAL-CODE,DATE-CREATED,DATE-OF-LAST-ORDER,CREDIT-RATING,
CREDIT-LIMIT, BALANCE, BALANCE-PAST-DUE . . .)

During systems design, records will be classified as either fixed-length or variable-
length records. Most database technologies impose a fixed-length record structure,

meaning that each record instance has the same fields, same number of fields, and
same logical size. Some database systems will, however, compress unused fields and
values to conserve disk storage space. The database designer must generally under-
stand and specify this compression in the database design.

In your prior programming courses (especially COBOL), you may have encoun-
tered variable-length record structures that allow different records in the same file to

Database Design Chapter Fourteen 521

field the smallest unit of

meaningful data to be stored

in a file or database.

primary key a field or

group of fields that uniquely

identifies a record.

secondary key a field that

identifies a single record or a

subset of related records.

foreign key a field that

points to records in a different

file in a database.

descriptive field a nonkey

field.

record a collection of fields

arranged in a predetermined

format.

have different lengths. For example, a variable-length order record might contain cer-
tain common fields that occur once for every order (e.g., ORDER NUMBER, ORDER DATE,
and CUSTOMER NUMBER) and other fields that repeat some number of times based on the
number of products sold on the order (e.g., PRODUCT NUMBER and QUANTITY ORDERED).
Database technologies typically disallow (or at least discourage) variable-length
records.This is not a problem, as we’ll show later in the chapter.

When a computer program reads a record from a database, it actually retrieves
a group or block (or page) of records at a time. This approach minimizes the num-
ber of actual disk accesses. A blocking factor is the number of logical records in-
cluded in a single read or write operation (from the computer’s perspective). A
block is sometimes called a physical record. Today, the blocking factor is usually
determined and optimized by the chosen database technology, but a qualified data-
base administrator may be allowed to fine-tune that blocking factor for perfor-
mance. Database tuning considerations are best deferred to a database course or
textbook.

> Files and Tables

Similar records are organized into groups called files. In database systems, a file is fre-
quently called a table. A file is the set of all occurrences of a given record structure.
A table is the relational database equivalent of a file. Relational database technology
will be introduced shortly. Some types of conventional files and tables are:

• Master files or tables contain records that are relatively permanent. Thus,
once a record has been added to a master file, it remains in the system indef-
initely. The values of fields for the record will change over its lifetime, but
the individual records are retained indefinitely. Examples of master files and
tables include CUSTOMERS, PRODUCTS, and SUPPLIERS.

• Transaction files or tables contain records that describe business events.
The data describing these events normally has a limited useful lifetime. For
instance, an INVOICE record is ordinarily useful until the invoice has been paid
or written off as uncollectible. In information systems, transaction records are
frequently retained online for some period of time. Subsequent to their use-
ful lifetime, they are archived off-line. Examples of transaction files include
ORDERS, INVOICES, REQUISITIONS, and REGISTRATIONS.

• Document files and tables contain stored copies of historical data for easy
retrieval and review without the overhead of regenerating the document.

• Archival files and tables contain master and transaction file records that
have been deleted from online storage. Thus, records are rarely deleted; they
are merely moved from online storage to off-line storage. Archival require-
ments are dictated by government regulation and the need for subsequent
audit or analysis.

• Table look-up files contain relatively static data that can be shared by appli-
cations to maintain consistency and improve performance. Examples include
SALES TAX TABLES, ZIP CODE TABLES, and INCOME TAX TABLES.

• Audit files are special records of updates to other files, especially master and
transaction files. They are used in conjunction with archival files to recover
“lost” data. Audit trails are typically built into better database technologies.

In the not-too-distant past, file design methods required that the analyst specify
precisely how the records in a database should be sequenced (called file organiza-

tion) and accessed (called file access). In today’s database environment, the database
technology itself usually predetermines and/or limits the file organization for all tables
contained in the database. Once again, a trained database administrator may be given
some control over organization, storage location, and access methods for the purpose
of performance tuning.

522 Part Three Systems Design Methods

blocking factor the num-

ber of logical records included

in a single read or write

operation.

file the set of all occurrences

of a given record structure.

table the relational database

equivalent of a file.

master file a table

containing records that are

relatively permanent.

transaction file a table

containing records that

describe business events.

document file a table

containing historical data.

archival file a table con-

taining master and transaction

file records that have been

deleted from online storage.

table look-up file a table

containing relatively static

data that can be shared.

audit file a table containing

records of updates to other

files.

> Databases

As described earlier, stand-alone, application-specific files were once the lifeblood of
most information systems; however, they are being slowly but surely replaced with
databases. Recall that a database may loosely be thought of as a set of interrelated files.
By interrelated, we mean that records in one file may be associated or linked with the
records in a different file.

For example, a STUDENT record may be linked to all of that student’s COURSE records.
In turn, a COURSE record may be linked to the STUDENT records that indicate completion
of that course. This two-way linking and flexibility allow us to eliminate most of the
need to redundantly store the same fields in the different record types.Thus, in a very
real sense, multiple files are consolidated into a single file—the database.

The idea of relationships between different collections of data was introduced in
Chapter 8. In that chapter, you learned to discover a system’s data requirements and
model those requirements as entities and relationships. The database now provides
for the technical implementation of those entities and relationships.

So many applications are now being built around database technology that data-
base design has become an important skill for the analyst. The history of information
systems has led to one inescapable conclusion:

Data is a resource that must be controlled and managed!

Data Architecture Data becomes a business resource in a database environment.
Information systems are built around this resource to give computer programmers
and end users flexible access to data. A business’s data architecture defines how
that business will develop and use both files and databases to store all of the organi-
zation’s data, which file and database technology is to be used, and what kind of
administrative structure will be set up to manage the data resource.

Figure 14-2 illustrates the data architecture into which many companies have
evolved. As shown in the figure, most companies still have numerous conventional
file-based information system applications, most of which were developed before the
emergence of high-performance database technology. In many cases, the processing
efficiency of these files or the projected cost of redesigning these files has slowed
conversion of the systems to database.

As shown in Figure 14-2, operational (or transactional) databases are devel-
oped to support day-to-day operations and business transaction processing for major
information systems. These systems are developed (or purchased) over time to re-
place the conventional files that formerly supported applications. Access to these
databases is limited to computer programs that use the DBMS to process transactions,
maintain the data, and generate regularly scheduled management reports. Some query
access may also be provided.

Many information systems shops hesitate to give end users access to operational
databases for queries and reports. The volume of unscheduled reports and queries
could overload the computers and hamper business operations that the databases
were intended to support. Instead, data warehouses are developed, possibly on sepa-
rate computers.

Data warehouses store data extracted from the operational databases. Query
tools and decision support tools are then used to generate reports and analyses off
these data warehouses. These tools often allow users to extract data from both con-
ventional files and operational databases.This is sometimes called data mining.

Figure 14-2 also shows personal and work group (or departmental) databases.
Personal computer and local network database technology has rapidly matured to al-
low end users to develop personal and departmental databases.These databases may
contain unique data, or they may import data from conventional files, operational
databases, and/or data warehouses. Personal databases are built using PC database
technology such as Access, dBASE, and Visual FoxPro.

Database Design Chapter Fourteen 523

data architecture a

definition of how files and

databases are to be

developed.

operational database a

database that supports

day-to-day operations and

transactions for an informa-

tion system. Also called

transactional database.

data warehouse a

database that stores data

extracted from operational

databases.

F I G U R E 1 4 - 2 A Typical, Modern Data Architecture

A legacy
file-based

information
system

(built
in-house)

File

File
Information

System

(built
in-house)

Information
System

(built
in-house)

Operational

Database

File

File

Information System

(built in-house)

A legacy
file-based

information
system

(purchased)

File

File

File

Information
System

(purchased)

Operational

Database

Data

Warehouse

End-User
Tools

End-User
Applications

Personal

DB

Users and
Programmers

Users and
Programmers

Users and
Programmers

Users and
Programmers

Users

End-User
Work Group

Work Group

Database

Contemporary data architecture also allows for Internet-enabled database tech-
nology. For example, Oracle 10g provides special tools and facilities for Web-enabling
a database.

Admittedly, this overall scenario is advanced, but many firms are currently using
variations of it. To manage the enterprisewide data resource, a staff of database spe-
cialists may be organized around the following administrators: A data administrator

is responsible for the data planning, definition, architecture, and management. One or
more database administrators (DBAs) are responsible for the database technology,
database design and construction consultation, security, backup and recovery, and
performance tuning. In smaller businesses, these roles may be combined or assigned
to one or more systems analysts.

Database Architecture So far, we have made several references to the database

technology that makes the above data architecture possible. Database architecture

refers to the database technology, including the database engine, database utilities,
database CASE tools for analysis and design, and database application development
tools. The control center of a database architecture is its database management
system.

524 Part Three Systems Design Methods

data administrator a data-

base specialist responsible for

data planning, definition, archi-

tecture, and management.

database administrator
a specialist responsible for

database technology,

design, construction, security,

backup and recovery, and

performance tuning.

database architecture the

database technology used to

support data architecture.

F I G U R E 1 4 - 3

A Typical Database
Management
System Architecture

DATABASE ENGINE

Data

Definition

Language

(DDL)

Data

Manipulation

Language

(DML)

Proprietary

Language

and

Tools

Transaction

Processing

(TP)

Monitor

USER

DATAMETADATA

Systems Analysts

and

Database Designers

Application

Programmers

End

Users

DBMS

Application

Development

Tools

PC-DBMS

and/or

Query Tools

CASE Tools

A database management system (DBMS) is specialized computer software,
available from computer vendors, that is used to create, access, control, and manage
the database.The core of the DBMS is often called its database engine. The engine re-
sponds to specific commands to create database structures and then to create, read,
update, and delete records in the database. The database management system is pur-
chased from a database technology vendor such as Oracle, IBM, Microsoft, or Sybase.

Figure 14-3 depicts a typical database management system architecture. A systems
analyst or database analyst designs the structure of the data in terms of record types,
fields contained in those record types, and relationships that exist between record
types.These structures are defined to the database management system using its data
definition language. Data definition language (DDL) is used by the DBMS to phys-
ically establish those record types, fields, and structural relationships. Additionally, the
DDL defines views of the database.Views restrict the portion of a database that may
be used or accessed by different users and programs.

Database Design Chapter Fourteen 525

database management
system (DBMS) special

software used to create, ac-

cess, control, and manage a

database.

data definition language
(DDL) a language used by a

DBMS to define a database or

a view of a database.

F I G U R E 1 4 - 4

A Simple, Logical
Data Model

sells sold on
Ordered

Product
Customer Order Productplaces

Most database management systems store both user data and metadata—the
data (or specifications) about the data—such as record and field definitions, syn-
onyms, data relationships, validation rules, help messages, and so forth. Some meta-
data is stored in the actual database, while other metadata is stored in CASE tool
repositories.

To help design databases, CASE tools may be provided either by the database
technology vendor (e.g., Oracle’s Designer) or from a third-party CASE tool vendor
(Popkin’s System Architect, Microsoft’s Visio Enterprise, or Computer Associates’
ERwin, etc.).

The database management system also provides a data manipulation language to
access and use the stored data in applications. A data manipulation language

(DML) is used to create, read, update, and delete records in the database and to navi-
gate between different records and types of records—for example, from a CUSTOMER

record to the ORDER records for that customer. The DBMS and DML hide the details
concerning how records are organized and allocated to the disk. In general, the DML
is very flexible in that it may be used by itself to create, read, update, and delete
records or its commands may be “called” from a separate host programming language
such as COBOL, Visual Basic, or Java.

Many DBMSs don’t require the use of a DDL to construct the database or a DML
to access the database. Instead (or in addition), they provide their own proprietary
tools and commands to perform those tasks.This is especially true of PC-based DBMSs
such as Microsoft Access. Access provides a simple graphical user interface to create
the tables and both a form-based environment and scripting language (Visual Basic

for Applications) to access, browse, and maintain the tables.
Many DBMSs also include proprietary report-writing and inquiry tools to allow

users to access and format data without directly using the DML. Many high-end DBMSs
are designed to interact with popular third-party transaction processing monitors.

All of the above technology is illustrated in Figure 14-3.Today, almost all new data-
base development is using relational database technology.

Relational Database Management Systems There are several types of database
management systems. They can be classified according to the way they structure
records. Early database management systems organized records in hierarchies or net-
works implemented with indexes and linked lists. Today, most successful database
management systems are based on relational technology. Relational databases

implement data in a series of two-dimensional tables that are “related” to one another
via foreign keys. Each table (sometimes called a relation) consists of named columns
(which are fields or attributes) and any number of unnamed rows (which correspond
to records).

Figure 14-4 illustrates a logical data model. Figure 14-5 is the physical, relational
database implementation of that data model (called a schema). In a relational data-
base, files are seen as simple two-dimensional tables, also known as relations. The
rows are records.The columns correspond to fields.

The following shorthand notation for tables is commonly encountered in systems
design and database books.

CUSTOMERS (CUSTOMER-NUMBER, CUSTOMER-NAME, CUSTOMER-BALANCE, . . .)
ORDERS (ORDER-NUMBER, CUSTOMER-NUMBER (FK), . . .)
ORDERED-PRODUCTS (ORDER-NUMBER (FK), PRODUCT-NUMBER (FK), QUANTITY-ORDERED, . . .)
PRODUCTS (PRODUCT-NUMBER, PRODUCT-DESCRIPTION, QUANTITY-IN-STOCK, . . .)

526 Part Three Systems Design Methods

data manipulation
language (DML) a DBMS

language used to create,

read, update, and delete

records.

relational database a data-

base that implements data as

a series of two-dimensional

tables that are related via

foreign keys.

F I G U R E 1 4 - 5

A Simple, Physical
Database Schema

Customers Table

Customer Name Customer

Balance

…

10112 Luck Star 1455.77

10113 Pemrose 12.14

10114 Hartman 0.00

10117 K-Jack Industries - 20.00

Orders

Table

Order Number Customer Number

(foreign key)

…

A633 10112

A634 10114

A635 10112

Ordered Products Table

Order Number Product Number

(foreign key)

Quantity

Ordered

…

A633 77F02 1

A633 77B12 500

A634 77B13 100

A634 77F01 5

A635 77B12 300

A635 77B15 15

Products Table

Product Description Quantity

in Stock

…

77B12 Widget 8000

77B13 Widget 0

77B15 Widget 52

77F01 Gadget 20

77F02 Gadget 2

Product Number

(primary key)

(primary key)

(foreign key)

Customer Number

(primary key)

Both the DDL and DML of most relational databases is called SQL (pronounced
“S-Q-L” by some and “sequel” by others). SQL supports complete database creation,
maintenance, and usage. To access data in tables and records, SQL provides the fol-
lowing basic commands:

• SELECT specific records from a table based on specific criteria (e.g., SELECT

CUSTOMER WHERE BALANCE 500.00).
• PROJECT out specific fields from a table (e.g., PROJECT CUSTOMER TO INCLUDE ONLY

CUSTOMER-NUMBER, CUSTOMER-NAME, BALANCE).
• JOIN two or more tables across a common field—a primary and foreign key

(JOIN CUSTOMER AND ORDER USING CUSTOMER-NUMBER).

When used in combination, these basic commands can address most database re-
quirements. A fundamental characteristic of SQL is that commands return a set of
records, not necessarily just a single record (as in nonrelational database and file tech-
nology). SQL databases also provide commands for creating, updating, and deleting
records, as well as sorting records.

Database Design Chapter Fourteen 527

F I G U R E 1 4 - 6

User/Designer
Interface for a
Relational PC
DBMS (Microsoft
Access)

High-end relational databases also extend the SQL language to support triggers
and stored procedures. Triggers are programs embedded within a table that are au-
tomatically invoked by updates to another table. For example, if a record is deleted
from a PASSENGER AIRCRAFT table, a trigger can force the automatic deletion of all corre-
sponding records in a SEATS table for that aircraft. Stored procedures are programs
embedded within a table that can be called from an application program. For exam-
ple, a data validation algorithm might be embedded in a table to ensure that new and
updated records contain valid data before they are stored. Stored procedures are writ-
ten in a proprietary extension of SQL such as Microsoft’s Transact SQL or Oracle’s
PL/SQL.

Both triggers and stored procedures are reusable because they are stored
with the tables themselves (as metadata). This eliminates the need for application
programmers to create the equivalent logic within each application that uses the
tables.

All high-end relational database management systems (e.g., Oracle, UDB/DB2,

and SQL Server) and many personal computer relational database management sys-
tems (such as Microsoft Access) support the SQL language standards.

Examples of high-performance relational DBMSs include Oracle Corporation’s
Oracle, IBM’s DB2, Microsoft’s SQL Server (being used in the SoundStage project), and
Sybase Corporation’s Sybase. Many of these databases run on mainframes, minicom-
puters, and network database servers. Additionally, most personal computer DBMSs
are relational (or at least partially so). Examples include Microsoft’s Access and Visual

Foxpro. These database engines can run on both stand-alone personal computers and
local area network file servers. Figure 14-6 illustrates a relational database manage-
ment system’s user interface.

528 Part Three Systems Design Methods

trigger a program embedded

within a table and is automati-

cally invoked by updates to

another table.

stored procedures a pro-

gram embedded in a table

that can be called from an

application program.

In Chapter 8 you learned how to model data requirements for an information system.
That model took the form of a fully attributed entity relationship diagram and a
repository of metadata. Chapter 8 also taught a technique called data analysis or

Prerequisite for Database Design—Normalization

normalization. This technique was used to produce a data model that meets the
following quality criteria:

• A good data model is simple. As a general rule, the data attributes that
describe an entity should describe only that entity.

• A good data model is essentially nonredundant. This means that each data
attribute, other than foreign keys, describes at most one entity.

• A good data model should be flexible and adaptable to future needs. In
the absence of this criteria, we would tend to design databases to fulfill only
today’s business requirements.

So how do we achieve the above goals? How can you design a database that can
adapt to future requirements that you cannot predict? The answer lies in data analysis.

Recall that normalization is a three-step technique that places the data model into
first normal form, second normal form, and third normal form. Database design should
proceed only if the underlying logical data model is in at least 3NF. For a more detailed
explanation, we encourage you to review Chapter 8.

Conventional File Design

The focus of this chapter is on database design; however, we would be remiss to not
say a few words about conventional file design. First, file design is simplified because
of its orientation to a single application.Typically, the output and input designs (Chap-
ters 15 and 16) would be completed first since the file design is dependent on
supporting those application requirements.

Most fundamental entities from the data model would be designed as master or
transaction records.The master files are typically fixed-length records. Associative en-
tities from the data model are typically joined into the transaction records to form
variable-length records (based on the one-to-many relationships). Other types of files
(not represented in the data model) are added as necessary.

Two important considerations of conventional file design are file access and or-

ganization. The systems analyst usually studies how each program will access the
records in the file (sequentially or randomly) and then selects an appropriate file or-
ganization (e.g., sequential, indexed, hashed, etc.). In practice, many systems analysts
select an indexed sequential (or ISAM/VSAM) organization to support the likelihood
that different programs will require different access methods into the records.

Modern Database Design

The design of any database will usually involve the DBA and database staff. They will
handle the technical details and cross-application issues. Still, it is useful for the sys-
tems analyst to understand the basic design principles for relational databases.

The design rules presented here are, in fact, guidelines.We cannot cover every idio-
syncrasy. Also, because SoundStage has elected to use Microsoft’s SQL Server as its data-
base management system, our design will be constrained by that technology. Each
relational DBMS presents its own capabilities and constraints. Fortunately, the guidelines
presented here are fairly generic and applicable to most DBMS environments. Database
courses and textbooks tend to cover a wider variety of technology and issues.

Computer-assisted systems engineering (CASE) has been a continuing theme
throughout this book.There are specific CASE products that address database analysis
and design (e.g., Computer Associates’ ERwin). Also, most general-purpose CASE
tools now include database design tools. In this example, we continued to use Pop-
kin’s System Architect CASE product for the SoundStage case study. Finally, most CASE
tools (including System Architect) can automatically generate SQL code to construct
the database structures for the most popular database management systems.This code
generation capability is an enormous time-saver.

Database Design Chapter Fourteen 529

> Goals and Prerequisites of Database Design

The goals of database design are as follows:

• A database should provide for the efficient storage, update, and retrieval of data.
• A database should be reliable—the stored data should have high integrity to

promote user trust in the data.
• A database should be adaptable and scalable to new and unforeseen require-

ments and applications.
• A database should support the business requirements of the information system.

The system’s logical data model—in our case, a fully attributed and normalized
entity relationship diagram (ERD)—serves as the prerequisite.This model, from Chap-
ter 8, is reproduced in Figure 14-7. Every attribute in that model must be defined as to
its data type, domain, and default.These properties were also covered in Chapter 8.

> The Database Schema

The design of a database is depicted as a special model called a database schema. A
database schema is the physical model or blueprint for a database. It represents
the technical implementation of the logical data model. (System Architect calls it a
physical data model.)

NOTE: We should acknowledge some potentially confusing terminology here.
We are using the terms logical and physical in a manner consistent with earlier
chapters in this book. Unfortunately, most database books use the terms concep-

tual (our logical) and logical (our physical). We apologize for this unavoidable
industry confusion.

A relational database schema defines the database structure in terms of tables,
keys, indexes, and integrity rules. A database schema specifies details based on the
capabilities, terminology, and constraints of the chosen database management system.
Each DBMS supports different data types, integrity rules, and so forth.

The transformation of the logical data model into a physical relational database
schema is governed by some fairly generic rules and options. These rules and guide-
lines are summarized as follows:

1. Each fundamental, associative, and weak entity is implemented as a separate
table. Table names may have to be formatted according to the naming rules
and size limitations of the DBMS. For example, a logical entity named MEMBER

ORDERED PRODUCT might be changed to a physical table named tblMemberOrd-
Prod. The prefix and compression of spaces is consistent with contemporary
naming standards and guidelines in modern programming languages.
a. The primary key is identified as such and implemented as an index into the

table.
b. Each secondary key is implemented as its own index into the table.
c. An index should be created for any nonkey attributes that were identified

as subsetting criteria requirements (Chapter 8).
d. Each foreign key will be implemented as such. The inclusion of these

foreign keys implements the relationships on the data model and allows
tables to be joined in SQL and application programs.

e. Attributes will be implemented with fields. These fields correspond to
columns in the table. The following technical details must usually be speci-
fied for each attribute. (These details may be automatically inferred by the
CASE tool from the logical descriptions in the data model.)

Field names may have to be shortened and reformatted according to
DBMS constraints and internal rules. For example, in the logical data model,

530 Part Three Systems Design Methods

database schema a model

or blueprint representing the

technical implementation of a

database.

F
I
G

U
R

E

1

4
-
7

S
o

u
n

d
S

ta
g

e
L

o
g

ic
al

 D
at

a
M

o
d

el
 i

n
 T

h
ir

d
 N

o
rm

al
 F

o
rm

531

most attributes might be prefaced with the entity name (e.g., MEMBER NAME).
In the physical database, we might simply use NAME.

i. Data type. Each DBMS supports different data types and terms for those
data types. Figure 14-8 shows different physical data types for a few dif-
ferent database management systems.

ii. Size of the field. Different DBMSs express precision of real numbers dif-
ferently. For example, in SQL Server, a size specification of NUMBER (3,2)
supports a range from 9.99 to 9.99.

iii. NULL or NOT NULL. Must the field have a value before the record can be
committed to storage? Again, different DBMSs may require different
reserved words to express this property. By definition, primary keys can
never be allowed to have NULL values.

iv. Domains. Many database management systems can automatically edit
data to ensure that fields contain legal data. This can be a great benefit
to ensuring data integrity independent from the application programs. If
the programmer makes a mistake, the DBMS catches the mistake. But
for DBMSs that support data integrity, the rules must be precisely speci-
fied in a language that is understood by the DBMS.

v. Default. Many database management systems allow a default value to be
automatically set in the event that a user or programmer creates a
record containing fields with no values. In some cases, NULL serves as
the default.

vi. Again, many of the above specifications were documented as part of a
complete logical data model. If that data model was developed with a
CASE tool, the CASE tool may be capable of automatically translating
the data model into the physical language of the chosen database
technology.

2. Supertype/subtype entities present additional options as follows:
a. Each supertype and subtype can be implemented with a separate table

(all having the same primary key).
b. Alternatively, if the subtypes are of similar size and data content, a database

administrator may elect to collapse the subtypes into the supertype to
create a single table. This presents certain problems for setting defaults and
checking domains. In a high-end DBMS, these problems can be overcome
by embedding the default and domain logic into stored procedures for
the table.

c. Alternatively, the supertype’s attributes could be duplicated in a table for
each subtype.

d. Some combination of the above options could be used.

3. Evaluate and specify referential integrity constraints (described in the next section).

The SoundStage database schema was automatically generated from the logical
data model by our CASE tool System Architect. It is illustrated in Figure 14-9. We call
your attention to the following numbered bullets on the figure:

Each rounded rectangle defines a table. The named rows in the rectangle
actually correspond to the named columns that will be created for the
table.
SoundStage has defined a standard naming convention for tables and
columns. The conventions are based on the programming guidelines called
Hungarian Notation. Each object is named without spaces, dashes, or under-
scores. And each object is given a prefix that defines all similar objects. For
database objects, the following standards were used:

tbl Indicates a database table.
col Indicates a column in the table.

2

1

532 Part Three Systems Design Methods

F I G U R E 1 4 - 8 Partial List of Physical Data Types for
Different Database Technologies

Logical Data Type Physical Data Type Physical Data Type Physical Data Type
(to be stored in field) Microsoft Access Microsoft SQL Server Oracle

Fixed-length character data TEXT CHAR (size) or CHAR (SIZE)
(use for fields with relatively character (size)
fixed length character data)

Variable-length character TEXT VARCHAR (max size) or VARCHAR2 (max size)
data (use for fields that character varying (max size)
require character data but
for which size varies greatly—
such as ADDRESS)

Very long character data MEMO TEXT LONG VARCHAR or
(use for long descriptions and LONG VARCHAR2
notes—usually no more than
one such field per record)

Integer number NUMBER INT (size) or INTEGER or
integer or NUMBER (size) or
smallinteger or smallint or
tinyinteger byte

Decimal number NUMBER DECIMAL (size, decimal DECIMAL (size, decimal
places) or places) or
NUMERIC (size, NUMBER (size, decimal
decimal places) places) or

NUMBER

Financial number CURRENCY MONEY or SMALLMONEY see decimal number

Date (with time) DATE/TIME DATETIME or DATE
SMALLDATETIME
Depending on precision
needed

Current time (use to store not supported TIMESTAMP TIMESTAMP
the date and time from the
computer’s system clock)

Yes or No; or True or False YES/NO BIT use CHAR(1) and set a yes
or no domain

Image OLE OBJECT IMAGE LONGRAW

Hyperlink HYPERLINK VARBINARY RAW

Can designer define new NO YES YES
data types?

Database Design Chapter Fourteen 533

F
I
G

U
R

E

1

4
-
9

In
it

ia
l

S
o

u
n

d
S

ta
g

e
P

h
y

si
ca

l
D

at
ab

as
e

S
ch

em
a

1

3

4

2

5

534

Although not depicted on the schema, other common database prefixes may
be included in the schemas underlying data dictionary (repository) such that
those prefixes may be used to generate correct code. Possibilities include:

db Indicates the database itself.
idx Indicates an index built for a table.
dom Indicates a domain that can be applied to one or more fields.

Logical relationships, both identifying and nonidentifying, are transformed in
constraints that are implemented using the foreign keys.
We elected to make each supertype and subtype entity in the logical, general-
ization hierarchy into its own physical table. (This was the default option for
System Architect’s physical data model generator.)
Notice that System Architect automatically inferred physical data types for
each field based on (1) the selection of Microsoft SQL Server as the target
database management system and (2) the logical data types we had defined
for each entity’s attributes during systems analysis. The generated physical
data types can be changed to reduce storage space required, improve data
integrity, or better represent all the possible values included in the domain.

Although not depicted on the database schema, the schema generator also creates an
index for each primary key indicated in the schema. You can add additional indexes
for unique secondary keys (such as the Universal Product Code, or UPC, field in
tblProduct) or for any nonkey attribute that can be used to subset all records in a table
(such as tblTransaction.colType). These indexes can improve the performance of the
final database.

Some CASE tools generate database schemas with considerably more detail than
our example. For example, some database schemas indicate for each field whether or
not the field must take on a value:

• NULL means the field does not have to have a value.
• NOT NULL means the field must have a value. Because primary keys are used

to uniquely access records, no PK field may take on NULL values.

Would you ever want to compromise the third normal form entities when design-
ing the database? For example, would you ever want to combine two third-normal-
form entities into a single table (that would, by default, no longer be in third normal
form)? Usually not! Although a database administrator may create such a compromise
to improve database performance, he or she should carefully weigh the advantages
and disadvantages. Although such compromises may mean greater convenience
through fewer tables or better overall performance, such combinations may also lead
to the possible loss of data independence—should future new fields necessitate re-
splitting the table into two tables, programs will have to be rewritten. As a general
rule, combining entities into tables is not recommended.

> Data and Referential Integrity

Database integrity is about trust. Can the business and its users trust the data stored in
the database? Data integrity provides necessary internal controls for the database.
There are at least three types of data integrity that must be designed into any database.

Key Integrity Every table should have a primary key (which may be concatenated).
The primary key must be controlled such that no two records in the table have the
same primary-key value. (Note that for a concatenated key, the concatenated value
must be unique—not the individual values that make up the concatenation.)

Also, the primary key for a record must never be allowed to have a NULL value.
That would defeat the purpose of the primary key, to uniquely identify the record.

If the database management system does not enforce these rules, other steps
must be taken to ensure them. Most DBMSs do enforce key integrity.

5

4

3

Database Design Chapter Fourteen 535

Domain Integrity Appropriate controls must be designed to ensure that no field
takes on a value that is outside the range of legal values. For example, if GRADE POINT

AVERAGE is defined to be a number between 0.00 and 4.00, then controls must be
implemented to prevent negative numbers and numbers greater than 4.00.

Not long ago, application programs were expected to perform all data editing.To-
day, most database management systems are capable of enforcing domain rules. For
the foreseeable future, the responsibility for data editing will continue to be shared
between the application programs and the DBMS.

Referential Integrity The architecture of relational databases implements relation-
ships between the records in tables via foreign keys. The use of foreign keys increases
the flexibility and scalability of any database, but it also increases the risk of referen-
tial integrity errors. A referential integrity error exists when a foreign-key value in
one table has no matching primary-key value in the related table. For example, an IN-
VOICES table usually includes a foreign key, CUSTOMER NUMBER, to “reference back to” the
matching CUSTOMER NUMBER primary key in the CUSTOMERS table. What happens if we
delete a CUSTOMER record? There is the potential that we may have INVOICE records
whose CUSTOMER NUMBER has no matching record in the CUSTOMERS table. Essentially, we
have compromised the referential integrity between the two tables.

How do we prevent referential integrity errors? One of two things should hap-
pen. When considering the deletion of CUSTOMER records, either we should automati-
cally delete all INVOICE records that have a matching CUSTOMER NUMBER (which doesn’t
make much business sense) or we should disallow the deletion of the CUSTOMER record
until we have deleted all INVOICE records.

Referential integrity is specified in the form of deletion rules as follows:2

• No restriction—Any record in the table may be deleted without regard to
any records in any other tables.

In looking at the final SoundStage data model, we could not apply this
rule to any table.

• Delete:Cascade—A deletion of a record in the table must be automatically
followed by the deletion of matching records in a related table. Many rela-
tional DBMSs can automatically enforce delete:cascade rules using triggers.

In the SoundStage data model, an example of a valid delete:cascade rule
would be from MEMBER ORDER to MEMBER ORDERED PRODUCT. In other words, if
we delete a specific MEMBER ORDER, we should automatically delete all match-
ing MEMBER ORDERED PRODUCTS for that order.

• Delete:Restrict—A deletion of a record in the table must be disallowed until
any matching records are deleted from a related table. Again, many relational
DBMSs can automatically enforce delete:restrict rules.

For example, in the SoundStage data model, we might specify that we
should disallow the deletion of any PRODUCT as long as there exists MEMBER

ORDERED PRODUCTS for that product.
• Delete:Set null—A deletion of a record in the table must be automatically

followed by setting any matching keys in a related table to the value NULL.
Again, many relational DBMSs can enforce such a rule through triggers.

The Delete:Set null option was not used in the SoundStage data model. It
is used only when you are willing to delete a master table record but you
don’t want to delete corresponding transaction table records for historical
reasons. By setting the foreign key to NULL, you are acknowledging that the
record does not point back to a corresponding master record, but at least
you don’t have it pointing to a nonexisting master record.

The final database schema, complete with referential integrity rules, is illustrated in
Figure 14-10. This is the blueprint for writing the SQL code (or equivalent) to create
the tables and data structures.

536 Part Three Systems Design Methods

2Knowledgeable database students know that there are also insertion and update rules for referential integrity. A full dis-

cussion of these rules is deferred to database courses and textbooks.

referential integrity the

assurance that a foreign-key

value in one table has a

matching primary-key value in

the related table.

F
I
G

U
R

E

1

4
-
1

0
F

in
al

 S
o

u
n

d
S

ta
g

e
P

h
y

si
ca

l
D

at
ab

as
e

S
ch

em
a

D
:n

o
n
e D

:R

D
:R

D
:C

D
:C

D
:C

D
:C

D
:C

D
:C

D
:CD

:C

D
:C

D
:n

o
n
e

D
:n

o
n

e D
:S

N

D
:

n
o
n
e

D
:R

D
:n

o
n
e

D
:R

D
:R

D
:R

D
:R

D
:R

D
:R

D
:S

N

D
:R

D
:n

o
n
e

D
:R

537

> Roles

Some database standards insist that no two fields have exactly the same name. This
constraint simplifies documentation, help systems, and metadata definitions.This pre-
sents an obvious problem with foreign keys. By definition, a foreign key must have a
corresponding primary key. During logical data modeling, using the same name suited
our purpose of helping the users understand that the foreign keys allow us to match
related records in different entities. But in a physical database, it is not always neces-
sary or even desirable to have these redundant field names in the database.

To fix this problem, foreign keys can be given role names. A role name is an alter-
nate name for a foreign key that clearly distinguishes the purpose that the foreign key
serves in the table. For example, in the SoundStage database schema, PRODUCT_NUMBER is
a primary key for the PRODUCTS table and a foreign key in the MEMBER ORDERED PRODUCTS

table.The name should not be changed in the PRODUCTS table. But it may make sense to
rename the foreign key to ORDERED_PRODUCT_NUMBER to more accurately reflect its role in
the MEMBER ORDERED PRODUCTS table.

The decision to require role names or not is usually established by the data or
database administrator.

> Database Distribution and Replication

In Chapter 8,“Data Modeling and Analysis,” we briefly introduced the concept of log-
ical data distribution analysis. Data distribution analysis establishes which business
locations need access to which logical data entities and attributes.

We used a simple matrix in Chapter 8 to map entities and attributes to locations.
Many CASE tools, including System Architect, include facilities for building such a ma-
trix. We should give some consideration now to the impact of data distribution analy-
sis on database design.

In today’s multitier, client/server, network-centric world, information systems and
databases are rarely centralized. Instead, they are distributed across a network that
may span many buildings, cities, states, or countries. Accordingly, we may need to par-
tition, distribute, or replicate all or part of a database design to different physical data-
base servers in different physical locations. Basically, we need to perform a physical
database distribution analysis that takes into consideration what we learned during
our logical data distribution analysis.

Essentially, we have a number of distribution options available to us:

• Centralization of the database. In other words, we would implement the
database on a single server regardless of the number of physical locations
that may require access to it. This solution is simple and the easiest to main-
tain; however, it violates a data management rule that has become important
to many data administrators and users—data should be located as closely as
possible to its users.

• Horizontal distribution of the data. In this option, each table (or entire rows
in a table) would be assigned to different database servers and locations. This
option results in efficient access and security because each location has only
those tables and rows required for that location. Unfortunately, data cannot
always be easily recombined for management analysis across sites.

• Vertical distribution of the data. In this option, specific columns of tables
are assigned to specific databases and servers. The advantages and disadvan-
tages are very similar to that of horizontal distribution.

• Replication of the data. Replication refers to the physical duplication of entire
tables to multiple locations. Most high-end, enterprise database management sys-
tems include replication technology that coordinates updates to the duplicated
tables and records to maintain data integrity. This solution offers performance
and accessibility advantages and reduces network traffic, but it also increases
the complexity of data integrity and requires more physical storage capacity.

538 Part Three Systems Design Methods

role name a foreign key

name that reflects the pur-

pose it serves in a table.

These alternatives are not mutually exclusive. The designer must carefully plan de-
grees of data distribution and replication.

Given our physical database schema, we can define views that correspond to spe-
cific geographic locations (and subviews for different users and applications). A data-
base view may be very selective. It may include a specific subset of tables, a specific
subset of columns in tables, or even a specific subset of records in tables. Each view
must be carefully synchronized with the master database schema such that changes to
the master schema can, if appropriate, be propagated to the views. CASE tools can be
very helpful in defining views and keeping all views in sync.

For the SoundStage project, we plan to replicate the entire database in each of
three cities. The data integrity for common tables will be implemented using SQL

Server’s replication technology. The systems analyst will not typically program the
replication rules. A qualified database analyst or administrator will do that. Since we
will implement the entire physical database schema on each city’s server, there is no
need to define views for our project.

> Database Prototypes

Prototyping is not an alternative to carefully thought-out database schemas. On the
other hand, once the schema is completed, a prototype database can usually be gen-
erated very quickly. Most modern DBMSs include powerful, menu-driven database
generators that automatically create a DDL and generate a prototype database from
that DDL. A database can then be loaded with test data that will prove useful for pro-
totyping and testing outputs, inputs, screens, and other systems components.

> Database Capacity Planning

A database is stored on disk. Ultimately, the database administrator will want an esti-
mate of disk capacity for the new database to ensure that sufficient disk space is avail-
able. Database capacity planning can be calculated with simple arithmetic as follows.
This simple formula ignores factors such as packing, coding, and compression, but by
leaving out those possibilities, you are adding slack capacity.

1. For each table, sum the field sizes. This is the record size for the table. Avoid
the implications of compression, coding, and packing—in other words, assume
that each stored character and digit will consume one byte of storage. Note
that formatting characters (e.g., commas, hyphens, slashes) are almost never
stored in a database. Those formatting characters are added by the application
programs that will access the database and present the output to the users.

2. For each table, multiply the record size times the number of entity instances
to be included in the table. It is recommended that growth be considered
over a reasonable time period (e.g., three years). This is the table size.

3. Sum the table sizes. This is the database size.

4. Optionally, add a slack capacity buffer (e.g., 10 percent) to account for unantici-
pated factors or inaccurate estimates above. This is the anticipated database

capacity.

> Database Structure Generation

CASE tools are frequently capable of generating SQL code for the database directly
from a CASE-based database schema.This code can be exported to the DBMS for com-
pilation. Even a small database such as the SoundStage model can require 50 pages or
more of SQL data definition language code to create the tables, indexes, keys, fields,
and triggers. Clearly, a CASE tool’s ability to automatically generate syntactically
correct code is an enormous productivity advantage. Furthermore, it almost always
proves easier to modify the database schema and regenerate the code than to main-
tain the code directly. Figure 14-11 is a two-page sample of code generated by System

Database Design Chapter Fourteen 539

F I G U R E 1 4 - 1 1 Partial SQL Code to Construct the SoundStage Database

540 Part Three Systems Design Methods

F I G U R E 1 4 - 1 1 Concluded

Database Design Chapter Fourteen 541

Le
a
rn

in
g
 R

oa
d
m

a
p

Let’s begin with the obvious! If you have information systems career aspirations, you

had better plan to take one or more true database courses. The topics presented in

this chapter represent only the tip of the iceberg as it relates to database technology,

development, and management. Most IS curricula include at least one good database

or data management course to add value to your education.Take it!

You have only begun your journey through system design. The database is the

brain of a new system or application.The subsequent chapters focus on the design of

other crucial body parts. Chapters 15 through 17 teach input, output, and user interface

design, respectively.Think of inputs, outputs, and interfaces as the soul of the system.

Relational database technology is widely
deployed and used in contemporary
information systems shops. The skills
taught in this chapter will remain viable
well into the foreseeable future. But one
new technology that is slowly emerging
could ultimately change the landscape
dramatically—object database manage-
ment systems.

Object database management systems
store true objects—that is, encapsulated

data and all of the processes that can act on that data. Be-
cause relational database management systems are so
widely used, we don’t expect this change to happen
quickly. Furthermore, the relational DBMS vendors are not
likely to give up their market share without a fight. It is ex-
pected that these vendors either will build object technology
into their existing relational DBMSs or will create new,
object DBMSs and provide for the transition between rela-
tional and object models. Regardless, this is one technology
to keep an eye on.

N
ex

t G
en

er
a
tio

ns The Next Generation: Database Design

542

Architect from the SoundStage database schema. The SoundStage example actually
generated more than 30 pages of SQL code to create the database in Figure 14-9. Can
you imagine the effort required to hand-code that much SQL (with reasonable accu-
racy)? Clearly, CASE tool generation of SQL code can be very productive—however,
the code generated is only as good and complete as the data model.

1. The data captured by an information system is
stored in files and databases. A file is a collection
of similar records. A database is a collection of in-
terrelated files.

2. Many legacy systems were built with file technol-
ogy. Because files were built for specific applica-
tions, their design was optimized for those
applications.This close relationship between the
files and their applications made it difficult to re-
structure the files to meet future requirements.
And because many applications use the same
data, it is not uncommon to find redundant files
with data values that do not always match.

3. As the above legacy systems are slowly reengi-
neered, they are usually converted to database
technology. Well-designed databases share nonre-
dundant data and overcome all the limitations of
conventional files.

4. Database design is the process of translating logi-
cal data models (Chapter 8) into physical data-
base schemas.

5. The smallest unit of meaningful data that can be
stored is called a field.There are four types of fields:

a. A primary key is a field that uniquely identifies
one and only one record in a file or table.

b. A secondary key is a field that may either
uniquely identify one and only one record in a
file or table or identify a set of records with
some common, meaningful characteristic.

c. A foreign key is a field that points to a related
record in a different table.

d. All other fields are called descriptive fields.

6. Fields are organized into records, and similar
records are organized into files or tables.

7. A database is a collection of tables (files) with
logical pointers that relate records in one table
to records in a different table.

8. The data architecture that has evolved in most
organizations includes conventional files, opera-
tional databases, data warehouses, and personal
and work group databases.To coordinate this
complex infrastructure, many organizations as-
sign a data administrator to plan and manage the
overall data resource and database administrators
to implement and manage specific databases and
database technologies.

9. A database architecture is built around a database
management system (DBMS) that provides the
technology to define the database structure and
then to create, read, update, and delete records in
the tables that make up that structure. A DBMS

provides a data language to accomplish this.That
language provides at least two components:

a. A data definition language to create and main-
tain the database structure and rules.

b. A data manipulation language to create, read,
use, update, and delete records in the database.

10. Today, relational database management systems are
used to support the development and reengineer-
ing of the overwhelming number of information
systems. Relational databases store data in a collec-
tion of tables that are related via foreign keys.

a. The data definition and manipulation lan-
guages of most relational DBMSs are consoli-
dated into a standard language known as SQL.

b. High-end relational database management sys-
tems support triggers and stored procedures,
programs that are stored with the tables and
callable from other SQL-based programs.

11. Data analysis and normalization are techniques
for removing impurities from a data model as a
preface to designing the database.These impuri-
ties can make a database unreliable, inflexible,
and nonscalable.

12. Distribution and replication decisions should be
made before database design. Each unique data-
base should be represented by its own logical
data submodel.

13. A database schema is the physical model for a
database based on the chosen database technol-
ogy.The rules for transforming a logical data
model into a physical database schema are gener-
alized as follows:

a. Each entity becomes a table.
b. Each attribute becomes a field (column in

the table).
c. Each primary and secondary key becomes an

index into the table.
d. Each foreign key implements a possible rela-

tionship between instances of the table.

14. Database integrity should be checked and, if nec-
essary, improved to ensure that the business and
its users can trust the stored data.

a. Key integrity ensures that every record will
have a unique, non-NULL primary-key value.

b. Domain integrity ensures that appropriate
fields will store only legitimate values from the
set of all possible values.

c. Referential integrity ensures that no foreign-
key value points to a nonexistent primary-key

Chapter Review

Database Design Chapter Fourteen 543

value. A deletion rule should be specified for
every relationship with another table.The
deletion rules either cascade the deletion to
related records in other tables, disallow the
deletion until related records in other tables

are first deleted, or allow the deletion but set
any foreign keys in related tables to NULL.

15. SQL-DDL is written or generated to create the
database.

1. What does the acronym CRUD represent?
2. In looking at Figure 14-1 in the textbook, what

can you conclude regarding the characteristics of
conventional files and databases?

3. Why do conventional files tend be have duplica-
tion of data?

4. Why are conventional files easy to design and
implement?

5. What is a common misconception about
databases?

6. Why is storing data in a database riskier than stor-
ing it in a file?

7. What is a secondary key?
8. What is a fixed-length record structure?

9. What are some common types of conventional
files and tables?

10. In comparing operational databases and data
warehouses, which generally has fewer CRUD
activities? Why?

11. What is a database engine?
12. What is metadata? If database administrators need

to define metadata, what kind of language should
they use (DDL or DML)? Why?

13. What is a relational database?
14. What is the difference between a relational data-

base schema and a database schema?
15. What are the common deletion rules to enforce

referential integrity?

Review Questions
1

2

1. When an organization decides to replace a legacy
system, it usually chooses a contemporary data-
base system over a traditional file-based system.
But each type of system has its own advantages
and disadvantages. Identify whether each charac-
teristic listed below generally belongs to a file-
based system or to a database system.

• High cost of development.
• Generally designed to be used with a single

system or application.
• Greater data privacy concerns.
• Controlled redundancy.
• Suboptimal performance for shared use by

multiple systems.
• Tends to be slower.
• Data formats are flexible.
• Identifying data elements is relatively quick and

straightforward.
• Designed to support current requirements.
• Higher training costs.
• Records are linked to related records.
• Rigorous design standards.
• Optimized single application processing speed.
• Tendency towards data redundancy.
• Increased vulnerability.

• Data storage is built around the hub of the
information system.

• “Silo” effect.
• Scalable.

2. Although database systems have become the
systems of choice for new and reengineered sys-
tems, are there any situations where a traditional
file-based system might be chosen instead? Ex-
plain your answer.

3. The textbook states that “data is a resource that
must be controlled and managed.” Explain this
statement, and indicate whether you agree or not,
and why.

4. Consider a local car dealership that has been in
business for fifteen years or so. In addition to sell-
ing and leasing new and used cars, the dealership
has a parts department, service department, and
auto body department. It was one of the first car
dealerships to automate in the mid-70s, and while
most of the information systems have been period-
ically updated, a few of the original systems are
still in use, including some stand-alone systems.
About five years ago, the dealership began to grad-
ually replace some of the traditional file-based sys-
tems with a relational database system, but the

Problems and Exercises

544 Part Three Systems Design Methods

conversion is far from over. Last year, the owner
read in an airline magazine about data warehouses,
and hired a local systems integrator to install one,
which is in progress.The dealership has a couple
of jack-of-all-trades IT people on staff, but most of
the development work is contracted out. Given
this scenario, draw a high-level diagram of what
the dealership’s data architecture might look like;
use Figure 14-2 as an example.

5. One of the dealership’s legacy stand-alone sys-
tems in the preceding exercise is the salesperson
work schedule system.This system was devel-
oped in the 1980s on a single PC, using dBASE

III, to keep track of each salesperson’s daily and
weekly work schedule.The dealership plans to re-
tire this antiquated system and incorporate it into
a relational database system. What are two or
three tables you might expect to find in a sched-
uling system? Using Figure 14-5 as an example,
show these tables in a simple, physical database
schema. Include the primary key, any foreign
keys, one or two nonkey attributes, and a few val-
ues for each object.

6. Match the following terms in the first column with
the definitions or examples in the second column.

1. DBMS a. Physical implementa-
tion of a database

2. Transaction file b. Federal register of
country codes

3. Data warehouse c. 5NF
4. Primary key d. Microsoft Access

5. SQL e. Delete:Set null
6. CASE tool f. Sybase IQ
7. Hungarian notation g. SSN
8. Normalization h. Daily hospital admis-

sions file
9. Table look-up file i. Oracle 10g

10. Referential integrity j. Standard naming con-
vention for tables

11. Schema k. System Architect

12. Personal database l. ALTER TABLE

7. You are a systems designer and have a friend who
owns a small bookstore and mail-order business
specializing in rare books and first editions.Total
sales average about a dozen books per day, store
and mail order combined.Your friend wants to
start selling books over the Web also, and has
come to you for advice. He has heard that he
should go with a relational database and that
Oracle is the best one to get. Do you concur?
If not, what would you recommend?

8. In transforming a logical data model into a physi-
cal relational database schema, what options does
the database administrator have in how super-
type/subtype entities are implemented?

9. You need to calculate the anticipated database
capacity for constructing a database with four
tables, as shown below:

Table 1 Table 2 Table 3 Table 4

Field 1: 32 char Field 1: 5 char Field 1: 2 char Field 1: 16 char

Field 2: 15 Field 2: 7 Field 2: 7 Field 2: 30

Field 3: 7 Field 3: 13 Field 3: 8 Field 3: 12

Field 4: 12 Field 4: 6 Field 4: 4 Field 4: 7

Field 5: 9 Field 5: 4 Field 5: 54

Field 6: 12 Field 6: 3

Field 7: 6 Field 7: 1

Field 8: 2

Table 1 will be initially loaded with 200,000
records,Table 2 with 100,000 records, and the
other two tables with 40,000 records each.The
expected rate of growth in the number of records
is 20 percent each year for three years.

According to the database capacity planning
steps described in the chapter, what is the antici-
pated database capacity?

10. You are studying the design documentation for
an extremely large information system used by
your organization. As expected, all entities on
the logical data model are in third normal form.
But in comparing the logical data model to the
physical database schema, you notice that two
tables shown separately on the logical data
model have been combined into one table on
the physical database schema. There are no
notes explaining this, and you can’t ask the data-
base administrator who signed off on the design
documents but is no longer with the company.
What might the reason have been for compro-
mising third normal form? What are the poten-
tial consequences?

11. Explain the concept of referential integrity, and
give an example. What is a referential integrity er-
ror? Provide an example, and explain the possible
consequences of a referential integrity error.

12. The deletion rules for enforcing referential
integrity include both Delete:Cascade and
Delete:Restrict. In general, what criteria
should a DBA use in deciding whether to use
a Delete:Cascade or Delete:Restrict rule for
deletion?

13. Database centralization is one of a number of dis-
tribution options, but it violates the rule that data
should be managed and stored in close proximity
to its users. Discuss the reasons why many data
administrators and users consider this rule to be
important. Given the growth of Web-based appli-
cations and global information systems, is this
rule still important and/or viable?

Database Design Chapter Fourteen 545

1. Interview the chief information officers or IT man-
agers of several organizations that use relational
database technologies. Ask them about their expe-
rience in moving from traditional flat file informa-
tion systems to relational database systems.

a. Describe the CIOs you interviewed and their
organizations.

b. Describe their database environment.
c. When did their organizations move from tradi-

tional file systems to relational database systems?
d. What type of problems did they encounter, and

how were they resolved (or were they resolved)?

If they had to do it again, what would they do dif-
ferently?

2. More often than not, database environments in an
organization reflect data structures that have been
developed over a period of years, sometimes hap-
hazardly, and that often reflect a variety of architec-
tural styles and structures. Look at the existing
database environment in your organization or
school or in a local company.

a. What is the age of the oldest information sys-
tem used in the organization?

b. What is the age of the newest?
c. Does the organization have both traditional file-

based systems and modern relational database
systems?

d. What are the different user systems, end-user
tools, end-user applications? Any data ware-
houses? Any Web-based applications?

e. Draw a data architecture diagram based upon
the diagram shown in Figure 14-2.

3. Modern databases require a high level of skill and
knowledge to be adequately supported. See if you
can interview the database administrators in three
or four local organizations which use contempo-
rary database systems:

a. Describe the systems which are managed by
the database administrators you interviewed.

b. On average, how much experience and training
did they have in information technology before
becoming database administrators?

c. On average, how much time do they spend in
training, formal or informal, per year keeping
their skills current? Do they feel they receive
enough training?

d. Compute the average cost of annual training
per database administrator. Include both direct
costs for training and indirect “lost opportunity”
costs. If actual costs are not known, use a direct
training cost of $500/day and average DBA
salary and benefits of $75 per hour.

e. Do you think training costs for DBA administra-
tors are higher than for administrators of flat
file systems? Why or why not?

4. After you talk to the database administrators re-
garding training, also ask them about:

a. Normalization—do they generally normalize to
third normal form? Higher?

b. In general, how much time is spent on normal-
ization for a large or enterprise-level database?

c. What are the three biggest chronic problems
faced by each of the database administrators?

d. How often do they have to modify and/or up-
date the database schema? Do they have a for-
mal process for identifying and making updates,
or is it done on an ad hoc basis?

e. If they were the CIO in their organization, what
would they change?

5. CASE tools, such as System Architect, are used for
database development and support. Search on the
Web and in trade journals for some of the popular
CASE tools currently in use.

a. What CASE tools did you find, and who are
their manufacturers?

b. What is the number of installed bases, or IT
shops, using each of these CASE tools?

c. What is the range of cost for these CASE tools?
Do you think they are cost-effective?

d. Compare and contrast these CASE tools in
terms of their features and capabilities.

e. Which one would you use if you were a DBA
and cost was not a concern? Why?

6. Currently, relational database technology is proba-
bly the most prevalent database technology used
in modern information technology shops. But data-
base technology is an evolving field and new tech-
nologies are being developed constantly. Search on
the Web or in your school library for articles on
emerging database technologies, such as object
database management systems. Make sure to in-
clude white papers from companies such as Oracle,
Sybase, IBM, and Microsoft.

a. What articles and papers did you find?
b. What are some of the new database technolo-

gies that are entering the market or that are cur-
rently under development?

c. Compare and contrast each of them with con-
temporary relational database technology.

d. What influence does the growth of Internet ap-
plications have on these database technologies?

e. Which one, if any, do you feel is a serious con-
tender to replace relational database technol-
ogy? Why?

Projects and Research

546 Part Three Systems Design Methods

With your professor’s help, liaison with a team
from either a systems analysis or computer pro-
gramming class at another school.Your assign-
ment, to complete together, is to build a suitable
Web page for a small business or nonprofit organi-
zation of your choosing.You will be graded on
completeness, functionality, professionalism, and
teamwork. A communication suggestion is to uti-
lize e-mail as much as possible.

1. Meet the team at the other school via the phone, vir-
tual meeting environment, discussion board, or
e-mail per your professor’s instructions. If you use a
virtual meeting environment, you may need to install
and learn how to use the appropriate software. De-
termine and establish team guidelines and rules for:

• Deadlines—how will the team handle a slipped
deadline by one of the team members? Who
will be in charge of setting the time line?

• Communication—How will you communicate?
How often? Do some of your members
communicate better using one method over the
others (i.e., preferences)?

• Miscommunication of Personal Differences—
How will you address miscommunication among
members or arising personal differences?

• Expectations—What are the team’s expectations
for quality? Behavior? What will you do if someone
does not perform up to expectations?

Submit to your professor an agreement, signed by
each of the team members, concerning how these
matters will be addressed.

2. Meet local small business owners or representa-
tives of nonprofit organizations. Find a company or
organization that will host your team to produce a
Web site for them (nonmonetarily, of course). Find
out from your school’s risk management or legal
department what paperwork is necessary for
you and your “client” to complete. (Why is this
necessary?)

3. Determine the business’s or organization’s require-
ments through interviews, forms, surveys, JAD,
and the like, and create the appropriate models
and studies for the Web site. Don’t forget to con-
sider costs, legal issues, and specific company
needs in your models and paper.You will be
graded on completeness, correctness, clarity, and
professionalism.

4. Create the Web site using appropriate technolo-
gies, getting a domain name, and so forth. Set up
e-mail with the domain name, as well. If it is
appropriate for the company to have shopping
cart and online payment capabilities, make sure
that those are fully functional. Stress test the site
by exchanging URL’s with another team before you
submit it to your professor or the client.

Minicases

1. Create a crossword puzzle using terms and con-
cepts you have learned in your class so far.Then,
exchange puzzles with a classmate. Each of you
should complete the other’s crossword puzzle.

2. Individual: In the minicases for this chapter, you
completed a Web site project with a team from an-
other school. Comment on your experience in a
short paper to be submitted to your professor.

3. Look in your local Yellow Pages phone book.Who
are the major advertisers for “Systems Analysis and
Design” in your area? Contact at least three of them,
and find out what kind of services they provide,
their expertise/experience, and how much they
charge.What does this information mean to you and
your career? Bring your findings to class and share.

Team and Individual Exercises

Bruce, Thomas. Designing Quality Databases with IDEF1X

Information Models. New York: Dorset House Publishing,

1992. This has rapidly become our favorite practical data-

base design book. Incidentally, the foreword was written

by John Zachman, whose Framework for Information

Systems Architecture inspired our own information sys-

tem building blocks framework.

McFadden, Fred; Jeffrey Hoffer; and Mary Prescott. Modern

Database Management, 5th ed. Reading, MA: Addison-

Wesley, 1994. For those seeking to expand their overall

data management and database education, this is one of

the most popular introductory textbooks on the market

and our own favorite.These authors do a particularly thor-

ough job of explaining distributed database design

(in much greater detail than is possible in our book).

Teorey,Toby. Database Modeling & Design: The Fundamen-

tal Principles, 2nd ed. San Francisco: Morgan Kaufman

Publishers, 1990.This is our favorite database design con-

ceptual book. Appendix A provides a concise review of

the SQL language.

Suggested Readings

Database Design Chapter Fourteen 547

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:
Improve Business

PROCESSES

Goal:
Improve Business

KNOWLEDGE

Goal:
Improve Business

COMMUNICATIONS

BUSINESS
PROCESS

REQUIREMENTS

LOGICAL
PROCESS

MODELS

BUSINESS
DATA

REQUIREMENTS

LOGICAL
DATA

MODELS

Constraint:
APPROVED
PROCESS

TECHNOLOGIES

Constraint:
APPROVED
DATABASE

TECHNOLOGIES

Constraint:
APPROVED
INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M
A

N
A

LY
S

IS
P

H
Y

S
IC

A
L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N
&

 T
E

S
T

IN
G

IN
S

TA
L
L
A
T

IO
N

&
 D

E
L
IV

E
R

Y
S

C
O

P
E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION
SCOPE

&
VISION

FUNCTIONAL
SCOPE

&
VISION

COMMUNICATIONS
SCOPE

&
VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL
SOFTWARE
PACKAGES

CUSTOM-BUILT
APPLICATION
SOFTWARE

DATABASE
SOLUTION

USER
INTERFACE
SOLUTIONS

SYSTEM
INTERFACE
SOLUTIONSM

ID
D

L
E

W
A

R
E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL
DATABASE

DESIGN
SPECIFICATIONS

BUSINESS PROCESS
DESIGN

PHYSICAL
SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM
INTERFACE

REQUIREMENTS

LOGICAL
INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N
R

E
Q

U
IR

E
M

E
N

T
S

A
N

A
LY

S
IS

15Output Design and
Prototyping

Chapter Preview and Objectives

In this chapter you will learn how to design and prototype computer outputs. You will

know how to design and prototype outputs when you can:

❚ Distinguish between internal, external, and turnaround outputs.

❚ Differentiate between detailed, summary, and exception reports.

❚ Identify several output implementation methods.

❚ Differentiate among tabular, zoned, and graphic formats for presenting information.

❚ Distinguish among area, bar, column, pie, line, radar, donut, and scatter charts and

their uses.

❚ Describe several general principles that are important to output design.

❚ Design and prototype computer outputs.

Output and input design represent something of a “chicken or egg” sequencing problem.

Which do you do first? In this edition, we present output design first. Classic system de-

sign prefers this approach as something of a system validation test—design the outputs

and then make sure the inputs are sufficient to produce the outputs. In practice, this se-

quencing of tasks becomes less important because modern systems analysis techniques

sufficiently predefine logical input and output requirements. You and your instructor may

safely swap Chapters 15 and 16 if you prefer.

Bob Martinez was glad that as part of the data design step he created a prototype data-
base in the Microsoft Data Engine (MSDE). It is really coming in handy now as he
designs reports for the system.

Bob created a simple Microsoft Access database, connected it to the MSDE data-
base, and entered some sample data.Then working from discovery prototypes created
in the analysis phase and use-case narratives, he used the Access Report Wizards

to create a rough prototype for each printed report. With feedback from the users, he
refined the report designs through several iterations. For reports that called for user-
entered customization parameters, Bob created Access forms to simulate the customiza-
tion interface.

Of course, the actual system will use neither Microsoft Access nor MSDE. But when
programmers eventually get into the actual system construction, these reports and forms
will guide their work and assure that the actual system meets all user requirements.

550 Part Three Systems Design Methods

internal output an output
for system owners and users
within an organization.

detailed report an internal
output that presents informa-
tion with little or no filtering.

Introduction

Output Design Concepts and Guidelines

Outputs present information to system users. Outputs are the most visible component
of a working information system. As such, they are often the basis for the users’ and
management’s final assessment of the system’s value. During requirements analysis,
you defined logical output requirements. During decision analysis, you may have con-
sidered different physical implementation alternatives. In this chapter, you will learn
how to physically design the outputs.

Today, most outputs are designed by rapidly constructing prototypes.These proto-
types may be simple computer-generated mock-ups with dummy data, or they may be
generated from prototype databases such as Microsoft Access, which can be rapidly con-
structed and populated with test data.These prototypes are rarely fully functional.They
won’t contain security features or optimized data access that will be necessary in the fi-
nal version of a system. Furthermore, in the interest of productivity, we may not include
every button or control feature that would have to be included in a production system.

During requirements analysis, outputs were modeled as data flows that consist of
data attributes. Even in the most thorough of requirements analysis, we will miss
requirements. Output design may introduce new attributes or fields to the system.

We begin with a discussion of types of outputs. Outputs can be classified accord-
ing to two characteristics: (1) their distribution and audience and (2) their imple-
mentation method. Figure 15-1 illustrates this taxonomy. The characteristics are
discussed briefly in the following sections.

> Distribution and Audience of Outputs

One way to classify outputs is according to their distribution inside or outside the or-
ganization and the people who read and use them. Internal outputs are intended for
the system owners and system users within an organization. They only rarely find
their way outside the organization. Internal outputs support either day-to-day business
operations or management monitoring and decision making. Figure 15-2 illustrates
three basic subclasses of internal outputs:

• Detailed reports present information with little or no filtering or restrictions.
The example in Figure 15-2(a) is a listing of all purchase orders that were
generated on a particular date. Other examples of detail reports would be a
detailed listing of all customer accounts, orders, or products in inventory. Some
detailed reports are historical. Other detailed reports are regulatory, that is,
required by government.

Output Design and Prototyping Chapter Fifteen 551

F I G U R E 1 5 - 1 A Taxonomy for Computer-Generated Outputs

Internal Output Turnaround Output External Output
(reporting) (external; then internal) (transactions)

Printer

Screen

Point-of-sale
terminals

Multimedia
(audio or video)

E-mail

Hyperlinks

Microfiche

Business transactions printed on
business forms that conclude the
business transactions.

Common examples: paychecks and
bank statements

Business transactions displayed on
business forms that conclude the
business transactions

Examples: Web-based report
detailing banking transactions

Information printed or displayed on
special-purpose terminals dedicated
to customers.

Examples: account balances display
at an ATM machine or printout of
lottery tickets; also, account
information displayed via television
over cable or satellite

Information transformed into speech
for external users.

Examples: movie trailer for
prospective online buyers of DVDs or
telephone response to mortgage
payoff query

Messages related to business
transactions.

Examples: e-mail message
confirmations of business transactions
conducted via e-commerce on the
Web

Web-based links incorporated into
Web-based transactions

Examples: hyperlinks to privacy
policy or an explanation of how to
interpret or respond to information in
a report or transaction

Not applicable unless there is an
internal need for copies of external
reports.

Examples: computer output on
microfilm (COM)

Detailed, summary, or exception
information printed on hard-copy
reports for internal business use.

Common examples: management
reports

Detailed, summary, or exception
information displayed on monitors
for internal business use.

Reports may be tabular or
graphical.

Examples: online management
reports and responses to inquiries

Information printed or displayed
on special-purpose terminals
dedicated to specific internal
business functions. Includes
wireless communication
information transmission.

Examples: end-of-shift cash
register balancing report

Information transformed into
speech for internal users.

Not commonly implemented for
internal users

Displayed messages related to
internal business information.

Examples: e-mail messages
announcing availability of new
online business report

Web-based links to internal
information that is enabled via
HTML or XML formats.

Examples: integration of all
information system reports into a
Web-based archival system for
online archival and access

Internal management reports
archived to microfilm that requires
minimal physical storage space.

Examples: computer output on
microfilm (COM)

Business transactions printed on
business forms that will eventually be
returned as input business
transactions.

Common examples: phone bills and
credit card bills

Business transactions displayed on
monitors in forms or windows that
will also be used to input other data
to initiate a related transaction.

Examples: Web-based display of
stock prices with the point-and-click
purchase option

Information printed or displayed on
a special-purpose terminal for the
purpose of initiating a follow-up
business transaction.

Examples: grocery store monitor that
allows customer to monitor scanned
prices, to be followed by input of
debit or credit card payment
authorization

Information transformed into speech
for external users who respond with
speech or tone input data.

Examples: telephone touch-tone class
schedule as part of course
registration system

Displayed messages intended to
initiate business transaction.

Examples: e-mail messages whose
responses are required to continue
processing a business transaction

Web-based links incorporated into
Web-based input pages to provide
users with access to additional
information.

Examples: on a Web auction page,
hyperlinks into a seller’s performance
history with an invitation to add a
new comment

Not applicable unless there is an
internal need to archive turnaround
documents.

Examples: computer output on
microfilm (COM)

Distribution

Delivery

F I G U R E 15-2a
a n d 15-2b

Levels of Report
Detail

(a) Detailed reports

(b) Summary reports

552 Part Three Systems Design Methods

F I G U R E 15-2c

Levels of Report
Detail

• Summary reports categorize information for managers who do not want to wade
through details.The sample report in Figure 15-2(b) summarizes the month’s and
year’s total sales by product type and category.The data for summary reports is
typically categorized and summarized to indicate trends and potential problems.
The use of graphics (charts and graphs) on summary reports is also rapidly gaining
acceptance because they more clearly summarize trends at a glance.

• Exception reports filter data before it is presented to the manager as
information. Exception reports include only exceptions to some condition or
standard.The example in Figure 15-2(c) depicts the identification of delinquent
member accounts. Another classic example of an exception report is a report
that identifies items that are low in stock.

The opposite of internal outputs is external outputs. External outputs leave the
organization.They are intended for customers, suppliers, partners, and regulatory agen-
cies. They usually conclude or report on business transactions. Examples of external
outputs are invoices, account statements, paychecks, course schedules, airline tickets,
boarding passes, travel itineraries, telephone bills, purchase orders, and mailing labels.

Figure 15-3 illustrates a sample external output for SoundStage Entertainment Club.
This sample, like many external outputs, is initially created as a blank, preprinted form
that is designed and duplicated by forms manufacturers for use with computer printers.

Some outputs are both external and internal.They begin as external outputs that
exit the organization but ultimately return (in part or in whole) as an internal input.
Turnaround outputs are those external outputs that eventually reenter the system
as inputs. Figure 15-4 demonstrates a turnaround document. Notice that the invoice
has upper and lower portions. The top portion is to be detached and returned with
the customer payment as an input.

> Implementation Methods for Outputs

We assume you are familiar with different output devices, such as printers, plotters,
computer output on microfilm (COM), and PC display monitors. These are standard
topics in most introductory information systems courses. In this chapter, we are more
concerned with the actual output than with the device. A good systems analyst will
consider all available options for implementing an output. Let’s briefly examine
implementation methods and formats. You should continue to reference Figure 15-1
as we complete this introduction to the output taxonomy.

