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Preface

Introduction to the Course

The focus of this book is the area of wireless communications, which has witnessed 

revolutionary developments in the last decade. While previously there existed only 2G 

GSM-based communication systems, which supported a data rate of around 10 kbps, several 

innovative and cutting-edge wireless technologies have been developed in the last ten years. 

These advances have led subsequently to the proposal and implementation of 3G and 4G 

wireless technologies such as HSDPA, LTE, and WiMAX, which can support data rates in 

excess of 100 Mbps. Further, futuristic wireless networks can be employed not only for voice 

communication, but also for multimedia-based broadband communication such as video 

conferencing, video calling, etc. Starting from the fundamentals, this book will systematically 

elaborate on the latest techniques and tools in wireless practice and research.

Objective of this Book

This book is designed to help readers get an in-depth grasp of the fundamentals of 3G and 

4G advanced wireless techniques, and gain a better understanding of modern and futuristic 

���������������������������������������������������������������������������������������������

numerous challenges in the design and implementation of such wireless systems. The basic 

objective of this book is to provide a comprehensive exposure to the fast-evolving high-tech 

��������������������������������������������������������������������������������������

which form the bedrock of 3G/4G wireless networks. 

������������������������������������������������������������������������������������������

around the world regarding wireless technologies. A few high-level texts do address this area, 

����������������������������������������������������������������������������������������������

these texts do not address the needs of the typical student who is beginning to explore this 

area since such books do not deal with the fundamentals thoroughly. This book is, therefore, 

������������ ��������� ���� �� �������� ��������� ����� ����� ��������� ��� ���� ��������������

Hence, it aims to describe to the readers, in a lucid fashion, several concepts of wireless 

communications, without any assumptions regarding the prerequisites. In a nutshell, the book 

����������������������������������������������������������������������������

About the Book

Wireless telecommunications is a key technology sector with tremendous opportunities for 

growth and development around the world. Recent years have seen an explosion in terms of 

the available wireless technologies such as mobile cellular networks for voice and packet data, 
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wireless local area networks, Bluetooth, and so on. Yet, the wireless revolution is very nascent 

����������������������������������������������������������������������������������������������

and 4G cellular networks such as rich multimedia-integrated voice-video communication, 

video-conferencing-based interactive services, multiuser gaming, and strategic surveillance 

for defence. The book comprehensively covers the fundamental technological advances that 

have led to progress in the area of wireless communication systems in recent years.

Target Audience

Apart from postgraduate and undergraduate students, this book will be useful to practicing 

engineers, managers, scientists, faculty members, teachers, and research scholars.

Roadmap of Various Target Courses

Principles of Modern Wireless Communication Systems can be used for various courses as 

follows:

An advanced undergraduate course on digital communications can incorporate Chapter 2 on 

digital communication systems, followed by chapters 3, 4 on modelling and performance 

of digital communication over fading channels. This can be followed by diversity, a brief 

introduction to CDMA in Chapter 5, and a round-up with wireless-system planning aspects 

in Chapter 8. 

A specialized graduate course on wireless communication can assume the background in 

Chapter 1 and directly start with fading channels; then rigorously cover diversity and wireless-

channel modelling in chapters 3, 4, followed by elements of CDMA, MIMO, and OFDM 

wireless systems. For the graduate course, the material in Chapter 8 can be optional since this 

can be assumed to be covered in a semi-advanced course on digital communications. Finally, 

a short course spanning a few days of intensive teaching can be readily organized by utilizing 

some elements of chapters 3, 4 and introductory portions of chapters 5, 6, 7 on CDMA, 

MIMO, and OFDM respectively.

Salient Features

∑ Strong emphasis on ad-hoc networks and new trends in mobile/wireless communication

∑ Introduces 3G/4G standards such as HSDPA, LTE, WiMAX to help students understand 

practical aspects 

∑ Demonstrates a deep theoretical understanding of network analysis along with its 

real-world applications

∑ Detailed description of radio propagation over wireless channel and its limitations

∑ Problem-solving-based approach to enhance understanding

∑ Blend of analytical and simulation-based problems and examples for better understanding 

of concepts
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∑ Pedagogy includes

Æ Over 90 illustrations

Æ Over 34 Solved Examples

Æ Over 103 Practice Questions

Organization of the Book

The book is organized into various chapters, each focusing on a unique technology aspect of 

wireless communications, and aims to cover comprehensively several aspects at the core of 

3G/4G wireless technologies. 

Chapter 1 introduces the readers to a basic timeline of the progress of wireless technologies 

starting from 2G, i.e., 2nd Generation, through 3G, i.e., 3rd Generation to the current, i.e., 4th

Generation, or 4G wireless technologies.

Chapter 2 familiarizes the reader with the key concepts of digital communication systems, 

an understanding of which is required to comprehend the advanced concepts introduced in 

the context of wireless communications in later chapters. This also serves to make the book 

�����������������������������������������������������������������

This is followed by Chapter 3 which focuses on the key principles of wireless 

communications. This chapter describes the fundamental distinguishing aspects of the 

wireless system, beginning from a model of the fading channel to characterizing the bit-error-

rate performance in wireless communication systems. Further, the key principle of diversity, 

which is of fundamental importance in understanding the performance and motivation of 

various recent technologies that enhance the reliability of modern wireless communication 

systems, is described in this chapter, along with an elaborate analytical treatment. 

The subsequent chapter, Chapter 4, on wireless-channel modelling, describes the 

framework to model the wireless channel and describes concepts such as delay spread and 

��������������������������������������������������������������������������������������������

channel. This chapter also gives valuable practical insights into the design of 3G/4G wireless 

communication systems and an intuitive understanding of the various physical properties and 

���������������������������������

These key chapters are then followed by dedicated chapters focusing on various latest 

wireless technologies. 

Chapter 5 on Code Division for Multiple Access (CDMA) provides a detailed introduction 

to the concept and analysis of CDMA-based wireless networks. CDMA, a cutting-edge 

wireless technology, is used in a variety of 3G wireless standards such as WCDMA, HSDPA, 

CDMA 2000, 1xEVDO, etc. Thus, it is the key to understanding various 3G technologies. 

Multiple-Input Multiple-Output (MIMO) is another major technology, which is the focus 

of Chapter 6��������������������������������������������������������������������������������������
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reader is comprehensively exposed to various topics such as linear receivers (zero-forcing, 

minimum mean-squared error), singular-value decomposition, optimal power allocation, non-

linear receivers (V-BLAST), beamforming, etc. 

Chapter 7 on Orthogonal Frequency Division Multiplexing (OFDM) rounds up this 

discussion on key technologies. This is one of the most important chapters for a good 

understanding of modern wireless systems since most 4G technologies, such as LTE, LTE-A, 

WiMAX, etc., are based on OFDM. Also, other techniques such as SC-FDMA and MIMO-

OFDM are described along with an in-depth analysis of various allied aspects. 

������������������Chapter 8, describes various aspects of wireless-system planning such 

as large-scale wireless-propagation models, wireless shadowing, link-budget analysis, and 

�����������������������������������������������

The approach of this book is based on building up the concepts from its very fundamentals. 

Therefore, since no prerequisites are assumed, it addresses the needs of students from a variety 

of backgrounds with various degrees of prior knowledge in this area, ranging from novice 

readers to professionals with several years of erstwhile experience. Also, it has a collection 

of analytical problems, combined with hands-on simulation-based examples and problems 

for the students to gain a thorough understanding of the subject. Further, this book not only 

considers these technologies individually, but also addresses these from a holistic perspective 

of how such things perform in a practical wireless setting. For instance, it takes up issues such 

as the expected throughput and power levels, the number of subscribers they are intended to 

support, network capacity, performance, and other topics. 

Web Supplements

The Solution Manual for instructors can be accessed at 

https://www.mhhe.com/jagannatham/wc1 

Video lectures for the NPTEL (National Program on Technology 

Enhanced Learning) Course on Advanced 3G & 4G Wireless Mobile 

Communications can be accessed by scanning the QR code given here

 or 

visit https://www.youtube.com/playlist?list=PLbMVogVj5nJSi8FUsvglR

xLtN1TN9y4nx

Acknowledgements

I would like to thank all members of the Multimedia Wireless Networks (MWN) lab in the 

Electrical Engineering Department at IIT Kanpur, particularly all the PhD and MTech stu-

dents who have been a part of the lab over the years and whose researches have played a 

pivotal role in shaping this book. My heartfelt gratitudes to the faculty members of the Elec-

trical Engineering Department at IIT Kanpur for their valuable research collaborations and 

discussions in this area. I appreciate the efforts of the following reviewers for going through 

the draft and suggesting their inputs.



xv　  
Preface

Sanjeev Jain Government Engineering College, Bikaner, 

Rajasthan

Ranjan Mishra University of Petroleum and Energy Studies, 

Dehradun, Uttarakhand

Aniruddha Chandra, Sanjay 

Dhar Roy, Sumit Kundu

National Institute of Technology (NIT), 

Durgapur, West Bengal

Preetida Vinayakray Jani, Vijay 

Kumar Chakka

Dhirubhai Ambani Institute of Information 

and Communication Technology (DAIICT), 

Gandhinagar, Gujarat

N Shah Sardar Vallabhbhai National Institute of Technology 

(SVNIT), Surat, Gujarat

Radhika D Joshi College of Engineering, Pune, Maharashtra

Deivalakshmi,  D Sriram Kumar National Institute of Technology (NIT) 

Tiruchirappalli, Tamil Nadu

G Sivaradje Pondicherry Engineering College, Puducherry

T Rama Rao SRM University, Tamil Nadu

T J Jeyaprabha Sri Venkateswara College of Engineering, Pennalur, 

Tamil Nadu

N Shekar V Shet National Institute of Technology (NIT) Karnataka, 

Surathkal, Karnataka

Finally, I would like to express gratitude to my family for supporting me throughout this 

endeavour and bearing with my constant preoccupation during this period.

        ADITYA K JAGANNATHAM

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can 

be sent to support.india@mheducation.com  (kindly mention the title and author name in the 

subject line).

Piracy-related issues may also be reported.





1

Introduction to 3G/4G Wireless
Communications

1.1 Introduction

Wireless communications has witnessed revolutionary advancements in the recent decades,

which has changed the face of modern telecommunications. Starting from its modest beginning

limited to a few hundreds of users initially, wireless communication is now accessible to

a dominant fraction of the global population. This has ushered in a radical new era of

communication and connectivity. The Global System for Mobile (GSM) cellular standard,

which was formalized in 1992, has been rapidly adopted by billions of cellular users for voice

communication. The advent of the Internet and packet-based data networks has ushered an

ever-increasing demand for ubiquitousdata access over these wireless networks. This has led to

a progressive advancement of wireless communications from traditional voice-based networks

to Internet, multimedia, and video-service networks. In this process, successive generations of

wireless standards have evolved to support the rich high-data-rate wireless ecosystem, which

basically comprise the third and fourth generations of evolution of radio communications,

abbreviated as 3G and 4G respectively. Below we give details of the family of salient wireless

standards belonging to each generation of the wireless revolution.

1.2 2G Wireless Standards

The family of 2G wireless standards were initially proposed to provide basic wireless voice

communication facility to users with mobile cellular devices. Further, these comprised the

first set of fully digital wireless communication devices compared to 1G systems, which were

analog in nature. The dominant 2G standard, GSM, was initially proposed with an aim of
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developing a multi-country joint standard in an effort to unify the mobile communication

infrastructure across the globe, thus providing better access and facilities. The broad set of

such standards and their data rates are given in Table 1.1.

Table 1.1 Family of 2G wireless cellular standards

Generation Standard Data Rate

2G GSM 10 kbps

2G IS-95 (CDMA) 10 kbps

2.5G GPRS 50 kbps

2.5G EDGE 200 kbps

Hence, while GSM and IS-95 are based on code division for multiple access (CDMA) are

primarlity based on voice communication rates of around 10 kbps, the later add-on standards

of General Packet Radio Service (GPRS) and enhanced data for GSM evolution (EDGE) were

proposed with an idea of increasing the data rates over cellular networks to provide low-speed

data access such as Internet, e-mail, etc, to users with mobile devices. As given above, the

data rates supported by such nascent data access standards was in the range of 100 kbps. The

increasing demand for higher data rates over mobile devices led to the development of the 3G

cellular standards described below.

1.3 3G Wireless Standards

The third generation, or 3G wireless standards, were proposed around the year 2000 and

primarily based on CDMA technology for multiple access because of the superior properties of

CDMA compared to the other access technologies such as Time Division for Multiple Access

(TDMA) and Frequency Division for Multiple Access (FDMA). Also, 3G standards are termed

wideband wireless technologies as they employ spectral bandwidth generally in excess of

5 MHz. The list of 3G standards and the associated data rates is given below.

The 3G standard of wideband code division for multiple access (WCDMA) is also

sometimes abbreviated as theUniversal Mobile Telecommunications System (UMTS). Another

comparable 3G standard also based on CDMA is the CDMA 2000 standard, primarily
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employed in North America, Japan, and some other countries. Both are capable of data

rates around 300 kbps neccesary to support low-rate data access over wireless networks. The

progressive demand for higher data rate led to the addition of High-Speed Downlink Packet

Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), additions to the WCDMA

standard. These enhanced the capabilities of theWCDMA suite of 3G standards to the range of

5–30 Mbps, capable of providing services similar to those available on the Digital Subscriber

Line (DSL) and Asymmetric Digital Subscriber Line (ADSL) available on the wired network

infrastructure. Further, the CDMA 2000 suite was also expanded to include similarly the

1x Evolution Data Optimized (1xEVDO) standard and its subsequent revisions titled simply

rev. A and rev. B to enhance the data rates to close to 30 Mbps. Thus, the 3G group of cellular

services based on the above set of standards can support data rates in excess of 10 Mbps,

making it possible to transmit high-data-rate multimedia and video content to mobile devices.

These rates are expected to further increase manifold in 4G cellular networks.

Table 1.2 Family of 3G wireless cellular standards

Generation Standard Data Rate

3G WCDMA/UMTS 384 kbps

3G CDMA 2000 384 kbps

3.5G HSDPA/HSUPA 5–30 mbps

3.5G 1xEVDO-Rev. A,B 5–30 mbps

1.4 4G Wireless Standards

The set of 4G wireless standards is based on the revolutionary new technology of

Orthogonal Frequency Division Multiplexing (OFDM). The multiple access technology based

on OFDM is termed Orthogonal Frequency Division for Multiple Access (OFDMA). Also,

another breakthrough technology employed in 4G wireless systems is termed Multiple-Input

Multiple-Output (MIMO), which basically refers to employing multiple antennas at the

transmitter and receiver in such systems. Thus, these radical advancements help 4G wireless

systems achieve data rates in excess of 100 Mbps. The specific standards and associated rates

are listed in Table 1.3.
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Long-Term Evolution (LTE) and LTE Advanced are the standards developed by the

3
rd Generation Partnership Project (3GPP) standardization body while the Worldwide

Interoperability for Microwave Access (WiMAX) is under the purview of the WiMAX forum.

Currently, 4G devices and networks are being tested and partially implemented in several parts

of the world.

Table 1.3 Family of 4G wireless cellular standards

Generation Standard Data Rate

4G LTE 100–200 Mbps

4G WiMAX 100 Mbps

4G LTE Advanced > 1 Gbps

1.5 Overview of Cellular Service Progression

As the data rates have progressively increased in successive generations of cellular networks,

the nature of applications and services offered by such networks have diversified and grown

richer. A brief summary of typical services in various cellular networks is given in Table 1.4.

Table 1.4 Services and features of different generations of cellular networks

Generation Rate Applications

2.0–2.75G 10–100 kbps Voice, Low Rate Data

3.0–3.5G 300 kbps - 30 mbps Voice, Data, Video Calling,

Video Conferencing

4G 100–200 Mbps Online Gaming, HDTV

Note that each generation in the above table offers all the services of the previous

generations in addition to the newer services offered in the present generation.High-Definition
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Television (HDTV) streaming applications in 4G networks typically require a data rate of 10

Mbps per stream.

1. Complete the statements below.

(a) An example of a 1st generation wireless cellular standard is .

(b) GSM has a per-user raw-data rate of .

(c) The technical name for the CDMAOne standard is .

(d) The acronym UMTS stands for .

(e) HSDPA included in the 3GPP Release 5 has a peak data rate of .

(f) The multiple access technology used in LTE is .

(g) 802.11b operates in the frequency band .

(h) One wireless standard that uses MIMO is .

(i) The acronym GMSK stands for .

(j) AFH-SS used in Bluetooth (IEEE 802.15.1-2005) PHY stands for .

2. Fill in the blanks below.

(a) The downlink data rate of LTE is roughly .

(b) 3G cellular uses CDMA for multiple access while 4G uses .
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2.1 Gaussian Random Variable

Since we are going to deal with Gaussian random variables frequently in this textbook

during the course of learning about modern wireless communication systems, it is essential

to thoroughly understand the properties of Gaussian random variables. Consider a Gaussian

random variable of mean μ and variance σ2. This is represented using the notation N  
μ, σ2

 
.

The probability density of such a Gaussian random variable, denoted by fX (x), is given as

fX (x) =
1√
2πσ2

e−
(x−μ)2
2σ2 (2.1)

The probability density function above is not to be confused with a probability. The probability

density function fX (x) is to be interpreted as follows.

Given an infinitesimally small interval of with Δx around x, i.e., the interval 
x− Δx

2 , x+ Δx
2

 
, the probability that the random variable X takes values inside this interval

is given as fX (x)Δx. Further, a Gaussian random variable with mean equal to zero, i.e.,

μ = 0, and unit variance, i.e., σ2 = 1, is known as a standard Gaussian random variable. This

is represented by the notation N (0, 1) and has the probability density function

fX (x) =
1√
2π

e−
x2

2 (2.2)

Of particular interest is the cumulative distribution function of the standard Gaussian random

variable, i.e., the function denoted by Q (t), and defined as Q (t) = PrQ (X ≥ t), which can
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be obtained by evaluating the integral

Q (t) =

 ∞

t

1√
2π

e−
x2

2 dx. (2.3)

Also, another useful property of Gaussian random variables is that the linear combination of a

set of random variables yields a Gaussian random variable. ConsiderN independent zero-mean

Gaussian random variables X1, X2, . . . , XN with σ2i denoting the variance of Xi. Therefore,

each Xi can be represented as N  
0, σ2i

 
. Observe that E {XiXj} = E {Xi}E {Xj} = 0,

when i  = j, since the random variables Xi are independent. Let the random variable Y be

obtained by a linear combination of the above random variables as

Y = a1X1 + a2X2 + . . .+ aNXN =

N 
i=1

aiXi,

where a1, a2, . . . , aN are the constant coefficients of combination. The random variable Y

follows a Gaussian distribution with mean

E {Y } = E

 
N 
i=1

aiXi

 

=

N 
i=1

aiE {Xi} = 0.

Further, the variance of Y is given as

E
 
Y 2
 
= E

⎧⎨
⎩
 

N 
i=1

aiXi

 2
⎫⎬
⎭ ,

= E

⎧⎨
⎩
 

N 
i=1

aiXi

 ⎛⎝ N 
j=1

ajXj

⎞
⎠
⎫⎬
⎭

= E

⎧⎨
⎩

N 
i=1

N 
j=1

aiajXiXj

⎫⎬
⎭

=

N 
i=1

N 
j=1

E {aiajXiXj}

=
N 
i=1

a2i σ
2
i
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where the last step follows from the property already described above, i.e., E {XiXj}
= E {Xi}E {Xj} = 0, when i  = j. Thus, Y can be represented as N

 
0,
 N

i=1 a
2
i σ

2
i

 
.

2.2 BER Performance of Communication Systems in an

AWGN Channel

The Bit Error Rate (BER) is the most widely used metric to characterize the performance

of digital communication systems. Simply stated, it is the average rate of erroneously

decoding the transmitted information bits at the communication receiver. For instance, if

the symbol constellation is Binary Phase-Shift Keying (BPSK) of average symbol power

P , the transmitted symbol levels are given as +
√
P ,−√

P for the information symbols 1, 0

respectively. In the above BPSK example, bit error would refer to decoding a transmitted+
√
P

(corresponding to the information bit 1) erroneously as the 0 bit and vice versa. This corruption

of the detected information symbol stream arises centrally due to the presence of the white

Gaussian noise at the receiver. Such a channel is also termed an Additive White Gaussian

Noise (AWGN) channel and is a good model for wireline channels, i.e., with a wire channel

such as a telephone line between the transmitter and the receiver. The equivalent analysis for

wireless channels will be dealt subsequent chapters. On the upcoming section, we start with

the BER characterization of BPSK transmission across an AWGN channel.

2.2.1 BER for BPSK in AWGN

As stated in the example in the above section, consider the transmission of the BPSK symbols

+
√
P ,−√

P to denote information bits 1, 0, respectively. The system model, as described

above, is given as

y(k) = x(k) + n(k) (2.4)

The symbol y (k) is observed at the receiver in the presence of noise n (k), and one has to

make a decision xd (k) on whether the transmitted information bit was 1 or 0 [i.e., whether

x(k) was +
√
P or −√

P ]. Since the symbol levels +
√
P ,−√

P are symmetric about 0 , one

simple symbol detector for the above system that estimates the transmitted symbol x (k) could
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be to decide

xd (k) =

⎧⎨
⎩1, if y (k) > 0

0, if y (k) < 0

A detection error occurs in the above system when xd (k)  = x (k), or in other words,

xd (k) = 1, when x (k) = 0 and vice versa. Consider the transmission of the level −√
P

corresponding to the bit 0. By the above reasoning, a detection error occurs if y (k) < 0, which

can be restated using the system model as

−
√
P + n(k) > 0 ⇒ n (k) >

√
P

Since n (k) is the Gaussian noise with zero-mean and variance σ2, the chance of the above

bit-error event depends on the probability that the noise level n (k) exceeds the signal level√
P . This probability is simply given by integrating the Gaussian density function as

P
 
n (k) >

√
P
 
=

1√
2πσ2

 ∞
√
P
e−

t2

2σ2 dt =
1√
2π

 ∞
√
P

σ2

e−
r2

2 dr (2.5)

The quantity on the right is given by the well-known Gaussian Q (·) function introduced in

Section 2.1. This function is defined as

Q (x) =
1√
2π

 ∞

x
e−
r2

2 dr

Hence, finally, the probability of bit-error, or the BER for the above wireline channel can be

derived by expressing the probability in Eq. (2.5) in terms of the Q (·) function as

P
 
n (k) >

√
P
 
= Q

  
P

σ2

 
= Q

 √
SNR

 
, (2.6)

where the quantity SNR = P
σ2 denotes the signal-to-noise power ratio of the above wireleline

communication system. Also, the SNR of a system is often expressed in dB as

SNR (dB) = 10 log10

 
P

σ2
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Figure 2.1 BER of a wireline or AWGN channel based communication system.
The plot corresponding to ’theory’ is obtained from the analytical
expression in Eq. (2.6). Observe that the curves obtained from the
theory and simulation coincide accurately.

The BER vs SNR for the above wireline system is plotted vs SNR(dB) in Figure 2.1 The

Gaussian Q function satisfies the property that Q (x) ≤ 1
2e

− x2
2 . Hence, the BER of the wireline

channel decreases as

Q
 √

SNR
 
≤ 1

2
e−

SNR
2 (2.7)

Thus, it has a faster exponential rate of decrease with respect to SNR. As can be seen in

Figure 2.1, on a wireline channel, one can obtain a BER as low as 10−6 at an SNR equal to

13.54 dB. The examples given clearly illustrate the point.
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EXAMPLE 2.1

What is the BER of BPSK communication over an AWGN communication channel at

SNR(dB) = 10 dB?

Solution: The signal-to-noise power ratio in dB is given as SNRdB = 10 log10 (SNR). Hence,

given SNRdB = 10 dB, it is easy to see that the corresponding SNR = 10(SNRdB/10) = 10.

Hence, the bit-error rate for the wireline AWGN channel is given as Q
 √

SNR
 

= Q
 √

10
 
= 7.82× 10−4. This basically implies that in a block of a million, i.e., 106

bits, on an average, 7.82× 10−4 × 106 = 782 bits are received in error.

EXAMPLE 2.2

Compute the SNRdB required for a probability of bit error, i.e., BER = 10−6 over an AWGN

channel.

Solution: This can be computed as follows. From the above discussion, BER over the wireline

channel equals Q
 √

SNR
 
. Hence, for a BER of 10−6, we have Q

 √
SNR

 
= 10−6. Thus,

the SNR required is

SNR =
 
Q−1  10−6  2 = 4.752 = 22.60

Hence, the SNR in dB is given as, SNRdB = 10 log10 (22.6) = 13.6 dB.

2.3 SER and BER for QPSK in AWGN

In Quadrature Phase Shift Keying (QPSK), we consider the complex constellation

symbols given as ±
 

P
2 ± j

 
P
2 . Thus, the total power symbol can be seen to be  

P
2

 2

+

  
P
2

 2

= P , which is constant and equal to that of the BPSK system introduced

above. The real and imaginary parts of the constellation symbol denote the in-phase and

quadrature symbol components of the complex constellation symbol. Further, we consider
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the noise also to be complex Gaussian in nature given as n (k) = nI (k) + jnQ (k), with

nI (k) , nQ (k) denoting the in-phase and quadrature Gaussian noise components. Further,

the total noise power is E
 
|n (k)|2

 
= σ2. The power of the in-phase and quadrature

noise components is each σ2

2 , i.e., E
 
|nI (k)|2

 
= E

 
|nQ (k)|2

 
= σ2

2 . Further, the real

and complex noise components are also uncorrelated, which implies independence since

nI (k) , nQ (k) are Gaussian in nature. Such a noise process is also termed zero-mean

circularly symmetric complex Gaussian noise.

Thus, in the above QPSK system, we have the symbol and noise power given respectively

as P
2 ,

σ2

2 for both the in-phase and quadrature noise components. Thus, the SNR remains

unchanged and is equal to
P/2
σ2/2

= P
σ2 . Therefore, the bit-error rate of each channel of QPSK is

identical to that of BPSK, and is given as

Pe = Q
 √

SNR
 

(2.8)

Further, the probability of symbol error for a QPSK system can be derived as follows. The

QPSK symbol is in error if either of the bits are in error. The probability that each bit is received

correctly is 1− Pe. Therefore, the probability that both the symbols are received without error

is (1− Pe)
2
. Therefore, the net symbol error rate, i.e., the probability that one or both bits are

in error, is given as

Ps = 1− (1− Pe)
2 = 2Pe − P 2

e ≈ 2Pe

since Pe is very small, P 2
e << Pe at high SNR. Thus, at high SNR, the net symbol error rate

of the QPSK system is approximately twice the bit error rate.

2.4 BER for M-ary PAM

We now derive the BER for an M -PAM digital communication system. Let the ith symbol in

the constellation be given as si = ±(2i+ 1)Δ, where 0 ≤ i ≤ M − 1. This constellation is

pictorially shown in Figure 2.2. This quantity M can also be related to the number of bits b

per symbol as follows. Since b = log2 (2M), it follows that M = 2b−1. For example, consider

b = 3, which corresponds to 8 PAM, i.e., 3 bits per symbol. The amplitude levels corresponding

to this are given as ±Δ, ±3Δ, ±5Δ, ±7Δ. The average symbol power P of this constellation
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is given as

P =
1

M

M−1 
k=0

(2k + 1)2Δ2

=
Δ2

M

M−1 
k=0

 
4k2 + 4k + 1

 

=
Δ2

M

 
M + 4× M (M − 1)

2
+ 4× (M) (M − 1) (2M − 1)

6

 

=
Δ2

M

 
M + 2M2 − 2M +

2

3

 
M2 −M

 
(2M − 1)

 

=
Δ2

3M

 
3
 
2M2 −M

 
+ 2

 
2M3 − 3M2 +M

  

=
Δ2

3M

 
6M2 − 3M + 4M3 − 6M2 + 2M

 

=
Δ2

3M

 
4M3 −M

 
=

Δ2

3

 
4M2 − 1

 

=
Δ2

3

 
22b − 1

 
(2.9)

Figure 2.2 M-ary PAM constellation

Therefore, the distance between the constellation points Δ is given in terms of P as

Δ =
 

3P
(4M2−1) . The average propability of error can now be found as follows. Observe from

Figure 2.2 that there are basically two kinds of symbols. For the M − 2 points in the middle,

which have one constellation point on either side, error occurs if the noise w of variance σ2 is

either grater than Δ or less than −Δ.
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Therefore, the probability of error P i
e for an interior point is computed as

P i
e = Pr (w ≥ Δ) + Pr (w ≤ −Δ)

= Pr

 
w

σ
≥ Δ

σ

 
+ Pr

 
w

σ
≤ −Δ

σ

 
Observe that since w is a zero-mean Gaussian random variable of variance σ2, the quantity

(w)σ is a zero-mean random variable of variance E
  

w
σ

 2 
= E{w2}

σ2 = 1. The tail probability

corresponding to a standard Gaussian random variable X of zero-mean and unit variance is

defined as

Pr (X ≥ x) = Q (x)

whereQ (x) is also termed the GaussianQ function. Further, observe that sinceX is zero-mean

and symmetric, it follows that the Pr (X ≥ x) = PrX ≤ −x. Employing the above properties,

the expression for P i
e above can be simplified as

P i
e = Q

 
Δ

σ

 
+ Q

 
Δ

σ

 
= 2Q

 
Δ

σ

 
(2.10)

Now, consider the two symbols at either end. For the leftmost symbols, i.e., − (2M − 1)Δ,

error occurs if the noise w of variance σ2 is greater than Δ, while for the rightmost symbol,

i.e., (2M − 1)Δ, error occurs if the noise w of variance σ2 is lesser than −Δ. Each of these

probabilities is given as

P i
e = Pr (w ≥ Δ) = Pr (w ≤ −Δ)

= Pr

 
w

σ
≥ Δ

σ

 

= Q

 
Δ

σ

 
(2.11)

The average probability of error Pe can be expressed as

Pe =
 
i

p (e|si)× p (si)

where p (si) is the probability of transmission of the symbol si, and p (e|si) is the probability

of error given si is transmitted. Considering a simplistic scenario, we assume that all symbols
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si are equiprobably, i.e., p (si) =
1
2M , which is frequently the case in practice. Therefore,

substituting the various expressions derived for P (e|si) derived in (2.10), (2.11) in the

expression for Pe above, the resulting expression for Pe can be simplified as

Pe =
2 (M − 1)

2M
2Q

 
Δ

σ

 
+

2

2M
Q

 
Δ

σ

 

= 2

 
1− 1

2M

 
Q

 
Δ

σ

 
.

Substituting the expression for Δ in terms of the average symbol power P from Eq. (2.9) yields

the final expression for the symbol error rate of M -PAM as

Pe = 2

 
1− 1

2M

 
Q

 !
3P

(4M2 − 1)σ2

 
(2.12)

2.5 SER for M-QAM

Consider now an M -ary QAM constellation in which each symbol sk,l is described as sk,l =

± (2k + 1)Δ± (2l + 1)Δ, where k, l ∈ {0, 1, . . . ,M − 1}. This constellation is pictorially

shown in Figure 2.3. Thus, it can be seen that M -QAM constellation is given as the

combination of two M -PAM constellations on the x- and y-axes, representing the in-phase

and quadrature components of the communication signal. Therefore, considering total average

power of P , the average power of each of the constituent PAM constellations is given as P
2 .

Further, considering total noise variance σ2, the noise power of each of the in-phase and

quadrature components can be obtained as σ2

2 . Thus, the symbol error rate of each of the

individual PAM constellations in the QAM constellation is given from Eq. (2.12) as,

Pe,PAM = 2

 
1− 1

2M

 
Q

 !
3P2

(4M2 − 1) σ
2

2

 

= 2

 
1− 1

2M

 
Q

 !
3P

(4M2 − 1)σ2

 
(2.13)

Thus, the symbol error rate of each of the in-phase and quadrature components is identical to

that for the M -ary PAM constellation, given in Eq. (2.12). Further, a symbol in the QAM

constellation is in error if either of the constituent PAM symbols is in error. This overall
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probability of symbol error for the QAM constellation can be calculated as follows. The

probability that the constituent PAM symbol decoded correctly is given as 1− Pe,PAM. Further,

considering the in-phase and quadrature noise components to be independent, the probability

that both the constituent PAM symbols are decoded correctly is given as (1− Pe,PAM)2.

Therefore, the net probability that at least one of the PAM symbols is in error, in which case

the QAM symbol is decoded in error, is given as

Pe,QAM = (1− Pe,PAM)2

= 2Pe,PAM − P 2
e,PAM

≈ 2Pe,PAM (2.14)

where the last approximate above follows from the fact that at high SNR, Pe,PAM is very small.

Therefore, P 2
e,PAM is negligible in comparison to Pe,PAM. Thus, it can be seen that the SER

of the M -QAM constellation is twice that of the M -PAM constellation for a given average

symbol power Es.
(2 – 1)M D

(2 – 1)M D

(2 – 1)M D

–3D

3D

–3D 3D

–D

–D

D

D
0

Figure 2.3 M -ary QAM constellation



Introduction: Basics of Digital Communication Systems 17

2.6 BER for M-ary PSK

The kth symbol of the M -ary Phase Shift Keying (PSK) constellation can be represented as

[
√
P cos

 
2πk
M

 
,
√
P sin

 
2πk
M

 
], for 0 ≤ k ≤ M − 1. Thus, these symbols can be visualized

as being arranged on the circumference of a circle of radius
√
P , as shown in Figure 2.4,

with an equal phase spacing of 2π
M . The quantity P denotes the symbol energy. We now

determine the bit error rate (BER) for M -ary PSK modulation based detection in an additive

white Gaussian noise channel. Consider the transmission of the M -PSK symbol correponding

to k = 0, i.e.,
 √

Es, 0
 
. The outputs x, y, corresponding to the in-phase and quadrature

components respectively, are given as

x =
√
P + nI

y = nQ

Note that nI , nQ are Gaussian noise components of mean zero and variance σ̃2 = σ2

2 .