Output Design and Prototyping Chapter Fifteen 553

exception report an inter-
nal output that filters data to
present information that
reports exceptions to some
condition or standard.

external output an output
that leaves the organization.

turnaround output an ex-
ternal output that may reenter
the system as an input.

summary report an inter-
nal output that categorizes
information for managers.

(c) Exception reports

F I G U R E 1 5 - 3

Typical External
Document

SoundStage Entertainment Club
Fax 317-494-5222

The following number must appear on all related correspondence,
shipping papers, and invoices:
P.O. NUMBER: 712812

To: Ship To:
CBS Fox Video Distribution
26253 Rodeo DR
Hollywood, CA

P.O. DATE REQUISITIONER SHIP VIA F.O.B. POINT TERMS

5-3-03 LDB UPS Net 30

QTY DESCRIPTION UNIT PRICE TOTAL

20000 Star Wars: The Phantom Menace (VHS) 15.99 319,800.00

3000 Star Wars: The Phantom Menace (DVD Dolby Digital) 19.99 59,970.00

500 Star Wars: The Phantom Menace (DVD DTS) 24.99 12,495.00

8000 Star Wars: The Phantom Menace (PlayStation II) 16.99 135,920.00

400 Star Wars: The Phantom Menace Soundtrack (CD) 16.99 6,796.00

600 Star Wars: The Phanton Menace Theater Poster 4.99 2,994.00

Subtotal 537,975.00

Tax 37,658.25

Total 575,633.25

1. Please send two copies of your invoice.

2. Enter this order in accordance with the prices, terms, delivery method, and
specifications listed above.

3. Please notify us immediately if you are unable to ship as specified.

Madge Worthy 5-4-03
Authorized by Date

SoundStage Entertainment Club
Shipping/Receiving Station
Building A
2630 Darwin Drive
Indianapolis, IN 45213

Printed Output The most common medium for computer outputs is paper—
printed output. Currently, paper is the cheapest medium we will survey. Although
the paperless office has been predicted for many years, it has not yet become a reality.
Perhaps there is a psychological dependence on paper as a medium. In any case,
paper output will be with us for a long time.

Printed output may be produced on impact printers, but increasingly it is printed
on laser printers, which have become increasingly cost-effective. Internal outputs are
typically printed on blank paper (called stock paper). External outputs and turn-
around documents are printed on preprinted forms. The layout of preprinted forms
(such as blank checks and W-2 tax forms) is predetermined, and the blank documents
are mass-produced. The preprinted forms are run through the printer to add the
variable business data (such as your paycheck and W-2 tax form).

Perhaps the most common format for printed output is tabular. Tabular output

presents information as columns of text and numbers. Most of the computer programs
you’ve written probably generated tabular reports. The sample detailed, summary, and
exception reports illustrated earlier in the chapter (Figure 15-2) were all tabular.

An alternative to tabular output is zoned output. Zoned output places text and
numbers into designated areas or boxes of a form or screen. Zoned output is often used

554 Part Three Systems Design Methods

tabular output an output
that presents information as
columns of text and numbers.

zoned output an output
that presents text and num-
bers in designated areas of a
form or screen.

F I G U R E 1 5 - 4 Typical Turnaround Document

Invoice No. 301231

Name KATRINA SMITH Due Date 2/24/03
Address 3019 DURAC DR Order No. 346910
City LITTLE ROCK State AR ZIP 42653
Phone 502-430-4545 Payment Amt

Detach and return top portion with payment

Qty Description Unit Price TOTAL

1 EAGLES HELL FREEZES OVER (DVD DD) $19.99 $19.99
1 THE GRAMMY BOX (CD) ***COUNTS AS 3 CREDITS $21.99 $21.99
1 GONE WITH THE WIND DIRECTORS CUT (DVD DS) $17.99 $17.99
1 SIXTH SENSE (VHS) FREE SS CR $0.00
1 A BUG'S LIFE (VHS) FREE SS CR $0.00
1 NASCAR 2000 (VHS) *** CLOSEOUT (NO SS CR) $9.99 $9.99

10 SOUNDSTAGE CREDITS WERE USED TO PAY
FOR PART OF THIS PURCHASE

WE APPRECIATE THE FINE MANNER IN WHICH YOU
HAVE PAID ON YOUR ACCOUNT. IN APPRECIATION
WE HAVE ADDED 7 SOUNDSTAGE CREDITS TO
YOUR ACCOUNT

YOU CAN EARN 7 CREDITS BY PAYING THIS
INVOICE BY THE DUE DATE

SubTotal $69.96
Shipping & Handling $7.00

 Cash Taxes $2.95
 Check
 Credit Card TOTAL $79.91

Name
CC # Office Use Only

Expires

RETURN TOP PORTION WITH PAYMENT

SoundStage Entertainment
Club
2630 Darwin Drive - Bldg B
Indianapolis, IN 45213
317 496 0998 fax 317 494 0999 INVOICE

Payment Details

Customer

Please return top portion invoice with payment. Make checks payable to:
SoundStage Entertainment Club.

Output Design and Prototyping Chapter Fifteen 555

in conjunction with tabular output. For example, an order output contains zones for cus-
tomer and order data in addition to tables (or rows of columns) for ordered products.

Screen Output The fastest-growing medium for computer outputs is the online dis-
play of information on a visual display device, such as a CRT terminal or PC monitor.
The pace of today’s economy requires information on demand. Screen output is most
suited to this requirement.

While screen output provides the system user with convenient access to infor-
mation, the information is only temporary. When the information leaves the screen,
that information is lost unless it is redisplayed. For this reason, printed output options
are usually added to screen output designs.

Thanks to screen output technology, tabular reports—especially summary reports—
can be presented in graphical formats. Graphic output is the use of a pictorial chart
to convey information in ways that demonstrate trends and relationships not easily
seen in tabular output.

To the system user, a picture can be more valuable than words.There are numer-
ous types and styles of charts for presenting information. Figure 15-5 summarizes
various types of charts that can be output with today’s technology. Report writing
technology and spreadsheet software can quickly transform tabular data into charts
that enable the reader to more quickly draw conclusions.

The popularity of graphic output has also been stimulated by the availability of
low-cost, easy-to-use graphics printers and software, especially in the PC industry. Later
in this chapter we will show you an alternative graphic design for a SoundStage output.

Point-of-Sale Terminals Many of today’s retail and consumer transactions are en-
abled or enhanced by point-of-sale (POS) terminals. The classic example is the auto-
mated teller machine (ATM). POS terminals are both input and output devices. In this
chapter, we are interested only in the output dimension. ATMs display account balances
and print transaction receipts. POS cash registers display prices and running totals as
bar codes are scanned, and they also produce receipts. Lottery POS terminals generate
random numbers and print tickets. All are examples of outputs that must be designed.

Multimedia Multimedia is a term coined to collectively describe any information
presented in a format other than traditional numbers, codes, and words.This includes
graphics, sound, pictures, and animation. It is usually presented as a contemporary ex-
tension to screen output. Increasingly, multimedia output is being driven by the tran-
sition of information systems applications to the Internet and intranets.

We’ve already discussed graphical output. But other multimedia formats can be in-
tegrated into traditional screen designs. Many information systems offer film and ani-
mation as part of the output mix. Product descriptions as well as installation and
maintenance instructions can be integrated into online catalogs using multimedia
tools. Sound bites can also be integrated.

But multimedia output is not dependent on screen display technology. Sound, in
the form of telephone touch-tone–based systems, can be used to implement an inter-
esting output alternative. Many banks offer their customers touch-tone access to a
wide variety of account, loan, and transaction data.

E-mail E-mail has transformed communications in the modern business world, if not
society as a whole. New information systems are expected to be message-enabled.
How does this impact output design? Transactional systems are increasingly Web-
enabled. When you purchase products over the Web, you almost always receive auto-
mated e-mail output to confirm your order. Follow-up e-mail may inform you of order
fulfillment progress and initiate customer follow-up (a form of turnaround output).

Internal outputs may also be e-mail–enhanced. For example, a system can push
notification of the availability of new reports to interested users. Only those users
who truly need the report will access the report and print it. This can generate a
significant cost savings over mass distribution.

556 Part Three Systems Design Methods

graphic output an output
that uses a pictorial chart to
convey information.

F I G U R E 1 5 - 5 Chart Types and Selection Criteria

Output Design and Prototyping Chapter Fifteen 557

SampleSample Selection CriteriaSelection Criteria

Line ChartLine Chart Line charts show one or more series of data over a period of
time. They are useful for summarizing and showing data at
regular intervals. Each line represents one series or category of
data.

Area ChartArea Chart Area charts are similar to line charts except that the focus is on
the area under the line. That area is useful for summarizing and
showing the change in data over time. Each line represents one
series or category of data.

Bar ChartBar Chart Bar charts are useful for comparing series or categories of data.
Each bar represents one series or category of data.

Column ChartColumn Chart Column charts are similar to bar charts except that the bars
are vertical. Also, a series of column charts may be used to
compare the same categories at different times or time intervals.
Each bar represents one series or category of data.

Pie ChartPie Chart Pie charts show the relationship of parts to a whole. They are
useful for summarizing percentages of a whole within a single
series of data. Each slice represents one item in that series of data.

Donut ChartDonut Chart Donut charts are similar to pie charts except that they can show
multiple series or categories of data, each as its own concentric
ring. Within each ring, a slice of that ring represents one item in
that series of data.

Radar ChartRadar Chart Radar charts are useful for comparing different aspects of more
than one series or category of data. Each data series is
represented as a geometric shape around a central point. Multiple
series are overlaid so that they can be compared.

Scatter ChartScatter Chart Scatter charts are useful for showing the relationship between
two or more series or categories of data measured at uneven
intervals of time. Each series is represented by data points using
either different colors or bullets.

Hyperlinks Many outputs are now Web-enabled. Many databases and consumer or-
dering systems are now Web-enabled. Web hyperlinks allow users to browse lists of
records or search for specific records and retrieve various levels of detailed informa-
tion on demand. Obviously, this medium can and is extended to computer inputs.

Technology exists to easily transform internal reports into HTML or XML formats
for distribution via intranets.This reduces dependence on printed reports and screen
reports that require a specific operating system or version (such as Windows). Essen-
tially, all the recipient requires is a current browser that can run on any computer
platform (Windows, Mac, Linux, or UNIX).

But Web-enabled output goes beyond presenting traditional outputs via the Inter-
net and intranets. Many businesses have invested in Web-based internal report systems
that consolidate weeks, months, and years of traditional internal reports into an orga-
nized database from which the reports can be recalled and displayed or printed.These
systems don’t create new outputs.They merely reformat previous reports for access via
a browser.Think of it as an on-demand, Web-enabled report archival system. Examples
of such reporting systems include DataWatch Monarch/ES and NSA Report.Web.

Microfilm Paper is bulky and requires considerable storage space.To overcome the
storage problem, many businesses use microfilm as an output medium. The first film
medium is microfilm. More commonly, they turn to microfiche, small sheets of mi-

crofilm capable of storing dozens or hundreds of pages of computer output. The use
of film presents its own problems; microfiche and microfilm can be produced and
read only by special equipment.

This completes our introduction to output concepts. If you study Figure 15-1
carefully, you can see that implementation and distribution options can be combined
to develop very creative, user-friendly, and exciting outputs.

558 Part Three Systems Design Methods

How to Design and Prototype Outputs

In this section, we’ll discuss and demonstrate the process of output design and proto-
typing.We’ll introduce some tools for documenting and prototyping output design, and
we’ll also apply the concepts you learned in the last section. We will demonstrate how
automated tools can be used to design and prototype outputs and layouts to system users
and programmers. As usual, each step of the output design technique will be demon-
strated using examples drawn from our SoundStage Entertainment Club case study.

> Automated Tools for Output Design and Prototyping

In the not-too-distant past, the primary tools for output design were printer spacing

charts (see Figure 15-6) and display layout charts. Today, this approach is not prac-
ticed much. It is a tedious process that is not conducive to today’s preferred proto-
typing and rapid application development strategies, which use automated tools to
accelerate the design process.

Before the availability of automated tools, analysts could sketch only rough drafts of
outputs to get a feel for how system users wanted outputs to look.With automated tools,
we can develop more realistic prototypes of these outputs. Perhaps the least expensive
and most overlooked prototyping tool is the common spreadsheet. Examples include Lo-
tus 1-2-3 and Microsoft Excel. A spreadsheet’s tabular format is ideally suited to the cre-
ation of tabular output prototypes. And most spreadsheets include facilities to quickly
convert tabular data into a variety of popular chart formats. Consequently, spreadsheets
provide an unprecedented way to quickly prototype graphical output for system users.

Arguably, the most commonly used automated tool for output design is the PC-
database application development environment. Many of you have no doubt learned
Microsoft Access in either a PC literacy or database development course.While Access

is not powerful enough to develop most enterprise-level applications, you may be

F I G U R E 1 5 - 6 Printer Spacing Chart

surprised at how many designers use Access to prototype such applications. First, it
provides rapid development tools to quickly construct a single-user (or few-user) data-
base and test data.That data can subsequently feed the output design prototypes to in-
crease realism. Designers can use Access’s report facility to lay out proposed output
designs and test them with users.

Many CASE tools include facilities for report and screen layout and prototyping
using the project repository created during requirements analysis. System Architect’s

screen design facility is demonstrated in Figure 15-7.
The above automated tools have significantly accelerated and enhanced the out-

put design process. But the ultimate output design process would not only prototype
the output’s design but also serve as the final implementation of that output. This
more sophisticated solution is found in report writing output tools such as Business
Objects’ Crystal Reports and Actuate’s e.Reporting Suite. These products create the
actual “code” to be integrated in the operational information system. Figure 15-8 illus-
trates two screens from the Crystal Reports tool being used to create a SoundStage
report from a prototype database.

> Output Design Guidelines

Many issues apply to output design. Most are driven by human engineering concerns—
the desire to design outputs that will support the ways in which system users work.
The following general principles are important for output design:

1. Computer outputs should be simple to read and interpret. These guidelines may
enhance readability:
a. Every output should have a title.
b. Every output should be dated and time-stamped.This helps the reader appreciate

the currency of information (or lack thereof).
c. Reports and screens should include sections and headings to segment information.

Output Design and Prototyping Chapter Fifteen 559

F I G U R E 1 5 - 7 CASE Tool for Output Design

d. In form-based outputs, all fields should be clearly labeled.
e. In tabular-based outputs, columns should be clearly labeled.
f. Because section headings, field names, and column headings are sometimes

abbreviated to conserve space, reports should include or provide access to
legends to interpret those headings.

g. Only required information should be printed or displayed. In online outputs, use
information hiding and provide methods to expand and contract levels of detail.

h. Information should never have to be manually edited to become usable.
i. Information should be balanced on the report or display—not too crowded,

not too spread out. Also, provide sufficient margins and spacing throughout
the output to enhance readability.

j. Users must be able to easily find the output, move forward and backward, and
exit the report.

k. Computer jargon and error messages should be omitted from all outputs.
2. The timing of computer outputs is important. Output information must reach

recipients while the information is pertinent to transactions or decisions.This
can affect how the output is designed and implemented.

3. The distribution of (or access to) computer outputs must be sufficient to assist all

relevant system users. The choice of implementation method affects distribution.

560 Part Three Systems Design Methods

F I G U R E 1 5 - 8

Report Writer Tool
for Report Design

Output Design and Prototyping Chapter Fifteen 561

(a)

(b)

4. The computer outputs must be acceptable to the system users who will receive

them. An output design may contain the required information and still not be
acceptable to the system user.To avoid this problem, the systems analyst must
understand how the recipient plans to use the output.

> The Output Design Process

Output design is not a complicated process. Some steps are essential, and others are
dictated by circumstances.The steps are:

1. Identify system outputs and review logical requirements.
2. Specify physical output requirements.
3. As necessary, design any preprinted external forms.
4. Design, validate, and test outputs using some combination of:

a. Layout tools (e.g., hand sketches, printer/display layout charts, or CASE).
b. Prototyping tools (e.g., spreadsheet, PC DBMS, 4GL).
c. Code-generating tools (e.g., report writer).

In the following subsections, we examine these steps and illustrate a few examples
from the SoundStage project.

Step 1: Identify System Outputs and Review Logical Requirements Output re-
quirements should have been defined during requirements analysis. Physical data flow
diagrams (or design units, both described in Chapter 13) are a good starting point for
output design. Those DFDs identify both the net outputs of the system (process-to-
external agent) and the implementation method.

Depending on your system development methodology and standards, each of these
net output data flows may also be described as a logical data flow in a data dictionary
or repository (see data structures, Chapter 9). The data structure for a data flow speci-
fies the attributes or fields to be included in the output. If those requirements are spec-
ified in the relational algebraic notation, you can quickly determine which fields repeat,
which fields have optional values, and so on. Consider the following data structure:

562 Part Three Systems Design Methods

Data Structure Defining Logical Requirements Comment

INVOICE INVOICE NUMBER

 INVOICE DATE

 CUSTOMER NUMBER

 CUSTOMER NAME

 CUSTOMER BILLING ADDRESS ADDRESS

 1 {SERVICE DATE

SERVICE PROVIDED

SERVICE CHARGE} N

 PREVIOUS BALANCE DUE

 PAYMENTS RECEIVED

 TOTAL NEW SERVICE CHARGES

 INTEREST CHARGES

 NEW BALANCE DUE

 MINIMUM PAYMENT DUE

 PAYMENT DUE DATE

 (DEFAULT CREDIT CARD NUMBER)

 ([CREDIT MESSAGE | PAYMENT MESSAGE])

← Unique identifier of the output.

← One of many fields that must take on

a value. Lack of parentheses indicates

a value is required.

← Pointer to a related definition.

← Begins group of fields that repeats

1 n times.

← More required fields with single values.

← Field does not have to have value.

← Field does not have to have value, but

if it does, it will provide only one of two

possible field options.

Without such precise requirements, discovery prototypes may exist that were created
during requirements analysis. In either case, a good requirements statement should be
available in some format.

Step 2: Specify Physical Output Requirements Recall that the decision analysis
phase should have established some expectation of how most output data flows will
eventually be implemented. Relative to outputs, the decisions were made by deter-
mining the best medium and format for the design and implementation based on:

• Type and purpose of the output.
• Operational, technical, and economic feasibility.

Because feasibility is important to more than just outputs, the techniques for eval-
uating feasibility were covered separately (in Chapter 10). The first set of criteria,
however, is described in the following list:

• Is the output for internal or external use?
• If it’s an internal output, is it a detailed, summary, or exception report?
• If it’s an external report, is it a turnaround document?

After assuring yourself that you understand what type of report the output is and how
it will be used, you need to address several design issues:

1. What implementation method would best serve the output? Various methods
were discussed earlier in the chapter. You will have to understand the purpose
or use of the output to determine the proper method. You can select more than
one method for a single output—for instance, screen output with optional
printout. Clearly, these decisions are best addressed with the system users.
a. What would be the best format for the report? Tabular? Zoned? Graphic? Some

combination?
b. If a printout is desired, you must determine what type of form or paper will

be used. Stock paper comes in three standard sizes (all specified in inches):
81⁄2 11, 11 14, and 81⁄2 14 inches.You need to determine the capabilities
and limitations of the intended printer.

c. For screen output, you need to understand the limitations of the users’ display
devices. Despite the increase in larger 19- and 21-inch high-resolution
monitors, most users still have 15- and 17-inch displays and have their screen
resolution set as low as 640 480 pixels (especially as you reach out directly
to consumers in e-commerce applications). It is still recommended that screen
outputs (including forms or pages within your application) be designed for
the lowest common denominator.

d. Form images can be stored and printed with modern laser printers, thereby
eliminating the need for dealing with forms manufacturers in some businesses.

2. How frequently is the output generated? On demand? Hourly? Daily? Monthly?
For scheduled outputs, when do system users need the report?
a. Users generate many reports on demand. It can be helpful to use automated

e-mail to notify users that new versions are available.
b. If reports are to be printed by the information services department, they must

be worked into the information systems operations schedule. For instance, a
report the system user needs by 9:00 A.M. on Thursday may have to be
scheduled for 5:30 A.M. Thursday. No other time may be available.

3. How many pages or sheets of output will be generated for a single copy of a
printed output? This information may be necessary to accurately plan paper and
forms consumption.

4. Does the output require multiple copies? If so, how many?
a. Impact printers are usually required to print all copies of a multicopy form at

the same time.
b. Laser printers can print multiple copies of a form only one after the other.This

means that if the copies are different in color or fields, the preprinted forms
must be collated before final printing.

Output Design and Prototyping Chapter Fifteen 563

5. For printed outputs, have distribution controls been finalized? For online outputs,
access controls should be determined.

These design decisions should be recorded in the data dictionary/project repository.
Let’s consider an example from our SoundStage Entertainment Club case.

One output for SoundStage is the MEMBER RESPONSE SUMMARY REPORT. This report was re-
quested to provide internal management with information regarding customer responses
to the monthly promotional offers.The following design requirements were established:

1. The manager will request the report from his or her own workstation. It was
determined that the information should be presented as a screen output in both
tabular and graphical formats (to be determined via prototypes).
a. All managers have 17-inch or larger display monitors.
b. Managers should have the option of obtaining a laser printer output via their

LAN configuration. Printouts should be on 81⁄2- 11-inch stock paper.
2. Managers must be able to display the report on demand. Managers have requested

automatic e-mail notification of the availability of any newly generated version of
the report. A hyperlink to the latest version of the report should also be made
available in the standard home page of every Member Services manager, level 3
and above.

3. Graphical output should be displayable in a single screen and printable on a
single page.Tabular data may be printed on one to two pages.The volume of
pages is not considered significant for this report.

4. The report must be restricted in access to managers whose network accounts
carry level-3 or higher account privileges.The report should include a “Confi-
dential” watermark and a message that prohibits external distribution or infor-
mation sharing without the written permission of Internal Audit.

Step 3: Design Any Preprinted Forms External and turnaround documents are
separated here for special consideration because they contain considerable con-
stant and preprinted information that must be designed before designing the final
output. In most cases, the design of a preprinted form is subcontracted to a forms
manufacturer. The business, however, must specify the design requirements and
carefully review design prototypes. The design requirements address issues such as
the following:

• What preprinted information must appear on the form? This includes contact
information, headings, labels, and other common information to appear on all
copies of the form.

• Should the form be designed for mailing? If so, address locations become
important based on whether or not windowed envelopes will be used.

• How many forms will be required for printing each day? Week? Month? Year?
• What will be the form’s size? Form size, along with volume (above), can impact

mailing costs.
• Will the form be perforated to serve as a turnaround document? Also, for

turnaround documents the location of the address becomes more critical
because the return address for the external output becomes the mailing address
for the returned document.

• What legends, policies, and instructions need to be printed on the form (both
front and back)?

• What colors will be used, and for which copies?

For external documents, there are also several alternatives. Carbon and chemical
carbon are the most common duplicating techniques. Selective carbons are a variation
whereby certain fields on the master copy will not be printed on one or more of
the remaining copies. The fields to be omitted must be communicated to the forms
manufacturer. Two-up printing is a technique whereby two sets of forms, possibly
including carbons, are printed side by side on the printer.

564 Part Three Systems Design Methods

A SoundStage preprinted output form was previously displayed as Figure 15-3.

Step 4: Design, Validate, and Test Outputs After design decisions and details
have been recorded in the project repository, we must design the actual format of the
report. The format or layout of an output directly affects the system user’s ability to
read and interpret it. The best way to lay out the format is to sketch or, better still,
generate a sample of the report or document. We need to show that sketch or proto-
type to the system user, get feedback, and modify the sample. It’s important to use re-
alistic or reasonable data and demonstrate all control breaks.

The most important issue during the design step is format. Figure 15-9 summa-
rizes a number of design issues and considerations for printed and tabular reports.
Many of these considerations apply equally to screen outputs. Also, screen output
offers a number of special considerations that are summarized in Figure 15-10.

The SoundStage management expressed concern that the MEMBER RESPONSE

SUMMARY output could potentially become too lengthy. Often the manager is interested
in seeing only information pertaining to member responses for one or a few different
product promotions. Thus, it was decided that the manager needed the ability to
“customize” the output. The screens used to allow the manager to specify the
customization desired should be prototyped as well as the report and graph contain-
ing the actual information. Figure 15-11(a) shows the prototype of the screen the user

Output Design and Prototyping Chapter Fifteen 565

Page size

Page orientation

Page headings

Report legends

At one time, most reports were printed on
oversized paper. This required special binding
and storage. Today, the page sizes of choice
are standard (81⁄2” 11”) and legal (81⁄2”

14”). These sizes are compatible with the
predominance of laser printers in the modern
business.

Page orientation is the width and length of a
page as it is rotated. The portrait orientation
(e.g., 81⁄2 W 11 L) is often preferred
because it is oriented the way we orient most
books and reports; however, landscape (e.g.,
11 W 81⁄2 L) is often necessitated for tabular
reports because more columns can be printed.

Page headers should appear on every page. At
a minimum, they should include a recognizable
report title, date and time, and page numbers.
Headers may be consolidated into one line or
use multiple lines

A legend is an explanation of abbreviations,
colors, or codes used in a report.

In a printed report, a legend can be printed on
only the first page or on every page.

On a display screen, a legend can be made
available as a pop-up dialogue box.

Not applicable.

JAN 4, 2001 PAGE 4 of 6

OVERSUBSCRIPTIONS BY COURSE

REPORT LEGEND

SEATS NUMBER OF SEATS IN THE CLASSROOM

LIM COURSE ENROLLMENT LIMIT

REQ NUMBER OF SEATS REQUESTED BY DEPARTMENT

RES NUMBER OF SEATS RESERVED FOR DEPARTMENT

USED NUMBER OF SEATS USED BY DEPARTMENT

AVL NUMBER OF SEATS AVAILABLE FOR DEPARTMENT

OVR NUMBER OF OVERSUBSCRIPTIONS FOR DEPARTMENT

F I G U R E 1 5 - 9 Tabular Report Design Principles

Design Issue Design Guideline Examples

portrait landscape

Column headings

Heading
alignments

Column spacing

Row headings

Formatting

Control breaks

End of report

Column headings should be short and
descriptive. If possible, avoid abbreviations.
Unfortunately, this is not always possible. If
abbreviations are used, include a legend (see
“Report legends”).

The relationship of column headings to the
actual column data under those headings can
greatly affect readability. Alignment should be
tested with users for preferences, with a special
emphasis on the risk of misinterpretation of the
information.

See examples for possibilities (which can be
combined).

The spacing between columns impacts
readability. If the columns are too close, users
may not properly differentiate between the
columns. If they are spaced too far apart, the
user may have difficulty following a single row
all the way across a page. As a general rule of
thumb, place 3–5 spaces between each column.

The first one or two columns should serve as the
identification data that differentiates each row.

Rows should be sequenced in a fashion that
supports their use. Frequently rows are sorted
on a numerical key or alphabetically.

Data is often stored without formatting characters
to save storage space. Outputs should reformat
that data to match the users’ norms.

Frequently, rows represent groups of
meaningful data. Those groups should be
logically grouped in the report. The transition
from one group to the next is called a control
break and is frequently followed by subtotals
for the group.

The end of a report should be clearly indicated
to ensure that users have the entire report.

Self-explanatory.

Left justification (good for longer and variable-length fields):

NAME

XXXXXXXX X XXXXXXXXX XXXXXX

Right justification (good for some numeric fields, especially
monetary fields); be sure to align decimal points:

AMOUNT

$$$,$$$.¢¢

Center (good for fixed-length fields and some moderate-length
fields):

STATUS

XXXX

XXXX

Self-explanatory.

By number:

STUDENT ID STUDENT NAME

999–38–8476 MARY ELLEN KUKOW

999–39–5857

By alpha:

SERVICE CANCEL SUBSCR TOTAL

HBO 45 345 7665

As stored: As output:

307877262 307–87–7262

8004445454 (800) 444–5454

02272000 Feb 27, 2000

RANK NAME SALARY

CPT JANEWAY, K 175,000

CPT KIRK, J 225,000

CPT PICARD, J 200,000

CPT SISKO, B 165,000

CAPTAINS TOTAL 765,000 a control break

LTC CHAKOTAY 110,000

LTC DATA 125,000

LTC RIKER, W 140,000

LTC SPOCK, S 155,000

EXEC OFFCR TOTAL 530,000

*** END OF REPORT ***

F I G U R E 1 5 - 9 Concluded

Design Issue Design Guideline Examples

☞

Output Design and Prototyping Chapter Fifteen 567

F I G U R E 1 5 - 1 0 Screen Output Design Principles

Screen Design
Consideration Design Guidelines

Size Different displays support different resolutions. The designer should consider the “lowest common denominator.”

The default window size should be less than or equal to the worst resolution display in the user community. For
instance, if some users have only a 640 480 pixel resolution display, don’t design windows to open at an
800 600 pixel resolution.

Scrolling Online outputs have the advantage of not being limited by the physical page. This can also be a disadvantage
if important information such as column headings scrolls off the screen. If possible, freeze important headings at
the top of a screen.

Navigation Users should always have a sense of where they are in a network of online screens. Given that, users also
require the ability to navigate between screens.

WINDOWS: Outputs appear in windows called forms. A form may display one record or many. The scroll
bar should indicate where you are in the report. Buttons are frequently provided to move
forward and backward through records in the report and to exit the report.

INTERNET: Outputs appear in windows called pages. A page may display one record or many. Buttons or
hyperlinks may be used to navigate through records. Custom search engines can also be used to
navigate to specific locations within a report.

Partitioning WINDOWS: Zones are forms within forms. Each form is independent of the other but can be related. The
zones can be independently scrollable. The Microsoft Outlook bar is one example. Zones can be
used for legends or control breaks that take the user to different sections within a report.

INTERNET: Frames are pages within pages. Users can scroll independently within pages. Frames can enhance
reports in many ways. They can be used for a legend, table of contents, or summary information.

Information hiding Online applications such as those that run under Windows or within an Internet browser offer capabilities
to hide information until it either is needed or becomes important. Examples of such information hiding include:

• Drill-down controls that show minimal information and provide readers with simple ways to expand or
contract the level of detail displayed.

— In Windows outputs the use of a small plus or minus sign in a small box to the left of a data record offers
the option of expanding or contracting the record into more or less detail. All of this expansion and
contraction occurs within the output’s window.

— In intranet applications, any given piece of summary information can be highlighted as a hyperlink to expand
that information into greater detail. Typically, the expanded information is opened in a separate window so
that the reader can use the browser’s forward and backward buttons to switch between levels of detail.

• Pop-up dialogue boxes may be triggered by information.

Highlighting Highlighting can be used in reports to call users’ attention to erroneous data, exception data, or specific
problems. Highlighting can also be a distraction if misused. Ongoing human factors research will continue to
guide our future use of highlighting. Examples of highlighting include:

• Color (avoid colors that color-blind persons cannot distinguish).

• Font and case (changing case can draw attention).

• Justification (left, right, or centered).

• Hyphenation (not recommended in reports).

• Blinking (can draw attention or become annoying).

• Reverse video.

Printing For many users, there is still comfort in printed reports. Always provide users the option to print a permanent
copy of the report. For Internet use, reports may need to be made available in industry-standard formats such
as Adobe Acrobat, which allows users to open and read the reports using free and widely available software.

F I G U R E 15-11

Report Customiza-
tion and Tabular
Report Prototypes

1

1

2

3

4

5

568 Part Three Systems Design Methods

(a) Report customization prototype

(b) Tabular report prototype

F I G U R E 15-12

Graphical Report
Prototype

Output Design and Prototyping Chapter Fifteen 569

can use to choose a particular report (or graph) and customize its content. The
following points should be noted:

A tab dialogue box is used to allow the user to select between obtaining a
report and obtaining a graph. A tab control is used to present a series of
related information. If the user clicks on the tab labeled “Graphs,” information
would be displayed for customizing the output as a graph.
A drop-down list is used to select the desired report. The user can click on
the downward arrow to obtain a list of possible reports to choose from.
The user is provided with a series of check boxes that correspond to general
options for customizing the selected report. The user simply “checks” the
options he wishes to have on the report.
A group of check boxes is also used to allow the user to select one or more
product categories she wishes to include on the report.
Once again, a group of check boxes is used to allow the user to further cus-
tomize the report. Here the user is allowed to indicate the type of summary
information or totals desired for each product category.

Let’s now look at a prototype of the report that will result from the previous re-
port customization dialogue. Figure 15-11(b) is a prototype of a screen output version
of the actual report. Examine the content and appearance of the tabular design. No-
tice that the user is allowed to scroll vertically and horizontally to view the entire re-
port. In addition, buttons are provided to allow the user to toggle forward and
backward to view different report pages.

Finally, let’s look at a prototype of a graphic version of the MEMBER RESPONSE SUM-
MARY output (see Figure 15-12). Note the following:

• The graph is clearly labeled along the vertical and horizontal axes.
• A legend has been provided to aid in interpreting the graph bars.

When you are prototyping outputs, it is important to involve the user to obtain
feedback.The user should be allowed to actually “exercise” or test the screens. Part of
that experience should involve demonstrating how the user may obtain appropriate
help or instructions, drill-down to obtain additional information, navigate through

5

4

3

2

1

1

1

2

3

F I G U R E 15-13

Single Record
Output Prototype

570 Part Three Systems Design Methods

pages, request different formats that are available, size the outputs, and perform test
customization capabilities. All features should be demonstrated or tested.

Thus far, we have presented samples of only a tabular and a graphical report.
Another type of output is a record-at-a-time report. Users can browse forward and
backward through individual records in a file. A sample screen for a record-at-a-time
output is shown in Figure 15-13. We call your attention to the following:

Each field is clearly labeled.
Buttons have been added for navigation between records. The almost univer-
sally accepted buttons are for FIRST RECORD, NEXT RECORD, PREVIOUS RECORD, and
LAST RECORD.
We added buttons for the user to get a printed copy of the output, as well as
to exit the report when finished. (Consistent with prototyping, the program-
mer will write the code for exiting later.)

> Web-Based Outputs and E-Business

The last output design considerations we want to address concern Web-based out-
puts.The SoundStage project will add various e-commerce and e-business capabilities
to the Member Services information system. Some of these capabilities will affect
output design.

One logical output requirement for the project is catalog browsing. Members
should be able to browse and search catalogs, presumably as a preface to placing

3

2

1

F I G U R E 1 5 - 1 4 Web Database Output

4

6

5

1

2

3

orders. The catalog itself is the output. Figure 15-14 is a prototype screen for the
physical catalog output. Note the following:

This output uses frames to allow the user to focus separately on navigation
and output.
The screen uses hyperlinks to provide navigation through complex menu
structures that are related to the output.

2

1

Output Design and Prototyping Chapter Fifteen 571

F I G U R E 1 5 - 1 5 Windows Media Player Output

1

2

Hyperlinks also allow the user to get additional information. This functionality
is referred to as “drill-down.”
Shading is used to separate each detail line. This practice reflects the more
artistic approach used to design Web-based outputs. Also, the “BUY” buttons
have effectively transformed this output into a trigger for subsequent inputs.
This is the e-commerce virtual equivalent of a turnaround document!

4

3

572 Part Three Systems Design Methods

Lea
rning

 Roa
d
m

a
p

This chapter provided a detailed overview of the design and prototyping of computer

outputs for a systems development project. It is recommended that you now com-

plete Chapter 16 and not skip to Chapter 17. Chapter 16 deals with designing and

prototyping an application’s inputs. Chapter 17 deals with designing and prototyping

an application’s overall interface. As such, Chapter 17 involves tying together and pre-

senting the applications functions addressed in Chapters 15 and 16.

Most Web-based output screen designs require standard footers on the screen
to provide additional navigation.
A picture can be a selectable object. In this case it represents another type
of drill-down where the user is able to obtain additional information.

Another output requirement is to allow members to play video trailers and au-
dio sound bites for products to preview candidate purchases. The preview will be
triggered by a hyperlink in the previous screen, and it will activate a multimedia
player as shown in Figure 15-15 on the previous page. Such output extensions are
expected to become the norm as Internet- and intranet-based applications grow in
popularity.

Web-based outputs frequently use plug-ins. This output screen has the
standard buttons associated with a typical audio or video player.
Web-based outputs also commonly provide appropriate plug-ins or plug-in
versions needed for the session.

2

1

6

5

Output Design and Prototyping Chapter Fifteen 573

Chapter Review

1. Outputs can be classified according to two
characteristics:

a. Their distribution inside or outside the organiza-
tion and the people who read and use them.

b. Their implementation method.

2. Internal outputs are intended for the system
owners and users within an organization. They
only rarely find their way outside the organiza-
tion. There are three subclasses of internal
outputs:

a. Detailed reports—present information with
little or no filtering or restrictions.

b. Summary reports—categorize information for
managers who do not want to wade through
details.

c. Exception reports—filter data before it is pre-
sented to the manager as information.

3. External outputs leave the organization.They are
intended for customers, suppliers, partners, and
regulatory agencies.They usually conclude or re-
port on business transactions.

4. Some outputs are both external and internal.They
begin as external outputs that exit the organization
but return in part or in whole.

5. Turnaround outputs are those external outputs
that eventually reenter the system as inputs.

6. A good systems analyst will consider all available
options for implementing an output. Several meth-
ods and formats exist:

a. The most common medium for computer
outputs is paper—printed output. Internal
outputs are typically printed on blank paper
(called stock paper). External outputs and
turnaround documents are printed on
preprinted forms.

i) Perhaps the most common format for
printed output is tabular.Tabular output
presents information as columns of text and
numbers.

ii) An alternative to tabular output is zoned out-
put. Zoned output places text and numbers
into designated areas or boxes of a form or
screen.

b. Screen output is most suited to the pace of to-
day’s economy, which requires information on
demand. Screen output technology allows re-
ports to be presented in graphical formats.
Graphic output is the use of a pictorial chart to
convey information in ways that demonstrate
trends and relationships not easily seen in tabu-
lar output.

c. Many of today’s retail and consumer transac-
tions are enabled or enhanced by point-of-sale
(POS) terminals.

d. Multimedia is a term coined to collectively de-
scribe any information presented in a format

other than traditional numbers, codes, and
words.This includes graphics, sound, pictures,
and animation.

e. E-mail is becoming a very popular output
medium as a means of reaching large audiences
and generating significant cost savings.

f. Web hyperlinks allow users to browse lists
of records or search for specific records and re-
trieve various levels of detailed information on
demand.

g. Paper requires considerable storage space.To
overcome the storage problem, many busi-
nesses use microfilm as an output medium.

7. The most commonly used automated tool for out-
put design is the PC-database application develop-
ment environment. Many CASE tools also include
facilities for report and screen layout and prototyp-
ing using the project repository created during re-
quirements analysis.

8. The following general principles are important for
output design:

a. Computer outputs should be simple to read and
interpret.

b. The timing of computer outputs is important—
their recipients must receive output information
while the information is pertinent to transac-
tions or decisions.

c. The distribution of (or access to) computer out-
puts must be sufficient to assist all relevant sys-
tem users.

d. The computer outputs must be acceptable to
the system users who will receive them.

9. Output design is not a complicated process. Some
steps are essential, and others are dictated by cir-
cumstances.The steps are:

a. Identify system outputs and review logical
requirements.

b. Specify physical output requirements.
c. As necessary, design any preprinted external

forms.
d. Design, validate, and test outputs using some

combination of:

i) Layout tools (e.g., hand sketches, printer/
display layout charts, or CASE).

ii) Prototyping tools (e.g., spreadsheet, PC
DBMS, 4GL).

iii) Code-generating tools (e.g., report writer).

574

1. What are some of the characteristics of
prototypes?

2. How are outputs classified?
3. What is the difference between the summary

report and the exception report?
4. What are some examples of external reports?
5. What is the difference between tabular output

and zoned output?
6. Why are printed reports needed in addition to

the screen outputs?
7. What are some of the examples of pictorial

charts?

8. Why should graphic outputs be used?
9. What are some of the output design guidelines?

10. What are the steps basic for designing output?
11. What are the two most important kinds of criteria

that analysts should consider when they specify
physical output requirements? Why are they
important?

12. What are some of the design issues that analysts
need to consider?

13. What are preprinted forms for?
14. What is the advantage of using frames when

displaying information on the Internet?

Review Questions
1

2

1. One hundred years ago, if you were designing a
report, what different delivery methods and
media were available? What about 50 years ago?
Today? What do you think has been the biggest
change in reports over the past 100 years?

2. You are working as a systems designer for the
county Department of Social Services. The
director of the county child protection agency
is concerned about the agency’s caseload and
the length of time that cases remain open. The
agency’s objective is to have no open cases
older than 60 days, and preferably none older
than 30 days. The director wants a monthly re-
port showing the number of cases, by age, for
each of the 12 child protection workers in the
agency. What subclass of report should you de-
sign? Should the output format be tabular or
zoned? Describe the data structure defining logi-
cal requirements for the report. Use the format
described in the chapter.

3. Use the information in the preceding question
to create a prototype of the report; use an auto-
mated tool such as Microsoft Access (or if
you prefer, you can create a prototype the
old-fashioned way). Populate the report with
several sample records, in alphabetical order by
worker last name.

4. The director of the child protection agency is
pleased with the report, but would also like to see
it in graphic format. What chart type(s) would be
inappropriate? Why? What chart type(s) would be
appropriate for this type of report? Why? Which
one do you think would be the best one? Why?

5. What subclass of report would you design for the
sales manager of a car dealership whose job it is
to review vehicle sales each week and year to
date? What data elements should be included in
the report? What should you ask the sales man-
ager before you design the report?

6. The sales manager also has to know, on a weekly
basis, who didn’t make their sales quota for the
previous week and/or for the year to date. What
subclass of report is needed in this situation?
What data elements would you include, and how
would you group them?

7. Match the definitions or examples in the
first column with the terms in the second
column.

A. On-demand Web- 1. Detailed report
enabled report
archival system

B. ATM 2. Display layout
chart

C. Traditional output 3. External output
medium

D. Report of Delinquent 4. Scatter chart
Accounts

E. Transition between 5. Summary report
different data groups

F. Report of Vehicles in 6. Control break
Inventory

G. “Buy” button on 7. Zoned output
Web site

H. Screen design tool 8. Turnaround
seldom used anymore output

Problems and Exercises

Output Design and Prototyping Chapter Fifteen 575

I. Sales order 9. Exception
report

J. Shows relationship 10. DataWatch
between two or Monarch/ES

more series of data
K. Quarterly Report 11. POS Terminal

of Sales By Region
L. Sales receipt 12. Microfilm

8. The sales manager has asked you to develop
an automated chart to show the company’s
annual sales by quarter for the past five years.
The manager considers bar charts boring and
wants to use a pie chart, instead, to show the
five-year sales report in an easy-to-read report.
What are your thoughts about the manager’s
idea? Explain.

9. The director of the Child Protection Agency is
very pleased with the summary report that you
designed in Question 2.To help the child protec-
tion workers manage and prioritize their case-
load, the director would now like you to design a
report that would go to each worker, showing
their open cases, including the age of each case.
Further, the report should be a turnaround docu-
ment, where the child protection workers can
provide status on each of their open cases, includ-
ing the estimated date of completion. What sub-
class of report is needed? What data elements are
needed? In what order should the cases be listed?
Create a prototype design for this report.

10. Complete the sentences below.

a. The purpose of outputs is to present
__________ to system users. Because they are
the most ____________ part of an information
system, system users and owners often base
the __________ of an information system on
the outputs.

b. In designing outputs, a good place to begin is
with the ______________, because they iden-
tify both the _____________ and the
_______________ method.

c. Outputs can be categorized by two character-
istics: (1) by their ______________ and
______________, and (2) by their
______________.

d. In a report, ___________ often occur at
______________, which are used to transition
from one ______________ of data to the next
one.

e. In a tabular report, ______________ is influ-
enced by column _________, which generally
should be 3–5 __________.

11. You are a systems designer working in the IT divi-
sion of a large manufacturing corporation with
plants throughout the country.The CIO mentions
to you in passing that the vice president of mar-
keting wants a new executive-level report show-
ing daily production by region and by office in
order to review production levels and fix prob-
lems quickly.Your CIO tells you to have a prelimi-
nary design and prototype ready the day after
tomorrow. On the basis of the information you
have been given, what type of report is needed?
Is it for internal or external use? Assuming that
the corporation’s information system already cap-
tures the data needed for this report, what are
some of the remaining design issues?

12. In the preceding scenario, what common tool
could you use if your organization doesn’t use
CASE tools or dedicated report-writing tools for
screen layout and prototyping? For an executive-
level report, what are the most critical principles
to apply in designing the output? (Remember, your
future with the company may depend upon know-
ing and being able to apply these principles.)

13. You have volunteered to work on the Web site of
your local library.The library plans to develop an
online catalog of books that can be reserved by li-
brary patrons from their home computers via the
Internet. Many of these patrons are senior citi-
zens. What are some of the screen design issues
that should be taken into consideration?

1. In the 1990s (and even before), there was a great
deal of discussion regarding the paperless office.
Some industry pundits and futurists predicted that
within a short period of time, paper would become
a legacy product in many organizations.Yet today
the reality seems quite different and, in fact, busi-

nesses are consuming and churning out more paper
than ever. Do some research on the Web for both
contemporary and past articles on this subject.

a. Describe the articles that you found.
b. Compare and contrast their viewpoints.

Projects and Research

576 Part Three Systems Design Methods

c. Contact a large organization and a government
agency in your area. Do either consider the pa-
perless office to be an objective? If so, what are
their plans for achieving it, and is progress be-
ing made?

d. What about your own organization or school?
e. What is your own position on this subject? Do

you think a paperless office is a viable concept?
Why or why not?

2. Designing a form or interface screen has been
compared to watching an Olympic gymnast: It
looks deceptively simple until you actually try to
do it yourself. Consider the following questions:

a. On the basis of your own experience, as well as
your readings from this and other textbooks,
what makes one form or interface screen
“good” and another one “bad”?

b. Pick a form or interface screen that you feel is
particularly horrible. Describe why.

c. Redesign the form or screen into one that you
feel is “good.”

d. Have a couple of fellow students or associates
compare and critique the “before” and “after”
versions of the form or screen. How did they
rate your “after” version compared to the “be-
fore” version?

e. Can you have a well-designed form or screen if
the data itself that is to be captured is not well
designed? Why or why not?

f. In today’s global village, would a form or inter-
face screen design that is considered good in
one culture be considered universally good?
How much of an influence do cultural differ-
ences have upon design?

3. Although it is probably a cliché to say we are
living in a time of unprecedented technological
change, it is difficult to truly comprehend the
enormous changes that have taken place in a very
short time and their impact upon us. To help get a
sense of these changes, consider the following
questions:

a. Identify the different forms of output methods
developed in the past 1,000 years, and draw
them on a time line. How many output methods
did you identify, and how many of them were
commercially available in the last 50 years? In
the last 25? In the last 10?

b. What is the earliest version of a turnaround
document that you can find?

c. According to your research, when did microfilm
become widely available? What was its impact
upon private- and public-sector organizations?

d. What about screen output? When did PC moni-
tors come into widespread use? What has been
their impact upon private- and public-sector
organizations?

e. Of all the output methods in use today, which
one do you think had the most significant im-
pact upon governments and cultures? Why?

4. Predictions of future technological advances and
breakthroughs are notoriously unreliable. For exam-
ple, in the 1960s some futurists predicted that we
would all soon be commuting to work in our own
personal aircraft or driving atomic-powered cars.

a. In the 1980s, there was a good deal of specula-
tion that holograms might soon become a
common and revolutionary form of output.
Research this topic—what did you find?

b. Research recent articles describing new output
methods that are still in the concept stage or on
the (virtual) drawing board, but that industry
pundits predict we may see in the not-too-
distant future. Describe what you find.

c. What do you predict will be the next break-
through in output methods?

d. If your prediction is correct, what is the poten-
tial impact upon what you do, as a systems
analyst or designer, or how you do it?

e. Do you think that most systems analysts and de-
signers should pay attention to new technolo-
gies that are not yet commercially available
even though many of them never pan out?
Should they just sit back and wait to see what
appears on the market?

5. Many organizations have implemented a company
intranet. But it appears that relatively few (at least
as of this date) have integrated their intranet with
desktop productivity tools, such as Microsoft Of-

fice, e-mail and calendaring, and the specific data
input/output applications used by employees.

a. Contact several local private- and public-sector
organizations. Do they currently have an in-
tranet implemented?

b. Describe how the intranets are being used and
what features they have. Are any of these in-
tranets integrated with desktop produc-
tivity tools and/or applications used by the
organization?

c. See if you can take a look at several of these
intranets. Are their interface screens well de-
signed? What, if any, are the differences be-
tween intranets and Internet applications that
need to be taken into consideration when de-
signing the screen interfaces for an intranet?

Output Design and Prototyping Chapter Fifteen 577

1. Collect an example of a detailed report, a summary
report, and an exception report. Submit them,
along with a brief description of the information in
them, to your professor. What were the similarities
between the reports? The differences?

2. An online form can be set up to “dump” the form
contents into an e-mail and send it to a specific
e-mail account. Find the code snippets to do this,
and create a simple online form that will send con-
tents to your e-mail address. Fill out and submit
your form at least one time. Forward the e-mail you
have received with form contents to your profes-
sor, along with the URL of your form.

3. Information should only be inputted into an infor-
mation system one time. After that, information

should be shared digitally across departments,
with no need for reentry of data. Why is this? What
type of common data formatting problems do
you think system designers run into when they
set up online forms (such as the one you did in
Question 2) that send data directly to a database?

4. Find an example of a really well designed output
(could be a form, report, e-mail, etc.).Then find an
example of a poorly designed one. Present both to
your class. Lead a discussion on improving the
poorly designed example, using specific attributes
of excellence from the well-designed output.You
will be graded on your ability to engage the class
and work as a team member to improve the output
medium.

Minicases

d. What if you had the opportunity to design a fully
integrated intranet for your organization? What
features and functionality would you include?

e. Create a prototype design for your intranet.

6. In today’s global economy environment, informa-
tion on demand is the expected norm.This is a
very recent development that has had a profound
impact on organization and individuals. Consider
the following questions:

a. In 1800, if a merchant company in Europe sent
a turnaround report to its agent in New York,
how long would the company expect that it

would take—at a minimum—to receive the
return report?

b. What about in 1900?
c. In 1950?
d. In 2005—at a maximum?
e. Describe what you believe to be the most signif-

icant impact this change in reporting speed has
had both on organizations and on individuals.

f. Is this extraordinary change in the speed of
reporting—and in expectations—good or
bad? For the organization? For an individual
employee?

1. Individual: College, career, and family (not to men-
tion all the other things we do) all take an incredi-
ble amount of time and energy. Reflect for a
moment either on your life as it is now or how it
may be in the future. How well are you balancing
life and career? How will you manage future con-
flicts between them? What are your life priorities?
Do not submit any work.You may, as you wish,
discuss in a roundtable format.

2. Individual: Part of being a good systems person is
reading and understanding people. Notice some-
one who seems a little down or is having a bad

day. Do something nice for that person. It doesn’t
matter whether you know her or him.

3. For students who are soon to graduate and are
job hunting: go to a stationery store and purchase
some elegant and appropriate stationery to write
thank-yous for interviews. As a team, develop
(1) a great thank-you letter (for a job interview)
and (2) a set of interview questions you think
you could be asked in an interview. Outside of
class, take time to do mock interviews with
friends or family.

Team and Individual Exercises

578 Part Three Systems Design Methods

Andres, C. Great Web Architecture. Foster City, CA: IDG

Books Worldwide, 1999. Books on effective Web interface

design are beginning to surface.The science of human en-

gineering for Web interfaces has not yet progressed as far

as client/server interfaces (e.g., Windows). Here is an early

title that explores many dimensions of Web architecture

and interfaces using real-world examples.

Application Development Strategies (monthly periodical).

Arlington,VA: Cutter Information Corporation. This is our

favorite theme-oriented periodical that follows system de-

velopment strategies, methodologies, CASE, and other rel-

evant trends. Each issue focuses on a single theme. This

periodical will provide a good foundation for how to

develop prototypes.

Galitz, W. O. User-Interface Screen Design. New York: John

Wiley & Sons, 1993. This is our favorite book on overall

user interface design.

Shelly, G., T. Cashman, and H. Rosenblatt. Systems Analysis

and Design, 3rd ed. Cambridge, MA: Course Technology,

1998.We mention our competitors for their excellent cov-

erage of tabular, printed output design. They afford many

more pages of coverage and examples than we could in

our latest edition.

Suggested Readings

Output Design and Prototyping Chapter Fifteen 579

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M

A
N

A
LY

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L
A
T

IO
N

&
 D

E
L
IV

E
R

Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

16Input Design and
Prototyping

Chapter Preview and Objectives

In this chapter you will learn how to design computer inputs. It is the second of three

chapters that address the design of online systems using a graphical user interface for

either client/server or Web-based systems. You will know how to design inputs when

you can:

❚ Define the appropriate format and media for a computer input.

❚ Explain the difference between data capture, data entry, and data input.

❚ Identify and describe several automatic data collection technologies.

❚ Apply human factors to the design of computer inputs.

❚ Design internal controls for computer inputs.

❚ Select proper screen-based controls for input attributes that are to appear on a GUI

input screen.

❚ Design a Web-based input interface.

Output and input design represent something of a “chicken or egg” sequencing problem.

Which do you do first? In this edition, we present output design first. Classic system de-

sign prefers this approach as something of a system validation test—design outputs and

then make sure the inputs are sufficient to produce the outputs. In practice, this sequenc-

ing of tasks becomes less important because modern systems analysis techniques suffi-

ciently predefine logical input and output requirements. You and your instructor may

safely swap Chapters 15 and 16 if you prefer.

Bob Martinez has been given the assignment of prototyping the Web-based member
order entry screen for the SoundStage Member Services system project (you can see
his work in Figures 16-11 and 16-12).This was clearly the most fun part of the system
project for Bob. A graphic design consulting firm had created the overall look and
feel. But it was up to Bob to create the actual prototype.

He decided to use Visual Studio .NET just because he was comfortable with its
GUI designer. Bob was able to pretty quickly put together the Web pages so that they
looked as if they were a real shopping cart. Of course, it didn’t have any real pro-
gramming code. Whatever you searched for, you got The Matrix (Bob’s all-time
favorite movie), and the data grid shown at the bottom of Figure 16-11 had been filled
in by hand, not by the database. But the layout included all requirements that had pre-
viously been identified. And all the links worked, though they all went to an “Under
Construction” page.

Both SoundStage employees and selected members exercised the Web pages.
Having gotten generally favorable feedback, Sandra is now having Bob refine and ex-
pand the prototype.Then it will go back to the users for more testing, and then more
refinement, until they have a Web design that really can be programmed.

582 Part Three Systems Design Methods

Introduction

Input Design Concepts and Guidelines

“Garbage in! Garbage out!” This overworked expression is no less true today than it
was when we first studied computer programming. Management and users make im-
portant decisions based on system outputs (Chapter 15).These outputs are produced
from data that is either input or retrieved from databases. And any data in the data-
bases must have been first input. In this chapter, you are going to learn how to design
computer inputs. Input design serves an important goal—capture and get the data
into a format suitable for the computer.

Today most inputs are designed by rapidly constructing prototypes.These proto-
types may be simple computer-generated mock-ups, or they may be generated from
prototype database structures such as those developed for Microsoft Access. These
prototypes are rarely fully functional. They won’t contain security features, data edit-
ing, or data updates that will be necessary in the final version of a system. Further-
more, in the interest of productivity, they may not include every button or control
feature that would have to be included in a production system.

During requirements analysis, inputs were modeled as data flows that consist of
data attributes. Even in the most thorough of requirements analysis, we will miss re-
quirements. Input design may introduce new attributes or fields to the system.This is
especially true if output design introduced new attributes to the outputs—the inputs
must always be sufficient to produce the outputs!

We begin with a discussion of types of inputs. Inputs can be classified according
to two characteristics: (1) how the data is initially captured, entered, and processed and
(2) the method and technology used to capture and enter the data. Figure 16-1 illus-
trates this taxonomy.The characteristics are discussed briefly in the following sections.

> Data Capture, Data Entry, and Data Processing

When you think of “input,” you usually think of input devices, such as keyboards and
mice. But input begins long before the data arrives at the device. To actually input
business data into a computer, the systems analyst may have to design source docu-
ments, input screens, and methods and procedures for getting the data into the com-
puter (from customer to form to data entry clerk to computer).

Input Design and Prototyping Chapter Sixteen 583

F I G U R E 1 6 - 1 An Input Taxonomy

Process Method Data Capture Data Entry Data Processing

Keyboard Data is usually captured on a business Data is entered via keyboard. This is OLD: Data can be collected into
form that becomes the source the most common input method batch files (disk) for processing as a
document for input. but also the most prone to errors. batch.

Data can be collected real-time NEW: Data is processed as soon as it
(over the phone). has been keyed

Mouse Same as above. Used in conjunction with keyboard Same as above, but the use of a
to simplify data entry. mouse is most commonly associ-

Mouse serves as a pointing device ated with online and real-time

for a screen. Can be with geo- processing.

graphical user interfaces to reduce
errors through point-and-click
choices.

Touch screen Same as above. Data is entered on a touch screen On PCs, touch screen choices are
display or handheld device. processed same as above.

Data entry users either touch com- On handheld computers, data is
mands and data choices or enter stored on the handheld for later
data using handwriting recognition. processing as a remote batch.

Point of sale Data is captured as close to the Data is often entered directly by the Data is almost always processed
point of sale (or transaction) as customer (e.g., ATM) or by an em- immediately as a transaction or
humanly possible. No source ployee directly interacting with the inquiry.
documents. customer (e.g., retail cash register).

Input requires specialized, dedi-
cated terminals that utilize some
combination of the other tech-
niques in this table.

Sound Data is captured as close to the Data is entered using touch-tones Data is almost always processed
source as possible, even when the (typically from a telephone). immediately as a transaction or
customer is remotely located (e.g., Usually requires fairly rigid com- inquiry.
at home or place of employment). mand menu structure and limited

input options.

Speech Same as sound. Data (and commands) is spoken. Data is almost always processed
This technology is not as mature immediately as a transaction or
and is much less reliable and com- inquiry.
mon than other techniques.

Optical mark Data is recorded on optical scan Eliminates the need for data entry. Data is almost always processed as
sheets as marks or precisely formed (Very commonly used in education a batch.
letters, numbers, and punctuation. for test scoring, course evaluations,
This is the oldest form of automatic and surveys.)
data capture.

Magnetic ink Data is usually prerecorded on A magnetic ink reader reads the Data is almost always processed as
forms that are subsequently com- magnetized data. a batch.
pleted by the customer. The customer-added data must be
The customer records additional entered using another input method.
data on the form. This technique is used in applica-

tions requiring high accuracy and
security, the most common of
which is bank checks (for check
number, account number, bank ID).

Electromagnetic Data is recorded directly on the object Data is transmitted by radio frequency. Data is almost always processed
to be described by data. immediately.

Smart card Data is recorded directly on a device to Data is read by smart card readers. Data is almost always processed
be carried by the customer, employee, immediately.
or other individual that is described by
that data.

Biometric Unique human characteristics become Data is read by biometric sensors. Data is processed immediately.
data. Primary applications are security and

medical monitoring.

This brings us to our first fundamental question. What is the difference between
data capture and data entry? Data happens! It accompanies business events called
transactions. Examples include ORDERS,TIME CARDS, RESERVATIONS, and the like. We must
determine when and how to capture the data when “it happens.”

Data capture is the identification and acquisition of new data. When is easy! It’s
always best to capture the data as soon as possible after it originates. How is another
story! Historically, special paper forms called source documents were used. Source

documents are forms used to record business transactions in terms of data that
describes those transactions.

Display screens that can duplicate the appearance of almost any paper-based
form are gradually replacing the paper forms.This trend is being accelerated by Web-
based e-commerce and e-business. Still, business forms are commonly used as source
documents for data entry. Design of source documents requires care. The layout and
readability will affect the speed of data entry.

Data entry is the process of translating the source data or document into a
computer-readable format. Because data entry used to be 100 percent keyboard-
based, businesses employed armies of data entry clerks. As online computing became
more common, the responsibility for data entry shifted directly to system users.Today
another transformation is occurring.Thanks to personal computers and the Internet,
some data entry has shifted directly to the consumer. In all cases, data entry produces
input for data processing.

Entered data must subsequently be processed—data processing. In this chapter,
we are not concerned with how the data is transformed into outputs. But we are in-
terested in the timing of input processing. When does the input data get processed?

Batch Processing Batch processing used to be the dominant form of data process-
ing. In batch processing, the entered data is collected into files called batches. Each
file is processed as a batch of many transactions. Contrary to popular belief, some data
is still processed in batches. Time cards are the classic example. Most batches are
recorded as disk files (hence the term key-to-disk). Some older systems may still
record batches on magnetic tape (key-to-tape).

Online Processing Today most (but not all) information systems have been con-
verted to online processing. In online processing, the captured data is processed
immediately. Initially, data was entered at terminals. Today, that same data is captured
on PCs and workstations to take advantage of their ability to perform some of the data
validation and editing before it gets sent to the server computers. Because of PCs,
we rarely hear the term online processing anymore. We usually hear the term
client/server, where the PC is the client.

Most of today’s applications present the user with a PC-based graphical user in-

terface (GUI). Microsoft Windows is the dominant GUI in today’s businesses. But the
emergence of the Web as a platform for Internet and intranet applications may make
a Web browser the most important user interface in the future. Microsoft Internet

Explorer and Mozilla Firefox are the dominant browser interfaces in today’s market.
This chapter will address input design techniques for both the Windows client/server
interface and the browser interface.

Remote Batch Batch and online represent extremes on the processing spectrum. A
combination solution also exists—the remote batch. In remote batch processing,

data is entered using online editing techniques; however, the data is collected into a
batch instead of being immediately processed. Later, the batch is processed.

Modern remote batch can take several forms. A simple example uses a PC-based
front-end application to capture and store the data. The data can later be transmitted
across a network for batch processing. A more contemporary example of remote batch
processing uses disconnected laptop or handheld computers (or devices) to collect
data for later processing. If you’ve recently received a package from UPS or Federal
Express, you’ve seen such devices used by the drivers to record pickups and deliveries.

584 Part Three Systems Design Methods

data capture the identifica-

tion and acquisition of new

data.

source document a form

used to record data about a

transaction.

data entry the process

of translating data into a

computer-readable format.

batch processing a data

processing method whereby

data about many transactions

is collected as a single file

which is then processed.

online processing a data

processing method whereby

data about a single transac-

tion is processed immediately.

remote batch processing
a data processing method

whereby data is entered

online, collected as a batch,

and processed at a later time.

Now that we’ve covered the basic data capture, data entry, and data processing tech-
niques, we can more closely examine the input methods shown as rows in Figure 16-1.

> Input Methods and Implementation

Different input devices, such as keyboards and mice, are covered in most introductory
information systems courses. In this section, we are more interested in the method and
its implementation than in the technology. In particular, we are interested in how the
choice of a method affects data capture, entry, and processing as described in the pre-
vious section.You should continue to study Figure 16-1 as we introduce these methods.

Keyboard Keyboard data entry remains the most common form of input. Unfortu-
nately, it requires the most data editing because people make mistakes keying data
from source documents. Fortunately, graphical user interfaces such as Microsoft
Windows and Web browsers now make it possible to design online screens that
reduce errors by forcing correct choices on the user. We will explore several useful
GUI controls for such interfaces in the next section.

Mouse A mouse is a pointing device used in conjunction with graphical user inter-
faces. The mouse has made it easy to navigate online forms and click on commands
and input options. For example, the legitimate values for an attribute can be recorded
on a screen as “clickable” boxes or buttons that eliminate the need to key in that data.
This results in fewer data entry errors. We will explore mouse-based controls in our
input designs for this chapter.

Touch Screen An emerging technology that will greatly impact input design in the
near future is the touch screen display. Such displays are common in handheld and palm-
top computers that are finding their way into countless information system applications.
A Symbol Technologies handheld computer based on the Palm Operating System is
shown in the margin. Such devices simplify many data collection activities in a ware-
house and on a manufacturing shop floor.Touch screen buttons can be programmed to
collect the data. Most such devices support handwriting recognition as well.The Symbol
Technologies unit depicted also can scan and read bar codes (discussed shortly).

Point of Sale Point-of-sale (POS) terminals have been with us for some time. They
have all but replaced old-fashioned cash registers.These terminals capture data at the
point of sale and provide time-saving ways to enter data, perform transactional calcu-
lations, and produce some output. Like the handhelds just described, most can scan
and read bar codes to eliminate keying errors. Automatic teller machines (ATMs),
another form of POS terminal, are operated directly by the consumer.

Sound and Speech Sound represents another form of input. You might have used
a touch-tone telephone-based system to register for this course. Such tone-based sys-
tems require special input/output technology that drives the design. Those systems
are beyond the scope of this book.

A more sophisticated form of this input method uses voice recognition technol-
ogy to make it possible to input data. Currently this technology is relatively immature
and unreliable. It is best utilized to input commands, not data. But the time may come
when voice recognition technology replaces the keyboard as the principal means
by which we enter data.

The remaining input methods are broadly classified as automatic data capture

(ADC). With advancements in today’s input technology, we can eliminate much (and
sometimes all) human intervention associated with the input methods discussed
in the previous section. By eliminating human intervention we can decrease the time
delay and errors associated with human interaction.

Optical Mark Optical mark recognition (OMR) technology for input has existed
for several decades. It is primarily batch processing–oriented. The classic example is

Input Design and Prototyping Chapter Sixteen 585

A Handheld
Computer

F I G U R E 1 6 - 2

Bar Codes in a
Windows Application

the optical mark forms used for objective-based questions (e.g., multiple choice) on
examinations.The technology is also useful in surveys and questionnaires or any other
application where the number of possible data values is relatively limited and highly
structured. Most applications that could benefit from this input method have proba-
bly already exploited it.

Optical character recognition (OCR) is less prevalent despite its maturity. It re-
quires that the user or customer carefully handwrite input data on a business form. If
the letters and numbers are properly scribed, an OCR reader can process the forms
without human intervention. Obviously, this depends on the handwriting of the user
or customer. But it does work. Columbia House Record Club used to use an OCR form
for customer responses to orders. Like most OCR applications, the number of fields to
be input was very small (reducing the possibility of errors). Processing methods must
be implemented for any inputs rejected due to illegibility.

Today the most prevalent form of optical technology involves bar coding. Bar

codes are on almost every product we buy, but bar-coding technology is not limited to
retail sales.You can create bar codes for almost any business application.You can even
integrate bar codes into Windows-based applications, as shown in Figure 16-2.

Magnetic Ink Magnetic ink ADC technology is one you will likely recognize. It usu-
ally involves using magnetic stripe cards, but it also may include the use of magnetic
ink character recognition (MICR). Over 1 billion magnetic stripe cards are in use
today! They have found their way into a number of business applications, such as
credit card transactions, building security access control, and employee attendance
tracking. MICR is most widely used in the banking industry.

586 Part Three Systems Design Methods

Electromagnetic Transmission Electromagnetic ADC technology is based on the
use of radio frequency to identify physical objects.This technology involves attaching
a tag and antenna to the physical object that is to be tracked. The tag contains mem-
ory that is used to identify the object being tracked. The tag can be read by a reader
whenever the object resides within the electromagnetic field generated by the reader.
This identification technology is becoming very popular in applications that involve
tracking physical objects that are out of sight and on the move. For example, electro-
magnetic ADC is being used for public transportation tracking and control, tracking
manufactured products, and tracking animals, to name a few.

Smart Cards Smart card technology has the ability to store a massive amount of in-
formation. Smart cards are similar to, but slightly thicker than, credit cards. They also
differ in that they contain a microprocessor, memory circuits, and a battery. Think of
it as a credit card with a computer on board. They represent a portable storage
medium from which input data can be obtained. While this technology is only begin-
ning to make inroads in the United States, smart cards are used on a daily basis by over
60 percent of the French population. Smart card applications are particularly promis-
ing in the area of health records, where a person’s blood type, vaccinations, and other
past medical history can be made readily available. Other uses may include such ap-
plications as passports, financial information for point-of-sale transactions, and pay
television, to name a few. Another future application could be a combination debit
card that automatically maintains and displays your account balance. A smart card
used in a security application is shown in the margin.

Biometric Biometric ADC technology is based on unique human characteristics or
traits. For example, an individual can be identified by his or her unique fingerprint,
voice pattern, or pattern of certain veins (retina or wrist). Biometric ADC systems con-
sist of sensors that capture an individual’s characteristic or trait, digitize the image pat-
tern, and then compare the image to stored patterns for identification. Biometric ADC
is popular because it offers the most accurate and reliable means for identification.
This technology is particularly popular for systems that require security access.

> System User Issues for Input Design

Because inputs originate with system users, human factors play a significant role
in input design. Inputs should be as simple as possible and be designed to reduce
the possibility of incorrect data being entered. The needs of system users must be
considered. With this in mind, several human factors should be evaluated.

The volume of data to be input should be minimized.The more data that is input,
the greater the potential number of input errors and the longer it takes to input that
data. Thus, numerous considerations should be given to the data that is captured for
input.These general principles should be followed for input design:

• Capture only variable data. Do not enter constant data. For instance, when
deciding what elements to include in a SALES ORDER input, we need PART

NUMBERS for all parts ordered. However, do we need to input PART DESCRIPTIONS

for those parts? PART DESCRIPTION is probably stored in a database table. If we
input PART NUMBER, we can look up PART DESCRIPTION. Permanent (or semiper-
manent) data should be stored in the database. Of course, inputs must be
designed for maintaining those database tables.

• Do not capture data that can be calculated or stored in computer pro-

grams. For example, if you input QUANTITY ORDERED and PRICE, you don’t need
to input EXTENDED PRICE, which is equal to QUANTITY ORDERED PRICE. Another
example is incorporating FEDERAL TAX WITHHOLDING data in tables (arrays)
instead of keying in that data every time.

• Use codes for appropriate attributes. Codes were introduced earlier. Codes
can be translated in computer programs by using tables.

Input Design and Prototyping Chapter Sixteen 587

A Smart Card

F I G U R E 1 6 - 3

Good and Bad Flow

in a Form

 (a) GOOD FLOW

(b) BAD FLOW

If source documents are used to capture data, they should be easy for system
users to complete and subsequently enter into the system.The following suggestions
may help:

• Include instructions for completing the form. Remember that people don’t
like to have to read instructions printed on the back side of a form.

• Minimize the amount of handwriting. Many people suffer from poor pen-
manship.The data entry clerk or CRT operator may misread the data and
input incorrect data. Use check boxes wherever possible so that the system
user only needs to check the appropriate values.

• Data to be entered (keyed) should be sequenced so that it can be read like

this book, top to bottom and left to right. Figure 16-3(a) demonstrates a
good flow.The system user should not have to move from right to left on a
line or jump around on the form, as shown in Figure 16-3(b), to enter data.

588 Part Three Systems Design Methods

F I G U R E 1 6 - 4

Metaphoric Screen
Design

• When possible, use designs based on known metaphors. The classic exam-
ple of this is the personal finance application Quicken. The program’s ease
of use is greatly enhanced by its on-screen re-creation of the checkbook
metaphor. The user writes checks by filling in a graphical representation of
the check. And the check register looks exactly like its paper equivalent. Not
all inputs lend themselves to metaphors, but some are greatly enhanced by
the imitation (see Figure 16-4).

• There are several other guidelines and issues specific to data input for GUI
screen designs. We’ll introduce these guidelines, as appropriate, when we
discuss GUI controls for input design later in this chapter, as well as in the
chapters on output design and user interface design.

> Internal Controls—Data Editing for Inputs

Internal controls are a requirement in all computer-based systems. Internal input con-
trols ensure that the data input to the computer is accurate and that the system is pro-
tected against accidental and intentional errors and abuse, including fraud. The
following internal control guidelines are offered:

1. The number of inputs should be monitored.This is especially true with the batch
method, because source documents may be misplaced, lost, or skipped.

— In batch systems, data about each batch should be recorded on a batch control
slip. Data includes BATCH NUMBER, NUMBER OF DOCUMENTS, and CONTROL TOTALS

(e.g., total number of line items on the documents). These totals can be
compared with the output totals on a report after processing has been
completed. If the totals are not equal, the cause of the discrepancy must be
determined.

— In batch systems, an alternative control would be one-for-one checks. Each
source document would be matched against the corresponding historical
report detail line that confirms the document has been processed. This
control check may be necessary only when the batch control totals don’t
match.

— In online systems, each input transaction should be logged to a separate audit
file so that it can be recovered and reprocessed if there is a processing error or
if data is lost.

Input Design and Prototyping Chapter Sixteen 589

2. Care must also be taken to ensure that the data is valid.Two types of errors can
infiltrate the data: data entry errors and invalid data recorded by system users.
Data entry errors include copying errors, transpositions (typing 132 as 123), and
slides (keying 345.36 as 3453.6).The following techniques are widely used to
validate data:

— Existence checks determine whether all required fields on the input have
actually been entered. Required fields should be clearly identified as such on the
input screen.

— Data-type checks ensure that the correct type of data is input. For example,
alphabetic data should not be allowed in a numeric field.

— Domain checks determine whether the input data for each field falls within the
legitimate set or range of values defined for that field. For instance, an upper-limit
range may be put on PAY RATE to ensure that no employee is paid at a higher rate.

— Combination checks determine whether a known relationship between two
fields is valid. For instance, if the VEHICLE MAKE is Pontiac, then the VEHICLE MODEL

must be one of a limited set of values that comprises cars manufactured by
Pontiac (Firebird, Grand Prix, and Bonneville, to name a few).

— Self-checking digits determine data entry errors on primary keys. A check digit

is a number or character that is appended to a primary key field. The check
digit is calculated by applying a formula, such as Modulus 11, to the actual key.
The check digit verifies correct data entry in one of two ways. Some data entry
devices can automatically validate data by applying the same formula to the
data as it is entered by the system user. If the check digit entered doesn’t match
the check digit calculated, an error is displayed. Alternatively, computer
programs can also validate check digits by using readily available subroutines.

— Format checks compare data entered against the known formatting requirements
for that data. For instance, some fields may require leading zeros, while others
don’t. Some fields use standard punctuation (e.g., Social Security numbers or
phone numbers). A value “A4898 DH” might pass a format check, while a similar
value “A489 ID8” would not.

In Chapter 14, you learned that most database management systems perform data
validation checks similar to those described in the above list. So why do we need in-
put controls? Simple! Most applications today are networked. Erroneous data is both
a network traffic bottleneck and a detractor for transaction throughput and response
time. It is always best to capture and correct input errors as close as possible to the
source—hence the emphasis on input controls and validation.

590 Part Three Systems Design Methods

GUI Controls for Input Design

As mentioned earlier, most new applications being developed today include a graphi-
cal user interface (GUI). Most are based on Microsoft Windows, but the pervasive
adoption of the Internet, combined with Web-based e-commerce, is quickly driving
some interfaces to the Web browser. While GUI designs provide a more user-friendly
interface, they also present more complex design issues than their predecessors.This
chapter will not attempt to address all the GUI design issues; entire books have been
written on the subject. Several of our favorites are listed in the Suggested Readings.

Rather, this chapter will focus on selecting the proper screen-based controls for
entering data on a GUI screen. Think of controls as “widgets” for building a user in-
terface. They are included in most contemporary application development environ-
ments such as Microsoft’s Access and Visual Studio .NET, Sybase’s PowerBuilder,

InPrise’s JBuilder, Symantec’s Visual Café, IBM’s Visual Age, and many others. Many
of these tools share controls (and code) via the repository. This approach is called
repository-based programming.

F I G U R E 1 6 - 5

Repository-Based
Prototyping and
Development

Figure 16-5 illustrates access to a repository that contains input controls and
code. The approach is based on the object-oriented and component-based program-
ming techniques that have become pervasive in application development.This figure
depicts controls that could be used by various systems analysts or programmers to
prototype an interface. The developers can, in a single location, define most of the
properties and constraints for a reusable field and the data validation code for that
field. Once defined, the object or control can be used by any number of other systems
analysts and programmers in the organization. This repository-based approach guar-
antees that every instance of the field will be used in a consistent manner. Furthermore,

Input Design and Prototyping Chapter Sixteen 591

F I G U R E 1 6 - 6

Common GUI
Input Controls

8

6

5

7

4

1

2

3

the repository entries can be changed if business rules dictate, and no additional
changes to the applications will be required.

> Common GUI Controls for Inputs

This section examines some of the most common controls used in GUI-based input
forms. We address the purpose, advantages, disadvantages, and guidelines for each
control. Given this understanding, we are then in a good position to make decisions
concerning which controls should be considered for each data attribute that will be
input on our screens. We will defer the transitions between our screen designs until
Chapter 17,“User Interface Design.”

Refer to Figure 16-6 as a library of the most common screen-based controls for
input data. Each of the controls will be discussed.They are equally applicable to both
Windows- and Web-based interfaces.

Text Box Perhaps the most common control used for input of data is the text
box. A text box consists of a rectangular-shape box that is usually accompanied by a
caption. This control requires that the user type the data inside the box. A text box
can allow for single or multiple lines of data characters to be entered.When a text box
contains multiple lines of data, scrolling features are also normally included.

A text box is most appropriately used when the input data values are unlimited in
scope and the analyst is unable to provide the users with a meaningful list of values
from which they can select. For example, a single-line text box would be an appro-
priate control for capturing a new customer’s last name because the possibilities for
the customer’s last name are virtually impossible to predetermine. A text box would
also be appropriate for capturing data about shipping instructions that describe a par-
ticular order placed by a customer. Once again, the possible values for shipping in-
structions are virtually unlimited. In addition, the multiple-line text box would be
appropriate due to the unpredictable length of the shipping instructions. In cases
where the text box is not large enough to view the entire input data values, the text
box may use scrolling and word-wrap features.

1

592 Part Three Systems Design Methods

Numerous guidelines should be followed when using a text box on an input
screen. A text box should be accompanied by a descriptive, meaningful caption. Avoid
using abbreviations for captions. Only the first character of the caption’s text should
be capitalized.

The location of the caption is also significant. The user should be able to clearly
associate the caption with the text box. Therefore, the caption should be located to
the left of the actual text box or left-aligned immediately above the text box. Finally,
it is also generally accepted that the caption be followed by a colon to help the user
visually distinguish the caption from the box.

Generally, the size of the text box should be large enough for all characters of
fixed-length input data to be entered and viewed by the user. When the length of the
data to be input is variable and could become quite long, the text box’s scrolling and
word-wrapping features should be applied.

Radio Button Radio buttons provide the user with an easy way to quickly iden-
tify and select a particular value from a value set. A radio button consists of a small
circle and an associated textual description that correspond to the value choice. The
circle is located to the left of the textual description of the value choice. Radio but-
tons normally appear in groups—one radio button per value choice. When a user se-
lects the appropriate choice from the value set, the circle corresponding to that
choice is partially filled to indicate it has been selected.When a choice is selected, any
default or previously selected choice’s circle is deselected. Radio buttons also give the
user the flexibility of selecting via the keyboard or mouse.

Radio buttons are most appropriate when a user may be expected to input data
that has a limited predefined set of mutually exclusive values. For example, a user may
be asked to input an ORDER TYPE and GENDER. Each of these has a limited, predefined,
mutually exclusive set of valid values. For example, when the users are to input an
ORDER TYPE, they might be expected to indicate one and only one value from the value
set “regular order,”“rush order,” or “standing order.” For GENDER, the user would be ex-
pected to indicate one and only one value from the set “female,”“male,” or “unknown.”

There are several guidelines to consider when using radio buttons as a means for
data input. First, radio buttons should present the alternatives vertically aligned and
left-justified to aid the user in browsing. If necessary, the choices can be presented
where they are aligned horizontally, but adequate spacing should be used to help
visually distinguish the choices. Also, the group of choices should be visually grouped
to set them off from other input controls appearing on the screen. The grouping
should also contain an appropriate meaningful caption. For example, radio buttons
for male, female, and unknown might be vertically aligned and left-justified with the
heading/caption “Gender” left-justified above the set.

The sequencing of the choices should also be given consideration.The larger the
number of choices, the more thought should be given to the ease of scanning and
identifying the choices. For example, in some cases it may be more natural for the user
to locate choices that are presented in alphabetical order. In other cases, the fre-
quency in which a value is selected may be important in regard to where it is located
in the set of choices.

Finally, it is not recommended that radio buttons be used to select the value for
an input data whose value is simply a yes/no (or on/off state). Instead, a check box
control should be considered.

Check Box As with text boxes and radio buttons, a check box also consists of
two parts. It consists of a square box followed by a textual description of the input
field for which the user is to provide the yes/no value. Check boxes provide the user
with the flexibility of selecting the value via the keyboard or mouse. An input data
field whose value is yes is represented by a square that is filled with a “✓.” The
absence of a “✓” means the input field’s value is no.The user simply toggles the input
field’s value from one value/state to the other as desired.

3

2

Input Design and Prototyping Chapter Sixteen 593

Often a user needs to input a data field whose value set consists of a simple yes
or no value. For example, a user may be asked for a yes/no value for such items as the
following input data: CREDIT APPROVED? SENIOR CITIZEN? HAVE YOU EVER BEEN CONVICTED OF

FRAUD? and MAY WE CONTACT YOUR PREVIOUS EMPLOYER? In each situation a check box con-
trol could be used. A check box control offers a visual and intuitive means for the user
to input such data.

The previous example represented a simplified scenario for the use of a stand-
alone check box. On a single input screen it may be desirable to ask a user to enter
values for a number of related input fields having a yes/no value. For example, a re-
ceptionist at a health clinic may be entering data from a completed patient form.
On a section of that form, the patient may have been asked about a number of ill-
nesses. The patient may have been asked about his or her past medical history and
instructed to “check all that apply” from a list of types of various illnesses. If prop-
erly designed, the receptionist’s input screen would represent each illness as a
separate input field using a check box control. The controls would be physically
associated into a group on the screen. The group would also be given an appropri-
ate heading/caption. Recognize that even though the check boxes may be visually
grouped on the screen, each check box operates as a separate independent
input field.

Following these recommended guidelines will improve the use of check box con-
trols. Make sure the textual description is meaningful to the user. Look for opportuni-
ties to group check boxes for related yes/no input fields and provide a descriptive
group heading.

To aid in the user’s browsing and selecting from a group of check boxes, arrange
the group of check box controls so that they are aligned vertically and left-justified. If
necessary, align horizontally and be sure to leave adequate space to visually separate
the controls from one another. Finally, provide further assistance to the user by
appropriately sequencing the input fields according to their textual description. In
most cases, where the number of check box controls is large, the sequencing should
be alphabetical. In cases where the text description represents dollar ranges or some
other measurement, the sequencing may be according to numerical order. In other
cases, such as those where a very limited number of controls are grouped, the basis
for sequencing may be according to the frequency that a given input data field’s
yes/no value is selected. (All input data fields represented using a check box have a
default value—either checked or unchecked.)

List Box A list box is a control that requires that the user select a data item’s
value from a list of possible choices. The list box is rectangular and contains one or
more rows of possible data values. The values may appear as either a textual descrip-
tion or a graphical representation. List boxes having a large number of possible values
may include scroll bars for navigating through the list of choices.

It is also common for a list box’s row to contain more than one column. For ex-
ample, a list box could simply contain rows having a single column of permissible val-
ues for an input data item called JOB CODE. However, it may be asking too much to
expect the user to recognize what each job code actually represents. In this case, to
place the values of JOB CODE into a meaningful perspective, the list box could include
a second column containing the corresponding JOB TITLE for each job code.

How does one choose between a radio button and a list box control? Both con-
trols are useful in ensuring that the user enters the correct value for a data item. Both
are also appropriate when it is desirable to have the value choices constantly visible
to the user.

The decision is normally driven by the number of possible values for the data
item and the amount of screen space available for the control. Scrolling capabilities
make list boxes appropriate for use in cases where there is limited screen space
available and the input data item has a large number of predefined, mutually exclusive
values from which to choose.

4

594 Part Three Systems Design Methods

There are several guidelines to consider when using a list box as a means for data
input. A list box should be accompanied by a descriptive caption. Avoid using abbre-
viations for captions, and capitalize only the first character of the caption’s text. It is
also generally accepted that the caption be followed by a colon to help the user visu-
ally distinguish the caption from the box.

The location of the caption is also significant. The user should be able to clearly
associate the caption with the list box. Therefore, the caption should appear left-
justified immediately above the actual list box.

There are also several guidelines relating to the list box. First, it is recommended
that a list box contain a highlighted default value. Second, consider the size of the list
box. Generally, the width of the list box should be large enough for most characters
of fixed-length input data to be entered and viewed by the user.The length of the box
should allow for at least three choices and be limited in size to containing about seven
choices. In both cases, scrolling features should be used to suggest that additional
choices are available to the user.

If graphical representations are used for value choices, make sure the graphics
are meaningful and truly representative of the choice. If textual descriptions are used,
use mixed-case letters and ensure that the descriptions are meaningful. It is impor-
tant that these decisions or judgments be based on the perspective and opinions of
the user!

You should also give careful thought to the ease with which a user can scan and
identify the choices appearing in the list box. The list of choices should be left-
justified to aid in browsing. Be sure to involve the user when addressing the order in
which choices will appear in the list. In some cases, it may be natural to the user if the
list of choices appears in alphabetical order. In other cases, the frequency in which a
value is selected may be important in regard to where it is located in the list.

Drop-Down List A drop-down list is another control that requires the user to
select a data item’s value from a list of possible choices. A drop-down list consists
of a rectangular selection field with a small button connected to its side. The small
button contains the image of a downward-pointing arrow and bar. This button is
intended to suggest to the user the existence of a hidden list of possible values for
a data item.

When requested, the hidden list appears to “drop or pull down” beneath the se-
lection field to reveal itself to the user. The revealed list has characteristics similar to
the list box control mentioned in the previous section. When the user selects a value
from the list of choices, the selected value is displayed in the selection field and the
list of choices once again becomes hidden from the user.

A drop-down list should be used in cases where the data item has a large number
of predefined values and screen space availability prohibits the use of a list box. One
disadvantage of a drop-down list is that it requires extra steps by the user, in compar-
ison to the previously mentioned controls.

Many of the guidelines for using list boxes directly apply to drop-down lists. One
exception is the placement of the caption. The caption for a drop-down list is gener-
ally either left-aligned immediately above the selection field portion of the control or
located to the left of the control.

Combination Box A combination box, often simply called a combo box, is a
control whose name reflects the fact that it combines the capabilities of a text box
and list box. A combo box gives the user the flexibility of entering a data item’s value
(as with a text box) or selecting its value from a list (as with a list box).

At first glance, a combo box closely resembles a drop-down list control. Unlike
the drop-down list control, however, the rectangular box can serve as an entry field
for the user to directly enter a data item’s value. Once the small button is selected, a
hidden list is revealed.The revealed list appears slightly indented beneath the rectan-
gular entry field.

6

5

Input Design and Prototyping Chapter Sixteen 595

When the user selects a value from the list of choices, the selected value is displayed
in the entry field and the list of choices once again becomes hidden from the user.

A combo box is most appropriately used where screen space is limited and it is
desirable to provide the user with the option of selecting a value from a list or typing
a value that may or may not appear as an option in the list.

The same guidelines for using drop-down lists directly apply to combo boxes.

Spin Box A spin box is a screen-based control that consists of a single-line text
box followed immediately by two small buttons. The two buttons are vertically
aligned.The top button has an arrow pointing upward, and the bottom button has an
arrow pointing down. This control allows the user to enter data directly into the
associated text box or to select a value by clicking on the buttons to scroll (or “spin”)
through a list of values. The buttons have a unit of measure associated with them.
When the user clicks on one of the arrow buttons, a value will appear in the text box.
The value in the text box is manipulated by clicking on the arrow buttons. The up-
ward pointing button will increase the value in the text box by a unit of measure,
whereas the downward pointing button will decrease the value in the text box by the
same unit of measure.

A spin box is most appropriately used to allow the user to make an input selec-
tion by using the buttons to navigate through a small set of meaningful choices or by
directly keying the data value into the text box.The data values for a spin box should
be capable of being sequenced in a predictable manner.

Spin boxes should contain a label or caption that clearly identifies the input data
item. This label should be located to the left of the text box or left-aligned immedi-
ately above the text box portion of the control. Finally, spin boxes should always con-
tain a default value in the text box portion of the control.

Buttons Strictly speaking, buttons are not input controls.They do not contribute
to the selection of or input of actual data. Nonetheless, input form design is incom-
plete without them. Buttons serve several purposes. They allow a user to commit all
of the data to be processed, or cancel a transaction, or get help. They can be used to
navigate between instances of the same form.

Many more screen-based controls are available for designing graphical user inter-
faces. The above are the most common controls for capturing input data. There are
others, and you should become familiar with them and their proper usage for in-
putting data. In later chapters you will be exposed to several other controls used for
other purposes. Keep on top of developments in the area of GUI as new controls are
sure to be made available.

> Advanced Input Controls

Figures 16-7(a) and (b) illustrate additional controls for data input. These advanced
controls can be used in Windows interfaces to create a more sophisticated look and
feel. Equivalent controls are likely available for Web-based applications, but most Web-
based e-commerce applications aspire to simpler formats. We will not discuss these
controls in detail, but they are summarized as follows:

• Drop-down calendar. A field is illustrated in Figure 16-7(a). Clicking the down
arrow next to the date creates the pop-up calendar shown in Figure 16-7(b).
The familiar calendar is another example of metaphoric design.

• Slider edit calendar. This is a nonnumeric means of selecting a value.
• Masked edit control. This control builds the format checks described earlier

right into the field.
• Ellipsis control. Clicking on the three dots causes a pop-up dialogue to

appear for data entry. It might be used for a field that consists of several
parts (such as an address—street, city, state, and zip code.

8

7

596 Part Three Systems Design Methods

F I G U R E 1 6 - 7

Advanced GUI
Input Controls

Input Design and Prototyping Chapter Sixteen 597

• Alternate numeric spinner. This is a different type of input spinner.
• Internet hyperlink. Similar in function to a button, a hyperlink can be linked

to Web pages, but it can also be linked to other Windows forms. This is an
effective way to hide related input forms that do not apply to all or most
users.

• Check list box. This control is useful for combining several check boxes in
situations where several boxes may be applicable.

• Check tree list box. This control is useful for presenting data options that
need to be hierarchically organized into a treelike structure.

598 Part Three Systems Design Methods

How to Design and Prototype Inputs

How do you design online inputs? Traditionally, designers were concerned with the
overall content, appearance, and functionality of the input screen—in relative isola-
tion of other screens that needed to be designed.The designers knew they would sim-
ply design a subsequent set of menu screens from which the users would select an
option that would lead them to the appropriate input screen. Simple enough. How-
ever, given today’s graphical environments, there is an emphasis on developing an
overall system that blends well into the user’s workplace environment.This emphasis
rarely results in a hierarchical, menu-driven application interface that characterized
the more traditional text- or command-based applications of old.

The following sections will demonstrate how the first stage of input design is
completed. We will draw on examples from our SoundStage case study. We will
examine both client/server, Windows-based inputs and Web-based, e-commerce
inputs that run in a browser. Later, in Chapter 17, we will integrate the outputs
(from Chapter 15) and inputs from this chapter into an overall user interface and
dialogue.

> Automated Tools for Input Design and Prototyping

In the recent past, the primary tools for input design were record layout charts and
display layout charts. Today, this “sketching” approach is not often practiced. It is a
tedious process that is not conducive to today’s preferred prototyping and rapid
application development strategies, which use automated tools to accelerate the
design process.

Before the availability of automated tools, analysts could sketch only rough drafts
of inputs to get a feel for how system users wanted outputs to look or how the batch
records would be structured. With automated tools, we can develop more realistic
prototypes of these inputs.

Arguably, the most commonly used automated tool for input design is the PC-
database application development environment. While Microsoft Access is not pow-
erful enough to develop most enterprise-level applications, you may be surprised at
how many designers use Access to prototype such applications. Given a database
structure (easily specified in Access), you can quickly generate or create forms for
inputting data. You can include most of the GUI controls we described in this
chapter. The users can subsequently exercise those forms and tell you what works
and what doesn’t.

Many CASE tools include facilities for report and screen layout and prototyping
using the project repository created during requirements analysis. System Architect’s

screen design facility was previously demonstrated in Chapter 15, Figure 15-7.
Most GUI-based programming languages, such as Visual Basic, can be easily used

to construct nonfunctional prototypes of inputs.The key term here is nonfunctional.
The forms will look real, but there will be no code for implementing any of the but-
tons or fields.That is the essence of rapid prototyping.

> The Input Design Process

Input design is not a complicated process. Some steps are essential, and others are dic-
tated by circumstances.The steps are:

1. Identify system inputs and review logical requirements.
2. Select appropriate GUI controls.
3. Design, validate, and test inputs using some combination of:

a. Layout tools (e.g., hand sketches, printer/display layout charts, or CASE).
b. Prototyping tools (e.g., spreadsheet, PC DBMS, 4GL).

4. If necessary, design the source document.

In the following subsections, we examine these steps and illustrate a few examples
from the SoundStage project.

Step 1: Identify System Inputs and Review Logical Requirements Input re-
quirements should have been defined during requirements analysis. Physical data flow
diagrams (or design units; both described in Chapter 13) are a good starting point for
input design.Those DFDs identify both the net outputs of the system (external agent
to process) and the implementation method.

Your system development methodology and standards will determine whether
each of these net input data flows may also be described as a logical data flow in a data
dictionary or repository (see Chapter 9).The data structure for a data flow specifies the
attributes or fields to be included in the output. If those requirements are specified in
the relational algebraic notation, you can quickly determine which fields repeat, which
fields have optional values, and so on. Consider the following data structure:

Input Design and Prototyping Chapter Sixteen 599

Data Structure Defining Logical Requirements Comment

ORDER ORDER NUMBER

 ORDER DATE

 CUSTOMER NUMBER

 CUSTOMER NAME

 CUSTOMER SHIP ADDRESS ADDRESS

 (CUSTOMER BILLING ADDRESS ADDRESS)

 1 {PRODUCT NUMBER

QUANTITY ORDERED} N

 (DEFAULT CREDIT CARD NUMBER)

← Unique identifier of the output.

← One of many fields that must take on a

value. Lack of parentheses indicates a

value is required.

← Pointer to a related definition.

← A group of fields that repeats 1 n times.

Parentheses indicate optional value.

← An optional field, meaning one that does

not have to have a value.

In the absence of such precise requirements, there may exist discovery prototypes
that were created during requirements analysis. In either case, a good requirements
statement should be available in some format.

Input requirements specified during requirements analysis for the SoundStage case
study were reviewed, and it was determined that three inputs pertained to the subject
VIDEOTAPE. It was also determined that a single input screen could be used to support
the three inputs—NEW VIDEO TITLE, DISCONTINUED VIDEO TITLE, and VIDEO TITLE UPDATE. The
data content for the three inputs should capture or display the following data:

PRODUCT NUMBER

UNIVERSAL PRODUCT CODE

QUANTITY IN STOCK

PRODUCT TYPE

MANUFACTURER’S SUGGESTED RETAIL UNIT PRICE

CLUB DEFAULT UNIT PRICE

CURRENT SPECIAL UNIT PRICE

CURRENT MONTH UNITS SOLD

CURRENT YEAR UNITS SOLD

TOTAL LIFETIME UNITS SOLD

TITLE OF WORK

CATALOG DESCRIPTION

COPYRIGHT DATE

CREDIT VALUE

PRODUCER

DIRECTOR

VIDEO CATEGORY

The attributes PRODUCT NUMBER, MONTHLY UNIT SALES,YEAR UNIT SALES, and TOTAL UNIT SALES

are not to be entered by the user. Rather, these attributes are to be automatically gen-
erated by the system. Also, for the TITLE COVER, the user will be expected to simply
specify a bitmap file that will contain an actual image of the new video title.

Step 2: Select Appropriate GUI Controls Now that we have an idea of the content
for our input, we can address the proper screen-based control to use for each attribute
to appear on our screen. Using the repository-based programming approach, we would
first check to see if such decisions and other attribute characteristics have already been
made and recorded as repository entries. If so, we would simply reuse the repository
entries that correspond to the attributes we will use on our input screens. In cases
where there is no repository entry, we will have to simply create them.

To choose the correct control for our attributes, we must begin by examining the
possible values for each attribute. Here are some preliminary decisions regarding our
input attributes identified in the previous step:

• PRODUCT NUMBER, CURRENT MONTH UNITS SOLD, CURRENT YEAR UNITS SOLD, TOTAL LIFETIME

UNITS SOLD, UNIVERSAL PRODUCT CODE, MANUFACTURER’S SUGGESTED RETAIL UNIT PRICE,
CLUB DEFAULT UNIT PRICE, CURRENT SPECIAL UNIT PRICE, PRODUCER, and DIRECTOR attrib-
utes all have input data values that are unlimited in scope or noneditable.
Since the designer is unable to provide the user with a meaningful list of
values from which to choose, a single-line text box was chosen. Since the
attribute CATALOG DESCRIPTION also fits this criteria, a multiple-line text box
(referred to as a “memo box” by some products) was selected.

• PRODUCT TYPE, LANGUAGE, VIDEO ENCODING, SCREEN ASPECT, and VIDEO MEDIA TYPE all con-
tain a limited predefined set of values. Therefore, it was determined that radio
buttons would be the preferred screen-based control for these input items.

• It was determined that CLOSED CAPTION? is an input attribute that contains a
yes/no value. Therefore, a check box was selected as the control for this
attribute.

• QUANTITY IN STOCK, RUNNING TIME, COPYRIGHT DATE, and CREDIT VALUE contain data
values that can be sequenced in a predictable manner. Thus, a spin box with
an associated text box would be a good choice for these attributes.

• The attributes VIDEO CATEGORY and VIDEO SUBCATEGORY contain a large number
of predefined values. With so many attributes to display on our screen, it was
determined that a drop-down list would be the best control choice.

• TITLE COVER presented an interesting challenge. Its value is actually a drive, direc-
tory, and name of a file that contains a bitmap image of the cover of the video
title. This attribute will make use of an advanced control called an image box

to store a picture of the video title cover. When this object is selected by the
user, a set of controls and special dialogue (user interaction) will be used to
capture the input for this item. We’ll illustrate this input later in step 3.

Once again, there are many other screen-based controls that could be used to in-
put data. Our examples focus on the most commonly used controls. How well you
complete this activity will be a function of how knowledgeable you are about these
common controls and other more advanced controls.

600 Part Three Systems Design Methods

Step 3: Design, Validate, and Test Inputs This step involves developing

prototype screens for users to review and test.Their feedback may result in the need

to return to steps 1 and 2 to add new attributes and address their characteristics.

Let’s take a look at a couple of SoundStage screen prototypes. Figure 16-8 repre-

sents a possible prototype screen for handling NEW VIDEO TITLE, DISCONTINUED VIDEO TITLE,

and VIDEO TITLE UPDATE.The logo appearing in the upper-right portion of the screen was

included to adhere to a company standard—all screens must display the company

logo.The buttons also appearing in the upper center and right portion of the screen

were added because of the decision to combine the three inputs into a single screen.

They were needed to give the user the option of selecting the desired type of input

and record action.We will discuss these buttons and other command and navigation

controls and their use in Chapter 17.

Note the following issues in Figure 16-8:

The PRODUCT NUMBER, MONTHLY UNIT SALES, YEAR UNIT SALES, and TOTAL UNIT SALES

are screened in a special color as a visual clue to the user that these fields

are locked and the user cannot enter data into them.These fields are

automatically generated by the system. Other fields appearing on the screen

have a white background as a visual clue that they can be edited.

Edit masks were specified for these input fields.The UNIVERSAL PRODUCT CODE2

1

Input Design and Prototyping Chapter Sixteen 601

F I G U R E 1 6 - 8 Input Prototype for Video Title Maintenance

4

3

1

3

3

2

3

5

Edit masks were specified for these input fields. The UNIVERSAL PRODUCT CODE

field contains dashes in specified locations. The user does not actually enter
these dashes. Rather, the user simply types in the numbers, and afterward the
entire content is redisplayed according to the specified edit mask. The same is
true for the MANUFACTURER’S SUGGESTED RETAIL PRICE, CLUB DEFAULT UNIT PRICE, and
CURRENT SPECIAL UNIT PRICE fields. For example, in either of these three fields the
user could type the number 9 and press enter, and the content would be
redisplayed (according to the edit mask) with a dollar sign and decimal point.
Each field on a screen has been given a label that is meaningful to the users.
Feedback from users indicated “CC” was a commonly recognized abbreviation
for “closed caption.” Also, the users indicated that a label was not necessary
for CATALOG DESCRIPTION.
Related radio buttons have been arranged in a group box that contains a
descriptive label. Group boxes are frequently used to visually associate a vari-
ety of controls that are related. For example, the fields inside the group box
labeled “Common Information” were grouped because the user associates
these attributes with any type of SoundStage product. Also, each label that
corresponds to a radio button option is not what is actually input and stored
in the database. Rather, what you see is the meaning of the value. The actual
value that is stored is a code. For example, the code value E would actually
be stored instead of “English” if the user selects the radio button labeled
“English” for the attribute LANGUAGE.
The multiple-line text box has a vertical scroll bar feature if the text fills the
text box. This is a visual clue that there is additional text not appearing
inside the CATALOG DESCRIPTION field.

In prototyping input screens, you need to let the user exercise or test the screens.
Part of that experience should involve demonstrating how the user may obtain
appropriate help or instructions. New versions of Microsoft products use what are
called “tooltips” to provide a brief description of buttons and boxes that appear on a
screen. The tooltip description displays when the user positions the mouse over the
top of the object. Also, the F1 key is universally accepted as initiating context-sensitive
help. A help button is another option. Whichever approach(es) you use, it is not
necessary to actually implement the help in a prototype.

Finally, prototypes need not display all details to a user unless they are requested
(or triggered by a user action). For example, the drop-down list for Motion Picture
Association of America RATING code displays only a default value. However, the
downward-pointing arrow is a visual clue that a list box containing possible values
exists. The list box may be viewed by simply clicking on the downward pointing
arrow.The result of that action is illustrated in the margin.

The previous example was fairly simple because it contained only data that might
be updated in one database table. But what if an input includes data to be updated in
more than one table? And suppose there is a one-to-many relationship between the
tables. Consider MEMBER ORDER, which has a one-to-many relationship to MEMBER

ORDERED PRODUCTS. How do we design a single input to capture the data for both
tables?

Figure 16-9 represents a prototype screen for entering MEMBER and MEMBER ORDERED

PRODUCTS on a single form. The form is segmented into two windowpanes. MEMBER

data is in the top pane, and MEMBER ORDERED PRODUCT data is in the bottom pane. You
may be wondering what happens if the number of MEMBER ORDERED PRODUCTS exceeds
the space allotted for that pane. In other words, where is the scroll bar for the bottom
pane? Many Windows GI controls are “intelligent.” If the number of rows in the bot-
tom pane exceeds the space, a vertical scroll bar will automatically appear.

As one last Windows example, Figure 16-10 shows a single-screen design that con-
solidates three different or similar inputs from our data flow diagrams: NEW MEMBER,
MEMBER CANCELLATION, and MEMBER UPDATE. This form also uses the standard input controls

5

4

3

2

602 Part Three Systems Design Methods

A Drop-Down
Menu

F I G U R E 16-10

Input Prototype for
Member Shopping

F I G U R E 1 6 - 9

Input Prototype for
Member Order

that we’ve discussed in this chapter. The consolidation of logical and physical data
flows into single-screen designs is very common.

Step 4: If Necessary, Design the Source Document If a source document will be
used to capture data, we must also design that document.The source document is for
the system user. In its simplest form, the prototype may be a simple sketch or an in-
dustrial artist’s rendition.

A well-designed source document will be divided into zones. Some zones are
used for identification; these include company name, form name, official form num-
ber, date of last revision (an important attribute that is often omitted), and logos.
Other zones contain data that identifies a specific occurrence of the form, such as
form sequence number (possibly preprinted) and date. The largest portion of the
document is used to record transaction data. Data that occurs once and data that re-
peats should be logically separated.Totals should be relegated to the lower portion of
the form because they are usually calculated and, therefore, not input. Many forms

Input Design and Prototyping Chapter Sixteen 603

F I G U R E 1 6 - 1 1 Input Prototype for Web Shopping Cart

include an authorization zone for signatures. Instructions should be placed in a con-
venient location, preferably not on the back of the form.

Prototyping tools have become more advanced in recent years. Spreadsheet pro-
grams such as Microsoft’s Excel can make very realistic models of forms. These tools
give you outstanding control over font styles and sizes, graphics for logos, and the like.
Laser printers can produce excellent printouts of the prototypes.

Another way to prototype source documents is to develop a rough model using a
word processor. Pass the model to one of the growing number of desktop publishing

604 Part Three Systems Design Methods

F I G U R E 1 6 - 1 2 Input Prototype for Web Shopping Cart

3

2

1

systems that can transform the rough model into impressive-looking forms (so
impressive, in fact, that some companies now develop forms this way instead of
subcontracting their design to a forms manufacturer).

> Web-Based Inputs and E-Business

The last input design considerations we want to address concern Web-based outputs.
The SoundStage project will add various e-commerce and e-business capabilities to
the Member Services information system. Some of these capabilities will require Web-
based inputs that must be designed.

One logical output requirement for the project is Web-based MEMBER ORDER. We
just showed you the client/server version. Now let’s look at the Web-based version. It
is common to present a Web storefront (Figure 16-11 on page 604). In addition to pro-
viding the member with information about SoundStage products (an output), the
member can click the “buy” button to initiate a purchase. That takes the member to
what has become a common metaphor screen in e-commerce applications, the shop-

ping cart screen (see Figure 16-12).Web interfaces tend to be somewhat more artistic

Input Design and Prototyping Chapter Sixteen 605

1. Several concepts are important to input design.
One of the first things you must learn is the differ-
ence between data capture, data entry, and data
processing. Alternative input media and methods
must also be understood before designing the in-
puts. And because accurate data input is so critical

to successful processing, file maintenance, and out-
put, you should also learn about human factors and
internal controls for input design.

2. Data happens! It accompanies business events
called transactions. Examples include orders,
time cards, reservations, and the like.This is an

Chapter Review

Le
a
rn

in
g
 R

oa
d
m

a
p

This chapter provided a detailed overview of the input design tasks of a project. If you

haven’t covered output design, you should go back and read Chapter 15 next. Other-

wise, the next logical chapter is Chapter 17,“User Interface Design.” User interface de-

sign ties the input and output screens together into an overall user experience. As we

did in this chapter, we will address both client/server, Windows-based user interfaces

and Web-based, e-business solutions.

than Windows interfaces. Perhaps that is part of the appeal.The interface needs to be
visually appealing to entice the customer to purchase products in the absence of a
verbal sales pitch. In Figure 16-12:

The shopping cart “frame” is independent of the general navigation frame (on
the left). The latter allows the user to search and browse the entire Web site,
hopefully to find additional products to add to the shopping cart.
Buttons, text boxes, hyperlinks, drop-down boxes, and other common
controls are here applied to a Web interface instead of a Windows interface.
A checkout hyperlink sends the member to the next “page” to complete the
transaction.

The Web interface offers several advantages such as the automatic ability for members
to use their forward and backward buttons to navigate different inventory and order
pages at the Web site.

3

2

1

606 Part Three Systems Design Methods

Input Design and Prototyping Chapter Sixteen 607

1. What is the goal of input design?
2. What is the relationship between source docu-

ments and data entry?
3. What is the next step after data is entered? What

are the different methods used for this step, and
how are they different in terms of the timing?

4. What are the different input methods described
in the textbook?

5. What is the difference between OMR and OCR?
6. For biometric input, what and how is data entered

and processed into the information systems?
7. Why is smart card technology able to store a

tremendous amount of information? What are
some examples of the applications of smart card
technology?

8. Why are human factors important in input
design? What principles need to be considered
in input design?

9. What are some of the techniques used to validate
data?

10. Under what circumstances should we choose to
use radio buttons or check boxes?

11. What are the similarities of a drop-down list and a
combo box?

12. What are some advanced input controls sug-
gested in the textbook?

13. What are the steps for input design process?
14. What is a well-designed source document?
15. What are the challenges facing Web interfaces

compared to Windows interfaces when designing
input suggested in the textbook?

Review Questions
1

2

important concept because system designers must
determine when and how to capture the data.The
designer must understand the difference between
the following:

a. Data capture is the identification and acquisi-
tion of new data.

b. A source document is a paper form used to
record business transactions in terms of data
that describe those transactions.

c. Data entry is the process of translating the
source data into a computer-readable format.
That format may be a magnetic disk, an optical
mark form, a magnetic tape, or a floppy
diskette, to name a few.

3. Data must be processed using one of the following
techniques:

a. In batch processing, the entered data is col-
lected into files called batches that are
processed later.

b. In online processing, the captured data is
processed immediately.

c. In remote batch processing, data is entered
using online editing techniques; however,
the data is collected into batches for later
processing.

4. The systems analyst usually selects the method and
medium for all inputs. Input methods include:

— Keyboard — Optical mark
— Mouse — Magnetic ink
— Touch screen — Electromagnetic signature
— Point of sale — Smart cards
— Sound and speech — Biometrics

5. Most new applications being developed today con-
sist of screens having a “graphical”-looking
appearance.This type of appearance is referred to
as a graphical user interface (GUI).

6. Inputs should be as simple as possible and designed
to reduce the possibility of incorrect data being en-
tered. Furthermore, the needs of data entry clerks
must also be considered.With this in mind, system
designers should understand human factors that
should be evaluated during input design.

7. Input controls ensure that the data input to the
computer is accurate and that the system is pro-
tected against accidental and intentional errors
and abuse, including fraud.

8. When designing input screens for an application
that will contain a GUI appearance, the designer
must be careful to select the proper control ob-
ject for each input attribute. Each control serves
a specific purpose, has certain advantages and
disadvantages, and should be used according to
guidelines. Some of the most commonly used
screen-based controls for inputting data include
text box, radio button, check box, list box, drop-
down list, combination box, and spin box.

608 Part Three Systems Design Methods

1. What overriding goal should every systems
designer, in performing input design, never lose
sight of?

2. The owner of a chain of fast-food sit-down restau-
rants has hired your company to design a method
to get orders to customers faster, with less labor,
but without any loss of quality. Currently, the fast-
food restaurants use the conventional method of
having customers wait in line to order and pay;
then the order is printed out and given to the
food preparation specialist (chef). Can you think
of how technology might be used to meet these
objectives?

3. Look at the following portion of a data input
screen used by the technicians in a company to
order parts from the company warehouse. Is
there anything wrong with the design of this in-
put screen?

ENTER TECHNICIAN #: ENTER TECHNICIAN NAME:

ENTER PART #: ENTER PART DESCRIPTION:

4. Point of sale (POS) terminals, such as those used
in ATMs, gas stations, and in stores, have become
extremely common due to their convenience and
versatility. But in terms of human interface de-
sign, their input methods sometimes leave some-
thing to be desired. What are the areas where you
think improvement is needed?

5. Answer the following true/false questions: Qualify
or explain your answers as needed.

a. System users tend to be confused by data en-
try codes, and frequently enter the wrong
code; therefore, their use should be avoided.

b. Batch processing is still a viable data process-
ing process.

c. There is little correlation in terms of data ac-
curacy between the point at which data origi-
nates and the length of time before the data is
captured.

d. The computer mouse was invented in order to
optimize the use of graphical-user interfaces
on personal computers using Windows or
Apple operating systems.

e. Using metaphor-based screen design is consid-
ered too “cute” and unprofessional.

f. Radio buttons are best used only when there
is a very small number of previously defined
values that have no commonality.

6. Think about the best and the worst data input
screens that you have used, heard about, and/or
worked on. Using your own experience, as well as

this chapter, list at least five input screen require-
ments and/or principles (other than the one de-
scribed in Question 3) that you consider to be
important. Explain why you selected each of them.

7. You are designing an input screen for a client
treatment data system which will be used by a
county in your state. Alcohol and drug treatment
providers will enter demographic and treatment
data on their clients, then send it to the county
Department of Behavioral Health.The system will
run on a client/server network using a relational
DBMS. Business rules require an entry for all data
elements; there are no discretionary or optional
fields. Data will include a mixture of alphanu-
meric data, numeric data used for calculations,
and dates. Some of the data fields will have inter-
dependencies between them, such as a field for
gender and another field for whether the client is
pregnant. Unique client identifiers will be used as
keys and will be generated by the system.

Where should you design the data input con-
trols and edits—at the client-side or server-side of
the network? Why? What types of edits and vali-
dation checks should be included?

8. Match the definitions or examples in the first col-
umn with the terms in the second column:

A. Magnetic stripe card 1. Slider edit
calendar

B. Single-line text box 2. Data capture
with two vertically
aligned buttons

C. FedEx pickup 3. OMR
and delivery data
processing method

D. Text description of 4. Quicken
value choice associated
with circle

E. Voice recognition 5. Microsoft Visual

system Basic

F. Identification and 6. Type of ADC
acquisition of technology
new data

G. Input device 7. Check digit
most prone to formula
data entry errors

H. Paper form 8. Radio
used to record button
business transaction(s)

I. Example of 9. Remote batch
metaphor-based processing
screen design

Problems and Exercises

J. Optical mark 10. Biometric ADC
forms used for system
objective question exams

K. Nonnumeric method 11. Source
for value selection document

L. Technique to 12. Keyboard
determine primary key
data entry errors

M. Example of 13. Spin box
repository-based
programming approach

9. Text boxes may be the most frequently used con-
trol for data input in GUI interfaces. What conven-
tions and guidelines should the system designer
follow when designing input screens that include
text boxes?

10. Fill in the blanks for the following statements:

a. Source documents should be portioned into
different zones for _________ data, _________
data, _________, and depending upon the
form, for data that identifies a unique
_________ of the form.

b. After _________ system inputs and reviewing
_________, the next step in the _________
process is to _________.

c. _________ GUI controls allow a _________ to
automatically appear if the number of
_________ exceeds the allotted space for that
_________.

d. Although technically _________ are _________
input controls, they enable users to _________
to or _________ a transaction.

e. The _________ data input control is the
_________, which is best used when the
scope of input data values is _________.

11. What basic questions should you ask yourself in
deciding on the best GUI control to use for each
data attribute to be captured and input? Provide
examples of data attributes, and instructions on
matching the data attribute with the GUI control
that is the best in that situation.

12. Designs based on generic, easily identifiable
metaphors are generally well received by system
users, particularly novice ones, because their fa-
miliarity enhances the perception of ease-of-use
and user-friendliness.Your company wants to re-
place its paper telephone message forms with an
electronic version that can be sent as an e-mail
attachment. Create a metaphoric screen design
for one of the common paper telephone message
forms. (Hint:This will not require a screen design
tool, but can be designed in Microsoft Word or
Excel. Create your own, rather than using one of
the templates that are commonly available.)

13. As the Internet continues to grow in its business
influence, it is increasingly being used for applica-
tions that were formerly client/server-based appli-
cations. What are some of the similarities in data
input design between Web-based applications
and client/server-based applications? What are
some of the differences? Give examples.

Input Design and Prototyping Chapter Sixteen 609

Projects and Research

1. As the textbook mentions, many organizations
once employed huge numbers of clerks to perform
data entry. As personal computers and online com-
puting became more common, system users began
assuming responsibility for data entry, and the
ranks of data entry clerks shrank dramatically in
most organizations.Today the explosive growth of
the Internet is having a similarly profound impact
upon the organizational structure of most large
companies and government agencies.

a. Research the transformation of responsibility
for data entry, from data entry clerks to system
users, that occurred in the 1980s and 1990s.
Discuss the issues faced by these organizations
and their employees.

b. Research the transformation that is taking place
today as the Internet facilitates the growth of

customer-based data entry. What are the impli-
cations? What is the impact upon companies’
organizational structure, its employees, and its
customers?

c. Research a large company or government
agency in your area. Compare its organiza-
tiona structure 25 years ago to 10 years ago and
to today. What relevant changes did you find?

d. Research articles in business and IT journals re-
garding the impact technology is having upon
organizations in the private and public sectors.
What are some of the predictions regarding
what the next transformation in data entry will
be? Do you think these predictions will come
true?

e. Overall, are we better off or worse off for these
changes?

2. Despite the inroads being made by other input
methods, the venerable keyboard is still far and
away the most common method used for data in-
put, and it is likely to stay that way for a while. But
could the current basic keyboard design itself be
improved? Research the history of the keyboard, as
well as recent developments in keyboard design,
then consider the following questions:

a. What is the basis for the “QWERTY” layout?
b. Are more efficient keyboard layouts available? If

so, why aren’t they being widely used?
c. Keyboards are a form of tactile input. Are there

methods of tactile data input other than press-
ing a key which represents a letter or number?

d. What about the impact of repetitive stress dis-
orders such as carpal tunnel syndrome, which
can be caused or exacerbated by keyboards?
What is the estimated annual cost in lost pro-
ductivity and medical care?

e. If you were asked to redesign the keyboard,
what changes would you make? Why?

3. Voice recognition technology is used fairly fre-
quently for entering commands or responding to
automated questions data over the telephone. Also,
some technology experts predict that voice recog-
nition will one day replace keyboards for data en-
try; currently there are very few applications that
use voice recognition technology for data entry. Re-
search recent developments in voice recognition
technology and respond to the questions below:

a. What articles did you find? What are their view-
points regarding voice recognition technology?

b. What is the current state of the art of voice
recognition technology?

c. Do you think that voice recognition technology
has finally matured to the point where it can
soon be a viable option for keyboard data en-
try? Or does it still need some further maturing?
Or does it represent a technological dead end?
Explain.

d. If you have access to applications that include
voice recognition software for data or text en-
try (or can download a free trial copy without
violating any licensing or usage restrictions),
try using them. How would you evaluate
them?

4. A number of emerging technologies are classified
as automatic data capture (ADC) technologies. In
essence, they get people out of the data input
loop. One of these technologies is radio frequency
identification (RFID) technology, which is quickly
becoming very common. Research RFID technol-
ogy and business applications on the Web and/or
in your school’s library.

a. Explain how RFID devices work.
b. How is RFID currently being used in the private

and public sectors?
c. What are their main advantages? Their

disadvantages?
d. What are some of the social, economic, and po-

litical implications regarding RFID technology?
e. What will be some of the applications to which

RFID technology will put to use 10 years from
now?

5. Generally, one doesn’t have to look too far in
most organizations to find a poorly designed
source document or data input screen, or both.
Contact a nonprofit or similar type of organiza-
tion and volunteer to review their forms and data
input screens, and to redesign one or two of
them.

a. Describe the organization for which you did
the volunteer work.

b. Did you find any design problems in either
the source documents or the input screens?
Describe the design problems.

c. Describe the source document and/or input
screen that you redesigned. Include a sample if
possible.

d. What changes did you make, and what process
did you follow in making the changes? Include
a sample.

e. What challenges did you face in redesigning the
form and/or screen?

f. Was the organization pleased with your re-
design? Is it using the new form and screen?

6. Your Web design company has been hired by a su-
permarket chain to develop a short Web-based sur-
vey on what customers like and don’t like about
the supermarket chain.The objective is to have an
employee in each store walking through the store
with a laptop and randomly choosing customers to
survey regarding their likes and dislikes. Cus-
tomers will be asked three to five questions. Sur-
vey data will be entered directly into the laptop via
a Web-based application.

a. What are some of the high-level considerations
that need to be addressed before designing the
survey form?

b. What questions would you include in the
survey?

c. What other data would you include?
d. Design a prototype of the form.
e. Was this easier or harder to do than you

thought? Describe any challenges you faced
that you didn’t anticipate.

610 Part Three Systems Design Methods

Input Design and Prototyping Chapter Sixteen 611

1. Input design affects not only the ease of use of a
system, but also the security. Find examples of how
systems can be crashed by the characters that are
input into text boxes. Find out how to address these
security loopholes or concerns. Prepare a short
paper on this material and present to the class.

2. In minicase 2 from the previous chapter, you cre-
ated an online form. Did you appropriately use the
different methods for inputs, such as input boxes,
radio buttons, drop downs, and the like? What
would you change? Why?

3. Make the changes you suggested in minicase 2.
Submit screen shots of the form both before and
after you made the changes. Be sure to include the
URL of your form, so that the professor can check
your work.

4. Research input methods for blind users. Write a
short paper briefly describing these input methods
and how you can integrate them into an informa-
tion system.

Minicases

1. Roundtable discussion: How can we make informa-
tion systems and computers (in general) easier to
use? Give specific examples.

2. Individual: By now, you have done a lot of group
work.Think back to the last time somebody lost
her or his temper or was frustrated. Was the impact
of the words said out of anger or frustration magni-
fied if they were communicated via e-mail? Do you

think we should take more care in our comments
when they are written, or when the other person
cannot read our body language?

3. Team or individual: It has been said that having
limited funds spurs creativity. Do you think this is
true? If so, how can a company or an individual
stay creative and mentally hungry as they become
more financially stable?

Team and Individual Exercises

Andres, C. Great Web Architecture. Foster City, CA: IDG

Books Worldwide, 1999. Books on effective Web interface

design are beginning to surface.The science of human en-

gineering for Web interfaces has not yet progressed as far

as client/server interfaces (e.g., Windows). Here is an

early title that explores many dimensions of Web archi-

tecture and interfaces using real-world examples.

Application Development Strategies (monthly periodical).

Arlington, MA: Cutter Information Corporation.This is our

favorite theme-oriented periodical that follows system de-

velopment strategies, methodologies, CASE, and other rel-

evant trends. Each issue focuses on a single theme. This

periodical will provide a good foundation for how to

develop input prototypes.

Dunlap, Duane. Understanding and Using ADC Technolo-

gies. A White Paper for the ADC Industry. A SCAN TECH

1995 Presentation. October 23, 1995, Chicago. We are

indebted to our friend and colleague. Professor Dunlap is

a leader in the field of ADC. This paper was the basis for

much of our discussion on the trends in ADC technology.

Fitzgerald, Jerry. Internal Controls for Computerized Infor-

mation Systems. Redwood City, CA: Jerry Fitzgerald & As-

sociates, 1978. This is our reference standard on the

subject of designing internal controls into systems.

Fitzgerald advocates a unique and powerful matrix tool

for designing controls. This book goes far beyond any

introductory systems textbook; it is must reading.

Galitz, W. O. User-Interface Screen Design. New York: John

Wiley & Sons, 1993. This is our favorite book on overall

user interface design.The author offers several flowcharts

of the decision process in applying GUI controls to inputs.

Kozar, Kenneth. Humanized Information Systems Analysis

and Design. New York: McGraw-Hill, 1989. A good user-

oriented treatment of input design.

Suggested Readings

D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

BUSINESS REQUIREMENTS STATEMENT

Strategic Enterprise Plan Strategic Information Systems Plan

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M

A
N

A
LY

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L
A
T

IO
N

&
 D

E
L
IV

E
R

Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

STATEMENT OF WORK

PROBLEM STATEMENT (using the PIECES framework)

SYSTEM IMPROVEMENT OBJECTIVES (using the PIECES framework)

SYSTEM PROPOSAL (or REQUEST FOR SYSTEM PROPOSALS)

ARCHITECTURAL MODEL

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT
APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM
INTERFACE

SOLUTIONSM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

D
E

C
IS

IO
N

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

17User Interface Design

Chapter Preview and Objectives

In this chapter you will learn how to design and prototype the user interface for a system.

The user interface should provide a friendly means by which the user can interact with

the application to process inputs and obtain outputs. In Chapters 15 and 16, you learned

how to design and prototype outputs and inputs. User interface design and prototyping

address the overall presentation of the application and may require revisions to the

preliminary output and input prototypes. Today there are two commonly encountered

interfaces: terminals (or microcomputers behaving as terminals) used in conjunction with

mainframes and the more common display monitors connected to microcomputers. There

are also several strategy styles for designing the user interface for systems. You will know

that you’ve mastered user interface design when you can:

❚ Distinguish between different types of computer users and design considerations

for each.

❚ Identify several important human engineering factors and guidelines and incorporate

them into a design of a user interface.

❚ Integrate output and input design into an overall user interface that establishes the

dialogue between users and computer.

❚ Understand the role of operating systems, Web browsers, and other technologies for

user interface design.

❚ Apply appropriate user interface strategies to an information system. Use a state

transition diagram to plan and coordinate a user interface for an information system.

❚ Describe how prototyping can be used to design a user interface.

Designing the user interface for the in-house client/server part of the SoundStage
Member Services system has been a longer process than Bob Martinez anticipated.
Some of the final design is shown in Figures 17-17, 17-18, and 17-19, but it didn’t start
out looking like that. Bob’s first design used icons instead of text for all menu buttons.
For instance, a picture of a stack of papers indicated “Orders,” and a picture of bal-
loons indicated “Promotions.” But feedback from users testing the interface revealed
that many of them had no clue what those icons meant and wasted time trying to fig-
ure them out. So a decision was made to switch to text labels.Various kinds of con-
trols were tested for the screens shown in Figures 17-18 and 17-19. Each iteration
went through user testing, leading to revisions and more user testing. It was all a lot
of work. But Bob knew this work on the front end would be much less than the work
of answering thousands of phone calls from confused and upset users if they imple-
mented a user interface that was lacking.

614 Part Three Systems Design Methods

Introduction

In the two previous chapters, we addressed output and input design. In this chapter,
we integrate output and input design into an overall user interface that establishes the
dialogue between users and computer. The dialogue determines everything, from
starting the system or logging into the system, to setting options and preferences, to
getting help. And the presentation of the outputs and inputs is also part of the inter-
face. We need to examine the screen-to-screen transitions that can occur. In
client/server applications (e.g. network-based Windows) and Web applications (e.g.,
Internet- or intranet-based browsers), the user has many alternative paths through
menus, hyperlinks, dialogues, and the like. This makes for very accommodating and
friendly user interfaces, but it greatly complicates design and programming.

Today most user interfaces are designed by rapidly constructing prototypes.
These prototypes are generated using rapid application development environments
such as Microsoft’s Visual Studio, Borland’s JBuilder (for Java), or IBM’s VisualAge

(for various languages). These prototypes are rarely fully functional, but they do con-
tain enough functionality to demonstrate the interface. For example, a help system
prototype may be functional to the extent that it calls up a few sample screens to
demonstrate levels of assistance. Or a security system might have just enough func-
tionality to demonstrate representative log-in errors even though it is not actually
authenticating users. When we get to the construction phase of the life cycle,
programmers and analysts will complete the functionality.

We begin our study by examining types of users, human factors, and human
engineering guidelines that affect user interface design.

> Types of Computer Users

Nowhere are human factors as important as they are in user interface design. Just ask
the typical systems analyst who spends half the day answering phone calls from sys-
tem users who are having difficulty using information systems and computer applica-
tions. The overriding consideration of user interface design is the same as that for
business and technical writing—understand your audience. In interface design, the
audience is the SYSTEM USER.

On the chapter home page at the beginning of this chapter, we highlighted SYS-
TEMS ANALYSTS, SYSTEM DESIGNERS, and SYSTEM BUILDERS as the stakeholders that actually
perform user interface design, but we also highlighted SYSTEM USERS as the stakeholders
for which the user interface design is intended. Users must test and evaluate that
design.The chapter home page also illustrates that user interface design is performed

User Interface Design Concepts and Guidelines

during the DESIGN and CONSTRUCTION phases and that the activities result in the INTER-
FACE SPECIFICATIONS (prototypes) and PROGRAM building blocks.

SYSTEM USERS can be broadly classified as either expert or novice—and either
nondiscretionary or discretionary.

An expert user is an experienced computer user who has spent considerable time
using specific application programs.The use of a computer is usually considered nondis-
cretionary. In the mainframe computing era, this was called a dedicated user. Expert
users generally are comfortable with (but not necessarily experts in) the application’s
operating environment (e.g., Windows or a Web browser). They have invested time in
learning to use the computer.They will invest time in overcoming less-than-friendly user
interfaces. In general, they have memorized routine operations to an extent that they
neither seek nor want excessive computer feedback and instructions.They want to be
able to accomplish their task in as few actions and keystrokes as possible.

The novice user (sometimes called a casual user) is a less experienced com-
puter user who will generally use a computer on a less frequent, or even occasional,
basis.The use of a computer may be viewed as discretionary (although this is becom-
ing less and less true). Stated simply, the novice users need more help than the expert
users. Help takes many forms, including menus, dialogues, instructions, and help
screens. Most managers, despite their increasing computer literacy, fall into the novice
category. They are paid to recognize and solve problems, exploit opportunities, and
create plans and manage the vision—not to learn and use computers. Computers are
considered tools by modern managers. When the need arises, they want to realize
their benefit as quickly as possible and move on.

Expert and novice users are actually extremes on the continuum of all users. The
totally novice user who hasn’t used a computer is becoming less common. Few college
curricula don’t require computer literacy for all majors, and students in all majors have
discovered the value of increased interdisciplinary computer expertise (sometimes
called informatics). Novice users also usually graduate to expert users through prac-
tice and experience.The net societal impact of the Internet is that more people are be-
coming increasingly comfortable with computers—creating a class of users that is less
novice and more expert with each passing year. Is it any wonder that user interface de-
sign is racing toward Web browser-like interfaces, even within Windows applications?

It is difficult to imagine today’s young students and professionals being uncom-
fortable with computers. Regardless, most of today’s systems are designed for the
novice system user but adapting to the expert user. The focus is on user friendliness
or human engineering.

> Human Factors

Before designing user interfaces, you may find it useful to understand the elements
that frequently cause people to have difficulty with computer systems. Our favorite
user interface design expert,Wilbert Galitz (see the Suggested Readings) offers the fol-
lowing interface problems:

• Excessive use of computer jargon and acronyms.
• Nonobvious or less-than-intuitive design.
• Inability to distinguish between alternative actions (“What do I do next?”).
• Inconsistent problem-solving approaches.
• Design inconsistency.

According to Galitz, these problems result in confusion, panic, frustration, boredom,
misuse, abandonment, and other undesirable consequences.

To solve these problems, Galitz offers the following overriding “commandments”
of user interface design:

• Understand your users and their tasks. This becomes increasingly difficult
as we extend our information systems to implement business-to-consumer
(B2C) and business-to-business (B2B) functionality using the Internet.

User Interface Design Chapter Seventeen 615

expert user an experienced

computer user.

novice user an inexperi-

enced or casual computer

user.

• Involve the user in interface design. Find out what the users like and dislike
in their current applications. Involve them in screen design and dialogue
from the beginning. This commandment is easily enabled with today’s PC-
database and rapid application development technology.

• Test the system on actual users. Observation and listening are the key skills
here. After initial training, try to avoid excessive coaching and forcing users
to learn the system. Instead, observe their actions and mistakes, and listen to
their comments and questions to better understand their interaction with the
user interface.

• Practice iterative design. The first user interface will probably be unsatisfac-
tory. Expect any user interface design to go through multiple design itera-
tions and testing. When is the interface finished? Probably never! But Galitz
suggests that a good goal is that 95 percent of the typical users (be they
novice or expert) can perform intended tasks (be they routine or less com-
mon) without difficulty or help.

> Human Engineering Guidelines

Given the type of user, a number of important human engineering factors should be
incorporated into the design:

• The system user should always be aware of what to do next. The system
should always provide instructions on how to proceed, back up, exit, and the
like. Several situations require some type of feedback:
— Tell the user what the system expects right now. This can take the form

of a simple message such as READY, TYPE COMMAND, SELECT ONE OR MORE

OPTIONS, or TYPE DATA.
— Tell the user that data has been entered correctly. This can be as simple

as moving the cursor to the next field in a form or displaying a message
such as DATA OK.

— Tell the user that data has not been entered correctly. Short, simple mes-
sages about the correct format are preferred. Help functions can supple-
ment these messages with more extensive instructions and examples.

— Explain to the user the reason for a delay in processing. Some actions
require several seconds or minutes to complete. Examples include sort-
ing, indexing, printing, and updating. Simple messages such as SORTING—
PLEASE STAND BY, or INDEXING—THIS MAY TAKE A FEW MINUTES or PLEASE WAIT tell
the user that the system has not failed. The Windows hourglass or the
Internet Explorer revolving globe are iconic clues that processing is
occurring.

— Tell the user that a task was completed or was not completed. This is
especially important in the case of delayed processing, but it is also
important in other situations. A message such as PRINTING COMPLETE or
PRINTER NOT READY—TRY AGAIN OR CONTACT YOUR NETWORK ADMINISTRATOR will
suffice.

• The screen should be formatted so that the various types of information,

instructions, and messages always appear in the same general display

area. This way, the system user knows approximately where to look for spe-
cific information. In most windowing environments, standards often dictate
the location of status messages or pop-up dialogue windows.

• Messages, instructions, or information should be displayed long enough to

allow the system user to read them. Most experts recommend that impor-
tant messages be displayed until the user acknowledges them.

• Use display attributes sparingly. Display attributes, such as blinking, high-
lighting, and reverse video, can be distracting if overused. Judicious use

616 Part Three Systems Design Methods

allows you to call attention to something important—for example, the next
field to be entered, a message, or an instruction.

• Default values for fields and answers to be entered by the user should be

specified. In windowing environments, valid values are frequently presented
in a separate window or dialogue box as a scrollable region. The default
value, if applicable, should usually be first and clearly highlighted.

• Anticipate the errors users might make. System users will make errors, even
when given the most obvious instructions. If it is possible for the user to
execute a dangerous action, let it be known (for example, a message or dia-
logue box could read ARE YOU SURE YOU WANT TO DELETE THIS FILE?). An ounce of
prevention goes a long way!

• With respect to errors, a user should not be allowed to proceed without

correcting an error. Instructions (and examples) on how to correct the error
should be displayed. The error can be highlighted with sound or color and
then explained in a pop-up window or dialogue box. A HELP option can be
defined to trigger display of additional instructions.

• If the user does something that could be catastrophic, the keyboard should

be locked to prevent any further input, and an instruction to call the ana-

lyst or technical support should be displayed.

> Dialogue Tone and Terminology

The overall flow of screens and messages is called a dialogue. The tone and termi-
nology of a dialogue are very important human factors in user interface design. With
respect to the tone of the dialogue, the following guidelines are offered:

• Use simple, grammatically correct sentences. It is best to use conversational
English rather than formal, written English.

• Don’t be funny or cute! When someone has to use the system 50 times a
day, the intended humor quickly wears off.

• Don’t be condescending. Don’t insult the intelligence of the system user. For
instance, don’t offer repeated praise or rewards.

With respect to the terminology used in a computer dialogue, the following sug-
gestions may prove helpful:

• Don’t use computer jargon.

• Avoid most abbreviations. Abbreviations assume that the user understands
how to translate them. Check first!

• Use simple terms. Use NOT CORRECT instead of INCORRECT. There is less chance
of misreading or misinterpretation.

• Be consistent in your use of terminology. For instance, don’t use both EDIT

and MODIFY to mean the same action.
• Carefully phrase instructions—use appropriate action verbs. The following

recommendations should prove helpful:
— Use SELECT or CHOOSE instead of PICK when referring to a list of options. Be

sure to indicate whether the user can select only one or more than one
option from the list of available options.

— Use TYPE, not ENTER, to request the user to input specific data or instruc-
tions. The term ENTER may be confused with the enter key.

— Use PRESS, not HIT or DEPRESS, to refer to keyboard actions. Whenever possi-
ble, refer to keys by the symbols or identifiers that are actually printed
on the keys. For instance, the ↵ symbol is used on some keyboards to
designate the RETURN or ENTER key.

— When referring to the on-screen mouse cursor, use the term POSITION THE

CURSOR, not POINT THE CURSOR.

User Interface Design Chapter Seventeen 617

dialogue the overall flow of

screens and messages for a

application.