Therefore, the observation x is Gaussian with mean
√
P , and the same variance σ̃2. The joint

distribution of X, Y is given as

fX,Y (x, y) =
1

2πσ̃2
exp

⎛
⎜⎝−

 
x−√

P
 2

2σ̃2

⎞
⎟⎠× exp

 
− y2

2σ̃2

 

=
1

2πσ̃2
exp

 
−x2 + y2 − 2

√
Px+ P

2σ̃2

 
(2.15)

Let us now substitute x = r cos θ, y = r sin θ, where 0 ≤ r ≤ ∞ and −π ≤ θ < 2π.

Therefore, the distribution fR,Θ (r, θ), in terms of the transformed variables r, θ is given as

fR,Θ (r, θ) =
1

2πσ̃2
exp

 
−r2 + P − 2r

√
P cos θ

2σ̃2

 
× |JXY |

=
r

2πσ̃2
exp

 
−1

2

r2 + P − 2r
√
P cos θ

σ̃2

 
(2.16)

where |JXY | = r is the Jacobian determinant corresponding to the above transformation of

random variables. We now integrate over the random variable r to find the distribution with
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respect to θ. This can be written as

fΘ (θ) =

 ∞

0
fR,Θ (r, θ) dr

=

 ∞

0

r

2πσ̃2
exp

 
−1

2

r2 + P − 2r
√
P cos θ

σ̃2

 
dr

Substitute now v = r
σ̃ . Therefore, dr = σ̃ dv. The integral above is transformed as

fΘ (θ) =

 ∞

0

σ̃v

2πσ̃2
exp

 
−1

2

 
v2 + γs − 2

√
γsv cos θ

  
σ̃dv

=

 ∞

0

σ̃2v

2πσ̃2
exp

 
−1

2
(v −√

γs cos θ)
2 − 1

2
γs sin

2 θ

 

=
1

2π
exp

 
−1

2
γs sin

2 θ

  ∞

0
v exp

 
−1

2
(v −√

γs cos θ)
2

 
dv

where γs = P
σ̃2 = 2 SNR. We now employ the substitution v −√

γs cos θ = t.

Figure 2.4 M -ary PSK constellation
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The above expression for fΘ (θ) can now be simplified as

fΘ (θ) =
1

2π
exp

 
−1

2
γs sin

2 θ

  ∞

−√
2γs cosθ

(t+
√
γs cos θ) e

− t2
2 dt

As the average symbol SNR γs → ∞, the above integral can be approximated as

fΘ (θ) ≈ 1

2π
exp

 
−1

2
γs sin

2 θ

  ∞

−√
γs cosθ

$
2γs cos θe

− t2
2 dt

=

√
γs√
2π

cos θe−
1
2
γs sin

2 θ

It can now also be seen that the decision at the receiver is correct if the phase θ is between the

limits − π
M ≤ θ ≤ π

M and in error otherwise. Therefore, the probability of correct decision Pc

can be expressed as

Pc =

 π

M

− π
M

 
γs

2π
cos θe−

1
2
γs sin

2 θdθ

We now use the substitution γs sin
2 θ = t2, and

√
γs cos θ dθ = dt. The integral for Pc above

can be transformed employing this substitution as

Pc =

 
1

2π

 √
γs sin( πM )

−√
γs sin( πM )

1√
2
e−
t2

2 , dt (2.17)

The probability of error Pe = 1− Pc can, therefore, be simplified as,

Pe = 1− Pc

= 1−
 

1

2π

 √
γs sin( πM )

−√
γs sin( πM )

e−
t2

2 , dt

=

 
1

2π

 −√
γs sin( πM )

−∞
e−
t2

2 , dt+

 
1

2π

 ∞

√
γs sin( πM )

e−
t2

2 , dt

= 2Q
 √

γs sin
 π

M

  
= 2Q

 √
2 SNR sin

 π

M

  
(2.18)
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2.7 Binary Signal Vector Detection Problem

A very useful and insightful detection problem in the context of a digital communication

systems is given by the Binary Signal Vector Detection Problem. The problem can be stated as

follows. Consider the transmission of L symbols u1, u2, . . . , uL across an AWGN channel,

with y1, y2, . . . , yL denoting the corresponding observations at the receiver. This system can

be analytically modelled as

y1 = u1 + w1

y2 = u2 + w2

...

yL = uL + wL

where w1, w2, . . . , wL denote the i.i.d. AWGN samples of zero-mean and variance σ2 = 
N0

2 . This can be represented using vectors as⎡
⎢⎢⎢⎢⎢⎣
y1

y2
...

yL

⎤
⎥⎥⎥⎥⎥⎦

+ ,- .
y

=

⎡
⎢⎢⎢⎢⎢⎣
u1

u2
...

uL

⎤
⎥⎥⎥⎥⎥⎦

+ ,- .
u

+

⎡
⎢⎢⎢⎢⎢⎣
w1

w2

...

wL

⎤
⎥⎥⎥⎥⎥⎦

+ ,- .
w

Let uA and uB represent two possible transmit vectors. For example, in a simple repetition-

code-based BPSK communication system, one can have uA =
/√

P,
√
P , . . . ,

√
P
0

and

uB =
/
−√

P , −√
P , . . . , −√

P
0
. Thus, at the receiver, one has to decide between the two

vectors uA, uB given the observation vector y. Consider now the transmission of the vector

uA. The optimal detector and the probability of error can be found for this system as follows.

The vectors uA, uB lie in an L-dimensional space. Figure 2.5 schematically shows the possible

transmit vectors uA, uB of the signal constellation along with the plane perpendicularly

bisecting the line between uA and uB . It can now be seen that the optimal detector should

decide uA if the observed vector y lies on the side of this bisecting plane containing uA and

as uB otherwise. Therefore, when uA is transmitted, an error occurs if the received vector y

is on the side containing uB as shown in Figure 2.5. This implies that its dot product with

uB − uA is greater than or equal to zero, since the dot product depends on the cosine of the
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Figure 2.5 Binary signal vector detection

angle θ between y and uB − uA. Hence, an error occurs if 
y− uA + uB

2

 T
(uB − uA) ≥ 0

⇒ yT (uB − uA) ≥ 1

2
(uB + uA)

T (uB − uA)

Since uA is transmitted, we have y = uA +w. Substituting this above, we have, error if,

(uA +w)T (uB − uA) =
1

2
(uB + uA)

T (uB − uA)

⇒ wT (uB − uA)+ ,- .
w̃

≥ 1

2
(uB − uA)

T (uB − uA)

=
1

2
 uB − uA 2 (2.19)

Consider now w̃ = wT (uB − uA). Since each element of w is i.i.d. Gaussian of mean

zero and variance σ2, we can deduce that w̃ is Gaussian since it is obtained as a linear

combination of several Gaussian noise samples. Further, the expected value of w̃ is given as

E {w̃} = E
 
wT (uB − uA)

 
= 0, since each element of w is zero mean. Also, the variance
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of w̃ can be obtained as

E
 
w̃2
 + ,- . σ̃2 = E

 
w̃T w̃

 
= E

 
(uB − uA)

T
wwT (uB − uA)

 
= (uB − uA)

T E
 
wwT

 
(uB − uA)

= (uB − uA)
T
σ2IL (uB − uA)

= σ2  uB − uA 2 (2.20)

Thus, we have w̃ is Gaussian with mean zero and variance σ̃2 = σ2  uB − uA 2 or, in other

words, N
 
0, σ2  uB − uA 2

 
. Therefore, the probability of error is given from Eq. (2.19) as

Pe = Pr

 
w̃ ≥ 1

2
 uB − uA 2

 

= Pr

 
w̃

σ̃
≥ 1

2

 uB − uA 2
σ̃

 

= Q

 
 uB − uA 2

2σ̃

 

= Q

  uB − uA 
2σ̃

 
where the last equation above has been simplified by substituting the expression for σ̃2 from

Eq. (2.20). This yields a very interesting result. Observe that the probability of error depends

only on the distance  uB − uA between the vectors uB and uA. In fact, the above probability

of error Pe can be written as,

Pe = Q

 
d (uA,uB)

2σ

 
where d (uA,uB) =  uB − uA denotes the distance between uA, uB. This is an interesting

property of signal detection in AWGN which will be employed in the later chapters in the

textbook. Further, for a complex signal constellation, the same relation above can be used by

replacing σ by σ̃ = σ√
2
.
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2.7.1 An Alternative Approach for M-PSK

A simpler alternative approach to compute the probability of error for theM -PSK constellation

above is as follows. At high SNR, the symbol corresponding to k = 0 is confused only with its

nearest neighbours, i.e., symbols corresponding to k = 1, k = M − 1. The distance d between

the nearest neighbors in this M -PSK constellation is

d = 2
√
P sin

 π

M

 
as shown in Figure 2.6. Therefore, the probability of confusion between the neighbours

k = 0, k = 1 is

P0→1 = Q

 
d

2σ̃

 

= Q

 
2
√
P

2σ̃
sin

 π

M

  

= Q
 √

γs sin
 π

M

  
(2.21)

This is identical to the confusion probability between the symbols k = 0, k = M − 1.

Therefore, since there are two nearest neighbors for the symbol k = 0, employing the union

Figure 2.6 M -ary PSK constellation with distance between nearest neighbours
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bound, the probability of error Pe can be approximated as

Pe ≈ P0→1 + P0→M−1,

= 2Q
 √

γs sin
 π

M

  
= 2Q

 √
2 SNR sin

 π

M

  
(2.22)

which is identical to the expression derived above in Eq. (2.18) for the BER of M -PSK

modulation.

1. The signal constellation for M -ary PAM is of the form ± (2k + 1)Δ, for

0 ≤ k ≤ M
2 − 1, where M is an even number. Consider M = 8 and assume equal

probability for transmission of each symbol to answer the questions that follow.

(a) Express the average symbol power P for the 8-ary PAM constellation above as a

function of Δ.

(b) Find the expression for the symbol error rate over an AWGN channel for the 8-ary

constellation above as a function of the average symbol power P and noise power σ2.

(c) Find the average power P required to achieve probability of symbol error 10−6 in an

AWGN channel with noise power σ2 = −3 dB.

2. Compute the dB transmit SNR required to achieve Pe = 5× 10−4 for 8-PSK in an AWGN

channel.

3. Consider detecting the transmit vector u equally likely to be uA =
√
P [1, 1, 1, 1, ]T or

uB =
√
P [1, −1, 1, −1]T , where P = 15 dB. The received vector is

y = u + w

and w ∼ N (0, 2I). Derive the average probability of error for this system.
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Principles of Wireless
Communications

3.1 The Wireless Communication Environment

In conventional wireline communication systems, there is a single signal-propagation path

between the transmitter and the receiver, which is constrained by the propagation medium

such as a coaxial cable or a twisted pair. However, in wireless systems, the signal can reach

the receiver via direct, reflected, and scattered paths as shown in Figure 3.1. As a result,

at the receiver, there is a superposition of multiple copies of the transmitted signal. These

signal copies experience different attenuations, delays, and phase shifts arising from the varied

propagation distances and properties of the scattering media. Hence, at the wireless receiver,

there is interference of signals received from these multiple propagation paths, which is termed

multipath interference.

The multipath interference, in turn, results in an amplification or attenuation of the net

received signal power observed at the receiver, and this variation in the received signal strength

arising from the multipath propagation phenomenon is termed multipath fading or simply

fading. Strong destructive interference at the receiver is referred to as a deep fade, and such

a condition may result in temporary failure of communication due to a severe drop in the

SNR at the receiver. This phenomenon of fading is the critical difference between the wireline

and wireless communication systems, which causes a radical paradigm shift in the nature of

wireless communications, necessitating the development of a fundamentally novel approach to

design wireless systems.
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One of the main objectives, therefore, in wireless-system design, is to develop

schemes to combat fading and ensure reliability of signal reception in

wireless communication systems.

Figure 3.1 Schematic of the wireless-propagation environment

3.2 Modelling of Wireless Systems

To gain a better understanding of the nature of the wireless environment and quantitatively

analyze the performance of wireless communication systems, one needs to develop accurate

analytical models to characterize them. In this section, we introduce the basic theory that

deals with the analytical tools and techniques used extensively to model and assess wireless

systems. In subsequent parts of the book, we build extensively on this theoretical framework

to quantify the performance of various wireless communication schemes and systems. Let us

start by considering the transmitted passband wireless signal s(t), which is transmitted across



Principles of Wireless Communications 27

a wireless channel. Such a passband signal can be described analytically as,

s(t) = Re
 
sb (t) e

j2πfct
 

(3.1)

The quantity sb(t) is the complex baseband representation of the transmitted signal and fc is

simply the carrier frequency employed for transmission. Next, we need an analytical model

for the wireless communication channel. To make things simple, we will assume initially

that the wireless channel is time invariant. Let us consider a channel with L multipath

components. Observe that each path of the wireless channel basically has two characteristic

properties. Firstly, it delays the signal because of the propogation distance. Secondly, there is

an attenuation of the signal arising because of the scattering effect. Let the signal attenuation

and delay of the ith channel be denoted by the quantities ai, τi respectively. Recall from your

knowledge of Linear Time Invariant (LTI) systems that the impulse response of an LTI system

which attenuates a signal by ai and delays it by τi is given as

hi (τ) = aiδ (τ − τi)

Hence, the above equation gives the impulse response of a single path of a wireless

communication system. Further, observe that the wireless channel represents a linear

input–output system, since the signal observed at the receiver is the sum of the different

multipath signal copies impinging on the receive antenna. Therefore, a typical Channel Impulse

Response (CIR) of a multipath-scattering based wireless channel is given by the sum of the

above impulse responses corresponding to the individual model,

h (τ) =

L−1 
i=0

aiδ (τ − τi) (3.2)

The above impulse response is also termed the tapped delay-line model because of the nature

of the arrival of several progressively delayed components of the signal. It can be observed

that the above wireless channel model consists of L propagation paths arising from the

several reflection and scattering multipath Non-Line-Of-Sight (NLOS) components. One of the

multipath components can also be a direct Line-Of-Sight (LOS) component. Each such ith path

is characterized by two parameters, which are,

1. The attenuation factor ai

2. The path delay τi



28 Principles of Modern Wireless Communication Systems

Since the above wireless is a linear time-invariant (LTI) system, the received signal y(t) can

be expressed as the convolution of the transmitted signal s (t) with the CIR h (t). Therefore,

the received wireless signal y (t) is given as

y (t) = s (t) ∗ h (t) =
 ∞
−∞
h (τ) s (t− τ) dτ

By inserting the expression for the tapped delay-line channel in Eq. (3.2) in the above

convolution, the expression for the received wireless signal y (t) across this tapped delay-line

channel can be derived as

y (t) =

L−1 
i=0

ai

 ∞
−∞
δ (τ − τi) s (t− τ) dτ =

L−1 
i=0

ais (t− τi) dτ

Further, this expression for the received signal can be written in terms of the transmitted

baseband signal sb(t) by substituting the relation between s(t) and sb(t) in Eq. (3.1) in the

above expression and simplifying it as

y (t) = Re

 
L−1 
i=0

aisb (t− τi) ej2πfc(t−τi)
 

= Re

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
 
L−1 
i=0

aie
−j2πfcτisb (t− τi)

 
    

yb(t)

ej2πfct

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

From the above expression, it can readily be seen that yb (t), the complex baseband signal

equivalent of the received signal y (t), is simply given as

yb (t) =

L−1 
i=0

aie
−j2πfcτisb (t− τi) (3.3)

Notice that in addition to the attenuation and delay parameters in the passband channel

model described earlier, the baseband system model consists of the addition phase e−j2πfcτi

parameter. This basically arises because of the path delay of the carrier signal ej2πfct

corresponding to the ith path. On close observation of the above expression, one can readily
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see that the received baseband signal consists of multiple delayed copies sb (t− τi) of the
transmitted signal sb (t). Each such ith signal copy arising from the ith multipath component

is associated with the following three parameters.

1. The attenuation factor ai

2. The path delay τi

3. The phase factor e−j2πfcτi

The different signal copies for a typical baseband BPSK information signal sb (t) is shown in

Figure 3.2. The quantity T denotes the symbol time, while Tm, which is the delay between

the first and last arriving copies of the signal, is termed the delay spread. This is an important

parameter of the wireless channel and will be explored in detail in the next chapter. For the

purpose of the discussion below and in the rest of the chapter we will assume a narrowband

channel, i.e., one in which Tm << T . The above signal model will be further simplified

in the following sections to yield meaningful insights into the performance of wireless

communication systems.

Figure 3.2 Multipath signal components at the receiver
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EXAMPLE 3.1

Consider a wireless signal with a carrier frequency of fc = 850MHz, which is transmitted

over a wireless channel that results in L = 4 multipath components at delays of

201, 513, 819, 1223 ns and corresponding to received signal amplitudes of 1, 0.6, 0.3, 0.2

respectively. Derive the expression for the received baseband signal yb (t) if the transmitted

baseband signal is sb (t).

Solution: As given in the expression for the received baseband signal in Eq. (3.3), we need

to compute the factors aie
−j2πfcτi for i = 0, 1, 2, 3 to derive the expression for the received

baseband signal yb (t). Accordingly, the factor a0e
−j2πfcτ0 is given as

a0e
−j2πfcτ0 = 1× e−j2π850×106×201×10−9

= 0.59 + j0.81

Similarly, the other factors for i = 1, 2, 3 can be computed as 0.57− j0.19,
0.18− j0.24, −0.19+ j0.06 respectively. Hence, the receive baseband signal is, therefore,

given as

yb (t) = (0.59 + j0.81)sb (t) + (0.57− j0.19)sb
 
t− 201× 10−9

 
+ (0.18− j0.24)sb

 
t− 513× 10−9

 
+ (−0.19+ j0.06)sb

 
t− 1223× 10−9

 
Thus, the receiver sees L = 4 signal copies sb (t− τi), each delayed by τi, attenuated and

phase shifted by aie
−j2πfcτi .

3.3 System Model for Narrowband Signals

A fairly simplistic approximation of the above baseband system model can be arrived at

by employing the narrowband signal approximation, which can be stated as follows. For

a sufficiently narrowband signal sb (t), the different delayed components sb (t− τi) are

approximately equal to each other, i.e., sb (t− τi) ≈ sb (t) (It will be shown in subsequent

chapters that such a wireless channel is also known as a flat-fading wireless channel). Hence,

for a narrowband transmit signal sb (t), the expression for the received baseband signal yb (t)
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can be further simplified as

yb (t) =

 
L−1 
i=0

aie
−j2πfcτi

 
    

aejφ

sb (t) = hsb (t) (3.4)

where h = aejφ =
 L−1

i=0 aie
−j2πfcτi is termed the complex fading channel coefficient. Hence,

the output baseband signal yb (t) is related to the input baseband signal sb (t) by a complex

attenuation factor aejφ. The fading nature of the wireless channel can now be readily observed

from the above expression. The signal power at the receiver critically depends on the magnitude

of the overall attenuation factor aejφ. For instance, consider a two-component multipath

channel with identical magnitude and exactly out-of-phase components, i.e., a0 = a1 and

e−j2πfcτ0 = −e−j2πfcτ1 . In this extreme case, the received signal yb (t) = 0, resulting in

0(i.e., −∞ dB) received signal power and the channel is in a deep fade. Thus, the fortunes

of the signal processor at the receiver are hinged on this erratic factor aejφ, which is also

termed the complex baseband fading coefficient or simply, the fading coefficient.

Further, regarding the narrowband approximation, it is instructive to note that the

narrowband approximation does NOT hold in a wideband system such as a CDMA-based one.

Moreover, the narrowband assumption essentially implies that the carrier phase is sensitive to

the delay spread while the baseband signal is not. This is essentially a rehashing of one of the

most common assumptions in communication systems, which states that “the bandwidth of

the transmitted signal is usually orders of magnitude smaller than the carrier frequency fc”.

Next, we initiate a statistical characterization of the fading coefficient.

EXAMPLE 3.2

For the wireless channel given in Example 3.1, derive the corresponding received signal

with the narrowband assumption.

Solution: As given in Eq. (3.4), the received signal with the narrowband assumption is given

as

y (t) =

 
3 
i=0

aie
−j2πfcτi

 
sb (t)

= (1.14 + j0.44)sb (t)
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Thus, the net received baseband signal in this case can be expressed as yb (t) = hsb (t), where

h the channel coefficient is h = 1.14 + j0.44.

3.4 Rayleigh Fading Wireless Channel

The complex fading coefficient h can be expressed in terms of its real and imaginary

components as,

h = aejφ =

L−1 
i=0

(xi + jyi) = X + jY

Thus, X,Y , which are the real and imaginary components of the fading coefficient aejφ,

are derived from the summation of a large number of random multipath components xi, yi,

especially in a rich urban setting which allows for a large number of scatterers. Hence, it

is reasonable to assume that X,Y are random in nature. Further, a simplistic model for

the statistical characterization of X,Y would be to assume that they are Gaussian and

un-correlated. The assumption of Gaussianity is lent support by the central limit theorem,

which in simple terms states that a normalized random variable derived from the sum of a large

number of independent identically distributed random components, converges to a Gaussian

random variable.

The above assumption is valid as L→∞, i.e., the number of multipath components is

fairly large. Hence, X,Y are distributed as N  0, 1
2

 
(assuming zero-mean and variance 1

2 ).

Further, since X,Y are Gaussian in nature and un-correlated, it directly follows that they are

independent. The joint distribution ofX,Y is given by the standard multivariate Gaussian as

fX,Y (x, y) =
1

π
e−(x2+y2)

One can now derive the statistics of the fading coefficient aejφ in terms of its amplitude and

phase factors a, φ. It can be seen through elementary trigonometric properties that

x = a cosφ, y = a sinφ
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The joint distribution fA,Φ (a, φ) can be derived from fX,Y (x, y) using the relation for

multivariate PDF transformation as

fA,Φ (a, φ) =
1

π
e−a

2

JX,Y

where we have used the property that x2 + y2 = a2 in the above expression. The quantity JX,Y

is termed the Jacobian ofX,Y and is given by the expression

JX,Y =

      
⎡
⎣ cos φ sinφ

−a sinφ a cosφ

⎤
⎦
      = a

where |A| denotes the determinant of the matrixA. Substituting the Jacobian in the expression

for multivariate PDF transformation above, the joint PDF with respect to the random variables

A,Φ can be derived as

fA,Φ (a, φ) =
a

π
e−a

2

The marginal distributions fA, fΦ with respect to the amplitude and phase factor random

variables A,Φ can be readily derived from the above joint distribution as

fA (a) =

 π

−π
fA,Φ (a, φ) dφ = 2ae

−a2 , 0 ≤ a ≤ ∞

fΦ (φ) =

 ∞
0
fA,Φ (a, φ) da =

1

2π
e−a

2
   ∞
0
=
1

2π
,−π < φ ≤ π

We have now derived one of the most popular and frequently employed models for the

wireless channel, termed a Rayleigh fading wireless channel. This nomenclature arises from

the distribution fA of the amplitude factor a, which is the well known Rayleigh density, shown

in Figure 3.3. Observe that the average power in the amplitude a of the Ralyeigh fading channel

coefficient h is given as

E
 
|h|2

 
= E

 
a2
 
= E

 
X2 + Y 2

 
= 1

Further, it is important to note that although strictly speaking, the term Rayleigh refers to the

distribution of the amplitude factor, the Rayleigh fading wireless channel characterizes both
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Figure 3.3 Rayleigh density for amplitude factor a

the amplitude factor as a Rayleigh fading random variable and the phase factor as uniformly

distributed in (−π,π). Finally, it can be readily seen that the joint distribution fA,Φ (a, φ) is

related to the marginals fA (a) , fΦ (φ) as,

fA,Φ (a, φ) = fA (a) fΦ (φ)

essentially implying that the random variablesA,Φ are independent. This is a fairly important

result since it suggests that the random varying nature of the phase factor of the arriving signal

is independent of that of the amplitude, i.e., for a given amplitude a, all phase factors in

(−π,π) are equiprobable. Figure 3.4 shows a scatter plot of the real and imaginary components

of 10000 randomly generated samples of the Rayleigh fading coefficient. From the circular

symmetry of the plot, it can be readily seen that the phase of the Rayleigh coefficient is

distributed uniformly in (−π,π).

EXAMPLE 3.3

Derive the probability density function of the channel power gain g = a2, where a, as

defined above, is the magnitude of the Rayleigh fading channel with E
 
a2
 
= 1.
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Figure 3.4 Scatter plot of the Rayleigh fading channel coefficient h

Solution: In the discussion above, we have demonstrated that the pdf of the magnitude of the

channel coefficient a, where E
 
a2
 
= 1, is given by the Rayleigh distribution as

fA(a) = 2ae
−a2 , a ≥ 0

Define the function w as g = w(a) = a2. Then, from the standard result of the probability

density of a function of a random variable, the distribution of g is given by the pdf

transformation

fG(g) =
fA
 
w−1 (g)

 
dg
da

   
w−1(g)

.

Observe that since g = w (a) = a2, we have w−1 (g) = a =
√
g. Hence, the above expression

can simplified as

fG(g) =
fA
 √
g
 

2
√
g

=
2
√
ge−g

2
√
g

= e−g

Thus, the expression for the power gain of the wireless channel has a rather simple expression

given as fG (g) = e
−g. However, it should be kept in mind that this is valid only for the case
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E
 
a2
 
= E {g} = 1. Further, one can confirm that E {g} = 1 as

E {g} =
 ∞

0
e−g = −e−g  ∞

0
= 1

EXAMPLE 3.4

In the wireless Rayleigh fading channel described above, consider a transmit power

Pt ( dB) = 20 dB. What is the probability that the power at the receiver is greater than

Pr ( dB) = 10 dB ?

Solution: First, let us begin by computing the appropriate linear power values for the above

given dB values. Pt ( dB) = 10 log10 (Pt). Hence, the linear transmit power Pt is given

as Pt = 10
Pt( dB)/10 = 102 = 100. Similarly, the linear receiver power corresponding to

Pr ( dB) = 10 dB is given as Pr = 10
1 = 10. Also, observe that given a power gain g, the

received power is simply Pr = gPt. Hence, for a received power Pr > 10, it naturally implies

that

gPt > 10

⇒ g > 10

Pt
=
10

20

=
1

2

Thus, the probability that the received power is greater than 10 essentially corresponds to the

probability that the random power gain g of the Rayleigh fading wireless channel is greater

than 1
2 . This probability can be readily computed as

Pr

 
g >

1

2

 
=

 ∞
1
2

fG (g) dg

=

 ∞
1
2

e−g dg

= −e−g  ∞1
2

= e−
1
2

= 0.61
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3.4.1 Baseband Model of a Wireless System

The baseband digital wireless communication system model for the above Rayleigh fading

channel can be now readily derived as follows. Let x(k), y(k) be the kth transmitted and

received symbols respectively and h denote the Rayleigh fading channel coefficient. The

baseband system model for symbol detection in this channel is given as

y(k) = hx(k) + n(k) (3.5)

where n(k) is the additive white Gaussian noise (AWGN). Without loss of generality, one can

assume that the AWGN is of unit power, i.e., E
 
|n (k)|2

 
= 1 (for if this does not hold then

the whole system can be scaled by a constant scaling factor without affecting the performance,

since the SNR is invariant under scaling by a constant factor).

In particular, the information symbols x(k) are derived from a digital modulation

constellation such as BPSK, QPSK, etc. For instance, if the symbol constellation is BPSK

of average symbol power P , the transmitted symbol levels are given as +
√
P ,−√P for the

information symbols 1, 0 respectively. Finally, one can derive the standard nonfading model

for the conventional wireline systems as

y(k) = x(k) + n(k) (3.6)

where the Rayleigh fading factor a has simply been replaced by the constant 1 in the previous

system model, which is essentially due to the fact the there is no multipath fading phenomenon

in a wireline system.

Important Note: Even though both the above systemmodels employAWGN

frequently, the wireless channel is referred to as a Rayleigh channel (or

more appropriately, a Rayleigh fading wireless channel) and the wireline

channel as an AWGN channel, simply because of established conventions

in literature. We will follow the same convention and refer to the wireline

system model in Eq. (3.6) as an AWGN channel.
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3.5 BER Performance of Wireless Systems

The bit-error rate (BER) is the most widely used metric to characterize the performance

of digital communication systems. Simply stated, it is the average rate of erroneously

decoding the transmitted information bits at the communication receiver. For instance, in

the above BPSK example, it would refer to decoding a transmitted +
√
P (corresponding to

the information bit 1) erroneously as the 0 bit and vice versa. The BER characterization of

the conventional wireline (or AWGN) channel described above in Eq. (3.6) has already been

derived in previous chapters. How does the BER performance of the conventional wireline

communication systems compare with that of a typical wireless communication system? This

is the question we answer in the next section.

3.5.1 SNR in a Wireless System

Similar to the wireline or the simple nonfading AWGN channel described previously, consider

the transmission of the BPSK symbols x (k) = ±√P across a Rayleigh fading wireless

channel. Recall from Eq. (3.5) above that the baseband Rayleigh wireless system can be

modelled as

y(k) = hx(k) + n(k)

Observe that the critical difference between the above wireless channel and the wireline

channel is the multiplicative fading coefficient h, due to which the received baseband signal is

hx (k). Therefore, the received signal power in the wireless channel is given as

E
 
|hx (k)|2

 
= |h|2 E

 
|x (k)|2

 
= |h|2 P = a2P (3.7)

where  h 2 = a2 since h = aejφ. This clearly illustrates the fact that the received power at

the wireless receiver depends on the amplitude a of the random channel fading coefficient h.

Further, we will term this SNR at the receiver, as a function of the fading amplitude a as the

instantaneous SNR, i.e.,

Instantaneous SNR = a2 P

σ2
n
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Further, notice that the average SNR in such a wireless system can be obtained as

Average SNR = E

!
a2 P

σ2
n

"
= E

 
a2
 P
σ2
n

=
P

σ2
n

since E
 
a2
 
= E

 
|h|2

 
= 1 as demonstrated in Section 3.4. Thus, the average SNR of this

wireless system is equal to P
σ2n
, which we will refer to simply as SNR in the subsequent

discussion to avoid confusion with the instantaneous SNR. Further, it can also be seen that

since the average SNR of the wireless system is P
σ2n
, which is equal to that of the wireline

AWGN channel, it makes possible a fair comparison between these systems.

3.5.2 BER in Wireless Communication Systems

Hence, applying the result developed above for the wireline channel, the instantaneous

BER (a) for a particular value of the amplitude a of the Rayleigh fading channel coefficient h

is given by the standard Gaussian Q function as

BER (a) = Q

 #
a2P

σ2
n

 
= Q

 
a

#
P

σ2
n

 

=
1√
2π

 ∞
a
q

p

σ2n

e−x
2/2dx =

1√
2π

 ∞
a
√
μ
e−x

2/2dx (3.8)

where the quantity μ has been defined as the SNR, i.e., μ = P
σ2n

to simplify the notation.

Substituting x
a
√
μ = t, the above integral can be simplified using standard calculus as

BER (a) =

 ∞
1
e−μa

2t2/2a
√
μdt

Observe that the above expression for BER in the wireless channel depends on the

instantaneous amplitude a of the fading coefficient, which is a random quantity. Thus, the

above BER itself is random in nature, i.e., it is low for high values of a and vice versa.

Therefore, to get a fair idea of the BER in such a system, one has to consider the average of

all such observed BERs, which is obtained by averaging the above function BER (a) over the

distribution of the amplitude given as fA (a) = 2ae
−a2 . The average BER in a Rayleigh fading

channel, denoted by BERRayleigh is given by averaging the above BER over the Rayleigh

distribution fA(a) = 2ae
−a2 as
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BERRayleigh =

 ∞
0
BER (a) 2ae−a

2

da

=
1√
2π

 ∞
0

  ∞
1
e−μa

2t2/2a
√
μ

 
2ae−a

2

dt da

=

√
μ√
2π

 ∞
0

 ∞
1
2a2e−a

2 2+μt
2

2 dt da

The order of integration in the above integral can be interchanged to simplify the expression as

BERRayleigh =

√
μ√
2π

 ∞
1

 ∞
0
2a2e−a

2 2+μt
2

2 da dt

=
√
μ

 ∞
1

 
1√
2π

 ∞
0
2a2e

− a2

2γ2 da

 
dt

where we have defined γ as γ =
$

1
2+μh2 for convenience. Now, employing the property,

1√
2π

 ∞
0
2a2e

−a2
2γ2 da = γ3

which is proved in Example 3.5, the above expression forBERRayleigh can be further simplified

by recasting it as

BERRayleigh =
√
μ

 ∞
1
γ3 dh =

√
μ

 ∞
1

 
1

2 + μt2

 3/2

dt

We now employ the following reparameterization of t in terms of θ to simplify the above

expression as

t =

%
2

μ
tan θ, dt =

%
2

μ
sec2 θ dθ

Using this reparameterization, the BERRayleigh expression can be readily recast to a more

tractable standard integral of trigonometric functions as
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BERRayleigh =
√
μ

 π/2

tan−1
√

μ

2

1

23/2

1

sec3 θ
sec2 θ

%
2

μ
dθ

=
1

2

 π/2

tan−1
√

μ

2

cos θ dθ

=
1

2
sin θ|π/2

tan−1
√

μ

2

=
1

2

 
sin
π

2
− sin

 
tan−1

%
μ

2

  

Hence, the final expression for BERRayleigh, the average bit-error rate for a Rayleigh fading

wireless channel, can be derived in terms of the baseband SNR of the communication system

as

BERRayleigh =
1

2

⎛
⎝1−

$
μ
2$

1 + μ
2

⎞
⎠ =

1

2

 
1−

%
SNR

2+ SNR

 
(3.9)

In the next example, we illustrate an application of this result.