Most of today’s user interfaces are graphical.The basic structure of the graphical user

interface (or GUI) is provided within either the computer operating system or the In-
ternet browser of choice. In client/server information systems, the user interface
client is implemented to execute within the PC operating system. In Internet and in-

tranet information systems, the user interface is implemented to execute within the
PC’s Web browser (which, in turn, executes within the PC operating system).

> Operating Systems and Web Browsers

The dominant GUI-based operating system for today’s client computers (as in a
client/server network) is Microsoft Windows (various versions). Apple’s Macintosh

and the various flavors of UNIX (including Linux) also hold market share. For the
growing numbers of handheld and palm-top client computers, the current dominant
operating system is Palm’s Palm OS. Microsoft Windows Mobile also holds a percent-
age of that market.

Increasingly, the operating system is not the key technology factor in user inter-
face design. Internet and intranet applications run within a Web browser. Most
browsers run in many operating systems, making it possible to design a user interface
that is less dependent on the computer itself. The advantages of this computer plat-

form independence should be obvious. Instead of writing a user interface for each
anticipated computing platform and operating system, you write it for one or two
browsers. As we go to press, the dominant Web browsers are Microsoft Internet

Explorer and Mozilla Firefox, but version problems within browsers can exist in the
user community.

In addition to the operating systems and browsers, the overall design of a user
interface is enhanced or restricted by the available features of the users’ display
monitor, keyboard, and pointing devices. Let’s briefly examine some of the other
considerations.

> Display Monitor

The size of the display area is critical to user interface design. Not all displays are PC
monitors! A number of non-PC terminals still exist.Terminals are non-PC displays that
merely display data and information transmitted by a remote computer, usually a main-
frame. And while many terminals have been replaced by PCs, users are still frequently
forced to interface with the legacy mainframe applications using terminal emulators

that open a window on the screen that still displays information and instructions in
the original, pre-Windows terminal format. For these terminals and terminal emula-
tors, the two most common display areas were 25 lines by 80 columns and 25 lines by
132 columns.

Fortunately, the personal computer monitor has replaced most terminals, and most
newer and reengineered applications are being written to a graphical interface. For PC
monitors, we don’t measure the display in terms of lines and columns. And while di-
agonal measures such as inches are often quoted, the more relevant measure is graph-
ical resolution. Graphical resolution is measured in pixels, the number of distinct
points of light displayed on the screen. Today’s most common resolution is 1,024,000
horizontal pixels by 800,000 vertical pixels in a 17-inch diagonal display. Larger display
sizes support even more pixels; however, the designer should generally design the user
interface with the assumption of the lowest common or reasonable denominator.

Obviously, handheld and palm-top computers and specialized terminal displays
(such as those in cash registers and ATMs) support much smaller displays that must
be considered in user interface design.

618 Part Three Systems Design Methods

User Interface Technology

The manner in which the display area is shown to the user is controlled by both
the technical capabilities of the display and the operating system capabilities. Paging
and scrolling are the two most common approaches to showing the display area to
the user. Paging displays a complete screen of characters at a time.The complete dis-
play area is known as a page (or screen).The page is replaced on demand by the next
or previous page, much like turning the pages of a book. Scrolling moves the dis-
played information up or down on the screen, one line at a time.This is similar to the
way movie and television credits scroll up the screen at the end of a movie. Once
again, PC displays offer a wider range of paging and scrolling options.

> Keyboards and Pointers

Most (but not all) terminals and monitors are integrated with keyboards.The obvious
exception is palm computers such as the PalmPilot. The critical features of the key-
board include character set and function keys.

The character set of most PC keyboards is fairly standard.These character sets can
be extended with software to support additional characters and symbols. For special-
ized terminals or workstations, the manufacturer can design custom keyboards. Most
keyboards contain special keys called function keys. PC keyboards usually have 12
such function keys. Terminals have been known to include as many as 32 function
keys. Function keys (usually labeled F1, F2, and so on) can be used to program
certain common, repetitive operations in a user interface (for example, HELP, EXIT, and
UPDATE). In an operating system, function keys are often predefined, but application
developers can customize them for specific systems. Function keys should be used
consistently. That is, any information system’s programs should consistently use the
same function keys for the same purposes. For example, F1 is commonly used as the
help key in both operating systems and applications.

Most GUIs (including operating systems and browsers) use pointing devices includ-
ing mice, pens, and touch-sensitive screens. Obviously, the most common pointer is the
mouse. A mouse is a small hand-size device that sits on a flat surface near the terminal.
It has a small roller on the underside. As you move the mouse on the flat surface, it causes
the pointer to move across the screen. Buttons on the mouse allow you to select objects
or commands to which the cursor has been moved. Driven by the need to scroll through
Web pages and other documents, many mice now include a wheel that allows a user to
more easily scroll through pages and documents without using the scroll bars.

Pens are becoming important in applications that use handheld devices (such as
PalmPilots). Because such devices frequently don’t include keyboards, the user inter-
face may need to be designed to allow “typing” on a keyboard displayed on the screen
or using a handwriting standard such as Graffiti or Jot. Prebuilt components exist to
implement these common features.

As previously noted, the most common user interface is graphical—either
Windows-based or Web browser–based. The remainder of this chapter will focus on
graphical user interface design.

User Interface Design Chapter Seventeen 619

paging displaying a com-

plete screen of characters at

a time.

scrolling displaying infor-

mation up or down a screen,

one line at a time.

function keys a series of

special keyboard keys used to

program special operations.

mouse a device used to

cause a pointer to move

across a display screen.

Graphical User Interface Styles and Considerations

User interface design is the specification of a dialogue or conversation between the
system user and the computer.This dialogue generally results in data input and infor-
mation output.There are several styles of graphical user interfaces.Traditionally these
styles were viewed as alternatives, but they are increasingly blended.This section pre-
sents an overview of several different styles or strategies used for designing graphical
user interfaces and how they are being incorporated into today’s applications.We will
demonstrate these styles with popular software applications.

> Windows and Frames

The basic construct of a GUI (both operating system– and browser-based) is the
window. A window is a rectangular, bordered area. A title (and optionally a file name)
is displayed at the top of each window.

A window can be smaller or larger than the actual display monitor’s viewable
area. It usually includes standardized controls in the upper right-hand corner to max-

imize itself to the display screen’s size, minimize itself to an icon (at the bottom of
the screen), toggle to a previous size, and exit (or close).

The file, form, or document displayed within a window may or may not fit in that
window. When the file, form, or document exceeds the window size, scroll bars on
the right-hand side and bottom of the window are used to navigate that file, form, or
document and indicate the current position of the cursor relative to the entire file,
form, or document.

A window may be divided into zones called frames. Each frame can act indepen-
dently of the other frames in the same window, using features such as paging,
scrolling, display attributes, and color. Each frame can be defined to serve a different
purpose. Frames are common in both Windows and Web browsers.

Within a window or frame, you can use all of the user interface controls that
were used in the previous two chapters (such as text boxes, radio buttons, check

boxes, drop-down lists, buttons, etc.). Additionally, many other user interface types of
controls will be introduced later in the chapter.

Finally, a window frequently has a task bar or tray across the bottom of the win-
dow. This task bar can be used to display messages, progress, or special tools (to be
discussed later).

> Menu-Driven Interfaces

The oldest and most commonly employed dialogue strategy is menu selection. Differ-
ent types of menus cater to novice and expert users. Menu-driven strategies require
that the user select an action from a menu of alternatives.

Menu-driven dialogues actually predate GUIs. A typical pre-GUI hierarchical menu
is illustrated in Figure 17-1. Menu options can be logically grouped into high-level op-
tions to simplify presentation. As shown in the figure, if the main menu option DISPLAY

WARRANTY REPORTS is selected, the submenu WARRANTY SYSTEM REPORT MENU will appear.
Then, if the PART WARRANTY SUMMARY option is selected, the report customization and
report screens are displayed in sequence.There is no technical limit to how deeply hi-
erarchical menus can be nested. However, the deeper the nesting, the greater the
need for direct paths to deeply rooted menu options for the expert user, who may
find navigating through multiple levels annoying (called screen thrashing). And most
users also require ways to escape back to the main or higher-level submenus without
backtracking through each of the original screens.

Pre-GUI hierarchical menus were relatively easy to design. A dialogue chart such
as the one shown in Figure 17-2 (taken from an earlier edition of our book) was used
to map the screen-to-screen transitions and ensure consistency and completeness. But
the arrival of graphical user interfaces greatly complicated menu design.

In operating system GUIs such as Microsoft Windows, user dialogues are not hi-
erarchical.Think about it! Between the time you start and exit a Windows application,
such as your word processor, the number of different actions and paths you take
through your application is seemingly endless. The dialogue is hardly hierarchical!
Such dialogue design cannot be modeled as easily by hierarchically based dialogue
charts. Let’s examine how GUI menus work.

Pull-Down and Cascading Menus In a GUI, menus are usually implemented with
pull-down and cascading menus from a menu bar as shown in Figure 17-3(a). Each menu
option is actually a group of related commands and actions. A menu template is shown

620 Part Three Systems Design Methods

menu driven a dialogue

strategy that requires that the

user select an action from a

menu of choices.

Menu Template

F I G U R E 1 7 - 1

A Classical
Hierarchical Menu
Dialogue

WARRANTY SYSTEM
MAIN MENU

1 PROCESS WARRANTY TRANSACTION
2 DISPLAY WARRANTY REPORTS
3 QUERY WARRANTY STATUS

 2

TYPE NUMBER OF DESIRED REPORT AND PRESS RETURN KEY.

WARRANTY SYSTEM
REPORT MENU

1 WARRANTY TRANSACTION REGISTER
2 PART WARRANTY SUMMARY
3 PROBLEM PART EXCEPTION REPORT

 2

TYPE NUMBER OF DESIRED REPORT AND PRESS RETURN KEY.
SYSTEM WILL ASK FOR ANSWERS TO APPROPRIATE QUESTIONS.

WARRANTY SYSTEM
PART WARRANTY SUMMARY

WHICH PART NUMBER FOR SUMMARY? (SEPARATE LISTED
PARTS WITH COMMAS AND THEN PRESS RETURN KEY.)

ANSWER THE FOLLOWING QUESTIONS:
PRESS F5 FOR HELP.

WARRANTY SYSTEM
PART WARRANTY REPORT

PRESS ANY KEY TO SEE NEXT PAGE
PRESS F1 KEY TO SEE PREVIOUS PAGE.
PRESS F3 KEY TO SEE FIRST PAGE AGAIN.

PART NUMBER 23254433 DESCRIPTION 3.5 HP LAWN ENGINE

WARRANTY CLAIMS:

THIS
MONTH

PRESS F6 TO RETURN TO REPORT MENU
PRESS F10 TO RETURN TO MAIN MENU

23254433,1325553,2211787,6663211,7015676,4544321

DO YOU WANT A PRINTED REPORT? (NO) YES
TYPE YOUR MAIL ROUTE CODE AND PRESS RETURN: 10023
DISPLAY REPORT AT TERMINAL? (NO) YES

LAST
MONTH

THIS
YEAR

LAST
YEAR

%
UP/DOWN

43 52 32 47 +69%

in the margin. Many of these menu groups are common to many or all applications. For
example, Windows-based applications typically include the following menu groups:

User Interface Design Chapter Seventeen 621

Users can select a menu group using either the mouse or a keyboard shortcut (e.g.,
simultaneously pressing the Alt-key plus the underlined letter, called a mnemonic,

shortcut, or hot key).
Each menu group has its own pull-down menu. When the user selects a group

from the menu bar, a submenu is pulled down:

F I G U R E 1 7 - 2

Sample Dialogue
Chart

Warranty

transaction

menu

Menu option ⫽ 1

1

Warranty

inquiry

menu

Menu option ⫽ 3

Menu option ⫽ 2

3

Warranty

report

menu

2

Warranty

system

main

menu

0

System

Part

warranty

report

2.1.1

Menu option ⫽ 1 Menu option ⫽ 3

Menu option ⫽ 2

Problem

part

report

questions

2.3

Warranty

tranx

register

questions

2.2

0

Part

warranty

report

questions

2.1

0

0,2 escapes

Notice that the submenu choices may be subgrouped by horizontal lines (e.g., group-
ing all SAVE or PRINT submenu commands). In some cases, a named submenu action is
followed by ellipses (three dots) indicating that a dialogue box (window) (see Fig-
ure 17-3b) will subsequently appear (pop up) to present additional options or collect
additional instructions. In other cases, a named submenu action will have a small
arrow indicating yet another submenu.This is called a cascading menu.

622 Part Three Systems Design Methods

F I G U R E 1 7 - 3

(a) Pull-Down and
Cascading Menus
(b) Dialogue Box

Tear-Off and Pop-Up Menus Not all menus are relegated to the menu bar. Some

GUIs allow tear-off menus. With a tear-off menu, the user can select a drop-down

menu or cascaded menu,“drag it off” the menu bar, and relocate it elsewhere on the

screen.This is especially useful if the menu must be continually used. Only a copy of

the original menu is actually torn off.

User Interface Design Chapter Seventeen 623

(a)

(b)

F I G U R E 1 7 - 4

Pop-Up Menus

A pop-up menu is context-sensitive and dependent on a pointing device. Acti-
vated by the user’s clicking of the right mouse button, a menu pops up from nowhere
(see Figure 17-4). The menu that pops up depends on the location of the cursor on
the screen.The cursor may be pointing to a blank area, a field, a cell, a word, or an ob-
ject.The right-button click will bring up a menu displaying only those actions that ap-
ply to whatever is at that cursor location—hence the term context sensitive. Pop-up
menus may also cascade. Pop-up menus are primarily for expert users because there
is no visual clue to their presence.

Toolbar and Iconic Menus Toolbars consist of icons (pictures) that represent
menu shortcuts for actions and commands that are normally embedded in the drop-
down and cascading menus (see Figure 17-5). In Windows applications, a toolbar of
commonly used actions is found immediately beneath the menu bar. The user can
click on any of these tools or icons to immediately invoke that action without going
through the menus.Toolbars can be created for any application. Application develop-
ers can provide users with some flexibility for customizing those toolbars.

While the default location for most toolbars is immediately under the menu bar,
many applications allow toolbars to be relocated to the left, right, or bottom of the
window at the convenience of the user.This is called docking the toolbar. Also, some
toolbars can be made to float (or move) within any convenient location inside the
window.

NOTE: In Web-based applications, the toolbar is provided by the browser and can-
not be customized to specific applications. The most important icons on the
browser toolbar are the PAGE FORWARD, PAGE BACKWARD, and HOME PAGE icons that are
standard to all Web-based Internet and intranet navigation.

Iconic menus use pictures to represent menu options in the main body of the
window. In Windows applications, these iconic menus are frequently used to provide
a control center (of main functions and activities) for a computer application or to

624 Part Three Systems Design Methods

F I G U R E 1 7 - 6

Iconic Menu

F I G U R E 1 7 - 5

Toolbars

Toolbar

Floating

Toolbar

Toolbar

document the business steps in using a computer application. Figure 17-6 demon-

strates an iconic menu. Each button represents an intuitive menu choice.

Iconic menus are very popular in Web-based applications because those applica-

tions run in the browser—browsers do not allow the developer to alter the menu

commands in the browser’s menu bar. Instead,Web applications frequently use click-

able pictures, icons, and buttons to represent the menu options.

User Interface Design Chapter Seventeen 625

F I G U R E 1 7 - 7

Consumer-Style
Interface

The popularity of Weblike interfaces is significantly influencing Windows user in-
terface design. Most client/server information systems have implemented the client
user interface to emulate the user’s most commonly used PC tools such as the word
processor and spreadsheet. The user is familiar with those tools; therefore, it makes
sense to design other applications to mimic those menus, toolbars, dialogue boxes,
and the like. But the popularity of Web-based applications has given rise to a new
consumer-style interface.

Like Web pages, consumer-style interfaces for Windows applications are some-
what more artistic.While menu bars may still be used, the primary look and feel of the
window is more Weblike; thus, it is more consumer-friendly.The interface consists of
clickable icons and buttons that replace more traditional Windows menu approaches.
When not overly complicated, this can be a friendlier “face” for Windows applications
than is traditionally seen in applications such as Microsoft Office and Lotus Smart-

Suite. A consumer-style Windows interface is illustrated in Figure 17-7.
Notice the absence of the traditional menu bar. Also notice that the buttons (in the

left frame) do not conform to traditional Windows size and style.The background image
is more artistic, as is the use of fonts and color. (Many organizations include a graphic
designer as part of the team to develop consumer-style interfaces.) We expect such
consumer-friendly styles to be embraced by future Windows-based information systems.

Hypertext and Hyperlink Menus Hypertext and hyperlinks are products of
contemporary Web-based user interfaces. Hypertext and hyperlinks were originally cre-
ated to navigate within and between Web pages and sites. A word, term, or phrase is
marked as a hyperlink (usually formatted as underlined text, usually with color). Click-
ing on the hyperlink navigates the user to the associated page (or bookmark in a page).

This technology can be easily extended and adapted to implement menus in Web-
based Internet and intranet applications. Because these applications run in the
browser, and because the browser’s menu bar and commands are fixed, we cannot
easily implement custom menus as we do in Windows applications. Instead, we
use hypertext and hyperlinks to implement those menus in the body of the Web
page. Each menu option is a hypertext phrase (or a hyperlinked icon or button)
that invokes actions or forms on other Web pages. Essentially, this approach creates

626 Part Three Systems Design Methods

F I G U R E 1 7 - 8

Hybrid Windows/
Web Interface

hierarchical menu structures similar to those that were introduced earlier in Fig-
ure 17-1. It is something of an irony that menu design for Web-based applications is
being driven by an approach that returns to a style that was extensively used in legacy
mainframe applications!

Hypertext and hyperlinks are no longer exclusive to Internet and intranet appli-
cations. Many contemporary Windows applications have embraced the popularity of
the Web by presenting a hybrid Windows/Web user interface. For example, Figure 17-8
demonstrates the user interface for Intuit’s Quicken, the popular personal finance
program. With its many hyperlinks, it looks like a Web page. While it does include
many optional Web-enabled features, it is actually a Windows application! The first
clue is that it runs in its own window, not the browser’s window. It also has its own
Windows menu bar, complete with all the custom pull-down and cascading menus
that are common to Windows applications.We expect this hybrid interface to become
increasingly pervasive as businesses embrace the Internet and intranets as the funda-
mental foundation for all information systems.

> Instruction-Driven Interfaces

Instead of menus, or in addition to menus, some applications are designed using a
dialogue based on an instruction set (also called a command language interface).
Because the user must learn the syntax of the instruction set, this approach is most

User Interface Design Chapter Seventeen 627

(a)

(b)

F I G U R E 1 7 - 9 Instruction-Driven Interface

suitable for expert users. Three types of syntax can be defined. Determining which
type should be used depends on the available technology:

• A language-based syntax is built around a widely accepted command lan-
guage that can be used by the user to invoke actions. Examples include
Query by Example (QBE) and Structured Query Language (SQL), both of
which are database languages that can be used by the end user to access
data and create custom reports.

• A mnemonic syntax is built around commands defined for custom informa-
tion system applications. Users are provided with a screen console in which
they can enter commands that will invoke actions and responses from the
computer user. Ideally, the commands should be meaningful to the user
(including any abbreviations allowed).

• Natural language syntax allows users to enter questions and commands
in their native language. The system interprets these commands against a
known syntax and requests clarification if it doesn’t understand what the
user wants.

Instruction-driven styles were common to legacy mainframe applications and
early DOS-based PC applications. But this style of interaction can still be found in to-
day’s graphical applications. For example, Microsoft’s Access database product con-
tains a query facility that allows the developer to visually (point and click) develop a
query (see Figure 17-9). The developer simply selects from database tables, columns,

628 Part Three Systems Design Methods

and rows to include in a query, as shown in Figure 17-9(a).Then, if desired, the devel-
oper can view and edit the command-level SQL code that implements the query, as
shown in Figure 17-9(b). Once again, the instruction set approach requires a degree
of user expertise, experience, and know-how.

> Question-Answer Dialogues

A question-answer dialogue style is primarily used to supplement either menu-driven
or instruction-driven dialogues. Users are prompted with questions to which they
supply answers.The simplest questions involve YES or NO answers—for instance:

DO YOU WANT TO SEE ALL PARTS? [NO].

Notice how the user was offered a default answer! Questions can be more elaborate.
For example, the system could ask:

WHICH PART NUMBER ARE YOU INTERESTED IN?

This strategy requires that you consider all possible correct answers and deal with the
actions to be taken if incorrect answers are entered. Question-answer dialogue is diffi-
cult because you must try to consider everything that the system user might do wrong!

Question-answer dialogues are very popular in Web-based applications. For ex-
ample, a car reservation system may ask a series of questions to define what type of
car and rental agreement you require:

WHERE DO YOU WANT TO PICK UP YOUR RENTAL VEHICLE?
WHERE DO YOU PLAN TO RETURN YOUR RENTAL VEHICLE?
WHAT IS THE PICKUP DATE AND TIME?
WHAT IS THE RETURN DATE AND TIME?
WHAT TYPE AND SIZE OF VEHICLE DO YOU NEED?
DO YOU HAVE ANY PROMOTIONAL COUPONS? . . .

A drop-down list of alternative answers may accompany each question. Together,
these questions and answers define a business transaction.

> Special Considerations for User Interface Design

In addition to establishing a user interface style, analysts must address certain special
considerations for user interface design. How will users be recognized and authenti-
cated to use the system? Are there any security or privacy considerations to be accom-
modated in the user interface? Finally, how will users get help via the user interface?

Internal Controls—Authentication and Authorization In most environments,
system users must be authenticated and authorized by the system before they are
permitted to perform certain actions. In other words, system users must “log into” the
system. Most log-ins require both a USER ID and a PASSWORD. System users should not be
required to learn and memorize multiple USER IDS and PASSWORDS. Ideally, they should
be required to use the same log-in as is used for their local area network account.
(Windows XP, NT, and 2000 allow for this authentication to occur without the need
to retype either field.)

Figure 17-10(a) demonstrates the user interface for the SoundStage log-in. The
USER ID and PASSWORD will be authenticated against the network accounts file. Notice
that the password is printed as asterisks as the user types it in, a common security and
privacy measure. Should the user ID or password fail to be authenticated, the security
authorization dialogue in Figure 17-10(b) will be displayed.

Authentication is only half of the solution. Once authenticated, the user’s access and
service privileges for this information system must be established.There are many mod-
els for establishing and managing privileges. An important guideline is to assign privileges
to roles, not to individuals. In most businesses, people change jobs routinely—they are
reassigned and promoted to new job responsibilities and roles. Also, job descriptions and

User Interface Design Chapter Seventeen 629

Internet Browser
Security Indicator

F I G U R E 17-10

(a) Authentication
Log-In Screen
(b) Authentication
Error Screen

(b)

roles change from time to time. Finally, people leave the business and some are termi-
nated. For all of these reasons, privileges should be assigned to roles.Then it is a simple
matter of identifying the roles that any USER ID can assume.

For each role, the specific privileges that should be assigned to the role need to be
defined. Privileges may include permission to read specific tables or views; permission
to create, update, or delete records (rows) in specific tables or views; permission to gen-
erate and view specific reports; permission to execute specific transactions; and the
like. Although not technically part of the interface, defining these roles and permissions
is needed both to design an appropriate log-in interface and to functionally specify the
complete authentication and authorization security model for the system.

Different user views could actually be applied to customize the user interface for
different categories of users. For example, it is fairly easy to “ghost” (change the font
from black to gray) and disable those menu options and dialogue boxes that are to be
restricted from certain classes of system users.

With the emergence of e-commerce, consumers and other businesses must have
confidence that we are who we claim to be. Consumers may be providing credit card
numbers and other private information for transmission over the Internet. For this rea-
son, SoundStage purchased a Web certification to authenticate itself to its club mem-
bers and prospective members. At any time, using the browser interface, SoundStage
members can view the authentication certificate in Figure 17-11. With this certifica-
tion, the SoundStage Web site will display a “Secure Server Certification” icon (see
margin—the padlock) that will tell consumers their data will be encrypted (securely
scrambled) to ensure that their credit card and personal data is not being intercepted
or accessed by others when passed along the network.

Online Help Nobody wants to read the manuals anymore! At least that’s the way it
seems. And to some degree, it’s justified. Manuals are essentially sequential files of

630 Part Three Systems Design Methods

(a)

F I G U R E 17-11

Server Security
Certificate

information. People want immediate, direct access to context-sensitive help, that is,
help that is smart enough to figure out what they might be trying to do.There is def-
initely a trend toward building help systems and tutorials directly into the application.
Online help becomes part of the user interface.

The general-purpose help for an application is built into the Help menu for Win-

dows applications. For Web applications, help is usually built as separate pages, usu-
ally “pop-up” pages in separate windows, so that the user can also remain focused on
the page that initiated the need for help.

Today, HTML (Hypertext Markup Language) is gradually becoming the universal
language for constructing help systems for graphical user interfaces—both Web and
Windows applications. For example, the entire help system for Microsoft Office is
now written in HTML.

The design, construction, and testing of a help system is simplified by today’s au-
tomated tools. A complete help system includes a table of contents, numerous in-
structions, examples, and a thorough index. Many help authoring packages, such as
Macromedia’s RoboHelp, leverage the help author’s word processor to help with the
planning, outlining, writing, indexing, and hypertext-linking aspects of authoring a
complete help system.

A well-designed help system will implement a wide range of help elements. Per-
haps the most commonly encountered types of help are those that users must initiate.
As mentioned earlier, the F1 function key is almost universally accepted as a help re-
quest command. Likewise, a standard Help menu bar option is commonly used to or-
ganize and present different types and levels of help in most Windows-based
applications (commercial or custom-built). Finally, as is illustrated in Figure 17-12, Win-

dows and Web-based interfaces frequently use tool tip controls to provide pop-up
help associated with specific tool and object icons. Tool tips appear when the user

User Interface Design Chapter Seventeen 631

Help Agent

Natural Language
Processing

F I G U R E 17-12

Help Tool Tip

momentarily positions the cursor over the icon (or object) on the screen.Tool tips are
appropriate for all icons because the user interface designer can never be assured that
the image or label appearing on an icon is going to be meaningful to the system user.

Two additional and common help features particularly effective for the more
novice user are help wizards and help agents (or assistants). As is illustrated in Fig-
ure 17-13(a), a help wizard guides the users through complex processes by presenting a
sequence of dialogue boxes that require user input and system feedback.We call your
attention to the following:

As is typical of help wizards, the dialogue usually includes a series of instruc-
tions or questions for the user to respond to.
The wizard contains explanations to aid in the user’s understanding and
decision making.
The wizard also provides a button for requesting more detailed help in
completing the task.
The “Next” button suggests additional or subsequent steps to be supported
by the help wizard. (The “Next” button is usually changed to “Finish” once a
sequence of dialogue boxes is complete.) Figure 17-13(b) shows the resulting
screen and subsequent step supported by the help wizard.

Microsoft and third-party software control vendors actually sell wizards to help
developers construct wizards!

Agents are another technology with applications to help systems. Agents are
reusable software objects that can operate across different software applications and
even across networks. Microsoft’s help agent (referred to as an assistant) provides a
common help assistant in Office applications. In its default form, it presents itself as
an animated paper clip (see margin). (Microsoft’s help agent can be programmed into
custom applications, both for Windows and for the Internet Explorer Web browser.)
A single user click on this help agent initiates help.

The Microsoft help agent is complemented by natural language processing tech-
nology (see margin) that allows the user to write an inquiry in natural language phrases
that are interpreted by the agent to present the most likely help responses. The user
can then select one of those responses or enter into the more detailed help index.

4

3

2

1

632 Part Three Systems Design Methods

agent reusable software

object that can operate across

different applications and

networks.

(b)

(a)

4

1

2

3

F I G U R E 17-13

Help Wizard

The overriding theme for designing a good help system is that the designer
should anticipate system user errors. When designing the user interface to report
such errors, the designer should always provide the system user with help to resolve
the error. After leaving any help session, users should always be returned to where
they were in the application before requesting or receiving the help.

How to Design and Prototype a User Interface

Today’s graphical environments create an emphasis on developing an overall system
that blends well into the user’s workplace environment. The following sections will
demonstrate how to design a user interface for a graphical environment.We will draw

User Interface Design Chapter Seventeen 633

F I G U R E 17-14

Visual Basic Menu
Construction

on examples from the SoundStage case study. We will examine both client/server,
Windows-based inputs and Web-based, e-commerce inputs that run in a browser.

> Automated Tools for User Interface
Design and Prototyping

The automated tools for supporting user interface design and prototyping are the same
as the tools we identified in Chapters 15 and 16 for output and input design.The most
commonly used automated tool for user interface design is the PC-database application
development environment. Most PC-database products such as Microsoft’s Access are not
powerful enough to develop most enterprise-level applications, but they are more than
adequate to use in prototyping an application’s user interface screens. Given a database
structure (easily specified in Access), you can quickly generate or create forms for in-
putting data.You can include most of the GUI controls we described in this chapter.The
users can subsequently exercise those forms and tell you what works and what doesn’t.

Many CASE tools also include facilities for screen layout and prototyping using
the project repository created during requirements analysis. System Architect’s screen
design facility was previously demonstrated in Chapter 15, Figure 15-7.

Most GUI-based application development environments, such as Microsoft’s
Visual Studio, can be easily used to construct nonfunctional prototypes of user inter-
face screens. The key term here is nonfunctional. The forms will look real, but there
will be no code to implement any of the buttons or fields.That is the essence of rapid
prototyping. For example, Figure 17-14 demonstrates a Visual Studio dialogue for
building a simple menu.

In Chapter 16 we introduced a number of input controls that could be included
in any window. The number of controls available to the interface designer is limited
only by the applications development environment that will be used to construct the
interface. Figure 17-15 illustrates a few additional controls that are available in the
Visual Studio environment, including outlook bars, sortable columns with headings,
gauge controls, directory list boxes, and noninput drop-down lists.

634 Part Three Systems Design Methods

F I G U R E 17-15

Additional User
Interface Controls

> The User Interface Design Process

User interface design is not a complicated process.The basic steps involved are:

1. Chart the user interface dialogue.
2. Prototype the dialogue and user interface.
3. Obtain user feedback.
4. If necessary, return to step 1 or 2.

In reality, the steps are not strictly sequential in practice. Instead, the steps are
iterative—for example, as prototypes are developed, they are reviewed by the system
users, who provide feedback that may require revisions or a new prototype. In the
following subsections, we examine these steps in a single iteration and illustrate a few
examples from the SoundStage project.

Step 1: Chart the Dialogue A typical user interface may involve many possible
screens (which may consist of several windows), perhaps hundreds! Each screen can
be designed and prototyped. But what about the coordination of these screens?

Screens typically occur in a specific order. You may also be able to toggle among
the screens. Additionally, some screens may appear only under certain conditions. To
make matters even more difficult, some screens may occur repetitively until some
condition is fulfilled. This sounds almost like a programming problem, doesn’t it? We
need a tool to coordinate the screens that can occur in a user interface. A state

transition diagram (STD) is used to depict the sequence and variations of screens
that can occur when the system user sits at the terminal. (The authors are using the
term screen in a general sense.When graphical interfaces are being designed, the term
may refer to an entire display screen, a window, or a dialogue box.) You can think of
it as a road map. Each screen is analogous to a city. Not all roads go through all cities.
Rectangles are used to represent display screens. Arrows represent the flow of con-
trol and the triggering event causing the screen to become active or receive focus.

User Interface Design Chapter Seventeen 635

state transition diagram
(STD) a tool used to depict

the sequence and variation of

screens that can occur during

a user session.

F I G U R E 17-16

SoundStage Partial
State Transition
Diagram

SOUNDSTAGE

OPTIONS

USER

SELECTS

MAINTENANCE

& OPTIONS

USER

SELECTS

REPORTS

USER

SELECTS

REPORT TYPE

& CREATE
REPORT

AND

GRAPH

OPTIONSUSER SELECTS

OK, CANCEL OR CLOSE
USER SELECTS

CANCEL OR CLOSE

USER

SELECTS

VIDEO

TITLES

USER

SELECTS

GRAPH

TYPE &

CREATE

USER

SELECTS

EXIT

OR GRAPH

PRINTED

USER

SELECTS

EXIT

OR REPORT

PRINTED

MEMBER

RESPONSES

TO VIDEO TITLE

SELECTION

(GRAPH)

USER

SELECTS

OK, CANCEL

OR EXIT

USER

CLICKS

ON

COVER

OPEN

(BITMAP FILE)

MEMBER

RESPONSES

TO VIDEO TITLE

SELECTION

(REPORT)

VIDEO

TITLES

USER

SELECTS

MEMBERSHIPS

USER

SELECTS

EXIT

USER

SELECTS

EXIT

MEMBERS

MEMBER

SERVICES

SYSTEM

LOGIN SUCCESSFUL

SECURITY

AUTHORIZATION

The rectangles describe only what can appear during the dialogue. The direction of
the arrows indicates the order in which these screens occur. A separate arrow, each
with its own label, is drawn for each direction because different actions trigger flow
of control from and flow of control to a given screen.

Let’s examine a dialogue that is under construction for the SoundStage project
(see Figure 17-16). The partially completed SoundStage state transition diagram is be-
ing developed using a CASE product, Popkin’s System Architect. Note the following:

The partial state transition diagram includes references to some of the Sound-
Stage input screens developed in Chapter 16.
The diagram also includes references to some of the output screens designed
in Chapter 15.
The MEMBER SERVICES SYSTEM screen will be a new screen that will need to be
designed and prototyped. This screen will serve as the application’s main
window. It will play a major role in providing the user with the ability to
get access to the system’s input and output screens, which were designed
earlier. It will also provide the user with the ability to complete a number
of additional functions (beyond input and output processing) that are
commonly established during user interface design. It will be accessible only
when the users have first been provided with the SECURITY AUTHORIZATION

screen and have successfully logged into the system.
The SOUNDSTAGE OPTIONS screen is another new screen to be created. This screen
will allow users to set various user options and defaults to be used during their
session—for example, selecting a printer, zooming, and many other options.

State transition diagrams such as the one presented in Figure 17-16 can become
quite large, especially when all input, output, help, and other screens are added to the
diagram. Therefore, it is common to partition the diagram into a set of separate sim-
pler and easier-to-read diagrams.

Step 2: Prototype the Dialogue and User Interface Recall that we have some
new screens to design and prototype. Some of these new screens were identified to

4

3

2

1

636 Part Three Systems Design Methods

F I G U R E 17-17

SoundStage Main
Menu

1

3

2

bring together the application and its input and output screens that were designed

earlier. Some screens were identified to provide the users with some flexibility in cus-

tomizing the application’s interaction to suit their own preferences. Still others may

have been identified to deal with system controls, such as backup and recovery.

Let’s look at some new screens that were to be created for the SoundStage Mem-

ber Services System. System users would first be presented with the authentication

log-in screen that was discussed earlier in the chapter (see Figure 17-10).According

to the state transition diagram, the successful log-in of a user results in the SoundStage

Member Services System main menu screen depicted in Figure 17-17. Notice the

following:

The users and their access privileges are confirmed. Based on the users’

access privilege, certain functions will be enabled and disabled.

Through a menu bar selection or through a vertical menu of buttons, the

user can complete common Member Services business operations.These

buttons will lead to screens that allow the user to process appropriate trans-

actions via input screens designed and prototyped earlier.Text labels were

used for buttons because the analyst was unable to establish icons (pictures)

that all users could readily identify with as a representation of the operations.

The menu bar and buttons contain hot keys to provide the user with the

flexibility of selecting via the keyboard or mouse. A group box was used to

visually associate the buttons that represent related operations.

The user has the ability to complete various routine maintenance operations.

Via the menu bar of the MEMBER SERVICES SYSTEM screen, users can choose to set

options for their work session.This new screen is depicted in Figure 17-18.

This screen utilizes tabs as a means of allowing the user to alter four related

sets of options.

A slider control is used to allow the user to adjust the priority for

background queries.This control is often used for items whose values are

best presented as a spatial representation and when an approximate rather

than precise value is sufficient.

2

1

3

2

1

User Interface Design Chapter Seventeen 637

F I G U R E 17-19

SoundStage Report
Customization
Dialogue Screen

F I G U R E 17-18

SoundStage Options
and Preferences
Screen

1

2

In reality, the analyst would need to prototype the content and appearance of the
“General,”“Print,” and “View” tabs as well as the “Database” tab. According to the state
transition diagram, this screen will return control to the parent window, MEMBER

SERVICES SYSTEM.
According to the state transition diagram, system users are also to be provided

with the opportunity to specify report customization preferences. Figure 17-19
depicts a prototype screen that allows SoundStage users to choose a particular report
(or graph) and customize its content.

638 Part Three Systems Design Methods

1. User interface design is concerned with the dia-
logue between a user and the computer. It is con-
cerned with everything from starting the system
or logging into the system to the eventual presen-
tation of desired outputs and inputs.

2. Most user interfaces are designed by rapidly con-
structing prototypes using rapid application de-
velopment environments. Such prototypes are
rarely fully functional.

3. Relative to user interface design, the system users
can be broadly classified as either expert or
novice:

a. An expert user is an experienced computer
user who will spend considerable time
using specific application programs. The
use of a computer is usually considered
nondiscretionary.

Chapter Review

Study the state transition diagram and the screens that we just examined to see
how this portion of the overall system dialogue would work. By studying the entire
collection of screens, you may discover the need to revise some screens. Such issues
as color, naming consistencies of common buttons and menu options, and other look-
and-feel conflicts may need to be resolved. Once again, adherence to any standards
governing GUIs should be confirmed.

Step 3: Obtain User Feedback Exercising (or testing) the user interface is a key ad-
vantage of all the prototyping environments we have alluded to throughout this chap-
ter. Exercising (or testing) the user interface means that system users experiment with
and test the interface design before extensive programming and actual implementation
of the working system. Analysts can observe this testing to improve on the design.

In the absence of prototyping tools, the analyst should at least simulate the dia-
logue by walking through the screen sketches with system users. User feedback is es-
sential in user interface design. The analyst should encourage the user to participate
in testing the application’s interface. Finally, the analyst should expect to revisit steps
1 and 2 as needed changes become known.

User Interface Design Chapter Seventeen 639

Lea
rning

 Roa
d
m

a
p

This chapter provided a detailed overview of user interface design and prototyping. If

you are taking an object-oriented approach and have not already done so, you will

want to proceed to Chapter 18. If you are taking a traditional approach, you will move

to Chapter 19 and the construction phase.The construction phase will cover how to

build and test the networks, databases, and programs for the new system. The imple-

mentation phase will cover how to conduct a system test, develop a conversion plan,

install databases, train users, and complete the conversion from the old to the new

system.You will learn about the construction and implementation phases in the next

chapter. Before proceeding, we recommend that you first review Chapter 3 to see

where software design falls in the overall systems development process.

b. The novice user is a less experienced com-
puter user who will generally use a computer
on a less frequent, or even occasional basis.
The use of a computer may be viewed as
discretionary.

4. Several human factors frequently cause people to
have difficulty with computer systems, including
these interface problems:

a. Excessive use of computer jargon and
acronyms.

b. Nonobvious or less-than-intuitive design.
c. Inability to distinguish between alternative

actions (“What do I do next?”).
d. Inconsistent problem-solving approaches.
e. Design inconsistency.

5. Galitz offers the following overriding “command-
ments” of user interface design:

a. Understand your users and their tasks.
b. Involve the users in interface design.
c. Test the system on actual users.
d. Practice iterative design.

6. Given the type of user for a system, there are a
number of important human engineering factors
that should be incorporated into the design:

a. The system user should always be aware of
what to do next.

b. The screen should be formatted so that the
various types of information, instructions, and
messages always appear in the same general
display area.

c. Messages, instructions, or information should
be displayed long enough to allow the system
user to read them.

d. Use display attributes sparingly.

e. Default values for fields and answers to be
entered by the user should be specified.

f. Anticipate the errors users might make.
g. A user should not be allowed to proceed with-

out correcting an error.
h. The system user should never get an operating

system message or fatal error.
i. If the user does something that could be cata-

strophic, the keyboard should be locked to
prevent any further input, and an instruction
to call the analyst or technical support should
be displayed.

7. The overall flow of screens and messages is called
a dialogue. With respect to the tone of the dia-
logue, the following guidelines are offered:

a. Use simple, grammatically correct sentences.
b. Don’t be funny or cute.
c. Don’t be condescending.

With respect to the terminology used in a com-
puter dialogue, the following suggestions may
prove helpful:

a. Don’t use computer jargon.
b. Avoid most abbreviations.
c. Use simple terms.
d. Be consistent in your use of terminology.
e. Carefully phrase instructions—use appropriate

action verbs.

8. Most of today’s user interfaces are graphical.The
basic structure of the graphical user interface (or
GUI) is provided either within the computer
operating system or in the Internet browser.

9. The overall design of a user interface is enhanced
or restricted by the available features of the
user’s display monitor, keyboard, and pointing
devices.

10. There are several styles of graphical user inter-
faces, including menu-driven, instruction-driven,
and question-answer dialogues.

11. Menu-driven strategies require that the user se-
lect an action from a menu of alternatives. GUI
menu implementation may include:

a. Pull-down and cascading menus.
b. Tear-off and pop-up menus.
c. Toolbar and iconic menus.
d. Hypertext and hyperlink menus.

12. Instruction-driven interfaces are designed using
a dialogue based on an instruction set. Three
types of syntax may be used for the instruction
set:

a. Language-based syntax, which is built around
a widely accepted command language that can
be used by the user to invoke actions.

b. Mnemonic syntax, which is built around com-
mands defined for the custom information sys-
tem applications.

c. Natural language syntax, which allows users to
enter questions and commands in their own
native language.

13. A question-answer dialogue style is primarily used
to supplement either menu-driven or instruction-
driven dialogues. Users are prompted with ques-
tions to which they supply answers.

14. Internal controls and online help are some spe-
cial considerations that should go into user inter-
face design.

15. User interface design consists of three iterative
steps:

a. Chart the user interface dialogue.
b. Prototype the dialogue and user interface.
c. Obtain user feedback.

640 Part Three Systems Design Methods

1. Why should the system users be involved in the
process of designing user interfaces?

2. Who are expert users? Why are they called
expert?

3. Why can some user interfaces cause users to feel
confused, panicky, or frustrated?

4. What does it mean to test the system on actual
users?

5. What should we do to ensure the system users
are aware of what to do in the system?

6. How should the interfaces handle errors?
7. What are some factors that should be considered

in terms of the terminology used in computer
dialogues?

8. Why are Web browsers becoming more impor-
tant when designing applications?

9. Explain paging and scrolling.
10. What should we consider when we design func-

tion keys for our applications?
11. Why are pens used in applications?
12. What is the relationship between windows and

frames?
13. What are characteristics of a pop-up menu?
14. What are steps of the user interface design

process?
15. What is the tool used to facilitate the charting of

the dialogue?

Review Questions
1

2

User Interface Design Chapter Seventeen 641

1. A fellow designer has asked you to review the dia-
logue to be used in several screens for a new ap-
plication. Do you think the following messages
comply with the guidelines for tone and terminol-
ogy? Explain your answer as needed.

a. An error message that says DISCHARGE DATE MUST

BE ON OR AFTER ADMISSION DATE.
b. An instruction that says ENTER THE CLIENT’S NAME

NOW.
c. An error message that says DATA IS SO FAR OUT OF

RANGE IT HAS LEFT THE SOLAR SYSTEM.
d. A question that asks customers DO YOU WANT TO

RDF THE ACR BEFORE “UCI’ING” CMIS?
e. An error message that says DON’T WORRY—NOT

EVERYONE GETS IT RIGHT THE FIRST TIME.

2. Menu-driven interfaces, although older than GUI
interfaces, are still very common. What type of
user dialogue strategy does a menu-driven inter-
face employ? What is the main difference
between menu-driven interfaces and GUI inter-
faces? What is the major advantage of a menu-
driven interface, and what is its major
disadvantage?

3. Select an application that is used in your organi-
zation or school and that has more than one
user interface screen. Also, try to select an appli-
cation that you haven’t used before, or at least
one that you haven’t used for a while. Test the
user interface design against each of the human
engineering guidelines described in the chapter.
Make sure to enter incorrect as well as correct
data.

Describe the application and user interface
screens that you tested. How many guidelines did
the application meet, and which ones were they?
How many guidelines did it fail, and which ones
were they?

4. Considering the application described in the pre-
ceding exercise, what changes would you make
to the user interface screens to bring them into
compliance with the human engineering guide-
lines described in the textbook? Be specific in
your answers. Have a couple of fellow students
and/or co-workers review your changes, one as a
user and the other as a designer. Did they find
new problems?

5. Answer the following true/false questions. Ex-
plain your answers as necessary.

a. Different action verbs should be used in
screen dialogue to describe required keyboard
actions in order to add variety and interest.

b. Most managers are expert users, because they
need a high level of PC expertise in order to
manage effectively.

c. Organizations should expect that expert de-
signers, who come highly recommended and
who are at the top of their pay scale, will need
to refine and modify their user interface de-
signs several times before the result will be
satisfactory to the organization.

d. Windows user interface design often borrows
from Web interface styles and techniques.

e. Applications need only one type of help menu
or dialogue.

Problems and Exercises

f. Users appreciate clever or humorous screen
messages.

g. The process for designing user interfaces is
straightforward and easy to understand.

6. In designing user interfaces, consideration must
be given to information security and privacy. De-
scribe some of the guidelines and considerations
that must be taken into account in building in-
ternal controls into the user interface design.

7. Fill in the blanks for the following statements:

a. Some ___________ interfaces use a
___________ syntax that allows users to ask
questions in their ________________.

b. The ______ step in user interface design is to
________ to the _________ steps as part of the
____________ process until users are
________ with the design.

c. SQL uses ______________ syntax which allows
________ users to __________ the database.

d. Good __________ guidelines include
__________ possible user _________, and
__________ the user of an action’s __________
before the action is ______.

e. One guideline for establishing users’
____________ privileges is to base their privi-
leges upon __________, not ____________.

8. Match the definitions or examples in the first col-
umn with the terms in the second column:

A. Frequently required 1. Platform
multiple level independent
menu navigation

B. An application’s 2. Consumer-style
overall sequence of interface
screens and messages

C. Full screen approach 3. Terminal
to display area seen emulators
by user at a time

D. Information is moved 4. State transition
up or down one line diagram
at a time

E. Computer expertise 5. Iconic menu
in multiple related
fields of study

F. Windows screen 6. Screen thrashing
employing artistic
Web-like “face”

G. Independent zones 7. Mnemonic
within a window syntax

H. User interfaces that 8. B2C
are not dependent upon
a specific OS

I. Graphic tool used 9. Dialogue
to show screen variation
and sequence

J. Software to display 10. Scrolling
mainframe screen
format in a window

K. Command language 11. Informatics
interface meaningful
to user

L. Functionality based 12. Paging
upon business-to-
consumer transactions

M. Pictorial representation 13. Frames
of menu option in main
window body

9. You have been asked to design a series of user in-
terface screens that will be used by both employ-
ees and customers.You proudly roll out your
prototypes, expecting accolades and high praise.
Instead, the users who try out your prototype—
customers and employees alike—are confused,
frustrated, and even angry. What are some of the
interface problems they might have encountered
which caused them to react like this? When you
go to your boss for advice, your boss asks you a
series of questions regarding the steps you fol-
lowed. What are the questions you’ll probably be
asked?

10. At one time, most software applications came
with a thick users’ manual. Many of these users’
manuals have disappeared in favor of sophisti-
cated online help systems and tutorials. If you are
a systems designer designing the help system for
a new application, what are some of the impor-
tant considerations to keep in mind?

11. It is not uncommon for an application to use hun-
dreds of screens, windows, and dialogue boxes in
its user interface. Coordinating the order and con-
ditions under which these appear can be a diffi-
cult process that is prone to error.To help
coordinate and document this process, state tran-
sition diagrams (STD) are used to illustrate the
conditions under which screens, windows, and
dialogue boxes appear, as well as their sequence.

Take an application in your organization or at
school with which you are familiar. Create a state
transition diagram for a part of the system, using
Figure 17-16 as an example.

12. Assume that you are part of a project team that
has been hired by a company that is moving from
mainframe technology to client/server technology.
You are working on the user interface design.
The company wants this application to set the
tone for subsequent applications to be devel-
oped.You have been given free rein to develop
the conventions and standards for the user inter-
face screens that will be used for the look-and-
feel of this and subsequent applications. Create a

642 Part Three Systems Design Methods

one-page list of what you believe to be the most
important conventions and standards.

13. GUI and Web applications provide users with a
variety of paths through the different parts of the
application.The price paid for this user-friendliness

and accommodation is complicated design and
programming. Is it possible to have user-friendly
and accommodating interfaces that don’t require
complicated programming and design?

User Interface Design Chapter Seventeen 643

1. This chapter, as well as the preceding two chapters,
focused on the capture and presentation of data and
information. In 1983, Edward Tufte wrote a book
called The Visual Display of Quantitative Informa-

tion. Many leading journals consider this book to be
the definitive work on this subject. Since that time,
Tufte has written numerous other books and articles
on the display of information and data, how it shapes
the ways we think, and how it can have profound
consequences. Go to Tufte’s Web site at http://

www.edwardtufte.com/tufte and read some of the
articles and forum discussions.Tufte’s Web site also
contains numerous links to other sites; you may find
them to be equally interesting and/or valuable.

a. Describe some of the articles and their view-
points that you found on the Web site.

b. What is “chartjunk”?
c. What does Tufte have to say about project man-

agement charts? Are his suggestions viable in
your opinion?

d. What is Tufte’s viewpoint on Microsoft Power-

Point? Do you agree? Why or why not?
e. Assume you are starting a career as a systems

designer. After reading the material on Tufte’s
Web site, describe those concepts, guidelines,
or viewpoints, if any, that you believe are ab-
solutely vital for every systems designer to
understand and apply.

2. The textbook references another author, Wilbert
Galitz. Galitz is one of a number of contemporary
writers (several of whom are referenced in the
suggested reading section), who are recognized as
leaders in the area of human interface design.
Use the Internet to research recent articles and fo-
rum discussions on the topic of human interface
design and human engineering guidelines.
a. Describe the articles you found, including their

authors and viewpoints
b. Discuss and compare any contrasting view-

points you found on this topic.
c. What are the authors’ thoughts on the trend to-

wards Windows and browser interfaces con-
verging? Do they feel that eventually there will
be little, if any, distinction between the two?

d. What are their predictions, if any, regarding tech-
nological innovations that may fundamentally
change human interface design in the future?

e. On the basis of your research, do you feel that
research in the area of human engineering and
human interface designs is about as sophisti-
cated and advanced as it is going to get? Why or
why not?

3. So far, we’ve researched the viewpoints of leaders
in the field of information presentation and human
interface design for computer systems. What about
experts in other areas?

a. Find and interview several local graphic artists
and designers in your area. What are their
thoughts and viewpoints regarding how graph-
ics can be used as a method of communication?

b. Were their viewpoints conceptually similar or
different compared to those you researched in
the previous questions?

c. Did you come away with anything that might
be of value to you as a systems designer?

d. What about the field of industrial psychology?
Do some research in this area, and/or interview
any educators or professors at your school who
are knowledgeable in this discipline. Were their
viewpoints different or about the same as the
others you’ve researched or interviewed?

e. Can you think of any fields or disciplines that
might be helpful for designing human inter-
faces? If so, research them and report what you
consider to be relevant and valuable.

4. Automated screen design tools are becoming in-
creasingly powerful and sophisticated. Use the Web
to find several of the leading design tools. Go to
their manufacturers’Web sites and review their fea-
tures. If trial versions are available, download them.

a. What automated screen design tools did you
find? Who manufactures them?

b. Compare and contrast their features and func-
tionality. Describe their different features in a
matrix.

c. If you were an independent designer, which
one, if any, would you choose? Why?

Projects and Research

d. Would you expect to see a significant difference
in your productivity by using one of these
tools? How much of a difference.

e. Do you feel that using these tools would en-
hance or constrain your creativity? Explain your
answer.

5. Frequently, there is talk of “redesigning” govern-
ment and making it operate more like private busi-
ness.This raises the question of whether there is a
fundamental difference between the public and
private sectors, and whether this may have an im-
pact upon how systems should be designed differ-
ently, depending upon whether they are intended
for a government or a private sector organization.

a. Survey system designers in both the private and
public sectors. Ask them what their top issues
and problems are in terms of designing human
interfaces.

b. What differences did you find?
c. What similarities?
d. Do you think there is enough commonality

such that the same set of guidelines can apply
to both public- and private-sector agencies?
Why or why not?

e. Given a choice and assuming that salary and
benefits were the same, would you rather be a
systems designer in a public agency? A private
agency? Why or why not?

6. Designing interface screens for B2C and B2B Web
sites is considered by some to have a fundamen-
tally different objective compared with other types
of interface screens. Specifically, the purpose of
these Web sites is to entice consumers and busi-
nesses to purchase their products or services.

a. Research articles on this topic. What did you
find, and what were the viewpoints?

b. Summarize the difference in outlook, if any, be-
tween designing conventional input/output hu-
man interface screens and designing screens for
B2C and B2B Web sites?

c. Do you agree with these viewpoints? Why or
why not?

d. What type of background do you feel would be
more valuable for B2C and B2B Web sites—a
background in systems design or one in market-
ing and advertising? Explain your answer.

644 Part Three Systems Design Methods

There is a discussion, starting on page 615, on the hu-
man factors and human engineering issues in user
interface design.The spirit of the discussion is that
it is imperative that we understand the people who
will be using the system and that we create a sys-
tem interface that they understand and can use.
But this is not an academic issue; it is a people-
skills and people-understanding issue.

1. Interview someone you do not know well who is a
complete nontechie.Your goal is to understand that
person and his or her computer needs and wants.
Things you need to consider in your interview:

a. Understand that person as a person: who are
they? What are their likes and dislikes? Do they
have a spouse? Children? What about sports?
Hobbies? Do they work inside or outside the
home? If you are interviewing them in their
own “space” (home, office, etc.), take note of
the personal effects that are in view. What do
these things tell you about that person?

b. Understand them as a computer user: What are
their experiences with computers? What types
of things have they used a computer for? What
wouldn’t they use a computer for? Is there

something they find computers particularly use-
ful for? Something that is particularly frustrating?

c. What is their body language telling you as you
ask these questions? Are they at ease with you?
Make a note of their reactions to you, how you
are dressed, what you have said, and your own
body language.

2. Using the knowledge you gained from your inter-
view in minicase 1, design an interface for the indi-
vidual you interviewed. What interface design
modifications are you making so that the program
will fit the individual? Explain in detail, and submit
the results to your professor.

3. Meet with the person you interviewed in minicase 1
and present them with the design prototype you cre-
ated. Get their feedback on the design. Do they like
it? Could they navigate the pages? What about the
design of the inputs? Is there anything they would
change? What do they specifically like and dislike
about the interface you created? Again, watch their
body language. Are they telling you everything?
What is your body language telling them? Be aware
of your influence on the situation. Document the
interview and submit the results to your professor.

Minicases

User Interface Design Chapter Seventeen 645

1. Team or individual: Write down all of the common
computer/technical jargon you use when you de-
scribe a system. As a team or individually, write
down a nontechnical,“anybody would understand”
version of each of the technical terms on your list.
Discuss in a roundtable format in class.

2. Team: Consider the TV. What makes it so easy to
use? (Almost everybody seems able to watch it.) If

you were to redesign anything, what would it be,
and how would you redesign it?

3. Individual: Introspect on your own strengths and
weaknesses. (a) Take a moment and relish some-
thing positive about yourself. (b) Identify a specific
action you can take to address a weakness that
you have, and then take the required action.

Team and Individual Exercises

Andres, Clay. Great Web Architecture. Foster City, CA: IDG

Books Worldwide.This is an interesting title. It uses a “de-

sign by example” approach based on input from “top Web

architects” to illustrate and discuss Web-based systems, in-

cluding many with e-commerce and e-business aspects.

This is not an academic title, but it is nonetheless

interesting.

Galitz, Wilbert. User-Interface Screen Design. New York:

Wiley QED, 1993. Ignore the date. This book remains our

favorite user interface design book because it is so con-

ceptually and fundamentally sound. Galitz teaches work-

station, PC, and mainframe interface design here, based on

well-thought-out principles and guidelines. We can’t wait

for the update. Would that we could afford to develop an

entire elective course built around this outstanding book!

Galitz, Wilbert. It’s Time to Clean Your Windows: Designing

GUIs That Work. New York: John Wiley & Sons, 1994.This

is another excellent book that provides an unbiased refer-

ence on designing graphical interfaces.

Hix, Deborah, and H. Rex Hartson. Developing User Inter-

faces: Ensuring Usability through Product & Process.

New York: John Wiley & Sons, 1993. John Wiley & Sons

must have the corner on user interface design books.

These authors have academic roots. The book is some-

what hard to read, but nonetheless very well organized

and written. We especially like the integration with sys-

tems analysis and design.

Horton, William K. Designing & Writing Online Documen-

tation: Help Files to Hypertext. New York: John Wiley &

Sons, 1990. We were able to provide only cursory cover-

age of this important topic.

Mandel,Theo. Elements of User Interface Design. New York:

John Wiley & Sons, 1997. Here is a somewhat newer and

very comprehensive book that includes some of the early

design foundations for the Web.

Martin, Alexander, and David Eastman. The User Interface

Design Book for the Applications Programmer. New

York: John Wiley & Sons, 1996.

Microsoft Corporation. Microsoft Windows User Experience:

Official Guidelines for User Interface Developers and

Designers. Redmond, WA: Microsoft Press, 1999. This is

the official standard for designing Windows user inter-

faces.There are many insights to Microsoft’s intentions for

maximizing the user experience.

Schmeiser, Lisa. Web Design Templates Sourcebook. Indi-

anapolis, IN: New Riders Publishing, 1997. This is not an

academic title or even a traditional professional market ti-

tle. It caught our eye because it uses an HTML-based tem-

plate approach (over 300) to present designs that can

ultimately evolve into finished products. From our per-

spective, this represents an intriguing twist on the proto-

typing model.

Weinschenk, Susan, and Sarah C. Yeo. Guidelines for

Enterprise-Wide GUI Design. New York: John Wiley &

Sons, 1995. Clearly, John Wiley & Sons is the market’s

leading publisher for this subject.

Suggested Readings

4. Based on your second interview (minicase 3), re-
vise your interface design.Then submit your work
from the previous three minicases and this revi-
sion in a professional and complete deliverable to

your professor. Be sure to include a brief discus-
sion of what you learned from the person you in-
terviewed, and from this experience.

STATIC

STRUCTURE

MODELS

DYNAMIC

BEHAVIOR

MODELS

INTERFACE

MODELS

O B J E C T- O R I E N T E D A N A LY S I S M O D E L

D E S I G N P R O T O T Y P E S

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

M
ID

D
L
E

W
A

R
E

M
ID

D
L
E

W
A

R
E

F
A

C
T
-F

IN
D

IN
G

 T
E

C
H

N
IQ

U
E

S
: S

a
m

p
lin

g
 R

e
s
e
a
rc

h
 O

b
s
e
rv

a
tio

n
 Q

u
e
s
tio

n
n

a
ire

 In
te

rv
ie

w
 P

ro
to

ty
p

in
g

 J
R

P

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

S T A T E M E N T O F W O R K

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
H

Y
S

IC
A

L

D
E

S
IG

N

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

STATIC

STRUCTURE

MODELS

DYNAMIC

BEHAVIOR

MODELS

INTERFACE

MODELS

O B J E C T - O R I E N T E D D E S I G N M O D E L

Strategic Enterprise Information Technology Architecture

18Object-Oriented Design and
Modeling Using the UML

Chapter Preview and Objectives

This is the second of two chapters on object-oriented tools and techniques for systems

development. This chapter focuses specifically on tools and techniques that are used

during systems design. You will know object-oriented systems design when you can:

❚ Differentiate between entity, interface, control, persistence, and system classes.

❚ Understand the concepts of dependency and navigability.

❚ Define visibility and explain its three levels.

❚ Understand the concept of object responsibility and how it is related to message

sending between object types.

❚ Describe the activities involved in object-oriented design.

❚ Differentiate between a design use-case narrative and an analysis use-case narrative.

❚ Describe CRC card modeling.

❚ Model class interactions with sequence diagrams.

❚ Construct a class diagram that reflects design specifics.

❚ Model object states with state machine diagrams.

❚ Understand the role of coupling and cohesion in object reuse.

❚ Describe the use of design patterns and two common design patterns.

❚ Differentiate between design patterns, object frameworks, and components.

❚ Understand the use of communication diagrams, component diagrams, and

deployment diagrams.

Chapters 13–17 showed Bob Martinez performing traditional structured design tasks
to design the SoundStage Member Services system. How would his tasks have been
different had the project followed an object-oriented approach?

In an object-oriented approach the systems analysis would still have had to design
the application architecture as presented in Chapter 13, but it would have used differ-
ent tools: namely, the component diagrams and deployment diagrams shown at the
end of this chapter. They would have designed the program logic and structure using
sequence diagrams, class diagrams, and state machine diagrams presented in this chap-
ter. Assuming the data would be stored in a relational database (as is the case with most
information systems), the tools presented in Chapter 14 would still be used, though
they would have had to take a few additional steps to map the entity objects and their
attributes to tables and fields in the database. They would also have still designed and
prototyped the user interface using techniques presented in Chapters 15–17. In fact,
activity diagrams with partitions are a useful tool for user interface design.

Coming out of object oriented analysis, Bob would have had activity diagrams, sys-
tem sequence diagrams, and a class diagram of entity objects and their attributes. In the
design phase, that class diagram has to be refined to include additional design objects
and the assignment of behaviors and their parameters to objects.That process involves
analyzing and designing object responsibilities and states using the tools and concepts
presented in this chapter. The completed design documents (class diagram, sequence
diagrams, machine state diagrams, etc.) could then be handed off to teams of program-
mers, who would program the objects with the specified behaviors and attributes.

648 Part Three Systems Design Methods

object-oriented design
(OOD) an approach used to

specify the software solution

in terms of collaborating

objects, their attributes, and

their methods.

entity class an object class

that contains business-related

information and implements

the analysis classes.

interface class an object

class that provides the means

by which an actor can inter-

face with the system. Exam-

ples include a window,

dialogue box, or screen. For

nonhuman actors, an applica-

tion program interface (API) is

the interface class. Some-

times called a boundary class.

Introduction

The Design of an Object-Oriented System

In Chapter 10 we learned about object classes. So how are these classes put together
into an application? What does an object-oriented system look like? In a pure object-
oriented environment every piece of code exists inside an object class—all the user
interface, all the program logic, everything. The application works by having classes
send and receive messages from other classes. The goal of object-oriented design

(OOD) is to specify the objects and messages of the system.
Figure 18-1 shows programming code for a Web page created in C# .NET. This

Web page provides part of the user interface for the SoundStage system (notice the
Text boxes, Labels, and Buttons). Near the top of the code we see “public class Login.”
This indicates that all the user interface code exists inside a class. Near the bottom of
the screen, this user interface class creates an instance of the member class and calls
it the validateLogin behavior (method) of that class. An object-oriented system is
structured into at least three different types of object classes.

> Entity Classes

Entity classes usually correspond to items in real life (such as a MEMBER or ORDER)
and contain information, known as attributes, that describes the different instance of
the entity. They also encapsulate those behaviors (called methods) that maintain
their information or attributes. These are the kinds of object classes we defined in
Chapter 10.They are the heart of the system.

> Interface Classes

Users communicate with the system through the user interface, implemented as
interface classes. The use-case functionality that describes the user directly interacting
with the system should be placed in interface classes.The responsibility of an interface
class is twofold:

F I G U R E 1 8 - 1

An Object-Oriented
Application

1. It translates the user’s input into information that the system can understand
and use to process the business event.

2. It takes data pertaining to a business event and translates the data for appro-
priate presentation to the user.

Each actor or user needs its own interface class to communicate with the system.
In some cases, the user may need multiple interface classes. Take, for example, the
ATM machine. Not only is there a display for presenting information, but there are also
a card reader, money dispenser, and receipt printer. All of these would be considered
interface object classes.

> Control Classes

Control classes implement the business logic or business rules of the system. Gener-
ally, each use case is implemented with one or more control classes. Control classes

process messages from an interface class and respond to them by sending and receiv-
ing messages from the entity classes.

An object-oriented system could be implemented with just these three kinds of
classes. But many methodologists include two other kinds of classes.

> Persistence Classes

The attributes of the entity classes are generally persistent, meaning they continue to
exist beyond when the system is running. The functionality to read and write
attributes in a database could be built into the entity classes. But if that functionality
is put into separate persistence (or data access) classes, the entity classes are kept
implementation neutral.That can allow the entity classes to be more reusable, a major
goal of object-oriented design.

> System Classes

A final type of object class, the system class, isolates the other objects from operat-
ing system–specific functionality. If the system is ported to another operating system,
only these classes and perhaps the interface classes have to be changed.

Why all these kinds of classes? Structuring the system this way makes the main-
tenance and enhancement of those classes simpler and easier.

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 649

control class an object

class that contains application

logic. Examples of such logic

are business rules and calcu-

lations that involve multiple

entity object classes. Control

classes coordinate messages

between interface classes

and entity classes and the

sequences in which the

messages occur.

persistence class an object

class that provides functional-

ity to read and write persistent

attributes in a database.

system class an object

class that handles operating

system–specific functionality.

Place New Order Handler
<<UI>>

Order Display WindowF I G U R E 1 8 - 2

Dependency
Relationship
Example

F I G U R E 1 8 - 3

Navigability
Example +changePassword()

-userID

User

-passwordCode : Char

-dateSet : Date

Password

1 1..6

specifies

> Design Relationships

In object-oriented analysis, we concentrated on identifying the most common object
relationships: associations, aggregation/composition relationships, and generalization/
specialization relationships. In object-oriented design, it is necessary to model more
advanced relationships in order to accurately specify the software components. You
will learn these relationships in the following sections.

Dependency Relationships A dependency relationship is used to model the asso-
ciation between two classes in two instances: (1) to indicate that when a change
occurs in one class, it may affect the other class, and (2) to indicate the association
between a persistent class and a transient class. Interface classes are typically transient
and are modeled in this fashion. Draw your attention to Figure 18-2. In this example
the ORDER DISPLAY WINDOW class is an interface class and is created to display the con-
tents of an order. It is dependent on the PLACE NEW ORDER HANDLER class to map order
information to it and to respond to events initiated from the interface. A dependency
relationship is illustrated with a dashed arrow line.

Navigability As you learned in Chapter 10, by default, associations between classes
are bidirectional, meaning that classes of one kind can navigate (send messages) to
classes of the other kind. There may be times, though, when you want to limit the
message sending to only one direction. For example, let’s assume each system user
must have a password, which the user must change every 30 days. Let’s also assume
that when a user changes passwords, the new one can’t be a password he or she has
used in the past six months. The model for this scenario is depicted in Figure 18-3.
Given a USER, you’ll want to find that user’s current PASSWORD for authentication pur-
poses or to change the current password. Thus, the USER class would send a message
to the PASSWORD class. In most cases it wouldn’t make sense that given a PASSWORD you
would want to identify the corresponding USER. Navigability is illustrated with an
arrowhead pointing only to the direction a message can be sent.

> Attribute and Method Visibility

How attributes and methods are accessed by other classes is defined by visibility.

The UML provides three levels of visibility:

1. Public—denoted by the symbol “ .”
2. Protected—denoted by the symbol “#.”
3. Private—denoted by the symbol “ .”

Public attributes can be accessed and public methods can be invoked by any other
method in any other class. Protected attributes can be accessed and protected
methods can be invoked by any method in the class in which the attribute or method
is defined or in subclasses of that class. Private attributes can be accessed and private
methods can be invoked only by any method in the class in which the attribute or
method is defined. If a method needs to be invoked in response to a message sent by

650 Part Three Systems Design Methods

visibility the level of access

an external object has to an

attribute or method.

F I G U R E 1 8 - 4

Visibility Example
+getStreet() : String

+getCity() : String

-street : String

-city : String

Address

another class, the method should be declared public. In most cases all attributes
should be declared private to enforce encapsulation. Figure 18-4 depicts an example
of denoting attribute and method visibility.