EXAMPLE 3.5

Compare the BER for BPSK transmission at SNR dB = 10 dB over a Rayleigh fading

wireless channel with that of the wireline AWGN channel.

Solution: The SNR dB = 10 dB corresponds to SNR = 10. Hence, from the above discussion,

BERRayleigh =
1

2

 
1−

%
SNR

2 + SNR

 
=
1

2

 
1−

%
10

12

 
= 4.4× 10−2

Comparing this with the corresponding BER for the wireline channel derived previously, it

can be seen that the BER for the fading wireless channel is approximately 100 times higher

compared to the wireline channel. This illustrates the serious challenge in achieving reliable

communication over wireless communication systems. This stark difference in the BER of

communication over these channels can be visually seen in Figure 3.5. The reason for this can
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be better understood from the following section on the high SNR behaviour of the bit-error

rate of the wireless channel.

10 20 30 40 50
10-8

SNR (dB)

B
E

R

BER vs. SNR for Rayleigh fading wireless and wireline channels

10-6

10-4

10-2

Rayleigh, Simulation

Rayleigh, Theory

Wireline, Simulation

Wireline, Theory

Figure 3.5 BER of BPSK detection over a Rayleigh fading wireless channel. The term ‘theory’ in
the legend refers to the theoretical value of BER obtained from the expression in Eq. (3.9)

3.5.3 Rayleigh BER at High SNR

It is instructive to study the behaviour of the above Rayleigh BER under high SNR conditions.

As system SNR→∞, the BER expression in Eq. (3.9) can be simplified as
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BERRayleigh =
1

2

 
1−

%
SNR

2 + SNR

 
=
1

2

⎛
⎝1− 1$

1 + 2
SNR

⎞
⎠

≈ 1
2

*
1−

 
1− 1

2

 
2

SNR

  +

=
1

2 SNR
(3.10)

Thus, surprisingly, at high SNR, the BER of a wireless fading channel decreases at a very

slow rate of 1
SNR compared to that of a wireline channel with decreases exponentially as

e−
SNR
2 as illustrated previously. Thus, this naturally results in a very high BER for the wireless

communication system. This concept is more lucid from Example 3.6.

EXAMPLE 3.6

Compute the SNR dB required to achieve a bit-error rate of 10−6 over a Rayleigh fading

wireless channel.

Solution: To compute this, one can use the high SNR approximation for the wireless BER in

Section 3.5.3. We, therefore, have,

1

2 SNR
≈ 10−6 ⇒ SNR =

1

2
× 106

Converting the above SNR to the dB scale, we have the required SNR dB = 57 dB. Comparing

the above SNR with that required to achieve a similar BER of 10−6 over the wireline channel,

one can readily observe that the SNR required for a Rayleigh fading wireless channel is

approximatley 57− 13 = 44 dB higher. Thus, the SNR required for the Rayleigh wireless

channel is significantly higher compared to that required for a wireline channel. The same is

confirmed from Figure 3.5, which compares the BER for the wireline AWGN and Rayleigh

fading wireless channel. It can be seen therein that for a given SNR, the BER of a Rayleigh

fading wireless link is significantly higher compared to that of the conventional wireline

channel.
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3.6 Intuition for BER in a Fading Channel

Consider again the baseband wireless system model described as

y(k) = hx (k)    
signal

+n (k)    
noise

Recall that the signal power in the above system is |h|2 P , while the noise power is σ2
n. Due to

the random nature of the fading coefficient h, the received signal power |h|2 P is variable. In

the adverse scenario that the received signal power |h|2 P is lower than the noise power, i.e.,

|h|2 P = a2P < σ2
n, the BER of the system will be significantly high. Such a system can be

considered to be in a deep fade, i.e.,

Deep fade ⇒ a2P < σ2
n

⇒ a <

%
σ2
n

P
=

1√
SNR

One can compute the probability of this deep fade event as follows.

PDeep fade = P

 
a <

1√
SNR

 

=

 1√
SNR

0
fa (a) da

=

 1√
SNR

0
2ae−a

2

da

At high SNR, 1√
SNR
≈ 0. Hence, the quantity e−a

2 ≈ 1. Employing this approximation, the
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above integral can be readily simplified as

PDeep fade ≈
 1√

SNR

0
2ada

= a2
  1√
SNR

0

=
1

SNR

Therefore, the probability that the system is in a deep fade is 1
SNR , which is proportional to

the BER for the fading wireless channel, i.e., 1
2SNR . This remarkable observation essentially

implies that the significant adversity for communication across a wireless channel is the

random variation in the received signal power due to the fading process. The BER is basically

the probability that the system is in a deep fade, implying that whenever the system is in a

deep fade, which occurs with probability of 1
SNR , the entire stream of bits is received with an

extremely high percentage (roughly 50% as shown by the factor of 1
2 in BER) of bit errors.

Hence, it is extremely critical to combat these ill effects of fading over the wireless channel.

Thus, it can be readily seen from the above examples that the fading nature of the wireless

channel results in an extremely high BER and poor quality of communication. Lowering the

BER and enhancing the reliability of data transmission over the fading wireless channel is

the central focus of our study in wireless communications. In this context, the topic discussed

next, i.e., diversity, plays a fundamental role of overcoming the ill effects of the fading wireless

channel and forms the bedrock of techniques designed to achieve high data rates in the wireless

system.

3.6.1 A Simpler Derivation of Approximate Rayleigh BER

A simple derivation compared to the elaborate one in Section 3.5.2 for the approximate BER

over a Rayleigh fading wireless channel is given below. Towards this end, one can employ the

Chernoff bound for the Gaussian Q (x) function, which states

Q (x) ≤ 1
2
e−

1
2
x2

The student is guided towards a proof of the above result in Problem 4 of Section 3.12. Using

this result, the instantaneous BER of the wireless channel from Eq. (3.8) can be upper bounded



46 Principles of Modern Wireless Communication Systems

as

BER (a) = Q
,√
a2SNR

-
≤ 1
2
e−

1
2
a2SNR

Averaging the above quantity over the Rayleigh distribution fA (a) of the Rayleigh wireless

channel, the average BER for the Rayleigh fading wireless channel can be upper bounded as

BERRayleigh ≤
 ∞

0

1

2
e−

1
2
a2SNR2ae−a

2

da

=
1

2

 ∞
0
2ae−a

2(1+SNR
2 ) da

= −1
2

1

1 + SNR
2

e−a
2(1+SNR

2 )
   ∞
0

⇒ BERRayleigh ≤ 1

2 + SNR
(3.11)

As can be readily observed, the above bound for the probability of bit error for BPSK is similar

to the high SNR approximation of the BER derived in Eq. (3.10). In fact, at very high SNR,

i.e., as SNR→∞, the above bound can be simplified as 1
SNR , which is similar to the one in

Eq. (3.10) in that the bit-error rate decreases at the rate of 1
SNR .

3.7 Channel Estimation in Wireless Systems

Consider again the wireless channel model given as

y(k) = hx(k) + n(k)

where h is the flat-fading channel coefficient. The estimate x̂ (k) of the symbol x (k) can then

be recovered from y (k) simply as x̂ (k) = 1
hy (k). This is termed the zero-forcing receiver

in wireless system. It can be seen now that in order to detect the transmitted symbol x (k)

at the receiver, one needs to know the channel coefficient h. The process of computing this

channel coefficient h at the wireless receiver is termed channel estimation and is an important

procedure in every wireless communication system. A popular scheme for estimating the

wireless channel is through the transmission of pilot or training symbols. Pilot symbols are
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a predetermined fixed set of symbols which are transmitted over the wireless channel. This

set of symbols is known to the wireless receiver as it is programmed beforehand. The receiver

observes the outputs corresponding to the transmitted pilot symbols and with knowledge of the

transmitted pilot symbols, proceeds to estimate the unknown fading channel coefficient. This

procedure for pilot-based channel estimation is described below.

Consider the transmission of L(p) pilot symbols x(p) (1) , x(p) (2) , . . . , x(p)
 
L(p)

 
for the purpose of channel estimation. Let the corresponding received outputs be

y(p) (1) , y(p) (2) , . . . , y(p)
 
L(p)

 
, i.e., each y(p) (k) , 1 ≤ k ≤ L(p) is the output correspond-

ing to the transmitted pilot symbol x(p) (k). The model for these received pilot symbols is

given as

y(p) (k) = hx(p) (k) + n (k)

To simplify the derivation below, let us assume for the moment that all the quantities

y(p) (k) , x(p) (k), n (k) and the channel coefficient h are real. Due to the presence of noise

n (k) in the above system, it is clear that y (k)  = hx (k) for any k. Thus, one has to determine

an estimate of h from the noisy observation samples y (k). Intuitively then, a reasonable

estimate ĥ of h can be derived as a minimizer of the cost function

ĥ = argmin
h

!,
y(p) (1)− hx(p) (1)

-2
+
,
y(p) (2)− hx(p) (2)

-2

+ . . .+
,
y(p)

,
L(p)

-
− hx(p)

,
L(p)

--2
"

=
L 
k=1

,
y(p) (k)− hx(p) (k)

-2

    
ξ(h)

The above minimization aims to find the best estimate of h which corresponds to the

lowest observation error ξ (h) and is, hence, termed the least-squares estimate. Naturally, the

convenient way to minimze the error function ξ (h) above is to differentiate it and set it equal
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to zero. This procedure yields

dξ (h)

dh
=

L 
k=1

2
,
y(p) (k)− hx(p) (k)

-,
x(p) (k)

-

0 =

L 
k=1

x(p) (k)
,
y(p) (k)− ĥx(p) (k)

-

⇒ ĥ =

 L
k=1 y

(p) (k) x(p) (k) L
k=1

 
x(p) (k)

 2 (3.12)

Thus, one can compute the channel estimate ĥ of the fading channel coefficient h. Let us now

derive a more elegant matrix-based framework to derive the result above. The vector model for

the pilot-symbol transmission reception is given as

⎡
⎢⎢⎢⎢⎢⎣
y(p) (1)

y(p) (2)
...

y(p)
 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
y(p)

= h

⎡
⎢⎢⎢⎢⎢⎣
x(p) (1)

x(p) (2)
...

x(p)
 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
x(p)

+

⎡
⎢⎢⎢⎢⎢⎣
n (1)

n (2)
...

n
 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
n

Hence, the vector model for the above system can be comprehensively given as

y(p) = hx(p) + n

where y(p),x(p),n are L(p) dimensional vectors. The least-squares estimate of the channel

coefficient h given as

ĥ = argmin
h

000y(p) − hx(p)
0002

= argmin
h

!,
y(p) − hx(p)

-T ,
y(p) − hx(p)

-"

= argmin
h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
,
y(p)

-T
y(p) − 2

 ,
x(p)

-T
y(p)

 
h+

 ,
x(p)

-T
x(p)

 
h2

    
ξ(h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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As illustrated previously, to minimize the observation error, one can now differentiate the above

cost function ξ (h) and set it equal to zero, to compute the estimate ĥ as

dξ (h)

dh
= −2

 ,
x(p)

-T
y(p)

 
+ 2

 ,
x(p)

-T
x(p)

 
ĥ

⇒ 0 = −2
 ,

x(p)
-T

y(p)

 
+ 2

 ,
x(p)

-T
x(p)

 
ĥ

ĥ =

 
x(p)

 T
y(p) 

x(p)
 T

x(p)

=

 L
k=1 y

(p) (k)x(p) (k) L
k=1

 
x(p) (k)

 2
which is identical to the expression derived above in Eq. (3.12). Further, one can now easily

derive the expression for the channel estimation for complex numbers h, x(p) (k) , y(p) (k) by

simply replacing the transpose operator above with the Hermitian operator. Hence, the general

expression for the channel estimate ĥ when the various quantities are complex numbers is

given as

ĥ =

 
x(p)

 H
y(p) 

x(p)
 H

x(p)
=

 
x(p)

 H
y(p)00x(p)
002 (3.13)

EXAMPLE 3.7

Below are the vectors x(p), y(p) corresponding to the transmitted pilot symbols and received

outputs respectively across the standard Rayleigh fading wireless channel (Single Rx/Tx

antenna) as per the channel estimation model discussed above.

y(p) =

⎡
⎢⎢⎢⎢⎢⎣
−0.7850+ j0.3631
0.4072 + j0.7757

0.8004− j0.4359
0.4464 + j0.8222

⎤
⎥⎥⎥⎥⎥⎦ , x

(p) =
1√
2

⎡
⎢⎢⎢⎢⎢⎣
−1 + j
1 + j

1− j
1 + j

⎤
⎥⎥⎥⎥⎥⎦

Given that the noise is AWGN, what is the estimate of the fading channel coefficient h?
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Solution: As can be observed, the number of pilot symbolsL(p) = 4. Further, pilot symbols and

received outputs are complex in nature, corresponding to a complex baseband representation of

the wireless communication system. The estimate ĥ of the channel coefficient can be computed

using Eq. (3.13) above. The quantity
 
x(p)

 H
x(p) can be simplified as,

x(p)
-H

x(p) =
000x(p)

0002

=
1

2

 
|−1 + j|2 + |1 + j|2 + |1− j|2 + |1 + j|2

 
= 4

Also, the numerator quantity
 
x(p)

 H
y(p) can be computed as,

x(p)
-H

y(p) = 3.4195 + j1.0824

Hence, the channel estimate is given as

ĥ =
3.4195+ j1.0824

4
= 0.8549+ j0.2706

3.8 Diversity in Wireless Communications

The theory of diversity lies at the heart of all modern wireless communication theory and

technologies. It is by far the best tool available to combat the effects of multipath fading in a

wireless channel and thereby ensure reliable communication. As seen in the previous chapter,

the probability of bit-error (BER) in a typical wireless fading channel for BPSK transmission

at a reasonably high SNR of 13–14 dB can be as high as 10−1, thus raising the spectre of an

extremely error-prone communication system. Diversity techniques can be employed in such

scenarios to substantially improve the reliability of wireless communication, while reducing

the BER as will be elaborated in the sections below.

Diversity is based on the simple fact that independent wireless channels experience

randomly independent levels of fading. Hence, the probability that multiple independent

wireless channels are simultaneously in a deep fade is drastically lower compared to that of

a single fading channel. One can, therefore, significantly improve the reliability of symbol

detection by simultaneously transmittingmultiple versions of the same information signal over

a set of independent fading channels.
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Transmitter Receiver

Single link wireless Wireless system with DIVERSITY

Deep fade

Functioning link

Figure 3.6 Schematic of diversity-based wireless system

At the receiver, these signals can then be judiciously combined using appropriate schemes

to maximize the reliability of symbol detection. This key principle behind diversity is

schematically represented in Figure 3.6. Observe that the wireless system on the left fails

because of the single link in deep fade. However, the diversity-based system, which operates

on four parallel links in the above example, is able to operate even with two links in a deep

fade. Hence, the philosophy of diversity can, therefore, be stated concisely as

“transmission of multiple copies of the information signal over independent

channels, thereby substantially reducing the chance of information loss due

to the erratic nature of the wireless channels which causes any one or a subset

of these channels to be in a deep fade”.

A typical example of such a diversity-based system is the multiple receive antenna wireless

system, also termed the Single-Input Multiple-Output (SIMO) wireless system, schematically

shown in Figure 3.7. The single transmit antenna in this system is denoted by Tx #1, while

the L receive antennas are denoted by Rx #i, 0 ≤ i ≤ L. In this system, there is a wireless

link between the transmit antenna and each of the receive antennas, thus accounting for a

total of L links between the transmitter and receiver. Hence, naturally, such a system is a

diversity-based wireless system. In the next section, we describe in detail the functioning of

such a multi-antenna system and analyze its performance in the context of diversity.

3.9 Multiple Receive Antenna System Model

We start the diversity analysis of the multi-antenna system by initially developing an analytical

model for the system illustrated in Figure 3.7.
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Figure 3.7 Schematic of multiple receive antenna wireless system

Consider the transmission of a BPSK data symbol x (k) at the time instant k from the single

transmit antenna, i.e., Tx #1. If each symbol is of average power P , it naturally follows that

x (k) = ±√P , where a transmission of +
√
P , −√P corresponds to the information bits 1, 0

respectively. Since there are L receive antennas, there is correspondingly a wireless channel

between the transmit antenna and each receive antenna, i.e., L channels in total over which the

signal is received at the receiver. Let the channel coefficient between the transmit antenna and

the ith receive antenna be denoted by hi, which is the complex Rayleigh fading coefficient.

Hence, yi (k), the signal at the receiver over the i
th antenna can be expressed as

yi (k) = hix (k) + ni (k)

where ni (k) is the additive white Gaussian noise of variance, i.e., power σ
2
n at the ith receive

antenna. Hence, the complete set of signals received at the receiver over the L antennas can be

represented conveniently in vector form as

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 (k)

y2 (k)

...

yL (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1

h2

...

hL

⎤
⎥⎥⎥⎥⎥⎥⎦x (k) +

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 (k)

n2 (k)

...

nL (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.14)
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One can now use the following vector notation to elegantly capture the multi-antenna receiver

wireless communication system.

y (k) =

⎡
⎢⎢⎢⎢⎢⎣
y1 (k)

y2 (k)
...

yL (k)

⎤
⎥⎥⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎢⎢⎣
h1

h2

...

hL

⎤
⎥⎥⎥⎥⎥⎦ , n (k) =

⎡
⎢⎢⎢⎢⎢⎣
n1 (k)

n2 (k)
...

nL (k)

⎤
⎥⎥⎥⎥⎥⎦ (3.15)

Basically, the vector quantities y (k) ,h,n (k) denote the L-dimensional received signal,

multiple antenna channel and receiver noise samples respectively. Thus, one can compactly

represent the multiple-receive antenna wireless system model as

y (k) = hx (k) + n (k)

In the rest of the book, we use the notation y ∈ CL×1 to denote the fact the y is an

L-dimensional vector with complex entries. Similarly, we have, h, n (k) ∈ Cn×1. Finally, note

that we employ boldfaced small letters such as a,b,n, etc., to represent vectors. In addition,

we make the reasonable assumption that these noise samples across the different antennas

are independent, i.e., E {ni (k)nj (k)} = 0 for i  = j. This can also be represented using the

covariance matrixRn of the noise vector n (k) defined as

Rn = E
 
n (k)nH (k)

 

= E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣
n1 (k)

n2 (k)
...

nL (k)

⎤
⎥⎥⎥⎥⎥⎦
1
n∗1 (k) n

∗
2 (k) . . . n

∗
L (k)

2
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
 
|n1 (k)|2

 
E {n1 (k)n

∗
2 (k)} . . . E {n1 (k)n

∗
L (k)}

E {n2 (k)n
∗
1 (k)} E

 
|n2 (k)|2

 
. . . E {n2 (k)n

∗
L (k)}

...
...

. . .
...

E {nL (k) n∗1 (k)} E {nL (k)n∗L (k)} . . . E
 
|nL (k)|2

 

⎤
⎥⎥⎥⎥⎥⎥⎦



54 Principles of Modern Wireless Communication Systems

=

⎡
⎢⎢⎢⎢⎢⎣
σ2
n 0 0 . . . 0

0 σ2
n 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . σ2
n

⎤
⎥⎥⎥⎥⎥⎦

= σ2
nIL

This shows that the noise covariance of the noise vector consisting of IID noise components of

power σ2
n is given as Rn = σ

2
nI, i.e., it is proportional to the L× L identity matrix.

3.10 Symbol Detection in Multiple Antenna Systems

Consider the signal y1 (k) , y2 (k) , ..., yL (k) received over the L receive antennas at the time

instant k. These can now be employed at the receiver for detection of the transmitted symbol

x (k). For this purpose, we combine the received signals with complex weightsw1, w2, . . . , wL

as follows:

r (k) = w∗1y1 + w
∗
2y2 + . . .+w

∗
LyL

where w∗i denotes the complex conjugate of wi and r (k) is termed the decision statistic that is

formed from the received signals. Defining the vector w ∈ CL×1 as

w =

⎡
⎢⎢⎢⎢⎢⎣
w1

w2

...

wL

⎤
⎥⎥⎥⎥⎥⎦

it can be easily seen that the receiver statistic r (k) can be compactly expressed in vector form

as

r (k) =
1
w∗1 w

∗
2 . . . w

∗
L

2
⎡
⎢⎢⎢⎢⎢⎣
y1 (k)

y2 (k)
...

yL (k)

⎤
⎥⎥⎥⎥⎥⎦
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= wHy (k) ,

= wH (hx (k) + n (k))

= wHhx (k)    
Signal

+wHn (k)    
Noise

where wH represents the Hermitian transpose of the vector w. The weight vector w is also

termed the receive beamformer at the wireless receiver. As given above, the signal and noise

components of the received statistic are given aswHhx (k) andwHn (k) respectively. Hence,

the signal power is given as

Signal power = E
   wHhx (k)

  2 =   wHh
  2 E (x (k))2 =   wHh

  2 P
Next, we need to compute the noise power to characterize the signal-to-noise power ratio of

the receiver statistic. This is computed as follows.

Noise power = E
   wHn (k)

  2 = E
⎧⎨
⎩
     
L 
i=1

w∗ini

     
2
⎫⎬
⎭

= E

⎧⎨
⎩
 

L 
i=1

w∗ini

 ⎛⎝ L 
j=1

w∗jnj

⎞
⎠∗
⎫⎬
⎭

= E

⎧⎨
⎩

L 
i=1

L 
j=1

wiw
∗
jnin

∗
j

⎫⎬
⎭ =

L 
i=1

L 
j=1

wiw
∗
jE
 
nin
∗
j

 

Recall now that the noise samples n1 (k) , n2 (k) , . . . , nL (k) are independent with noise

power σ2
n. Hence, we have E

 
ni (k)n

∗
j (k)

 
= δ (i− j)σ2

n, i.e., E
 
ni (k) n

∗
j (k)

 
= σ2

n

only if i = j and 0 if i  = j. The noise power can, therefore, be simplified as

Noise power =

L 
i=1

L 
j=1

δ (i− j)wiw∗jσ2
n =

L 
i=1

wiw
∗
iσ

2
n

= σ2
n

L 
i=1

|wi|2 = σ2
n  w 2

= σ2
nw

Hw
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The above can also be derived conveniently using the noise-covariance matrix Rn defined

above as

Noise power = E
   wHn (k)

  2 = E  wHn (k)
  
wHn (k)

 H 
= E

 
wHn (k)nH (k)w

 
= wHE

 
n (k)n (k)H

 
w

= wHRnw = wHσ2
nIw

= σ2
nw

Hw = σ2
n  w 2

Hence, the noise power at the output corresponding to the receive beamformer w is equal to

σ2
n  w 2. Therefore, the signal-to-noise power ratio at the output of the beamformer is given

as

SNR (w) =

  wHh
  2 P

wHwσ2
n

=

 
P

σ2
n

   wHh
  2

wHw

We wish to now find the optimum beamformer w such that the output SNR is maximized.

Firstly, observe that scaling the beamformer w by a constant C leaves the SNR unchanged.

This can be observed by substituting w̃ = Cw in the above expression. One can see,

SNR (w̃) =

 
P

σ2
n

   w̃Hh
  2

w̃Hw̃
=

 
P

σ2
n

    (Cw)H h

   2
(Cw)H (Cw)

=

 
P

σ2
n

 |C|2   wHh
  2

|C|2 wHw
=

 
P

σ2
n

   wHh
  2

wHw

Hence, to fix the scale of the beamformer w, one can restrict the choice of beamformers such

that  w 2 = 1. The optimal SNR maximizing beamformer computation, therefore, reduces to,

max .

 
P

σ2
n

   wHh
  2 s.t.  w 2 = 1

where "s.t." is the acronym for subject to and denotes the constraint for the opti-

mization problem. Observe that from the standard Cauchy–Schwarz inequality, we have  wHh
  2 ≤  w 2  h 2 =  h 2, with equality only if w = 1

 h h. This is more intuitively

illustrated in Example 3.8. Further, the maximum SNR is given as

SNRmax = SNR

 
1

 h h
 
=

 
P

σ2
n

     1 h hHh
    2 =

 
P

σ2
n

 
 h 2
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The optimal beamformerwopt =
1
 h h is termed theMaximal Ratio Combiner (MRC) and this

beamforming technique is termed maximal ratio combining. The beamforming step is a key

step to achieving high SNR over a multi-antenna wireless link.

Observe that the MRC beamformer wopt = Ch, where the constant of

proportionality C = 1
 h . Hence, this is a vector matched to the direction

of h, similar to the concept of a matched filter in the receiver of a digital

communication system. In fact, one can term the MRC beamformer as a

spatiallymatched filter.

EXAMPLE 3.8

Given the multi-antenna wireless channel h, prove that of all the beamformers w such that

 w = 1, the one that maximizes
  wHh

  isw = h
 h .

Solution: Consider any beamformer w. Since any two vectors uniquely define a plane,

consider the plane formed by the vectors w, h. From a basic undergraduate level knowledge

of the properties of vectors, it is clear that any vector w can be decomposed as the linear

combination of uh,vh, which are unit vectors along the direction of h and perpendicular to

h. This is illustrated graphically in Figure 3.8. Also note that the unit vector in the direction

of h is u = h
 h . Thus, let this linear combination be described as

w = αuh + βvh

where α, β are the coefficients of linear combination. Observe further that since uh,vh are

perpendicular. Hence,  w 2 = |α|2 + |β|2. Further, since  w 2 = 1, we have
|α|2 + |β|2 = 1

⇒ |α|2 ≤ 1
The expression forwHh can now be simplified as

wHh = (αuh + βvh)
H
h
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= α∗ (uh)
H
h+ β∗ (vh)

H
h

= α∗ (uh)
H
h+ 0

= α∗  h 
where we have used the fact that vHh h = 0, since vh is perpendicular to h. Also, (uh)

H
h =

hH

 h h =  h . Therefore,
  wHh

  2 is given as  wHh
  2 = |α∗  h |2
= |α|2  h 2

≤  h 2

where the last inequality follows from the fact derived above that |α|2 ≤ 1. Thus the maximum

value above occurs for α = 1, which implies that β = 0, since |α|2 + |β|2 = 1. Thus, the
beamformer that maximizes

  wHh
  , in turn maximizing the receive SNR is given as

w = uh =
1

 h h

proving the desired result.

Figure 3.8 Plane containingw the beamformer and h, the multi-antenna channel
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EXAMPLE 3.9

Maximum Ratio Combining Consider an L = 2 receive antenna wireless channel with

complex fading channel coefficients h1 =
1√
2
+ 1√

2
j, h2 =

1√
2
− 1√

2
j. Describe the system

model for the multi-antenna channel and derive the SNR with MRC.

Solution: Given the channel coefficients h1, h2, the system model for the received outputs

y1, y2 at the two receive antennas is given as

⎡
⎣ y1 (k)
y2 (k)

⎤
⎦ =

⎡
⎣ 1√

2
+ 1√

2
j

1√
2
− 1√

2
j

⎤
⎦

    
h

x (k) +

⎡
⎣ n1 (k)

n2 (k)

⎤
⎦

Observe that |h1| = |h2| =
%,

1√
2

-2
+
,

1√
2

-2
= 1. Hence, we have,  h =$

|h1|2 + |h2|2 =
√
2. Hence, the SNR maximizing maximum ratio beamformer for the

above system is given as

w =
1

 h =
1√
2

⎡
⎣ 1√

2
+ 1√

2
j

1√
2
− 1√

2
j

⎤
⎦ =

⎡
⎣ 1

2 +
1
2j

1
2 − 1

2j

⎤
⎦

Therefore, wH =
3

1
2 − 1

2j,
1
2 +

1
2j
4
. The receiver statistic r (k) computed at the receiver is,

therefore, given as

r (k) = wHy =

* 
1

2
− 1
2
j

 
,

 
1

2
+
1

2
j

 +⎡⎣ y1 (k)
y2 (k)

⎤
⎦

=

 
1

2
− 1
2
j

 
y1 +

 
1

2
+
1

2
j

 
y2

Finally, since  h 2 = 2, the SNR after MRC is given as SNRMRC =  h 2 P
σ2n
= 2 Pσ2n

.
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3.11 BER in Multi-Antenna Wireless Systems

Continuing the above discussion, let the quantity g denote the channel power gain, i.e.,

g =  h 2 = |h1|2 + |h2|2 + . . .+ |hL|2 (3.16)

As seen above, the SNR after MRC is given as SNRMRC =  h 2 P
σ2n
= g P

σ2n
. It can be

demonstrated that the quantity g is a chi-squared random variable with 2L degrees of freedom

and probability density given as

fG (g) =
1

(L− 1)!g
L−1e−g

Hence, the instantaneous bit-error rate of this multi-antenna wireless channel is given as

BER = Q
,$

g Pσ2n

-
. The average bit-error rate can then be obtained by averaging over the

distribution of the channel coefficient fG (g) as

BERMulti-Antenna =

 ∞
0
Q

 #
g
P

σ2
n

 
fG (g) dg

Since the exact computation of the above expression for BER is quite complex, we will skip

it here. The final expression for the BER of this multi-antenna wireless system with MRC

combining is given as

BERMulti-Antenna =

 
1− λ
2

 L L−1 
l=0

L+l−1Cl

 
1 + λ

2

 l

(3.17)

where the quantity λ is defined as λ =
$

SNR
2+SNR , with SNR denoting the average receiver SNR

for each link given by P
σ2n

and nCk =
n!

k!(n−k)! . Notice that for L = 1, i.e., the case with a single

receive antenna, the above expression reduces to

BER =

 
1− λ
2

 1 0 
l=0

0Cl

 
1 + λ

2

 l

=
1

2
(1− λ)

=
1

2

 
1−

%
SNR

2 + SNR
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which is the exact same expression that has been derived for the Rayleigh fading wireless

channel with a single receive antenna in Eq. (3.9). It has already been noted in Eq. (3.10) that

at high SNR 1
2 (1− λ) ≈ 1

2
1

SNR . Further, the quantity
1
2 (1 + λ) can be simplified at high SNR

as

1

2
(1 + λ) =

1

2

 
1 +

%
SNR

2 + SNR

 
=
1

2

 
1 +

1 
1 + 2

SNR

 1
2

 

≈ 1
2

 
1 +

 
1− 1

2

2

SNR

  
=
1

2

 
2− 1

SNR

 

≈ 1
2
.2 = 1

The above simplifications imply that at high SNR, the BER in a multi-antenna wireless system

can be simplified as

BERMulti-Antenna =

 
1− λ
2

 L L−1 
l=0

L+l−1Cl

 
1 + λ

2

 l

=

 
1

2 SNR

 L L−1 
l=0

L+l−1Cl

= 2L−1CL

 
1

2

 L 
1

SNR

 L

(3.18)

Recall from the expression (3.10) that the BER for a single-antenna Rayleigh fading wireless

channel decreases at a very slow rate of 1
SNR . As the above expression shows, the BER in

a multi-antenna channel decreases at a much faster rate of
 

1
SNR

 L
. The following example

illustrates this point much more clearly.

EXAMPLE 3.10

Compute the BER for BPSK communication over a multi-antenna fading wireless channel

with L = 4 receive antennas at an SNR of 20 dB.

Solution: Given SNR (dB) = 20 dB, the corresponding linear SNR is given as

SNR = 102 = 100. The parameter λ can, therefore, be computed as

λ =

%
SNR

2 + SNR
=

%
100

102
= 0.9901
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Hence, the quantities 1
2 (1− λ) and 1

2 (1 + λ) are given as 0.0049 and 0.9951 respectively.

Hence, the BER for the above multichannel system is given from the expression (3.17) as

BER = (0.0049)4
,

3C0 (0.9951)
0 + 4C1 (0.9951)

1 + 5C2 (0.9951)
2 + 6C3 (0.9951)

3
-

= 2.037× 10−8

In comparison, observe that the corresponding BER at SNR = 20 dB for the conventional

wireline AWGN channel is Q
,√
SNR

-
= Q (10) = 7.62× 10−24 and that of the single

receive antenna Rayleigh fading wirless link is 1
2

,
1−

$
SNR

2+SNR

-
= 4.9× 10−3. Hence, the

BER for the multi-antenna system is worse than that of a wireline channel, but significantly

better than that of the single antenna wireless channel.

EXAMPLE 3.11

Consider a multi-antenna system with L = 2 receive antennas. What is the approximate

SNR required to achieve a BER of 10−6 in this wireless system?

Solution: From the high SNR approximation for the BER in a multi-antenna wireless system

given in Eq. (3.18), to achieve a BER of 10−6 in an L = 2 antenna system, we have,

10−6 = 3C2

 
1

2

 2  
1

SNR

 L
=
3

4

1

SNR2

SNR =

√
3

2
× 103

SNR dB = 29.37 dB

Recall from Example 3.6 that the SNR required to achieve a similar BER across the Rayleigh

fading wireless channel is 57 dB. Thus, increasing the number of antennas to L = 2 results

in a humungous saving of transmit power by approximately 57 dB − 29 dB = 28 dB. To see
this explicitly, let Pw

i , i = 1, 2 denote the transmit power required to achieve a BER of 10−6

with i receive antennas. Then, from the above analysis, we have
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10 log10

 
Pw

1

Pw
2

 
= 28 dB

⇒ Pw
2

Pw
1

= 102.8 = 631

⇒ Pw
2 =

Pw
1

631

Thus, the transmit power required for a similar BER withL = 2 transmit antennas is 631 times

lower compared to the single-antenna fading-channel scenario.

The BER vs SNR for L = 1, 2, 4, 8 receive antenna Rayleigh fading systems, obtained from

simulations and the theoretical BER expression in Eq. (3.17), is shown in Figure 3.9. Observe

that the BER obtained analytically matches closely with that obtained from simulations. As

the number of receive antennas increases significantly, it improves the BER performance of the

10 20 30 40 50 60

10-1

SNR (dB)

B
E

R

L = 1, Simulation

L = 1, Theory

L = 2, Simulation

L = 2, Theory

L = 4, Simulation

L = 4, Theory

L = 8, Simulation

L = 8, Theory

BER vs SNR for varying number of receive antennas

10-2

10-3

10-4

10-5

10-6

Figure 3.9 BER of multi-antenna Rayleigh channel. The term ‘theory’ in the legend refers to the
theoretical value of BER obtained from the expression in Eq. (3.17)
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wireless channel. This phenomenon of enhancing the reliability of the wireless communication

system through transmission of signal copies over multiple independently fading wireless

channels is termed diversity. In this case, the multiple fading channels correspond to the

individual wireless links between the transmit antenna and the multiple receive antennas. This

specific realization of diversity is termed receive diversity or also spatial diversity since it is

arising due to the spatially separated antennas. Receive diversity is an important technique in

3G/4G wireless communication systems and is employed in all key wireless standards such as

WCDMA, HSDPA, LTE, WiMAX amongst others.

3.11.1 A Simpler Derivation of Approximate Multi-Antenna BER

Similar to the derivation of the simple bound for the Rayleigh single antenna BER in

Section 3.6.1, one can derive a simple bound for the multi-antenna Rayleigh BER as

BERMulti-Antenna =

 ∞
0
Q
,5

gSNR
-
fG (g) dg

≤
 ∞

0

1

2
e−

1
2
gSNRfG (g) dg

Now we point the reader to two observations. Firstly, recall that the gain g of the wireless

channel is defined as g =
 L

i=1 |hi|2 =
 L

i=1 a
2
i , where ai = |hi|. Secondly, since the fading

channels across the antennas in the system are assumed to be independent, the amplitude

gains ai, 1 ≤ i ≤ L are independent Rayleigh distributed. Hence, the probability distribution

fA1,A2,...,AL (a1, a2, . . . , aL) can be simplified as

fA1,A2,...,AL (a1, a2, . . . , aL) = fA1 (a1)× fA2 (a2)× . . .× fAL (aL)

=

L6
i=1

2aie
−a2i

where in the above simplification, we have used the simple result that the joint density of a

group of independent random variables is the product of the individual probability densities.
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Employing this result, the above bound for the multi-antenna Rayleigh BER can be simplified

as

BERMulti-Antenna ≤ 1
2

 ∞
a1=0

 ∞
a2=0

. . .

 ∞
aL=0

e−
1
2
SNR

PL

i=1 a
2
i

L6
i=1

2aie
−a2i dai

=
1

2

L6
i=1

 ∞
ai=0

e−
1
2
SNRa2i 2aie

−a2i dai

=
1

2

L6
i=1

 ∞
ai=0

2aie
−a2i(1+ 1

2
SNR) dai

=
1

2

 
1

1 + 1
2SNR

 L

Once again, as SNR→∞, the above bound can be simplified as

BERMulti-Antenna ≤ 2L−1

SNRL

which clearly indicates that the multi-antenna bit-error rate decreases as
 

1
SNR

 L
.

3.11.2 Intuition for Diversity

How does the increase in number of receive antennas to L lead to a BER decrease at rate 
1

SNR

 L
? The following discussion is intended to give the reader the key intuition behind this

finding. Consider the multi-antenna wireless system model,

y (k) = hx (k) + n (k)

As has been derived above, the signal and noise power after MRC beamforming are given as

gP, σ2
n respectively, where g =  h 2. Similar to the case of a single-antenna fading link, the

wireless system is in a deep fade if the signal power is lower than the noise power, i.e.,

gP < σ2
n

⇒ g <
σ2
n

P
=

1

SNR
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Further, recall that the gain g is a chi-squared distributed random variable with density function

given as fG (g) =
gL−1

(L−1)!e
−g . Hence, the probability that the multi-antenna system is in a deep

fade is given by the probability P
 
g < 1

SNR

 
, which is simplified as

PDeep fade = P

 
g <

1

SNR

 

=

 1
SNR

0
fG (g) dg =

 1
SNR

0

gL−1

(L− 1)!e
−g dg

At high SNR, i.e., 1
SNR ≈ 0, the term e−g ≈ 1. Hence, the above probability can be simplified

as

PDeep fade =

 1
SNR

0

gL−1

(L− 1)! dg

=
gL

L!

    
1
SNR

0

=
1

L!

 
1

SNR

 L

Hence, the probability of deep fade in the multi-antenna diversity system essentially decreases

at a rate of
 

1
SNR

 L
, which is significantly lower compared to that of a single-antenna

fading Rayleigh wireless channel. This can be better understood as follows. Consider the

single-antenna channel. This system is in a deep fade if the only pathway between the transmit

and single-receive antenna is in a deep fade. As seen earlier, the probability of this event is

∝ 1
SNR . On the other hand, in a multi-antenna wireless system, there are L pathways, one

between the transmit antenna and each of the individual receive antennas. Hence, ifEi denotes

the event that the pathway between the transmit antenna and the ith receive antenna is in a

deep fade, we have P (Ei) ∝ 1
SNR . Further, note that since there are L independent pathways,

the overall system is in a deep fade only if each of the individual pathways is in a deep fade.

Hence, the net probability of deep fade in the multi-antenna system is

PDeep fade = P (E1 ∩E2 ∩ . . . ∩ EL)
Since the channels are assumed to be independently fading, the events E1, E2, . . . , EL

are independent. From the principle of probability of independent events which states that
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P (A ∩ B) = P (A)P (B). If A,B are independent, we have

PDeep fade = P (E1 ∩E2 ∩ . . . ∩ EL)

= P (E1)× P (E2)× . . .× P (EL)

∝ 1

SNR
× 1

SNR
× . . .× 1

SNR

∝
 

1

SNR

 L
.

The probability of deep fade of the system comprising these L independently fading channels

decreases at a rate of
 

1
SNR

 L
. Thus, independence of the fading channels is a key assumptions

in achieving diversity in this multi-antenna systems. Finally, as described previously, diversity

is achieved by transmission of signal copies through parallel independent fading channels, thus

reducing the probability of deep fade, since the probability that all the L independent signal

pathways are simultaneously in a deep fade is significantly lower compared to a single-pathway

wireless system.

For the independent fading assumption to be valid in multi-antenna systems such as the one

illustrated above, one needs the antennas to be separated by an appropriately large spacing.

A popular rule-of-thumb for the minimum required antenna spacing is given as λ
2 , where λ is

the wavelength of the radio wave and is given as λ = c
fc
, the quantity fc denoting the carrier

frequency and c = 3× 108ms−1 denotes the velocity of an electromagnetic wave in free space.

EXAMPLE 3.12

Consider a GSM system operating at a carrier frequency of fc = 900 MHz. Compute the

minimum spacing required between the antennas for independently fading channels.

Solution: Given fGSM = 900MHz, the wavelength λGSM is given as

λGSM =
c

fGSM
=

3× 108

900× 106
= 0.3333m = 33.33cm

Hence, the minimum required spacing for the GSM system is given as 1
2λGSM = 16.66 cm.

Notice that this is slightly larger compared to the dimensions of most modern cellular phones.

Therefore, implementing multi-antenna systems on current GSM cellphones is intuitively not

expected to yield a significant advantage due to the correlated nature of the fading channels.
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However, it can still be implemented in larger devices such as notebook computers for

broadband wireless data access.

EXAMPLE 3.13

Compute the minimum spacing required between the antennas for independently fading

channels in a 4G system operating at a typical carrier frequency of fc = 2.3 GHz.

Solution: The wavelength λ corresponding to fc = 2.3 GHz can be computed similar to

the above as λ = c
fc
= 13.04 cm. Hence, the required antenna spacing is λ

2 = 6.04 cm.

Notice that this is in the range of the dimension of typical modern cellular phones. Thus, one

implementing multi-antenna systems in 4G devices potentially yields benefits of enhanced

performance due to diversity.

3.11.3 Channel Estimation for Multi-Antenna Systems

As given in Section 3.3, channel estimation for multi-antenna wireless systems

can be carried out similarly. Consider the transmission of L(p) pilot symbols

x(p) (1) , x(p) (2) , . . . , x(p)
 
L(p)

 
. Let y

(p)
j (i) denote the ith transmitted pilot symbol, 1 ≤

i ≤ L(p) at the jth antenna. The vector model for the same can be represented as

⎡
⎢⎢⎢⎢⎢⎣
y

(p)
j (1)

y
(p)
j (2)
...

y
(p)
j

 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
y
(p)

j

=

⎡
⎢⎢⎢⎢⎢⎣
x(p) (1)

x(p) (2)
...

x(p)
 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
x(p)

hj +

⎡
⎢⎢⎢⎢⎢⎣
nj (1)

nj (2)
...

nj
 
L(p)

 

⎤
⎥⎥⎥⎥⎥⎦

    
nj

Observe that the above model is different from the one described in Eq. (3.14), which

corresponds to the different outputs at the received antennas at a given instant of time. The

above model corresponds to the outputs at different instances of time at the jth antenna,

1 ≤ j ≤ L, where L is the number of antennas. This is naturally the case since we would like

to estimate the channel between the transmit antenna, the jth receive antenna. Hence, similar
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to Eq. (3.13), the estimate of channel coefficient hj is given as,

ĥj =

 
x(p)

 H
y

(p)
j 

x(p)
 H

x(p)
=

 
x(p)

 H
y

(p)
j00x(p)

002 (3.19)

Finally, putting all the estimated channel coefficients ĥj together for 1 ≤ j ≤ L, the estimate

ĥ of the multi-antenna channel vector is given as

ĥ =

⎡
⎢⎢⎢⎢⎢⎣
ĥ1

ĥ2

...

ĥL

⎤
⎥⎥⎥⎥⎥⎦ (3.20)

Another alternative concise formula to compute the multi-antenna channel estimate can be

derived as follows. Let the input-output system model for the received pilot symbol vectors be

given as

⎡
⎢⎢⎢⎢⎢⎣
y

(p)
1 (k)

y
(p)
2 (k)
...

y
(p)
L (k)

⎤
⎥⎥⎥⎥⎥⎦

    
y(p)(k)

=

⎡
⎢⎢⎢⎢⎢⎣
h1

h2

...

hL

⎤
⎥⎥⎥⎥⎥⎦

    
h

x(p) (k) +

⎡
⎢⎢⎢⎢⎢⎣
n1 (k)

n2 (k)
...

nL (k)

⎤
⎥⎥⎥⎥⎥⎦

    
n(k)

(3.21)

The net system model corresponding to the transmission of L(p) pilot symbols can be

compactly represented in matrix notation as

Y(p)    1
y(p) (1) ,y(p) (2) , . . . ,y(p)

,
L(p)

-2
= h

x(p)    1
x(p) (1) , x(p) (2) , . . . , x(p)

,
L(p)

-2
(3.22)

+
1
n (1) ,n (2) , . . . ,n

,
L(p)

-2
    

N(p)
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whereY(p) is the L× L(p) matrix of received pilot vectors, x(p) is the 1× L(p) row vector of

transmitted pilot symbols. Thus, the net aggregated system model for channel estimation is

Y(p) = hx(p) +N(p)

Hence, proceeding similar to the case of a single-antenna channel, the least-squares estimate

of the channel vector h is given as

ĥ =
100x(p)
002Y

(p)
,
x(p)

-H
(3.23)

The estimate of the channel coefficient ĥj from the above formula can be seen to be exactly

identical to the one obtained from Eq. (3.19).

EXAMPLE 3.14

Consider the estimation of the wireless channel coefficient vector of an L = 2 receive

antenna system, with a pilot sequence consisting of L(p) = 4 symbols. The transmitted

pilot symbols are, x(p) (1) = 1√
2
(−1 + j), x(p) (2) = 1√

2
(−1− j), x(p) (3) = 1√

2
(1 + j)

and x(p) (4) = 1√
2
(1− j). Let the corresponding received output pilot symbol vectors be

given as

y(p) (1) =

⎡
⎣ 0.3775− 0.8344i
−0.5605− 0.4712i

⎤
⎦ , y(p) (2) =

⎡
⎣ 0.7153+ 0.2142i
0.4815− 0.6657i

⎤
⎦

y(p) (3) =

⎡
⎣−0.8959− 0.3688i
−0.3678+ 0.6011i

⎤
⎦ , y(p) (4) =

⎡
⎣−0.3118+ 0.8083i
0.6195+ 0.5202i

⎤
⎦

Hence, as described in the section above for estimation of multiple-receive antenna

channels, the relevant and row vector of pilot symbols x(p) is given as

x(p) =
1√
2
[−1 + j, −1− j, 1 + j, 1− j]
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while the matrix of output symbolsY(p) is,

Y(p) =

⎡
⎣ 0.3775− j0.8344 0.7153+ j0.2142 −0.8959− j0.3688 −0.3118+ j0.8083
−0.5605− j0.4712 0.4815− j0.6657 −0.3678+ j0.6011 0.6195+ j0.5202

⎤
⎦

Finally, from the expression given in Eq. (3.23), the estimate of the channel coefficient vector

ĥ can be obtained as

ĥ =
100x(p)
002
Y(p)

,
x(p)

-H
=

⎡
⎣−0.8001+ 0.3503i

0.1071 + 0.7579i

⎤
⎦

3.12 Diversity Order

A very important concept related to diversity performance of a fading-channel-based wireless

communication system is the diversity order of BER decrease with SNR in the system. Let

Pe (SNR) give the probability of error as a function of SNR in the system. The diversity order

d of the system is defined as

d = − lim
SNR→∞

log (Pe (SNR))

log (SNR)

The diversity order d is essentially the number of independently fading channels comprising

the given system or scheme. For instance, consider the single-antenna Rayleigh fading wireless

channel. It has been demonstrated in Eq. (3.10) that the probability of bit-error at high SNR in

this system is given as Pe (SNR) ≈ 1
2SNR . Hence, the diversity order is given as

d = − lim
SNR→∞

log
 

1
2SNR

 
log (SNR)

= − lim
SNR→∞

!
− log (2)

log (SNR)
− log (SNR)
log (SNR)

"

= − lim
SNR→∞

!
− log (2)

log (SNR)

"
    

=0

+1 = 1

Consider now an L receive antenna wireless system. It has been shown earlier that the BER

of such a system at high SNR is given from Eq. (3.18) as 2L−1CL
 

1
2

 L  1
SNR

 L
. The diversity
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order of this system is, therefore, given as

d = − lim
SNR→∞

⎧⎨
⎩
log
,

2L−1CL
 

1
2

 L-
log (SNR)

− L log (SNR)
log (SNR)

⎫⎬
⎭

= − lim
SNR→∞

⎧⎨
⎩
log
,

2L−1CL
 

1
2

 L-
log (SNR)

⎫⎬
⎭    

=0

+ lim
SNR→∞

!
L log (SNR)

log (SNR)

"

= L

Hence, as expected, the diversity order of the L antenna system is L indicating the presence

of L independently fading signal copies. How about the diversity order of a wireline

communication system? Recall that the BER for communication over the wireline channel

is given as Q (SNR), which can be approximated as 1
2e
− 1
2
SNR at high SNR. The diversity

order of this system is, therefore, given as

d = − lim
SNR→∞

⎧⎨
⎩
log
,

1
2e
− 1
2
SNR

-
log (SNR)

⎫⎬
⎭ = − lim

SNR→∞

 
− log (2)

log (SNR)
−

1
2SNR

log (SNR)

 

=
1

2
lim

SNR→∞

!
SNR

log (SNR)

"

=∞
where the last equality follows from noting that limx→∞ x

log(x) =∞. Thus, the diversity order

of the wireline channel is equal to∞. What does this intuitively mean? It basically suggests

that the wirelineAWGN channel can be though of as comprising of an infinite number of fading

links. Hence, the probability that all of them are simultaneously in a deep fade is zero, thus

resulting in a perfect system not susceptible to fading. In fact, the standard wireline AWGN

channel can be though of as having a constant fading coefficient hAWGN = 1, which can never

result in a deep fade.

1. Consider a wireless signal with a carrier frequency of fc = 1800 MHz, which is

transmitted over a wireless channel that results in L = 4 multipath components at delays of
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227, 463, 942, 1783 ns and corresponding to received signal amplitudes of 1, 0.8, 0.6, 0.5

respectively. Derive the expression for the received baseband signal yb (t) if the transmitted

baseband signal is sb (t). Also, compute the channel coefficient h for this system for the

scenario that the signal sb (t) is narrowband.

2. Consider a Rayleigh fading-channel-based wireless system such that E
 
|h|2

 
= 1, where

h is the flat-fading channel coefficient. If the transmit power Pt ( dB) = 25 dB, what is the

probability that the receive power is greater than 20 dB ? Compute the same for a receive

power of 10 dB.

3. Derive the following distributions.

(a) The probability density function of the magnitude |X | of a complex circular symmetric

Gaussian random variable X with variance σ2.

(b) Let X1,X2, ...,Xn be n independent random variables each of which has an

exponential density with mean μ. Let M be the minimum value of the Xj . Compute

the density fM (m).

4. Employing the inequality t2 ≥ (t− u)2 + u2, prove that

Q (u) ≤ 1
2
e−u

2/2, foru > 0

where Q (u) is the Gaussian Q function. This is termed the Chernoff bound for the Q

function.

5. Compute the exact bit-error rates (BER) for BPSK communication over an additive

white Gaussian noise (AWGN) channel at SNRs of 15 dB, 40 dB. Also, compute the

corresponding approximate BER values employing the Chernoff bound above for the

Gaussian Q (·) function.
6. Compute the SNRs in dB required for BERs of 10−8, 10−10 for BPSK transmission over an

AWGN channel.

7. Compute the exact BERs for BPSK modulation-based communication over a Rayleigh

fading wireless channel for SNRs 15 dB, 40 dB and compare these values with the

corresponding BER values for the AWGN channel from Problem 5.

8. Compute the SNRs in dB required to achieve BERs 10−8, 10−10 over the standard Rayleigh

fading wireless channel, i.e., one for which E
 
|h|2

 
= 1 for BPSK transmission and

compare these with those corresponding to the AWGN channel from Problem 6.
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9. In this problem, we consider a scenario of Quality of Service (QoS) in wireless

communications. A wireless application across the standard Rayleigh fading wireless

channel has a maximum tolerable BER of 10−4 as the QoS constraint. What is the minimum

SNR required to support this application so as to ensure disruption-free service? Also what

is the corresponding minimum SNR for a wireline AWGN channel?

10. For the estimation of a single-antenna Rayleigh fading channel, L(p) = 4 pilot symbols

x(p) (1) = (−1 + 2j), x(p) (2) = (−2− j), x(p) (3) = (2 + j) and x(p) (4) = (1− 2j).
Let the corresponding received symbols y(p) (k) , 1 ≤ k ≤ 4 be given as y(p) (1)

= (0.4154− 1.3305j), y(p) (2) = (1.1974 + 0.5276j), y(p) (3) = (−1.2766− 0.5172j)
and y(p) (4) = (−0.3929+ 1.3551j). Compute the estimate of the flat-fading channel

coefficient h.

11. Consider an L = 3 receive antenna wireless channel with complex fading channel

coefficients h1 = 1 + 2j, h2 = 1 + j, h3 = 2− j. Describe the system model for the

multi-antenna channel and derive the SNR with MRC.

12. Consider an L = 2 multi-antenna Rayleigh fading-channel-based wireless system. If the

transmit power Pt ( dB) = 25 dB, what is the probability that the receive power is greater

than 20 dB ? Compute the same for a receive power of 10 dB. Repeat this for an L = 3

multi-antenna Rayleigh fading channel.

13. Compute the exact BERs for BPSK modulation-based communication over a L = 4

multi-antenna Rayleigh fading wireless channel for SNRs 15 dB, 40 dB and compare these

values with the corresponding BER values for the AWGN channel from Problem 5 and

single-antenna rayleigh fading channel from Problem 7.

14. Compute the approximate SNRs in dB required to achieve BERs 10−8, 10−10 over anL = 4

antenna Rayleigh fading wireless channel, i.e., one for which E
 
|hi|2

 
= 1, 1 ≤ i ≤ 4 for

BPSK transmission and compare these with those corresponding to the AWGN channel

from Problem 6 and single-antenna Rayleigh fading channel from Problem 8.

15. In Section 3.10, we demonstrated that the diversity order of MRC with L independent Rx

antennas is L. Consider a slightly different beamforming vector given as below.

we =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1
|h1 |
h2
|h2 |
...

hL
|hL |

⎤
⎥⎥⎥⎥⎥⎥⎦
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(a) The above beamforming vector is termed the equal gain combiner. Can you explain

why?

(b) Give the expression for w̃e, the above beamformer normalized to have unit norm.

(c) Employing the high SNR argument, derive the diversity order of the above system

when the receive beamformer is w̃e.

16. Similar to Problem 9, consider a scenario of Quality of Service (QoS) for the L = 2

multi-antenna Rayleigh fading wireless channel. A wireless application across the standard

Rayleigh fading wireless channel has a maximum tolerable BER of 10−4 as the QoS

constraint. What is the minimum SNR required to support this application so as to ensure

that the BER across at least one of the receive antennas is greater than this threshold?

Compare this with that of the required SNR for the single-antenna channel from Problem 9.

17. Beamforming Consider the receive (Rx) diversity system described in the class which is

given as

y(k) = hx(k) + η(k)

where y(k),h, η(k) are complex L-dimensional vectors and x(k) is the transmitted scalar

complex symbol. The signal power is E
 
|x(k)|2

 
= P and the noise η(k) is AWG with

covariance E
 
η(k)η(k)H

 
= σ2

nI. Each entry of h is IID Rayleigh with E
 
|hi|2

 
= 1.

Consider an L-dimensional complex receive beamforming vectorw applied at the receiver.

(a) For a general Rx beamformer w, elucidate the signal and noise components at the

receiver and give the expressions for the signal and noise powers after beamforming.

(b) Give the step-by-step derivation of the optimal beamformer wo that maximizes the

SNR at the receiver.

(c) Consider a system in which the receive symbol vector y is pre-processed by employing

an L× L complex unitary matrixU (i.e.,UUH = UHU = I) as ỹ = UHy. Give the

expression for the receive SNR maximizing optimal beamformer for this Rx symbol

vector and justify your answer.

18. Consider a multiple-input single-output (MISO) wireless system. Similar to the SIMO

system discussed in Section 3.9, formulate the system model for the received signal at the

receiver of an L antenna MISO system, i.e., one which has L transmit antennas and a single

receive antenna. Finally, demonstrate that transmitting the same symbol x (k) from all the

transmit antennas yields no diversity gain.
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19. Consider the estimation of the wireless channel coefficient vector of an L = 2 receive

antenna system, with a pilot sequence consisting of L(p) = 4 symbols. The transmitted pilot

symbols are, x(p) (1) = (−1 + 2j), x(p) (2) = (−2− j), x(p) (3) = (2 + j) and x(p) (4)

= (1− 2j). Let the corresponding received output pilot symbol vectors be given as

y(p) (1) =

⎡
⎣−1.3402+ 1.9184i
−2.4023− 0.5275i

⎤
⎦ , y(p) (2) =

⎡
⎣−1.8083− 1.3305i
0.6931− 2.4383i

⎤
⎦

y(p) (3) =

⎡
⎣ 1.8826+ 1.2775i

−0.7927+ 2.3148i

⎤
⎦ , y(p) (4) =

⎡
⎣ 1.2022− 1.8984i
2.4589+ 0.5834i

⎤
⎦

Compute the estimate of the channel coefficient vector h = [h1, h2]
T
.

20. SNR Requirements in Wireless Channels

(a) Derive the exact dB difference between the SNR required to achieve a Pe = 10
−2 for

BPSK in an AWGN channel and that of a Rayleigh fading wireless channel with no

Rx diversity.

(b) Consider an Rx diversity system with L = 30 receive antennas. Let the system be a

normalized one in which the average receiver SNR equals the transmit SNR. What

does that mean?Without using the high SNR Pe approximation

 
i.e.,

 
1

SNR

 L 
,

but some other intelligent approximation, compute the Pe for this system for BPSK

transmission at SNR = 3 dB.

(c) What is the approximate Pe for the same system above, but un-normalized,
i.e., E

 
|hi|2

 
= 1

-
. Again, do NOT use the high SNR approximation of 

1

SNR

 L

.

21. Consider a scheme that transmits the vector x = R [u1, u2]
T
, over two symbol times, where

R is the standard rotation matrix parameterized by θ = 30◦ and and u1, u2 are independent

BPSK symbols, each of 15 dB energy. Assume the scenario is fast fading, so that the

channel coefficients for these two symbol times are independent.This is an instance of time

diversity. Let the noise power be σ2
n =

No

2 = 3 dB. Systematically, derive the probability

of error for this system.

22. Consider the use of a differential BPSK scheme for the Rayleigh flat-fading channel in

which the transmitted symbol x (k) = u (k)x (k − 1), where each u (k) is BPSK ±1. Let
the initial transmitted symbol x (0) be

√
P .
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(a) Find a natural noncoherent scheme to detect u[m] based on y[m− 1] and y[m],
assuming the channel is constant across the two symbol times. Your scheme does not

have to be the ML detector.

(b) Analyze the performance of your detector at high SNR. You may need to make some

approximations.

(c) What is the ideal coherent detector and how does the high SNR performance of your

detector compare to that of the coherent detector?

(d) Does coherent or noncoherent detection affect the diversity order of the system?

23. BER in Fading Channels

(a) Extend the principle of noncoherent detection proposed for differential BPSK

modulated data in Problem 22 to a receiver with L receive antennas, i.e., outline the

detector operation and compute the SNR at the output.

(b) What is the diversity order of this system? Derive an approximate expression for the

BER of this system at high SNR (P/σ2
n). Assume the channels across receive antennas

to be independent Rayleigh fading channels of average power unity.

(c) Compute the approximate BER at SNR = 25 dB with an array of L = 3 receive

antennas at the receiver.

24. Answer the questions that follow:

(a) Derive the exact dB difference between the SNR required to achieve Pe = 5× 10−3

for BPSK in an AWGN channel and that of a Rayleigh fading wireless channel with

no Rx diversity.

(b) Derive the dB difference between the SNR required to achieve Pe = 5× 10−3 for

BPSK in an AWGN channel with 2 Rx antennas and that of a Rayleigh fading wireless

channel with 2 Rx antennas. You can use the approximation for BER developed in the

class for the diversity system.

(c) What is the SNR required to achieve Pe = 5× 10−3 for BPSK in a Rayleigh fading

wireless channel with 30 Rx antennas.
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25. Diversity Coding Consider a scheme that transmits the vector x = Ru, over two symbol

times, where the vector u and the matrixR are

u =

⎡
⎣ u1

u2

⎤
⎦ , R =

⎡
⎣ 1 1

2

1 1
2

⎤
⎦

and u1, u2 are BPSK symbols, each of power P . Assume the scenario is fast fading, so that

the channel coefficients for these two symbol times are independent. This is an instance of

time diversity. Let the noise power be σ2
n.

(a) Derive the confusion probability PxA→xB , where xA, xB are defined as (1.0)

xA =

⎡
⎣√P√

P

⎤
⎦ , xB =

⎡
⎣−√P√

P

⎤
⎦

(b) Employing an appropriatebound, systematically derive the probability of error for this

system.

(c) Compute this probability of error for P = 30 dB and σ2
n = 3 dB.

26. The signal constellation for MPSK has si1 =
√
P cos

1
2π(i−1)

M

2
and si2 =

√
P sin

1
2π(i−1)

M

2
for i = 1, . . . ,M . The symbol energy is Es = P and noise power is σ2. ConsiderM = 16

and answer the questions below.

(a) Find the expression for probability of symbol error Pe for this constellation in an

AWGN channel as a function of SNR = P
σ2 .

(b) Compute the above AWGN Pe for SNR = 25 dB.

(c) Find an expression for the average probability of symbol error Pe,R in a Rayleigh

fading channel with E
 
|h|2

 
= 1 as a function of SNR.

(d) Compute the above Rayleigh error rate Pe,R at SNR = 45 dB.

(e) Derive, as a function of SNR, the average probability of symbol error Pe,MRC with 2

receive antennas and MRC combining with each Rayleigh coefficient of average power

unity.

(f) Compute the above MRC error rate Pe,MRC at SNR = 30 dB.

27. Consider detecting the transmit vector u equally likely to be uA =
√
P [1, 1, 1, 1, ]T or

uB =
√
P [1, −1, 1, −1]T , where P = 40 dB. The received vector is

y = hu +w
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and w ∼ N (0, 2I) and h is Rayleigh with E
 
|h|2

 
= 5. Derive the average probability of

error for this system.

28. TheMoment-Generating Function (MGF) for a non-negative random variable γ with pdf

pγ(γ), γ ≥ 0, is defined as

Mγ(s) =

 ∞
0
pγ(γ)e

sγdγ

(a) Demonstrate that the moment-generating function of the Rayleigh random channel

with distribution 1
γs
e
− γ

γs is,

Mγ(s) = (1− sγs)−1.

(b) Derive the average BER for BPSK transmission over the Rayleigh channel employing

the moment-generating function approach. For this, you can use the alternative

definition of the Q-function,Q (x) = 1
π

7 π
2

0 exp
,
− x2

2 sin2 θ

-
dθ.

29. Consider an L = 2 receive antenna system with instantaneous channel coefficients

h1 = 2− j, h2 = 1 + 2j and BPSK modulation. Answer the questions that follow.

(a) Assuming optimal combining, compute the transmit SNR required to achieve an

instantaneous BER of 5× 10−5.

(b) If the fading coefficients are Rayleigh with average power E
 
|hi|2

 
= 3, compute the

transmit SNR required to achieve average BER 5× 10−5 with optimal combining.

(c) Considering the receiver employs sub-optimal average combining, i.e., 1
2 (y1 + y2),

compute the transmit SNR required to achieve an instantaneous BER of 5× 10−5 ?

(d) Considering the receiver employs sub-optimal mean combining, i.e., 1
2 (y1 + y2) and

that the fading coefficients are Rayleigh with average power E
 
|hi|2

 
= 3, compute

the transmit SNR required to achieve an average BER of 5× 10−5.

30. Compute the dB transmit SNR required to achieve Pe = 5× 10−4 for 8-PSK in an AWGN

channel and for a Rayleigh fading wireless channel with no Rx diversity.

31. Consider a version of the repetition code in which the transmitted symbol is

x(m) =
√
mu, where u is the BPSK symbol ±√P for 1 ≤ m ≤ L. The received symbol

y (m) = h (m)x (m) + n (m), where n (m) is AWGN of variance σ2 and h (m) is a

Rayleigh fading coefficient. Assume E
 
|h (m)|2

 
= 1 and answer the questions that

follow.
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(a) If the fading coefficient is constant over theL instants, i.e., h (m) = h for 1 ≤ m ≤ L,
derive the average BER.

(b) If the fading coefficients are uncorrelated over the L instants, derive the average BER

employing a suitable approximation.

32. The signal constellation for M -ary PAM is of the form ± (2k + 1)Δ, for

0 ≤ k ≤ M
2 − 1, where M is an even number. Consider M = 8 and assume equal

probability for transmission of each symbol to answer the questions that follow.

(a) Express the average symbol power P for the 8-ary PAM constellation above as a

function of Δ.

(b) Find the expression for the symbol error rate over an AWGN channel for the 8-ary

constellation above as a function of the average symbol power P and noise power σ2.

(c) Find the average power P required to achieve a probability of symbol error 10−6 in an

AWGN channel with noise power σ2 = −3 dB.
(d) Find the expression for symbol error rate over a Rayleigh fading channel for the

above 8-ary PAM constellation as a function of the average symbol power P , average

Rayleigh fading channel gain E
 
|h|2

 
= ρ and noise power σ2.

(e) Find the average power P required to achieve probability of symbol error 10−6

over a Rayleigh fading channel with noise power σ2 = −3 dB and Rayleigh fading

coefficient h with E
 
|h|2

 
= 2.

33. Consider the multiple antenna system y = hx+ n, with L receive antennas and

non-identical independent noise samples ni with variance E
 
|ni|2

 
= σ2

i , 1 ≤ i ≤ L.
Consider the beamformer w and for this problem only to simplify things consider all

quantities to be real.

(a) Describe the covariance matrixR of the noise vector n.

(b) What is the noise power at the output as a function of the beamformer w and noise

covariance matrixR?

(c) Derive the noise power for the above scenarios as a function of the beamformer entries

wi, 1 ≤ i ≤ L and the various σ2
i .

(d) What happens to the SNR when the beamformer w is scaled by a constantK?

(e) Formulate the optimization problem to minimize the noise power while constraining

the gain of the signal to be unity.

(f) Formulate the Lagrangian for the above optimization problem.
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(g) Derive the optimal beamformer for the above scenario.

(h) Compute the SNR for the optimal beamformer derived above.

34. Consider an L receive antenna version of the repetition code in which the transmitted

symbol is x(m) =
√
mu, where u is the BPSK symbol±√P for 1 ≤ m ≤M . The received

symbol yl (m) = hl (m)x (m) + nl (m), where nl (m) is IID (across antennas and time)

AWGN of variance σ2 and hl (m) is the Rayleigh fading coefficient for the lth receive

antenna, 1 ≤ l ≤ L at the mth time instant. Assume E
 
|hl (m)|2

 
= 1 and answer the

questions below.

(a) If the fading coefficient is constant over the M instants and L antennas, i.e.,

hi (m) = h for 1 ≤ m ≤M, 1 ≤ i ≤ L, derive the exact average BER.
(b) If the fading coefficients are uncorrelated over theM time instants but constant across

the L antennas, derive the average BER employing a suitable approximation.