> Object Responsibilities

Recall that in object-oriented systems, objects encapsulate both data and behaviors. In
design, we focus on identifying the behaviors a system must support and, in turn,
designing the object methods for performing those behaviors. Along with behaviors,
we determine the object’s responsibilities.

In Chapter 10 you learned that objects have behaviors, or things that they can do.
In object-oriented design it is important to recognize that an object has responsibility.
Object responsibility is closely related to the concept of being able to send and/or
respond to messages. Draw your attention to Figure 18-5. An ORDER object class has
been assigned the responsibility of displaying a customer’s order, but it needs help.
First, it collaborates with the CUSTOMER class to get the customer data. Next, it collabo-
rates with the MEMBER ORDERED PRODUCT class to get information about each product be-
ing ordered. The MEMBER ORDERED PRODUCT class cannot fulfill the entire request itself,
so it needs to collaborate with the PRODUCT class to get detailed information about
each product.Thus, when each class receives a message requesting a service, it has an
obligation to respond to the message and fulfill the request.

A class responsibility is not the same thing as a class method. A class responsi-
bility is implemented by the creation of one or more methods that may have to
collaborate with other classes and methods, as presented above.

The Process of Object-Oriented Design

In performing OOA, we defined use cases and identified objects based on ideal con-
ditions and independent of any hardware or software solution. During object-oriented
design, we want to refine those use cases and objects to reflect the actual environ-
ment of our proposed solution.

Object-oriented design includes the following activities:

1. Refining the use-case model to reflect the implementation environment.
2. Modeling class interactions, behaviors, and states that support the use-case

scenario.
3. Updating the class diagram to reflect the implementation environment.

In the following sections we will review each of these activities to learn what
steps, tools, and techniques are used to complete object-oriented design.

> Refining the Use-Case Model

In this iteration of use-case modeling, the use cases will be refined to include details
of how the actor (or user) will actually interface with the system and how the system
will respond to that stimulus to process the business event. The manner in which
the user accesses the system—via a menu, window, button, bar code reader, printer,
and so on—should be described in detail. The contents of windows, reports, and
queries should also be specified within the use case. While refining use cases is often

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 651

method the software logic

that is executed in response

to a message.

object responsibility the

obligation that an object has

to provide a service when re-

quested and thus collaborate

with other objects to satisfy

the request if required.

1: Message to

request display of a

customer’s order

information
2: Message to

request customer

information

3: Return customer

information

4: Message to

request all products

that an order

contains

6: Return detailed

product information

5: Message to

request detailed

product information

7: Return all product

information

8: Display customer

order

Customer Order

OrderCustomer

ProductMember Ordered Product

1

1..*

1 0..*

submits

0..* 1

is for

F I G U R E 1 8 - 5 Object Responsibility

time-consuming and tedious, it is essential that they are completed. These use cases
will be the basis on which subsequent user manuals and test scripts are developed
during systems implementation. In addition, these use cases will be used by program-
mers to construct application programs during systems implementation.

In the following steps we will adapt each use case to the implementation envi-
ronment or “reality” and document the results. It is important that each use case be
highly detailed in describing the user interaction with the system. The refined use
cases can then be used by the user to validate systems design and by the programmer
for process and interface specifications.

Step 1: Transforming the “Analysis” Use Cases to “Design” Use Cases In
Chapters 7 and 13 you learned how to do use-case modeling during systems analysis
to document user requirements for a given business scenario. In this step, we refine
each of those use cases to reflect the physical aspects of the implementation envi-
ronment for our new system.

Figure 18-6 illustrates the refinement of the Place New Order use case that was
originally defined during systems analysis. This version is identified as a design use
case to distinguish it from the analysis version previously completed.We want to keep

652 Part Three Systems Design Methods

F I G U R E 1 8 - 6 Example of a Design Use Case

Member Services System
Author(s): K. Dittman 11/21/02

1.00

Date:

Version:

Use Case Name: Place New Order Use Case Type

Use Case ID: MSS-SUC002.00

Priority: High

Source: Requirement — MSS-R1.00

Requirements Use Case — MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias — Active Member, Member)

Club Member (Alias — Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias — Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — interested in sales activity in order to plan new promotions.

Procurement — interested in sales activity in order to replenish inventory.

Management — interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description:

The individual must be a registered user of the system.

The member must have logged in to the system, and the member home page is being displayed.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System ResponseTypical Course
of Events:

Business Requirements:
System Analysis:
System Design: √

Step 3: The member scrolls through the

available items by using the scroll bar buttons,

the [Page Up] and [Page Down] keys, or the

navigational controls specified in step 2. The

member selects the ones he or she wishes to

purchase by clicking the check box and entering

the quantity to be ordered.

Step 1: The member clicks on the place new

order icon (or link).

Step 5: The member verifies demographic

information (shipping and billing addresses). If

no changes are necessary, the member clicks the

[Continue] button.

Step 2: The system responds by displaying window

W11—Catalog Display, a list of SoundStage products.*

If the product list is greater than 50, which is the maximum

number to be displayed on one page, the system calculates the

number of pages required to display the products. The system

then provides the member with the necessary navigational

buttons, such as: [First], [Prev], [Next], [Last], and [1] [2] [3] [4],

and so on.

Step 4: Once the member has completed making selections,

the system retrieves the member’s demographic information

(shipping and billing addresses) and displays it in window

W02—Member Profile Display. The system also prompts the

member to make any required changes.

Step 6: For each product ordered, the system verifies the

product availability and determines an expected ship date,

determines the price to be charged to the member, and

determines the cost of the total order. If an item is not

immediately available, it indicates that the product is back-

ordered or that it has not been released for shipping (for

preorders). If an item is no longer available, that is indicated

also. The system then displays a summary of the order in window

W03—Order Summary Display. The system also prompts the

member to make any required changes.

This use case describes the event of a member submitting a new order for SoundStage

products via the World Wide Web. The member selects the items he or she wishes to

purchase. Once the member has completed shopping, the member’s demographic

information as well as account standing will be validated. Once the products are verified as

being in stock, a packing order is sent to the distribution center for it to prepare the shipment.

For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

1

2 3

4

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 653

F I G U R E 1 8 - 6 Continued

Alternate

Courses:

Step 8: The system checks the status of the member’s account. If

status is satisfactory, the system prompts the member to select the

desired payment option (to be billed later or pay immediately

with a credit card).

Step 10: The system then displays a final summary of the order

in window W03—Order Summary Display. The system also

prompts the member to make any required changes.

Step 12: The system records the order information (including

back orders, if necessary).

Step 13: Invoke abstract use case MSS-AUC001.00 Determine

Appropriate Distribution Center and Release Order to Be Filled.

Step 14: Once the order is processed, the system generates an

order confirmation and displays it in window W04—Order

Confirmation Display. The system also sends the confirmation by

e-mail. Invoke abstract use case MSS-AUC004.00 Send Electronic

Member Correspondence.

Alt-Step 3a: If the member clicks on the item name, the system displays a pop-up window,

W15—Product Detail Display, which contains all the product details, including a graphic of its cover. The

member clicks the [Close] button to close the pop-up window.

Alt-Step 3b: If member wants to perform keyword search, invoke abstract use case MSS-AUC006.00

Search Product Catalog by Keyword.

Alt-Step 5: If member wants to change demographic information, invoke abstract use case

MSS-AUC007.00 Change Member Profile.

Alt-Step 7: If the order requires changes the member can delete any item no longer wanted by

deselecting the check box by item and/or changing the order quantity. Once the member has completed

the order changes, he or she clicks the [Update Order] button. The system reprocesses the order (go to

step 6). If the member clicks the [Do More Shopping] button, go to step 3. If the member clicks the

[Update Member Profile] button, invoke abstract use case MSS-AUC007.00 Change Member Profile and

then go to step 6.

Alt-Step 8: If the member’s account is not in good standing, display to the member using window

W09—Member Account Status Display, the account status, the reason the order is being held, and what

actions are necessary to resolve the problem. In addition an e-mail is sent to the member with the same

information. Invoke abstract use case MSS—AUC004.00 Send Electronic Member Correspondence. The

system prompts the member to hold the order for later processing or cancel the order. If the member

wishes to hold the order by clicking the [Save Order] button, the system records the order information,

places it in hold status, and then displays the SoundStage main page, window W00—Member Home

Page. If the member chooses to cancel the order by clicking the [Cancel Order] button, the system erases

the inputted information, and then displays the SoundStage main page, window W00—Member Home

Page. Terminate the use case.

Alt-Step 10: If the member selects the option to pay by credit card, invoke abstract use case

MSS-AUC012.00 Pay by Credit Card.

If the member cannot pay by credit card, the system prompts the member to hold the order for later

processing or cancel the order. If the member wishes to hold the order by clicking the [Save Order]

button, the system records the order information, places it in hold status, and then displays the

SoundStage main page, window W00—Member Home Page. If the member chooses to cancel the order

by clicking the [Cancel Order] button, the system erases the inputted information and then displays the

SoundStage main page, window W00—Member Home Page. Terminate the use case.

Step 7: The member verifies the order. If no

changes are necessary, the member clicks the

[Continue] button.

Step 9: The member responds by clicking the

appropriate check box for the desired payment

option.

Step 11: The member verifies the order. If no

changes are necessary, the member clicks the

[Continue] button.

654 Part Three Systems Design Methods

F I G U R E 1 8 - 6 Continued

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•

•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or a member using credits may affect the price

of each ordered item.

The member can cancel the order at any time by clicking the [Cancel Order] button.

If member hits [Back Page] button at any time, refresh current window.

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released to the distribution

center. For any product not available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the member 24/7.

Frequency—It is estimated that this use case will be executed 3,500 times per day. It

should support up to 50 concurrent members.

Implementation

Constraints and

Specifications:

NoneOpen Issues:

Alt-Step 11: If the order requires changes, the member can delete any item no longer wanted by

deselecting the check box by item and/or changing the order quantity. Once the member has completed

the order changes, he or she clicks the [Update Order] button. The system reprocesses the order (go to

step 6). If the member clicks the [Do More Shopping] button, go to step 3. If the member clicks the

[Update Member Profile] button invoke abstract use case MSS-AUC007.00 Change Member Profile and

then go to step 6.

Alt-Step 12: If all items ordered are on back order, the order is not released to the distribution center.

* Refer to user interface specification for window contents and specification.

the original analysis use cases separate from the refined design use cases to allow

maximum flexibility in reusing use cases for variations of different physical imple-

mentations. We draw your attention to the following refinements to our use-case

description in Figure 18-6:

Use-case type—To reflect implementation details such as user interface con-

straints, tactical use cases called system design use cases are derived from

the system analysis use cases.

Window controls—In system design use cases, window controls such as

icons, links, check boxes, and buttons are explicitly stated.

Window names—The name of each user interface element (window name)

is stated. If additional information about a user interface element exists, it is

good practice to reference it. Otherwise, more detailed window specifications

could be added to the use case.

Navigation instructions—Directions on how the user navigates the user

interface should be specified.

Step 2: Updating the Use-Case Model Diagram and Other Documentation
to Reflect Any New Use Cases After all the system analysis use cases have

been transformed to system design use cases, it is quite possible that new use

cases, use-case dependencies, or even actors have been discovered. It is very

important that we keep our documentation accurate and current.Thus, in this step

the use-case model diagram, the use-case dependency diagram, and the actor and

use-case glossaries should be updated to reflect any new information introduced in

step 1.

4

3

2

1

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 655

F I G U R E 1 8 - 7 Interface, Control, and Entity Classes of Place New Order Use Case

Interface Classes Controller Classes Entity Classes

W00-Member Home Page Place New Order Handler Billing Address

W02-Member Profile Display Shipping Address

W03-Display Order Summary Email Address

W04-Display Order Confirmation Active Member

W09-Member Account Status Display Member Order

W11-Catalog Display Member Ordered Product

W15-Product Detail Display Product

Title

Audio Title

Game Title

Video Title

Transaction

321

> Modeling Class Interactions, Behaviors, and
States That Support the Use-Case Scenario

Step 1: Identify and Classify Use-Case Design Classes In the previous section,
we refined the use cases to reflect the implementation environment. In this activity
we want to identify and categorize the design classes required by the functionality
that was specified in each use case and identify the class interactions, their responsi-
bilities, and their behaviors. See Figure 18-7.

The Interface Classes column contains a list of classes mentioned in the use
case that the users directly interface with, such as screens, windows, card
readers, and printers. The only way an actor or user can interface with a sys-
tem is via an interface class. Therefore, there should be at least one interface
class per actor or user.
The Controller Classes column contains a list of classes that encapsulate
application logic or business rules. A use case should reveal one control class
per unique user or actor.
The Entity Classes column contains a list of classes that correspond to the
business domain classes whose attributes were referenced in the use case.

Step 2: Identify Class Attributes During both analysis and design, class attributes
can be discovered. In efforts to transform analysis use cases into design use cases, we
begin referencing the attributes in the use-case text. In this step, we examine each use
case for additional attributes that haven’t been previously identified, and we update
our class diagram to include those attributes.

Step 3: Identify Class Behaviors and Responsibilities Once we have identified all
the objects needed to support the functionality of the use case, we shift our attention to
defining the specific behaviors and responsibilities.This step involves the following tasks:

• Analyze the use cases to identify required system behaviors.
• Associate behaviors and responsibilities with classes.
• Model classes that have complex behavior.
• Examine the class diagram for additional behaviors.
• Verify classifications.

3

2

1

656 Part Three Systems Design Methods

F I G U R E 1 8 - 8 Partial Summary of Place New Order Use-Case Behaviors

Behaviors Automated/Manual Class Type

Process new member order Manual/Automated Control

Click icon to place new order Manual

Retrieve product catalog information Automated Entity

Display W11-Catalog Display window Automated Interface

Scroll or page through catalog Manual

Select product to be ordered and enter quantity Manual

Retrieve member demographic information Automated Entity

Display W02 – Member Profile Display window Automated Interface

Verify member demographic information Manual

Validate quantity amount Automated Entity

Verify the product availability Automated Entity

Determines an expected ship date Automated Entity

Determine price of product Automated Entity

Determine cost of the total order Automated Entity

Display W03 – Order Summary Display window Automated Interface

Prompt user Automated Interface

Verify order information Manual

Check Status of member account Automated Entity

Prompt user for payment option Automated Interface

Store order information Automated Entity

Record back order information Automated Entity

Generate order confirmation Automated Entity

Display W04 – Order Confirmation Display Automated Interface

Click button or icon Manual

In Chapter 10 you learned that classes encapsulate data and behavior. Our first
task in identifying the class behaviors and responsibilities is accomplished by once
again examining our use case. The use-case description is examined to identify all
verb phrases.Verb phrases suggest behaviors that are required to complete a use-case
scenario.These verb phrases correlate to the system behaviors required to respond to
the business event of a club member placing a new order. Each use case should be
examined separately to identify behaviors associated with the use case.

Once the behaviors have been identified, our second task is to determine if the
behaviors are manual or if they will be automated. If they are to be automated, they
must be assigned to the appropriate object that will have the responsibility of carry-
ing out that behavior. In Figure 18-8, which summarizes the Place New Order use-
case behaviors, each verb phrase or behavior is listed along with its automated or
manual designation.The third column lists the object type with which each behavior
is associated.

In Figure 18-9, we have condensed the behavior list to show only the behaviors that
need to be automated. Recall that the object types were defined earlier, in step 1. We
will use the list in Figure 18-9 as the source of behaviors to be allocated in the next task.

The next task is to identify which behaviors should be associated with which
class and to identify collaborations among those classes. One popular tool for that is
the class responsibility collaboration (CRC) card.1 A CRC card for the MEMBER ORDER

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 657

1CRC cards were pioneered by Kent Beck and Ward Cunningham.

F I G U R E 1 8 - 9 Condensed Behavior List for Place New Order
Use Case

Behaviors Class Type

Process new member order Control

Retrieve product catalog information Entity

Display W11-Catalog Display window Interface

Retrieve member demographic information Entity

Display W02 – Member Profile Display window Interface

Validate quantity amount Entity

Verify the product availability Entity

Determines an expected ship date Entity

Determine price of product Entity

Determine cost of the total order Entity

Display W03 – Order Summary Display window Interface

Prompt user Interface

Check Status of member account Entity

Prompt user for payment option Interface

Store order information Entity

Record back order information Entity

Generate order conformation Entity

Display W04 – Order Confirmation Display Interface

F I G U R E 1 8 - 1 0 CRC Card for MEMBER ORDER Class

Object Name: Member Order

Sub Object:

Super Object: Transaction

Behaviors and Responsibilities Collaborators

Report order information Member Ordered Product

Calculate subtotal cost

Calculate total order cost

Update order status

Create Ordered Product

Delete Ordered Product

class is shown in Figure 18-10. A CRC card contains all use-case behaviors and
responsibilities that have been associated with that class.

CRC cards can be developed and refined using an interactive process in which
the cards are divided among a group of systems analysts or users. They then move
through the steps of a use-case scenario, acting out the required collaborations using
a spongy ball. The facilitator starts out by tossing the ball to the person holding the
card of the class that is initially responsible for the scenario.That person describes the
logic required to fulfill that responsibility. If the class needs information it doesn’t
have or must modify information it doesn’t have, then the person tosses the ball to the
peson holding the card with that information.The toss indicates a needed collaboration

658 Part Three Systems Design Methods

F I G U R E 1 8 - 1 1 Sequence Diagram for Step 6 of the Place New Order Use Case

1
2

9

3

4

6

8
7

5

Member

:Product
<<interface>>

:Order Window

<<controller>>

:Place New Order
:Member Order :Member Ordered Product

Item Selections

addltem(item,quantity)

loop

Updated Order
Updated Order Info

extendedPrice

calcExtPrice(item)

calcTotal

qtyInStock

getPrice(productNumber)

calculateQtyInStock(productNumber)

addltem(productNumber,quantityOrdered)

between the two classes, which is noted on the cards. When the scenario is
completely acted out the ball is thrown back to the facilitator.

Analysis of the use-case scenarios may not reveal all behaviors for any given
object type. On the other hand, by examining the class diagram, you may find
additional behaviors (not mentioned in the use-case scenarios) that need to be as-
signed to an object class. For example, analyze the associations between the classes
in Figure 18-12. How are those associations created or deleted? Which should be
assigned that responsibility? As a rule, the class that controls the relationship should
be responsible for creating or deleting the relationship. Draw your attention in
Figure 18-12 to the association MEMBER ORDER and MEMBER ORDERED PRODUCT. By designing
the system to have the MEMBER ORDER class have a behavior to “add ordered product,” we
have effectively given the MEMBER ORDER class control of creating this association. Also,
recall from Chapter 10 that there are four “implicit” behaviors that can be associated
with any object class: the abilities to create new instances, change its data or
attributes, delete instances, and display information about the object class. While
examining the use cases to identify and associate behaviors with object classes, we
also focus on identifying the collaboration or cooperation that is necessary between
classes. In Figure 18-10 the MEMBER ORDER class needs collaboration from the MEMBER

ORDERED PRODUCT class to retrieve information about each of the products being or-
dered. Remember, if a class needs another class’s attribute to accomplish a behavior,
the collaborating class needs to have a behavior or method for providing that attribute.

Identifying the collaboration of object types is necessary to ensure that all use-
case classes work in harmony to complete the processing required for the business
event that triggers the use-case scenario.

Another tool for discovering and/or documenting class behaviors and responsibili-
ties is a sequence diagram. In Chapter 10 we looked at system sequence diagrams, a
high-level diagram that depicts the interaction between an actor and the system for
a use-case scenario. A full-sequence diagram depicts the interaction between all the ob-
ject classes involved in the scenario. A sequence diagram models the logic of a use case
(or portion of a use case) by depicting the interaction of messages between objects in
time sequence.The messages are arranged in time sequence from top to bottom.

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 659

sequence diagram a UML

diagram that models the logic

of a use case by depicting

the interaction of messages

between objects in time

sequence.

A sequence diagram can be seen as a way to integrate the steps of a use case with
the objects of a class diagram. It can be used as a communication tool with programmers
to specify what methods (behaviors) to call in implementing a use case. Figure 18-11
shows one scenario for what is essentially step 6 of the Place New Order use case de-
scribed in Figure 18-6. Figure 18-11 illustrates the following sequence diagram notations:

Actor—the actor interacting with the user interface is shown with the use
case actor symbol. Sometimes the actor is left off for the sake of simplicity.
Sometimes the actor is represented with a box like the classes with a
notation <<actor>>. The dashed vertical line extending downward from the
actor indicates the life of the sequence.
Interface class—the box indicates the user interface class code. To make sure
there is no confusion as to what kind of class this is, <<interface>> is noted.
As with many things in UML, whatever communicates best is right. The colon
(:) is standard sequence diagram notation to indicate a running “instance” of
the class. The dashed vertical line extending downward from the class
indicates the life of the sequence.
Controller class—every use case will have one or more controller classes,
drawn with the same notation as the interface class and noted as
<<controller>>.
Entity classes—add boxes for each entity that needs to collaborate in the
sequence of steps. Again, the colon (:) denotes an object instance, in other
words, a specific order, specific product, and so forth.
Messages—solid horizontal arrows indicate message inputs sent to the
classes. Each message calls the behavior (or method) of the class to which
the arrow points. The UML convention for messages is to begin the first
word with a lowercase letter and append additional words with an initial
uppercase letter and no space. In parentheses, include any parameters that
need to be passed, following the same naming convention and separating
individual parameters with commas.
Activation bars—the bars that are set over the lifelines indicate the period
of time during which each object instance exists. If you are familiar with any
object-oriented programming language, you should recall instantiating objects
to work with them in your program. The activation bars indicate the lifetime
of an instance in RAM. Generally, objects are instantiated in response to mes-
sages. Persistent objects will, of course, continue to exist as stored data.
Return messages—dashed horizontal arrows are return messages. Every
behavior should return something, at least a true/false message indicating
whether the behavior was successful. But for the sake of simplicity, return
messages are often assumed and left off the sequence diagram.
Self-call—an object can call its own method.
Frame—we saw in Chapter 10 how to use a frame box in a system sequence
diagram to indicate that one or more messages were optional (opt) steps.
Here we use a frame to indicate that the controller needs to loop through all
the items.

Let’s walk through the sequence diagram shown in Figure 18-11. The Member
makes his or her selections using the on-screen tools provided in the ORDER WINDOW

(which is noted to be an interface class). The ORDER WINDOW then passes those
selections with an item and quantity specification for each to the Controller class.The
CONTROLLER loops through each of the items. The use case says that for each ordered
item, the system must verify product availability. To do that the CONTROLLER sends a
message to PRODUCT, calling its calculateQtyInStock method. We may have already
identified calculateQtyInStock as a behavior of PRODUCT and so we can read it right off
the class diagram and plug it in here. If it isn’t a behavior already, then we can deter-
mine a need for its existence from this sequence diagram and then add it to the class
diagram. Why would this behavior be assigned to PRODUCT? We see from Figure 18-11

9

8

7

6

5

4

3

2

1

660 Part Three Systems Design Methods

F I G U R E 1 8 - 1 2 Partial Class Diagram for Place New Order Use Case

Customer

Potential Member Club Member

Billing Address
Email Address

Shipping Address

Active Member

Product

Member Ordered Product

-memberNumber

-memberLastName

-memberFirstName

-memberStatus

-memberDateOfLastOrder

-memberDaytimePhoneNumber

-memberBalanceDue

-memberBonusBalanceAvailable

-audioCategoryPreference

-dateEnrolled

-gameCategoryPreference

-gameMediaPreference

-numberOfCreditsEarned

-privacyCode

-videoCategoryPreference

-videoMediaPreference

has purchased

-productNumber

-UPC

-quantityInStock

-productType

-suggestedRetailPrice

-defaultUnitPrice

-currentSpecialUnitPrice

-currentMonthUnitsSold

-currentYearUnitsSold

-totalLifetimeUnitsSold

is associated with

Address

-streetAddress

-city

-state

-zipCode

is billed to

is shipped to

contains

-quantityOrdered

-quantityShipped

-quantityBackordered

-purchaseUnitPrice

-creditsEarned

0..*

0..*

0..*

1..*

0..*1

1..*

1..*

1

1

1 1

1

1

Member Order

-orderNumber

-orderCreationDate

-orderFillDate

-shippingInstructions

-orderSubTotal

-orderSalesTax

-orderShippingMethod

-orderShipping&HandlingCost

-orderStatus

-orderPrepaidAmount

-orderPrepaymentMethod

places

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 661

that PRODUCT has a quantityInStock attribute, so it is the natural source of this infor-
mation. PRODUCT returns quantityInStock to the CONTROLLER.The use case includes ver-
biage to handle items not in stock, but we are not following that scenario. This
sequence diagram assumes all items are in stock.

Each in-stock item must be added to the order. Should that be a responsibility of
MEMBER ORDER or MEMBER ORDERED PRODUCT? We see from Figure 18-12 that MEMBER ORDER

:Product
<<controller>>

:Search Product Catalog by Keyword

<<interface>>

:Order Window

Member

Search by Keyword

search(keyword)

products

products

reportProduct(keyword)

F I G U R E 1 8 - 1 3 Sequence Diagram for Search Product Catalog by Keyword Use Case

662 Part Three Systems Design Methods

has a composition relationship to MEMBER ORDERED PRODUCT, making MEMBER ORDER

responsible for the creation and deletion of instances. So we will have the CONTROLLER

pass this message to MEMBER ORDER. As it adds an item, MEMBER ORDER needs to recalculate
its total. So it calls one of its own methods (calcTotal). To do this calculation, it needs
the extended price (quantity times price) of the new item, so it calls calcExtPrice of
MEMBER ORDERED PRODUCT. That calculation needs price information, which is held by
PRODUCT. So MEMBER ORDERED PRODUCT creates an instance of PRODUCT to look up the
price.The extended price can then be passed back to MEMBER ORDER, which passes the
entire order to the CONTROLLER. Finally, the CONTROLLER passes the order to the ORDER

WINDOW for display.
From this we can determine what behaviors should be assigned to what classes

and the parameters they will accept and return. Once the behaviors have been iden-
tified, documented, and associated to specific classes, then the class diagram can be
updated to include those behaviors in the appropriate classes.

Before we move on, let’s look at one other sequence diagram. Figure 18-13 shows
a simple sequence diagram for the abstract use case Search Product Catalog by Key-
word that is referred to in Alt-Step 3b of the Place New Order use case. When the
member selects the Search by Keyword option and enters a keyword, the interface
passes the request on to the controller.The controller calls the reportProduct method
of PRODUCT, passing along the keyword. PRODUCT returns a collection of products that
matches the keyword. If we were including persistence objects, we would show the
data read statement going to the database.

The following are useful guidelines for constructing sequence diagrams:

• Identify the scope of the sequence diagram. You may wish to depict an
entire use-case scenario or just one step.

• Draw the actor and interface class if your scope includes that.
• List the use-case steps down the left-hand side.
• Draw boxes for the controller class, and for each entity class that must col-

laborate in the sequence, based on the attributes it has or behaviors already
assigned to it.

Possible "States" of the

Space Shuttle

"PRE-LAUNCH"
state

"FLIGHT"
state

"Takeoff"

F I G U R E 18-14

Object State
Example

• Draw boxes for persistence and system classes if your scope includes that.
• Draw necessary messages and point each of them to the class that will fulfill

the responsibility of responding to the message.
• Add activation bars to indicate the lifetime of each object instance.
• Add return messages that are needed for clarity.
• Add frames for loops, optional steps, alternate steps, and so on, as needed.

We will revisit sequence diagrams a bit later in this chapter when discussing design
patterns.

Step 4: Model Object States Our next task is to identify and model any object that
has complex behavior based on the changes of its state. All objects are said to have
state—the value of the object’s attributes at one point in time. An object changes state
when the value of one of its attributes changes. This change in state is triggered by a
state transition event. Figure 18-14 shows the space shuttle resting on the launch-
ing pad in a state of Pre-Launch. After the shuttle takes off (an event), it changes state
(state transition), and while it is in the air, it is in a state of Flight. We could have
shown additional states such as Landed, Checkout, or Refurbish if the requirements
specified this. Many of the objects in business systems have complex behaviors or go
through many states and types of state.

A state machine diagram models the life cycle of a single object. It depicts the
different states an object can have, the events that cause the object to change state
over time, and the rules that govern the object’s transition between states. In other
words, it specifies from which state an object is allowed to transition to another state
and under what conditions. A state machine diagram is constructed by performing the
following activities:

• Identify the initial and final states (how is the object created and destroyed?).
• Identify other states an object may have during its lifetime.
• Identify triggers (events) that cause the object to leave a particular state.
• Identify state transition paths (when the object’s state changes, what is the

next state the object will be in?).

Figure 18-15 is a statechart diagram for the MEMBER ORDER object of the Member
Services system. It begins with an initial state (solid circle) and transitions through a
life cycle of different states (rounded-corner rectangles) until it reaches its final state

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 663

object state a condition of

the object at one point in its

lifetime.

state transition event an

occurrence that triggers a

change in an object’s state

through the updating of one or

more of its attributes' values.

state machine diagram a

UML diagram that depicts the

combination of states that an

object can assume during its

lifetime, the events that trigger

transitions between states,

and the rules governing the

objects transition. Also called

a statechart diagram or state

transition diagram.

F I G U R E 1 8 - 1 5 Member Order Statechart Diagram

Member Order final

state

Order Shipped

Order Released Order Filled

Order Invoiced

PendingIn Process

Order

Back-ordered

Order Closed

Order pending awaiting payment or additional member information

Order rejected based on Member's past history

Member order archived after 90 days

Invoice sent to member for payment

Response received from member

Order released to the warehouse

Order shipped to club member

Order filled by the warehouse

Not all product available

Final payment received

Order submitted
Member Order initial

state

Product

received

Member Order final

state

Constructed using Popkin Software's System Architect.

(a solid circle inside of a hollow one). Each arrow represents an event that triggers the
MEMBER ORDER to change from one state to another.

State machine diagrams are not required for all objects.Typically, a state machine
diagram is constructed only for those objects that have clearly identifiable states and
complex behavior. In our experience, any object that has an attribute called status is
a good candidate for constructing a state machine diagram.

Finally, our last task is to verify the results from the previous tasks.This consists
of conducting walkthroughs with the appropriate users. One verification approach
that is commonly used is role playing. In role playing, the use-case scenarios
are acted out by the participants. The participants may assume the role of an ac-
tor or an object type that collaborates to process a hypothetical business event.
Message sending is simulated by using an item such as a ball that is passed (or

664 Part Three Systems Design Methods

role playing the act of sim-

ulating object behavior and

collaboration by acting out

an object’s behaviors and

responsibilities.

sometimes thrown) between the participants. Role playing is quite effective in dis-
covering missing objects and behaviors, as well as verifying the collaboration
among objects.

> Updating the Object Model to Reflect the
Implementation Environment

Once we have designed the objects and their required interactions, we can refine our
class diagram to represent software classes in the application. A design class diagram

typically includes the following:

• Classes.
• Associations and gen/spec and aggregation relationships.
• Attributes and attribute-type information.
• Methods with parameters.
• Navigability.
• Dependencies.

The following steps are used to transform the class diagram prepared in OOA to a
design class diagram:

1. Add design objects to diagram. The entity, interface, and control objects that
were previously identified should be added to the diagram. Because of diagram
space and readability considerations, only the major interface objects should
be included.

2. Add attributes and attribute-type information to design objects. OO program-
ming languages allow the common attribute types such as Integer, Date, Boolean,
and String(text), among others. OO languages also allow the definition of
complex attribute types such as Address, Social Security Number, and Telephone
Number; this is a powerful feature for a developer.

3. Add attribute visibility. Attributes can be defined as public, protected, or private.
4. Add methods to design objects. Define methods to get and update the values

of all the attributes of each object. These types of methods are commonly
referred to as “setters” and “getters” methods. It is common to exclude these
methods from the design class diagram in order to save space and make the
diagram more readable, because they always exist by default. Also, include
methods to implement any previously identified responsibilities and behavior,
such as creating or deleting class instances or forming or breaking class associ-
ations. Please note that method names are formatted based on the chosen
programming language. How you format a method name in Smalltalk is differ-
ent than how you do so in Java. In this textbook we will use the standard
UML format of methodName (parameterList).

5. Add method visibility. Methods can be defined as public, protected, or private.
6. Add association navigability between classes. Add navigability arrows to uni-

directional associations to indicate the direction messages are sent between
source and target classes.

7. Add dependency relationships. For any user interface class appearing on the
diagram, draw a dependency line between it and the control object.

Figure 18-16 is a partial view of the SoundStage Member Services design class diagram.
Please note the following:

Visibility has been specified for each attribute. In this particular example all
attributes are private, which is denoted by the symbol “ ”.
Methods and their visibility have been specified.
Navigability has been noted on some associations to indicate the passing of
messages that go only one way.

3

2

1

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 665

design class diagram a

diagram that depicts classes

that correspond to software

components that are used to

build the software application.

F I G U R E 1 8 - 1 6 Partial Design Class Diagram for the Place New Order Use Case

<<actor>>

Active Member

- memberDateOfLastOrder : int

- memberDaytimePhoneNumber : int

- memberBalanceDue : float

- memberBonusBalanceAvailable : float

- audioCategoryPreference : char

- audioMediaPreference : char

- dateEnrolled : int

- gameCategoryPreference : char

- gameMediaPreference : char

- numberOfCreditsEarned : char

- privacyCode : char

- videoCategoryPreference : char

- videoMediaPreference : char

"+reportActiveMember"

"+reportStatus"(status)

"+isMember"

persistent

Member Order

- orderNumber : int

- orderCreationDate : int

- orderFillDate : int

- shippingInstructions : char

- orderSubTotal : int

- orderSalesTax : int

- orderShippingMethod : char

- orderShipping&HandlingCost : int

- orderStatus : char

- orderPrepaidAmount : int

- orderPrepaymentMethod : char

"+setStatus"(status)

"+caluateSalesTax"(state)

"+calculateTotal"

persistent

Product

- productNumber : char

- UPC : char

- quantityInStock : int

- suggestedRetailPrice : int

- defaultUnitPrice : int

- currentSpecialUnitPrice : int

- currentMonthUnitsSold : int

- currentYearUnitsSold : int

- totalLifetimeUnitsSold : int

"+reportProduct"

"+isProduct"

"+calculateQtyInStock"

persistent

Member Ordered Product

- quantityOrdered : int

- quantityShipped : int

- quantityBackordered : int

- purchaseUnitPrice : int

- creditsEarned : int

"+calculateExtendedCost"

"+calculateQuantityBackordered"

persistent

<<control>>

Place New Order Handler

- lastOrderNumber : int

"+enterNew Order"

"+assignOrderNumber"

persistent

<<boundary>>

W03 - Order Summary Display

transitory

<<boundary>>

W-11 Catalog Display

transitory

Used by

Used by

1

1..*

displays

1

1

Verifies

1

1 Captures

1

>

0..*

Has purchased 1

0..*

Sold as

0..*

1 Places

1

1..*

Sells

>

1

2

3

4
5

6

Interface classes have been added to show major user interface objects. In
this particular software package these are considered boundary objects and
are transitory in nature.
A control class has been added to coordinate interactions between interface
objects and entity objects. We have also given this control class the responsi-
bility of assigning new order numbers, which are sequentially assigned.
Interface objects are dependent on the control object.6

5

4

666 Part Three Systems Design Methods

coupling the degree to

which one class is connected

to or relies upon other

classes.

cohesion the degree to

which the attributes and be-

haviors of a single class are

related to each other.

Object Reusability and Design Patterns

Look at the sequence diagram in Figure 18-17 and compare it to the sequence diagram
shown in Figure 18-12. These are alternative ways of adding an item to an order. The
major difference is that the design shown in Figure 18-17 places much more respon-
sibility on the MEMBER ORDER entity class and much less on the PLACE NEW ORDER con-
troller, MEMBER ORDERED PRODUCT, and PRODUCT. Essentially the controller passes the
message to MEMBER ORDER and lets it act like a controller itself. We could design this
interaction in other ways, as well. For instance the PLACE NEW ORDER controller could do
all the work by passing messages directly to each class instead of going through
MEMBER ORDER. So how do you know which is the best design?

The two overarching goals of object-oriented design are low coupling and high
cohesion. Coupling is the degree to which one class is connected to or relies upon
other classes. Cohesion is the degree to which all of the attributes and behaviors of

F I G U R E 1 8 - 1 7 Alternate Sequence Diagram for Step 6 of the Place New Order Use Case

Member

:Product
<<interface>>

:Order Window

<<controller>>

:Place New Order
:Member Order :Member Ordered Product

addltem(item,quantity)

Item Selections

Updated Order
Updated Order Info

loop

calcTotal

calcExtPrice

getProduct

calculateQtyInStock(productNumber)

getPrice(productNumber)

qtyInStock

addltem(productNumber,quantityOrdered)

a single class are related to each other. By striving for high cohesion and low coupling,
we want each class to focus on essentially one thing and for each class to be as inde-
pendent as possible.

The reason behind the goals of high cohesion and low coupling is object reusabil-
ity. Ideally, object classes created for one information system should be able to be reused
in other information systems.That is why operating system–specific code and database-
specific code are often designed into system and persistence classes. It allows, in theory,
the entity classes to be reused with other databases and operating systems.

Several studies have documented the success of object reuse. An article that ap-
peared in ComputerWorld tells how Electronic Data Systems (EDS) initiated two proj-
ects to develop the same system using two different programming languages.2 One
project used a traditional 3GL language called PL/1, and the other used Smalltalk, an
object-oriented language.The results were impressive, as indicated in Table 18-1.

If our classes have high cohesion, meaning that they are essentially about one
thing, then we are more likely to find reuse situations for them. If our classes have low
coupling, meaning that they are relatively independent, then we can reuse one class
or a few classes without having to import the entire class structure.

The design reflected in Figure 18-17 has higher coupling than the design in
Figure 18-12. Why? Because MEMBER ORDER is related to (makes calls to) more classes.
So we couldn’t reuse MEMBER ORDER without also reusing both MEMBER ORDERED PRODUCT

and PRODUCT. The Figure 18-17 design also has lower cohesion; MEMBER ORDER is re-
sponsible for getting the quantity in stock out of product. Should that really be its job?

Over the last few years the approaches that systems analysts use to design and de-
velop software have radically changed with the advent of the Internet and Web-based
applications. Many companies were under extreme pressure to provide a “Web-
presence” in order to effectively compete with their competitors. With the business
philosophy of “being first to market,” developers were placed under extreme pressure
to deliver functionality faster and faster, which often meant the quality of the product

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 667

2“White Paper on Object Technology: A Key Software Technology for the 90s,” ComputerWorld, May 11, 1992.

Party

Person Organization

Address

Telephone

1

1..*

is located at

1 *

can be contacted at

Example: An electric company’s customers may be individuals or businesses. Many aspects of dealing with customers are the

same, in which case they are treated as parties. Where they differ, they are treated through their subtype.

F I G U R E 18-18

Organizational
Pattern

was less than desirable. In their efforts to combat the quality problem and to achieve
higher levels of reuse, developers began exploiting design patterns, object frame-
works, and components.

668 Part Three Systems Design Methods

design pattern a common

solution to a given problem

in a given context, which

supports reuse of proven

approaches and techniques.

T A B L E 1 8 - 1 Comparison of an OO Language and
a 3GL Language

Programming Project Duration Level of Effort Software Size
Language (calendar months) (person-months) (lines of code)

PL/1 19 152 265,000

Smalltalk 3.5 10.4 22,000

Design Patterns

You probably have heard the phrase “Don’t reinvent the wheel.” Applied to software
development it means don’t write new software to solve a problem that someone else
has already written software to solve correctly and efficiently. Many companies now
take this approach with developing new applications. They would rather buy a soft-
ware package off the shelf that meets the majority of their needs than build some-
thing from scratch. This approach ultimately saves time and money and makes good
business sense if building the application would provide no competitive advantage,
such as increased orders or greater market share. On a lesser scale, object-oriented de-
velopers look for the same reuse opportunities through the use of design patterns.

Over the course of many software projects, experienced developers collect a
library of practices and routines, which worked well and correctly, that they can
use over and over again in subsequent projects and even share with their fellow de-
velopers.These “development shortcuts,” which are solutions to common design and
programming problems, have come to be known as patterns. The goal of a pattern is
not to discover or invent a new solution to a problem but to formally structure an
existing solution to a common problem so that others may use it and take advantage
of it. Figure 18-18 is an adaptation of the organizational pattern created by Martin

F I G U R E 1 8 - 1 9 Gang-of-Four Patterns

Gang-of-Four Patterns

Creational Structural Behavioral

Abstract factor Adapter Chain of responsibility

Builder Bridge Command

Factory method Composite Flyweight

Prototype Decorator Interpreter

Singleton Façade Iterator

Proxy Mediator

Memento

Observer

State

Strategy

Template method

Visitor

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 669

3Martin Fowler is the chief scientist at ThoughtWorks, a cutting-edge consulting company. He has written several books

and articles on OO development, and you can research his work at his Web site, martinfowler.com.

Fowler.3 This pattern is very useful when your application has to work with organiza-
tional structures within a company or when individuals and companies can play the
same role, such as customer.

There are two advantages to learning and using design patterns.

• They allow us to design information systems with the experiences of those
who came before us rather than having to “reinvent the wheel.”

• They provide designers a short-hand notation for discussing design issues. For
instance, Bob Martinez might say to a colleague, “I know. Let’s use a strategy
pattern for promotions and build an adapter for integrating the Brand X sales
tax class.” You probably don’t yet know what he’s talking about. But if you
read on, you will.

In 1995 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published
Design Patterns, describing 23 patterns for OO design. The book quickly became
know as the bible of design patterns, and the four authors became known collectively
as the Gang of Four, often abbreviated as GOF. The 23 GOF patterns are divided into
three categories (as shown in Figure 18-19): creational, structural, and behavioral. Cre-
ational patterns provide guidance for designing classes to instantiate new objects.
Structural patterns provide guidance on how classes can be designed to form larger
structures. Behavioral patterns provide guidance on the way in which classes interact
to distribute responsibility. We will briefly discuss two sample patterns.

> The Strategy Pattern

SoundStage is always running promotions.When a member places an order, he or she
may be using any one of a number of promotions. Some promotions are based on the
total dollar amount of the order, some on the number of units, some on the kind of
product ordered, some provide a percentage discount, some a dollar amount discount,
and so on. The programming code to apply to each kind of promotion is significant.
More importantly, it is constantly changing as the marketing people dream up new

F I G U R E 1 8 - 2 0 Strategy Pattern

Other Promotion

+calcDiscount(in memberOrder)

-???

-???

Total Dollar Percent Discount

-percentDiscount

-amountThreshold

+calcDiscount(in memberOrder)

Total Unit Dollar Discount

-amountDiscount

-unitThreshold

+calcDiscount(in memberOrder)

Promotion

+calcDiscount(in memberOrder)

promotions. How can our system incorporate existing and new promotions without

constantly rewriting the controller classes?

Pattern: Strategy

Category: Behavioral

Problem: How to design for varying and changing policy algorithms.

Solution: Define each algorithm in a separate class with a common interface.

As illustrated in Figure 18-20, we can apply this pattern by creating various pro-

motion classes that inherit from a supertype PROMOTION class. Each class has a standard

interface method called calcDiscount, which returns the dollar amount that will be

discounted when that promotion is applied to an order.The internal code to calculate

each promotion will be entirely different for each promotion class. In fact, the MEMBER

ORDER attributes needed for each calculation can even differ (number of units, total

dollar amount, type of product, etc.). So we design the calcDiscount method to be

passed to the entire MEMBER ORDER instance as a parameter. The promotion class can

then do its job using any MEMBER ORDER attributes it needs.

> The Adapter Pattern

The SoundStage Member Services system has to calculate sales tax on orders. Keeping

up on all the varying laws in each U.S. state and Canadian province is a daunting task.

So SoundStage is going to buy prewritten tax calculation classes and plug them into

the member services system. They found more than one vendor who could supply

them with the classes, and each vendor’s classes provide a different set of methods to

call.They want to design the system so that if they ever change vendors, they have to

change as little as possible in their system to work in the new classes.

Pattern: Adapter

Category: Structural

Problem: How to provide a stable interface to similar classes with different

interfaces.

Solution: Add a class that acts as an adapter to convert the interface of a class

into another interface that the client classes expect.

Figure 18-21 shows an implementation of the adapter pattern for SoundStage.We

begin with the SALES TAX ADAPTER class. This provides an unchanging method

(calcSalesTax) for the rest of the system to call. To integrate in the purchased class

(BRAND X SALES TAX CALCULATOR) we write a new class (BRAND X ADAPTER) that inherits from

SALES TAX ADAPTER class and includes all the code needed to call the purchased class. It

translates (or adapts) the call from the system into a call that the purchased class can

670 Part Three Systems Design Methods

F I G U R E 1 8 - 2 1 Adapter Pattern

Member Order

-orderNumber

-orderCreationDate

-orderFillDate

-shippingInstructions

-orderSubTotal

-orderSalesTax

-orderShippingMethod

-orderShipping&HandlingCost

-orderStatus

-orderPrepaidAmount

-orderPrepaymentMethod

Sales Tax Adapter

+calcSalesTax()

+calcSalesTax()

Brand X Adapter Brand X Sales Tax Calculator

+calcTax()

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 671

accept. If we ever change vendors, then we have only to write a new adapter subtype;
everything else stays the same.

Many Web sites are dedicated to the subject of patterns, and many excellent text-
books have been published containing tried-and-true patterns that have been devel-
oped by experts in the industry. Some are listed in the Suggested Readings at the end
of the chapter.

> Object Frameworks and Components

Developers use object frameworks to take advantage of reusability and lessen de-
velopment time. A framework is a subsystem of collaborating classes that provides a set
of related services.Whereas patterns are design guidelines written on paper (or a Web
page), frameworks are classes implemented in programming code and ready to call.
One example is a calendar routine, used for calculating or displaying dates. Routines
used for charting, printing, or any type of application utility would be good candidates
for object frameworks. One of the more common object frameworks available is the
software used to translate objects to relational tables and vice versa. This framework
is required whenever your application is OO but the database you are using is non-
OO, such as relational technology. By using object frameworks, developers can con-
centrate on developing the logic that is new or unique to the application, thus
reducing the overall time required to build the entire system.

Using components, the developer can easily package and distribute the pro-
gramming code to others. A component represents a modular, physical element (EXE,
DLL, or database) of the system that is replaceable. Components are sometimes
thought of as “superobjects,” but in reality a component consists of a set of related
collaborating objects that have an interface and can be deployed as a single unit.

object framework a set of

related, interacting objects

that provide a well-defined set

of services for accomplishing

a task.

component a group of ob-

jects packaged together into

one unit. An example of a

component is a dynamic link

library (DLL) or executable

file.

Additional UML Design and Implementation Diagrams

In Chapter 7 we were introduced to use case diagrams. In Chapter 10 we saw how
to use activity diagrams and class diagrams in the analysis phase. In this chapter we
saw how to build a design-level class diagram. We also saw in this chapter how to use
sequence diagrams and state machine diagrams in the design phase. Sequence
diagrams are useful when you want to study the behavior of several classes within a
single use case. State machine diagrams are useful when you want to explore a single

F I G U R E 1 8 - 2 2 Communication Diagram for Step 6 of the Place New Order Use Case

:UserInterface :Controller :Product

:Member Ordered Product
:Member Order

1
2

3

4

1.1 addItem(item,quantity) 1.2 calculateQtyInStock(productNumber)

1
.3

 a
d
d
Ite

m
(p

ro
d
u
ctN

u
m

b
e
r,q

u
a
n
tityO

rd
e
re

d
)1.4 calcTotal()

1.4.1 calcExtPrice(item)

1
.4

.2
 g

e
tP

ric
e
(p

ro
d
u
c
tN

u
m

b
e
r)

class across multiple use cases.You can also use activity diagrams in the design phase
to graphically depict the sequential flow of activities of either a business process or a
use case. In design they are very useful for modeling actions that will be performed
when an operation is executing and the results of those actions—such as modeling
the events that cause windows to be displayed or cleared.

That accounts for 5 of the 13 different diagrams of UML 2.0. What about the
others? Briefly we will introduce you to three others. A communication diagram

(called a collaboration diagram in earlier versions of UML) models the interaction of
objects via messages. Thus, it is similar to a sequence diagram. But while a sequence
diagram focuses on the timing or sequence of messages, a communication diagram fo-
cuses on the structural organization of objects in a network format. Figure 18-22 is a
communication diagram that depicts the same interaction as the sequence diagram in
Figure 18-12. Note the following on the diagram:

Class—shown with a box symbol as in a sequence diagram but without the
lifeline.
Messages—show communication between the classes with arrows marking
the direction and a notation of the method being called.
Self-calls—can be shown as in sequence diagrams.
Numbering scheme—Though this rule is often violated, the messages should
be numbered with a nested scheme. This can be useful in depicting calls that
are performed as part of a larger method. The numbering scheme here, for
instance, makes it clear that steps 1.4.1 and 1.4.2 are done within step 1.4.

Since they accomplish much the same thing as sequence diagrams, when would
you use one versus the other? Sequence diagrams are generally better when you want
to emphasize the sequence of calls while communication diagrams are better when
you want to emphasize the links. Overall, sequence diagrams are more popular. But
since they are simpler and easier to draw on whiteboards, communication diagrams
may be better tools for brainstorming alternative solutions.

Component diagrams are implementation-type diagrams that are used to graph-
ically depict the physical architecture of the software of the system. A single software
component often implements a group of classes that form a cohesive subset of the
system. Component diagrams can be used to show how programming code is divided
into components and to depict the dependencies between those components.

4

3

2

1

672 Part Three Systems Design Methods

communication diagram
models the interaction of ob-

jects via messages, focusing

on the structural organization

of objects in a network format.

Called a collaboration diagram

prior to UML 2.0.

component diagram
depicts the organization of

programming code divided

into components and how the

components interact.

Client Source Code

Comment

(client.exe)

Drawing Library

Comment

(drawing.dll) dependency

F I G U R E 1 8 - 2 4 Sample Deployment Diagram

F I G U R E 18-23

Example of a
Component
Diagram

Constructed using Popkin’s System

Architect.

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 673

Figure 18-23 is an example of a component diagram constructed using Popkin’s
System Architect. The component symbol shown here is a UML 1.X notation, which
UML 2.0 has removed. It is, however, still in popular use.

Deployment diagrams are implementation-type diagrams that describe the
physical architecture of the hardware and software in the system. They depict the
software components, processors, and devices that make up the system’s architec-
ture. Figure 18-24 shows an example of a deployment diagram. Each box in the

deployment diagram
depicts the configuration of

software components within

the physical architecture of

the system’s hardware

“nodes.”

Application Server—Compaq PIII 500Client Workstation

HP Kayak XU-400

Constructed using Popkin's System Architect.

SAP R/3

Comment
Client Source Code

Comment

(client.exe)

Oracle 8

Comment

TCP/IP

TCP/IP

1. The approach of using object-oriented techniques
for designing a system is referred to as object-
oriented design.

2. Object-oriented design is concerned with identi-
fying and classifying three class types, including
interface, entity, and control object types. Inter-
face and control object types are objects that are
introduced as a result of implementation deci-
sions that were made during systems design.

a. Entity classes are identified during systems
analysis and usually correspond to items in
real life and contain information, known as at-
tributes, that describes the different instances
of the entity.

b. Interface classes are introduced to represent a
means through which the user will interface

with the system.The responsibility of the in-
terface class is twofold:

i) It translates the user’s input into informa-
tion that the system can understand and
use to process the business event.

ii) It takes data pertaining to a business event
and translates the data for appropriate pre-
sentation to the user.

c. Control classes are those that hold application
or business rule logic. Control classes serve
as the “traffic cop” containing the application
logic or business rules of the event for manag-
ing or directing the interaction between the
classes.

Chapter Review

Le
a
rn

in
g
 R

oa
d
m

a
p

This chapter provided an introduction to the object-oriented approach to systems de-

sign. Since prototyping is an integral part of object-oriented design, it is recom-

mended that you learn about prototyping and user interfaces during system design.

Thus, if you haven't already covered these topics, you should proceed to Chapters 15,

16, and 17 next.

To gain a better understanding of object-oriented design and its impact on the

subsequent construction and implementation of a new system, it is recommended

that you learn about object-oriented programming (OOP). Consider taking a course

dealing with object-oriented programming. With the popularity of Java and the .NET

framework, numerous books have been written on OOP. These books explain how

the OO concepts presented in Chapters 10 and 18 are implemented in an object-

oriented programming language environment.

674 Part Three Systems Design Methods

diagram is the symbol for a node, which in most cases is a piece of hardware. The
hardware may be a PC, mainframe, printer, or even a sensor. Software that resides on
the node is represented by the component symbol. The lines connecting the nodes
indicate a communication path between the devices. In Figure 18-24 the connections
are labeled with the type of communication protocols being used.

If you desire a more in-depth description of the purpose and use of the entire set
of UML diagrams, there are excellent books available documenting the use of the
UML. Many are listed in this chapter’s Suggested Readings.

3. An object-oriented system could be implemented
with the above three types of classes. But many
methodologists prefer to include two other types
of classes.

a. Persistence classes provide functionality to
read and write entity class attributes to a
database.

b. System classes isolate other classes from oper-
ating system–specific functionality.

4. In object-oriented design it is necessary to model
more advanced relationships in order to accu-
rately specify the software components:

a. A dependency relationship is used to model
the association between two classes in two in-
stances: (1) to indicate that when a change oc-
curs in one class, it may affect the other class,
and (2) to indicate the association between a
persistent class and a transient class.

b. By default, associations between classes are
bidirectional, meaning that objects of one kind
can navigate (send messages) to objects of the
other kind.There may be times, though, when
you want to limit the message sending to only
one direction.You specify navigability by plac-
ing an arrowhead on the association in the
direction the message will be sent.

c. How attributes and methods are accessed by
other objects is defined by visibility.The UML
provides three levels of visibility:

i) Public—denoted by the symbol “ ”.
ii) Protected—denoted by the symbol “#”.
iii) Private—denoted by the symbol “ ”.

5. Object responsibility is the obligation that an ob-
ject has to provide a service when requested and
thus collaborate with other objects to satisfy the
request if required. Object responsibility is
closely related to the concept of objects being
able to send and/or respond to messages.

6. Object-oriented design includes the following
activities:

a. Refining the use-case model to reflect the
implementation environment.

b. Modeling class interactions, behaviors, and
states that support the use-case scenario.

c. Updating the class diagram to reflect the im-
plementation environment.

7. In OOD, analysis use cases are refined into de-
sign use cases to reflect the physical aspects of
the implementation environment for the new
system.

8. During systems design, use-case descriptions
are examined to identify all action-verb phrases.

Action-verb phrases suggest behaviors required to
complete a use-case scenario.These behaviors
must be associated with a system object.

9. A popular tool for documenting the behaviors
and collaborations of an object is the class re-
sponsibility collaboration (CRC) card.

10. Another tool for discovering and/or document-
ing class behaviors and responsibilities is a
sequence diagram. A sequence diagram models
the logic of a use case by depicting the interac-
tion of messages between classes in time
sequence.

11. A state machine diagram models the life cycle of a
single object. It depicts the different states a class
can have, the events that cause it to change state
over time, and the rules that govern its transition
between states. In other words, it specifies from
which state a class is allowed to transition to
another state.

12. A design class diagram represents the software
classes in the application. It consists of the
following:

a. Classes.
b. Associations and gen/spec and aggregation

relationships.
c. Attributes and attribute-type information.
d. Methods with parameters.
e. Navigability.
f. Dependencies.

13. Two overarching goals of object-oriented design
are low coupling and high cohesion. Coupling
is the degree to which one class is connected to
or relies upon other classes. Cohesion is the de-
gree to which the attributes and behaviors of a
single class are related to each other. Achieving
low coupling and high cohesion promotes ob-
ject reuse, which lowers the cost of software
development.

14. To achieve higher levels of reuse, developers have
begun exploiting design patterns. Design patterns
are a common solution to a given problem in a
given context.

a. The strategy pattern deals with how to design
for varying and changing policy algorithms.

b. The adapter pattern provides guidance on
how to design a stable interface for similar
classes with different interfaces.

c. Many other patterns also exist.

15. Developers also use object frameworks to speed
development. A framework is a subsystem of
collaborating classes that provide a set of related
services.

16. Using components, a developer can package and
distribute programming code to others.

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 675

17. The UML offers other diagrams for modeling de-
sign and implementation aspects of the system:

a. In design, activity diagrams are very useful for
modeling actions that will be performed when
an operation is executing as well as the results
of those actions—such as modeling the events
that cause windows to be displayed or closed.

b. Communication diagrams model the interac-
tion of objects via messages, focusing on the
structural organization of objects in a network
format.

c. Component diagrams are implementation-type
diagrams that are used to graphically depict

the physical architecture of the software of
the system.They can be used to show how
programming code is divided into modules (or
components) and to depict the dependencies
between those components.

d. Deployment diagrams are implementation-
type diagrams that describe the physical archi-
tecture of the hardware and software in the
system.They depict the software components,
processors, and devices that make up the
system’s architecture.

1. What are the three kinds of objects used in
object-oriented design?

2. Why are the three kinds of objects needed in
object-oriented design?

3. What is navigability? Please give an example of a
navigability relationship.

4. What is visibility in object-oriented design?
Explain the different levels of visibility.

5. What is the key reason for object reusability?
6. What are some of the methods developers use to

achieve object reusability?
7. What are the main activities of object-oriented

design?
8. What is the objective of refining the use-case

model in object design? Why is it important?

9. What are some ways that we can use to identify
use-cases design objects—namely, interface ob-
jects, control objects, and entity objects?

10. What is the goal of constructing object robust-
ness diagrams? What are the components of the
diagrams?

11. What should we look for in identifying the object
behaviors and responsibilities of the objects?

12. What is the relationship between an object state
and state transition event?

13. What are the steps needed to construct the state
chart diagram?

14. What are the tools used to document the detailed
object interaction for the use cases?

15. What does a design class diagram include?

Review Questions
1

2

1. What is the main rationale for using object-
oriented methods to develop systems? Why?

2. A project developed in PL/1 is expected to take
30 months. Assuming the same ratios as those
shown in Table 18-1, compare the duration, level
of effort, and software size between a project de-
veloped in PL/1 and a project developed in an
object-oriented language comparable to Smalltalk.

Programming Project Duration Level of Software

Language (calendar Effort (person- size (lines

months) months) of code)

PL/1 30.0 240.0 41,800

OO Language 5.5 16.4 3,500

3. True or false? Explain your answers as needed.

• A dependency relationship models a two-class
association in only two instances.

• To enforce encapsulation, attributes should
generally be declared private.

• An object that is supposed to collaborate
with other objects when necessary to provide
a requested service, but which is unable to
do so, is termed an irresponsible object.

• Interface objects are typically persistent.
• During the object-oriented design phase, the

object model is updated to reflect the actual
implementation environment.

Problems and Exercises

676 Part Three Systems Design Methods

4. What are the interface objects users may find for
the following?

a. Photo printer that doesn’t require a computer
to print pictures.

b. Service station gas pump.
c. Entrance/exit door in retail store.

5. During the design phase in object-oriented de-
sign, are any changes made to the use cases cre-
ated earlier? If so, what are these changes, and
what is their overall purpose?

6. Fill in the blanks:

a. Window __________, e.g., icons, buttons and
links, are __________ stated in system design
_________.

b. The term for a set of __________ objects which
are __________, have an __________ and,
which can act as a single unit is __________.

c. To be able to __________ objects, they need to
__________ correctly by defining them within
an appropriate __________ hierarchy so they
are __________ enough for easy use in other
applications.

d. During the __________ phase, __________ and
__________ are refined to mirror the
__________ environment of the solution,
rather than an environment based upon a
__________ ideal.

7. Match the terms in the first column with the defi-
nitions or examples in the second column.

1. Visibility A. Common reusable so-
lution to given prob-
lem in given context

2. Design pattern B. Execution of software
logic in response to
message

3. Components C. Object condition at a
specific point during
its lifetime

4. State transition D. External object’s
event access level to an

attribute or method
5. Interface object E. Obligation to collabo-

rate if needed to pro-
vide requested service

6. Control object F. Collaborating objects
subsystem providing
set of related services

7. Entity object G. Model of single ob-
ject’s life cycle states

8. Object state H. Holds business rule or
application logic

9. Object I. Acting out use-case
responsibility scenarios to simulate

object behaviors

10. Object framework J. Representation of busi-
ness domain’s actual
data

11. Role playing K. Change in state caused
by occurrence updat-
ing attributes’ values

12. Method L. API, screen, window,
dialogue box

13. State machine M. DLL or .exe file
diagram

8. Select an application with which you are familiar.
Pick one of the processes in the application and
create an analysis use case; use the template
shown in Figure 18-7.Then, using the guidelines
in this chapter, refine the use case and transform
it into a design use case. Highlight the areas that
you changed or added.

9. After creating the design use case, analyze it in
order to identify and classify the use-case design
objects; use Figure 18-8 as an example. In general,
you will probably have more entity objects than
interface objects, and you should have at least
one control object. Have a fellow student or co-
worker check your work to make sure it is identi-
fied and classified correctly.

10. What is the purpose of an object robustness dia-
gram? What are the symbols used in this diagram,
and what do they represent? Next, draw an object
robustness diagram based upon your use case;
use Figure 18-9 as an example.

11. Now go back to the design use case you created.
Analyze this use case to identify the required sys-
tem behaviors; use the matrix shown in Figure
18-10 as an example. After identifying the use
case behaviors, determine if each behavior will
be automated or manual in the new system. If the
behavior is automated, then in the third column
assign the object type that will be responsible for
executing that behavior.

12. Explain the purpose of the class responsibility
collaboration (CRC) card; then create a CRC card
for each object type identified in your previous
exercises.

13. At this point, take a moment and assess the object-
oriented analysis and design techniques you have
learned. How do you feel they compare to the
other analysis and design approaches taught in
this textbook? Do you feel the additional work
and complexity will pay off in terms of reduced
project development time and other factors? If
you were given the choice, which approach
would you choose?

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 677

1. As discussed in the textbook, the key element in
object-oriented technology is its potential for
reusability. Martin Fowler, the chief scientist at
ThoughtWorks, is a leader in the use of design pat-
terns and has written numerous articles on the sub-
ject. Go to his Web site at www.martinfowler.com

and read some of the articles and forum entries
that are posted there.

a. Prepare a two- to three-page paper analyzing his
early approach and contributions to object
reusability.

b. How do others in the field of design view
Fowler’s work?

c. Read some of his most recent papers. What is
Fowler currently working on?

d. Read Fowler’s “Agile Manifesto.” Do you agree
or disagree with it? Explain your answer.

e. At a theoretical level, what do you feel is the
value of Fowler’s work in the field of design?
What about on a practical level?

2. Fowler has developed a number of approaches to
reusability since his initial work on design pat-
terns. Research some of his recent work on the
theme of reusability. Select one and write a critical
analysis. Compare and contrast his approaches to
those of others in the field of design.

3. Now look at Fowler’s work on design patterns.
Look at the organizational pattern created by
Fowler as a way to document the structure of a
solution so that its use by others is optimized,
and at the adaptation in the textbook. Select an
application with which you are familiar. Look for
reuse opportunities in the application, then cre-
ate several design patterns; use the organizational
pattern in Figure 18-6. Have someone who is
knowledgeable and has experience in object-
oriented design review your design patterns
for applicability. If this were not a classroom

exercise, could your design patterns be used for
other actual applications?

4. Take the design use case you created and refined
in Problems and Exercises (or another one if you
prefer). Create a sequence diagram and class dia-
gram based upon this use case; use Figures 18-16
and 18-17 as examples. Have someone in your or-
ganization or school who is knowledgeable in us-
ing object-oriented design review your diagrams
and modify them as necessary.

5. Envision the implementation for a hypothetical
system. Create the component diagrams and de-
ployment diagrams that describe the physical ar-
chitecture of the system software and hardware;
use Figures 18-18 and 18-19 as examples. Have
someone in your organization or school who is
knowledgeable in using object-oriented implemen-
tation techniques review your diagrams and mod-
ify them as necessary.

6. Just as object-oriented analysis (OOA) led up to
and transitioned into object-oriented design
(OOD), so too does OOD lead up to and transition
into object-oriented programming. Although this is
not a class in programming, understanding the ba-
sic concepts and constructs of object oriented pro-
gramming (OOP) may be beneficial to an overall
understanding of the object-oriented approach to
systems development. Research object-oriented
programming on the Web or in textbooks in order
to get an overview. How are the diagrams, use
cases, and other artifacts created in the object-
oriented analysis and design phases used by
object-oriented programming in the construction
phase? Does object-oriented programming intro-
duce any new diagrams or other constructs? What
are the basic steps and processes used by OOP
during the construction phase? What are some of
the most popular object-oriented programming
languages in use today?

Projects and Research

1. Get Jim Conallen’s book Building Web Applica-

tions with UML (Boston: Addison-Wesley, 2002):

a. What are the differences between Web-based
UML and traditional UML, shown in Conallen’s
book?

b. Wow Munchies, discussed in a previous chapter,
has decided to implement an e-commerce site.
It would like you to do the UML modeling for

the site. What UML modeling techniques will
you use? Why?

2. In previous chapters, you interviewed a govern-
ment department and began designing a new
system for it. Return to the notes:

a. Describe the system that you recommend it
have.

Minicases

678 Part Three Systems Design Methods

1. Roundtable discussion: Now that you are almost
finished with this course, reflect upon the field of
systems analysis and design, and your experience.
Consider things such as these: What is systems
analysis and design? What attributes are important
in a person who is in this field? What did you learn
from the course? If you had the opportunity to
change anything, what would it be?

2. Throughout this course, you have been encour-
aged to expand your creativity through a number

of exercises. Creativity and our ability to think
freely and outside the norm is imperative for real
success in many fields. Why?

3. Team or individual:Think about instances when
the rules were wrong, inefficient, or just plain out-
dated. Research and share with the class legal
methods for challenging the system and changing
the rules. It can be rules of government (laws),
workplace, or school.

Team and Individual Exercises

Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001.Very good information about doc-

umenting use cases and their use.

Armour, Frank, and Granville Miller. Advance Use Case Mod-

eling. Boston: Addison-Wesley, 2001. This book presents

excellent coverage of the use-case modeling process.

Booch, G. Object-Oriented Design with Applications. Red-

wood City, CA: Benjamin Cummings, 1994. Many Booch

concepts were integrated into the UML.

Coad, P., and E. Yourdon. Object-Oriented Analysis, 2nd ed.

Englewood Cliffs, NJ: Prentice Hall, 1991. This book pro-

vides a very good overview of object-oriented concepts.

However, the object model techniques are somewhat lim-

ited by comparison to UML and other object-oriented

modeling approaches.

Eriksson, Hans-Erik, and Magnus Penker. UML Toolkit. New

York: John Wiley & Sons, 1998. This book provides de-

tailed coverage of the UML.

Fowler, Martin. UML Distilled Third Edition, A Brief Guide

to the Standard Object Modeling Language. Reading,

MA: Addison-Wesley, 2003. This is a good short guide in-

troducing the concepts and notation of UML 2.0.

Harman, Paul, and Mark Watson. Understanding UML: The

Developer’s Guide. San Francisco: Morgan Kaufmann Pub-

lishers, 1997. This is an excellent reference book. The ex-

amples were prepared using Popkin’s System Architect.

Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and

Gunnar Overgaard. Object-Oriented Software Engineering:

A Use Case Driven Approach. Workingham, England:

Addison-Wesley, 1992. This book presents detailed cover-

age of how to identify and document use cases.

Larman, Craig. Applying UML and Patterns: An Introduction

to Object-Oriented Analysis and Design. Englewood

Cliffs, NJ: Prentice Hall, 1997. This is an excellent refer-

ence book explaining the concepts of OO development

utilizing the UML.

Martin, J., and J. Odell. Object-Oriented Analysis and Design.

Englewood Cliffs, NJ: Prentice Hall, 1992.

Rumbaugh, James; Michael Blaha; William Premerlani; Freder-

ick Eddy; and William Lorensen. Object-Oriented Modeling

and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.This

book presents detailed coverage of the object modeling

technique (OMT) and its application throughout the entire

systems development life cycle. Many OMT constructs are

now in the UML.

Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fied Modeling Language Reference Manual. Reading, MA:

Addison-Wesley, 1999. This book presents detailed cover-

age of the UML by the primary authors who created it.

Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fied Modeling Language Users Guide. Reading, MA: Ad-

dison-Wesley, 1999. This book presents detailed coverage

of the UML by the primary authors who created it.

Taylor, David A. Object-Oriented Information Systems: Plan-

ning and Implementation. New York: John Wiley & Sons,

1992. This book is a very good entry-level resource for

learning the concepts of object-oriented technology and

techniques.

Suggested Readings

b. Using UML modeling, diagram the system you
are proposing. (Consider Use Case, Class, Se-
quence, and State Machine diagrams.)

c. Submit a deliverable to your professor, includ-
ing a discussion of the previous interviews and
parts 2a and 2b of this minicase.You will be
graded on correctness, completeness, and
professionalism.

3. Using your work from minicase 2 and from previ-
ous chapters, create a system prototype for your
government client. What language are you using?

Why? Submit your prototype on CD to your profes-
sor, as well as a hard copy of your source code,
screen shots, a short discussion of any assumptions
you made, and a short discussion of the business
problem you are solving with the system.

4. Exchange prototypes (from minicase 3) with an-
other group. Evaluate the design and usability of
the interface and any output. Document your find-
ings thoroughly and prepare a report. Give one
copy of the report to the other group (the one who
created the prototype) and one to the professor.

Object-Oriented Design and Modeling Using the UML Chapter Eighteen 679

Beyond Systems Analysis and Design

Part Four introduces you to the final

phases of systems development and

the support activities that are ongoing

once the system has been placed in

operation.

Chapter 19, “Systems Construc-

tion and Implementation,” presents

the process of constructing the system

from physical design specifications

and the implementation of the con-

structed system.

Chapter 20, “Systems Operations

and Support,” discusses four types of

systems support for an application.

This ongoing maintenance of a sys-

tem after it has been placed into pro-

duction consists of correcting errors,

recovering the system, assisting

users, and adapting the system.

Systems support is very important

because it is likely that young sys-

tems analysts will be responsible for

maintaining legacy systems. This

chapter concludes our exploration of

the systems development life cycle.

Part Four

Strategic Enterprise Plan Strategic Information Systems Plan

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

Strategic Enterprise Information Technology Architecture

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

LOGICAL

DATA

MODELS

LOGICAL

INTERFACE

MODELS

BUSINESS

DATA

REQUIREMENTS

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

S T A T E M E N T O F W O R K

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
H

Y
S

IC
A

L

D
E

S
IG

N

S
Y

S
T

E
M

O
W

N
E

R
S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

D E S I G N P R O T O T Y P E S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

19Systems Construction and
Implementation

Chapter Preview and Objectives

In this chapter you will learn more about the construction and implementation phases

of systems development. These two phases construct, test, install, and deliver the final

system into operation. You will know that you understand the processes of constructing

and implementing a system when you can:

❚ Explain the purpose of the construction and implementation phases of the system’s life

cycle.

❚ Describe the system’s construction and implementation phases in terms of your

information building blocks.

❚ Describe the system’s construction and implementation phases in terms of major tasks,

roles, inputs, and outputs.

❚ Explain several application program and system tests.

❚ Identify several system conversion strategies.

❚ Identify the chapters in this textbook that can help you actually perform the tasks of

systems construction and implementation.

Although some of the techniques of systems construction and implementation are

introduced in this chapter, it is not the intent of this chapter to teach the techniques.

This chapter teaches only the process of construction and implementation.

Construction has finally begun on the SoundStage Member Services system. Bob
Martinez is an analyst/programmer, which means that he is expected to do some pro-
gramming as well as systems analysis.Tasked with writing code to implement some of
the use cases, Bob is seeing the advantage of all the analysis and design work that has
gone on before. From the repository of design documents, Bob can draw essentially
everything he needs to know to write his programs. His boss, Sandra, insisted that he
write test scripts before he began programming. Again, the use cases told him what
alternatives needed to be tested and what the results should be.

Other members of the systems analysis team are working with database pro-
grammers, application programmers,Web designers and administrators, software ven-
dors, technical writers, and an outside firm hired to perform systems testing.They are
racing to meet the deadline. But it is gratifying to see the system they designed
becoming a reality.

684 Part Four Beyond Systems Analysis and Design

systems construction the

development, installation, and

testing of system components.

systems implementation
the installation and delivery

of the entire system into

production.

Introduction

What Is Systems Construction and Implementation?

Let’s begin with definitions of systems construction and implementation. Systems

construction is the development, installation, and testing of system components.
Unfortunately, systems development is a common synonym. (We dislike that syn-
onym since it is more frequently used to describe the entire life cycle.) Systems

implementation is the delivery of that system into production (meaning day-to-day
operation).

Relative to the information systems building blocks, systems construction and
implementation address IS building blocks primarily from the system builders’ per-
spective (see the chapter home page).

Figure 19-1 illustrates the construction and implementation phases. Notice that
the trigger for the systems construction phase is the approval of the physical design
specifications resulting from the design phase. Given the design specifications, we
can construct and test system components for that design. Eventually we will have
built the functional system.The functional system can then be implemented or deliv-
ered as an operational system.

This chapter examines each of these phases in detail.

The Construction Phase

The purpose of the construction phase is to develop and test a functional system that
fulfills business and design requirements and to implement the interfaces between
the new system and existing production systems. Programming is generally recog-
nized as a major aspect of the construction phase. But with the trend toward system
solutions that involve acquiring or purchasing software packages, the implementation
and integration of software components is becoming an equally, if not more, common
and visible aspect of the construction phase.

In this section you will learn about several tasks involved in the construction phase
of a typical systems development project. Figure 19-2 depicts the various tasks for the
construction phase. Let’s examine each construction phase task in greater detail.

> Task 6.1—Build and Test Networks (if Necessary)

Recall that in the requirements analysis phase of systems analysis, we established net-
work requirements. Subsequently, during the design phase we developed distributed

F
I
G

U
R

E

1

9
-
1

T
h

e
C

o
n

te
x

t
o

f
S

y
st

em
s

C
o

n
st

ru
ct

io
n

 a
n

d
 I

m
p

le
m

en
ta

ti
o

n

P
R

O
B

L
E

M

A
N

A
LY

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
LY

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A
T

IO
N

6

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if
e

-C
y
c
le

 S
ta

g
e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e

m
e

n
t

O
b

je
c
ti
v
e

s

B
u

s
in

e
s
s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

A
p

p
lic

a
ti
o

n

A
rc

h
it
e

c
tu

re

P
h

y
s

ic
a

l

D
e

s
ig

n
 S

p
e

c
if

ic
a

ti
o

n
s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l

S
y

s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti
o

n

S
T
A

R
T

:

P
ro

b
le

m
s
,

O
p

p
o

rt
u

n
it
ie

s
,

D
ir
e

c
ti
v
e

s
,

C
o

n
s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e

s
ig

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e

 &
 V

is
io

n

S
y
s
te

m

P
ro

p
o

s
a

l

D
e

s
ig

n

P
ro

to
ty

p
e

s

T
ra

in
in

g

M
a

te
ri

a
ls

P
o

s
t-

A
u

d
it

R
e
v

ie
w

R
e

d
e

s
ig

n
e

d

B
u

s
in

e
s

s

P
ro

c
e

s
s

e
s

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

685

F
I
G

U
R

E

1

9
-
2

S
y

st
em

s
C

o
n

st
ru

ct
io

n
 T

as
k

s

B
u

il
d

 a
n

d

T
e

s
t

D
a

ta
b

a
s

e
s

6
.2

W
ri

te
 a

n
d

T
e

s
t

N
e
w

P
ro

g
ra

m
s

6
.4

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

D
e

s
ig

n
 S

p
e

c
if

ic
a

ti
o

n
s

R
e

p
o

s
it
o

ryN
e

tw
o

rk

D
e

ta
ils

D
a

ta
b

a
s
e

S
c
h

e
m

a
s

T
H

E
 B

U
S

IN
E

S
S

 A
N

D
T

E
C

H
N

IC
A

L
 C

O
M

M
U

N
IT

Y

(
a

p
p

ro
v
a

l
to

 c
o

n
ti

n
u

e
 p

ro
je

c
t

a
ft

e
r

d
e

s
ig

n
 p

h
a

s
e

)

In
te

g
ra

ti
o

n

R
e

q
u

ir
e

m
e

n
ts

&
 P

ro
g
ra

m

D
o

c
u

m
e

n
ta

ti
o

n

T
e

c
h

n
ic

a
l
D

e
s
ig

n

S
ta

te
m

e
n

t,
 P

la
n

 F
o

r

P
ro

g
ra

m
m

in
g

,
a

n
d

T
e

s
t

D
a

ta

In
s

ta
ll

 a
n

d

T
e

s
t

N
e
w

S
o

ft
w

a
re

P
a

c
k

a
g

e
s

6
.3

S
o

ft
w

a
re

L
ib

ra
ry

R
e
v
is

e
d

 D
a

ta
b

a
s
e

S
c
h

e
m

a
s
 a

n
d

T
e
s
t

D
a

ta
 D

e
ta

ils

P
ro

d
u

c
ti
o

n

D
a

ta
b

a
s
e

N
e
w

D
a

ta
b

a
s
e

s

N
e

tw
o

rk

D
e

s
ig

n

R
e

q
u

ir
e

m
e

n
ts

S
a

m
p

le

D
a

ta

D
a

ta
b

a
s
e

S
tr

u
c
tu

re

T
E

C
H

N
O

L
O

G
Y

 I
N

D
U

S
T

R
Y

T
E

C
H

N
O

L
O

G
Y

 S
A

L
E

S
 R

E
P

R
E

S
E

N
T
A

T
IV

E
S

S
o

ft
w

a
re

P
a

c
k

a
g

e
s

a
n

d

D
o

c
u

m
e

n
ta

ti
o

n

S
o

ft
w

a
re

P
a

c
k
a

g
e

R
e

u
s
a

b
le

 S
o

ft
w

a
re

 C
o

m
p

o
n

e
n

ts

N
e
w

 P
ro

g
ra

m
s
 &

 R
e

u
s
a

b
le

 S
o

ft
w

a
re

 C
o

m
p

o
n

e
n

ts

P
ro

g
ra

m
 D

o
c
u

m
e

n
ta

ti
o

n

M
o

d
if
ie

d
 S

/W
 S

p
e

c
s

&
 N

e
w

 I
n

te
g
ra

ti
o

n

R
e

q
u

ir
e

m
e

n
ts

In
s

ta
ll

e
d

 N
e

tw
o

rk
B

u
il

d

a
n

d
 T

e
s

t

N
e

tw
o

rk
s

6
.1

686

data and process models. Using these technical design specifications to implement
the network architecture for an information system is a prerequisite for the remaining
construction and implementation activities.

In many cases, new or enhanced applications are built around existing networks.
If so, skip this task. However, if the new application calls for new or modified net-
works, they must normally be implemented before building and testing databases and
writing or installing computer programs that will use those networks. Thus, the first
task of the construction phase may be to build and test networks.

This phase involves analysts, designers, and builders. A network designer and
network administrator assume the primary responsibility for completing this task.The
network designer is a specialist in the design of local and wide area networks and
their connectivity. The network administrator has the expertise for building and test-
ing network technology for the new system. He or she will also be familiar with net-
work architecture standards that must be adhered to for any possible new networking
technology. This person is also responsible for security. (The network designer and
network administrator may be the same person.) While the systems analyst may be in-
volved in the completion of this task, the analyst’s role is more that of a facilitator and
ensures that business requirements are not compromised by the network solution.

> Task 6.2—Build and Test Databases

Building and testing databases are unfamiliar tasks for many students, who are accus-
tomed to having an instructor provide them with the test databases.This task must im-
mediately precede other programming activities because databases are the resources
shared by the computer programs to be written. If new or modified databases are
required for the new system, we can now build and test those databases.

This task involves systems users, analysts, designers, and builders. The same sys-
tem specialist that designed the databases will assume the primary responsibility in
completing this task. System users may also be involved in this task by providing or
approving the test data to be used in the database. When the database to be built is a
noncorporate, applications-oriented database, the systems analyst often completes
this task. Otherwise, systems analysts mostly ensure business requirements compli-
ance.The database designer will often become the system builder responsible for the
completion of this activity. The task may involve database programmers to build and
populate the initial database and a database administrator to tune the database
performance, add security controls, and provide for backup and recovery.

The primary inputs to this task are the database schema(s) specified during sys-
tems design. Sample data from production databases may be loaded into tables for
testing the databases.The final product of this task is an unpopulated database struc-

ture for the new database.The term unpopulated means the database structure is im-
plemented but data has not been loaded into the database structure. As you’ll soon
see, programmers will eventually write programs to populate and maintain those new
databases. Revised database schema and test data details are also produced during this
task and placed in the project repository for future reference.

> Task 6.3—Install and Test New Software
Packages (if Necessary)

Some systems solutions may have required the purchase or lease of software pack-
ages. If so, once networks and databases for the new system have been built, we can
install and test the new software. This new software will subsequently be placed in
the software library.

This activity typically involves systems analysts, designers, builders, and vendors
and consultants.This is the first task in the life cycle that is specific to the applications
programmer. The systems analyst typically participates in the testing of the software

Systems Construction and Implementation Chapter Nineteen 687

package by clarifying requirements. Likewise, the system designer may be involved in
this task to clarify integration requirements and program documentation that is to be
used in testing the software. Network administrators may be involved in actually in-
stalling the software package on the network server. Finally, this task typically involves
participation from the software vendor and consultants who may assist in the instal-
lation and testing process.

The main input to this task is the new software packages and documentation that
are received from the system vendors. The applications programmer will complete
the installation and testing of the package according to integration requirements and
program documentation developed during system design.The principal deliverable of
this task is the installed and tested software package that is made available in the soft-
ware library. Any modified software specifications and new integration requirements
that were necessary are documented and made available in the project repository to
provide a history and serve as future reference.

> Task 6.4—Write and Test New Programs

We are now ready to develop (or complete) any in-house programs for the new sys-
tem. Recall that prototype programs are frequently constructed in the design phase.
These prototypes are included as part of the technical design specifications for com-
pleting systems construction and implementation. However, these prototypes are
rarely fully functional or complete. Therefore, this activity may involve developing or
refining those programs.

This task involves the systems analysts, designers, and builders. The systems ana-
lyst typically clarifies business requirements to be implemented by the programs.The
designer may have to clarify the program design, integration requirements, and pro-
gram documentation (developed during systems design) that is used in writing and
testing the programs. The system builders will assume the primary responsibility for
this activity.The applications programmer (builder) is responsible for writing and test-
ing in-house software. Most large programming projects require a team effort. One
popular organization strategy is the use of chief programmer teams.The team is man-
aged by the chief programmer, a highly proficient and experienced programmer who
assumes overall responsibility for the program design strategy, standards, and con-
struction. The chief programmer oversees all coding and testing activities and helps
with the most difficult aspects of the programs. Other team members include a
backup chief programmer, program librarian, programmers, and specialists. The
applications programmer is often aided by an application or software tester who spe-
cializes in building and running test scripts that are consistently applied to programs
to test all possible events and responses.

The primary inputs to this activity are the technical design statement, plan for
programming, and test data developed during systems design. Since any new pro-
grams or program components may have already been written and be in use by other
existing systems, the experienced applications programmer will know to first check
for possible reusable software components available in the software library.The prin-
cipal deliverables of this activity are the new programs and reusable software compo-
nents that are placed in the software library. This activity also results in program
documentation that may need to be approved by a quality assurance group. Some in-
formation systems shops have a quality assurance group staffed by specialists who re-
view the final program documentation for conformity to standards. This group will
provide appropriate feedback regarding quality recommendations and requirements.
The final program documentation is then placed in the project repository for future
reference.

Testing is an important skill that is often overlooked in academic courses on com-
puter programming.Testing should not be deferred until after the entire program has
been written! There are three levels of testing to be performed: stub testing, unit or
program testing, and systems testing. Stub testing is testing performed on individual

688 Part Four Beyond Systems Analysis and Design

stub test a test performed

on a subset of a program.

events or modules of a program. In other words, it is the testing of an isolated subset
of a program. Unit or program testing is testing in which all the events and modules
that have been coded and stub tested for a program are tested as an integrated unit; it
is the testing of an entire program. Systems testing ensures that application pro-
grams written and tested in isolation work properly when they are integrated into the
total system. A system test plan should be developed and followed for testing the
system. One or more test scripts are developed for each functional and nonfunctional
requirement.

Just because a single program works properly doesn’t mean that it works prop-
erly with other programs.The integrated set of programs should be run through a sys-
tems test to make sure one program properly accepts, as input, the output of other
programs. Once the system test is complete and determined to be successful, we can
proceed to the implementation of the system.

The Implementation Phase

What’s left to do? New systems usually represent a departure from the way business
is currently done; therefore, the analyst must provide for a smooth transition from the
old system to the new system and help users cope with normal start-up problems.
Thus, the implementation phase delivers the production system into operation.

The functional system from the construction phase is the key input to the imple-
mentation phase (see Figure 19-1).The deliverable of the implementation phase (and
the project) is the operational system that will enter the operation and support stage
of the life cycle.

In your information system framework, the implementation phase considers the
same building blocks as does the construction phase (see the chapter home page). In
this section you will learn about several tasks involved in the implementation phase for
a typical systems development project. Figure 19-3 depicts the various tasks for the im-
plementation phase. Let’s examine each implementation phase task in greater detail.

> Task 7.1—Conduct System Test

Now that the software packages and in-house programs have been installed and
tested, we need to conduct a final system test. All software packages, custom-built
programs, and any existing programs that comprise the new system must be tested to
ensure that they all work together.

This task involves analysts, owners, users, and builders.The systems analyst facili-
tates the completion of this task. The systems analyst typically communicates testing
problems and issues with the project team members.The system owners and system
users hold the ultimate authority on whether or not a system is operating correctly.
System builders, of various specialties, are involved in the systems testing. For exam-
ple, applications programmers, database programmers, and networking specialists
may need to resolve problems revealed during systems testing.

The primary inputs to this task include the software packages, custom-built pro-
grams, and any existing programs comprising the new system.The system test is done
using the system test data that was developed earlier by the systems analyst. As with
previous tests that were performed, the system test may result in required modifica-
tions to programs, thus, once again, prompting the return to a construction phase
task. This iteration would continue until a successful system test was experienced.

> Task 7.2—Prepare Conversion Plan

Once a successful system test has been completed, we can begin preparations to
place the new system into operation. Using the design specifications for the new
system, the systems analyst will develop a detailed conversion plan. This plan will

Systems Construction and Implementation Chapter Nineteen 689

unit or program test a

test performed on an entire

program.

systems test a test per-

formed on an entire system.

F
I
G

U
R

E

1

9
-
3

S
y

st
em

s
Im

p
le

m
en

ta
ti

o
n

 T
as

k
s

C
o

n
d

u
c

t

S
y

s
te

m

T
e

s
t

7
.1

P
re

p
a

re

C
o

n
v

e
rs

io
n

P
la

n

7
.2

T
ra

in

S
y

s
te

m

U
s

e
rs

7
.4

O
p

e
ra

ti
o

n
a

l

S
y

s
te

m

F
A

S
T

R
e

p
o

s
it
o

ryS
y
s
te

m

T
e

s
t

D
a

ta

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

(O
R

 S
T

E
E

R
IN

G
 C

O
M

M
IT

T
E

E
)

T
H

E
 B

U
S

IN
E

S
S

 A
N

D
 T

E
C

H
N

IC
A

L

C
O

M
M

U
N

IT
Y

D
a

ta
b

a
s
e

S
c
h

e
m

a

A
p

p
ro

p
ri

a
te

D
o

c
u

m
e

n
ta

ti
o

n

In
s

ta
ll

D
a

ta
b

a
s

e
s

7
.3

N
e
w

D
a

ta
b

a
s
e

s

S
o

ft
w

a
re

L
ib

ra
ry

R
e

q
u

ir
e

d

M
o

d
if
ic

a
ti
o

n
s

to
 P

ro
g
ra

m
s

E
x
is

ti
n

g
 D

a
ta

C
o

n
v

e
rt

to

N
e
w

S
y

s
te

m

7
.5

C
o

n
v
e

rs
io

n

P
la

n

S
o

ft
w

a
re

 P
a

c
k
a

g
e

s
,

C
u

s
to

m
-B

u
ilt

 P
ro

g
ra

m
s
,

a
n

d

a
n
y
 E

x
is

ti
n

g
 P

ro
g
ra

m
s

S
u

c
c

e
s

s
fu

l

S
y

s
te

m

T
e

s
t

D
e

s
ig

n

S
p

e
c
if
ic

a
ti
o

n
s

C
o

n
v
e

rs
io

n
 P

la
n

P
ro

d
u

c
ti
o

n

D
a

ta
b

a
s
e

s

R
e

s
tr

u
c
tu

re
d

E
x
is

ti
n

g

D
a

ta

D
a

ta
b

a
s
e

S
tr

u
c
tu

re
d

U
s

e
r

T
ra

in
in

g

a
n

d

D
o

c
u

m
e

n
ta

ti
o

n

690

identify databases to be installed, end-user training and documentation that need to be
developed, and a strategy for converting from the old system to the new system.

The project manager facilitates the activity. Systems analyst, system designer,
and system builder roles are not typically involved unless deemed necessary by the
project manager. Finally, many organizations require that all project plans be for-
mally presented to a steering body (sometimes called a steering committee) for final
approval.

This activity is triggered by the completion of a successful system test. Using the
design specifications for the new system, a detailed conversion plan can be assem-
bled.The principal deliverable of this activity is the conversion plan that will identify
databases to be installed, end-user training and documentation that need to be devel-
oped, and a strategy for converting from the old system to the new system.

The conversion plan may include one of the following commonly used installa-
tion strategies:

• Abrupt cut-over—On a specific date (usually a date that coincides with an
official business period such as month, quarter, or fiscal year), the old system
is terminated and the new system is placed into operation. This is a high-risk
approach because there may still be major problems that won’t be uncovered
until the system has been in operation for at least one business period. On the
other hand, there are no transition costs. Abrupt cut-over may be necessary if,
for instance, a government mandate or business policy becomes effective on a
specific date and the system couldn’t be implemented before that date.

• Parallel conversion—Under this approach, both the old and the new systems
are operated for some time period. This ensures that all major problems in
the new system have been solved before the old system is discarded. The
final cut-over may be either abrupt (usually at the end of one business
period) or gradual, as portions of the new system are deemed adequate.
This strategy minimizes the risk of major flaws in the new system causing
irreparable harm to the business; however, it also means the cost of running
two systems over some period must be incurred. Because running two edi-
tions of the same system on the computer could place an unreasonable
demand on computing resources, this may be possible only if the old system
is largely manual.

• Location conversion—When the same system will be used in numerous geo-
graphical locations, it is usually converted at one location first (using either
abrupt or parallel conversion). As soon as that site has approved the system,
it can be farmed to the other sites. Other sites can be cut over abruptly
because major errors have been fixed. Furthermore, other sites benefit from
the learning experiences of the first test site. The first production test site is
often called a beta test site.

• Staged conversion—Like location conversion, staged conversion is a variation
on the abrupt and parallel conversions. A staged conversion is based on the
version concept introduced earlier. Each successive version of the new sys-
tem is converted as it is developed. Each version may be converted using the
abrupt, parallel, or location strategy.

The conversion plan also typically includes a systems acceptance test plan. The sys-
tems acceptance test is the final opportunity for end users, management, and infor-
mation systems operations management to accept or reject the system. A systems

acceptance test is a final system test performed by end users using real data over an
extended time period. It is an extensive test that addresses three levels of acceptance
testing—verification testing, validation testing, and audit testing:

• Verification testing runs the system in a simulated environment using simu-
lated data. This simulated test is sometimes called alpha testing. The simu-
lated test is primarily looking for errors and omissions regarding end-user and

Systems Construction and Implementation Chapter Nineteen 691

systems acceptance test
a test performed on the final

system wherein users conduct

verification, validation, and

audit tests.

audit test a test performed

to ensure a new system is

ready to be placed into

operation.

design specifications that were specified in the earlier phases but not fulfilled
during construction.

• Validation testing runs the system in a live environment using real data. This
is sometimes called beta testing. During this validation, a number of items
are tested:
a. Systems performance. Is the throughput and response time for processing

adequate to meet a normal processing workload? If not, some programs
may have to be rewritten to improve efficiency or processing hardware
may have to be replaced or upgraded to handle the additional workload.

b. Peak workload processing performance. Can the system handle the work-
load during peak processing periods? If not, improved hardware and/or
software may be needed to increase efficiency or processing may need to
be rescheduled—that is, consider doing some of the less critical process-
ing during nonpeak periods.

c. Human engineering test. Is the system as easy to learn and use as antici-
pated? If not, is it adequate? Can enhancements to human engineering be
deferred until after the system has been placed into operation?

d. Methods and procedures test. During conversion, the methods and proce-
dures for the new system will be put to their first real test. Methods and
procedures may have to be modified if they prove to be awkward and
inefficient from the end users’ standpoint.

e. Backup and recovery testing. All backup and recovery procedures should
be tested. This should include simulating a data loss disaster and testing
the time required to recover from that disaster. Also, a before-and-after
comparison of the data should be performed to ensure that data was
properly recovered. It is crucial to test these procedures. Don’t wait until
the first disaster to find an error in the recovery procedures.

• Audit testing certifies that the system is free of errors and is ready to be
placed into operation. Not all organizations require an audit. But many firms
have an independent audit or quality assurance staff that must certify a sys-
tem’s acceptability and documentation before that system is placed into final
operation. There are independent companies that perform systems and soft-
ware certification for end users’ organizations.

> Task 7.3—Install Databases

Recall that in a previous phase you built and tested databases.To place the system into
operation, you will need fully loaded (or “populated”) databases. Therefore, the next
task we’ll survey is installation of databases.The purpose of this task is to populate the
new system’s databases with existing data from the old system.

At first, this activity may seem trivial. But consider the implications of loading a
typical table, say, MEMBER. Tens or hundreds of thousands of records may have to be
loaded. Each must be input, edited, and confirmed before the database table is ready
to be placed into operation.

Systems builders play a primary role in this activity. The task will normally be
completed by application programmers who will write the special programs to ex-
tract data from existing databases and programs to populate the new databases. Sys-
tems analysts and designers may play a small role in completing this activity. Their
primary involvement will be the calculating of database sizes and estimating of the
time required to perform the installation. Finally, data entry personnel or hired help
may often be assigned to do data entry.

Special programs will have to be written to populate the new databases. Existing
data from the production databases, coupled with the database schema(s) models
and database structures for the new databases, will be used to write computer pro-
grams to populate the new databases with restructured existing data. The principal

692 Part Four Beyond Systems Analysis and Design

Systems Construction and Implementation Chapter Nineteen 693

F I G U R E 1 9 - 4 An Outline for a Training Manual

Training Manual End Users Guide Outline

I. Introduction.

II. Manual.

A. The manual system (a detailed explanation of people’s jobs and standard
operating procedures for the new system).

B. The computer system (how it fits into the overall work flow).

1. Terminal/keyboard familiarization.

2. First-time end users.

a. Getting started.

b. Lessons.

C. Reference manual (for nonbeginners).

III. Appendixes.

A. Error messages.

deliverable of this task is the restructured existing data that has been populated in
the databases for the new system.

> Task 7.4—Train Users

Change may be good, but it’s not always easy. Converting to a new system necessitates
that system users be trained and provided with documentation (user manuals) that
guides them through using the new system.

Training can be performed one on one; however, group training is generally pre-
ferred. It is a better use of your time, and it encourages group-learning possibilities.Think
about your education for a moment.You really learn more from your fellow students and
colleagues than from your instructors. Instructors facilitate learning and instruction, but
you master specific skills through practice with large groups where common problems
and issues can be addressed more effectively. Take advantage of the ripple effect of
education.The first group of trainees can then train several other groups.

The task is completed by the systems analyst and involves system owners and
users. Given appropriate documentation for the new system, the systems analysts will
provide end-user documentation (typically in the form of manuals) and training for
the system users.The system owners must support this activity.They must be willing
to approve the release time necessary for people to obtain the training needed to be-
come successful users of the new system. Remember, the system is for the user! User
involvement is also important in this activity because the end users will inherit the
successes and failures from this effort. Fortunately, users’ involvement during this task
is rarely overlooked. The most important aspect of their involvement is training and
advising the users. They must be trained to use equipment and to follow the proce-
dures required of the new system. But no matter how good the training is, users will
become confused at times. Or perhaps they will find mistakes or limitations. Thus, it
is the responsibility of the analyst to help the users through the learning period until
they become comfortable with the new system.

Given appropriate documentation for the new system, the systems analyst will
provide the system users with the documentation and training needed to properly use
the new system.The principal deliverable of this task is user training and documenta-
tion. Many organizations hire special systems analysts who do nothing but write user
documentation and training guides. If you have a skill for writing clearly, the demand
for your services is out there! Figure 19-4 is a typical outline for a training manual.The

Le
a
rn

in
g
 R

oa
d
m

a
p

This chapter provided a detailed overview of the construction and implementation

phases of systems development. You are now ready to learn systems operation and

support, covered in Chapter 20.

Before proceeding, you may wish to revisit Chapter 3 and its introduction to the

systems development process. This review will help you to understand how systems

operations support fits into the overall systems development process.

Golden Rule should apply to user manual writing:“Write unto others as you would
have them write unto you.” You are not a business expert. Don’t expect the reader
to be a technical expert. Every possible situation and its proper procedure must be
documented.

>Task 7.5—Convert to New System

Conversion to the new system from the old system is a significant milestone. After
conversion, the ownership of the system officially transfers from the analysts and pro-
grammers to the end users. The analyst completes this task by carefully carrying out
the conversion plan. Recall that the conversion plan includes detailed installation
strategies to follow for converting from the existing to the new production informa-
tion system.This task also involves completing a systems audit.

The task involves the systems owners, users, analysts, designers, and builders.The
project manager who will oversee the conversion process facilitates it. The system
owners provide feedback regarding their experiences with the overall project. They
may also provide feedback regarding the new system that has been placed into oper-
ation.The system users will provide valuable feedback pertaining to the actual use of
the new system.They will be the source of the majority of the feedback used to mea-
sure the system’s acceptance.The systems analysts, designers, and builders will assess
the feedback received from the system owners and users once the system is in oper-
ation. In many cases, that feedback may stimulate actions to correct identified short-
comings. Regardless, the feedback will be used to help benchmark new systems
projects down the road.

The key input to this activity is the conversion plan that was created in an earlier
implementation phase task.The principal deliverable is the operational system that is
placed into production in the business.

694 Part Four Beyond Systems Analysis and Design

1. Systems construction is the development, installa-
tion, and testing of system components.

2. Systems implementation is the delivery of the
system into production (meaning day-to-day
operation).

3. The purpose of the construction phase is to de-
velop and test a functional system that fulfills busi-
ness and design requirements and to implement
the interfaces between the new system and exist-
ing production systems.

4. The construction phase consists of four tasks:
build and test networks, build and test databases,
install and test new software packages, and write
and test new programs.

5. Three levels of testing are performed on new
programs:

a. Stub testing is testing performed on individual
modules, whether they be main program, sub-
routine, subprogram, block, or paragraph.

b. Unit or program testing is testing in which all
the modules that have been coded and stub
tested are tested as an integrated unit.

c. Systems testing ensures that application pro-
grams written in isolation work properly when
they are integrated into the total system.

6. The purpose of the implementation phase is to
smoothly convert from the old system to the new
system.

7. The systems implementation consists of the fol-
lowing activities: conducting a system test, prepar-
ing a systems conversion plan, installing databases,
training system users, and converting from the old
system to the new system.

8. There are several commonly used strategies for
converting from an existing to a new production
information system, including:

a. Abrupt cut-over—On a specific date, the old
system is terminated and the new system is
placed into operation.

b. Parallel conversion—Both the old and the new
systems are operated for some time period to en-
sure that all major problems in the new system
are solved before the old system is discarded.

c. Location conversion—When the same system
will be used in numerous geographical loca-
tions, it is usually converted at one location and,
following approval, farmed to the other sites.

d. Staged conversion—Each successive version of
the new system is converted as it is developed.
Each version may be converted using the
abrupt, parallel, or location strategies.

9. The systems acceptance test is the final opportunity
for end users, management, and information systems
operations management to accept or reject the sys-
tem. A systems acceptance test is a final system test
performed by end users using real data over an ex-
tended period. It is an extensive test that addresses
three levels of acceptance testing—verification
testing, validation testing, and audit testing:

a. Verification testing runs the system in a simu-
lated environment using simulated data.

b. Validation testing runs the system in a live envi-
ronment using real data.This is sometimes
called beta testing.

c. Audit testing certifies that the system is free of
errors and is ready to be placed into operation.

Chapter Review

1. What is the purpose and the major activity of the
construction phase?

2. Who are the network designers and network
administrators?

3. What are the tasks needed when building and
testing databases?

4. Who are involved in the installation and testing of
new software packages? What are their jobs?

5. What are chief programmer teams?
6. What are the three kinds of testing suggested in

the textbook?
7. Why is the implementation phase needed?
8. Who are typically involved in conducting system

testing in the implementation phase?

9. What are the four common conversion strategies?
10. What are some potential problems of using

abrupt cut-over as a conversion strategy?
11. What are some potential problems of using paral-

lel conversion as a conversion strategy?
12. What is the difference between alpha testing and

beta testing?
13. Who is the major player in installing databases?

What are the responsibilities?
14. What are the responsibilities of the system ana-

lysts when training users?
15. Why is feedback essential even though the new

system is fully implemented and functional?

Review Questions
1

2

Systems Construction and Implementation Chapter Nineteen 695

1. You are the lead analyst on the system-testing
team of a large enterprise system that will touch
virtually every business function in the organiza-
tion. Unfortunately, design and construction ran
behind schedule by about two weeks. System
testing is scheduled to take four weeks of inten-
sive effort, assuming no major problems are
found. Adding resources will not shorten the time
required. If you stay on plan, implementation will
be delayed by two weeks.The system owner, who
is the CEO, finds this unacceptable and tells you:
“What do you mean that it is going to take a
month to system test? I need this system up in
two weeks, not a day later. If you find any prob-
lems, they can be fixed later!” What do you do in
this situation?

2. Consider a variation of the preceding question.
You work as a testing analyst for a software devel-
opment contractor that has been engaged to de-
velop this enterprise system. If the project is not
completed on schedule, your company loses a
substantial bonus. Since design and construction
ran behind, you will have to cut system testing in
half.Your company is putting a great deal of im-
plicit pressure on you to compress testing so the
project can finish on schedule and the company
will receive its bonus.You have qualms that if
testing is compressed, some serious problems
may be missed, even with a risk-based testing
strategy. What do you do?

3. You are a systems analyst who will be leading a
systems-testing team on another project.Your
company is adopting a new testing strategy; in
the past, the programmers who constructed the
system did the system testing themselves. Why
was this not a good idea?

4. Who should you select for your systems-testing
team? What skills should they have?

5. Are the following statements true or false?
Explain your answer as needed.

a. Building and testing any databases that are
needed should occur after programming activ-
ities are completed.

b. Training of users should be done long before
actual implementation in order to ensure that
everybody receives training without being
rushed.

c. The purpose of parallel conversion is to
reduce business risk.

d. Testing is a highly structured activity that should
not be scheduled to commence until the entire
application program has been written.

e. Systems development and systems construc-
tion are frequently used as synonyms, but they
may not necessarily mean the same thing.

6. As a systems analyst, you have been involved in a
project to develop an inventory-tracking system
for your business services office.The project is
now coming to its final stages and you have been
asked to write a training manual. Using the out-
line shown in Figure 19–4, write a portion of the
usual manual (a page or two) describing the man-
ual system or the computer system. Have one of
your fellow students or co-workers read and eval-
uate for clarity the portion you wrote. Did she or
he find it understandable and clear? Did it provide
the appropriate level of detail that an end user
would need?

7. Fill in the blanks:

a. The final __________ on whether the system is
__________ correctly and ready for implemen-
tation is the __________.

b. The key input in to the __________ phase is
the __________ system from the __________

phase.
c. The __________ phase is __________ when the

__________ are approved and the design phase
is completed.

d. Once the __________ to the new system is
complete, __________ transfers from the
project team to the __________.

e. __________ data from the old database and
__________ a new one is a __________ activity
that requires careful __________ and
execution.

8. During systems construction and implementa-
tion, aren’t most of the activities technical in na-
ture, so that users don’t need to be involved
except for system testing?

9. Match the terms in the first column with the defi-
nitions or examples in the second column:

1. Beta testing A. Production database
without data loaded in

2. Alpha testing B. Testing of throughput/
response time under
normal load

3. Program testing C. Migrating completed
system into produc-
tion environment

4. Audit testing D. Unanticipated sudden
system shutdown
testing

Problems and Exercises

696 Part Four Beyond Systems Analysis and Design

1. A number of companies, such as Mercury Interac-
tive of Rational (now owned by IBM), offer auto-
mated software-testing packages as stand-alone
products or as an integrated part of a larger suite.
Research these software packages on the Web and
trade journals. Download and try any trial versions
you find. In addition, contact the software-testing
staff in several local organizations and interview
them regarding their software-testing methods.
a. Describe your research—what products did

you find?
b. Compare and contrast their features and

functionality?
c. Did the software testers you contacted use an

automated software testing tool? If so, was it a
home-grown tool or a commercial product? Did
they indicate any preference as to which one
they thought was best?

d. If you were the testing manager and were given
the choice to purchase any automated software-
testing tool, which one would you select? Or
would you prefer to develop your own home-
grown automated testing program? Explain
your answer.

e. What do you see as the primary advantages to
using an automated software-testing package?

2. You are a systems analyst working on a major proj-
ect for an organization that has several hundred
employees in its headquarters office, and about a
dozen offices located in this country, in Canada,
and in Mexico.The objective of the project is to
implement an enterprise-wide mission-critical in-
formation system.The project is now in the con-
struction and implementation phase, and you have
been assigned responsibility for selecting the con-
version strategy and for developing the conversion
plan. Prepare a summary analysis of the different
installation strategies discussed in the book, and
recommend the one that you feel would be most
appropriate.

3. Assuming that your recommendation is accepted
by management, draft a detailed conversion plan
that addresses the actual implementation strategy
for converting to the new system. After you com-
plete the draft plan, have it reviewed by one or
more IT staff members with experience in devel-
oping conversion plans. Make any needed changes
and repeat the review process until the consensus
is that your plan is realistic and doable.

4. The next step is to prepare the systems accep-
tance test plan. Using the material in the textbook
as a general guideline, research on the Web some

Projects and Research

5. System perfor- E. Application
mance testing program–level code

testing
6. Unpopulated F. Independently

database performed certification-
level testing

7. Backup and G. Module-level testing of
recovery testing code

8. Peak performance H. Extensive verification,
testing validation, and audit

testing
9. Abrupt cut-off I. Environmental-level

testing of application
program(s)

10. System J. Environmental-level
implementation testing by users with

simulated data
11. Systems K. Live environmental-

acceptance testing level testing by users
with live data

12. System testing L. Testing of through-
put/response time
under load spikes

13. Stub testing M. Installation strategy
type

10. “The goal of human interface design is to create a
system that is intuitive to use.To require a users
manual is an admission of failure.” Respond to
this statement. Do you agree or disagree with it?
Explain why.

11. Many organizations require a postimplementation
evaluation report (PIER), usually somewhere be-
tween six months and a year after implementa-
tion. What purpose(s) does this serve?

12. If a project is poorly designed and constructed,
will a well-planned and well-executed implemen-
tation effort help the project to succeed? What
about the opposite situation? Will a well-designed
and well-constructed system overcome a poor
implementation effort?

13. One very important final activity should take
place after conversion to the new system is
successfully completed. What do you think
it is?

Systems Construction and Implementation Chapter Nineteen 697

of the more detailed components that go into ac-
ceptance testing. Select some of the testing tem-
plates that should be readily available, and modify
them as appropriate.Then draft the test plan and
share it with IT testing staff. Make sure that your
plan addresses any potential risks. Make any
needed changes and repeat the review process as
necessary with the testing staff until your plan is
ready to put into action.

5. The textbook describes a traditional method for
delivering end-user training. Are there other
methods, which are Web-based, that may offer
more effective and/or efficient methods for deliv-
ering end-user training? Research some of the
Web-based, training methods that are becoming
more widely used. Then use the scenario de-
scribed in Question 2 to develop a Web-based
end-user training plan. After you draft the plan,
have some professional trainers review it for

completeness and feasibility and make any
needed changes. Then have some of your fellow
students or co-workers review your training plan
from the perspective of an end-user. Were you
able to develop a feasible plan?

6. There is an unwritten principle that says that no
matter how much you plan for a system implemen-
tation, something unanticipated will almost always
happen, often at the worst possible moment. Inter-
view several analysts in local organizations who
have expertise in implementing systems. Ask them
about their experiences, what their worst horror
story was, and what they learned from it. Supple-
ment these interviews with research on contin-
gency implementation planning.Then use your
anecdotal information and research to put together
a set of guidelines on planning for and handling
the unexpected during system implementation.

1. In minicase 3 of the previous chapter, you created
a prototype for a government system. Exchange
prototypes with another group (just as you did in
minicase 4 of that chapter).This time, test each
other’s prototype. Document your findings thor-
oughly and prepare a report. Give one copy of the
report to the other group (the one who created
the prototype) and one to the professor.

2. Wow Munchies has a Web site, www.wowmunchies.

com, which is currently hosted on server 123cool-
host at a Web-hosting company called Cool Host-
ing. But Wow Munchies has decided to have its
Web pages updated and serviced by another host-
ing company: Reliable Host, using the server 123-
reliable.The new hosting company pointed the DNS
for www.wowmunchies.com to server 123reliable
before it had the Web pages loaded and tested on
its server. It takes 12–72 hours for the DNS change
to take place, and Reliable thought it would have

the Web pages up in the lag time. It wasn’t able to.
As a result, the DNS pointed to the new server for
several days before the new site was functioning
again. Wow Munchies lost an estimated $200,000
in revenues as a result of the sites downtime.
Comment on what went wrong, and how it could
have been avoided.

3. Use the testing and designing reports given to you
by your peer group (from Chapter 18, minicase 4,
and Chapter 19, minicase 1) and revise your proto-
type. Document all of the changes and improve-
ments you have made, and submit a short report to
your professor.

4. Prepare a manual for your revised prototype. Re-
member to orient the manual to the expected user,
and not your professor. Bind the manual, and sub-
mit it to your professor.You will be graded on clar-
ity, usability, completeness, and professionalism.

Minicases

1. Individual: Present one of the deliverables from
this class (any deliverable) to the class. Dress pro-
fessionally, and use an interesting presentation
technology. Remember to dress professionally,
speak slowly and clearly, and have fun. No one
knows your deliverable better than you!

2. Professor/class: Weather permitting, have class
outside.

3. Individual/class: Create a networking sheet of con-
tact information for everyone in the class (and
other students if they wish to join). Everyone who
submits information gets a copy. Keep in touch
after you leave school!

Team and Individual Exercises

698 Part Four Beyond Systems Analysis and Design

Bell, P., and C. Evans. Mastering Documentation. New York:

John Wiley & Sons, 1989.

Brooks, F. P. The Mythical Man-Month. Reading, MA: Addison-

Wesley, 1995.

Boehm, Barry.“Software Engineering.” IEEE Transactions on

Computers, C-25, December 1976. This classic paper

demonstrated the importance of catching errors and

omissions before programming begins.

Metzger, Philip W. Managing a Programming Project,

2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1981. This is

one of the few books to place emphasis solely on systems

implementation.

Mosely, D. J. The Handbook of MIS Application Software

Testing. Englewood Cliffs, NJ:Yourdon Press, 1993.

Suggested Readings

Systems Construction and Implementation Chapter Nineteen 699

Strategic Enterprise Plan Strategic Information Systems Plan

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

COMMUNICATIONS

Strategic Enterprise Information Technology Architecture

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

LOGICAL

DATA

MODELS

LOGICAL

INTERFACE

MODELS

BUSINESS

DATA

REQUIREMENTS

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASE

SOLUTION

USER

INTERFACE

SOLUTIONS

SYSTEM

INTERFACE

SOLUTIONS

M
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

BUSINESS PROCESS

DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

S T A T E M E N T O F W O R K

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

S
C

O
P

E

D
E

F
IN

IT
IO

N

P
H

Y
S

IC
A

L

D
E

S
IG

N

S
Y

S
T

E
M

O
W

N
E

R
S

P
R

O
J

E
C

T
 M

A
N

A
G

E
R

S

 a
n

d

 S
Y

S
T

E
M

S
 A

N
A

L
Y

S
T

S

S
Y

S
T

E
M

 U
S

E
R

S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

D E S I G N P R O T O T Y P E S

O P E R A T I O N A L S Y S T E M P O S T - A U D I T R E V I E W

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A R C H I T E C T U R A L M O D E L

Goal:

Improve Business

KNOWLEDGE

20Systems Operations and
Support

Chapter Preview and Objectives

Once a system has been implemented, it enters operations and support. Systems operation

is the ongoing function in which the system operates until it is replaced. Systems support

involves servicing, maintaining, and improving a functional information system through

its lifetime. Systems operation and support occur in parallel. In this chapter, you will

learn more about systems operation and support. In particular, it is useful to understand

the different types of systems support provided for a production system. You will know

that you understand the process of systems support when you can:

❚ Define systems operations and support.

❚ Describe the relative roles of a repository, program library, and database in systems

operations and support.

❚ Differentiate between maintenance, recovery, technical support, and enhancement as

system support activities.

❚ Describe the tasks required to maintain programs in response to bugs.

❚ Describe the role of benchmarking in system maintenance.

❚ Describe the systems analyst’s role in system recovery.

❚ Describe forms of technical support provided by a systems analyst for the user

community.

❚ Describe the tasks that should be and may be performed in system enhancement and the

relationship between the enhancement and the original systems development process.

❚ Describe the role of reengineering in system enhancement. Describe three types of

reengineering.

Although some of the techniques of systems support are introduced in this chapter, the

chapter does not teach these techniques. This chapter teaches only the process of systems

support as it relates to the development processes you have been studying throughout this

book.

It has been one week since SoundStage converted to the new Member Services sys-
tem. Bob Martinez has been working on a few minor program bugs. As each bug has
cropped up, Bob has worked with the users to validate and document the problem.
He then passed that information to the programmers, who fixed the problem, tested
the revised program, and documented their changes. Finally Bob updated the version
control system with information about the fix.

All in all the conversion has gone very well, and Bob was starting to think he
was seeing the last of the Member Services system. Then his boss, Sandra, came to
him with a list of additional requirements. Most of them were lower-priority use
cases that had been intentionally left out of the first iteration. Others were requests
that came up during the analysis, design, and implementation phases. There were
even requests suggested by users now that they are actually working the system. So
Bob is starting back in the requirements analysis phase for iteration two. But now
that he is hearing from users how helpful the new system is, Bob is excited to make
it even better.

702 Part Four Beyond Systems Analysis and Design

Introduction

The Context of Systems Operation and Support

Systems support was introduced in Chapter 3. Systems support is the ongoing tech-
nical support for users, as well as the maintenance required to fix any errors, omis-
sions, or new requirements that may arise. Before an information system can be
supported, it must first be in operation. Systems operation is the day-to-day, week-to-
week, month-to-month, and year-to-year execution of an information system’s busi-
nesses processes and application programs. An operational system (not to be
confused with an operating system) is frequently called a production system. Systems
operation and support are often ignored in systems analysis and design textbooks.
Young analysts are often surprised to learn that half of their duties (or more) are
associated with supporting production systems.

In the chapter home page, you can see that systems operation and support use all
the information system building blocks since the information system is operational.
All the system knowledge and working components of the system are important to its
ongoing operation and support.This is reinforced in Figure 20-1, which demonstrates
that systems operations and support often require developers to revisit the activities,
and hence the building blocks, that were developed during systems analysis, design,
construction, and implementation.

Figure 20-2 illustrates systems development, systems operations, and systems
support as separate processes. Until this chapter, the entire book has focused on sys-
tems development. Systems development responds to problems, opportunities, and
directives by developing improved business solutions. To repeat: that process has
been the focus of this book. During systems development, we accumulated consider-
able system knowledge and constructed programs and databases.The figure illustrates
these three data stores:

• The repository is a data store(s) of accumulated system knowledge—system
models, detailed specifications, and any other documentation that has been
accumulated during the system’s development. This knowledge is reusable
and critical to the production system’s ongoing support. The repository is
implemented with various automated tools, and it is often centralized as an
enterprise business and IT resource.

• The program library is a data store of all application programs. The source
code for these programs must be maintained for the life of the system. Almost
always, the software-based librarian will control access (via check-in and

F
I
G

U
R

E

2

0
-
1

T
h

e
C

o
n

te
x

t
o

f
S

y
st

em
s

O
p

er
at

io
n

 a
n

d
 S

u
p

p
o

rt

2

3

4

D
E

C
IS

IO
N

A
N

A
LY

S
IS

5

6

1 D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

L
if
e

 C
y
c
le

 S
ta

g
e

B
u

s
in

e
s
s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

A
p

p
lic

a
ti
o

n

A
rc

h
it
e

c
tu

re

P
h

y
s

ic
a

l

D
e

s
ig

n
 S

p
e

c
if

ic
a

ti
o

n
s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l

S
y

s
te

m

L
o

g
ic

a
l

D
e

s
ig

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
c
o

p
e

 &
 V

is
io

n

S
y
s
te

m

P
ro

p
o

s
a

l

D
e

s
ig

n

P
ro

to
ty

p
e

s

T
ra

in
in

g

M
a

te
ri

a
ls

P
o

s
t-

a
u

d
it

R
e
v

ie
w

R
e

d
e

s
ig

n
e

d

B
u

s
in

e
s

s

P
ro

c
e

s
s

e
s

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
ta

te
m

e
n

t

o
f
W

o
rk

S
T
A

R
T

:

P
ro

b
le

m
s
,

O
p

p
o

rt
u

n
it
ie

s
,

D
ir
e

c
ti
v
e

s
,

C
o

n
s
tr

a
in

ts
,

a
n

d
 V

is
io

n

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A
T

IO
N

S
y
s
te

m

Im
p

ro
v
e

m
e

n
t

O
b

je
c
ti
v
e

s

P
R

O
B

L
E

M

A
N

A
LY

S
IS

P
ro

b
le

m

S
ta

te
m

e
n

t

S
C

O
P

E

D
E

F
IN

IT
IO

N

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

703

Systems

Development

1-7

Systems

Operation

8A ongoing

Program

Library

SYSTEM OWNERS AND USERS

THE BUSINESS COMMUNITY

Systems

Support

8B as needed

Business

Data

Enterprise

Repository

Problems,

Opportunities,

and Directives

System

Knowledge

Application

Software

Metadata

and Data

Data

Access &

Updates

Program

to Be

Executed

Application

Software

(existing & revised)

System

Knowledge

Improved

Business

Solution

Operational

System

TECHNICAL SUPPORT

SYSTEM MANAGERS AND SUPPORT STAFF

Updated Operational System

Problem,

Opportunity,

or Directive

Updated

Business

Solution

SYSTEM OWNERS AND USERS

THE USER COMMUNITY

SYSTEM OWNERS AND USERS

THE USER COMMUNITY

Business

Solution
User Feedback

Technical

Feedback

Problem,

Opportunity,

or Directive

F I G U R E 2 0 - 2

System
Development,
Operations, and
Support Functions

checkout) to the stored programs as well as track changes and maintain sev-
eral previous versions of the programs in case a problem in a new version
forces a temporary use of a prior version. Examples of such software config-

uration tools are Serena’s ChangeMan Professional, IBM’s CAA Source Code

Manager, and Microsoft’s Visual SourceSafe.

• The business data includes all the actual business data created and main-
tained by the production application programs. This includes conventional
files, relational databases, data warehouses, and any object databases. This
data is under the administrative control of the data administrator, who is
charged with backup, recovery, security, performance, and the like.

Unlike systems analysis, design, and implementation, systems support cannot sen-
sibly be decomposed into actual phases that a support project must perform. Rather,
systems support consists of four ongoing activities. Each activity is a type of support
project that is triggered by a particular problem, event, or opportunity encountered
with the implemented system.

Figure 20-3 is an activity diagram that illustrates the four types of support
activities:

• Program maintenance—Unfortunately, most systems suffer from software
defects, or bugs—errors that slipped through the testing of software.

704 Part Four Beyond Systems Analysis and Design

Program

Maintenance

8.1

System

Recovery

8.2

System

Enhancement

8.4

Program

Library

Technical

Support

8.3

Business

Data

Enterprise

Repository

Corrected

Programs

System

Knowledge

System

Failure

Restored

Data

Restored

Program

System

Knowledge

SYSTEM OWNERS AND USERS

THE BUSINESS COMMUNITY

Operational

Problem

New

Business

Requirement

Operational

Solution

System Knowledge

Revised or

Restructured Programs
Restructured

Database

SYSTEM OWNERS AND USERS

BUSINESS

COMMUNITY

Bug

Design Flaw

or Requirement

New Technology

Directive

New

Business

Problem

TECHNICAL COMMUNITY

IT STAFF

F I G U R E 2 0 - 3

Systems Support
Activities

• System recovery—From time to time, a system failure may result in a pro-
gram “crash” and/or loss of data. Human error or a hardware or software
failure may have caused this. The systems analyst or technical support special-
ists may then be called on to recover the system—that is, to restore a sys-
tem’s files and databases and to restart the system.

• Technical support—Regardless of how well the users have been trained and
how good the end-user documentation is, users will eventually require addi-
tional assistance—unanticipated situations arise, new users are added, and so
forth.

• System enhancement—New requirements may include new business prob-
lems, new business requirements, new technical problems, or new technol-
ogy requirements.

This chapter examines each of these support activities in various levels of de-
tail, but it abandons the approach used in previous systems analysis, design, and im-
plementation overview chapters. Not all activities will be decomposed into tasks
because some of these activities are fairly routine. Also, in some cases, an activity
will involve returning to the system development activities that were discussed in
earlier chapters.

Systems Operations and Support Chapter Twenty 705

Regardless of how well designed, constructed, and tested a system or application may
be, errors or bugs will inevitably occur. Bugs can be caused by any of the following:

• Poorly validated requirements.
• Poorly communicated requirements.
• Misinterpreted requirements.
• Incorrectly implemented requirements or designs.
• Simple misuse of the programs.

The fundamental objectives of system maintenance are:

• To make predictable changes to existing programs to correct errors that were
made during systems design or implementation.

• To preserve those aspects of the programs that were correct and to avoid the
possibility that “fixes” to programs cause other aspects of those programs to
behave differently.

• To avoid, as much as possible, degradation of system performance. Poor sys-
tem maintenance can gradually erode system throughput and response time.

• To complete the task as quickly as possible without sacrificing quality and
reliability. Few operational information systems can afford to be down for any
extended period. Even a few hours can cost millions of dollars.

To achieve these objectives, you need an appropriate understanding of the pro-
grams you are fixing and of the applications in which those programs participate.
Lack of this understanding is often the downfall of systems maintenance!

How does system maintenance map to your information system building blocks?

• KNOWLEDGE/DATA—System maintenance may improve input data editing or
correct a structural problem in the database.

• PROCESSES—Most system maintenance is program maintenance.
• COMMUNICATION—System maintenance may involve correcting problems

related to how the application interfaces with the users or another system.

Figure 20-4 illustrates typical system maintenance tasks. Let’s examine these tasks.

> Task 8.1.1—Validate the Problem

System maintenance miniprojects are triggered by the identification of the problem,
usually called a bug. Most such bugs are identified by users when they discover some
aspect of the system that does not appear to be working as it should.The first task of
the systems analyst or programmer is to validate the problem.

Working with the users, the team should attempt to validate the problem by repro-
ducing it. If the problem cannot be reproduced, the project should be suspended until
the problem recurs and the user can explain the circumstances under which it oc-
curred. The “as is” program is executed, as closely as possible approximating the cir-
cumstances and the data that were present when the problem was first encountered. In
most cases, the user who encountered the problem should be the one who re-creates it.

One possible output is an unsubstantiated bug. In this scenario, the user (even
with help from the analyst) could not re-create the error.To maintain a productive re-
lationship with the user, the analyst should never make the user feel that it was his or
her fault. Instead, the analyst should respect the possibility that the bug is still real and
that it will eventually be validated. Should the error recur, the user should be coached
to immediately document the exact sequence of events in detail or to call the analyst.
Most importantly, the user should be instructed not to perform any subsequent
action, if possible, that may prevent the error from being validated.

706 Part Four Beyond Systems Analysis and Design

System Maintenance

F I G U R E 2 0 - 4

System Maintenance
Tasks

Validate

the

Problem

8.1.1

Benchmark

Program

8.1.2

Study and

Debug the

Program

8.1.3

Program

Library

Test

Database

Enterprise

Repository

SYSTEM OWNERS AND USERS

BUSINESS

COMMUNITY

Bug

Corrective

Instructions

Unsubstantiated Bug

Copy of Program with Substantiated Bug

"As-Is"

Program

Benchmark

Data

System

Knowledge

Copy

of

Problem

Program

Test Data Set

and

Benchmarks

Bug-Fix

Requirements

Test

the

Program

8.1.4

Candidate

Release

Failed

Candidate

Test

Data

Outcomes

Corrected

Version

of

Program

(problem fixed)

New Version of the Production Program

Knowledge

System

In some cases the analyst confirms the error but recognizes it as a simple misuse
or mistaken use of the program. In such cases, the appropriate output is corrective
instructions to the user.

The third possibility is that the bug is real.The analyst should do two things. First,
the context of the bug should be examined by studying all relevant documentation
(system knowledge) in the repository. In other words, don’t try to fix what you don’t
understand. Second, all subsequent maintenance should be performed on a copy of

the program. The original program remains in the program library and can be

used in production systems until it is fixed.

> Task 8.1.2—Benchmark Program

Given a copy of the program with a substantiated bug, the analyst should benchmark

the program. System maintenance can result in unpredictable and undesirable side
effects that impact the program’s or application’s overall functionality and perfor-
mance. In other words, the solution can cause unexpected side effects. For this rea-
son, before any changes are made to programs, the programs should be executed and
tested to establish a baseline against which the modified programs and applications
can later be measured.

Systems Operations and Support Chapter Twenty 707

This task can be performed by the systems analyst and/or programmer. Users
should also participate to ensure the test is conducted under circumstances that
simulate as closely as possible a normal working environment.

Test cases can be defined in either of two ways. First, past test data may exist in
the repository as a form of system knowledge. If so, that data should be reexecuted to
establish or verify the benchmark. Usually, the test data should also be analyzed for
completeness and, if necessary, revised. New test scenarios may have been identified
since the system went into operation. Any revised test data should be recorded in the
repository for subsequent maintenance projects.

Alternatively, test data can be automatically captured using a software-testing tool.
As users enter test data, that data is recorded in a special type of repository as a test

script. Later the analyst and user can document each test case in the same repository.
Ultimately, the test script is executed against the program to test that the program ex-
ecutes properly and also to measure the program’s response time and/or throughput.
As shown in Figure 20-4, the test data and benchmarks are stored in a test database
(not the production database) for the next task.

The analyst or programmer needs to have good testing skills (usually taught in
programming courses) and may require training in test tools. Neither is explicitly
taught in this textbook.

> Task 8.1.3—Study and Debug the Program

The primary task in system maintenance is to make the required changes to the pro-
grams.This task, performed by the application programmer, is not dissimilar from that
described in the previous chapter on systems implementation. Essentially, the pro-
grammer responds to “bug-fix” requirements that establish the expectation for fixing
the problem. The programmer debugs (edits) a copy of the problem program.
Changes are not made to the production program.The result is a corrected version of
the program. This is a candidate release, meaning a candidate to become the next
production version of the program.

Usually, the original programmer is not making these changes. In fact, several pro-
grammers may have written parts of any given program that is now being debugged.
Those programmers may no longer be available for clarification. Even if they are avail-
able, their memory of the application may not be sufficient or accurate. For this rea-
son, the effective maintenance programmer requires system knowledge. Ideally, this
knowledge comes from the repository, but that assumes that the knowledge has been
properly maintained throughout the system’s lifetime.Too often this is not true, espe-
cially for older systems. The programmer may need to seek out this knowledge or, in
some cases, reconstruct the knowledge through analysis of the program.

Application and program knowledge usually comes from studying the source
code. Program understanding can take considerable time. This activity is slowed by
some combination of the following limitations:

• Poor program structure—examples include COBOL programs written with
nonstructured techniques and Visual Basic or C programs written with
nonobject-oriented techniques.

• Unstructured logic (from pre–structured era coding styles).
• Prior maintenance (quick fixes and poorly designed extensions).
• Dead code (instructions that cannot be reached or executed—often leftovers

from prior testing and debugging).
• Poor or inadequate documentation.

The purpose of application understanding is to see the big picture—that is, how
the programs fit into the total application and how they interact with other programs.
The purpose of program understanding is to gain insight into how the program works
and doesn’t work. You need to understand the fields (variables) and where and how
they are used, and you need to determine the potential impact of changes throughout

708 Part Four Beyond Systems Analysis and Design

the program. Program understanding can also lead to better estimates of the time and
resources that will be required to fix the errors.

> Task 8.1.4—Test the Program

There is a big difference between editing a new program and editing an existing pro-
gram. As the designer and creator of a new program, you are probably intimately fa-
miliar with the structure and logic of the program. By contrast, as the editor of the
existing program, you are not nearly as familiar (or current) with that program.
Changes that you make may have an undesirable ripple effect through other parts of
the program or, worse still, other programs in the application and information system.

A candidate release of the program must be tested before it can be placed into
operation as the next new version of the production program.The following tests are
essential or recommended:

• Unit testing (essential) ensures that the stand-alone program fixes the bug
without undesirable side effects to the program. The test data and current
performance that you recovered, created, edited, or generated when the
programs were benchmarked are used here.

• System testing (essential) ensures that the entire application, of which the
modified program was a part, still works. Again, the test data and current
performance are used here.

• Regression testing (recommended) extrapolates the impact of the changes
on program and application throughput and response time from the before-
and-after results using the test data and current performance.

Failed candidates are returned for additional debugging. Successful candidates are re-
leased for production. Older versions of the program are retained in the program library
for version control. Version control is a process whereby a librarian (usually software-
based) keeps track of changes made to programs.This allows recovery of prior versions
of the programs if new versions cause unexpected problems. In other words, version
control allows users to return to a previously accepted version of the system.

The high cost of system maintenance is largely due to failure to update system
knowledge (in the repository) and program source code documentation (in the pro-
gram library). Application documentation is usually the responsibility of the systems
analyst who supports the application. Program documentation is usually the respon-
sibility of the programmer who made the program changes.

System Recovery

From time to time a system failure is inevitable. It generally results in an aborted, or
“hung,” program (also called an ABEND or “crash”) and may be accompanied by loss
of transactions or stored business data. The systems analyst often fixes the system or
acts as intermediary between the users and those who can fix the system.This section
summarizes the analyst’s role in system recovery.

System recovery activities can be summarized as follows:

1. In many cases the analyst can sit at the user’s terminal and recover the system. It
may be something as simple as pressing a specific key or rebooting the user’s
personal computer.The systems analyst may need to provide users with corrective
instructions to prevent the crash from recurring. In some cases the analyst may
arrange to observe the user during the next use of the program or application.

2. In some cases the analyst must contact systems operations personnel to correct
the problem.This is commonly required when servers are involved. An appropriate
network administrator, database administrator, or Webmaster usually oversees
such servers.

Systems Operations and Support Chapter Twenty 709

version control the track-

ing of changes made to a

program.

3. In some cases the analyst may have to call data administration to recover lost or
corrupted data files or databases. In the recovery of business data, it is not only
the database that must be restored.
a. Any transactions that occurred between the last backup and the database’s

recovery must be reprocessed.This is sometimes called a roll forward.

b. If the crash occurred during a transaction, and that transaction was partially
completed, then any transactional updates to the database that occurred be-
fore the crash must be undone before reprocessing the complete transaction.
This is sometimes called a roll back.

Database management systems and transaction monitors provide facilities for
transaction roll forward and roll back.These data backup and recovery
techniques are beyond the scope of this book and are deferred to database
courses and textbooks.

4. In some cases the analyst may have to call network administration to fix a local,
wide, or internetworking problem. Network professionals can usually log out an
account and reinitialize programs.

5. In some cases the analyst may have to call technicians or vendor service repre-
sentatives to fix hardware problems.

6. In some cases the analyst will discover that a possible software bug caused the
crash.The analyst attempts to quickly isolate the bug and trap it (automatically or
by coaching users to manually avoid it) so that it can’t cause another crash. Bugs
are then handled as described in the previous section of this chapter.

710 Part Four Beyond Systems Analysis and Design

Technical Support

Another relatively routine ongoing activity of systems support is technical support.
No matter how well users have been trained or how well documentation has been
written, users will require additional assistance. The systems analyst is generally on
call to assist users with the day-to-day use of specific applications. In mission-critical
applications, the analyst must be on call day and night.

The most typical tasks include:

• Routinely observing the use of the system.
• Conducting user-satisfaction surveys and meetings.
• Changing business procedures for clarification (written and in the repository).
• Providing additional training as necessary.
• Logging enhancement ideas and requests in the repository.

System Enhancement

Adapting an existing system to new requirements is the norm for all information systems.
Business is change! The pace of change in today’s economy is accelerated, and rapid re-
sponse is the expectation. System enhancement requires that the systems analyst evalu-
ate a new requirement to either effect change or direct the change request through an
appropriate subset of the original systems development process. In some cases, the ana-
lyst may need to recover the system’s existing physical structure as a preface to directing
the change through systems redevelopment. In this section we will examine two types
of adaptive maintenance—system enhancement and systems reengineering.

System enhancement is an adaptive process. Most such enhancement is in re-
sponse to one of the following events, as shown in Figure 20-5:

• New business problems—A new or anticipated business problem will make a
portion of the current system unusable or ineffective.

• New business requirements—A new business requirement (e.g., new report,
transaction, policy, or event) is needed to sustain the value of the current
system.

F I G U R E 2 0 - 5

System
Enhancement Tasks

Analyze

Enhancement

Request

8.4.1

Mini

Problem

Analysis

GO TO

Recover

Existing

Physical

System

8.4.3

Program

Library

Business

Database

Enterprise

Repository

SYSTEM OWNERS AND USERS

BUSINESS

COMMUNITY

New Business Problem

System

Knowledge

(including

change

management)

Updated and/or

Restructured

Database

Updated

System

Knowledge

Exisiting and/or Restructured

Programs

New Business

Requirement

Mini

Requirements

Analysis

GO TO

Mini

Decision

Analysis

GO TO

business

problem

business

requirement

technology

requirement

Approved

Change

Request

Mini

System

Design

GO TO

Make

the

Quick

Fix

8.4.2

Simple, New

Program

Updated

System

Knowledge

Quick Fix

Requirement

Test

Data

New Technology

Requirement

design

requirement

New Design Requirement

• New technology requirements—A decision to consider or use a new technol-
ogy (e.g., new software or version, or different type of hardware) in an exist-
ing system needs to be made.

• New design requirements—An element of the existing system needs to be
redesigned against the same business requirements (e.g., add new database
tables or fields, add or change to a new user interface).

Systems enhancement is reactive in nature—fix it when it breaks or when users or
managers request change. System enhancement extends the useful life of an existing
system by adapting it to inevitable change.This objective can be linked to your infor-
mation system building blocks as follows:

• KNOWLEDGE/DATA—Many system enhancements are requests for new informa-
tion (reports or screens) that can be derived from existing stored data. But
some data enhancements call for the restructuring of stored data.