(c) If the fading coefficients are constant over theM time instants but uncorrelated across

the L antennas, derive the exact average BER.

(d) If the fading coefficients are uncorrelated over the M time instants as well as the L

antennas, derive the average BER employing a suitable approximation.

35. Consider a single-input multiple-output (SIMO) system with L antennas and channel vector

h = [h1, h2, . . . , hL]
T
with channel covariance matrixR = E

 
hhH

 
and Rayleigh fading

coefficients. Let P denote the transmitted BPSK symbol power and σ2 denote the noise

power at each receive antenna. Further, consider the noise samples across the receive

antennas to be i.i.d. zero-mean symmetric complex Gaussian. Answer the questions that

follow.

(a) What is the SNR with maximum ratio combining (MRC) at the receiver?

(b) Consider the coefficients hi to be i.i.d. with average power unity. What is the channel

covariance matrixRiid ?

(c) For the above channel covariance matrixRiid, derive the probability of deep fade and

the associated diversity order with MRC.

(d) Now consider the case where the channel coefficients hi are correlated. Let the

channel covariance matrix Rc = UΛUH , where Λ is the diagonal matrix containing

the eigenvalues λi, 1 ≤ i ≤ L. What are the propertiesU and λi satisfy.

(e) For the above system with channel covariance matrix Rc, derive a bound on the

probability of deep fade and the associated maximum possible diversity order. When

is this achieved?
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(f) For channel covariance matrix Rc, when is the diversity order strictly less than the

maximum possible value?

(g) Consider now a channel covariance matrix Rs = 11
T
, where 1 is the L dimensional

column vector of all ones.What is the rank and what are the eigenvalues of this channel

covariance matrix?

(h) What is the probability of deep fade in the system with MRC and channel covariance

matrixRs?

(i) What the BER for BPSK transmission in the systemwithMRC and channel covariance

matrixRs ?

(j) What is the associated diversity order for the systemwithMRC and channel covariance

matrixRs?

36. Consider an N = 2 user multi-user system with 2 antennas at the receiver and a

single transmit antenna for each of the users. Therefore, the system model is given as

y = h1x1 + h2x2 + η, where h1 = [1, 2]
T and h2 = [2, 1]

T . Using the concepts illustrated

in class, find the optimal beamformerw1 to decode the symbol corresponding to the user 1

and derive the instantaneous SNR. Assume η is AWGN with each entry IID of variance σ2
n.

What is the dB loss of SNR compared to MRC with single user.

37. Consider a 2N multiple antenna system. Let us call antennas 2i− 1, 2i for 1 ≤ i ≤ N as

an antenna pair. For receive processing, we use the following scheme. Out of theN antenna

pairs, we choose the antenna pair which yields the maximumMRC gain and use this antenna

pair for receive processing. Using a deep-fade argument, derive the diversity order of this

scheme.



4

The Wireless Channel

4.1 Basics of Wireless Channel Modelling

As we had seen in the previous chapter, the fading wireless channel comprises several

multipath components arising from the presence of multiple Non-Line-Of-Sight (NLOS)

Signal-propagation paths. These NLOS components arise from the scattering effects of objects

in the wireless environment such as buildings, trees, vehicles, water bodies, etc. In this

chapter, we aim to develop a systemic framework to study the nature of the wireless channel,

especially with respect to key properties such as inter-symbol interference and, time-varying

characteristics amongst others.

g a0
2= | |0

g a1
2= | |1

g a2
2= | |2

g a3
2= | |3

t0 t1 t2 t3

Figure 4.1 Schematic of an L = 4 tap wireless channel profile
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Recall that the impulse response of the standard multipath wireless channel can be modelled

as,

h (t) =

L−1 
i=0

aiδ (t − τi)

where each δ (t − τi) corresponds to delaying the signal by τi, and ai is the attenuation

associated with the ith path. The quantity L denotes the number of paths or multipath

components. From the above impulse response, one can define the multipath power profile

of the multipath channel as

φ (t) =

L−1 
i=0

|ai|2 δ (t− τi)

=

L−1 
i=0

giδ (t− τi) (4.1)

where gi = |ai|2 is the power gain of the ith path. For instance, consider an L = 4 path

multipath channel. The gains and the corresponding delays of the paths of this multipath

channel can be listed as given in Table 4.1, and this is schematically shown in Figure 4.1.

Thus, one can readily observe that the total energy corresponding to the transmitted wireless

signal is received in increments at the receiver, with a part of it arriving in each multipath

component. For instance, power with gain g0 is received after a delay of τ0, while a gain of

g1 is received after a delay τ1, and so on, till the last path arriving at a delay of τL−1 delivers

power with a gain of gL−1.

Thus, the total power received in a multipath wireless channel occurs over a

spread of time referred to as the delay spread.

This spread of the arriving power at the wireless receiver is schematically shown in Figure

4.2. Observe that this property of the wireless channel is in contrast to that of a wireline

channel, in which all the power is received at a single time instant due to the presence of

only a single propagation path. The delay spread of a wireless channel is a key parameter that

characterizes the nature of the wireless environment and is denoted by the parameter στ . We

describe the procedure for computation of the delay-spread parameter στ of a wireless channel

next.



The Wireless Channel 85

Figure 4.2 Schematic of a typical wireless channel power profile and delay
spread

Table 4.1 Path gains and associated delays for an L = 4 multipath channel

Gain Delay

|a0|2 τ0

|a1|2 τ1

|a2|2 τ2

|a3|2 τ3

4.1.1 Maximum Delay Spread σmax

τ

A framework to quantify the delay spread of a wireless channel is through the maximum

delay spread of the channel denoted by σmax
τ . Consider a wireless channel with L multipath

components, with the first path arriving at a delay of τ0 and the last signal copy arriving at

τL−1. The maximum delay spread is simply defined as

σmax
τ = τL−1 − τ0 (4.2)
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Figure 4.3 Schematic of the wireless-propagation environment

or, in other words, the time interval between the arrival of the first and last signal copies at the

receiver. This is a simple measure of the spread of the energy in the wireless channel, while

effectively capturing the multipath signal arrival. It can be readily seen that a larger value of

σmax
τ naturally implies a richer scatter environment and larger differential propagation delays

between the paths. Further, observe the key property that the delay spread does NOT depend

on the absolute delays τ0, τL−1, but the difference τL−1 − τ0. Thus, the distance of the mobile-

receiver node from the base station has no impact on the delay spread, which leads to a larger

propagation delay. For instance, consider a scenario where there is a single propagation path,

corresponding to a large delay τ0 for a mobile at a large distance from the base station. Since

there is only a single path in this case, the first and last components correspond to the single

component arriving at a delay of τ0. Hence, the corresponding delay spread is τ0 − τ0 = 0.

Thus, the delay spread indeed depends critically on the presence of multipath components and

the richness of the scatter environment, which basically affects the total number of multipath

scatter-signal components arriving at the receiver.
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EXAMPLE 4.1

Consider an L = 4 multipath channel with the delays τ0, τL−1 corresponding to the first

and last arriving paths, given as τ0 = 0 μs and τL−1 = 5μs. Such a wireless-channel power

profile is shown schematically in Figure 4.4. What is the maximum delay spread σmax
τ

corresponding to this wireless channel?

Figure 4.4 Power profile for Example 4.1.

Solution: By a simple application of the result in Eq. (4.2) for L multipath components, it can

be seen that the maximum delay spread is

σmax
τ = 5μs − 0μs = 5μs

4.1.2 RMS Delay Spread σRMS
τ

In typical wireless channels, the paths which arrive later are significantly lower in power due to

the larger propagation distances and weaker reflections as shown in Figure 4.5. This results in a

large value of the maximum delay spread σmax
τ even though several of the later paths comprise

weak scatter components with negligible power. Thus, the maximum delay spread metric is

not a reliable indicator of the true power spread of the arriving multipath signal components

in such scenarios, since it does not weight the delays in proportion to the signal power in the

multipath components. For this purpose, the RMS delay spread is a more realistic indicator of

the spread of the signal power in the arriving components. Further, since it weights the delays
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of the signal components with respect to the power in the arriving paths, it is not susceptible to

distortion in scenarios with a large number of trailing weak components, unlike the maximum

delay spread.

Maximum delay spread

g a0
2= | |0

t0 t1 ti tL-1

g a1
2= | |1

Weak paths of
low power

Figure 4.5 Power profile with weak trailing paths of very low power

Consider the power profile comprising of Lmultipath components defined in Eq. (4.1), with

gi = |ai|2 , 0 ≤ i ≤ L − 1 denoting the power gain of each multipath component. We define a

new quantity bi as

bi =
gi

g0 + g1 + . . .+ gL−1
,

where gi denotes the total power corresponding to the ith path, while g0 + g1 + . . .+ gL−1

denotes the total power in the multipath power profile. Thus, the ratio bi denotes the fraction

of power in the ith multipath component. One can now conveniently employ this quantity

bi proportionally with the multipath delay components. Observe now that the various bi

define a power distribution for the above multipath power profile since each bi > 0 and

b0 + b1 + . . . bL−1 = 1. Therefore, the average delay τ can be computed to the mean of the

above power distribution as

τ = b0τ0 + b1τ1 + . . .+ bL−1τL−1 =

L−1 
i=0

biτi

=

L−1 
i=0

gi L−1
j=0 gj

τi

=

 L−1
i=0 giτi L−1
j=0 gj
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It can be seen that the average delay τ is obtained by weighing each delay τ in proportion

to the fraction of the power bi. Finally, the RMS delay spread σRMS
τ can be computed as the

standard deviation of the power distribution, which is defined as 
σRMS
τ

 2
= b0 (τ0 − τ)2 + b1 (τ1 − τ)2 + . . .+ bL−1 (τL−1 − τ)2

=
L−1 
i=0

bi (τi − τ)2

σRMS
τ =

  L−1
i=0 gi (τi − τ)2 L−1

i=0 gi
(4.3)

=

  L−1
i=0 |ai|2 (τi − τ)2 L−1

i=0 |ai|2
(4.4)

Thus, the RMS metric to characterize the delay spread defined above is not sensitive to spurious

multipath components of weak signal power since it weights each delay in proportion to its

power, thereby automatically suppressing the contribution of weaker paths.

EXAMPLE 4.2

Consider the multipath power profile of a wireless channel shown in Figure 4.6 comprising

L = 4 multipath components. Compute the RMS delay spread σRMS
τ for this wireless

channel.

Figure 4.6 Power profile for Example 4.2
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Solution: Consider the first path corresponding to τ0 = 0μs. The power associated with this

path is g ( dB) = −20 dB. Hence, the linear power can be obtained as

10 log10 g0 = −20 dB
⇒ log10 g0 = −2

⇒ g0 = 10
−2 = 0.01

Also, the amplitude a0 associated with this path can be derived as

a0 =
√
g0 = 0.1

Thus, one can compute the corresponding power gi and amplitude ai for each of the L = 4

multipath components corresponding to 0 ≤ i ≤ 3. These are listed in Table 4.2.

Table 4.2 Table of gains for Example 4.22

τ dB Gain g a =
√
g

0μs −20 dB 0.01 0.1

1μs −10 dB 0.1 0.3162

3μs 0 dB 1 1

5μs −10 dB 0.1 0.3162

One can now compute the mean delay τ for this channel as

τ =

 L−1
i=1 giτi L−1
i=0 gi

=
0.01× 0 + 0.1× 1 + 1× 3 + 0.1× 5

0.01 + 0.1 + 1 + 0.1
μs

= 2.9752μs

Thus, the mean delay is τ = 2.9752μs. Employing the expression in Eq. (4.3), the RMS delay

spread can be computed as
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σRMS
τ

=
0.01 × (0 − 2.9752)2 + 0.1 × (1 − 2.9752)2 + 1 × (3 − 2.9752)2 + 0.1 × (5 − 2.9752)2

0.01+ 0.1 + 1 + 0.1

= 0.8573μs

It can be seen that the RMS delay spread is 0.8573μs, which is much more realistic compared

the maximum delay spread σmax
τ = 5μs. This is because the initial path at 0μs is of a

significantly smaller power of −20 dB compared to the rest of the components. Since the

RMS delay spread weighs each delay by the appropriate power, it is not susceptible to this

distortion.

4.1.3 RMS Delay Based on Average Power Profile

In this section, we will look at generalizing the delay spread metric to a continuous average

power profile. Consider the instantaneous power |h (τ)|2 corresponding to the delay τ . The

average power associated with this delay can be defined as

φ (τ) = E
 

|h (τ)|2
 

The above quantity φ (τ) can be thought of as the average power associated with the delay

τ at various instants of time. It can also be thought of as the power at delay τ for the

wireless channels of different users in an area. The former is averaging over time, while the

latter represents an averaging over the ensemble of channels. Similar to the framework in the

previous section, one can define the fractional power associated with the delay τ as

f (τ) =
φ (τ) ∞

0 φ (τ) dτ

where f (τ) denotes the power distribution density corresponding to the delay τ , i.e., f (τ)Δτ

is the fraction of power in a delay interval of Δτ around τ . The average τ can, therefore, be

defined as

τ =

 ∞

0
τf (τ) dτ =

 ∞
0 τφ (τ) dτ ∞
0 φ (τ) dτ
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Finally, the RMS delay spread for the above power profile φ (τ) is defined as

σRMS
τ =

  ∞

0
(τ − τ)2 f (τ) dτ

=

  ∞
0 (τ − τ)2 φ (τ) dτ ∞

0 φ (τ) dτ

We illustrate the above concept of RMS delay spread for an average power profile below.

EXAMPLE 4.3

Consider the average power profile φ (τ) = αe−τ/β, where α = 3 dB, β = 1μs. Compute

the RMS delay spread σRMS
τ for this profile which is schematically shown in Figure 4.7.

Figure 4.7: Power profile for Example 4.3

Solution: Firstly, given that α ( dB) = 3 dB. Hence, we have α = 2. Therefore, φ (τ) =

2e−τ/β. To compute the normalized delay profile f (τ), the normalization factor can be
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computed as  ∞

0
φ (τ) dτ =

 ∞

0
2e−τ/β dτ

= 2βe−τ/β
   ∞
0

= 2β

Hence, the fractional power profile f (τ) can be obtained as

f (τ) =
2e−τ/β

2β
=
1

β
e−τ/β

The average delay τ is given as

τ =

 ∞

0
τf (τ) dτ

=

 ∞

0

τ

β
e−τ/β dτ (1)

= τe−τ/β
   ∞
0
+

 ∞

0
e−τ/β dτ

= βe−τ/β
   ∞
0

= β = 1μs

where the equality in Step (1) follows from the standard integration-by-parts procedure.

Therefore, the mean delay spread τ = β = 1μs. To compute the RMS delay spread σRMS
τ ,

we begin with the computation of E
 
τ2
 

defined as

E
 
τ2
 
=

 ∞

0
τ2f (τ) dτ

=

 ∞

0

τ2

β
e−τ/β dτ (2)
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= τ2e−τ/β
   ∞
0
+

 ∞

0
2τe−τ/β dτ (3)

= 2βτe−τ/β
   ∞
0
+

 ∞

0
2βe−τ/β dτ

= 2β2e−τ/β
   ∞
0
= 2β2

where equalities (2) and (3) follow again from integration by parts. It can then be shown that

σRMS
τ =

 
E {τ2} − τ2

=
 
2β2 − β2

= β = 1μs.

Therefore, the RMS delay spread σRMS
τ for the above average power profile αe−τ/β can be

computed as σRMS
τ = 1μs.

4.2 Average Delay Spread in Outdoor Cellular Channels

Consider an outdoor cellular wireless communication scenario. The cell radii of typical cells

are in the range of 1–5 km, i.e., outdoor wireless signal-propagation distances are of the order

of a few kilometres. Consider two paths illustrated in Figure 4.8, where the direct and scatter

distances are given as d0 = 2 km, d0 = 3 km respectively. Hence, the propogation delays τ0, τ1

are given as

τ0 =
2 km

c
, τ1 =

3 km

c
,

where c = 3× 108 m/s. Hence, the delay spread in this case is given as

σmax
τ = Δτ

= τ1 − τ0
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=
Δd

c

=
3000m − 2000m

3× 108
= 3.33μs

The above calculation is not an exact calculation of the outdoor delay spread. However,

it demonstrates that in typical outdoor cellular scenarios, where the distances and

signal-propagation paths are of the orders of kilometres, the delay spreads are of the

order of 1–3 μs. This value is of great importance in the design and analysis of practical

wireless-communication systems. Also, similarly, corresponding to indoor distances of around

10 m, typical indoor delay spreads are of the order of 10–50 ns. We wish to again emphasize

that these are not exact values and rather the approximate order of these quantities, which are

helpful to know towards practical design of 3G/4G wireless-communication systems.

d0 = 2 km

d1 = 3 km

Figure 4.8 Typical delay spread in outdoor cellular channels

4.3 Coherence Bandwidth in Wireless Communications

In this section, we introduce another important parameter of a wireless communication

channel, namely, the coherence bandwidth Bc. Towards this end, let us define the frequency

response H (f) of the wireless channel as

H (f) =

 ∞

0
h (τ) e−j2πfτ dτ



96 Principles of Modern Wireless Communication Systems

We wish to understand the relation between these two fundamental quantities, i.e., the delay

spread στ and coherence bandwidthBc of the wireless channel. Let us begin by considering a

simple case corresponding to στ = 0, shown in Figure 4.13(a). In this scenario, since the delay

spread is zero, the wireless channel comprises a single propagation path. Hence, the delay

profile h (τ) is given as

h (τ) = δ (τ) .

The corresponding frequency response H (f) is given as

H (f) =

 ∞

0
a0δ (τ) e

−j2πfτ dτ = 1

Thus, the frequency response is the constant 1 and |H (f)| = 1. This is basically a flat

frequency response over the entire frequency band as shown in Figure 4.13(b), i.e., of infinite

bandwidth.

Figure 4.9 Coherence bandwidth of wireless-channel response

As the delay spread στ increases in Figure 4.13(c), the time spread of this response increases,

leading to a decrease in the bandwidth of the response H (f) as shown in Figure 4.13(d).

Finally, as the time spread of the response becomes ∞ as shown in Figure 4.13(e), the channel

filter becomes an impulse δ (f) as shown in Figure 4.13(f) and the bandwidth of the channel

filter reduces to 0. The coherence bandwidth Bc is then defined as the bandwidth of the

response H (f), i.e., the frequency band over which the response H (f) is flat as shown in

Figure 4.9. What is the significance of this quantity Bc? This can be understood as follows.

Consider any signal x (t) transmitted over the wireless channel, with corresponding Fourier

transform X (f). It is well known from the theory of linear signals and systems that the output



The Wireless Channel 97

response Y (f) of the output signal y (t) is given as

Y (f) = H (f)X (f) (4.5)

which is shown in Figure 4.10. The impact of the coherence bandwidthBc on the signal x (t)

Wireless Channel
Response

H f( )
Spectrum of

received signal

Y f( ) = H f X f( ) ( )

Transmitted signal

X f( )

Figure 4.10 Linear input-output system model for the wireless channel

can be understood as follows. As shown in Figure 4.11, if the bandwidthBs of the signal x (t)

is less thanBc, thenX (f) spans the flat part of the channel responseH (f). Hence, the output

Y (f) = H (f)X (f) is simply a scaled version of X (f) corresponding to the magnitude of

the flat part. Thus, the input signal spectrum X (f) is undistorted at the output. Such a wireless

channel is termed a flat-fading channel.

However, consider the case where the signal bandwidth Bs is greater than the coherence

bandwidth Bc. In this scenario, different parts of the signal spectrum X (f) experience

different attenuations, i.e., the attenuation is frequency-selective. Thus, the output spectrum

Y (f) is a distorted version of the input spectrum X (f). Such a wireless channel is termed

a frequency-selective channel due to the frequency-dependent nature of the attenuation of the

signal. This is schematically shown in Figure 4.12.

Thus, the impact of the frequency spectrumH (f) of the wireless channel on the input signal

x (t) can be summarized as

Bs ≤ Bc ⇒ No distortion in received signal, i.e., flat fading

Bs ≥ Bc ⇒ Distortion in received signal, i.e., frequency-selective fading (4.6)

We now derive an empirical relationship between the delay spread and coherence bandwidth

of a typical wireless channel. Consider a wireless delay profile h (τ) =
 L−1

l=0 alδ (τ − τl).
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Figure 4.11 Signal bandwidthBs less than coherence bandwidthBc implying no
distortion

The response H (f) of this channel is given as

H (f) =

 ∞

0
h (τ) e−j2πfτ dτ

=

 ∞

0

 
L−1 
l=0

alδ (τ − τl)

 
e−j2πfτ dτ

=

L−1 
l=0

  ∞

0
alδ (τ − τl) e

−j2πfτ dτ

 

=

L−1 
l=0

ale
−j2πfτl

Thus, the frequency response of the channel is given as the sum of L harmonics, with

the lth component changing at the rate τl. Consider now the highest frequency harmonic

corresponding to aL−1e
−j2πfτL−1 , i.e., with phase varying at the rate τL−1. Its values at
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Figure 4.12 Signal bandwidth Bs greater than coherence bandwidth Bc leading
to distortion in spectrum of received signal

frequencies 0 and 1
4τL−1

are given as

f = 0 ⇒ aL−1e
−j2πfτL−1 = aL−1e

0 = 1

f =
1

4τL−1
⇒ aL−1e

−j2π 1

4τL−1 τL−1 = aL−1e
−jπ 1

2 = −jaL−1

Thus, it can be seen that as f changes from 1 to 1
4τL−1

, the phase changes significantly. This

leads to a significant change in the response H (f) from f = 0 to f = 1
4τL−1

. Thus, 1
4τL−1

is a

point of significant change in the frequency response, where it changes significantly compared

to the response at f = 0, as shown in Figure 4.16. Thus, the bandwidth of the response H (f)

is approximately given as

fc =
1

4τL−1
. (4.7)

Hence, the coherence bandwidth of the filter H (f) is approximately given as

Bc ≈ 2× 1

fc
=

1

2τL−1
(4.8)
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Figure 4.13 Coherence bandwidthBc variation with delay spread στ

Figure 4.14 Coherence bandwidth showing point of change of response

Finally, observe that τL−1 is the maximum delay spread σmax
τ of the channel. Thus, the

coherence bandwidthBc can be related to the delay spread στ as

Bc ≈ 1

στ
. (4.9)

Thus, it can be seen that the above relation satisfies the intuitive property that coherence

bandwidth Bc decreases as the delay spread στ increases. The above relation provides a

convenient handle to derive the coherence bandwidth given the delay spread of the channel.
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Finally, the approximate delay spread corresponding to outdoor channels with a typical delay

spread of 2μs can be derived as

Bc =
1

2× 1× 10−6
= 250 kHz (4.10)

Thus, the typical delay spread of outdoor cellular wireless channels is Bc = 250 kHz. This is

again very helpful towards characterizing and understanding the behaviour of typical 3G/4G

wireless cellular channels.

4.4 Relation Between ISI and Coherence Bandwidth

In this section, we will explore the relation between the Inter-Symbol Interference (ISI)

distortion at the receiver and the coherence bandwidth Bc of the wireless channel. Consider a

Pulse Amplitude Modulated (PAM) signal x (t) of symbol time Ts transmitted by the base

station. Let us also consider the presence of a scatter component at a delay of τ1 = Td

in addition to the direct line-of-sight component with a delay τ0 = 0. This is shown in

Figure 4.14. The net signal sensed by the receiver is the sum of the direct and scatter

components, i.e., x (t) and x (t − τ0). Observe from Figure 4.14 that if the delay spread

στ = τ1 − τ0 is comparable to the symbol time Ts, when these two signals are superposed at

the receiver, the symbol s0 from x (t) adds to a different symbol from x (t − τ0). For instance,

in the figure, s0 adds to s−1, i.e., the previous symbol. Further, it can be readily seen that as

the delay spread increases, and the number of interfering paths correspondingly increases, the

severity of ISI increases, with several symbols superposing at the receiver. This can be clearly

seen in Figure 4.15.

Figure 4.15 Relation between ISI and delay spread
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Figure 4.16 Severe ISI caused by multiple scatter components

Let us now analyze the criterion for occurrence of ISI. It can be that the ISI at the receiver

is related to the interplay between the symbol time Ts and delay spread Td. For instance, when

the symbol time Ts is much larger than the delay spread Td as shown in Figure 4.17, there is

no ISI. However, as the delay spread Td becomes comparable to Ts, it leads to ISI. Thus one

can empirically state the criterion for ISI as

Td ≥ 1

2
Ts

Also, the symbol time Ts is related to the bandwidthBs of the signal as Ts =
1
Bs

. Moreover, as

seen earlier, the delay spread Td is related to the coherence bandwidthBc as Bc =
1
2

1
Td

. Thus,

the criterion for inter-symbol interference above can be recast in terms of the bandwidths

Bs, Bc as

1

2

1

Bc
≥ 1

2

1

Bs

⇒ Bs ≥ Bc

which is surprisingly the same as the condition for frequency-selective signal distortion

as illustrated in Eq. (4.6). Thus, the above analysis clearly demonstrates that the
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Figure 4.17 Negligible ISI when στ << Ts

frequency-selective distortion and inter-symbol interference are essentially both sides of the

same coin. However, they have interesting interpretations in the frequency and time-domains,

with each interpretation yielding insight into the behaviour of the wireless channel vis-a-vis the

transmitted signal x (t). In the time domain, if the delay spread is much larger compared to the

symbol time, it results in inter-symbol interference. Correspondingly, in the frequency domain,

this implies that the bandwidth of the signal is much larger than the coherence bandwidth

of the channel. Thus, in effect, one is trying to push a signal of much higher bandwidth

through a channel filter, with a much smaller bandwidth. This results in frequency-selective

distortion. Thus, to correct for the inter-symbol interference at the receiver, one needs to

intuitively multiply by the inverse of the channel response filter, i.e., 1
H(f) , to convert the

frequency selective channel into a system with a net flat-fading response. This process, termed

equalization is the different frequency components are being equalized to a common flat-level.

In the later chapters of the book, we will look at technologies to overcome such a distortion

in broadband communications, i.e., when the bandwidth of the signal is much larger than the

bandwidth of the channel filter. The next example illustrates the importance of this concept in

understanding current 2G and 3G wireless communication systems.
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EXAMPLE 4.4

Consider the 2G Global System for Mobile Communications (GSM) standard with a signal

bandwidth of BGSM = 200 kHz. Does the GSM signal experience frequency selective or flat

fading? Is there inter-symbol interference at the GSM receiver? Answer the same questions

as above in the context of the 3G Wideband Code Divison for Multiple Access (WCDMA)

standard with a signal bandwidthBWCDMA = 5 mHz.

Solution: To answer this, we note again the coherence bandwidthBc corresponding to outdoor

cellular wireless channels is Bc ≈ 250 kHz, as demonstrated in Eq. (4.10). Hence, since the

2G GSM signal bandwidth BGSM = 200 kHz < Bc = 250 kHz, typically the GSM signal

experiences only frequency-flat and not frequency-selective fading. Further, this directly

translates into an impact on the delay spread in the time domain as shown in the section above,

and there is no inter-symbol interference at the GSM receiver. However, on the other hand,

since the WCDMA signal bandwidth BWCDMA = 5 MHz > Bc = 250 kHz, the WCDMA

signal experiences frequency-selective fading, leading to inter-symbol interference at the

receiver. However, interestingly, inter-symbol interference is a boon and not a curse for

CDMA systems. This is due to the fact that the CDMA receiver can easily remove the effects

of inter-symbol interference through the RAKE receiver. This will be elaborated in the next

chapter.

4.5 Doppler Fading in Wireless Systems

Another unique aspect of communication over wireless channels is the Doppler fading nature

of such channels. The Doppler shift is a fundamental principle related to the electromagnetic

radio-wave propagation. In this context, the Doppler shift associated with an electromagnetic

wave is defined as the perceived change in the frequency of the wave due to relative motion

between the transmitter and receiver. This is schematically shown in Figure 4.18. The perceived

frequency is higher than the true frequency if the transmitter is moving towards the receiver and

lower otherwise. Doppler fading is inherent in wireless communications due to the untethered

nature of mobile transceivers, which enables mobility in wireless systems, leading to relative

motion between the transmitter and the receiver. This is different compared to the conventional

wired communications, where the tethered nature of the fixed radio-access medium does not

allow for mobility.
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Figure 4.18 Doppler fading due to user mobility

4.5.1 Doppler Shift Computation

Consider the scenario shown pictorially in Figure 4.19, where the mobile station is moving

with a velocity v at an angle θ with the line joining the mobile and base station. Let the carrier

frequency be fc. The Doppler shift for this scenario is given as

fd =
 v
c
cos θ
 
fc (4.11)

where c = 3× 108m/s is the velocity of light, i.e., velocity of an electromagnetic wave

in free space. It can be clearly seen that the Doppler shift increases with the velocity

v. Moreover, it depends critically on the angle θ between the direction of motion and

the line joining the transmitter and receiver. For instance, the Doppler shift is maximum

when θ = 0, π, i.e., when the relative motion is along the line joining the transmitter and

receiver. However, when θ = π
2 , i.e., the motion is perpendicular to the receive direction,

the Doppler shift is zero. Also, the Doppler shift is positive in the sense that the perceived

frequency is higher if 0 ≤ θ ≤ π
2 , in which case cos θ > 0. On the other hand, it is

negative, leading to a lower perceived frequency that the transmit frequency is π
2 ≤ θ ≤ π.

Example 4.5 illustrates the computation of Doppler frequency for practical wireless scenarios.

Figure 4.19 Doppler scenario
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EXAMPLE 4.5

Consider a vehicle moving at 60 miles per hour at an angle of θ = 30◦ with the line joining

the base station. Compute the Doppler shift of the received signal at a carrier frequency of

fc = 1850MHz.

Solution: To begin with, we convert the velocity v from units of miles per hour to the standard

metres per second. Noting that a mile is equal to 1.61 km, the required velocity in meters per

second can be derived as

60mph = 60× 1.61 kmph

= 60× 1.61× 5

18
m/s

= 26.8m/s

Employing the expression in Eq. (4.11), the Doppler shift fd can be computed as

fd =
26.8

3× 108 × cos (30◦)× 1850× 106

= 143 Hz

Thus, the Doppler shift is fd = 143 Hz. Further, since the mobile user is moving towards the

base station, the Doppler shift is positive, i.e., the perceived frequency fr is higher compared

to the carrier frequency fc and is given as fr = fc + fd = 1850MHz+ 143 kHz.

4.6 Doppler Impact on a Wireless Channel

In this section, we systematically investigate the impact of Doppler fading on the multipath

wireless-channel model. Consider the impulse response of the ith component of the multipath

channel given as aiδ (t− τi). Let the vehicle be moving with velocity v at an angle θ with

respect to the line joing the mobile and base station. This is shown schematically in Figure 3.19.

Observe that the distance between the base station and the mobile is changing constantly due

to the motion of the user. Therefore, as a result, the delay of the ith signal component is also

changing. Let the initial distance for the ith signal component be di. The initial propagation



The Wireless Channel 107

delay is, therefore,

τi =
di
c

After a small interval of time t, this distance decreases by vt cos θ, since v cos θ is the

component of the velocity in the direction of the base station. Hence, the delay of the ith

component after time t is correspondingly given as

τi (t) =
di − vt cos θ

c

=
di
c

− vt

c
cos θ

= τi − vt

c
cos θ

Recall from knowledge of the previous chapter that the flat-fading wireless-channel coefficient

has been defined as

h =
L−1 
i=0

aie
−j2πfcτi

The equivalent model for the flat-fading channel coefficient h taking into account the velocity

v of the user can now be derived by simply replacing the delay τi of the ith component by

τi (t). Naturally, the resulting channel coefficient is a function of the time t. This model for the

time-varying channel coefficient h is given as

h (t) =

L−1 
i=0

aie
−j2πfc(τi− v cosθ

c
t)

=

L−1 
i=0

e−j2πfcτiej2πfc
v cosθ

c
t

=

L−1 
i=0

aie
−j2πfcτiej2πfdt (4.12)

where the last equality follows by substituting fd = fc
v cos θ

c . Observe now that the quantity

ej2πfdt represents the time-varying phase of the wireless channel. The rate of variation of the

phase is given by the Doppler frequency fd. Thus, to summarize, the mobility of the user in a

wireless communication system leads to a Doppler shift, which in turn results in a time-varying
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wireless channel coefficient. This time-varying nature of the wireless channel is also termed

time selectivity and the time-varying wireless channel is termed a time-selective channel.

The reader can readily observe that just as frequency selectivity refers to different signal

attenuations in different bands, time selectivity refers to different attenuations at different

instants of time. Further, a channel can be both time- and frequency-selective. Such channels

are termed doubly selective wireless channels.

4.7 Coherence Time of the Wireless Channel

Similar to the notion of a coherence bandwidth described in the sections above for a

frequency-selective channel, we now define the concept of a coherence time interval Tc for

a time-varying channel. Consider the ith multipath component of the time-varying channel

coefficient in Eq. (4.12), which is given as

ai (t) = aie
−j2πfcτiej2πfdt

The value of this ith component corresponding to t = 0, π
2 can be obtained as

t = 0⇒ ai (0) = aie
−j2πfcτi

t =
1

4fd
⇒ aie

−j2πfcτie
j2πfd

1

4fd = jaie
−j2πfcτi

Thus, empirically, one can say that the channel changes significantly from time t = 0 to

t = 1
4fd

since the phase changes by
pi
2 . This time duration in which the channel changes

significantly due to the mobility of the user is termed the coherence time, Tc. Further, although

fd depends on the angle of motion θ, a conservative estimate, i.e., minimum coherence time

can be obtained by setting θ = π
2 , in other words, corresponding to the fastest rate of change

fd for a given velocity v. This value of the coherence time Tc can be defined as

Tc =
1

4fmax
d

, fmax
d =

v

c
fc

The impact of coherence time can be understood as follows. Consider a wireless channel which

is changing with time. The coherence time Tc is the approximate duration of time for which
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the wireless channel can be assumed to be constant. This can also be expressed as

Tc =
1

2Bd
(4.13)

where Bd = 2fd is the Doppler spread of the wireless channel. Example 4.6 gives an idea of

the order of the coherence time for practical 3G/4G wireless systems.