• PROCESSES—Most system enhancements require the modification of existing
programs or the creation of new programs to extend the overall application
system. But some enhancement requests can be accomplished through care-
ful redesign of existing business processes.

• COMMUNICATION—Many enhancements require modifications to how the users
interface with the system and how the system interfaces with other systems.

Figure 20-5 expands on the activities of system enhancement. In this section, we
briefly describe each activity, participants and roles, inputs and outputs, and techniques.

Systems Operations and Support Chapter Twenty 711

> Task 8.4.1—Analyze Enhancement Request

This activity determines the appropriate course of action for achieving a system en-
hancement requirement.The initial task is to analyze the request against all other out-
standing change requests to determine priority. The system knowledge in the
repository is invaluable here, especially if it is current. At a minimum, the importance
of the requirement must be assessed against the time and cost of a solution.

Requests for change almost always outnumber resources needed to facilitate
change. Change management systems formally capture all change requests in the
repository so that change can be prioritized. Changes may be batched so that they can
be implemented at optimal times.

If immediate change is needed, the approved change request(s) must be directed
to solutions according to the type(s) of change required:

• New business problems must be directed to a downsized version of the
problem analysis phase. From there, the enhancement will be directed
through appropriately downsized versions of requirements analysis, decision
analysis, design, construction, and implementation.

• New business requirements must be directed to downsized requirements
analysis, decision analysis, design, construction, and implementation.

• New technical requirements must usually be directed to a decision analysis
before design, construction, and implementation. The decision analysis deter-
mines if the proposed technology will be feasible in the new system. This is
exceedingly important because radical technical change may be costly and
complex.

• New design requirements must obviously be directed to design, construction,
and implementation.

To prioritize and plan enhancement projects, the systems analyst should be skilled in
project management (Chapter 4) and feasibility techniques (Chapter 11).

> Task 8.4.2—Make the Quick Fix

Some system enhancements can be accomplished quickly by writing new simple pro-
grams or making very simple changes to existing programs. Simple programs and
changes are those that can be made without restructuring stored data (changing the
database structure), without updating stored data, and without inputting new data
(for purposes of storing that data). In other words, these programs generate new
(or revise existing) reports and outputs. New program requirements represent many
of today’s enhancement requests.

NOTE: It is our belief that any new program requirements that exceed our def-
inition of simple should be treated as new business requirements and subjected
to systems analysis and design to more fully consider implications within the
complete application system’s structure.

Most such programs can be easily written with 4GLs or report-writing tools such
as SAS, Brio, or Crystal Reports. With these tools, programs can be completed within
hours. Since they generally do not enter or update data stores, testing requirements
are not nearly as stringent.

The quick fix might also be as simple as changing business processes so that they
can work with existing information system processes. For example, the analyst may
suggest ways in which existing reports can be manually adapted to support different
needs.

In Figure 20-5, we see that quick fix requirements are identified and studied.The
analysts or programmers use existing business data as test data to write simple, new
programs that may or may not be added to the program library. Of course, updated
system knowledge should be added to the repository.

712 Part Four Beyond Systems Analysis and Design

> Task 8.4.3—Recover Existing Physical System

Sometimes the repository does contain up-to-date or accurate system knowledge. But
documentation is frequently out of date. And in some cases, systems were developed
without rigorous development processes or enforced documentation standards. In
still other cases, systems were purchased; purchased systems are notorious for poor
and inadequate documentation. In all of these instances, the analyst may be asked to
recover the existing physical structure of a system as a preface to subsequent system
enhancement. In some cases, reengineering technology exists to physically restruc-
ture and improve system components without altering their functionality. Let’s briefly
examine some recovery and restructuring possibilities.

Database Recovery and Restructuring Sometimes systems analysts help in the
reengineering of files and databases. Many of today’s data stores are still implemented
with traditional file structures (such as VSAM) or early database structures (such as hi-
erarchical IMS structures). Today’s database technology of choice is SQL-based rela-
tional databases. Tomorrow, object database technology may present yet another
paradigm shift. A more common requirement is the changing of versions in an
existing database structure (such as Oracle 9i to Oracle 10g).

A migrating of data structures from one data storage technology or version to an-
other is a major endeavor, filled with opportunities to corrupt essential, existing busi-
ness data and programs.Thus, reengineering file and database structures has become
an important task.

Database reengineering is usually covered more extensively in data and database
management courses and textbooks; however, a brief explanation is in order here.The
key player in database restructuring is the database administrator.The systems analyst
plays a role because of the potential impact on existing applications. Network analysts
may also be involved if databases are (to be) distributed across computer networks.

All databases store metadata about their structure.This metadata can be read and
transformed into a physical data model. This data model can be stored in the reposi-
tory (as system knowledge) to assist analysts in the redesign or use of the database.
In some cases, an updated and/or restructured database can be generated, but great
care must be taken because many programs use the existing database structure.While
database technology theoretically separates data structure from program structure,
significant restructuring of databases can still cripple programs.

If the database requires such restructuring, it might be better to identify the
change in the repository as another new design requirement that should be directed
through an appropriate system redevelopment to determine and react to the impact
the new structure may have on existing programs.

Program Analysis, Recovery, and Restructuring Many businesses are question-
ing the return on investment in corrective and adaptive maintenance of software. If
complex and high-cost software can be identified, it might be reengineered to reduce
complexity and maintenance costs. One possibility is to analyze program library and
maintenance costs. This task almost always requires software capable of performing
the analysis.

Software tools such as ASG’s ASG-Recap measure your software library using a va-
riety of widely accepted software metrics. Software metrics are mathematically
proven measurements of software quality and productivity. Examples of software
metrics applicable to maintenance include:

• Control flow knots—the number of times logic paths cross one another.
Ideally, a program should have zero control flow knots. (We have seen knot
counts in the thousands on some older, poorly structured programs.)

• Cycle complexity—the number of unique paths through a program. Ideally,
the fewer, the better.

Systems Operations and Support Chapter Twenty 713

software metrics mathe-

matically proven measure-

ments of software quality and

developer productivity.

Software metrics, in combination with cost accounting (on maintenance efforts), can
help identify the programs that would benefit from restructuring.

The input to program analysis is existing programs in the program library. The
software may generate restructured programs or merely add system knowledge
about the programs to be used later for either restructuring or enhancement. Pro-
gram analysis was a critical first step in solving the year 2000 software problem.
Businesses had to analyze programs to determine where dates were used and what
impact changes might have as the programs were enhanced to accommodate the
millennium rollover.

Program recovery is similar to program analysis. Existing program code is read
from the library. It is then transformed into some sort of physical model appropriate
to the software. For example, many CASE tools can reverse engineer a COBOL

program into a structure chart for that program or reverse engineer a Visual Basic

program into an object model. These models are added to the repository as new
system knowledge to assist with enhancement of the system.

Be very careful not to misuse recovery technology. With purchased software ap-
plications, the software license usually prohibits reverse engineering. At best, reverse
engineering of purchased software may be unethical. In the worst case, reverse engi-
neering of such software may be illegal and a violation of copyright law and trade
secrets.

Finally, some reengineering tools actually support the restructuring of programs.
There are three distinct types of program restructuring:

• Code reorganization restructures the modular organization and/or logic of
the program. Logic may be restructured to eliminate control flow knots and
reduce cycle complexity.

• Code conversion translates the code from one language to another. Typically,
this translation is from one language version to another. There is a debate on
the usefulness of translators between different languages. If the languages are
sufficiently different, the translation may be very difficult. If the translation is
easy, the question is, “Why change?”

• Code slicing is the most intriguing program-reengineering option. Many pro-
grams contain components that could be factored out as subprograms. If
factored out, they would be easier to maintain. More importantly, if factored
out, they would be reusable. Code slicing cuts out a piece of a program to
create a separate program or subprogram. This may sound easy, but it is not!
Consider your average COBOL program. The code you want to slice out may
be located in many paragraphs and have dependent logic in many other para-
graphs. Furthermore, you would have to simultaneously slice out a subset of
the data division for the new program or subprogram.

The candidate program for restructuring is copied from the program library. It is
reengineered using one or more of the preceding methods, it is thoroughly tested (as
described earlier in the chapter), and the reengineered program is returned to the
program library where it is available for production. Any new data, process, and/or
network models are updated in the repository.

714 Part Four Beyond Systems Analysis and Design

System Obsolescence

At some point, it will not be cost-effective to support and maintain an information sys-
tem. All systems degrade over time. And when support and maintenance become cost-
ineffective, a new systems development project must be started to replace the system.
At this time we come full circle to Chapters 3–19 of this book.

1. Systems support is the ongoing maintenance of
a system after it has been placed into operation.
This includes program maintenance and system
improvements.

2. Systems support involves solving different types of
problems.There are several types of systems sup-
port: system maintenance, system recovery, end-user
assistance, system enhancement, and reengineering.

3. Regardless of how well designed, constructed, and
tested a system or application may be, errors or
bugs will occur.The corrective action that must be
taken is called system maintenance.

4. From time to time a system failure is inevitable. It
generally results in an aborted, or “hung,” program
(also called an ABEND or crash) and possible loss
of data.The systems analyst often fixes the system
or acts as intermediary between the users and
those who can fix the system; this is referred to as
system recovery.

5. Another relatively routine ongoing activity of
systems support is end-user assistance. No matter
how well users have been trained or how well
documentation has been written, users will require

additional assistance.The systems analyst is gener-
ally on call to assist users with the day-to-day
use of specific applications. In mission-critical
applications, the analyst must be on call day
and night.

6. Most adaptive maintenance is in response to new
business problems, new information requirements,
or new ideas for enhancement. It is reactive in
nature—fix it when it breaks or when users make
a request. We call this system enhancement.The
objective of system enhancement is to modify or
expand the application system in response to
constantly changing requirements. Another type of
reactive maintenance deals with changing technol-
ogy. Information system staffs have become in-
creasingly reluctant to wait until systems break.
Instead, they choose to analyze their program li-
braries to determine which applications and pro-
grams are costing the most to maintain or which
ones are the most difficult to maintain.These sys-
tems might be adapted to reduce the costs of
maintenance.The preceding examples of adaptive
maintenance are classified as reengineering.

Chapter Review

1. What is system support?
2. What are the three areas of systems development

knowledge suggested in the textbook that are im-
portant to system support?

3. What are the four major support activities sug-
gested in the textbook?

4. Why is system maintenance necessary?
5. What are the tasks needed for system maintenance?

Review Questions
1

2

Lea
rning

 Roa
d
m

a
p

This chapter provided a detailed overview of the systems support phase of systems

development.You learned about the different types of systems support: maintenance,

enhancement, reengineering, and design recovery.

If you have been covering the chapters in order, you are now prepared to do sys-

tems development. Otherwise, you may wish to return to previous chapters to learn

more about the tools and techniques used in systems development. Completion of

this book does not guarantee your future success in systems development. Systems

development approaches, tools, and techniques continue to evolve. Thus, your learn-

ing will be an ongoing process.

715

6. What does the term unsubstantiated bug mean?
What should analysts do when an unsubstantiated
bug is found?

7. What should analysts do when they have vali-
dated that there are bugs in the program?

8. How are test scripts used in the benchmarking of
the program?

9. Why is relying on system knowledge important in
debugging of the program?

10. Why is the cost of system maintenance high?

11. What are some of the tasks suggested in technical
support?

12. Why will system enhancement occur?
13. What are the tasks needed to conduct system

enhancement?
14. Why is it necessary to recover the existing physi-

cal system in system enhancement?
15. What are the reengineering tools suggested in the

textbook?

1. Your company has grown rapidly in the past sev-
eral years, and its organizational structure has
lagged behind.The CIO has asked you to reorga-
nize the systems operation and support section of
the IT shop. As you are reorganizing it, what are
the four major support activities you need to be
aware of, and what is a critical requirement for
each of these activities regarding the staff who
will be performing them?

2. What are control flow knots, and why should
they be avoided?

3. Answer true or false to the following
statements:

a. Microsoft’s SourceSafe is an example of a
software-based librarian.

b. In a typical IT shop, analysts spend at most
about 20 percent of their time on systems
operation and support.

c. A simple program change is one that does not
require a change to the database schema or to
the data itself.

d. IT shops no longer need technical IT staff
who have expertise in VSAM or IMS because
these file and database structures are almost
never found in organizations anymore.

e. The repository is where archival data gener-
ated by the application program is stored.

4. All systems eventually grow old and become
obsolete. What is the rule of thumb as to when a
system should be replaced?

5. Match the terms in the first column with the defi-
nitions or examples in the second column:

1. Version control A. Code translation to
higher version or dif-
ferent language

2. Program library B. Software quality and
developer productivity
measurements

3. Control flow C. Baseline against which
knots modified program can

be measured
4. Cycle complexity D. Application source

code data store
5. Roll forward E. Unique path count in a

program
6. Code slicing F. Intersecting logic path

count
7. Code G. Program change

reorganization tracking, usually
software based

8. Code conversion H. Transaction reprocess-
ing as part of recovery
process

9. VIA/Recap I. Transaction removal as
part of recovery
process

10. Benchmark the J. Repository for test
program data and test

instructions
11. Roll back K. Code removal to

create new program or
subprogram

12. Test script L. Software metric tool
13. Software metrics M. Restructuring of

program’s logic or
modular organization

6. One of the common support activities occurs
when a software manufacturer, such as Oracle or
Microsoft, releases an updated version of one of
their software packages. Often the effort to up-
grade is significant, while the changes to the soft-
ware appear minor.This raises the question, why
upgrade? Please discuss.

7. Fill in the blanks.

a. There is usually __________ staff to handle all
the __________ requests that are submitted;
therefore, they must be __________.

Problems and Exercises

716 Part Four Beyond Systems Analysis and Design

b. If a program contains excessive cycle
__________ or an excessive number of
__________, a program __________ technique
called code __________ can be used.

c. To __________ programs would benefit from
__________, reengineering, or __________,
software __________ can be used together
with __________ techniques.

d. The __________ is responsible for __________

data __________ and maintained by the
production application programs.

8. “Quick fixes” can be a very effective way to make
simple changes to a system with a minimum
amount of time and cost. On the other hand,
what is the danger or downside of quick fixes?

9. Explain the concept of adaptive maintenance.
10. Congratulations—you’ve reached the final chap-

ter in the textbook. Now it is time to reflect on
the chapters that you read. Part One covered the
context of a systems development project. Reread
the introduction at the beginning of Part One re-
garding the objectives for that part; then for each
chapter in Part One, list at least one thing that
stuck with you. For example, did Chapter 1 help
you to focus on the big picture, and was the

concept of information system building blocks,
presented in Chapter 2, something that helped
you throughout the textbook and that could be a
useful tool in your professional career?

11. In Part Two, you covered a wide range of systems
analysis methods in seven chapters. Again, reread
the introduction at the beginning of Part Two;
then list what resonated the most for you in each
chapter on systems analysis methods.

12. Please do the same for Part Three as in the pre-
ceding two parts.

13. Part Four of the textbook takes you into the final
phase of the project, then into ongoing operations
and support. Follow the same process as for the
preceding parts, but in addition, please take a mo-
ment and think about the entire textbook. Where
do you feel it is of the greatest value to you in
your studies and professional career, and where
do you think it can be strengthened? Also, for how
long do you think books on systems analysis and
systems design principles and methods can be
used before they need to be updated or become
obsolete? What are the implications of this for
your career as a systems analyst or designer?

1. Requests from users for system enhancements or
changes are one of the more challenging aspects of
systems support, as described in the textbook. Re-
search this issue on the Web, and discuss it with
several IT support staff in local organizations. Find
out how their organization approaches it.Then:

a. Write a set of procedures or instructions for
your organization to use regarding submitting
system enhancement change requests.The pro-
cedures should include criteria for determining
whether a simple, or “quick fix,” program
change is appropriate, and the guidelines and
processes to be followed when the enhance-
ment doesn’t fall under the “quick fix” category.
Note: The procedures should be written for the
nontechnical business user and should include
a sample change request form.

b. “Pilot” the instructions and form with your
fellow students and/or co-workers. Have them
evaluate and critique the instructions and form.

c. Use their feedback to refine your instructions
and form. Report the process until there are no
further suggestions for improvement.

d. How many iterations did you go through?

2. At the time that most projects are initiated, an esti-
mate is made of the expected life span of the new
system as a part of a cost-benefit evaluation. How-
ever, on an anecdotal basis, it appears that most sys-
tems remain in production far longer than their
original planned life span. Research this topic on the
Web and/or in your school library. In addition, con-
duct an informal survey of system administrators in
several local public and private sector agencies.

a. Describe the articles that you found and their
viewpoints on this subject.

b. Describe the informal survey you conducted,
including the nature of organizations that were
included in the survey and the types of systems
they use.

c. What was the average difference you found, if
any, between expected life span and actual life
span of systems?

d. To what do you attribute the tendency to keep
systems in production beyond their expected
life span?

e. What was the oldest system you found still in
production? (It is not uncommon to find sys-
tems dating back to the 1970s, depending upon

Projects and Research

Systems Operations and Support Chapter Twenty 717

the nature of the organization. Finding a system
originally implemented in the 1960s would be
rare, although some are known to still exist!)

3. The objective of software metrics is to provide a
mathematically valid method for measuring soft-
ware quality and productivity. Research articles on
the Web and/or in your school library regarding
software metrics, as well as the Web sites of some
manufacturers of software metrics tools. If they
offer any free trial copies, download them and try
them out. In addition, ask the IT staff in several
local organizations if they use software metrics
tools, and, if so, which one and what their opinion
is of it.

a. Describe the research that you conducted.
b. What are some of the different schools of

thought and/or controversies regarding the use
of software metrics tools?

c. What were the responses from IT staff? Do they
use software metric tools? If they do, what are
the ones they use and/or prefer? What are the
different uses for which the tools are em-
ployed? If the IT staff doesn’t use software met-
rics tools, what are the reasons why not?

d. On the basis of your research and perhaps
hands-on experience, compare and contrast the
different software metrics tools that are avail-
able. Which one(s) did you prefer and why?

e. Overall, do you consider the benefits of soft-
ware metrics tools to be sufficient to justify
their cost of purchase and their learning curve?

4. Systems operations and support generally con-
sume an enormous amount of the resources avail-
able in the typical IT shop of an organization.
Many CIOs are avidly interested in systems support
software that may reduce the amount of human ef-
fort required. Research the Web and trade journals
for information on some of the newly emerging

applications, not discussed in the textbook, that
are or soon will be available.

a. Describe the research you conducted.
b. What are some of the new types of systems

support applications that you found?
c. Compare and contrast their features.
d. If you were the systems support manager in

your organization and you could choose only
one of these applications, which one would you
choose? Or would you choose any? Explain
your answer.

5. Technical support to users is one of the corner-
stones of systems support which can consume a
tremendous amount of time and staff resources.
Research this topic in trade journals and in forums
on the Web. Interview support staff in the IT
shops of several local organizations regarding the
issues they face in providing support. In addition,
interview some users in the same organizations re-
garding their perspective on technical support.

a. Describe the research you conducted.
b. What was the range of responses you received

regarding technical support?
c. Did the IT staff in the different organizations

have the same issues in common?
d. What about the IT staff and the users—what

perspectives did they have in common, and
where did they differ?

e. Using your research, write a one-page bulleted
list of guidelines for providing technical support.

6. Have computers become sophisticated enough to
be powerful extensions of how humans think and
communicate? Or do computers and humans cap-
ture and process data and transform it into infor-
mation in fundamentally different ways? Explain
your answer.

1. Create a final exam for this class. Post an elec-
tronic copy to the class Web site, as well as a hard
copy to your professor. Include solutions to the
questions, per your professor’s direction.

2. Compile the work you have done throughout this
class for the department of the government that
you chose. Create two deliverables: one for your
contact at the department, and one for your pro-
fessor.The deliverable to your professor will in-
clude ALL of the work you have done: interviews,
research, diagrams, testing and design reports and

counter reports, business discussion, manual, and
final prototype on CD.The deliverable for your
contact in the government will include: diagrams,
business discussion, manual, and final prototype
on CD. Remember, the manual will be bound sep-
arately for both deliverables.

3. Create a portfolio of the work you have done in
this class. Include major deliverables that show-
case your capabilities as a systems analyst and
designer, any letters of team recognition for good
teamwork from your group, a description of the

Minicases

718 Part Four Beyond Systems Analysis and Design

Systems Operations and Support Chapter Twenty 719

topics you covered in class, and the like. Make
sure that this portfolio has a professional appear-
ance and is bound.This is for you to keep as you
job-search.

4. Follow up with the contact at the government
department. Did they have any questions? Any

comments on your work? Does the prototype do
everything they wanted and needed? Does it work
on their network correctly and without problems?
Was the manual clear and easy to follow? Consider
this your final system acceptance.

1. Individual: If you are graduating, write a “thank
you” letter to the professor, teacher, secretary, li-
brarian, or whoever has helped you, influenced
you, or otherwise had the largest positive impact
on you in your college career.

2. Individual: Whether you are job-hunting or not,
make a list of people and ask them if they would

be willing to act as a reference when you job-
hunt. Remember, you will want to have work-
related references, school-related references, and
character references!

3. Individual: Blank exercise.You make it up, you
do it. Have fun, be creative, and look outside the
norm.

Team and Individual Exercises

Arnold, Robert. Software Reengineering. Los Alamitos, CA:

IEEE Computer Society Press, 1993. This is a reference

book and research compilation on the subject of business

process, database, and software reengineering.

Hammer, M., and J. Champy. Reengineering the Corporation.

New York: Harper Business, 1993. Mike Hammer is widely

regarded as the father of business process reengineering.

Martin, E. W.; D. W. DeHayes; J. A. Hoffer; and W. C. Perkins.

Managing Information Technology: What Managers

Need to Know. New York: Macmillan, 1994.

Suggested Readings

P
h
o
to

 C
re

d
it
s

Page 24

Page 25

Page 80

Page 90

Page 95

Page 99

Page 102

Page 102

Page 105

Page 105

Page 105

Page 105

Page 106

Page 129

Page 129

Page 129

Page 161

Page 169

Page 177

Page 187

Page 191

Page 194

Page 194

Page 454

Page 455

Page 461

Page 461

Page 461

Page 462

Page 462

Page 585

Page 685

Page 686

Page 686

Page 690

Page 703

Page 704

Page 704

Page 704

Page 704

Page 705

Page 705

Page 705

Page 707

Page 711

Blackberry Wireless Handheld ™ from Research In Motion (RIM)

Courtesy of Microsoft

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/EyeWire (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Blackberry Wireless Handheld ™ from Research In Motion (RIM)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/EyeWire (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

Getty/PhotoDisc (DIL)

720

721

Bold page numbers indicate locations of glossary definitions

A
Abrupt cut-over, 691

Abstract, report, 432

abstract use case A use case that reduces redundancy

among two or more other use cases by combining the common

steps found in those cases. Another use case uses or includes the

abstract use case., 249, 384, 385–386, 390

Acceptance testing, 192, 691–692

activity diagram A diagram that can be used to graphically

depict the flow of a business process, the steps of a use case, or

the logic of an object behavior (method)., 390–391, 394

actor Anything that needs to interact with the system to ex-

change information., 247

external agents, 342

glossary, 251

identifying, 251

Actuate e.Reporting Suite, 559

Adapter Pattern, 670–671

ADE; see application development environment

Administrative format, 432

agent Reusable software object that can operate across differ-

ent applications and networks., 632

Agent, external; see external agent

aggregation A relationship in which one larger “whole”

class contains one or more smaller “parts” classes. Conversely,

a smaller “part” class is part of a “whole” larger class.,

378, 405

agile development A systems development strategy

wherein the system developers are given the flexibility to select

from a variety of appropriate tools and techniques to best

accomplish the tasks at hand. Agile development is believed to

strike an optimal balance between productivity and quality for

systems development., 25; see also rapid application

development

documentation in, 191

methods, 92

agile method The integration of various approaches of

systems analysis and design for application as deemed

appropriate to the problem being solved and the system being

developed., 166

AIS; see Association for Information Systems

AITP; see Association for Information Technology

Professionals

Alphabetic codes, 293

alternate key A candidate key that is not selected to become

the primary key. A synonym is secondary key., 274; see also

secondary key

Amazon.com, 18, 492

Ambler, Scott W., 40, 116, 267, 411, 679

Amdocs, 28

analysis paralysis A satirical term coined to describe a

common project condition in which excessive system modeling

dramatically slows progress toward implementation of the in-

tended system solution., 84, 335

Analysis use-case model, 383–385, 390

Analysts; see systems analyst

Anderson, John F., 240

Andres, C., 579, 611, 645

Andrews, D. C., 240

AOL, 26

Apple

Macintosh, 618

Mac/OS, 97

application architecture A specifica-

tion of the technologies to be used to imple-

ment information systems., 453, 455–457, 476

component diagrams, 672–673

data distribution, 506–507

enterprise strategy, 502–503

modeling, 503–504

process distribution, 507

tactical, 503

application data model A data model

for a complete, single information system., 285

application development environ-
ment (ADE) An integrated software devel-

opment tool that provides all the facilities

necessary to develop new application soft-

ware with maximum speed and quality. A

common synonym is integrated development

environment (IDE)., 109–111

use of, 54–55, 614

user interfaces, 58

Application middleware, 500

application program A language-based, machine-

readable representation of what a software process is sup-

posed to do or how a software process is supposed to

accomplish its task., 55; see also Programs

Application schema, 337

application server A server that hosts application

logic and services for an information system., 487

Architected rapid application development, 84

archival file A table containing master and transaction

file records that have been deleted from online storage., 522

Armour, Frank, 251n, 267, 411, 679

Arnold, Robert, 719

Artemis International Solutions Corporation, 125

ASG-Recap, 713

As-is system model, 94

association A relationship between an actor and a use

case in which an interaction occurs between them., 248

in object models, 376–378, 400

Association for Information Systems (AIS), 218

Association for Information Technology Professionals

(AITP), 218

associative entity An entity that inherits its primary

key from more than one other entity., 276–277, 280

ATMs; see Automated teller machines

attribute A descriptive property or characteristic of an

entity. Synonyms include element, property, and field., 272

attribute The data that represents characteristics of in-

terest about an object., 372; see also field

compound, 272

in data flows, 330

data types, 272, 333

default values, 273

derived, 302–304

of design objects, 665

discovery of, 656

domains, 272, 297, 333

G
lossa

ry/
Ind

ex

names, 295

subsetting criteria, 274

visibility, 650–651, 665

audit file A table containing records of updates to other

files., 522

audit test A test performed to ensure a new system is ready to

be placed into operation., 692

Automated teller machines (ATMs), 556, 585

Automated tools

application development environments; see application

development environment

CASE; see computer-assisted software engineering

help authoring, 631

input design, 598, 604–605

for joint requirements planning, 231

methodology support, 107–108

output design, 558–559

process manager applications, 111

project management, 111, 125–127, 134

prototyping, 558–559

report-writing, 712

repositories; see repository

software configuration, 704, 709

software metrics, 713–714

user interface design, 614, 634

Automatic data capture, 585–587

B
backlog A repository of project proposals that cannot be

funded or staffed because they are a lower priority than those

that have been approved for system development. Note that

priorities change over time; therefore, a backlogged project

might be approved at some future date., 77

back-office information system An information system

that supports internal business operations of an organization, as

well as reaches out to suppliers., 45

balancing A concept that requires that data flow diagrams at

different levels of detail reflect consistency and completeness.,

348–349

Bar codes, 498, 586

Barnes and Noble, 18

batch processing A data processing method whereby data

about many transactions is collected as a single file which is

then processed., 496, 584

controls, 589

remote, 497–498, 584

BEA Systems, 487

enterprise application integration, 29

WebLogic, 54

Beasley, Reyna A., 155

Beck, Kent, 657n

Beck, Robert, Jr., 120n, 124, 127n, 155

behavior The set of things that an object can do and that cor-

respond to functions that act on the object’s data (or attributes).

In object-oriented circles, an object’s behavior is commonly

referred to as a method, operation, or service (we may use the

terms interchangeably throughout our discussion)., 372, 656–659

Bell, P., 699

Benefits

intangible, 421–422

tangible, 420–421

Berdie, Douglas R., 240

Berstein, Phillip, 515

Biometric technology, 587

Black holes, 325

Blaha, Michael, 411, 679

Blanchard, Kenneth, 139, 155

Block codes, 293

blocking factor The number of logical records included in a

single read or write operation., 522

Bluetooth, 24

Boar, Benard, 472

body language The nonverbal information we communicate.,

227–228

Boehm, Barry, 208–210, 699

Booch, Grady, 117, 370, 371, 411, 679

Borland

Delphi, 501

JBuilder, 109, 502, 614

Boundary class; see interface class

Bovee, Courtland L., 441

BPR; see business process redesign

brainstorming A technique for generating ideas by encour-

aging participants to offer as many ideas as possible in a short

period of time without any analysis until all the ideas have been

exhausted., 233–234

Brio, 712

BroadVision, 28

Brooks, Fred, 122n, 155, 244, 267, 699

Bruce, Thomas A., 292n, 313, 547

Bugs, 88; see also Program maintenance

causes, 706

identifying, 706

Building blocks of information systems, 47

communications, 55–58

knowledge, 47, 50–51

networks and, 58–59

process, 51–52, 54–55

Burrows, Hal, 139, 155

Business data, 704

Business events; see event

business function A group of related processes that sup-

port the business. Functions can be decomposed into other

subfunctions and eventually into processes that do specific

tasks., 51–52

Business models; see logical model

Business objects; see object

Business Objects Crystal Reports, 559, 712

business process redesign (BPR) The study, analysis,

and redesign of fundamental business processes to reduce costs

and/or improve value added to the business., 22

business process redesign (BPR) The application of

systems analysis methods to the goal of dramatically

changing and improving the fundamental business processes

of an organization, independent of information

technology., 166

data flow diagrams used for, 319, 334–335

as driver for information systems, 22

methods, 166

projects initiated from, 77

business processes Tasks that respond to business events

(e.g., an order). Business processes are the work, procedures,

722 Glossary/Index

and rules required to complete the business tasks, independent

of any information technology used to automate or support

them., 21

Business requirements; see system requirement

business requirements use case A use case created

during requirements analysis to capture the interactions between

a user and the system free of technology and implementation

details. Also called an essential use case., 252; see also

use case

identifying, 252–254

narratives, 256–258

Buttons, 596

Buy.Com, 492

C
C#, 54, 97, 490

C , 25, 54, 97

Canceled projects, 75

candidate key One of a number of keys that may serve as the

primary key of an entity. Also called candidate identifier., 274

candidate systems matrix A tool used to document simi-

larities and differences between candidate systems., 195–197,

426–429

Capability Maturity Model (CMM) A standardized

framework for assessing the maturity level of an organiza-

tion’s information systems development and management

processes and products. It consists of five levels of maturity.,

69–70, 127

cardinality The minimum and maximum number of occur-

rences of one entity that may be related to a single occurrence of

the other entity., 275

Carnegie Mellon University, Software Engineering Institute, 69

CASE; see computer-assisted software engineering

CASE repository A system developers’ database where de-

velopers can store system models, detailed descriptions and

specifications, and other products of systems development.

Synonyms include data dictionary and encyclopedia., 108, 111;

see also repository

Cash, William B., Jr., 241

Cashman, T., 579

Catapult, Inc., 155

cause-and-effect analysis A technique in which problems

are studied to determine their causes and effects., 180

Cell phones, 24

centralized system A system in which all components are

hosted by a central, multiuser computer., 484

CGI (Computer Gateway Interface), 502

Champy, J., 719

change management A formal strategy wherein a process

is established to facilitate changes that occur during a project.,

141–143, 142

Change management systems, 712

Charts, 556

Check boxes, 593–594

Check digits, 590

Chevrolet, 24

child entity A data entity that derives one or more attributes

from another entity, called the parent. In a one-to-many relation-

ship the child is the entity on the “many” side., 277

Chrissis, Mary Beth, 117

Christerson, Magnus, 267, 411, 679

class diagram A graphical depiction of a system’s static ob-

ject structure, showing object classes that the system is com-

posed of as well as the relationships between those object

classes., 400, 405

Class responsibility collaboration (CRC) cards, 657–659

Classes; see object class

clean layering A design strategy that requires that

presentation, application, and data layers be physically

separated., 59, 501

client server system A distributed computing solution in

which the presentation, presentation logic, application logic,

data manipulation, and data layers are distributed between

client PCs and one or more servers., 486–487

distributed data, 489–490, 506–507

distributed data and application, 490–491

distributed presentation, 487–488, 500–501

software development environments, 500–502

three-tiered, 490–491, 501–502

two-tiered, 489–490, 501

closed-ended question A question that restricts answers

to either specific choices or short, direct responses., 223

CMM; see Capability Maturity Model

Coad, P., 411, 472, 679

Code conversion, 714

Code reorganization, 714

Code slicing, 714

cohesion The degree to which the attributes and behaviors of

a single class are related to each other., 666–667

Cold Fusion, 24, 58, 109

Collaboration diagram; see communication diagram

Columbia House Record Club, 586

Combination boxes, 595–596

Combination checks, 590

commercial application package A software applica-

tion that can be purchased and customized (within limits) to

meet the business requirements of a large number of organiza-

tions or a specific industry. A synonym is commercial off-the-

shelf (COTS) system., 100

advantages and disadvantages, 103–104

FAST implementation strategy, 101–103

impact on systems development life cycle, 460, 466–467

implementation, 467

installation, 687–688

requests for proposals, 101, 463–465

reverse engineering, 714

system design phase, 460–462

contract negotiations, 466

decision analysis phase, 460, 462

evaluate and rank proposals, 465–466

procurement phase, 460, 462–465

proposal solicitation, 463–465

technical criteria and options, 462–463

validate vendor claims and performance, 465

vendor debriefings, 466

testing, 687–688

communication diagram Models the interaction of ob-

jects via messages, focusing on the structural organization of

objects in a network format. Called a collaboration diagram

prior to UML 2.0., 672

communications and collaboration system An

information system that enables more effective communications

Glossary/Index 723

between workers, partners, customers, and suppliers to enhance

their ability to collaborate., 7

Communications building blocks, 55–58

component A group of objects packaged together into one

unit. An example of a component is a dynamic link library (DLL)

or executable file., 671

component diagram Depicts the organization of program-

ming code divided into components and how the components in-

teract., 672–673

composite data flow A data flow that consists of other

data flows., 326–327

composition An aggregation relationship in which the

“whole” is responsible for the creation and destruction of its

“parts.” If the “whole” were to die, the “part” would die with

it., 378

compound attribute An attribute that consists of other

attributes. Synonyms in different data modeling languages are

numerous: concatenated attribute, composite attribute, and data

structure., 272

Computer Associates

AllFusion Process Management Suite, 125

Erwin, 108, 526, 529

Computer Ethics Institute, 15, 16

computer-assisted software engineering (CASE)
The use of automated software tools that support the drawing

and analysis of system models and associated specifications.

Some CASE tools also provide prototyping and code

generation capabilities., 108; see also System

Architect 2001 (Popkin)

data modeling, 286–288, 306

database design, 526, 529, 532, 535

database structure generation, 539, 542

facilities, 108

forward engineering, 108–109

future of, 199

input design, 598

output design, 559

process modeling, 337

repositories, 108, 111

reverse engineering, 108–109, 165

system design models, 447

use in systems analysis, 162

user interface design, 488, 634

ComputerWorld, 667

concatenated key A group of attributes that uniquely

identifies an instance of an entity. Synonyms include composite

key and compound key., 273–274

Conceptual models; see logical model

Conclusion, report, 432

Connor, Denis, 472

constraint Any factor, limitation, or restraint that may limit a

solution or the problem-solving process., 82

constraint Something that will limit your flexibility in

defining a solution to your objectives. Essentially, constraints

cannot be changed., 182

Construction phase; see systems construction

Consultants, 16

Consumer-style interfaces, 626

context data flow diagram A diagram that shows the

system as a “black box” and its main interfaces with its

environment., 335

context data flow diagram A process model used to

document the scope for a system. Also called environmental

model., 338–339

context data model A data model that includes entities

and relationships but no attributes., 285, 290–292

Context diagram, 94, 178–180, 252

continuous process improvement (CPI) The contin-

uous monitoring of business processes to effect small but

measurable improvements in cost reduction and value

added., 21

control class An object class that contains application

logic. Examples of such logic are business rules and calcula-

tions that involve multiple entity object classes. Control

classes coordinate messages between interface classes and

entity classes and the sequences in which the messages

occur., 649, 656

control flow A condition or nondata event that triggers a

process., 327–328

Control flow knots, 713

Conventional files; see file

converging data flow The merger of multiple data flows

into a single data flow., 333–334

Conversion, 694

planning, 689, 691–692, 694

strategies, 691

Copi, I. R., 366

CORBA object-sharing standard, 487

Corel Flow, 447

Cost-benefit analysis

benefits, 420–422

costs, 419–420

cost-effectiveness The result obtained by striking a balance

between the lifetime costs of developing, maintaining, and

operating an information system and the benefits derived from

that system. Cost-effectiveness is measured by cost-benefit

analysis., 75, 422

Costs, 419–420

fixed, 420

operating, 420

opportunity, 423

resource, 136

systems development, 420

variable, 420

coupling The degree to which one class is connected to or re-

lies on other classes., 666–667

CPI; see continuous process improvement

Crane, David B., 120n, 124, 127n, 155

CRC; see Class responsibility collaboration (CRC) cards

creeping commitment A strategy in which feasibility

and risks are continuously reevaluated throughout a project.

Project budgets and deadlines are adjusted accordingly., 75,

414–416

critical path The sequence of dependent tasks that deter-

mines the earliest completion date for a project., 138, 139,

147, 149

CRM; see customer relationship management

cross life-cycle activity Any activity that overlaps multiple

phases of the system development process. Examples include

fact-finding, documentation, presentation, estimation, feasibility

analysis, project and process management, change management,

and quality management., 88–89

724 Glossary/Index

cross-functional information system A system that

supports relevant business processes from several business func-

tions without regard to traditional organizational boundaries

such as divisions, departments, centers, and offices., 52

Crystal Reports, 559, 712

c/s Solutions, Risk , 125

cultural (or political) feasibility A measure of how

well the solution will be accepted in a given organizational

climate., 417–418

Cunningham, Ward, 657n

Curtis, Bill, 117

customer relationship management (CRM) A

software application that provides customers with access to a

business’s processes from initial inquiry through postsale

service and support., 26, 28–29

Cycle complexity, 713

D
D; see most likely duration

data Raw facts about people, places, events, and things that

are of importance in an organization. Each fact is, by itself,

relatively meaningless., 21

data administrator A database specialist responsible for

data planning, definition, architecture, and management., 524

data analysis A technique used to improve a data model for

implementation as a database., 299, 528–529

data architecture A definition of how files and databases

are to be developed., 523–524

data attribute The smallest piece of data that has meaning

to the users and the business., 330; see also attribute

data capture The identification and acquisition of new

data., 584

data conservation The practice of ensuring that a

data flow contains only data needed by the receiving

process., 329

data definition language (DDL) A language used by a

DBMS to define a database or a view of a database., 525

Data dictionary; see repository

Data distribution; see distributed data

data entry The process of translating data into a computer-

readable format., 582–584; see also Input design

data flow Data that is input or output to or from a

process., 325

attributes, 330

composite, 326–327

conservation, 329

control flows, 327–328

converging, 333–334

in data flow diagrams, 317, 325–328

data structures, 326, 330–333

describing, 349

notation, 330–331

types, 330

diverging, 333–334

input, 599–600

logical, 481

names, 328, 481

output, 562

physical, 481

data flow diagram (DFD) A process model used to

depict the flow of data through a system and the work or

processing performed by the system. Synonyms are bubble

chart, transformation graph, and process model., 317; see

also process modeling

balancing, 348–349

context, 335, 338–339

data flows, 317, 325–328

data stores, 317, 320–321

differences from flowcharts, 317–319

event diagrams, 335

external agents, 317, 319–320

logical, 477

mechanical errors, 325

physical; see physical data flow diagram

primitive, 335, 349

processes, 317, 324–325

symbols, 317, 322

use in business process redesign, 319, 334–335

use of, 97, 162, 163

data manipulation language (DML) A DBMS lan-

guage used to create, read, update, and delete records., 526

Data mining, 523

data modeling A data-centered technique used to model

business data requirements and design database systems that

fulfill those requirements. The most frequently encountered data

models are entity relationship diagrams., 97

data modeling A technique for organizing and

documenting a system’s data. Sometimes called database

modeling., 270; see also entity; entity relationship

diagram; normalization

automated tools, 286–288, 306

evaluation criteria, 298

location views, 306–308

process, 283, 285–286, 288

analysis of model, 298–299, 528–529

context data model, 285, 290–292

entity discovery, 289–290

fully attributed data model, 286, 295–297

key-based data model, 286, 292–293

simplification by inspection, 306

reverse engineering, 285, 287, 713

skills, 199

strategic, 283–285

synchronizing with process models, 359–360

in systems analysis phases, 285–286

transformation into database schema, 530–532

Data partitioning, 495

Data processing

batch, 496, 584, 589

online, 490, 496–497, 584

remote batch, 497–498, 584

Data replication, 495

data requirement A representation of users’ data in

terms of entities, attributes, relationships, and rules., 50,

306–308

data store Stored data intended for later use. Synonyms are

file and database., 320

in data flow diagrams, 317, 320–321

entities and, 320, 349

external, 339

names, 320–321, 481

physical, 481

Glossary/Index 725

data structure A specific arrangement of data attributes

that define a single instance of a data flow., 330

data flows, 326, 330–333

describing, 349

importance, 333

input data flows, 599–600

notation, 330–331

output data flows, 562

types, 330

data type A property of an attribute that identifies what type

of data can be stored in the attribute., 272

data type A class of data that can be stored in an attribute., 333

physical, 532

validation checks, 590

data warehouse A database that stores data extracted from

operational databases., 523

database A collection of interrelated files., 518, 523; see also

data store; relational database

building and testing, 687

capacity planning, 539

compared to conventional files, 518–519

designing; see Database design

distributed data, 538–539

installation, 692–693

metadata, 713

operational, 523

personal, 523

pros and cons, 520

prototyping, 539

recovery, 710

restructuring, 713

work group, 523

database administrator (DBA) A specialist responsible

for database technology, design, construction, security, backup

and recovery, and performance tuning., 10, 524

database architecture The database technology used to

support data architecture., 524–526

Database design, 457; see also database schema

automated tools, 526, 529, 532, 535

data integrity, 535–536

goals, 530

guidelines, 529

prerequisites, 530

referential integrity, 536

SQL code generation, 529, 539, 542

Database engines, 525

database management system (DBMS) Special soft-

ware used to create, access, control, and manage a database.,

525–526; see also relational database

data definition language (DDL), 525

data manipulation language (DML), 526

object, 542

pros and cons, 520

Database middleware, 500

database schema A model or blueprint representing the

technical implementation of a database., 530

creation of, 457, 530–532

generated by System Architect, 532, 535

relational, 526

SQL code generation, 529, 539, 542

database server A server that hosts one or more data-

bases., 487, 490

data-to-location-CRUD matrix A matrix that is used to

map data requirements to locations., 308

Data-to-process-CRUD matrix, 359–360

Data-type checks, 590

DataWatch Monarch/ES, 558

Davis, William S., 240

DBA; see database administrator

DBMS; see database management system

DDL; see data definition language

Decision analysis phase, 192–194

candidate solution analysis, 195–197

candidate solution comparison, 197, 426–429

candidate solution identification, 194–195, 427

commercial software acquisition, 460, 462

FAST methodology, 85–86

feasibility analysis, 195–197, 416–417, 426

project plan updating, 197

system proposal, 197–199

decision support system (DSS) An information system

that either helps to identify decision-making opportunities or

provides information to help make decisions., 7

decision table A tabular form of presentation that specifies

a set of conditions and their corresponding actions., 212, 355,

357–358

decomposition The act of breaking a system into

subcomponents., 322–324

decomposition diagram A tool used to depict

the decomposition of a system. Also called hierarchy

chart., 323–324

event, 342, 345

functional, 335, 339–340

purpose, 335

default value The value that will be recorded if a value is

not specified by the user., 273, 532

degree The number of entities that participate in a relation-

ship., 275

DeHays, D. W., 719

Dejoie, Roy, 240

DeMarco, Tom, 116, 139, 155, 366, 477

Dependency relationships, 650, 665

depends on A relationship between use cases indicating that

one use case cannot be performed until another use case has

been performed., 249–250

deployment diagram Depicts the configuration of soft-

ware components within the physical architecture of the system’s

hardware “nodes.”, 673–674

derived attr0ibute An attribute whose value can be calcu-

lated from other attributes or derived from the values of other

attributes., 302–304

descriptive field A nonkey field., 521

design class diagram A diagram that depicts classes that

correspond to software components that are used to build the

software application., 665–666

Design classes, 656, 665

design pattern A common solution to a given problem in a

given context, which supports reuse of proven approaches and

techniques., 668–671

design unit A self-contained collection of processes, data

stores, and data flows that share similar design attributes., 504,

507–508, 562

Design use case, 652, 655

Designers; see system designer

726 Glossary/Index

detailed report An internal output that presents information

with little or no filtering., 550

DFD; see data flow diagram

dialogue The overall flow of screens and messages for an

application, 617; see also Menus; user dialogue

directive A new requirement that’s imposed by management,

government, or some external influence., 77

Discount rates, 423–424

discovery prototyping A technique used to identify

the users’ business requirements by having them react to a

quick-and-dirty implementation of those requirements.,

164–165, 192

discovery prototyping The act of building a small-scale

representative or working model of the users’ requirements in

order to discover or verify those requirements., 228–229; see

also prototyping

Display monitors, 618–619

distributed data A client/server system in which the data

and data manipulation layers are placed on servers and other

layers are placed on clients. Also called two-tiered client/server

computing., 489–490, 506–507

options, 538–539

replication, 538–539

distributed data and application A client/server sys-

tem in which the data and manipulation layers are placed on

their own server(s), the application logic is placed on its own

server, and the presentation logic and presentation are placed on

the clients. Also called three-tiered, or n-tiered, client/server

computing., 490–491, 501–502

distributed presentation A client/server system in which

presentation and presentation logic are shifted from the server to

reside on the client., 487–488, 500–501

distributed relational database management
system Software that implements distributed relational

databases., 494–495

distributed system A system in which components are

distributed across multiple locations and computer networks.,

484; see also client server system

advantages and disadvantages, 484

architecture, 484

file server architecture, 485–486, 489–490

partitioning, 491, 495

diverging data flow A data flow that splits into multiple

data flows., 333–334

DML; see data manipulation language

Document, source; see source document

document file A table containing historical data., 522

Document interchange, 499

documentation The ongoing activity of recording facts and

specifications for a system for current and future reference., 89

in agile development, 191

during development, 73

existing, 215–217

out-of-date, 713

training manuals, 693–694

domain A property of an attribute that defines what

values the attribute can legitimately take on., 272

domain The legitimate values for an

attribute., 333

of database fields, 532

defining, 297

validation checks, 590

Domain integrity, 536

Drop-down lists, 595

DSS; see decision support system

Duncan, William R., 155

Dunlap, Duane, 611

Dunne, Peter, 241

Duration, task, 132–134

Dynasty, 502

E
EAI; see enterprise application integration

Eastman, David, 645

eBay, 492

E-business; see electronic business

E-commerce; see electronic commerce

economic feasibility A measure of the cost-effectiveness

of a project or solution., 419, 503

net present value, 425–426

payback analysis, 423–425

return on investment, 425

techniques, 422

time value of money, 422–423

ED; see expected duration

Eddy, Frederick, 411, 679

EDI; see electronic data interchange

EDS; see Electronic Data Systems

Edwards, Jeri, 515

EIS; see executive information system

Electromagnetic transmission, 587

electronic business (e-business) The use of the

Internet to conduct and support day-to-day business

activities., 18

application architectures, 491–492

input design, 605–606

output design, 570–573

procurement, 18–19

electronic commerce (e-commerce) The buying

and selling of goods and services by using the

Internet., 18

application architectures, 491–492

business-to-business, 18–19

business-to-consumer, 18

input design, 605–606

output design, 570–573

security issues, 630

shopping carts, 605–606

electronic data interchange (EDI) The standardized

electronic flow of business transactions or data between

businesses., 499

Electronic Data Systems (EDS), 667

elementary process Discrete, detailed activity or task

required to complete the response to an event. Also called

primitive process., 325, 349, 358

E-mail, 25–26, 499, 556

encapsulation The packaging of several items together into

one unit., 372

English, structured, 353–358

Enhancement; see System enhancement

Enterprise application architectures, 502–503

enterprise application integration (EAI) The process

and technologies used to link applications to support the flow of

Glossary/Index 727

data and information between those applications. EAI solutions

are usually based on middleware., 26, 29–30

Enterprise applications, 26

customer relationship management, 26, 28–29

enterprise resource planning, 26–27, 101

supply chain management, 26, 27–28

Enterprise data model, 284–285

Enterprise process model, 334

enterprise resource planning (ERP) A software appli-

cation that fully integrates information systems that span most

or all of the basic, core business functions (including transaction

processing and management information for those business

functions)., 26–27, 100–101

entity A class of persons, places, objects, events, or concepts

about which we need to capture and store data., 271–272

associative, 276–277, 280

attributes; see attribute

business, 50

child, 277

data stores and, 320, 349

definitions, 289

discovery of, 289–290

generalization, 283, 295

key, 273–274

life history of, 342

names, 289

parent, 277

relationships; see relationship

strong (independent), 278

supertypes and subtypes, 283, 295, 532

use cases and, 342

weak, 279

entity class An object class that contains business-related

information and implements the analysis classes., 648, 656

entity instance A single occurrence of an entity., 272

entity relationship diagram (ERD) A data model utiliz-

ing several notations to depict data in terms of the entities and

relationships described by that data., 163, 270–271; see also

data modeling

Environmental model; see context data flow diagram

E.piphany, 28

ERD; see entity relationship diagram

Eriksson, Hans-Erik, 411, 679

Ernest, Kallman, 40

ERP; see enterprise resource planning

ESP; see external service provider

Essential models; see logical model

estimation The calculated prediction of the costs and effort

required for system development. A somewhat facetious synonym

is guesstimation, usually meaning that the estimation is based on

experience or empirical evidence but is lacking in rigor—in

other words, a guess., 89

Ethics, 15

E-trade.com, 18, 492

Evans, C., 699

event A logical unit of work that must by completed as a

whole. Sometimes called transaction., 324

business, 52, 324

external, 341

physical data flow diagrams for, 507–508

process descriptions, 346, 347

state, 341

temporal, 248, 341

Event decomposition diagrams, 342, 345

event diagram A data flow diagram for a single event han-

dler and the agents and data stores that provide inputs or re-

ceive outputs., 335

event diagram A data flow diagram that depicts the context

for a single event., 345–347

event handler A process that handles a given event in the

event-response list., 335

event partitioning A structured analysis strategy in which

a system is factored into subsystems based on business events

and responses to those events., 335

event-response list A list of the business events to which

the system must provide a response. Similar to a use-case list.,

335, 341–342

exception report An internal output that filters data to pre-

sent information that reports exceptions to some condition or

standard., 553

executive information system (EIS) An information

system that supports the planning and assessment needs of

executive managers., 7

Executive summary, 432

Existence checks, 590

expectations management matrix A tool used to un-

derstand the dynamics and impact of changing the parameters of

a project., 143–147

expected duration (ED) The estimated amount of time

required to complete a task., 133

expert system An information system that captures the

expertise of workers and then simulates that expertise to the

benefit of nonexperts., 7

expert user An experienced computer user., 615

extension use case A use case consisting of steps extracted

from a more complex use case in order to simplify the original case

and thus extend its functionality. The extension use case extends the

functionality of the original use case., 248, 384, 385–386, 390

external agent An outside person, organization unit,

system, or organization that interacts with a system. Also called

external entity., 319

in context data flow diagrams, 339, 342

in data flow diagrams, 317, 319–320

events initiated by, 341

names, 320

physical, 481

External events, 341

external output An output that leaves the organization.,

553, 564

external service provider (ESP) A systems analyst,

system designer, or system builder who sells his or her exper-

tise and experience to other businesses to help those businesses

purchase, develop, or integrate their information systems

solutions; may be affiliated with a consulting or services

organization., 16

External users, 9–10

Extranets, 24

Extreme programming, 84

F
fact-finding The formal process of using research, inter-

views, meetings, questionnaires, sampling, and other techniques

728 Glossary/Index

to collect information about system problems, requirements,

and preferences. It is also called information gathering or data

collection., 88–89

fact-finding The process of collecting information about sys-

tem problems, opportunities, solution requirements, and priori-

ties. Also called information gathering., 165

fact-finding The formal process of using research, meetings,

interviews, questionnaires, sampling, and other techniques to

collect information about system problems, requirements, and

preferences. It is also called information gathering or data

collection., 212

for process modeling, 337

strategy, 234–235

techniques, 165–166, 215; see also joint requirements

planning (JRP)

discovery prototyping, 228–229

interviews, 222–228

observation of work environment, 218–220

questionnaires, 220–222

research and site visits, 217–218

sampling existing documentation, 215–217

Facts section, 432

Factual format, 431–432

FAST A hypothetical methodology used throughout this book to

demonstrate a representative systems development process. The

acronym’s letters stand for Framework for the Application of

Systems Thinking., 71–72

as agile method, 92

commercial application package implementation

strategy, 101–103

hybrid strategies, 104

model-driven development, 92, 94–96

phases, 72–73, 77–79

construction and testing, 87

decision analysis, 85–86

installation and delivery, 87–88

logical design, 84

physical design and integration, 86–87

problem analysis, 82–83

requirements analysis, 83–84

scope definition, 79–82, 167

systems analysis, 160, 166–167

rapid application development strategy, 98–100

system design strategies, 453

system maintenance, 104–107

fat client A personal computer, notebook computer, or work

station that is typically powerful., 486, 487, 490

feasibility A measure of how beneficial the

development of an information system would be to an

organization., 89

feasibility The measure of how beneficial or practical an in-

formation system will be to an organization., 414

cultural (political), 417–418

economic, 419, 422, 503

legal, 419

operational, 417, 503

schedule, 418

technical, 418, 503

tests, 417–419

feasibility analysis The activity by which feasibility is

measured and assessed., 89

feasibility analysis The process by which feasibility is

measured., 414

checkpoints during systems analysis, 416–417

in decision analysis phase, 195–197

evaluation of commercial software, 465–466

feasibility analysis matrix A tool used to rank candidate

systems., 197, 429

Feasibility assessment; see problem statement

feature creep The uncontrolled addition of technical features

to a system., 122

Federal Express, 498, 584

field The smallest unit of meaningful data to be stored in a file

or database., 521

data types, 532

in database schema, 530–532

default values, 532

domains, 532

names, 530–532, 538

sizes, 532

file A collection of similar records., 518

file The set of all occurrences of a given record structure., 522;

see also data store

archival, 522

audit, 522

compared to databases, 518–519

designing, 529

document, 522

master, 522

pros and cons, 518–519

sampling, 216–217

table look-up, 522

transaction, 522

file server system A LAN in which a server hosts the data

of an information system., 485–486, 489–490

Finkelstein, Clive, 313

Firefox, 584, 618

first normal form (1NF) An entity whose attributes have no

more than one value for a single instance of that entity., 299–302

Fitzgerald, Ardra F., 240

Fitzgerald, Jerry, 240, 611

fixed cost A cost that occurs at a regular interval and at a

relatively fixed rate., 420

fixed-format questionnaire A questionnaire containing

questions that require selecting an answer from predefined

available responses., 221–222

Fixed-length record structures, 521

Flowcharts, 97, 317–319

foreign key A primary key of an entity that is used in an-

other entity to identify instances of a relationship., 277

foreign key A field that points to records in a different file in

a database., 521, 530

referential integrity, 536

role names, 538

formal presentation A special meeting used to sell new

ideas and gain approval for new systems., 433

advantages and disadvantages, 433–434

conducting, 436–437

following up, 437

preparing for, 434–436

visual aids, 435

Format checks, 590

Glossary/Index 729

forward engineering A CASE tool capability that can

generate initial software or database code directly from system

models., 108

forward scheduling A project scheduling approach that

establishes a project start date and then schedules forward from

that date., 135

Fowler, George, 240

Fowler, Martin, 411, 668–669, 679

Frames, 620

“Framework for Information Systems Architecture”

(Zachman), 58–59

Framework for the Application of Systems Thinking; see FAST

free-format questionnaire A questionnaire designed to

offer the respondent greater latitude in the answer. A question

is asked, and the respondent records the answer in the space

provided after the question., 221

Freund, John F., 240

Friedlander, Phillip, 143, 144, 145, 155

front-office information system An information system

that supports business functions that extend out to the organiza-

tion’s customers., 44–45

Fully described data model, 286

fully attributed data model A data model that includes

all entities, attributes, relationships, subsetting criteria, and pre-

cise cardinalities., 286, 295–297

function A set of related and ongoing activities of a business.,

324; see also business function

function keys A series of special keyboard keys used to

program special operations, 619

functional decomposition The act of breaking a system

into subcomponents., 246

functional decomposition diagram A diagram that

partitions the system into logical subsystems and/or functions.,

335, 339–340

functional requirement A description of activities and

services a system must provide., 185; see also requirements

discovery

identifying, 208

prototyping, 192

structuring, 191

use cases, 187–188

validation, 192

Functional specification; see requirements definition

document

G
Galitz, Wilbert O., 64, 579, 611. 615, 645

Gamma, Erich, 669

Gane, Chris, 116, 240, 472, 477, 515

Gantt, Henry L., 125

Gantt chart A bar chart used to depict project tasks against a

calendar., 125, 126–127

intertask dependencies, 134–135

recording progress, 140–141

gap analysis A comparison of business and technical re-

quirements for a commercial application package against the

capabilities and features of a specific commercial application

package for the purpose of defining the requirements that cannot

be met., 103

Gartner Group, 68

Gause, Donald C., 41, 205, 208n, 240

generalization A concept wherein the attributes that are

common to several types of an entity are grouped into their own

entity., 283, 295

generalization/specialization A technique wherein

the attributes and behaviors that are common to several types

of object classes are grouped (or abstracted) into their own

class, called a supertype. The attributes and methods of

the supertype object class are then inherited by those

object classes (subtypes). Sometimes abbreviated as

gen/spec., 373–376

identifying hierarchies, 400, 402, 404–405

Gildersleeve, Thomas R., 75n, 116, 226n, 240, 366, 441

Globalization, 17–18

Goldman, James, 64, 515

Gordon, Jerry, 143

Gore, Marvin, 441

graphic output An output that uses a pictorial chart to

convey information., 556

Graphical user interfaces (GUIs); see also User interface

design

controls, 590–592, 620

advanced, 596–598

buttons, 596

check boxes, 593–594

combination boxes, 595–596

drop-down lists, 595

list boxes, 594–595

radio buttons, 593

selecting, 600

spin boxes, 596

text boxes, 592–593

in Visual Basic, 634

design issues, 57

frames, 620

menus; see Menus

styles, 619

use of, 584

windows, 620

Gray holes, 325

Gregory, William, 313

Grillo, John, 40

Groupware technology, 26, 487

Guengerich, Steve, 515

GUI; see Graphical user interfaces

H
Hammer, M., 205, 719

Handheld computers, 24–25, 498, 585, 618

Harkey, Dan, 515

Harman, Paul, 411, 679

Harmon, Paul, 366

Hartson, H. Rex, 645

Hay, David C., 313

Helm, Richard, 669

Help agents, 632

Help authoring packages, 631

Help systems, 630–633

Help wizards, 632

Hierarchical codes, 293

Hierarchy chart; see decomposition diagram

Hix, Deborah, 645

730 Glossary/Index

Hoffer, J. A., 719

Hoffer, Jeffrey, 547

Horton, William K., 645

HP iPaq, 24

HTML (Hypertext Markup Language), 487, 494, 502, 631

Human engineering guidelines, 616–617

Human factors in user interface design, 614, 615–616

Hunter, Richard, 68n

Hybrid Windows/Web user interface, 627

Hyperlinks, 558, 572, 626–627

Hypertext, 626–627

I
i2 Technologies, 27

IBM, 463, 525

CAA Source Code Manager, 704

CICS, 487

DB2 Universal Database, 74, 487, 495, 524, 528

enterprise application integration, 29

Lotus Notes, 487, 499

MQ Messaging, 74

Rational, 447

VisualAge, 502, 590, 614

Websphere, 54, 74, 109, 164, 487, 502

Iconic menus, 624–625

Icons, 624–625

identifying relationship A relationship in which the

parent entity’s key is also part of the primary key of the child

entity., 279

IE; see information engineering

Imaging, 499

Implementation models; see physical design;

physical model

Implementation phase; see systems implementation

information Data that has been processed or reorganized

into a more meaningful form for someone. Information is formed

from combinations of data that hopefully have meaning to the

recipient., 21

information engineering (IE) A model-driven and

data-centered, but process-sensitive, technique for planning,

analyzing, and designing information systems. IE models are

pictures that illustrate and synchronize the system’s data and

processes., 163

design methods, 447–448

models, 84, 163, 271

Information gathering; see fact-finding

information system (IS) An arrangement of people, data,

processes, and information technology that interact to collect,

process, store, and provide as output the information needed to

support an organization., 6

back-office, 45

building blocks, 47

communications, 55–58

knowledge, 47, 50–51

networks and, 58–59

process, 51–52, 54–55

business drivers, 16–17

business process redesign, 22

collaboration and partnership, 20–21

continuous improvement and total quality

management, 21–22

electronic commerce and business, 18–19

globalization, 17–18

knowledge asset management, 21

security and privacy, 19–20

as capital investments, 75

classes, 6–7, 45–46

cross-functional, 52

federation of, 44–45

front-office, 44–45

technology drivers

collaborative technologies, 25–26

enterprise applications, 26

mobile and wireless technologies, 24–25

networks and Internet, 22–24

object technologies, 25

information systems analysis Those development

phases in an information systems development project that pri-

marily focus on the business problem and requirements, inde-

pendent of any technology that can or will be used to implement

a solution to that problem., 160; see also systems analysis

information systems architecture A unifying frame-

work into which various stakeholders with different perspectives

can organize and view the fundamental building blocks of infor-

mation systems., 46

stakeholder perspectives, 46–47

standards, 73–74

information technology (IT) A contemporary term that

describes the combination of computer technology (hardware

and software) with telecommunications technology (data, image,

and voice networks)., 6

Information technology architecture, 73–74, 483

information worker Any person whose job involves

creating, collecting, processing, distributing, and using

information., 7

inheritance In use cases, a relationship between actors

created to simplify the drawing when an abstract actor inherits

the role of multiple real actors., 250

inheritance The concept wherein methods and/or attributes

defined in an object class can be inherited or reused by another

object class., 373–376

Inmon, W. H., 64

Inprise Jbuilder, 590

Input design, 457–458; see also Graphical user interfaces

(GUIs); User interface design

architectures

batch processing, 496, 584

document interchange, 499

electronic data interchange, 499

e-mail, 499

imaging, 499

keyless data entry, 498

middleware, 499–500

online processing, 496–497, 584

pen input, 498

remote batch, 497–498, 584

work group technology, 499

automated tools, 598, 604–605

controls, 589–590

implementation methods

automatic data capture, 585–587

biometric, 587

Glossary/Index 731

electromagnetic transmission, 587

keyboard, 585

magnetic ink, 586

mouse, 585

optical mark recognition, 585–586

point-of-sale terminals, 585

smart cards, 587

sound and speech, 585

touch screen, 585

input taxonomy, 582

process, 599

GUI control selection, 600

logical requirements, 599–600

source document design, 603–605

user feedback, 601–603

prototyping, 582, 598, 601–603

types of input, 582–584

user issues, 587–589

Web-based inputs, 605–606

Installation, system, 87–88

Instant messaging, 26

Instruction sets, 627–629

Instruction-driven interfaces, 627–629

intangible benefit A benefit that is believed to be difficult

or impossible to quantify., 421–422

Integrated development environment (ADE); see application

development environment

Integration; see systems integration

intelligent key A business code whose structure communi-

cates data about an entity instance., 292–293

interface class An object class that provides the means by

which an actor can interface with the system. Examples include

a window, dialogue box, or screen. For nonhuman actors, an

application program interface (API) is the interface class.

Sometimes called a boundary class., 648–649, 656

Interface design, 495–496; see also Input design; Output design;

User interface design

interface specifications Technical designs that document

how system users are to interact with a system and how a system

interacts with other systems., 57

internal output An output for system owners and users

within an organization., 550, 553

Internal users, 9

Internet; see also electronic business; electronic commerce;

Web browsers

application architectures based on, 491–494

as driver for information systems, 22–24

e-mail, 25–26, 499, 556

importance, 492

instant messaging, 26

portals, 24, 492

software development environments, 502

Web services, 24

Internet Explorer, 19

interview A fact-finding technique whereby the systems

analyst collects information from individuals through face-to-

face interaction., 222

advantages and disadvantages, 223

body language and proxemics, 227–228

conducting, 226

following up, 226

guide, 224

listening in, 226–227

preparation, 224

questions, 223, 224

selecting interviewees, 224

structured, 223

unstructured, 223

intranet A server network that uses Internet technology

to integrate desktop, work group, and enterprise computing.,

24, 492, 502

Introduction, report, 432

Intuit; see Quicken

IS; see information system

Ishikawa, Kaoru, 211

Ishikawa diagram A graphical tool used to identify,

explore, and depict problems and the causes and effects of

those problems. It is often referred to as a cause-and-effect

diagram or a fishbone diagram (because it resembles the

skeleton of a fish)., 211–212

Isshiki, Koichiro R., 466, 472

IT; see information technology

iterative development approach An approach to

systems analysis and design that completes that entire informa-

tion system in successive iterations. Each iteration does some

analysis, some design, and some construction. Synonyms include

incremental and spiral, 89–92

J
Jacobsen, Ivar, 117, 245, 267, 342, 370, 371, 411, 679

JAD; see Joint application development

Java, 24, 25, 54, 58, 74, 97, 493, 502

JDBC (Javabean database connectivity), 500

Johnson, Ralph, 669

Johnson, Spencer, 139, 155

Joint application development (JAD), 451–453

joint project planning (JPP) A strategy in which all stake-

holders attend an intensive workshop aimed at reaching consen-

sus agreement on project decisions., 127, 129

joint requirements planning (JRP) The use of facili-

tated workshops to bring together all of the system owners,

users, and analysts and some systems designers and builders to

jointly perform systems analysis. JRP is generally considered a

part of a larger method called joint application development

(JAD), a more comprehensive application of the JRP techniques

to the entire systems development process., 166

joint requirements planning (JRP) A process

whereby highly structured group meetings are conducted

for the purpose of analyzing problems and defining

requirements., 229

agenda, 233

benefits, 234

conducting sessions, 233–234

data modeling and, 286

end product, 234

facilitator, 230, 233

locations, 231–233

participants, 230–231, 233

planning, 231–233

for process modeling, 337

732 Glossary/Index

room layout, 232

sponsor, 230

Jonsson, Patrik, 267, 411, 679

Joslin, Edward O., 466, 472

JPP; see joint project planning

JRP; see joint requirements planning

Junctions, 327, 334

K
Kana, 28

Kara, Daniel A., 515

Kawasaki, 211

Keane, Inc., 130, 140, 141

Kennedy, John F., 144

Kernzer, Harold, 155

key An attribute, or a group of attributes, that assumes a

unique value for each entity instance. It is sometimes called an

identifier., 273; see also foreign key

alternate, 274

candidate, 274

concatenated, 273–274, 521

intelligent, 292–293

primary, 274

secondary, 274, 521, 530

selecting, 292–293

of table, 521

Key integrity, 535

key-based data model A data model that includes entities

and relationships with precise cardinalities resolving non-

specific relationships into associative entities, and also including

primary and alternate keys., 286, 292–293

Keyboards, 585, 619

Keyless data entry, 498

King, William R., 64

knowledge Data and information that are further refined

based on the facts, truths, beliefs, judgments, experiences, and ex-

pertise of the recipient. Ideally information leads to wisdom., 21

Knowledge asset management, 21

Knowledge building blocks, 47, 50–51

knowledge worker Any worker whose responsibilities are

based on a specialized body of knowledge., 9

Kozar, Kenneth, 611

L
LAN; see local area network

Language-based syntax, 628

Lantz, Kenneth E., 473

Larman, Craig, 261, 267, 411, 679

Leflour, Ron, 143

legal feasibility Is a measure of how well a solution can

be implemented within existing legal and contractual obliga-

tions., 419

Letters of transmittal, 432

Leventhal, N. S., 240

Levine, Martin, 41

Linderman, James, 40

Linkletter, Art, 227

Linux, 618

List boxes, 594–595

Listening, 226–227

local area network (LAN) A set of client computers con-

nected over a relatively short distance to one or more servers.,

485–486

Location conversion, 691

Logical data modeling; see data modeling

Logical design phase, 84, 189

acceptance test cases, 192

functional requirements structuring, 191

functional requirements validation, 192

prototyping, 192

logical design The translation of business user require-

ments into a system model that depicts only the business

requirements and not any possible technical design or imple-

mentation of those requirements. Common synonyms include

conceptual design and essential design, the latter of which

refers to modeling the “essence” of a system, or the “essential

requirements” independent of any technology. The antonym of

logical design is physical design (defined later in this

chapter)., 84

logical model A pictorial representation that depicts what a

system is or does. Synonyms are essential model, conceptual

model, and business model., 94

logical model A nontechnical pictorial representation that

depicts what a system is or does. Synonyms are essential model,

conceptual model, and business model., 316

Log-ins, 629

London, Keith, 139, 155, 240

Lord, Kenniston W., Jr., 240

Lorensen, William, 411, 679

Lotus

1-2-3, 558

Notes, 487, 499

SameTime, 26

SmartSuite, 626

M
McClure, Carma, 366

McConnell, Steve, 117

McDonnell Douglas, 143

McFadden, Fred, 547

Machiavelli, Niccolo, 434

McLeod, Graham, 139, 155

McMenamin, Stephen M., 324, 366

McNealy, Scott, 22

Macromedia

Cold Fusion, 24, 58, 109

Dreamweaver, 58, 74

RoboHelp, 631

Magnetic ink character recognition (MICR), 586

Majer, 143

Malloy, John T., 436

management information system (MIS) An

information system that provides for management-oriented

reporting based on transaction processing and operations of

the organization., 6

Mandel, Theo, 645

Manugistics, 27

Many-to-many relationship; see nonspecific relationship

Mariga, Julie, 64, 515

Martin, Alexander, 645

Glossary/Index 733

Martin, E. W., 719

Martin, J., 411, 679

Martin, James, 271, 313, 366

master file A table containing records that are relatively

permanent., 522

Matthies, Leslie H., 354, 366

Mellor, Stephen J., 313

Menu bar, 620–621

menu driven A dialogue strategy that requires that the user

select an action from a menu of choices., 620

Menus, 620

cascading, 620–622

hypertext and hyperlinks, 626–627

iconic, 624–625

pop-up, 624

pull-down, 620–622

tear-off, 623

toolbars, 624

Mercator Software, 29

Merrill Lynch, 18

message Communication that occurs when one object invokes

another object’s method (behavior) to request information or

some action., 378–380

messaging or groupware server A server that hosts

services for groupware., 487

metadata Data about data., 286, 526, 713

method The software logic that is executed in response to a

message., 651

of design objects, 665

visibility, 650–651

Methodology; see systems development methodology

Methods and procedures section, 432

Methodware; see process manager application

Metzger, Philip W., 699

MICR; see Magnetic ink character recognition

Micro Focus

COBOL Workbench, 500, 501

Dialog Manager, 501

Microfiche, 558

Microfilm, 558

Microsoft, 525; see also Windows

Access, 164, 486, 524, 526, 528, 558–559, 582, 590, 598,

628–629, 634

collaboration with Oracle, 21

COM , 487

Excel, 558, 604

Exchange Server, 487, 499

FoxPro, 486, 528

help agents, 632

Internet Explorer, 97, 584, 618

MSN Messenger Service, 26

Netmeeting, 26

Office, 626, 631, 632

PowerPoint, 435

SQL Server, 74, 487, 495, 528

Transact SQL, 528

Visio, 162, 447

Visio Enterprise, 526

Visual Basic, 598, 714

Visual Basic .NET, 25, 54, 97, 164, 490

Visual SourceSafe, 704

Visual Studio .NET, 54, 58, 74, 109, 501, 590, 614, 634

Windows Mobile, 498, 618

Microsoft Project, 111, 125

budgets, 136

critical path analysis, 147

Gantt charts, 126–127, 134–135, 140–141

intertask dependencies, 134–135

milestones, 134

PERT charts, 127

recording progress, 140–141

resource assignment, 136

scheduling, 135

work breakdown structure, 131

middleware Software (usually purchased) used to translate

and route data between different applications., 30

middleware Utility software that allows application software

and systems software that utilize differing technologies to inter-

operate., 58, 111

middleware Utility software that enables communication

between different processors in a system., 499–500

milestone An event signifying the completion of a major

project deliverable., 132, 134

Miller, Granville, 251n, 267, 411, 679

Miller, Irwin, 240

MIL-STD-498, 213

MIS; see management information system

Mitchell, Ian, 241

Mnemonic syntax, 628

Mobile technology, 24–25

mobile user A user whose location is constantly changing

but who requires access to information systems from any loca-

tion., 10

model A representation of either reality or vision. Since “a

picture is worth a thousand words,” most models use pictures to

represent the reality or vision., 162

model A pictorial representation of reality., 316; see also data

modeling; process modeling; system model

model-driven analysis A problem-solving approach that

emphasizes the drawing of pictorial system models to document

and validate existing and/or proposed systems. Ultimately, the

system model becomes the blueprint for designing and con-

structing an improved system., 161–163

model-driven design A system design approach that

emphasizes drawing system models to document technical and

implementation aspects of a system., 447

model-driven development A system development strat-

egy that emphasizes the drawing of system models to help visual-

ize and analyze problems, define business requirements, and

design information systems., 84, 92, 94–96

modern structured design A system design technique

that decomposes the system’s processes into manageable

components., 447

Mosely, D. J., 699

Moses, John, 241

most likely duration (D) An estimated amount of time

required to complete a task, based on a weighted average of

optimistic, pessimistic, and expected durations., 133

mouse A device used to cause a pointer to move across a

display screen., 585, 619

Mozilla Firefox, 584, 618

Multimedia outputs, 556

734 Glossary/Index

multiplicity The minimum and maximum number of occur-

rences of one object class for a single occurrence of the related

object class., 378

N
Natural language syntax, 628

net present value An analysis technique that compares the

annual discounted costs and benefits of alternative solutions.,

425–426

Netscape

Commerce Server, 487

Navigator, 19, 97

network computing system A multitiered solution in

which the presentation and presentation logic layers are imple-

mented in client-side Web browsers using content downloaded

from a Web server., 491–494

Networks; see also Internet; local area network

architects, 10

architectures, 505–506

building and testing, 684, 687

clean layering approach, 59

as driver for information systems, 22–24

intranets, 24, 492, 502

role in information systems, 59

Newcomer, Eric, 515

Niku

open Workbench, 111

Project Manager, 111, 125

nonfunctional requirement A description of other fea-

tures, characteristics, and constraints that define a satisfactory

system., 185, 208

nonidentifying relationship A relationship in which

each participating entity has its own independent primary key.,

278–279

nonspecific relationship A relationship where many

instances of an entity are associated with many instances

of another entity. Also called many-to-many relationship.,

279–282

normalization A data analysis technique that organizes data

into groups to form nonredundant, stable, flexible, and adaptive

entities., 286, 299

automated tools, 306

first normal form (1NF), 299–302

as prerequisite for database design, 528–529

second normal form (2NF), 299, 302

third normal form (3NF), 299, 302–306

Normalized data model, 286

novice user An inexperienced or casual computer

user., 615

NSA Report Web, 558

N-tiered client server computing; see distributed data and

application

O
object The encapsulation of the data (called properties) that

describes a discrete person, object, place, event, or thing, with

all of the processes (called methods) that are allowed to use

or update the data and properties. The only way to access or

update the object’s data is to use the object’s predefined

processes., 163

object Something that is or is capable of being seen, touched,

or otherwise sensed and about which users store data and asso-

ciate behavior., 371–372

attributes, 372

behaviors, 372

discovery of, 396, 399–400

encapsulation, 372

messages, 378–380

object class A set of object instances that share the same at-

tributes and behaviors. Often referred to simply as a class., 373

attributes, 650–651, 656, 665

behaviors, 656–659

control classes, 649, 656

coupling and cohesion, 666–667

design, 656, 665

design class diagram, 665–666

entity classes, 648, 656

inheritance, 373–376

interactions, 659

interface classes, 648–649, 656

life cycle, 663

messages, 378–380

methods, 650–651, 665

persistent, 405, 649

polymorphism, 380

relationships; see object class relationship

reusability, 667–669

design patterns, 668–671

object frameworks, 671

subtypes and supertypes, 374, 400

system classes, 649

transient, 405

object class relationship A natural business association

that exists between one or more objects and classes., 376–378;

see also generalization/specialization

aggregation, 378, 405

dependencies, 650, 665

discovery of, 400

multiplicity, 378

navigability, 650, 665

Object database management systems, 542

object framework A set of related, interacting objects

that provide a well-defined set of services for accomplishing a

task., 671

object instance Each specific person, place, thing, or event,

as well as the values for the attributes of that object. Sometimes

referred to simply as an object., 372

Object Management Group (OMG), 371

object modeling A technique that attempts to merge the

data and process concerns into singular constructs called ob-

jects. Object models are diagrams that document a system in

terms of its objects and their interactions. Object modeling is the

basis for object-oriented analysis and design methodologies., 97

object modeling A technique for identifying objects within

the systems environment and identifying the relationships be-

tween those objects., 370; see also Unified Modeling Language

(UML); use-case modeling

concepts, 371

history, 370–371

notation, 372–373

process, 383

Glossary/Index 735

aggregation relationships, 405

analysis use-case model, 383–385, 390

associations and multiplicity, 400

class diagrams, 405

finding business objects, 396, 399–400

functional description of system, 383

generalization/specialization hierarchies, 400, 402,

404–405

system sequence diagrams, 394–396

use-case activities, 390–391, 394

reverse engineering, 714

object responsibility The obligation that an object has to

provide a service when requested and thus collaborate with

other objects to satisfy the request if required., 651, 658

object state A condition of the object at one point in its

lifetime., 663–664

object technology A software technology that defines a sys-

tem in terms of objects that consolidate data and behavior (into

objects). Objects become reusable and extensible components

for the software developers., 25

Object/class matrix, 400

objective A measure of success. It is something that you ex-

pect to achieve, if given sufficient resources., 182–183

object-oriented analysis (OOA) An approach used to

(1) study existing objects to see if they can be reused or adapted

for new uses and (2) define new or modified objects that will be

combined with existing objects into a useful business computing

application., 199, 370; see also object modeling

object-oriented analysis and design (OOAD) A col-

lection of tools and techniques for systems development that will

utilize object technologies to construct a system and its

software., 25, 97

object-oriented approach A model-driven technique that

integrates data and process concerns into constructs called ob-

jects. Object models are pictures that illustrate the system’s ob-

jects from various perspectives, such as the structure, behavior,

and interactions of the objects., 163

object-oriented design (OOD) An approach used to

specify the software solution in terms of collaborating objects,

their attributes, and their methods., 648

process

modeling class interactions and behaviors, 656–665

object model updating, 665–666

role playing, 664–665

state machine diagrams, 663–664

use-case model refinement, 651–652, 655

relationships, 650

reusability, 667–669

use of, 450–451

Object-oriented programming languages, 25

observation A fact-finding technique wherein the systems

analyst either participates in or watches a person perform activ-

ities to learn about the system., 218–220

OCR; see Optical character recognition

OD; see optimistic duration

ODBC; see Open database connectivity (ODBC) tools

Odell, J., 411, 679

office automation system An information system that

supports the wide range of business office activities that provide

for improved work flow between workers., 7

OMG; see Object Management Group

OMR; see Optical mark recognition

Oncken, William, Jr., 139, 155

Online help, 630–633

online processing A data processing method whereby data

about a single transaction is processed immediately., 490,

496–497, 584

OOA; see object-oriented analysis

OOAD; see object-oriented analysis and design

OOD; see object-oriented design

Open database connectivity (ODBC) tools, 58, 500

open-ended question A question that allows the inter-

viewee to respond in any way that seems appropriate., 223

Operating costs, 420

Operating systems, user interfaces, 618

operational database A database that supports day-to-

day operations and transactions for an information system. Also

called transactional database., 523

operational feasibility A measure of how well a solution

meets the identified system requirements to solve the problems

and take advantage of the opportunities envisioned for the

system., 417, 503

opportunity A chance to improve the organization even in

the absence of an identified problem., 77

Opportunity costs, 423

Optical character recognition (OCR), 498, 586

Optical mark recognition (OMR), 498, 585–586

optimistic duration (OD) The estimated minimum amount

of time needed to complete a task., 133

Oracle Corporation

collaboration with Microsoft, 21

Designer, 108, 526

Developer, 109

enterprise resource planning, 26

Oracle database, 21, 74, 487, 495, 524, 525, 528

Oracle Forms, 74

PL/SQL, 528

Oracle/PeopleSoft, 26, 28

Orfali, Robert, 515

Orr, Ken, 117

Outlook, 26

Output design, 457; see also User interface design

architectures

batch processing, 496

document interchange, 499

electronic data interchange, 499

e-mail, 499

imaging, 499

middleware, 499–500

online processing, 496–497

work group technology, 499

automated tools, 558–559

guidelines, 559–562

preprinted forms, 496, 554, 564

process

design, 565, 569

logical requirements, 562–563

physical output requirements, 563–564

preprinted forms design, 564

prototyping, 565, 569

user feedback, 569–570

prototyping, 550, 558–559, 565, 569

736 Glossary/Index

Outputs; see also Reports

distribution and audience, 550, 553

external, 553, 564

implementation methods, 553

e-mail, 556

hyperlinks, 558, 572

microfilm, 558

multimedia, 556

point-of-sale terminals, 556

printed, 554–556

screen, 556

Web-based, 558, 570–573

internal, 550, 553

taxonomy, 550

turnaround, 553, 564

Overgaard, Gunnar, 267, 411, 679

override A technique whereby a subclass (subtype) uses

an attribute or behavior of its own instead of an attribute or

behavior inherited from the class (supertype)., 380

P
Packages; see commercial application package

paging Displaying a complete screen of characters at

a time, 619

Palm, 24, 498, 585, 618

Palmer, John F., 324, 366

Paradice, David, 240

Parallel conversion, 691

parent entity A data entity that contributes one or more

attributes to another entity, called the child. In a one-to-many

relationship the parent is the entity on the “one” side., 277

Parrington, Norman, 241

partitioning The act of determining how to best distribute

or duplicate application components across a network.,

491, 495

Paulk, Mark C., 117

payback analysis A technique for determining if and when

an investment will pay for itself., 423–425

payback period The period of time that will elapse before

accrued benefits overtake accrued costs., 423

PD; see pessimistic duration

PDFD; see physical data flow diagram

Penker, Magnus, 411, 679

Pens, 498, 619

Perkins, W. C., 719

persistent class A class that describes an object that out-

lives the execution of the program that created it., 405, 649

Personal data assistants (PDAs); see Handheld computers

Personal databases, 523

Person/machine boundaries, 510

PERT chart A graphical network model used to depict the

interdependencies between a project’s tasks., 125, 127, 147

pessimistic duration (PD) The estimated maximum

amount of time needed to complete a task., 133

physical data flow diagram A process model used to

communicate the technical implementation characteristics of an

information system., 455, 477; see also data flow diagram

application architecture modeling, 503–504

constraints, 504–505

data flows, 481

data stores, 481

design units, 504, 507–508, 562

drawing, 504

external agents, 481

input design using, 599–600

network architecture, 505–506

output design using, 562

person/machine boundaries, 510

prerequisites, 504

processes, 477–480

use of, 477, 482

Physical data flows, 481

Physical data stores, 481

physical design The translation of business user require-

ments into a system model that depicts a technical implementa-

tion of the users’ business requirements. Common synonyms

include technical design or, in describing the output, imple-

mentation model. The antonym of physical design is logical

design (defined earlier in this chapter)., 86–87; see also

system design

physical model A technical pictorial representation that

depicts what a system is or does and how the system is imple-

mented. Synonyms are implementation model and technical

model., 94, 316

Physical processes, 477–480

PIECES framework, 77, 208, 417

Platform independence, 618

Plumber, Donald H., 130n

PMBOK; see Project Management Body of Knowledge

Point-of-sale (POS) terminals, 556, 585

policy A set of rules that govern a business process., 52–54

policy A set of rules that govern how a process is to be com-

pleted., 357

polymorphism Literally meaning “many forms,” the concept

that different objects can respond to the same message in differ-

ent ways., 380

Popkin; see System Architect 2001

Portals, 24, 492

POS; see Point-of-sale (POS) terminals

Preliminary study; see problem statement

Premerlani, William, 411, 679

Prescott, Mary, 547

present value The current value of a dollar at any time in

the future., 424

presentation The ongoing activity of communicating

findings, recommendations, and documentation for review

by interested users and managers. Presentations may be

either written or verbal., 89; see also formal presentation;

Reports, written

Presentation middleware, 500

Primary elements (of reports), 431

primary key A candidate key that will most commonly be

used to uniquely identify a single entity instance., 274

primary key A field or group of fields that uniquely identi-

fies a record., 521, 530, 535

Primavera, Project Planner and Project Manager, 125

primitive diagram A data flow diagram that depicts the

elementary processes, data stores, and data flows for a single

event., 335, 349

Printed outputs, 554–556

Printer spacing charts, 558

Privacy, 19–20

Glossary/Index 737

problem An undesirable situation that prevents the organiza-

tion from fully achieving its mission, vision, goals, and/or

objectives., 11, 77

Problem analysis phase, 175–176

business process analysis, 180–182

communication of findings, 183–184

data modeling, 285

FAST methodology, 82–83

feasibility analysis, 416

goal, 175

problem and opportunity analysis, 180

problem domain, 175–180

process modeling, 335

project plan updating, 183

system improvement objectives, 182–183

Problem discovery and analysis, 210–212

problem statement A statement and categorization of

problems, opportunities, and directives; may also include con-

straints and an initial vision for the solution. Synonyms include

preliminary study and feasibility assessment., 82

Problem-solving, 72

procedure Step-by-step set of instructions and logic for ac-

complishing a business process., 52

process Work performed by a system in response to incoming

data flows or conditions. A synonym is transform., 322

business, 21

in data flow diagrams, 317, 321

decision tables, 357–358

decomposition, 322–324

distribution, 360, 507

elementary, 325, 349, 358

implementation methods, 479–480

instructions (logic), 349, 353

logical, 324–325, 478–479

names, 479, 480

person/machine boundaries, 510

physical, 477–480

procedural language, 353–358

systems as, 321–322

Process building blocks, 51–52, 54–55

process management The ongoing activity that defines,

improves, and coordinates the use of an organization’s chosen

methodology (the “process”) and standards for all system devel-

opment projects., 32

process management An ongoing activity that documents,

teaches, oversees the use of, and improves an organization’s

chosen methodology (the “process”) for systems development.

Process management is concerned with phases, activities, deliv-

erables, and quality standards that should be consistently ap-

plied to all projects., 74, 89

process management The activity of documenting, man-

aging, and continually improving the process of systems devel-

opment., 121

process manager application An automated tool that

helps to document and manage a methodology and routes, its

deliverables, and quality management standards. An emerging

synonym is methodware., 111

process modeling A process-centered technique popular-

ized by the structured analysis and design methodology that

used models of business process requirements to derive effective

software designs for a system. Structured analysis introduced a

modeling tool called the data flow diagram to illustrate the flow

of data through a series of business processes. Structured design

converted data flow diagrams into a process model called struc-

ture charts to illustrate a top-down software structure that ful-

fills the business requirements., 96–97

process modeling A technique used to organize and

document a system’s processes., 317; see also data flow

diagram (DFD)

automated tools, 337

for business process redesign, 319, 334–335

event-driven, 335–336

process, 335, 338

balancing, 348–349

context data flow diagrams, 338–339

event decomposition diagrams, 342, 345

event diagrams, 345–347

event-response lists, 341–342

fact-finding, 337

functional decomposition diagrams, 335, 339–340

primitive diagrams, 335, 349

system diagrams, 347–348

use-case lists, 341–342

reverse engineering, 335

skills, 199

strategic, 334

synchronizing with data models, 359–360

in systems analysis phases, 335–337

in systems design, 337

process requirements A user’s expectation of the

processing requirements for a business process and its

information systems., 52–54

process-to-location-association matrix A table used

to document processes and the locations at which they must be

performed., 360

Procurement phase, 460

Production systems, 702

Program library, 702–704, 709, 714

Program maintenance, 704

objectives, 706

tasks, 706

benchmarking, 707–708

debugging, 708–709

problem validation, 706–707

testing, 709

Programmers, 10

Programmers Paradise, 501

Programming; see systems construction

Programs, 54–55

analysis, recovery, and restructuring, 713–714

benchmarking, 707–708

components, 671

modules, 447

reverse engineering, 714

testing, 688–689

version control, 709

project A sequence of activities that must be

completed on time, within budget, and according to

specification., 120–121

budgets, 136, 173

canceling, 75

failures, 68, 89, 121–123, 244

738 Glossary/Index

impetus for, 77

launching, 174

schedule, 135, 139, 147–149, 173

scope, 130, 141–142, 172

scope creep, 82, 122

sponsors, 174

success criteria, 121

Project charters, 167, 174

project management The activity of defining, planning,

directing, monitoring, and controlling a project to develop an

acceptable system within the allotted time and budget., 31

project management The process of scoping,

planning, staffing, organizing, directing, and controlling a

project to develop an information system at minimum cost,

within a specified time frame, and with acceptable quality.,

74, 89, 92

project management The process of scoping, planning,

staffing, organizing, directing, and controlling the development

of an acceptable system at a minimum cost within a specified

time frame., 121

activities

change management, 141–143

direction of team effort, 139

expectations management, 143–147

intertask dependency specification, 134–135

progress reporting, 140–141

resource assignment, 136–139

result assessment, 149

schedule adjustments, 147–149

scope negotiation, 130

task duration estimation, 132–134

task identification, 130–132

budgets, 136

functions, 124–125

life cycle, 127–129

schedules, 135, 139

tools and techniques, 125

Project Management Body of Knowledge (PMBOK), 123

Project Management Institute, 123

project manager An experienced professional who accepts

responsibility for planning, monitoring, and controlling projects

with respect to schedule, budget, deliverables, customer satisfac-

tion, technical standards, and system quality., 16

project manager The person responsible for supervising a

systems project from initiation to conclusion. Successful project

managers possess a wide range of technical, management, lead-

ership, and communication skills., 120

competencies, 123–124

leadership hints, 139

project manager application An automated tool that

helps to plan system development activities (preferably using the

approved methodology), estimate and assign resources (includ-

ing people and costs), schedule activities and resources, monitor

progress against schedule and budget, control and modify sched-

ule and resources, and report project progress., 111, 125–127,

134; see also Microsoft Project

Project teams, 14

development stages, 139

recruiting members, 138

resource assignment, 136–139

roles, 136

prototype A small-scale, representative, or working model of

the users’ requirements or a proposed design for an information

system. Any given prototype may omit certain functions or fea-

tures until such a time as the prototype has sufficiently evolved

into an acceptable implementation of requirements., 98

prototype A small-scale, incomplete, but working sample of

a desired system., 163

database, 539

reverse engineering, 165

prototyping A technique for quickly building a functioning

but incomplete model of the information system using rapid

application development tools., 55; see also discovery

prototyping

advantages and disadvantages, 449–450

automated tools, 558–559

input design, 582, 598, 601–603

output design, 550, 558–559, 565, 569

use in system design, 448–450

use in systems analysis, 163–165, 192, 228–229

user interface design, 614, 634, 636–639

proxemics The relationship between people and the space

around them., 228

Purdue University, 492–493

Q
QBE; see Query by Example

Quality management, 21–22

Query by Example (QBE), 628

Question-answer dialogues, 629

questionnaire A document that allows the analyst to col-

lect information and opinions from respondents., 220–222

Quicken, 589, 627

R
RAD; see rapid application development

Radio buttons, 593

Railroad Paradox, 218

randomization A sampling technique characterized by

having no predetermined pattern or plan for selecting sample

data., 217

rapid application development (RAD) A system

development strategy that emphasizes speed of development

through extensive user involvement in the rapid, iterative, and

incremental construction of a series of functioning prototypes

of a system that eventually evolves into the final system (or a

version)., 98

rapid application development (RAD) A systems

design approach that utilizes structured, prototyping, and JAD

techniques to quickly develop systems., 451

advantages and disadvantages, 100

analysis techniques, 164

FAST methodology, 98–100

future of, 199

logical modeling, 84

timeboxing, 100, 188

rapid architected analysis An approach that

attempts to derive system models (as described earlier

in this section) from existing systems or discovery

prototypes., 165

Rational ROSE, 108, 162

Rational Unified Process (RUP), 84

Glossary/Index 739

Rawles, Phillip, 64, 515

record A collection of fields arranged in a predetermined

format., 521–522, 539

recursive relationship A relationship that exists between

instances of the same entity., 276

referential integrity The assurance that a foreign-key value

in one table has a matching primary-key value in the related

table., 536

Regression testing, 709

Reingruber, Michael, 313

relational database A database that implements data as a

series of two-dimensional tables that are related via foreign

keys., 526; see also table

distributed, 494–495

schema, 526, 530–532

SQL commands, 527

relationship A natural business association between one or

more entities., 274–275

cardinality, 275

degree, 275

identifying, 279

multiple, 292

names, 275, 290

N-ary, 276

nonidentifying, 278–279

nonspecific (many-to-many), 279–282

recursive, 276

Relationships in use-case modeling, 248–250

associations, 248

depends on, 249–250

extends, 248

inheritance, 250

uses (includes), 249

Relationships of objects and classes; see object class relationship

remote batch processing A data processing method

whereby data is entered online, collected as a batch, and

processed at a later time., 497–498, 584

remote user A user who is not physically located on

the premises but who still requires access to information

systems., 10

Renaud, Paul, 515

Replication, 538–539

Reports; see also Outputs

design tools, 559

detailed, 550

exception, 553

formats, 565, 569

prototypes, 565, 569

summary, 553

writing tools, 712

Reports, written

administrative format, 432

factual format, 431–432

length, 431

letters of transmittal, 432

need for, 431

organization of, 431–432

writing, 432–433

repository A database and/or file directory where system

developers store all documentation, knowledge, and artifacts for

one or more information systems or projects. A repository is

usually automated for easy information storage, retrieval, and

sharing., 89

repository A location (or set of locations) where systems an-

alysts, systems designers, and system builders keep all of the

documentation associated with one or more systems or projects.,

160; see also CASE repository

data models stored in, 286

implementation alternatives, 160

role in systems support, 702, 712

Repository-based programming, 590–592, 600

request for proposal (RFP) A formal document that

communicates business, technical, and support requirements for

an application software package to vendors that may wish to

compete for the sale of that application package and services.,

101, 463–465

request for quotation (RFQ) A formal document that

communicates business, technical, and support requirements for

an application software package to a single vendor that has

been determined as being able to supply that application pack-

age and services., 101, 463–465

Requirements analysis phase, 185

communication of requirements

statement, 189

data modeling, 285–286

FAST methodology, 83–84

ongoing requirements management, 189

prioritization of requirements, 188

project plan updating, 188

requirements identification, 185–188

requirements definition document A formal document

that communicates the requirements of a proposed system to key

stakeholders and serves as a contract for the systems project.

Synonyms include requirements statement, requirements specifi-

cation, and functional specification., 213–214

requirements discovery The process, used by systems an-

alysts, of identifying or extracting system problems and solution

requirements from the user community., 165

requirements discovery The process and techniques used

by systems analysts to identify or extract system problems and

solution requirements from the user community., 208–210; see

also fact-finding; joint requirements planning (JRP); use-

case modeling

methods, 165–166

process

analysis of requirements, 212–213

documentation, 212, 213–214

fact-finding, 212

problem discovery and analysis, 210–212

requirements management, 214–215

requirements management The process of managing

change to the requirements., 214–215

resource leveling A strategy for correcting resource overal-

locations., 138–139

return-on-investment (ROI) analysis A technique

that compares the lifetime profitability of alternative

solutions., 425

reverse engineering A CASE tool capability that can auto-

matically generate initial system models from software or data-

base code., 108

reverse engineering The use of technology that reads the

program code for an existing database, application program,

740 Glossary/Index

and/or user interface and automatically generates the equivalent

system model., 165

CASE tool support, 108–109, 165

data models, 285, 287, 713

object models, 714

process models, 335

programs, 714

of prototypes, 165

of software packages, 714

reverse scheduling A project scheduling strategy that es-

tablishes a project deadline and then schedules backward from

that date., 135

RFP; see request for proposal

RFQ; see request for quotation

RIM Blackberry, 24

risk management The process of identifying,

evaluating, and controlling what might go wrong in a

project before it becomes a threat to the successful

completion of the project or implementation of the information

system. Risk management is driven by risk analysis or

assessment., 76

Robertson, James, 241, 324, 367

Robertson, Suzanne, 241, 324, 367

RoboHelp, 631

Roetzheim, William H., 155

role name A foreign key name that reflects the purpose it

serves in a table., 538

role playing The act of simulating object behavior and

collaboration by acting out an object’s behaviors and

responsibilities., 664–665

Rosenblatt, H., 579

Rumbaugh, James, 117, 370, 371, 411, 679

RUP; see Rational Unified Process

S
Salvendy, G., 241

sampling The process of collecting a representative sample

of documents, forms, and records., 216–217

SAP AG, 26, 27, 28

Sarson, Trish, 477, 515

SAS, 712

schedule feasibility A measure of how reasonable a project

timetable is., 418

Schema; see database schema

Schlaer, Sally, 313

Schmeiser, Lisa, 645

SCM; see supply chain management

scope The boundaries of a project—the areas of a business

that a project may (or may not) address., 130, 141–142, 169

scope creep A common phenomenon wherein the require-

ments and expectations of a project increase, often without

regard to the impact on budget and schedule., 82

scope creep The unexpected and gradual growth of require-

ments during an information systems project., 122

Scope definition phase

baseline problem and opportunity identification, 169–172

baseline project worthiness, 173

baseline schedule and budget, 173

baseline scope negotiation, 172

FAST methodology, 79–82, 167

feasibility analysis, 416

project manager role, 130

project plan communication, 173–174

Scott, Kendall, 411

Screen outputs, 556; see also Graphical user interfaces (GUIs);

Output design

designs, 565, 569

prototypes, 565, 569

Screen scrapers, 488

scrolling Displaying information up or down a screen, one

line at a time., 619

SCT, 27

SDE; see software development environment

second normal form (2NF) An entity whose non-primary-

key attributes are dependent on the full primary key., 299, 302

Secondary elements (of reports), 431, 432

secondary key A field that identifies a single record or a

subset of related records., 521, 530; see also alternate key

Security

business issues, 19–20

of e-commerce, 630

log-ins, 629

privileges, 629–630

Self-checking digits, 590

sequence diagram A UML diagram that models the logic

of a use case by depicting the interaction of messages between

objects in time sequence., 659–663; see also system sequence

diagram

Serena, ChangeMan Professional, 704

Serial codes, 292

Servers; see also client server system

application, 487

database, 487, 490

messaging or groupware, 487

transaction, 487

Web, 487, 491

Sethi, Vikram, 64

Shelly, G., 579

Siebel, 28

Significant position codes, 293

Silver, Denise, 205, 241, 473

slack time The amount of delay that can be tolerated between

the starting time and the completion time of a task without caus-

ing a delay in the completion date of a project., 138, 139, 147

Slider control, 637

Smalltalk, 25, 97, 667

Smart cards, 587

Smith, Derek, 139, 155

Smith, Patrick, 515

Smith, Randi Sigmund, 441

Software configuration tools, 704, 709

software development environment (SDE) A

language and tool kit for developing applications., 500–502

Software Engineering Institute, Carnegie Mellon University, 69

software metrics Mathematically proven measurements of

software quality and developer productivity., 713–714

Software packages; see Automated tools; commercial applica-

tion package

software specifications The technical design of business

processes to be automated or supported by computer programs

to be written by system builders., 54

Sound inputs, 585

Glossary/Index 741

source document A form used to record data about a

transaction., 584

designing, 587–589, 603–605

prototyping, 604–605

Specialization; see generalization/specialization

Speech inputs, 585

Spin boxes, 596

Spreadsheets, 558, 604

SQL (Structured Query Language)

commands, 527

database generation, 529, 539, 542

use by end users, 628

SSA, 26

Staged conversion, 691

stakeholder Any person who has an interest in an existing

or proposed information system. Stakeholders may include both

technical and nontechnical workers. They may also include both

internal and external workers., 7, 46–47

Stallings, Warren D., Jr., 240

Standish Group, 244

State events, 341

state machine diagram A UML diagram that depicts the

combination of states that an object can assume during its life-

time, the events that trigger transitions between states, and the

rules governing the object’s transition. Also called a statechart

diagram or state transition diagram., 663–664

state transition diagram (STD) A tool used to depict the

sequence and variation of screens that can occur during a user

session., 635–636

state transition event An occurrence that triggers a

change in an object’s state through the updating of one or more

of its attributes’ values., 663

statement of work A contract with management and the

user community to develop or enhance an information system;

defines vision, scope, constraints, high-level user requirements,

schedule, and budget. Synonyms include project charter, project

plan, and service-level agreement., 82

statement of work A narrative description of the work to

be performed as part of a project. Common synonyms include

scope statement, project definition, project overview, and docu-

ment of understanding., 130

STD; see state transition diagram

steering body A committee of executive business and system

managers that studies and prioritizes competing project propos-

als to determine which projects will return the most value to the

organization and thus should be approved for continued systems

development. Also called a steering committee., 173–174

steering committee An administrative body of system own-

ers and information technology executives that prioritizes and

approves candidate system development projects., 77

Steiner, James B., 240

Stewart, Charles J., 241

stored procedures A program embedded in a table that can

be called from an application program., 528

Strategic data modeling, 283–285

strategic enterprise plan A formal strategic plan

(3 to 5 years) for an entire business that defines its mission,

vision, goals, strategies, benchmarks, and measures of progress

and achievement. Usually, the strategic enterprise plan is

complemented by strategic business unit plans that define

how each business unit will contribute to the enterprise plan.

The information systems plan (above) is one of those unit-level

plans., 75

strategic information systems plan A formal strategic

plan (3 to 5 years) for building and improving an information

technology infrastructure and the information system applica-

tions that use that infrastructure., 75, 77

Strategic planning, 77, 334

Strategy Pattern, 669–670

stratification A systematic sampling technique that attempts

to reduce the variance of estimates by spreading out the

sampling—for example, choosing documents or records by

formula—and by avoiding very high or very low estimates., 217

Structure charts, 97, 447, 477, 714

structured analysis A model-driven, process-centered tech-

nique used to either analyze an existing system or define busi-

ness requirements for a new system, or both. The models are

pictures that illustrate the system’s component pieces: processes

and their associated inputs, outputs, and files., 162–163; see

also data modeling; process modeling

Structured analysis and design, 84, 96–97, 335, 477

Structured English A language syntax for specifying the

logic of a process., 353–358

structured interview An interview in which the interviewer

has a specific set of questions to ask of the interviewee., 223

Structured methods, 25, 84

Structured programming, 355, 447

Structured Query Language; see SQL

Strunk, William, Jr., 433

Stuart, Ann, 441

stub test A test performed on a subset of a program., 688–689

Stubbe, John, 441

subsetting criteria An attribute(s) whose finite values divide

entity instances into subsets. Sometimes called inversion entry., 274

subtype An entity whose instances may inherit common

attributes from its entity supertype., 283, 295, 532

subtype An object class that inherits attributes and behaviors

from a supertype class and then may contain other attributes

and behaviors that are unique to it. Also referred to as child

class and, if it exists at the lowest level of the inheritance

hierarchy, as concrete class., 374, 400

summary report An internal output that categorizes infor-

mation for managers., 553

Sun Computer, 22

supertype An entity whose instances store attributes that are

common to one or more entity subtypes., 283, 295, 532

supertype An entity that contains attributes and behaviors

that are common to one or more class subtypes. Also referred to

as abstract or parent class., 374, 400

supply chain management (SCM) A software applica-

tion that optimizes business processes for raw material procure-

ment through finished product distribution by directly

integrating the logistical information systems of organizations

with those of their suppliers and distributors., 26, 27–28

Sybase Corporation, 525

Powerbuilder, 58, 74, 109, 164, 490, 501, 590

Sybase database, 495, 524, 528

Symantec Visual Café, 590

Symbol Technologies, 585

system A group of interrelated components that function

together to achieve a desired result., 6

as process, 321–322

742 Glossary/Index

system analysis The study of a business problem domain

to recommend improvements and specify the business require-

ments and priorities for the solution., 32; see also systems

analysis

system analysis use case A use case that documents the

interaction between the system user and the system. It is highly

detailed in describing what is required but is free of most imple-

mentation details and constraints., 385, 652

System Architect 2001 (Popkin), 108, 162

data modeling, 288, 290, 538

database design, 526, 529, 532, 535, 539, 542

elementary process descriptions, 358

process modeling, 337, 349

screen design, 559, 598, 634

state transition diagrams, 636

system design models, 447

system builder A technical specialist who constructs infor-

mation systems and components based on the design specifica-

tions generated by the system designers., 10–11

communications building blocks and, 58

knowledge building blocks and, 51

perspective on information system, 47

process building blocks and, 54–55

system class An object class that handles operating system-

specific functionality., 649

system design The specification or construction of a techni-

cal, computer-based solution for the business requirements iden-

tified in a system analysis. (Note: Increasingly, the design takes

the form of a working prototype.), 33

system design The specification of a detailed computer-

based solution., 446

approaches, 446

FAST methodology, 86–87, 453

goal, 453

model-driven approaches, 447

automated tools, 447

information engineering, 163, 447–448

modern structured design, 447

object-oriented design, 450–451, 648

process modeling, 337

prototyping, 448–450

rapid application development strategy, 451–453

tasks for commercial software integration,

460–462

contract negotiations, 466

decision analysis phase, 460, 462

evaluate and rank proposals, 465–466

procurement phase, 460, 462–465

proposal solicitation, 463

technical criteria and options, 462–463

vendor claims and performance validation, 465

vendor debriefings, 466

tasks for in-house development

application architecture, 453, 455–457

database design, 457

design specifications packaging, 459

project plan updating, 460

user interface design, 457–458

system designer A technical specialist who translates sys-

tem users’ business requirements and constraints into technical

solutions. She or he designs the computer databases, inputs,

outputs, screens, networks, and software that will meet the

system users’ requirements., 10

communications building blocks and, 57–58

knowledge building blocks and, 51

perspective on information system, 47

process building blocks and, 54

specialties, 10

system development process A set of activities, meth-

ods, best practices, deliverables, and automated tools that stake-

holders use to develop and maintain information systems and

software., 30

alternative routes, 92–94

Capability Maturity Model, 69–70, 127

cross life-cycle activities, 88–89

iterative approach, 89–92

problem-solving steps, 30

sequential approach, 89

stages, 30–31

standardized, 68, 70

waterfall approach, 89

system diagram A data flow diagram that merges event

diagrams for the entire system or part of the system., 335,

347–348

System enhancement, 34, 705

reasons for, 710–711

tasks

enhancement request analysis, 712

quick fixes, 712

recovery of existing system, 713–714

system implementation The construction, installation,

testing, and delivery of a system into production (meaning day-

to-day operation)., 33; see also systems implementation

system initiation The initial planning for a project to define

initial business scope, goals, schedule, and budget., 32

system life cycle The factoring of the lifetime of an informa-

tion system into two stages, (1) systems development and (2) sys-

tems operation and maintenance—first you build it; then you use

and maintain it. Eventually, you cycle back to redevelopment of

a new system., 70–71

system model A picture of a system that represents reality

or a desired reality. System models facilitate improved communi-

cation between system users, system analysts, system designers,

and system builders., 84

System obsolescence, 714

system owner An information system’s sponsor and

executive advocate, usually responsible for funding the project

of developing, operating, and maintaining the information

system., 7, 8

communications building blocks and, 55

knowledge building blocks and, 47, 50

perspective on information system, 46–47

process building blocks and, 51–52

system proposal A report or presentation of a recom-

mended solution., 197–199, 431; see also Reports, written

System recovery, 88, 705, 709–710

system requirement Something that the information sys-

tem must do or a property that it must have. Also called a busi-

ness requirement., 208; see also Requirements analysis phase;

requirements discovery

costs of errors, 208–209

criteria, 210

Glossary/Index 743

desirable, 188

functional; see functional requirement

mandatory, 188

nonfunctional, 185, 208

PIECES classification, 208

system sequence diagram A diagram that depicts the

interaction between an actor and the system for a use case

scenario., 394–396; see also sequence diagram

system support The ongoing technical support for users

of a system, as well as the maintenance required to deal

with any errors, omissions, or new requirements that may

arise., 88, 702

activities, 88

entropy of system, 76

FAST methodology, 88, 104–107

program maintenance; see Program maintenance

projects, 34–35

system enhancement; see System enhancement

system recovery, 88, 705, 709–710

technical support, 705, 710

System use case; see system analysis use case

system user A “customer” who will use or is affected by an

information system on a regular basis—capturing, validating,

entering, responding to, storing, and exchanging data and infor-

mation., 7–8, 9

communications building blocks and, 55–57

documentation for, 693–694

external, 9–10

feedback on user interface design, 569–570, 601–603, 639

internal, 9

knowledge building blocks and, 50–51

perspective on information system, 46–47

process building blocks and, 52–54

training, 693–694

types, 614–615

systems acceptance test A test performed on the final

system wherein users conduct verification, validation, and audit

tests., 192, 691–692

systems analysis A problem-solving technique that decom-

poses a system into its component pieces for the purpose of

studying how well those component parts work and interact to

accomplish their purpose., 160

approaches, 161

accelerated, 163–165

model-driven, 161–163

object-oriented, 163

traditional, 162–163

decision analysis phase, 192–194

candidate solution analysis, 195–197

candidate solution comparison, 197, 426–429

candidate solution identification,

194–195, 427

feasibility analysis, 195–197, 416–417, 426

project plan updating, 197

system proposal, 197–199

future of, 199

logical design phase, 189

acceptance test cases, 192

functional requirements structuring, 191

functional requirements validation, 192

prototyping, 192

problem analysis phase, 175–176

business process analysis, 180–182

communication of findings, 183–184

data modeling, 285

feasibility analysis, 416

goal, 175

problem and opportunity analysis, 180

problem domain, 175–180

process modeling, 335–337

project plan updating, 183

system improvement objectives, 182–183

requirements analysis phase, 185

communication of requirements statement, 189

data modeling, 285–286

ongoing requirements management, 189

prioritization of requirements, 188

project plan updating, 188

requirements identification, 185–188

requirements discovery; see requirements discovery

scope definition; see Scope definition phase

systems analyst A specialist who studies the problems and

needs of an organization to determine how people, data,

processes, and information technology can best accomplish

improvements for the business., 11

career prospects, 13, 199

ethics, 15

place in organization, 12–13

relations with other stakeholders, 7, 11

roles, 11–12

skills needed, 14–15

systems construction The development, installation, and

testing of system components., 684

database building and testing, 687

FAST methodology, 87

network building and testing, 684, 687

programming and testing, 688

software package installation and testing, 687–688

systems design A complementary problem-solving technique

(to systems analysis) that reassembles a system’s component

pieces back into a complete system—hopefully, an improved

system. This may involve adding, deleting, and changing pieces

relative to the original system., 160; see also system design

systems development methodology A formalized

approach to the systems development process; a standardized

process that includes the activities, methods, best practices,

deliverables, and automated tools to be used for information

systems development., 70; see also FAST; rapid application

development (RAD)

agile, 25, 84, 92

automated tools, 107–108

classification of, 92

comparison to system life cycle, 70–71

examples, 72

model-driven, 84, 92, 94–96

phases and activities, 72–73

structured methods, 25, 84

underlying principles, 72–76

use of, 70

systems development process A set of activities,

methods, best practices, deliverables, and automated tools that

stakeholders (from Chapter 1) use to develop and continuously

744 Glossary/Index

improve information systems and software (from Chapters 1

and 2)., 68; see also system development process

systems implementation The installation and delivery of

the entire system into production., 684

conversion, 694

conversion plan, 689, 691–692

database installation, 692–693

system testing, 689

user training, 693–694

systems integration The process of building a unified

information system out of diverse components of purchased

software, custom-built software, hardware, and

networking., 26

Systems operation, 702

Systems support; see system support

systems test A test performed on an entire system., 689, 709

T
table The relational database equivalent of a file., 522

indexes, 530, 535

key, 521, 530, 535

names, 530

records, 521–522, 539

relational, 526

sizes, 539

stored procedures, 528

table look-up files A table containing relatively static

data that can be shared., 522

Tabs, 637

tabular output An output that presents information as

columns of text and numbers., 554, 565

Tactical application architecture, 503

tangible benefit A benefit that can be easily quantified.,

420–421

Task diagrams, 167

Tasks; see also Gantt chart

dependencies, 134–135

durations, 132–134

identification, 130–132

PERT charts, 125, 127, 147

primitive, 132

summary, 132

Taylor, David, 64, 411, 679

Teams; see Project teams

Technical design; see physical design

technical feasibility A measure of the practicality of a

technical solution and the availability of technical resources

and expertise., 418, 503

Technical models; see physical model

Technical support, 705, 710

temporal event A system event that is triggered by time.,

248, 341

Teorey, Toby, 313, 547

Terhune, Alyse D., 64

Testing

acceptance, 192, 691–692

audit, 692

commercial packages, 687–688

databases, 687

networks, 687

regression, 709

stub, 688–689

systems, 689, 709

unit or program, 689, 709

updated programs, 709

user interface, 639

validation, 692

verification, 691–692

Text boxes, 592–593

Theby, Stephen E., 515

Thill, John V., 441

thin client A personal computer that does not have to be very

powerful., 487

third normal form (3NF) An entity whose non-primary-

key attributes are not dependent on any other non-primary-key

attributes., 299, 302–306

ThoughtWorks, 669n

Three-tiered client server computing; see distributed data and

application

TIBCO Software, 29

Time value of money, 422–423

timeboxing The imposition of a nonextendable period

of time, usually 60 to 90 days, by which the first (or next) version

of a system must be delivered into operation., 100

timeboxing A technique that delivers information systems

functionality and requirements through versioning. The

development team selects the smallest subset of the system

that, if fully implemented, will return immediate value to the

system owners and users. That subset is developed, ideally

with a time frame of six to nine months or less. Subsequently,

value-added versions of the system are developed in similar

time frames., 188

Tool tips, 631–632

Toolbars, 624

total quality management (TQM) A comprehensive

approach to facilitating quality improvements and management

within a business., 21–22

Touch screens, 585

TPS; see transaction processing system

TQM; see total quality management

Training, user, 693–694

transaction file A table containing records that describe

business events., 522

transaction processing system (TPS) An information

system that captures and processes data about business transac-

tions., 6, 490

transaction server A server that hosts services which en-

sure that all database updates for a transaction succeed or fail

as a whole., 487

Transactions; see event

Transform; see process

transient object class A class that describes an object that

is created temporarily by the program and lives only during that

program’s execution., 405

transitive dependency When the value of a nonkey at-

tribute is dependent on the value of another nonkey attribute

other than by derivation., 304–306

trigger A program embedded within a table and is automati-

cally invoked by updates to another table., 528

turnaround output An external output that may reenter the

system as an input., 553, 564

Two-tiered client server computing; see distributed data

Glossary/Index 745

U
Unified Modeling Language (UML) A set of modeling

conventions that is used to specify or describe a software system

in terms of objects., 371

associations, 378

diagrams, 381

activity diagrams, 390–391, 394

class diagrams, 400, 405

communication diagrams, 672

component diagrams, 672–673

deployment diagrams, 673–674

object diagrams, 163

sequence diagrams, 659–663

state machine diagrams, 663–664

system sequence diagrams, 394–396

syntax, 373, 376

unit or program test A test performed on an entire pro-

gram., 689, 709

U.S. Department of Labor, 7, 13

U.S. government, MIL-STD-498, 213

U.S. Navy, 125

UNIX, 618

unstructured interview An interview that is conducted

with only a general goal or subject in mind and with few, if any,

specific questions. The interviewer counts on the interviewee to

provide a framework and direct the conversation., 223

UPS, 498, 584

Uris, Auren, 441

use case A business scenario or event for which the system

must provide a defined response. Use cases evolved out of

object-oriented analysis; however, their use has become

common in many other methodologies for systems analysis

and design., 188

use case A behaviorally related sequence of steps

(a scenario), both automated and manual, for the purpose

of completing a single business task., 246

use case An analysis tool for finding and identifying business

events and responses., 342

abstract, 249, 384, 385–386, 390

actors, 247, 251

business requirements, 252–254

course of events, 258

dependencies, 261–262

design, 652, 655

discovery of, 252–253, 342

entities and, 342

extension, 248, 384, 385–386, 390

glossary, 254

names, 253–254, 257

ranking, 260–261

system analysis, 385, 652

types, 257

use during life cycle, 246–247

use-case dependency diagram A graphical depiction

of the dependencies among use cases., 261–262

use-case diagram A diagram that depicts the interactions

between the system and external systems and users. In other

words, it graphically describes who will use the system and in

what ways the user expects to interact with the system., 246,

254–256, 384–385

Use-case list, 335, 341–342

use-case modeling The process of modeling a system’s

functions in terms of business events, who initiated the events,

and how the system responds to those events., 245

benefits, 245

design classes, 656

design using, 651–652, 655

development of, 245

objective, 251

process, 251

actor identification, 251

analysis use-case model, 383–385, 390

business requirements use cases, 252–254

diagram construction, 254–256

use-case narratives, 256–258

project management and, 260–262

relationships, 248–250

use-case narrative A textual description of the business

event and how the user will interact with the system to accom-

plish the task., 246

course of events, 258

developing, 256–258

for system analysis use cases, 385

use-case ranking and priority matrix A tool

used to evaluate use cases and determine their priority.,

260–261

User data, 526

user dialogue A specification of how the user moves

from window to window or page to page, interacting with

the application programs to perform useful work., 57; see

also Menus

User interface design, 57, 457–458; see also Graphical user

interfaces (GUIs); Input design; Output design

automated tools, 488, 614, 634

concepts, 614

consumer-style, 626

controls, 620, 634

dialogue tone and terminology, 617

guidelines, 615–617

help systems, 630–633

human factors, 614, 615–616

hybrid Windows/Web, 627

instruction-driven interfaces,

627–629

internal controls, 629–630

log-ins, 629

menus; see Menus

object-oriented, 97

problems, 615

process, 633–634, 635

dialogue charting, 635–636

prototyping, 636–639

testing, 639

user feedback, 639

prototyping, 614, 634, 636–639

question-answer dialogues, 629

technology

display monitors, 618–619

keyboards, 619

operating systems, 618

pointing devices, 619

user dialogue, 57

746 Glossary/Index

user-centered development A process of systems devel-

opment based on understanding the needs of the stakeholders

and the reasons why the system should be developed., 245

Users; see system user

V
Validation testing, 692

variable cost A cost that occurs in proportion to some usage

factor., 420

Variable-length record structures, 521–522

Vendors; see commercial application package

Verification testing, 691–692

version control The tracking of change made to a

program., 709

Virtual businesses, 492

visibility The level of access an external object has to an

attribute or method., 650–651, 665

Visible Systems, Visible Analyst, 108, 162, 447

Visio Enterprise, 526

Visio Professional, 162, 447

Visual Basic, 598, 634, 714

Visual Basic .NET, 25, 54, 97, 164, 490

Visual Studio .NET, 54, 58, 74, 109, 501, 590, 614, 634

Vitalari, Nicholas P., 77n, 367

Vlissides, John, 669

Voice recognition, 585

W
Wal-Mart, 21

Walton, Donald, 227n, 241, 441

waterfall development approach An approach to

systems analysis and design that completes each phase one

after another and only once., 89, 92

Watson, Mark, 366, 411, 679

WBS; see work breakdown structure

Web browsers; see also Internet

platform independence, 618

toolbars, 624

as user interface, 491–494, 584, 590, 625–626

Web server A server that hosts internet or intranet

Web sites., 487, 491

Web services, 24

Web-based inputs, 605–606

Web-based outputs, 558, 570–573

Web-enabled applications, 19, 524; see also electronic

business

Weber, Charles V., 117

Weinberg, Gerald M., 41, 205, 208n, 218, 240, 241

Weinschenk, Susan, 645

Wetherbe, James, 77, 117, 205, 367, 441

White, E. B., 433

Whole-part relationships; see aggregation

Windows

advanced input controls, 596–598

market dominance, 618

object-oriented user interface, 97

user dialogue, 620

user interface, 584, 590

Windows Mobile, 498, 618

Wireless technology, 24–25

Wood, Jane, 205, 241, 473

work breakdown structure (WBS) A graphical tool

used to depict the hierarchical decomposition of a project into

phases, activities, and tasks., 130–132

work flow The flow of transactions through business

processes to ensure appropriate checks and approvals are

implemented., 54

Work group databases, 523

Work group technology, 499

work sampling A fact-finding technique that involves a

large number of observations taken at random intervals., 220

Written reports; see Reports, written

Wysocki, Robert K., 120n, 124, 127n, 155

X
xHTML (Extensible Hypertext Markup Language), 23–24

XML (Extensible Markup Language), 23–24, 58, 487, 494, 502

Y
Yeo, Sarah C., 645

Yourdon, Edward, 205, 324, 335, 367, 411, 472, 473, 679

Z
Zachman, John A., 58–59, 64–65, 205, 473

zoned output An output that presents text and numbers in

designated areas of a form or screen., 554–556

Glossary/Index 747

	Tittle
	Contents
	PAET ONE The Context of Systems Development Projects
	1 THE CONTEXT OF SYSTEMS ANALYSIS AND DESIGN METHODS
	Introduction
	A Framework for Systems Analysis and Design
	The Players—System Stakeholders
	Systems Owners
	Systems Users
	Systems Designers
	Systems Builders
	Systems Analysts
	External Service Providers
	The Project Manager

	Business Drivers for Today’s Information Systems
	Globalization of the Economy
	Electronic Commerce and Business
	Security and Privacy
	Collaboration and Partnership
	Knowledge Asset Management
	Continuous Improvement and Total Quality Management
	Business Process Redesign

	Technology Drivers for Today’s Information Systems
	Networks and the Internet
	Mobile and Wireless Technologies
	Object Technologies
	Collaborative Technologies
	Enterprise Applications

	A Simple System Development Process
	System Initiation
	System Analysis
	System Design
	System Implementation
	System Support and Continuous Improvement

	2 INFORMATION SYSTEM BUILDING BLOCKS
	Introduction
	The Product—Information Systems
	A Framework for Information Systems Architecture
	KNOWLEDGE Building Blocks
	PROCESS Building Blocks
	COMMUNICATIONS Building Blocks

	Network Technologies and the IS Building Blocks

	3 INFORMATION SYSTEMS DEVELOPMENT
	Introduction
	The Process of Systems Development
	The Capability Maturity Model
	Life Cycle versus Methodology
	Underlying Principles for Systems Development

	A Systems Development Process
	Where Do Systems Development Projects Come From?
	The FAST Project Phases
	Cross Life-Cycle Activities
	Sequential versus Iterative Development

	Alternative Routes and Strategies
	The Model-Driven Development Strategy
	The Rapid Application Development Strategy
	The Commercial Application Package Implementation Strategy
	Hybrid Strategies
	System Maintenance

	Automated Tools and Technology
	Computer-Assisted Systems Engineering
	Application Development Environments
	Process and Project Managers

	4 PROJECT MANAGEMENT
	Introduction
	What Is Project Management?
	The Causes of Failed Projects
	The Project Management Body of Knowledge

	The Project Management Life Cycle
	Activity 1—Negotiate Scope
	Activity 2—Identify Tasks
	Activity 3—Estimate Task Durations
	Activity 4—Specify Intertask Dependencies
	Activity 5—Assign Resources
	Activity 6—Direct the Team Effort
	Activity 7—Monitor and Control Progress
	Activity 8—Assess Project Results and Experiences

	PART TWO Systems Analysis Methods
	5 SYSTEMS ANALYSIS
	Introduction
	What Is Systems Analysis?
	Systems Analysis Approaches
	Model-Driven Analysis Approaches
	Accelerated Systems Analysis Approaches
	Requirements Discovery Methods
	Business Process Redesign Methods
	FAST Systems Analysis Strategies

	The Scope Definition Phase
	Task 1.1—Identify Baseline Problems and Opportunities
	Task 1.2—Negotiate Baseline Scope
	Task 1.3—Assess Baseline Project Worthiness
	Task 1.4—Develop Baseline Schedule and Budget
	Task 1.5—Communicate the Project Plan

	The Problem Analysis Phase
	Task 2.1—Understand the Problem Domain
	Task 2.2—Analyze Problems and Opportunities
	Task 2.3—Analyze Business Processes
	Task 2.4—Establish System Improvement Objectives
	Task 2.5—Update or Refine the Project Plan
	Task 2.6—Communicate Findings and Recommendations

	The Requirements Analysis Phase
	Task 3.1—Identify and Express System Requirements
	Task 3.2—Prioritize System Requirements
	Task 3.3—Update or Refine the Project Plan
	Task 3.4—Communicate the Requirements Statement
	Ongoing Requirements Management

	The Logical Design Phase
	Task 4.1a—Structure Functional Requirements
	Task 4.1b—Prototype Functional Requirements (alternative)
	Task 4.2—Validate Functional Requirements
	Task 4.3—Define Acceptance Test Cases

	The Decision Analysis Phase
	Task 5.1—Identify Candidate Solutions
	Task 5.2—Analyze Candidate Solutions
	Task 5.3—Compare Candidate Solutions
	Task 5.4—Update the Project Plan
	Task 5.5—Recommend a System Solution

	6 FACT-FINDING TECHNIQUES FOR REQUIREMENTS DISCOVERY
	Introduction
	An Introduction to Requirements Discovery
	The Process of Requirements Discovery
	Problem Discovery and Analysis
	Requirements Discovery
	Documenting and Analyzing Requirements
	Requirements Management

	Fact-Finding Techniques
	Sampling of Existing Documentation, Forms, and Files
	Research and Site Visits
	Observation of the Work Environment
	Questionnaires
	Interviews
	How to Conduct an Interview
	Discovery Prototyping
	Joint Requirements Planning

	A Fact-Finding Strategy

	7 MODELING SYSTEM REQUIREMENTS WITH USE CASES
	Introduction
	An Introduction to Use-Case Modeling
	System Concepts for Use-Case Modeling
	Use Cases
	Actors
	Relationships

	The Process of Requirements Use-Case Modeling
	Step 1: Identify Business Actors
	Step 2: Identify Business Requirements Use Cases
	Step 3: Construct Use-Case Model Diagram
	Step 4: Document Business Requirements Use-Case Narratives

	Use Cases and Project Management
	Ranking and Evaluating Use Cases
	Identifying Use-Case Dependencies

	8 DATA MODELING AND ANALYSIS
	Introduction
	What Is Data Modeling?
	System Concepts for Data Modeling
	Entities
	Attributes
	Relationships

	The Process of Logical Data Modeling
	Strategic Data Modeling
	Data Modeling during Systems Analysis
	Looking Ahead to Systems Design
	Automated Tools for Data Modeling

	How to Construct Data Models
	Entity Discovery
	The Context Data Model
	The Key-Based Data Model
	Generalized Hierarchies
	The Fully Attributed Data Model

	Analyzing the Data Model
	What Is a Good Data Model?
	Data Analysis
	Normalization Example

	Mapping Data Requirements to Locations

	9 PROCESS MODELING
	Introduction
	An Introduction to Process Modeling
	System Concepts for Process Modeling
	External Agents
	Data Stores
	Process Concepts
	Data Flows

	The Process of Logical Process Modeling
	Strategic Systems Planning
	Process Modeling for Business Process Redesign
	Process Modeling during Systems Analysis
	Looking Ahead to Systems Design
	Fact-Finding and Information Gathering for Process Modeling
	Computer-Aided Systems Engineering (CASE) for Process Modeling

	How to Construct Process Models
	The Context Data Flow Diagram
	The Functional Decomposition Diagram
	The Event-Response or Use-Case List
	Event Decomposition Diagrams
	Event Diagrams
	The System Diagram(s)
	Primitive Diagrams
	Completing the Specification

	Synchronizing of System Models
	Data and Process Model Synchronization
	Process Distribution

	10 OBJECT-ORIENTED ANALYSIS AND MODELING USING THE UML
	An Introduction to Object-Oriented Modeling
	History of Object Modeling
	System Concepts for Object Modeling
	Objects, Attributes, Methods, and Encapsulation
	Classes, Generalization, and Specialization
	Object/Class Relationships
	Messages and Message Sending
	Polymorphism

	The UML Diagrams
	The Process of Object Modeling
	Modeling the Functional Description of the System
	Constructing the Analysis Use-Case Model
	Modeling the Use-Case Activities
	Guidelines for Constructing Activity Diagrams
	Drawing System Sequence Diagrams
	Guidelines for Constructing System Sequence Diagrams
	Finding and Identifying the Business Objects
	Organizing the Objects and Identifying Their Relationships

	11 FEASIBILITY ANALYSIS AND THE SYSTEM PROPOSAL
	Introduction
	Feasibility Analysis and the System Proposal
	Feasibility Analysis—A Creeping Commitment Approach
	Systems Analysis—Scope Definition Checkpoint
	Systems Analysis—Problem Analysis Checkpoint
	Systems Design—Decision Analysis Checkpoint

	Six Tests for Feasibility
	Operational Feasibility
	Cultural (or Political) Feasibility
	Technical Feasibility
	Schedule Feasibility
	Economic Feasibility
	Legal Feasibility
	The Bottom Line

	Cost-Benefit Analysis Techniques
	How Much Will the System Cost?
	What Benefits Will the System Provide?
	Is the Proposed System Cost-Effective?

	Feasibility Analysis of Candidate Systems
	Candidate Systems Matrix
	Feasibility Analysis Matrix

	The System Proposal
	Written Report
	Formal Presentation

	PA R T T H R E E Systems Design Methods
	12 SYSTEMS DESIGN
	Introduction
	What Is Systems Design?
	Systems Design Approaches
	Model-Driven Approaches
	Rapid Application Development
	FAST Systems Design Strategies

	Systems Design for In-House Development—The “Build” Solution
	Task 5.1—Design the Application Architecture
	Task 5.2—Design the System Database(s)
	Task 5.3—Design the System Interface
	Task 5.4—Package Design Specifications
	Task 5.5—Update the Project Plan

	Systems Design for Integrating Commercial Software—The “Buy” Solution
	Task 4.1—Research Technical Criteria and Options
	Task 4.2—Solicit Proposals or Quotes from Vendors
	Task 5A.1—Validate Vendor Claims and Performances
	Task 5A.2—Evaluate and Rank Vendor Proposals
	Task 5A.3—Award (or Let) Contract and Debrief Vendors
	Impact of Buy Decision on Remaining Life-Cycle Phases

	13 APPLICATION ARCHITECTURE AND MODELING
	Introduction
	Application Architecture
	Physical Data Flow Diagrams
	Physical Processes
	Physical Data Flows
	Physical External Agents
	Physical Data Stores

	Information Technology Architecture
	Distributed Systems
	Data Architectures—Distributed Relational Databases
	Interface Architectures—Inputs, Outputs, and Middleware
	Process Architectures—The Software Development Environment

	Application Architecture Strategies for Systems Design
	The Enterprise Application Architecture Strategy
	The Tactical Application Architecture Strategy

	Modeling the Application Architecture of an Information System
	Drawing Physical Data Flow Diagrams
	Prerequisites
	The Network Architecture
	Data Distribution and Technology Assignments
	Process Distribution and Technology Assignments
	The Person/Machine Boundaries

	14 DATABASE DESIGN
	Introduction
	Conventional Files versus the Database
	The Pros and Cons of Conventional Files
	The Pros and Cons of Databases

	Database Concepts for the Systems Analyst
	Fields
	Records
	Files and Tables
	Databases

	Prerequisite for Database Design— Normalization
	Conventional File Design
	Modern Database Design
	Goals and Prerequisites to Database Design
	The Database Schema
	Data and Referential Integrity
	Roles
	Database Distribution and Replication
	Database Prototypes
	Database Capacity Planning
	Database Structure Generation

	15 OUTPUT DESIGN AND PROTOTYPING
	Introduction
	Output Design Concepts and Guidelines
	Distribution and Audience of Outputs
	Implementation Methods for Outputs

	How to Design and Prototype Outputs
	Automated Tools for Output Design and Prototyping
	Output Design Guidelines
	The Output Design Process
	Web-Based Outputs and E-Business

	16 INPUT DESIGN AND PROTOTYPING
	Introduction
	Input Design Concepts and Guidelines
	Data Capture, Data Entry, and Data Processing
	Input Methods and Implementation
	System User Issues for Input Design
	Internal Controls—Data Editing for Inputs

	GUI Controls for Input Design
	Common GUI Controls for Inputs
	Advanced Input Controls

	How to Design and Prototype Inputs
	Automated Tools for Input Design and Prototyping
	The Input Design Process
	Web-Based Inputs and E-Business

	17 USER INTERFACE DESIGN
	Introduction
	User Interface Design Concepts and Guidelines
	Types of Computer Users
	Human Factors
	Human Engineering Guidelines
	Dialogue Tone and Terminology

	User Interface Technology
	Operating Systems and Web Browsers
	Display Monitor
	Keyboards and Pointers

	Graphical User Interface Styles and Considerations
	Windows and Frames
	Menu-Driven Interfaces
	Instruction-Driven Interfaces
	Question-Answer Dialogues
	Special Considerations for User Interface Design

	How to Design and Prototype a User Interface
	Automated Tools for User Interface Design and Prototyping
	The User Interface Design Process

	18 OBJECT-ORIENTED DESIGN AND MODELING USING THE UML
	Introduction
	The Design of an Object-Oriented System
	Entity Classes
	Interface Classes
	Control Classes
	Persistence Classes
	System Classes
	Design Relationships
	Attribute and Method Visibility
	Object Responsibilities

	The Process of Object Design
	Refining the Use-Case Model
	Modeling Class Interactions, Behaviors, and States That Support the Use-Case Scenario
	Updating the Object Model to Reflect the Implementation Environment

	Object Reusability and Design Patterns
	Design Patterns
	The Strategy Pattern
	The Adapter Pattern
	Object Frameworks and Components

	Additional UML Design and Implementation Diagrams

	PART FOUR Beyond Systems Analysis and Design
	19 SYSTEMS CONSTRUCTION AND IMPLEMENTATION
	Introduction
	What Is Systems Construction and Implementation?
	The Construction Phase
	Task 6.1—Build and Test Networks (if Necessary)
	Task 6.2—Build and Test Databases
	Task 6.3—Install and Test New Software Packages (if Necessary)
	Task 6.4—Write and Test New Programs

	The Implementation Phase
	Task 7.1—Conduct System Test
	Task 7.2—Prepare Conversion Plan
	Task 7.3—Install Databases
	Task 7.4—Train Users
	Task 7.5—Convert to New System

	20 SYSTEMS OPERATIONS AND SUPPORT
	Introduction
	The Context of Systems Operation and Support
	System Maintenance
	Task 8.1.1—Validate the Problem
	Task 8.1.2—Benchmark Program
	Task 8.1.3—Study and Debug the Program
	Task 8.1.4—Test the Program

	System Recovery
	Technical Support
	System Enhancement
	Task 8.4.1—Analyze Enhancement Request
	Task 8.4.2—Make the Quick Fix
	Task 8.4.3—Recover Existing Physical System

	System Obsolescence

	Photo Credits
	Glossary/Index