EXAMPLE 4.6

Consider the scenario described above in Example 4.5, i.e., a mobile user in a vehicle moving

at 60 miles per hour. Compute the coherence timeTc at the carrier frequency fc = 1.85GHz.

Solution: To compute the coherence time Tc, we start by computing the maximum Doppler

shift fmax
d corresponding to θ = 0◦. Following a procedure similar to the one in Example 4.5,

this can be obtained as

fmax
d =

26.8

3× 108 × 1850× 106

= 165 Hz

Hence, the corresponding Doppler spread is given as Bd = 2× fmax
d = 330 Hz. Hence, the

coherence time Tc is given from the relation in Eq. (4.13) as

Tc =
1

2× 330

= 1.5ms

Thus, as can be seen from the example above, the value of Tc in practical wireless systems, at

vehicular velocities around 60 mph and carrier frequencies in the 2 GHz range is of the order

of milliseconds (ms). Thus, the Doppler spread of a wireless system gives the wireless-system

designer an idea of the rate of change of the wireless-channel coefficient. Also, it can be readily

seen that a larger Doppler spread Bd corresponds to a smaller coherence time Tc leading to a

faster rate of channel variation.
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4.8 Jakes Model for Wireless Channel Correlation

In this section, we derive an expression for the time correlation of the wireless channel

coefficient. Let X, Y be two complex-valued random variables. The correlation between these

random variable is defined as E {XY  }. A higher correlation betweenX, Y indicates a greater

degree of similarity between the values assumed by X, Y . Let ai (t) denote the channel

response corresponding to the ith path in the multipath channel profile at time instant t. As

seen already, ai (t) can be expressed as

ai (t) = aie
−j2πfcτiej2πfdt

The channel coefficient ai (t+Δt), at timeΔt later is given as

ai (t+Δt) = aie
−j2πfcτiej2πfd(t+Δt)

The impact of the channel time correlation coefficient on the rate of channel variation can be

understood as follows. If the correlation between ai (t) , ai (t+Δt) is larger, it means that

ai (t+Δt) is very similar to ai (t) and hence, the channel is varying slowly. On the other

hand, if the correlation is small, it implies that ai (t+Δt) has changed significantly compared

to ai (t) and, therefore, the rate of channel variation is faster. Thus, the time correlation

coefficient, also termed the temporal correlation coefficient is key to understanding the rate

of channel variation. Let this correlation as a function ofΔt be denoted by ψ (Δt). Therefore,

ψ (Δt) can be defined as

ψ (Δt) = E {ai (t) a i (t+Δt)}

= E
 
aie

−j2πfcτiej2πfdt
 
aie

−j2πfcτiej2πfd(t+Δt)
   

= E
 

|ai|2 e−j2πfΔt
 

= E
 

|ai|2
 
E
 
e−j2πfΔt

 



The Wireless Channel 111

We set the quantity E
 

|ai|2
 
= 1 to derive the normalized correlation or, basically, the

correlation coefficient. This is, therefore, given as

ψ (Δt) = E
 
e−j2πfΔt

 

= E
 
e−j2πfc

v

c
cos θΔt

 

= E
 
e−j2πfmax

d cos θΔt
 

where fmax
d = v

c fc as defined above. Notice now that the correlation coefficient depends on θ,

which is a random quantity. One has to, therefore, average over the distribution of the random

variable θ to derive the correlation coefficient ψ (Δt). It is reasonable to assume that the angle

θ between the velocity and direction of signal propagation is uniformly distributed over the

range [0, π], i.e., with distribution given as fΘ (θ) =
1
π . Therefore, the correlation coefficient

ψ (Δt) is obtained as

ψ (Δt) =

 π

0
E
 
e−j2πfmax

d cos θΔt
 
fΘ (θ) dθ

=
1

π

 π

0
E
 
e−j2πfmax

d cos θΔt
 
dθ

= J0 (2πf
max
d Δt)

where J0 is the Bessel function of the 0th order. Therefore, substituting fmax
d = 1

4Tc
, we have

ψ (Δt) = J0

 
2π

1

4Tc
Δt

 

= J0

 
π

2

Δt

Tc

 

The above temporal correlation model for ψ (Δt) is a popular model for wireless

communication systems and is termed Jakes’ model. The Jakes correlation as a function of

the normalized time lag Δt
Tc

is shown in Figure 4.20.
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Figure 4.20 Jakes’ correlation as a function of Δt
Tc

The Doppler spectrum corresponding to the temporal correlation function ψ (Δt) is given by

its Fourier transform as

SH (f) =

 ∞

−∞
ψ (Δt) e−j2πfΔt, d (Δt)

=

 ∞

−∞
J0 (2πf

max
d Δt) e−j2πfΔt, d (Δt)

=
1

πfmax
d

rect
 

f
2fmax

d

 
 
1−
 

f
fmax

d

 2 , (4.14)

where the function rect (·) is defined as

rect (x) =

⎧⎨
⎩1 |x| ≤ 1

2

0 |x| > 1
2

(4.15)

i.e., rect (x) is basically a pulse of height 1 between x = − 1
2 and x = 1

2 . The Doppler spectrum

SH (f) of Eq. (4.14), which is associated with the Jakes’ temporal correlation model, is termed
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the Jakes’ spectrum and is very popular in the context of wireless communications to model the

correlation function of time-varying wireless channels. A figure of the Jakes spectrum is shown

in Figure 4.21. It can be seen that the spectrum is ’U’ shaped and restricted between −fmax
d

and fmax
d . Hence, this is colloquially also termed a U-shaped Doppler spectrum spectrum of

Doppler spread 2fmax
d = 2 vcfc.

Figure 4.21 Jakes’ spectrum as a function of normalized frequency f
fd

4.9 Implications of Coherence Time

What is the implication of a large or small coherence time Tc on the design of the

wireless-communication system? This can be understood as follows. As described in the

previous chapter, one needs to estimate the channel coefficient h at the receiver to decode

the transmitted symbol x (k). Further, since the channel is changing significantly at every

coherence time duration, the channel estimation has to be carried out at least once in every

coherence time interval. This is achieved by inserting training or pilot symbols in the frame of

transmitted information symbols. For example, in the 2G GSM standard, 26 training symbols

are inserted in the middle of a frame of 156-symbols length. This is also termed a midamble

and schematically shown in Figure 4.22.
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Figure 4.22 Midamble of 26 pilot symbols in GSM frame of length of 156-symbols

In this context, one can also now distinguish between a fast-fading versus a slow-fading

channel. If the coherence time Tc is greater than the time interval between two channel

estimation instants, i.e., the channel is estimated at least once in every coherence time interval,

it is termed a slow-fading channel. On the other hand, if the coherence time is lower than the

duration between two successive channel estimation instants, i.e., the channel is changing at a

rate faster than it is being estimated at the receiver, it is termed a fast-fading channel. This idea

is captured schematically in Figure 23. To summarize,

Tc ≥ Inter-channel estimation time ⇒ Slow fading

Tc < Inter-channel estimation time ⇒ Fast fading

The relation between the various parameters such as flat-fading, frequency-selective fading,

fast-fading, slow-fading, etc., is comprehensively summarized in Figure 4.23. As shown in

the figure, the delay spread στ and coherence time Tc are key parameters in characterizing a

wireless channel. For a very low Tc and στ , coherence time is smaller than Te, the inter-channel

estimation time; and στ is less than Ts, the symbol time. The channel is fast-fading and flat-

fading. As the coherence timeTc rises to the point Tc > Te, with στ < Ts, the channel becomes

slow-fading and flat-fading. On the other hand, if στ , the delay spread, rises to στ > Ts, i.e.,

the delay spread becomes larger than the symbol time, while the coherence time Tc < Te, the

channel is fast-fading and frequency-selective fading. Finally, for the case of high Tc and στ ,

i.e., Tc > Te and στ > Ts, the channel is slow-fading and frequency-selective fading.

Also, one important aspect of wireless channels is worth noting. As calculated in the

sections above, the typical value of the delay spread στ in the wireless channels is of the

order of μs, while the typical value of the coherence time Tc is of the order of ms. Thus,

the coherence time Tc is several times larger compared to the delay spread στ i.e., στ << Tc.
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Figure 4.23 Figure summarizing relationship between key parameters of the
wireless channel

This property is typical of wireless channels observed in practice and such channels are termed

underspread channels.

1. Jakes’ Model Employ the Jakes’ model to answer the questions below.

(a) Find the velocity of a mobile in kmph if the correlation between the channel coefficients

is 0.22 for a time intervalΔt = 3.9ms at 1.6 GHz.

(b) For this system, what is the joint distribution of [h (0) , h (2.9ms)]?

2. Fill in the blanks below.

(a) A wireless channel is termed underspread if .

(b) At 2 GHz and v = 30 km/hr the coherence time is .

3. Compute the RMS delay spread for the channel power profile given in Figure 4.24.

(a) Consider a channel with the power delay profile P (τ) = αe−τ/β, where α = 3 dB

and β = 1μs. What is the RMS delay spread for this channel?

(b) For the above channel, what is the 3 dB coherence bandwidth?
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Figure 4.24 Delay profile

4. Channel Estimation

(a) Below are the vectors corresponding to the transmitted pilot symbols and received

outputs across the standard Rayleigh fading wireless channel (Single Rx/Tx antenna)

as per the channel-estimation model discussed in class.

yp =

⎡
⎢⎢⎢⎢⎢⎣

−0.7850+ 0.3631i
0.4072+ 0.7757i

0.8004− 0.4359i
0.4464+ 0.8222i

⎤
⎥⎥⎥⎥⎥⎦ , xp =

1√
2

⎡
⎢⎢⎢⎢⎢⎣

−1 + j

1 + j

1− j

1 + j

⎤
⎥⎥⎥⎥⎥⎦

Given that the noise is AWGN, what is the Maximum likelihood (ML) estimate of the

fading-channel coefficient?

(b) If the carrier frequency of the above system is 2.5 GHz, with a bandwidth of 200 kHz

and frame length of 250 symbols, what is the maximum tolerable mobile terminal

velocity in kmph? (Hint: The channel is estimated once every frame)

5. Delay Spread Consider the following outdoor wireless channel delay profiles given in

Figure 4.25 and answer the following questions.

(a) What is the most logical unit of time on the x-axis?

(b) For the delay profile, compute τmax the maximum delay spread.

(c) For the delay profile, compute τrms, the RMS delay spread.

(d) Employing the average RMS delay spread as the metric Td, what is the maximum

possible symbol rate for ISI-free communication?
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(e) Can a GSM system (B = 200 kHz) work in the above environment without an

equalizer?

Figure 4.25 Delay profile

6. Consider a mobile moving at 80 kmph in a 3G WCDMA system at 2 GHz. The chipping

rate in WCDMA is 3.84 Mchips/second. Let Ts denote the slot time, where the number of

chips in a slot is 2560. Let the vector h be defined as

h =

⎡
⎢⎢⎢⎢⎢⎣
h (0)

h (Ts)

h (2Ts)

h (3Ts)

⎤
⎥⎥⎥⎥⎥⎦ (4.16)

where h (t) denotes the channel at the time t. Compute the covariance matrix hhH .

7. Consider a multi-path channel with the power delay profile,

P (τ) =

N−1 
i=0

αie
−τ/βi

where αi, βi, 0 ≤ i ≤ N − 1 are parameters. What is the RMS delay spread for this

channel?

8. Consider a mobile communication scenario with fc = 2.4 GHz and velocity v = 40 mph

over a Rayleigh fading channel. Let h(t) = x(t) + jy(t) be the channel at the time t,

normalized to unit power. Employ the Jakes’ model to answer the questions that follow.
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(a) Find the Doppler frequency and the coherence time.

(b) What is the joint distribution f [h (0) , h (0.3Tc)]?

(c) Compute E
 
x2 (0)x2 (0.3Tc)

 
.

9. Consider a Rayleigh channel, with the channel coefficient h unknown. Compute the

estimate of the channel coefficient h if the transmitted pilot symbols are given as

xp = [2, −2, 2, −2]T and the received pilot symbols are given as

yp = [3.68 + 4.45j, −3.31− 4.60j, 3.24 + 4.33j, −3.46− 4.34j]T



5

Code Division for Multiple
Access (CDMA)

5.1 Introduction to CDMA

CDMA stands for Code Division for Multiple Access and is considered a path-breaking

wireless technology due to its several superior properties. It was first employed in the 2nd

generation IS-95 cellular standard, which was predominantly used in North America, under

the brand name cdmaOne. It also forms the basis for several advanced 3rd Generation i.e., 3G

cellular standards such as Wideband CDMA (WCDMA), High-Speed Downlink Packet Access

(HSDPA), High Speed Uplink Packet Access (HSUPA), CDMA 2000, and 1x Evolution

Data Optimized (1xEV-DO). In order to understand the concepts in CDMA, it is critical to

understand the concept of multiple access. In conventional wired communication systems,

there is a dedicated wireline communication channel which is allocated exclusively to the

particular device such as a telephone, etc. However, in a wireless network, mobile phones and

other wireless-communication devices are required to share the common radio channel over

the air. This is shown in Figure 5.1. This is because the radio channel is common for all the

users/ devices and the available wireless frequency bands are limited. Thus, it is necessary to

device a mechanism for multiple users to access this common radio channel, which is termed

as a Multiple Access (MA) technology. Thus, multiple access is at the heart of modern wireless

technologies, especially 3G and 4G cellular technologies.

Several multiple-access technologies have been developed and employed for cellular

applications. In fact, each generation of cellular standards is characterized by a particular

multiple-access technology. For instance, the first generation, i.e., 1G cellular standards were

based on Frequency Division Multiple Access (FDMA). In FDMA, different users are alloted

different frequency bands. Thus, the users are multiplexed in the frequency domain and
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Figure 5.1 Multiple access for wireless cellular networks

User 0 User 1 User 3

B B B

f

Figure 5.2 Frequency division for multiple access

they access the radio channel in their respective frequency bands of bandwidth B. This is

schematically shown in Figure 5.2. On the other hand, the second generation or 2G cellular

standards are based on digital Time Division for Multiple Access (TDMA) in which different

users are allocated different time slots of duration T for accessing the wireless channel.

Thus, the different users are multiplexed in the time domain as shown in Figure 5.3. These

technologies were replaced by CDMA in successive 3G wireless technologies. The motivation

and basic mechanism of CDMA is described in the next section.

T T T

User 0 User 1 User 2

Figure 5.3 Time division for multiple access
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5.2 Basic CDMA Mechanism

CDMA, as the name suggests, is a multiple-access technology based on code division. In other

words, different users are multiplexed using different codes. Consider a two-user scenario, i.e.,

two users accessing the radio channel simultaneously. Let a0 denote the symbol of the user 0,

while a1 denotes the transmit symbol corresponding to the user 1. Let the code c0 of the user 0

be given as c0 = [1, 1, 1, 1]. The above code c0 is of length N = 4 chips. Each element of the

code is termed as a chip. The transmitted signal x0 of the user 0 is then given by multiplying

the code c0 with the symbol a0 as

x0 = a0 × [1, 1, 1, 1]
= [a0, a0, a0, a0] (5.1)

The structure of the above transmit signal x0 can be interpreted as follows. The symbol a0,

of the user 0, is multiplied by the code c0 to yield 4 chips x0(i), 0 ≤ i ≤ N − 1. Similarly,

let the code c1, given as c1 = [1,−1,−1, 1], correspond to the code of the user 1. Hence, the

sequence of chips corresponding to the user 1 transmission is given as

x1 = a1 × [1,−1,−1, 1]
= [a1, −a1, −a1, a1] (5.2)

The signals x0, x1 corresponding to users 1, 2 respectively are now summed to yield the net

signal x as

x = x1 + x2 = [(a0 + a1) , (a0 − a1) , (a0 − a1) , (a0 + a1)] (5.3)

This sum, or composite, signal is then transmitted on the downlink from which each of the users

0, 1 detect their own signal. This is done as follows. User 1 correlates the received signal xwith

his code c0, i.e., basically multiplies each chip of the received signal x with the corresponding

chip of the code c0 = [1, 1, 1, 1] and sums across the chips as follows.

a0 + a1 a0 − a1 a0 − a1 a0 + a1

× 1 1 1 1

(a0 + a1) + (a0 − a1) + (a0 − a1) + (a0 + a1) = 4a0

(5.4)

Thus, the result of the above correlation is 4a0, which is proportional to the transmitted symbol

a0. Similarly, at the user 2, the received signal x is correlated with the chip sequence c1 =



122 Principles of Modern Wireless Communication Systems

[1, −1, −1, 1] of the user 1 as

a0 + a1 a0 − a1 a0 − a1 a0 + a1

× 1 −1 −1 1

(a0 + a1)− (a0 − a1)− (a0 − a1) + (a0 + a1) = 4a1

(5.5)

to yield 4a1, which is proportional to the transmitted symbol a1 of the user 1. Thus, unlike in

GSM or FDMA, in which the signals of different users are transmitted in different time slots

or frequency bands, in CDMA, all the signals of the different users are contained in the single

signal x over all time and frequency. However, in CDMA, the symbols of the different users

are combined using different codes. For instance, in the above example, the symbols a0, a1 of

users 0, 1 are multiplied with codes c0, c1 prior to transmission. Thus, the users of the different

signals are multiplexed over the common wireless channel employing different codes. Hence,

this is termed Code Divison for Multiple Access, i.e., multiple access based on different codes.

The key operations in CDMA can be summarized as follows.

1. Multiplying or modulation the symbols of the different users with the corresponding

assigned unique code, similar to the procedure illustrated in equations (5.1), (5.2).

2. Combining or adding the code-modulated signals of all the users to form the composite

signal as shown in Eq. (5.3), followed by subsequent transmission of the signal.

3. Finally, correlation of the composite received signal x at each user with the corresponding

code of the user to recover the transmitted symbol. This is described in Eqs (5.4), (5.5).

5.3 Fundamentals of CDMA Codes

In fact, from the example illustrated in the previous section, the astute reader will realize that

it is no accident by which we are able to recover the signals of users 0, 1. Computing the

correlation r01 of the user codes c0, c1 yields

r01 =

3 
k=0

c0 (k) c1 (k)



Code Division for Multiple Access (CDMA) 123

= 1× 1 + 1× (−1) + 1× (−1) + 1× 1
= 1 + (−1) + (−1) + 1
= 0

Thus, since the correlation between the codes c0, c1 is zero, the codes are, in fact, orthogonal.

This is what helps us recover the symbols of the different users from the composite signal.

This is a key property of the codes employed in CDMA wireless systems, and a fundamental

principle on which the theory of CDMA is based.

Further, consider a fundamental property of the CDMA system arising because of the

employment of these codes. Let the symbol rate for the symbols a0 of the user 0 be 1 kbps.

Hence, the time period T per symbol is

T =
1

1 kbps
= 1ms

Hence, the corresponding bandwidth required for transmission is

B =
1

T
= 1 kHz

However, now consider the transmission of the symbol a0 multiplied with the corresponding

code c0, i.e., a0 × [1,1, 1, 1] = [a0, a0, a0, a0]. Thus, for each symbol a0, one has to transmit

4 chips. Thus, to keep the symbol rate constant at 1 kbps, the time of each chip Tc has to be set

as Tc =
1
4T = 0.25ms. Thus, the bandwidth required for this system is

BCDMA =
1

Tc
=

1

0.25ms
= 4 kHz

Thus, modulating with the code c0 of length N = 4, results in an increase of the required

bandwidth by a factor of N , i.e., from 1 kHz to 4 kHz. This is shown schematically in

Figure 5.4. Thus, it basically results in a spreading of the original signal bandwidth and, hence,

is termed a spreading code. Also, since the resulting signal occupies a large bandwidth, CDMA

systems are also termed spread spectrum or wideband systems.

Also, another interesting question the reader might be interested in is the following: How

many such orthogonals exist for a given spreading code length N? The answer is there are N

such orthogonal codes. For instance, consider the case N = 4.
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Figure 5.4 Spread spectrum communication

The different orthogonal spreading codes are

c0 =1 1 1 1

c1 =1−1−1 1
c2 =1−1 1 −1
c3 =1 1 −1−1

The reader can verify that the codes c0, c1, c2, c3 are orthogonal to each other. For example,

consider c1, c2. The correlation r12 between codes c1, c2 is

r12 =

3 
k=0

c0 (k) c1 (k)

= 1× 1 + (−1)× (−1) + (−1)× 1 + 1× br−1
= 1 + 1 + (−1) + (−1)
= 0

This implies that given a spreading sequence length N , there exist N orthogonal codes and

hence, N users can be multiplexed together. This is important, since the bandwidth increases

by a factor of N due to transmission employing the codes as described earlier. However, it

is important to note that no inefficiency is introduced in the system because of the increase

in bandwidth, because this increase in bandwidth by a factor of N is compensated by the

parallel transmission of the signals corresponding to the N users over the same bandwidth.

Thus, the spectral efficiency of the system is not compromised. This is schematically illustrated

in Figure 5.5.
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N Symbols

a0

a1

a2

a3

a0 a1 a2 a3

Code 0

Code 1

Code 2

Code 3

T = NTc

T Symbols

Figure 5.5 Parallel transmission of N symbols over N codes in CDMA over
time interval T = NTc (above) and comparison with transmission
of N symbols in time T = NTc in a conventional single carrier or
time division system

5.4 Spreading Codes based on Pseudo-Noise (PN) Sequences

Consider the code c2 = [1,−1, 1,−1]. Observe that the code looks like a random sequence of

+1,−1, or a pseudo-noise (PN) sequence. This is so termed since it only resembles a noise

sequence, but is not actually a noise sequence. One method to generate such long spreading

codes based on PN sequences for a significantly large N is through the employment of a Linear

Feedback Shift Register (LFSR). This is described next.

Consider the shift register architecture shown in Figure 5.6, where the element D

represents delays. Thus, the digital circuit therein contains D = 4 delay elements or shift

registers. The input on the left is denoted by Xi, and the outputs of the different delays are

Xi−1, Xi−2, Xi−3, Xi−4. Let Xi−4 also denote the final output of the system. Also observe

that the xor Xi−4 ⊕Xi−3 is fed back as Xi which is the input to the first shift register. Thus,

the governing equation of the circuit is

Xi = Xi−3 ⊕Xi−4

which is a linear equation. Thus, since it implements a linear relation, with feedback and uses

delay elements or shift registers, such a circuit is also termed a Linear Feedback Shift Register

(LFSR) architecture. Since the next inpur, i.e., Xi depends on Xi−1, Xi−2, Xi−3, Xi−4, this

can also be thought of as the current state of the system. Consider initializing the system in the

state Xi−1 = 1, Xi−2 = 1, Xi−3 = 1, Xi−4 = 1. Thus, we have the corresponding Xi given
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as

Xi = Xi−3 ⊕Xi−4 = 1⊕ 1 = 0

This Xi becomes Xi−1 at the next instant and similarly, Xi−2, Xi−3 are shifted to the right as

Xi−3, Xi−4 respectively. Continuing in this fashion, the entire sequence of state of the above

LFSR is summarized. It can be seen that the LFSR goes through the sequence of 15 states

1111, 0111, 0011,0001,1000,0100,0010,1001,1100, 0110,1011,0101,1010,1101,1110,

before reentering the state 1111. Subsequently, the entire sequence of states repeats again.

Observe that this goes through 2D − 1 = 24 − 1 = 15 states. Also note that the maximum

number of possible states for D = 4 is 2D = 16. However, the LFSR can be seen to go

through all the possible states except one, which is the 0000 or the all-zero state.

D D D D

Feedback

X Xi i= - 3 ≈ Xi - 4

Xi Xi-1 Xi-2 Xi-3 Xi-4

Figure 5.6 Linear feedback shift register

Xi = Xi−3 ⊕Xi−4 = 0⊕ 0 = 0

Further, observe that if the LFSR is initialized in the 0000 state, it continues in the 0000 state,

since the corresponding Xi is leading to the next state of 0000. Thus, the LFSR never gets out

of the all zero states! Therefore, it is desired that the LFSR never enter the all-zero state. Such

an LFSR circuit which goes through the maximum possible 2D − 1 states, without entering the

all-zero state is termed a maximum-length shift register circuit or maximum length LFSR. The

generated PN sequence is termed a maximum-length PN sequence. Thus, the maximum-length

PN sequence is of length 2D − 1. For instance, for the above LFSR, the maximum-length PN

sequence is the sequence of outputs Xi−4 given as

PN Sequence = 111 1 0 0 0 1 0 0 1 1 0 1 0
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We can map the bits 1, 0 to the BPSK symbols −1, +1 to get the modulated PN sequence,

PN sequence=−1 − 1 − 1 − 1 + 1 + 1 + 1 − 1 + 1 + 1 − 1 − 1 + 1 − 1 + 1 (5.6)

Next, we examine the properties of such PN sequences derived above.

5.4.1 Properties of PN Sequences

Property 1-Balance Property: Consider the BPSK-modulated PN sequence shown in

Eq. (5.6). As already described, the PN sequence is of maximal length 2D − 1 = 15
corresponding to D = 4. Counting the number of −1 and +1 chips in the sequence, it can

be seen that the number of −1s is one more than the number of +1s. This is termed the

balance property of the PN sequence. This fundamentally arisies from the noiselike properties

of PN sequences. If we are generating random noise of +1, −1 chips, with P (Xi = +1) =

P (Xi = −1) = 1
2 , we expect to find on an average that half the chips are +1 and the rest are

−1. In the above case, however, as the total number of chips is an odd number, i.e., 15, it is

not possible to have an exactly even number of +1, −1s. Hence, we observe that the number

of +1, −1s is close to half the total number, i.e., eight −1s and seven +1s. Thus, the balance

property basically supports the notion of a noiselike PN chip sequence.

Property 2-Run-Length Property: A run is defined as a string of continuous values. There

are a total of 8 runs in this PN sequences. For instance, the first run −1, −1, −1, −1 is a run

of length 4. Thus, there is one run of length 4. Similarly, there is one run+1, +1, +1 of length

3, and two runs of length 2, viz., −1, −1, +1, +1. Finally, it can also be seen that there are 4

runs of length 1, viz., two runs of+1 and two runs of −1. Thus, there are a total of 2(D−1) = 8
runs. Out of the 8 runs, it can be seen that 1, i.e., 1

8 of the runs are of length 3, 1
4 of the runs

are of length 2 and 1
2 of the runs are of length 1. This is termed the run-length property of

PN sequences and can be generalized as follows. Consider a maximal length PN sequence of

length 2D − 1. Out of the total number of runs in the sequence, 1
2 of the runs are of length 1, 1

4

of the runs are of length 2, 1
8 of the runs are of length 3, and so on. This is again in tune with

the noiselike properties of PN sequences. For instance, consider a random IID sequence of

+1, −1. In such a sequence, one would expect the average number of +1 or −1 to be half the

total chips. Further, the number of strings +1, +1 or −1, −1, i.e., runs of length two would

be expected to comprises 1
4 of the total runs. This arises since the probability of seeing two
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consecutive +1, +1 symbols is

P (Xi = +1, Xi+1 = +1) =
1

2
× 1
2
=
1

4

Similarly, one can explain the fraction 1
8 corresponding to runs of length 3. Thus, this further

supports the noiselike properties of PN sequences.

Property 3-Correlation Property: The correlation property is one of the most important

properties of PN sequences. Consider again the BPSK chip sequence shown in Eq. (5.6) and

denote it by c0 (n). Let us now look at the correlation properties of this sequence. Consider the

correlation r00 (0), i.e., the correlation of the sequences c0 with itself (the meaning of the (0)

will become clear soon). This correlation is given as

r00 (0) =
1

N

N−1 
i=0

c0 (n) c0 (n)

=
1

N

N−1 
i=0

1

=
1

N
×N = 1

Now, consider a circularly shifted version of the PN sequence, shifted by n◦ = 2. Let it be

denoted by c0 (n− 2). This circularly shifted sequence by 2 chips can be readily seen to be

given as

PN Sequence=−1 + 1, −1 − 1 − 1 − 1 + 1 + 1
+1 − 1 + 1 + 1 − 1 − 1 + 1 (5.7)

Let us denote the correlation between c0 (n) and c0 (n− 2) by r00 (2), where the (2) can now

be seen to represent a circular shift of 2. The correlation can be seen to be given as

r00 (2) =
1

N

N−1 
i=0

c0 (n) c0 (n − 2)
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=
1

15
{(−1)× (−1) + (−1)× (1) + (−1)× (−1) + (−1)× (−1) + (1)× (−1)+

(1)× (−1) + (1)× (1) + (−1)× (1) + (1)× (1) + (1)× (−1) + (−1)× (1)+

(−1)× (1) + (1)× (−1) + (−1)× (−1) + (1)× (1)}

=
1

15
(1− 1 + 1 + 1− 1− 1 + 1− 1 + 1− 1− 1− 1− 1 + 1 + 1)

=
1

15
× (−1) = − 1

15

= − 1
N

In fact, one can compute the correlation for other such nonzero delays, and can demonstrate

the the correlation is always − 1
N

. This autocorrelation property of the PN sequence, i.e., of

the sequence with a delayed version of itself, is shown pictorially in Figure 5.7. Thus, it can

be seen that while the correlation of the sequence with itself corresponding to a lag of 0 is

1, for any other nonzero shift, it assumes a very low value of − 1
N , which tends to the limit

0 as the spreading length N → ∞. This autocorrelation property of the PN sequences can be

summarized as follows.

Shift n0

-1/N

1

Figure 5.7 Autocorrelation of PN sequence

r00 (n◦) =
1

N

N−1 
i=0

=

⎧⎨
⎩ 1 if n◦ = 0

− 1
N

otherwise

With this background, let us investigate the properties of random spreading sequences in the

next section.
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5.5 Correlation Properties of Random CDMA Spreading Sequences

In the previous section, we have seen that CDMA spreading sequences can be chosen as PN

sequences, which have noiselike properties. In other words, one can choose a chip sequence

ck (i) , 0 ≤ i ≤ N − 1 for the user k such that P (ck (i) = +1) = P (ck (i) = −1) = 1
2 . Thus,

we have,

E {ck (i)} = 1
2
× (+1) + 1

2
(−1) = 0.

Further, another important aspect is to choose such sequences as containing Independent

Identically Distributed (IID) chips, i.e., satisfying the property

E {ck (i) ck (j)} = E {ck (i)}E {ck (j)} = 0× 0 = 0

The above property implies that each chip ck (i) is uncorrelated with chip ck (j). Further, one

can choose independent sequences for different users, that is, to say

E {ck (i) cl (j)} = E {ck (i)}E {cl (j)}

Let us examine the correlation properties of such random spreading sequences. As before, let

r00 (k) denote the autocorrelation of the chip sequence of the user k = 0, corresponding to a

lag k  = 0. This can be expressed as

r00 (k) =
1

N

N−1 
i=0

c0 (i) c0 (i− k)

The average or expected valued of r00 (k) can be seen to be given as

E {r00 (k)} = E
 
1

N

N−1 
i=0

c0 (i) c0 (i− k)

 

=
1

N

N−1 
i=0

E {c0 (i) c0 (i− k)}
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=
1

N

N−1 
i=0

E {c0 (i)}E {c0 (i− k)}

=
1

N

N−1 
i=0

0 = 0

Thus, the average value or the expected value of the correlation E {r00 (k)} is zero for lags

k  = 0. This is expected from the random properties of the spreading sequence. To compute the

variance of the autocorrelation r00 (k), consider r200 (k) given as

r200 (k) =
1

N 2

 
N−1 
i=0

c0 (i) c0 (i− k)

 ⎛
⎝N−1 

j=0

c0 (j) c0 (j − k)

⎞
⎠

=
1

N 2

N−1 
i=0

N−1 
j=0

c0 (i) c0 (i− k) c0 (j) c0 (j − k)

Now, let us consider the quantity c0 (i) c0 (i− k) c0 (j) c0 (j − k). It can be seen that if i  = j,

the expected value of this quantity can be simplified as

E {c0 (i) c0 (i− k) c0 (j) c0 (j − k)} = E {c0 (i) c0 (i− k)}E {c0 (j) c0 (j − k)}

= E {c0 (i)}E {c0 (i− k)}E {c0 (j)}E {c0 (j − k)}

= 0

On the other hand, if i = j, the same quantity can be simplified as

E {c0 (i) c0 (i− k) c0 (j) c0 (j − k)} = E {c0 (i) c0 (i− k) c0 (i) c0 (i− k)}

= E
 
(c0 (i))

2
 
E
 
(c0 (i− k))2

 
= 1× 1 = 1

Thus, the variance of r00 (k), i.e., E
 
r200 (k)

 
can be simplified as

E
 
r200 (k)

 
=
1

N 2

N−1 
i=0

N−1 
j=0

E {c0 (i) c0 (i− k) c0 (j) c0 (j − k)}
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=
1

N 2

N−1 
i=0

E
 
c20 (i) c

2
0 (i− k)

 

=
1

N 2

N−1 
i=1

1 =
1

N 2
×N

=
1

N

Thus, the variance or basically the power of r00 (k), the autocorrelation of the random CDMA

spreading sequence is E
 
r200 (k)

 
= 1

N
. Also, once again, the autocorrelation corresponding

to a lag of k = 0 can be readily seen to be given as

E {r00 (0)} = E
 
1

N

N−1 
i=0

c0 (i) c0 (i)

 

=
1

N

N−1 
i=0

E
 
c20 (i)

 

=
1

N

N−1 
i=0

1

=
1

N
×N = 1

Therefore, one can succinctly summarize the autocorrelation properties of the random

spreading sequence as follows. For k = 0, r00 (k) = 1. For k  = 0, r00 (k) is a random variable

withE {r00 (k)} = 0 and varianceE
 
r200 (k)

 
= 1

N
. Let us now examine the cross-correlation

properties of the random CDMA spreading sequences, i.e., the correlation between the

spreading sequences c0 (i) , 0 ≤ i ≤ N − 1 and c1 (j) , 0 ≤ j ≤ N − 1. We denote by r01 (k)

the cross-correlation between spreading sequences c0, c1 corresponding to a lag k as

r01 (k) =
1

N

N−1 
i=0

c0 (i) c1 (i− k)

Once again, the expected value for any lag k can be computed as

E {r01 (k)} = 1

N
E

 
N−1 
i=0

c0 (i) c1 (i− k)
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=
1

N

N−1 
i=0

E {c0 (i) c1 (i− k)}

=
1

N

N−1 
i=0

E {c0 (i)}E {c1 (i− k)}

=
1

N

N−1 
i=0

0× 0 = 0

Further, the variance E
 
r201 (k)

 
for any delay k is given as

E
 
r201 (k)

 
=
1

N 2
E

⎧⎨
⎩
 

N−1 
i=0

c0 (i) c1 (i− k)

 ⎛
⎝N−1 

j=0

c0 (j) c1 (j − k)

⎞
⎠
⎫⎬
⎭

=
1

N 2

N−1 
i=0

N−1 
j=0

E {c0 (i) c1 (i− k) c0 (j) c1 (j − k)}

=
1

N 2

N−1 
i=0

E
 
c20 (i)

 
E
 
c21 (i− k)

 

=
1

N 2

N−1 
i=0

1

=
1

N 2
×N =

1

N

where we have again used the fact E {c0 (i) c1 (i− k) c0 (j) c1 (j − k)} is nonzero only if

i = j in the above derivation. Thus, once again, it can be seen that the cross-correlation

r01 (k) between two random CDMA spreading sequences c0 c1 is a random variable

with E {r01 (k)} = 0 and variance E
 
r201 (k)

 
= 1

N . Thus, unlike the codes introduced in

Section 5.3, these random spreading codes do not satisfy the definition of exact orthogonality.

However, they are approximately orthogonal, in that the average value of the correlation is

zero and the power in the correlation is proportional to 1
N

which tends to 0 as N → ∞.

5.6 Multi-User CDMA

Now let us analyze the performance of a multi-user CDMA system using the properties

of the spreading sequences described above. Let a0, a1 denote the symbols of users 0, 1
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respectively. Further, let the transmit powers of the users be denoted by E
 
|a0|2

 
= P0 and

E
 
|a1|2

 
= P1. On the downlink, as described in Section 5.2, the signal x0 (n) of the user 0

is derived by modulating the symbol a0 with the spreading sequence c0 (n) as

x0 (n) = a0c0 (n)

Similarly, the signal x1 (n) is given as x1 (n) = a1c1 (n). The net downlink multiplexed signal

x (n) is formed from the constituent signals x0 (n) , x1 (n) as

x (n) = x0 (n) + x1 (n)

Assuming a simplistic AWGN channel model to begin with, the received signal at the user 0 is

given in the presence of additive white Gaussian noise as

y (n) = x (n) +w (n)

= a0c0 (n) + a1c1 (n) +w (n)

where the noise w (n) is such that E {w (n)} = 0 and E
 
|w (n)|2

 
= σ2

n. Further, the

whiteness property of the noise implies that E {w (n1)w (n2)} = 0 if n1  = n2. Again, as

described already in Section 5.2, we correlate with the spreading code c0 of the user 0 to

recover the symbol of the user 0 as

d0 =
1

N

N−1 
i=0

y (n) c0 (n)

=
1

N

N−1 
i=0

a0c0 (n) c0 (n)    
Desired user

+
1

N

N−1 
i=0

a1c1 (n) c0 (n)    
Interferer

+
1

N

N−1 
i=0

w (n) c0 (n)    
Noise

,

where the component 1
N

 N−1
i=0 a0c0 (n) c0 (n) corresponds to the desired user signal when

considering decoding at the user 0, while the component 1
N

 N−1
i=0 a1c1 (n) c0 (n), which arises

due to a1 constitutes the interference, and is also termed multi-user interference in the context

of CDMA. The last component 1
N

 N−1
i=0 w (n) c0 (n) corresponds to the noise at the receiver.

Below, we analyze and derive the statistical properties of each of the components described
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above. We start with the signal of the desired user, which can be simplified as

1

N

N−1 
i=0

a0c0 (n) c0 (n) = a0

 
1

N

N−1 
i=0

c0 (n) c0 (n)

 

= a0r00 (0) = a0,

where r00 (0) corresponds to the autocorrelation of spreading code c0 (n) of the user 0 for a

delay n◦ = 0, which was simplified above in Section 5.5. Hence, the desired signal power

is given as E
 
|a0|2

 
= P0. Next, we calculate the power in the multi-user interference

component. This component, denoted by I1, i.e., interference from the user 1 can be simplified

as

I1 =
1

N

N−1 
i=0

a1c1 (n) c0 (n)

= a1

 
1

N

N−1 
i=0

c1 (n) c0 (n)

 

= a1r01 (0)

Hence, the interference power E
 
|I1|2

 
can be simplified as

E
 
|I1|2

 
= E

 
|a1r01 (0)|2

 
= E

 
|a1|2

 
E
 
|r01 (0)|2

 

= P1 × 1

N
=

P1

N
.

Thus, unlike the previous cases described in Eqs (5.4) and (5.5), the interference from the user 1

is not exactly zero due to the approximate orthogonality of the random spreading codes as

described in Section 5.5. However, the interference power decays as 1
N

, which is significantly

small for large values of spreading length N . The noise power can be calculated as follows.

Let w̃0 denote the noise, i.e.,

w̃0 =
1

N

N−1 
i=0

w (n) c0 (n)
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It can be readily seen that w̃0 is a linear combination of Gaussian noise components w (n) and

is, therefore, Gaussian in nature. Further, the expected or average value of w̃0 can be obtained

as

E {w̃0} = E
 
1

N

N−1 
i=0

w (n) c0 (n)

 

=
1

N

N−1 
i=0

E {w (n)} c0 (n)

=
1

N

N−1 
i=0

0× c0 (n)

= 0

Thus, the average value of the noise is 0. Also, the average power in the noise can be calculated

as

E
 
|w̃0|2

 
= E

 
1

N 2

 
N−1 
n=0

w (n) c0 (n)

  
N−1 
m=0

w (m) c 0 (m)

  

=
1

N 2

N−1 
n=0

N−1 
m=0

E {w (n) c0 (n)w (m) c 0 (m)}

=
1

N 2

N−1 
n=0

E
 
|w0 (n)|2 |c0 (n)|2

 

=
1

N 2

N−1 
n=0

σ2
n =

1

N 2
×Nσ2

n

=
σ2
n

N
(5.8)

In the above simplification, we have used the fact that the noise samplesw (n) are uncorrelated.

Therefore, if n  = m, we have

E {w (n) c0 (n)w (m) c 0 (m)} = E {w (n)}E {w (m)} c0 (n) c 0 (m)

= 0× 0× c0 (n) c
 
0 (m) = 0
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Thus, the effective noise power is 1
N
σ2
n. Hence, for the above CDMA scenario, one can define

the Signal-to-Interference-Noise power Ratio (SINR) as

SINR =
Signal Power

Interference Power + Noise Power

=
P0

P1
N
+ σ2n

N

= N × P0

P1 + σ2
n

(5.9)

From the above expression, it can be clearly seen that the signal power is reduced at the receiver

not only due to the noise but also due to the interference. Hence, CDMA is an interference-

limited system, due which the interference power has to be managed for better performance.

Also, notice that there is a factor of N in the numerator, which arises because the interference

and noise power is suppressed by a factor of N . This is termed the spreading gain of the

CDMA system, which is equal to the spreading length.

The above expression in Eq. (5.9) for SINR in a CDMA network can be generalized to the

context of greater and two users. Consider K + 1 CDMA users 0, 1, ...,K transmitting with

powers P0, P1, ..., PK respectively on codes c0 (n) , c1 (n) , ..., cK (N ). Hence, the received

signal y (n) is given as

y (n) = a0c0 (n) + a1c1 (n) + . . .+ aKcK (n) + w (n) ,

=

K 
k=0

akck (n) +w (n)

The corresponding SINR after for the user 0 after correlating and decoding with the spreading

code c0 (n) corresponding to the user 0 can be similarly obtained as

SINR =
P0

P1
N +

P2
N + . . .+ PK

N +
σ2n
N

= N × P0 K
k=0 Pk + σ2

n

(5.10)

5.7 Advantages of CDMA

In this section, we systematically investigate the advantages of CDMA-based cellular systems

over 1G FDMA and 2G TDMA based cellular systems.
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5.7.1 Advantage 1: Jammer Margin

An important advantage of CDMA over conventional cellular systems is jammer suppression.

A jammer is basically a malicious user in a communication network who transmits with a

very high power to cause interference, thus leading to disruption of communication links. This

is shown schematically in Figure 5.8. Jammers are of significant concern, especially in the

context of highly secure communication systems such as those used for military and defense

purposes. The effect of jammer suppression in a CDMA system can be understood as follows.

Consider a communication system in which the signal x (n) of the power P is received in the

presence of additive white Gaussian noise w (n) of power σ2
w . The baseband system model for

this communication system can be expressed as

y (n) = x (n) + w (n)

Figure 5.8 Disruption by jammer in wireless communication

Hence, the SNR at the receiver is SNR = P
σ2w

. However, in the presence of a jamming signal

xj (n) of power Pj , the received signal y (n) is

y (n) = x (n) + xj (n) + w (n)

Thus, the jammer interferes with the signal reception and the signal-to-interference-noise

power ratio (SINR) can be calculated as SINR = P
Pj+σ2w

. Thus, the jammer has a significant

disruptive impact on the communication signal. Consider now a CDMA system in which the

transmitted signal x (n) is a spread-spectrum signal. As shown in the section above, the SINR
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for a CDMA scenario is given as

SINR =
P

Pj
N
+ σ2w

N

(5.11)

Thus, it can be seen that the jamming power Pj is suppressed by a factor of N . Moreover,

as the spreading factor N increases, the jammer suppression increases, minimizing the impact

of the jammer on the communication system. This is termed jammer suppression in CDMA

systems. Hence, CDMA which is inherently tolerant to jamming attacks is highly attractive for

defense applications. In fact, the earliest applications of CDMA were in the context of tactical

military secure communications, which were resistant to attacks by jammers. Only later were

the benefits of CDMA realized and applied in the context of civilian cellular networks. Also,

it is worthwhile noting that the gain of N in this context of jammer suppression is also termed

the jammer margin. Thus, the jammer margin is equal to N , i.e., the spreading length of the

CDMA codes.

5.7.2 Advantage 2: Graceful Degradation

Graceful degradation is another key property of CDMA-based wireless networks and as we

shall see soon, allows for much more efficient interference management, which ultimately

leads to universal frequency reuse and higher spectral efficiency. Consider the expression for

the SINR at the user 0 derived in Eq. (5.10). At this point, assume that another user, i.e., a user

with index K + 1 joins the network. Let PK+1 denote the corresponding transmission power

of this (K + 1)th user and aK+1, cK+1 (n) denote his transmitted symbol and spreading code

respectively. The SINR of the user 0 now changes to

SINR =
P0

P1
N +

P2
N + . . .+ PK

N +
PK+1

N + σ2n
N

= N × P0 K+1
k=0 Pk + σ2

n

Thus, the addition of a new user K + 1 with power PK+1 only causes an incremental

interference of
PK+1

N
at the user 0. Further, in general, at any user i  = (K + 1), the additional

interference due to the introduction of this new user is
PK+1

N . Therefore, the addition of the

new user K + 1 does not adversely affect any single user. Rather, the additional interference

caused by this new user is shared amongst all the existing users in the system leading to

interference distribution. This sharing of the interference by all the existing users leads to
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a graceful degradation of the SINR at each user. This is termed the graceful degradation

property of CDMA systems. This idea of graceful degradation is key to understanding the big

advantage of CDMA networks, i.e., universal frequency reuse, which is described next.

5.7.3 Advantage 3: Universal Frequency Reuse

To understand the concept of universal frequency reuse, we have to begin by understanding

the frequency allocation in convention, i.e., 1G and 2G cellular systems. Consider a cellular

network organized into cells as shown in Figure 5.9. Consider two adjacent cells C0, C1 shown

in the figure. Assume now that the same frequency f is allotted for transmission to users in

both C0, C1. Let x0 (n) with power P0 denote the signal of the user on the frequency f in the

cell 0, while x1 (n) with power P1 denotes the signal of the user in the cell 1. Since both the

signals are being transmitted on the identical frequency f , they will interfere with each other.

More specifically, the received signal y0 (n) at the user 0 is given as

y0 (n) = x0 (n)    
Signal

+ x1 (n)    
Interferer from C1

+w (n)    
Noise

Figure 5.9 Intercell interference for the user 0 on the cell edge

Hence, the SINR at the user 0 is given as SINR = P0
P1+σ2w

. This is similar to the jamming

interference case described in Eq. (5.11). Thus, if the same frequency f is allocated in adjacent

cells, it will cause heavy interference and degradation of user SINR results from adjacent cell
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interference. Thus, in a typical 1G or 2G cellular network such as GSM, only a fraction of

the total available frequencies are allocated in each cell, carefully avoiding the allocation of

the same frequency in adjacent cells. For instance, as can be seen from the hexagonal-lattice-

based cellular structure in Figure 5.10, each hexagonal cell has 6 neighbours. Hence, to avoid

adjacent cell interference, any of the frequencies allocated to C0 cannot be allocated to its

neighbours C1, C2, ...,C6. This holds true for all the cells in the network. Hence, only 1
7 of

the total available frequency bands can be allocated to each cell. This factor 1
7 is termed the

frequency-reuse factor of the cellular network. Thus, since only a fraction of the frequencies

are used in the cell, the total spectral efficiency is proportional to the frequency-reuse factor,

resulting in a rate which is 1
7 compared to that of using all the available bandwidth, since the

capacity is linearly related to bandwidth.

Figure 5.10 Grid or lattice of hexagonal cells

However, now consider the same scenario in the context of a CDMA network. Again,

assume that the same frequency f is allotted for transmission to users in bothC0, C1. However,

let x0 (n) with power P0 is now transmitted on code c0 (n), while x1 (n) with power P1 is

transmitted in the cell 1 on the random code c1 (n). Hence, now similar to the jammer scenario

in a CDMA system, the interference caused by the user on the identical frequency f in the

adjacent cell is now reduced by a factor of N to P1
N . Therefore, the SINR is now given as,

SINR =
P0

P1
N +

σ2w
N

This is the result of graceful degradation described in the previous advantage in Section 5.7.2.

Thus, the interference of each user is limited to a fraction 1
N

of the interferer power. Hence,

basically the jammer margin in defence applications, can be used for adjacent cell interference

power suppression in modern cellular networks! This is a great advantage of CDMA, which
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implies that the same frequency bands can be used in all cells across the network. Another way

of stating this is that the fraction of bands used in each cell is 1, i.e., all the bands. Therefore,

this is termed universal frequency reuse or equivalently, as a cellular network with frequency

reuse factor 1. Thus, compared to GSM, which uses only 1
7 of the frequency bands in each

cell, CDMA can use all the available frequency bands in each cell. This right away leads to an

increase of the spectral efficiency and resulting capacity by a factor of 7. Thus, CDMA-based

cellular networks have a much higher capacity compared to conventional 1G and 2G cellular

networks. This has led to a widespread adoption and embrace of CDMA-based technologies

for mobile communication.

5.7.4 Multipath Diversity and Rake Receiver

Another important advantage of CDMA is its ability to achieve diversity gain via multipath

scatter components. This is termed multipath diversity and is achieved through coherent

combining of the multipath-signal components employing a rake receiver. Consider a

multipath frequency-selective channel with several delayed signal paths. We have seen in

earlier chapters that such a multipath frequency-selective channel can be modelled as a Finite

Impulse Response (FIR) channel filter with channel taps h (0) , h (1) , . . . , h (L− 1). The

received symbol y (n) can be expressed as

y (n) = h (0)x (n) + h (1)x (n− 1) + . . .+ h (L− 1)x (n − L+ 1) + w (n)

=

L−1 
l=0

h (l)x (n − l) +w (n)

Recall that this represents a frequency-selective or intersymbol interference-limited channel

since the current output y (n) depends not only on the current symbol x (n), but also L− 1
previous input symbols x (n) , x (n − 1) , . . . , x (n− L+ 1). Consider now a CDMA signal

in which x (n) = a0c0 (n). To simplify this illustration, we currently consider a single user and

this can be readily extended to multi-user scenarios as will be seen in the subsequent sections.

Substituting this in the expression for y (n) above, the received signal across a frequency-

selective channel in a CDMA system is given as

y (n) =

L−1 
l=0

h (l)a0c0 (n− l) + w (n)
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As done previously, let us correlate with c0 (n) to recover the symbol corresponding to the user

0. This operation can be expressed as

d (0) =
1

N

N−1 
n=0

y (n) c 0 (n)

=
1

N

N−1 
n=0

 
L−1 
l=0

h (l) a0c0 (n − l) +w (n)

 
c 0 (n)

=
1

N

N−1 
n=0

L−1 
l=0

h (l) a0c0 (n − l) c 0 (n) +
1

N

N−1 
n=0

w (n) c 0 (n)    
w̃0

Recall from the analysis in Eq. (5.8) that the noise w̃0 is Gaussian of power E
 
 w̃0 2

 
= σ2w

N .

The first term in the above expression can be split into two components: one corresponding to

l = 0 and the other corresponding to l  == 0. Simplifying, we have

d (0) =
1

N

N−1 
n=0

h (0) a0c0 (n) c
 
0 (n) +

1

N

L−1 
l=1

N−1 
n=0

h (l)a0c0 (n− l) c 0 (n) + w̃0

= h (0) a0

 
1

N

N−1 
n=0

c0 (n) c
 
0 (n)

 
+ a0

L−1 
l=1

h (l)

 
1

N

N−1 
n=0

c0 (n− l) c 0 (n)

 
+ w̃0

= h (0) a0r00 (0) + a0

L−1 
l=1

h (l) r00 (l) + w̃0

At this point, we will employ the following simplifying approximation. Consider the quantity

r00 (l). As demonstrated in Section 5.5, for l  = 0, r00 (l) is a random variable with mean 0

and power 1
N

. Observe that the power tends to 0 as N → ∞. Hence, for large values of N ,

r00 (l) ≈ 0. Employing this approximation in the above expression, and noting that r00 (0) =

1, we have

d (0) = h (0) a0 + w̃0

Observe now a very interesting property. Even though there is intersymbol interference in

the above channel, we are able to extract the signal corresponding to h (0), i.e., delay 0 by

correlation with the spreading code c0 (n). This is once again because of the approximate

orthogonality property that was introduced in the previous sections. Moreover, interestingly,
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one can repeat this process by individually correlating with delayed versions of the spreading

sequence c0 (n − v) , 1 ≤ v ≤ L− 1 to extract the multipath components corresponding to

h (1) , h (2) , . . . , h (L− 1). Thus, correlating with c0 (n − v), the resulting statistic d (v) can

be simplified as,

d (v) =
1

N

N−1 
n=0

y (n) c 0 (n− v)

=
1

N

N−1 
n=0

 
L−1 
l=0

h (l) a0c0 (n− l) + w (n)

 
c 0 (n − v)

=
1

N

N−1 
n=0

L−1 
l=0

h (l) a0c0 (n − l) c 0 (n− v) +
1

N

N−1 
n=0

w (n) c 0 (n− v)

    
w̃v

Once again, it can be easily seen that the noise w̃v is Gaussian with variance E
 
|w̃v|2

 
=

w̃2
v

N .

Further, splitting the first term into two components corresponding to l = v and l  = v, one can

derive the expression for d (v) , 1 ≤ v ≤ L− 1 as

d (v) =
1

N

N−1 
n=0

h (v) a0c0 (n − v) c 0 (n − v)

+
1

N

L−1 
l=0, l  =v

N−1 
n=0

h (l)a0c0 (n− l) c 0 (n − v) + w̃v

= h (0) a0

 
1

N

N−1 
n=0

c0 (n − v) c 0 (n− v)

 

+ a0

L−1 
l=0, l  =v

h (l)

 
1

N

N−1 
n=0

c0 (n − l) c 0 (n− v)

 
+ w̃v

= h (v) a0r00 (0) + a0

L−1 
l=1

h (l) r00 (l − v) + w̃v

≈ h (v)a0 + w̃v

where we have again employed the approximation r00 (l− v) ≈ 0, l  = v in the above

simplification. Now, one can process that extracted components d (0) , d (1) , . . . , d (L− 1)
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as follows. Employing vector notation, the components can be expressed as

⎡
⎢⎢⎢⎢⎢⎣

d (0)

d (1)
...

d (L− 1)

⎤
⎥⎥⎥⎥⎥⎦

    
d

=

⎡
⎢⎢⎢⎢⎢⎣

h (0)

h (1)
...

h (L− 1)

⎤
⎥⎥⎥⎥⎥⎦

    
h

a0 +

⎡
⎢⎢⎢⎢⎢⎣

w̃0

w̃1

...

w̃L−1

⎤
⎥⎥⎥⎥⎥⎦

    
w̃

It can be readily seen that the above system is now similar to the multiple receive antenna

system, i.e., receive diversity system with channel coefficients h (0) , h (1) , . . . , h (L− 1).
The model can be, therefore, be succinctly expressed in vector notation as

d = ha0 + w̃

Hence, the optimal combiner is the Maximum Ratio Combiner (MRC) given by h

 h . Also

observe that the power of each noise component w̃v is E
 
|w̃v|2

 
= 1. Denoting the symbol

power E
 
|a0|2

 
by P and combining the observation vector d with the MRC yields the SNR

SNR =
 h 2 P

σ2w
N

= N ×
 
|h (0)|2 + |h (1)|2 + . . .+ |h (L− 1)|2

!
    

 h 2

P

σ2
w

Observe that the above expression is similar to the SNR for the multiple receive

antenna system, in that there is a factor  h 2 in the numerator, where h is the vector

of frequency-selective channel coefficients h = [h (0) , h (1) , . . . , h (L− 1)]T . This is in

addition to the spreading gain factor N . Thus, this is equivalent to the performance of a system

with diversity order L. This is the essence of multipath diversity and CDMA is able to exploit

this multipath diversity by correlating with the spreading code c0 (n− v) corresponding to

different lags 0 ≤ v ≤ L− 1, and combining the individual components employing MRC.

This receiver structure in CDMA is termed the rake receiver and the diversity gain thus

achieved is termed multipath diversity since it is extracted from the multipath components.

This multipath diversity arising out of rake combining is a unique feature of CDMA and
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significantly improves its performance over wireless channels because of the higher diversity

order of decoding.

5.8 CDMA Near–Far Problem and Power Control

In this section, we introduce a unique aspect of the CDMA systems which is termed the near–

far problem. Recall from Eq. (5.9) that the SINR at the user 0 of a 2 user CDMA system is

given as,

SINR =
P0

P1
N
+ σ2n

N

(5.12)

Consider, now a scenario where the user 1 is much closer to the base station than the user 0 as

Figure 5.11 Near-far problem in CDMA networks

shown in Figure 5.11. Specifically, let d0 =
√
Nd1. Let the transmitted power of each user at

the base station be denoted by PT . Since the radiated electromagnetic power decays at the rate

of d2 in free space, we have,

P1 =
PT

d20
=

PT

Nd21

P0 =
PT

d21
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Substituting the values of P0, P1 from above in the SINR expression in Eq. (5.12), we have

SINR =

PT
Nd21

PT
Nd2

1

+
σ2n
N

=
PT

PT + d21σ
2
n

Thus, the above expression yields the surprising result that both the signal and interference

power at the user 0 are of the same magnitude and the effect of the spreading gain N is lost.

This phenomenon arises because the user 1, who is closer to the base station, drowns out the

power of the user 0, i.e., there is heavy interference at the user 0. This is the near–far problem

in CDMA systems. To avoid this near–far problem, the power that is transmitted to the different

users has to be regulated in CDMA systems, i.e., lower power has to be transmitted to users

closer to the base station such as the user 1, while transmitting at a higher power to users farther

away such as the user 0. This is termed power control in CDMA systems. Power control is a

very important aspect of any CDMA wireless network as CDMA systems are interference

limited as described already in Section 5.6.

5.9 Performance of CDMA Downlink Scenario with Multiple Users

This section will focus on developing a detailed analysis towards the characterization of

downlink performance of a CDMA cellular system with multiple users. Consider the downlink

scenario schematically shown in Figure 5.12, where the CDMA base station is transmitting to

K + 1 users indexed 0, 1, . . . ,K. Let the information symbols transmitted to the K + 1 users

be a0, a1, . . . , aK+1. Let c0 (n) , c1 (n) , . . . , cK+1 (n) be the spreading codes corresponding

to the K + 1 users. Thus, the individual transmit signal xk (m) , 0 ≤ k ≤ K is formed by

xk (m) = akck (m). The composite signal corresponding to all the users is obtained by adding

the individual signals corresponding to the K + 1 users, similar to Eq. (5.3) as

x (n) = x0 (n) + x1 (n) + . . .+ xK (n)

=

K 
k=0

xk (n)

=

K 
k=0

akck (n) (5.13)
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Figure 5.12 CDMA downlink scenario

Similar to the rake-receiver scenario described in Section 5.7.4, let the frequency selective

channel between the base station and user 0 be characterized by the channel taps

h0 (0) , h0 (1) , . . . , h0 (L− 1). The 0 in the subscript of the channel taps now denotes that

this corresponds to the channel of the user 0 to distinguish it from the channels corresponding

to the rest of the users. Thus, the intersymbol-interference-affected received symbol y0 (n) at

the user 0 corresponding to time instant n is given as

y (n) = h0 (0)x (n) + h0 (1)x (n− 1) + . . .+ h0 (L− 1) x (n− L+ 1) +w (n)

=

L−1 
l=0

h0 (l)x (n − l) +w (n)

Substituting now the expression for the composite downlink signal x (n) as x (n)

=
 K

k=0 xk (n) =
 K

k=0 akck (n), one can write the expression for y (n) as

y (n) =
L−1 
l=0    

Multipath

K 
k=0    
users

h0 (l) akck (n− l) + w (n) (5.14)

where the first summation above is with respect to the multipath components and the second

is with respect to the K + 1 users. Thus, since the signal of each user gives rise to L multipath

components, there are a total of (K + 1)L multipath components in the above expression.

These correspond to L components of the desired user 0 (for decoding at the user 0) and KL

interfering components of the rest of the K users. Consider now correlation with the spreading

code c0 (n) corresponding to the user 0. The statistic d0 (0), i.e., at the user 0 corresponding to
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a lag of 0 can be expressed as

d0 (0) =
1

N

N−1 
n=0

y (n) c 0 (n)

=
1

N

N−1 
n=0

L−1 
l=0

K 
k=0

h0 (l)akck (n − l) c 0 (n) +
1

N

N−1 
n=0

w (n) c 0 (n)    
w̃0(0)

where the noise w̃0 (0) denotes the noise at the user 0 corresponding to decorrelation with

lag 0, i.e., spreading code c0 (n). Once again, similar to the situation in Eq. (5.8), it can be

seen that the noise power is E
 
|w̃0 (0)|2

 
= σ2w

N
. Further, the first part comprising of the total

(K + 1)L multipath components can be decomposed into three parts. The first comprising

of the component corresponds to k = 0 and l = 0, i.e., the user 0 and delay 0. The second

corresponds to k = 0 and l  = 0, i.e., all the other multipath components corresponding to

user 0, which comprise the Multipath Interference (MPI) at the user 0. The third corresponds

to k  = 0, i.e., 1 ≤ k ≤ K and all l, i.e., 0 ≤ l ≤ L− 1, which are basically the multipath

components of all users other than the desired user 0 and total KL in numbers. These constitute

the Multi-User Interference (MUI) at the user 0. The MPI and MUI together constitute the total

interference at the user 0. The above equation can, therefore, be written as

d0 (0) =
1

N

N−1 
n=0

L−1 
l=0

K 
k=0

h0 (l) akck (n − l) c 0 (n) +
1

N

N−1 
n=0

w (n) c 0 (n)    
w̃0(0)

=
1

N

N−1 
n=0

h0 (0) a0c0 (n) c
 
0 (n)    

k=0, l=0

+
1

N

N−1 
n=0

L−1 
l=1

h0 (l) a0c0 (n − l) c 0 (n)    
MPI: k=0, l  =0

+
1

N

N−1 
n=0

L−1 
l=0

K 
k=1

h0 (l) akck (n − l) c∗0 (n)    
MUI: k  =0

+w̃0 (0) (5.15)
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The above expression can be further simplified in terms of the correlation between the

spreading sequences as

d0 (0) = h0 (0) a0

 
1

N

N−1 
n=0

c0 (n) c
 
0 (n)

 
    

r00(0)

+a0

L−1 
l=1

h0 (l)

 
1

N

N−1 
n=0

c0 (n− l) c 0 (n)

 
    

r00(l)

+

L−1 
l=0

K 
k=1

h0 (l)ak

 
1

N

N−1 
n=0

ck (n − l) c∗0 (n)

 
    

rk0(l)

+w̃0 (0)

= h0 (0) a0r00 (0)    
Signal

+ a0

L−1 
l=1

h0 (l) r00 (l) +

L−1 
l=0

K 
k=1

h0 (l) akrk0 (l)    
Interference

+ w̃0 (0)    
noise

For additional clarity, the signal, interference, and noise terms have been explicitly marked

in the above expression. Since the correlation r00 (0) = 1, the signal component in the above

expression is

Signal = h0 (0) a0r00 (0) = h0 (0) a0

Further, the power in the MultiPath Interference (MPI) component is

E
 
|MPI|2

 
    

I0MPI

= E

⎧⎨
⎩
"""""a0

L−1 
l=1

h0 (l) r00 (l)

"""""
2
⎫⎬
⎭

= E
 
|a0|2

 L−1 
l=1

E
 
|h0 (l)|2

 
E
 
|r00 (l)|2

 

=
P0

N

L−1 
l=1

E
 
|h0 (l)|2

 
(5.16)

where we have used the properties that the power of the user 0 is E
 
|a0|2

 
= P0 and

E
 
|r00 (l)|2

 
= 1

N
. Interestingly, one can notice from the above expression that the multipath

interference power above increases with the signal power P0. Thus, increasing the signal power

at the base station also potentially increases the interference power. This is a unique property of

interference-limited systems such as CDMA. The above relation for MPI power can be further
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simplified as

I0MPI =
P0

N

 
L−1 
l=0

E
 
|h0 (l)|2

 
− E

 
|h0 (0)|2

  

=
P0

N
 h0 2 − P0

N
|h0 (0)|2

where  h0 2 is defined as the norm of the channel-impulse response vector h0, i.e.,

 h0 2 = |h0 (0)|2 + |h0 (1)|2 + . . .+ |h0 (L− 1)|2

Also, the power of the multiuser interference (MUI) component can be simplified as

E
 
|MUI|2

 
    

I0MUI

= E

⎧⎨
⎩
"""""
L−1 
l=0

K 
k=1

h0 (l) akrk0 (l)

"""""
2
⎫⎬
⎭

=

K 
k=1

L−1 
l=0

E
 
|ak|2

 
E
 
|h0 (l)|2

 
E
 
|rk0 (l)|2

 

=

K 
k=1

L−1 
l=0

PkE
 
|h0 (l)|2

 1
N

=
1

N

 
L−1 
l=0

|h0 (l)|2
  

K 
k=1

Pk

 

=
1

N
 h0 2

 
K 
k=1

Pk

 

The statistic d0 (0), i.e., at the user 0 derived by correlating with c0 (n), i.e., corresponding to

a lag of 0 can be expressed as

d0 (0) = h0 (0) a0 + I0
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where the total interference plus noise power I0 can be written as

I0 = I0MPI + I0MUI +
σ2
w

N

=
1

N
 h0 2

 
K 
k=0

Pk

 
− 1

N
P0 |h0 (0)|2 + σ2

w

N

Also, similar to the rake receiver in Section 5.7.4, one can now correlate with other delayed

versions of the spreading sequence c0 (n) such as c0 (1) , c0 (2) , . . . , c0 (L− 1), correspond-

ing to lags of 1, 2, . . . , L− 1. The resulting decision statistics d0 (1) , d0 (2) , . . . , d0 (L− 1),
along with d0 (0) can be summarized as

d0 (0) = h0 (0) a0 + I0

d0 (1) = h0 (1) a0 + I1

...

d0 (L− 1) = h0 (L− 1) a0 + IL−1

Hence, one can perform maximum ratio combining across the statistics

d0 (0) , d0 (1) , . . . , d0 (L− 1) to yield the decision statistic

d =
h∗
0 (0)

 h0 d0 (0) +
h∗
0 (1)

 h0 d0 (1) + . . .+
h∗
0 (L− 1)
 h0 d0 (L− 1)

=

L−1 
l=0

h∗
0 (l)

 h0 d0 (l)

=

L−1 
l=0

h∗
0 (l)

 h0 
 
h0 (l)a0 + I l

!

=

L−1 
l=0

h∗
0 (l)

 h0 h0 (l) a0    
Signal

+

L−1 
l=0

h∗
0 (l)

 h0 I
l

    
Noise + Interference
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The signal part of the above combined decision statistic d can be simplified as

signal =

L−1 
l=0

h∗
0 (l)

 h0 h0 (l) a0

=
|h0 (0)|2
 h0 a0 +

|h0 (1)|2
 h0 a0 + . . .+

|h0 (L− 1)|2
 h0 a0

=
 h0 2
 h0 a0 =  h0 a0

Hence, the signal power is

 h0 2 E
 
|a0|2

 
= P0  h0 2 (5.17)

Also, the noise plus interference power corresponding to the lth branch of the combiner is

|h0 (l)|2
 h0 2

E

#"""I l"""2$ = |h0 (l)|2
 h0 2

 
1

N
 h0 2

 
K 
k=0

Pk

 
− 1

N
P0 |h0 (l)|2 + σ2

w

N

 

=
1

N

K 
k=0

Pk |h0 (l)|2 − 1

N
P0

|h0 (l)|4
 h0 2

+
|h0 (l)|2
 h0 2

σ2
w

N

Finally, the sum of the total noise plus interference power across all the L branches of the

combiner is given as

L−1 
l=0

|h0 (l)|2
 h0 2

E

#"""I l"""2$ = L−1 
l=0

 
1

N

K 
k=0

Pk |h0 (l)|2 − 1

N
P0

|h0 (l)|4
 h0 2

+
|h0 (l)|2
 h0 2

σ2
w

N

 

=
1

N

K 
k=0

Pk  h0 2 − P0

N

L−1 
l=0

|h0 (l)|4
 h0 2

+
σ2
w

N
(5.18)

Hence, from the expressions for the signal and interference plus noise power from Eqs (5.17)

and (5.18) respectively, the total signal to interference plus noise power at the user 0 for the

downlink multi-user CDMA scenario is given as

SINR0 =
NP0  h0 2 K

k=0 Pk  h0 2 − P0
 L−1

l=0
|h0(l)|4
 h0 2 + σ2

w

(5.19)
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Observe that the factor of N above in the SINR expression represents the spreading gain of the

CDMA system. Generalizing the above expression, the signal to interference plus noise power

ratio SINRu at the uth user is given as

SINRu =
NPu  hu 2 K

k=0 Pk  hu 2 − Pu

 L−1
l=0

|hu(l)|4
 hu 2 + σ2

w

(5.20)

5.10 Performance of CDMA Uplink Scenario with Multiple Users

We now consider a CDMA uplink scenarion with K + 1 users. Similar to the

downlink multi-user scenario, let a0, a1, . . . , aK denote the information symbols and

c0 (n) , c1 (n) , . . . , cK (n) denote the spreading codes corresponding to the K + 1 users

respectively. Hence, the spread signal transmitted by each user xk (m) can be expressed as

xk (m) = akck (m). However, there is a key difference here with respect to the downlink

scenario. Unlike the composite signal which is transmitted by the base station in the downlink

scenario, each mobile user transmits his individual signal from the transmitter. These signals

then traverse their respective radio channels and are superposed at the receiver as shown in

Figure 5.13. Thus, the composite signal in the uplink scenario is formed by superposition at

the receiver.

Figure 5.13 CDMA uplink scenario

To understand this better, consider the frequency-selective channel

hk (0) , hk (1) , . . . , hk (L− 1) between the kth user and the base station. Thus, the
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received signal component yk (n) of the user k at the base station is given as

yk (n) = hk (0)xk (n) + hk (1)xk (n− 1) + . . .+ hk (L− 1)xk (n− L+ 1)

=

L−1 
l=0

hk (l)xk (n− l)

=

L−1 
l=0

hk (l) akck (n− l)

Thus, the net superposed signal y (n) received at the base station is given as the sum of

the components y0 (n) , y1 (n) , . . . , yK (n) corresponding to all the users 0, 1, . . . , K in the

presence of noise, expressed as

y (n) = y0 (n) + y1 (n) + . . .+ yK (n) + w (n)

=

K 
k=0

yk (n) + w (n)

=

K 
k=0

L−1 
l=0

akhk (l) ck (n− l) + w (n) (5.21)

Observe that the key difference with respect to the downlink system model in Eq. (5.14) is that

in the uplink case, the signal of each user goes through the multipath channel of that particular

user, compared to the downlink case, where the signal of each user goes through the same

channel hk (0) , hk (1) , . . . , hk (L− 1) of the user k corresponding to the signal received at

the user k. Proceeding similarly as in the downlink case, it can be easily shown that the uplink

SINRu, corresponding to the user u is given as

SINRu =
NPu  hu 2 K

k=0 Pk  hk 2 − Pu

 L−1
l=0

|hu(l)|4
 hu 2 + σ2

w

(5.22)

5.11 Asynchronous CDMA

Till this point in the development of CDMA, we have implicitly assumed that the CDMA

spreading sequences are aligned or synchronized as shown in Figure 5.14. However, frequently,
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the spreading sequences at the base station in an uplink scenario are not aligned. This is due

to the fact that difference users are at different distances from the base station. Hence, the

resulting propagation delays are different, leading to loss of synchronization at the receiver.

One of the unique advantages of CDMA is the ability of asynchronous operation. The SINR

corresponding to asynchronous operation in CDMA scenarios can be derived as follows.

Figure 5.14 Synchronous CDMA code sequences

Consider the spreading sequences c0(n), c1 (n) of users 1, 2 respectively, with the sequence

c1 (n) time shifted compared to c0 (n). Let the fraction f, 0 ≤ f ≤ 1, denote the time shift

relative to the CDMA chip time as shown in Figure 5.15. It can now be seen that the

asynchronous correlation between the sequences, will now comprise of two components. A

fraction of the sequence c0 (n), i.e., 1− f will correlate with c1 (n), while the fraction f will

correlate with the shifted sequence c1 (n− 1). Hence, the asynchronous correlation ra01 can be

expressed as a linear combination of the two synchronous correlations r01 (0) , r01 (−1) as

ra01 = (1− f) r01 (0) + fr01 (−1)

Figure 5.15 Asynchronous CDMA code sequences
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g ff ( )

1
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Figure 5.16 Uniform distribution of fractional shift f

Further, in a practical CDMA scenario, the parameter f is a random variable since the users

are randomly distributed at various distances within a cell. Also, since 0 ≤ f ≤ f , it can be

assumed to be uniformly distributed in [0, 1]. Thus, the distribution of f , shown in Figure 5.16,

can be expressed as

gF (f) = 1, 0 ≤ f ≤ 1

Further, the second moment E
 
f2
 

of the fractional shift random variable F can be derived

as

E
 
f2
 
=

% 1

0
f2gF (f) df

=

% 1

0
f2 df

=
1

3
f3
""""1
0

=
1

3

Thus, we have E
 
f2
 
= 1

3 . Further, observe the the random variable 1− f is also uniformly

distributed in [0, 1]. Hence, the variance or power of the asynchronous correlation is given as

E
 
|ra01|2

 
= E

 
|(1− f) r01 (0) + fr01 (−1)|2

 
= E

 
|1− f |2

 
E
 
|r01 (0)|2

 
+ E

 
|f |2

 
E
 
|r01 (−1)|2

 

=
1

3

1

N
+
1

3

1

N

=
2

3

1

N



158 Principles of Modern Wireless Communication Systems

Thus, the power in the asynchronous correlation is 2
3 that of the power in the synchronous

correlation, which is 1
N . Employing the above property, the SINR of the user u for the

asynchronous CDMA uplink scenario SINRa
u can be derived from the synchronous SINR in

Eq. (5.22) as

SINRa
u =

NPu  hu 2
2
3

 K
k=0 Pk  hk 2 − 2

3Pu

 L−1
l=0

|hu(l)|4
 hu 2 + σ2

w

(5.23)

1. BER in Multipath Fading Channels A wireless mobile is in an environment such that

it is receiving exactly 4 independently Rayleigh faded multipath signal components. The

average power of each component is −1 dB. Let the signal power be P = 15 dB and noise

power σ2
n = 3 dB. Consider different scenarios as given below for BPSK transmission.

(a) Scenario 1: The user is mobile and the delay spread is much smaller than the symbol

time. What is the exact probability of bit error in this case ?

(b) Scenario 2: The user is mobile and the delay spread is much larger than the symbol

time and each of the multipath components can be resolved using a rake receiver, i.e.,

the receiver can detect the signal corresponding to each multipath component. What is

the approximate BER in this case?

(c) Scenario 3: Subsequently, the user arrives at a position where the channel

coefficients corresponding to the different multipath components are

0.9 + 0.1j, 0.75− 0.2j,−1.1− 0.15j,−0.6+ 0.5j. After this point, there is no

motion and the transmitter, receiver, and scatterers are static. What is the exact BER

from this point onwards for each of the scenarios above (ie small and large delay

spreads)?

2. Multiuser CDMA Consider a K = 2 user uplink CDMA system. Let the users channel

profiles be given as

h0 = [1 + 0.6j, 0.6− 0.2j]T

h1 = [1− 0.2j, 0.8 + 0.4j, −0.2+ 0.1j]T
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where each element is the channel coefficient corresponding to some multipath delay.

Consider spreading sequences of length N = 64, and user powers P0 = −3 dB,

P1 = −3 dB, and noise power σ2
n = 3 dB.

(a) Compute the corresponding rake SNRs for the desired user 0 corresponding to both an

asynchronous and chip aligned multipath synchronous uplink.

(b) What is the diversity order of for the user 0 in both the above modes?

(c) What is the approximate BER of the user 0 for QPSK transmission corresponding to

both the above modes?

3. Consider a MISO-CDMA system with t transmit antennas modelled as

y (k) = hHx (k) + n (k)

with the standard vector of channel coefficients h = [h1, h2, ..., ht]
T
. Consider the

following transmission scheme. A different spreading code is used to modulate the transmit

symbol on each transmit antenna, i.e., the kth transmitted chip on lth transmit antenna is

given as s (0) cl (k). Let the length of each spreading sequence be N .

(a) Demonstrate the optimal demodulation scheme for the above MISO-CDMA system.

(b) Derive the SNR at the receiver under the assumption of long spreading codes.

(c) What is the diversity order of the above scheme?

(d) Now consider a different transmit scheme where the transmitted chip is given as

s (0) c (k), i.e., the same spreading sequence is employed on each transmit antenna.

Derive the BER for this scheme. What is the problem with this scheme?

4. Beamforming in Multiple Antenna CDMA Receivers Consider an M antenna SIMO

CDMA system, where the frequency-selective fading channel between the transmit

antenna and the ith receive antenna is given as the FIR filter with channel taps

hi (0) , hi (1) , . . . , hi (L− 1).
(a) Derive the optimal SNR maximizing receiver structure for the above system and

clearly describe each step in the derivation.

(b) What is the SNR at the output of the above system and the associated diversity order?

(c) Consider a two-antenna system with channel taps [0.51 + 0.99i,−0.04+
1.00i,0.50 + 0.47i], [−0.14− 0.85i,−0.08+ 0.50i,1.05 + 1.15i] for the first

and second antennas respectively. What is the instantaneous bit-error rate of the

system at transmit SNR P/σ2
n = −20 dB and spreading length N = 256?

(d) What is the average BER of the system if each tap is Rayleigh of average power unity?
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5. Multi-user CDMA Consider a multi-user CDMA scenario with K = 15 users and noise

power σ2
n = 0 dB. Let all users have equal received power P and the wireless channel

of each user is a multipath channel with L = 4 independent multipath components of

unit power each. Answer the questions below. Let the tolerable BPSK BER required for

voice communication be 10−3. Assume spreading length N = 256 and ignore multipath

interference.

(a) For a downlink scenario and stationary users, compute the power P required for voice

calls.

(b) For a downlink scenario and mobile users, compute the power P required for voice

calls (Hint: Use the appropriate diversity BER approximation).

(c) For an uplink asynchronous scenario and mobile users, compute the power P required

for voice calls.

(d) For an uplink asynchronous scenario and mobile users with a voice activity factor of

50%, compute the power P required for voice calls.

6. Alamouti-Coded CDMA Consider a single-user CDMA scenario t = 2 transmit antennas

and r = 1 receive antenna. Let the multipath channel between the ith transmit antenna

i = 1, 2 and the receive antenna be given as [hi (0) , hi (1) , ..., hi (L− 1)]. Consider the

following Alamouti CDMA transmission scheme with spreading sequence c (k) , 1 ≤ k ≤
N , of spreading length N . The symbol vector [x1, x2]

T is transmitted for the first N chips

on code c (k) followed by [−x2, x1]
H for the next N chips. Ignore multipath interference

and answer the questions below.

(a) Clearly describe the system model for the above system.

(b) Describe the optimum decoding rule at the receiver.

(c) What is the associated decoding SNR.

(d) What is the diversity order associated with this scheme?

7. Multi-Antenna CDMA Consider the receive (Rx) diversity system described in the class

which is given as

y (n) = hx (n) +w (n)

where y(n),h,w(n) are complex L-dimensional vectors and x(n) is the transmitted scalar

complex symbol. The noisew(n) is AWG with covariance E
 
w(n)w(n)H

 
= σ2

nI. Each

entry of h is IID Rayleigh with E
 
|hi|2

 
= 1. Consider now a K-user scenario, with

signal xi (n), the signal of the ith user 0 ≤ i ≤ K − 1 given as xi (n) = aici (n), where
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ci (n) denotes the spreading code of the user i. The signal power is E
 
|ai|2

 
= P and

each ci (n) = ±1. Consider approximately orthogonal PN sequences of length N with the

correlation properties discussed in class (Hint: Do NOT neglect multi-user interference).

Let the composite signal x (n) transmitted on the downlink (DL) be given as

x (n) =

K−1 
i=0

xi (n) =

K−1 
i=0

aici (n)

Answer the questions that follow.

(a) Consider decoding at the user 0. What is the test statistic rl at the lth antenna of user

0?

(b) What is the total noise plus interference power associated with rl?

(c) What is the combinerw and the SNR at the output of the optimal combiner?

(d) Using a suitable approximation, derive the average BER at the receiver?

(e) Compute the average BER for P = −10 dB, σ2
n = 0 dB, for spreading length N =

1024, K = 15 users, and number of antennas L = 4 with E
 
|hi|2

 
= 1.

8. Multi-Antenna CDMA Consider the receive (Rx) diversity system described in the class

which is given as

y (n) = hx (n) +w (n)

where y(n),h,w(n) are complex L-dimensional vectors and x(n) is the transmitted scalar

complex symbol. The noisew(n) is AWG with covariance E
 
w(n)w(n)H

 
= σ2

nI. Each

entry of h is IID Rayleigh withE
 
|hi|2

 
= 1. Consider now a K-user scenario, with signal

xi (n), the signal of the ith user 0 ≤ i ≤ K − 1 given as xi (n) = aici (n), where ci (n)

denotes the spreading code of user i. The signal power is E
 
|ai|2

 
= P and each ci (n) =

±1. Consider exactly orthogonal spreading codes of length N , i.e.,
 N−1

n=0 ci (n) cj (n) = 0.

Let the composite signal x (n) transmitted on the downlink (DL) be given as

x (n) =

K−1 
i=0

xi (n) =

K−1 
i=0

aici (n)

Answer the questions that follow.
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(a) Consider decoding at the user 0. What is the test statistic rl at the lth antenna of the

user 0?

(b) What is the noise power associated with rl?

(c) What is the optimal combinerw and the SNR at the output of the optimal combiner?

(d) What is the instantaneous and average BER at the receiver?

(e) Compute the average BER at SNR P
σ2n
= 20 dB, for spreading length N = 256 and

number of antennas L = 4.

9. Multi-Antenna CDMA Consider a frequency-selective multiple receive antenna system

with M receive antennas and a single transmit antenna which is given as

y (n) =

L−1 
l=0

h (l)x (n− l) +w (n)

where y(n),h (l) ,w(n) are complex M -dimensional vectors and x(n) is the transmitted

scalar complex symbol. The noisew(n) is AWG with covariance E
 
w(n)w(n)H

 
= σ2

nI.

Each entry ofh (l) is IID Rayleigh withE
 
|hi (l)|2

 
= 1. Consider now aK-user scenario,

with signal xi (n), the signal of the ith user 0 ≤ i ≤ K − 1 given as xi (n) = aici (n),

where ci (n) denotes the spreading code of the user i. The signal power is E
 
|ai|2

 
= P

and each ci (n) = ±1. Consider exactly orthogonal spreading codes of length N for all

users i, j, and shifts l, i.e.,
 N−1

n=0 ci (n− l) cj (n− v)  = 0 only if i = j and l = v. Let the

composite signal x (n) transmitted on the downlink (DL) be given as

x (n) =

K−1 
i=0

xi (n) =

K−1 
i=0

aici (n)

Answer the questions that follow.

(a) Consider decoding at the user 0. Verbally describe how many test statistics are there at

each antenna and what they are.

(b) What are these test statistics at the mth antenna of the user 0?

(c) What is the noise power associated with each test statistic?

(d) What is the optimal combinerw of all these statistics and the SNR at the output of the

optimal combiner?

(e) What is the instantaneous and average BER at the receiver?
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(f) Compute the average BER at SNR P
σ2n
= −20 dB, for spreading length N = 256 and

number of antennas M = 4 and L = 4.

(g) Now consider a binary orthogonal modulation scheme in which we either transmit

a0c
A
0 (n) or a0c

B
0 (n) for the user 0, where the codes cA0 (n) , c

B
0 (n) are both

orthogonal and their shifts are also orthogonal with each other and the rest of the users.

Calculate the error probability with the coherent rake for this case. (No need to derive

the entire receiver. You can give the answer based on prior knowledge.)

10. Diversity Coding and CDMA Consider a scheme that transmits the vector

x (n) = Ru c0 (n), over two spreading code times. The vector u and the matrix R are

u =

⎡
⎣u1

u2

⎤
⎦ , R =

⎡
⎣1 1

2

1 1
2

⎤
⎦ ,

and u1, u2 are BPSK symbols, each of power P . Assume the scenario is fast-fading, so that

the frequency-selective channels hi (0) , hi (1) , . . . , hi (L− 1) for these two spreading

code times i = 0, 1 are independent. Also assume that the code c0 and its shifts are exactly

orthogonal. This is an instance of time and multipath diversity. Let the noise power be σ2
n.

If y0 (n) , y1 (n) are the received signal for the first and second intervals of length N chips,

essentially the model for this system is given as

⎡
⎣y0 (n)

y1 (n)

⎤
⎦ = L−1 

l=0

⎡
⎣h0 (l) 0

0 h1 (l)

⎤
⎦Ruc0 (n− l) +

⎡
⎣w0 (n)

w1 (n)

⎤
⎦

(a) Demonstrate that the decorrelated statistics d0 (l) , d1 (l) for time instants 0, 1

respectively corresponding to decorrelation with c0 (n − l) are given as

⎡
⎣d0 (l)

d1 (l)

⎤
⎦ =

⎡
⎣h0 (l) 0

0 h1 (l)

⎤
⎦Ru+

⎡
⎣w̃0 (l)

w̃1 (l)

⎤
⎦

(b) Employing the statistics corresponding to all l above, i.e., 0 ≤ l ≤ L− 1, derive the

average confusion probability PxA→xB
, where xA, xB are defined as (2.0)

xA = R

⎡
⎣√P√

P

⎤
⎦ , xB = R

⎡
⎣−√

P√
P

⎤
⎦
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(c) What is the diversity order of this system?

(d) Compute this average confusion probability for L = 4, P = 30 dB and σ2
n = 3 dB.

11. The coherent performance of antipodal signalling-based rake receiver has been discussed

in class. Now consider a binary orthogonal modulation based DS spread spectrum system:

we either transmit xA =
√
PcA (n) or xB =

√
PcB (n)which are both orthogonal and their

shifts are also orthogonal with each other. Calculate the average error probability expression

with the coherent rake for this case considering an L tap frequency-selective channel with

IID Rayleigh taps of average power unity, noise power σ2
n, and spreading length N .

12. MISO CDMA Consider a 1× 4 flat-fading MISO CDMA system with code sequence of

length N = 8 and channel vector h. Assume perfect channel information available at the

transmitter and answer the questions below. Transmit power = P with BPSK modulation

and noise power σ2
n = 3 dB.

(a) What is the optimal transmit symbol from each transmit antenna?

(b) If the instantaneous channel vector h =
&
1, 1

2 ,
1
2 , 1

'
, what is P required for

instantaneous BER 10−6 ?

(c) If the channel coefficients are IID Rayleigh with average power of 3 dB, what is

P required for the average BER 10−6?

13. Consider a BPSK-modulated single-user CDMA system with N = 128 and noise power

σ2 = 3 dB. Also for simplicity, assume that the spreading sequences for different shifts are

exactly orthogonal. Answer the questions that follow.

(a) Consider an AWGN channel and derive the transmit power required to achieve BER

of 10−6.

(b) Consider a two-tap channel with channel taps 1 + j, 2− j and derive the transmit

power required to achieve instantaneous BER of 10−6. Assume a rake receiver.

(c) Consider a two-tap Rayleigh fading channel with each tap of average power unity and

derive the transmit power required to achieve average BER of 10−6. Assume a rake

receiver.



6

Multiple-Input Multiple-Output
Wireless Communications

6.1 Introduction to MIMO Wireless Communications

Multiple-Input Multiple-Output (MIMO) wireless communications employ multiple antennas

at the transmitter and the receiver. A schematic of a MIMO system with multiple antennas

is shown in Figure 6.1. As MIMO systems have multiple antennas, they can be employed to

increase the reliability of the signal through diversity combining as described in the previous

chapters. This leads to diversity gain and a net decrease in the bit-error rate of the wireless

communication system. In addition, a unique aspect of MIMO wireless systems is that they

enable a several-fold increase in the data rate of the wireless communication system by trans-

mitting several information streams in parallel. This is termed spatial multiplexing. This can be

thought of as transmitting multiple parallel streams in space through different spatial modes,

i.e., multiplexing information streams in the space dimension as illustrated in Figure 6.1.

Figure 6.1 MIMO system schematic
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6.2 MIMO System Model

Consider a MIMO wireless system with t transmit antennas and r receive antennas. Such

a MIMO system is also termed an r × t system. Let x1, x2, . . . , xt denote the t symbols

transmitted from the t transmit antennas in the MIMO system, i.e., xi denotes the symbol

transmitted from the ith transmit antenna 1 ≤ i ≤ t. These transmit symbols can be stacked to

form the t-dimensional vector, also termed the transmit vector,

x =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xt

⎤
⎥⎥⎥⎥⎥⎦

Corresponding to this transmission, let y1, y2, . . . , yt denote the r received symbols across the

r receive antennas in the MIMO systems, which can be stacked as the r-dimensional receive

symbol vector,

y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yr

⎤
⎥⎥⎥⎥⎥⎦

X = Transmit vector

y = Receive vector

MIMO

Channel

x1

x2

xt

Transmit antenna 1

Transmit antenna 2

Transmit antenna t

y1

y2

yr

Receive antenna 1

Receive antenna 2

Receive antenna r

Figure 6.2 MIMO system input-output schematic

This is shown schematically in Figure 6.2. Let the complex coefficient hij represent the fading

channel coefficient between the ith receive antenna and the jth transmit antenna. Thus, there

are a net of rt channel coefficients in this wireless scenario corresponding to all possible
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combinations of the r receive antennas and t transmit antennas. These can be arranged in a

matrix form as

H =

⎡
⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1t

h21 h22 . . . h2t
...

...
. . .

...

hr1 hr2 . . . hrt

⎤
⎥⎥⎥⎥⎥⎦

where the r × t dimensional matrixH is termed the MIMO channel matrix. Let the additive

noise at the receive antenna i be denoted by ni, i.e., n1, n2, . . . , nr denote the additive noise

at the r receive antennas. Thus, the net MIMO input output system model can be represented

in vector form as

⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yr

⎤
⎥⎥⎥⎥⎥⎦

    
y

=

⎡
⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1t

h21 h22 . . . h2t
...

...
. . .

...

hr1 hr2 . . . hrt

⎤
⎥⎥⎥⎥⎥⎦

    
H

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xt

⎤
⎥⎥⎥⎥⎥⎦

    
x

+

⎡
⎢⎢⎢⎢⎢⎣

n1

n2
...

nr

⎤
⎥⎥⎥⎥⎥⎦

    
n

This is succinctly represented using matrix notation as

y = Hx+ n

Observe that the receive symbol y1 is given as

y1 = h11x1 + h12x2 + . . .+ h1txt + n1

from which it can be seen that all the symbols x1, x2, . . . , xt interfere at y1 received at the

receive antenna 1. Similarly, the receive symbol y2 is given as

y2 = h21x2 + h22x2 + . . .+ h2txt + n2

from which it can be once again seen that x1, x2, . . . , xt interfere at y2 received at the receive

antenna 2. This is, in general, true for all the receive antennas, i.e., at each receive antenna i,

the receive symbol yi is a linear of all the transmit symbols x1, x2, . . . , xt from the t transmit



168 Principles of Modern Wireless Communication Systems

antennas, observed in additive noise ni. For the special case of t = 1, i.e., single transmit

antenna and multiple receive antennas, this is termed as Single-Input Multiple-Output (SIMO)

system or the receive diversity system as seen earlier. This can be modelled as⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yr

⎤
⎥⎥⎥⎥⎥⎦

    
y

=

⎡
⎢⎢⎢⎢⎢⎣

h1

h2
...

hr

⎤
⎥⎥⎥⎥⎥⎦

    
h

x +

⎡
⎢⎢⎢⎢⎢⎣

n1

n2
...

nr

⎤
⎥⎥⎥⎥⎥⎦

    
n

Similarly, for the case of one receive antenna, i.e., r = 1 and multiple transmit antennas, it is

termed a Multiple-Input Single-Output (MISO) system model or a transmit diversity system.

Its system model is given as

y =
 

h1 h1 . . . ht

 
    

hT

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xt

⎤
⎥⎥⎥⎥⎥⎦

    
x

+n

Finally, for r = t = 1, i.e., a single receive and transmit antenna, it reduces to the single-input

single-output (SISO) system, modelled as

y = hx+ n

As the reader might recall, this was the first system model that was introduced to model the

Rayleigh fading wireless -channel-based wireless communication. The covariance matrix of

the noiseRn of the noise vector n defined as

Rn = E
 
nnH

 

= E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

n1

n2
...

nL

⎤
⎥⎥⎥⎥⎥⎦
 

n∗
1 n∗

2 . . . n∗
L

 
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
 
|n1|2

 
E {n1n∗

2} . . . E {n1n∗
r}

E {n2n∗
1} E

 
|n2|2

 
. . . E {n2n∗

r}
...

...
. . .

...

E {nrn∗
1} E {nrn∗

2} . . . E
 
|nr|2

 

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

σ2n 0 0 . . . 0

0 σ2n 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2n

⎤
⎥⎥⎥⎥⎥⎦

= σ2nIr

The noise vector nwith the covariance structure above is termed spatiallyuncorrelated additive

noise, since the noise samples at the different antennas i, j are independent, i.e., E
 
nin

∗
j

 
= 0

if i  = j. Finally, to denote the transmission and reception across different time instants, one

can add the time index k to the MIMO system model to frame the net model as

⎡
⎢⎢⎢⎢⎢⎣

y1 (k)

y2 (k)
...

yr (k)

⎤
⎥⎥⎥⎥⎥⎦

    
y(k)

=

⎡
⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1t

h21 h22 . . . h2t
...

...
. . .

...

hr1 hr2 . . . hrt

⎤
⎥⎥⎥⎥⎥⎦

    
H

⎡
⎢⎢⎢⎢⎢⎣

x1 (k)

x2 (k)
...

xt (k)

⎤
⎥⎥⎥⎥⎥⎦

    
x(k)

+

⎡
⎢⎢⎢⎢⎢⎣

n1 (k)

n2 (k)
...

nr (k)

⎤
⎥⎥⎥⎥⎥⎦

    
n(k)

Thus, the vectors y (k) , x (k) , n (k) define the receive, transmit, and noise vectors of the

MIMO wireless communication system at the time instant k. Notice that above we have

assumed the channel matrix H to be constant or, in other words, not dependent on the time

instant k. This is also termed a slow fading or quasi-static channel matrix, indicating that the

channel coefficients are constant over the block of MIMO vectors that are transmitted. Lastly,

we also assume that any two noise samples across two different time instants are uncorrelated,

i.e., E
 
ni (k) n

∗
j (l)

 
= 0 if k  = l. Hence, the noise covariance matrix is given as

E
 
n (k)n (l)H

 
= σ2δ (k − l) Ir

where the delta function δ (k − l) = 1 if k = l and 0 otherwise.
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This noise process, which is uncorrelated across different antennas and time instants is termed

spatio-temporally uncorrelated noise.

6.3 MIMO Zero-Forcing (ZF) Receiver

We will now describe the process to recover the transmitted signal vector x from the received

vector y at the MIMO receiver. This can be considered as solving the system of linear

equations,

y = Hx

where x1, x2, . . . , xt are the t unknowns and there are r equations corresponding to the r

observations y1, y2, . . . , yr. Consider a simplistic scenario, where r = t, i.e., the number of

receive antennas is equal to the number of transmit antennas. In this case, the matrix H is

square. Further, if the matrixH is now invertible, the estimate x̂ of the transmit vector x is still

given as

x̂ = H−1ŷ

However, frequently, one has more receive antennas than transmit antennas, i.e., r > t. In this

scenario, the system y = Hx is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 (k)

y2 (k)
...
...
...

yr (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
y(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1t

h21 h22 . . . h2t
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

hr1 hr2 . . . hrt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
H

⎡
⎢⎢⎢⎢⎢⎣

x1 (k)

x2 (k)
...

xt (k)

⎤
⎥⎥⎥⎥⎥⎦

    
x(k)

from which it can be seen that the matrix H has more rows than columns. Such a matrix is

popularly known as a tallmatrix due to its structure. In this situation, one cannot exactly solve

for x since there are more equations r than unknowns t. Hence, one can resort to choosing the
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vector x which minimizes the estimation error error f (x̂),

f (x) =  y−Hx 2

The above error function is also termed the least-squares error function and the resulting

estimator is termed the least-squares estimator. To simplify the analysis going forward, we

consider real vectors/matrices y,x,H. The case for complex quantities will be dealt later. The

above error function can be expanded as

f (x) =  y −Hx 2 ,

= (y −Hx)T (y −Hx)

=
 
yT − xTHT  (y−Hx)

= yTyT − xTHTy− yTHx+ xTHTHx

= yTy − 2xTHTy+ xTHTHx (6.1)

where we have used the relation yTHx =
 
yTHx

 T
= x̂THTy in the above simplification.

This is due to the fact that yTHx is a scalar and, hence, is equal to its transpose. To find

the minimum of the error function f (x) with respect to x, we have to set the derivative with

respect to x equal to 0. For this purpose, the concept of a vector derivative is briefly described

below. Consider a multidimensional function g (x). The vector derivative of g (x) with respect

to x is defined as

∂g (x)

∂x
=

⎡
⎢⎢⎢⎢⎢⎣

∂g(x)
∂x1
∂g(x)
∂x2
...

∂g(x)
∂xt

⎤
⎥⎥⎥⎥⎥⎦

which is basically a t-dimensional vector with the ith component equal to the derivative of

f (x) with respect to xi. This can be better understood with the aid of an example. Consider

any vector c = [c1, c2, . . . , ct]
T
. Let the function g (x) be defined as

g (x) = cTx = c1x1 + c2x2 + . . .+ ctxt
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Hence, it can be seen that,
∂g(x)
∂xi

= ci. Therefore, it can be readily deduced that in this case

∂g (x)

∂x
=

⎡
⎢⎢⎢⎢⎢⎣

∂g(x)
∂x1
∂g(x)
∂x2
...

∂g(x)
∂xt

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2
...

ct

⎤
⎥⎥⎥⎥⎥⎦ = c

In fact, it can also be seen that since cTx = xTc, we have

∂cTx

∂x
=
∂xTc

∂x
= c

Going back to the expansion of the error function f (x) from Eq. (6.1), it can be seen that

the derivative of each component with respect to x can be computed as follows. Consider the

quantity yTy =  y 2. Observe that this does not depend on x. Hence, we have ∂yTy
∂x

= 0.

Consider the component 2xTHTy. This is in the form of xTc, where c = 2HTy. Hence, the

derivative of this component with respect to x is given as
∂(2xTHTy)

∂x
= 2HTy. Now, consider

the last component xTHTHx. This can be differentiated employing the product rule as

∂
 
xTHTHx

 
∂x

= HTHx+
 
xTHTH

 T
= 2HTHx

Hence, employing the above results, the derivative for the error function f (x) can be simplified

as

∂f (x)

x
= −2HTy+ 2HTHx

At the optimal estimate of the transmit vector x̂ where the above error is minimized, we must

have the derivative equal to 0. Using this condition,

∂f (x)

x

    
x=x̂

= 0

−2HTy + 2HTHx̂ = 0

HTHx̂ = HTy

x̂ =
 
HTH

 −1
HTy
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Finally, for the case of complex vectors/matrices x,y,H, the transpose in the above expression

can be replaced by the Hermitian operator to yield

x̂ =
 
HHH

 −1
HHy

The above decoder for the MIMO wireless system to decode the transmitted symbol vector

x from the received symbol vector y is termed the zero-forcing receiver or simply the ZF

receiver. Hence, the zero-forcing decoder can be expressed as

x̂ZF =
 
HHH

 −1
HH    

FZF

y (6.2)

The matrix FZF =
 
HHH

 −1
HH is also termed the zero-forcing receiver matrix and the

estimate x̂ZF is, therefore, given as

x̂ZF = FZFy

6.3.1 Properties of the Zero-Forcing Receiver Matrix FZF

Consider the matrix product FZFH, which can be simplified as

FZFH =
 
HHH

 −1
HHH

=
 
HHH

 −1  
HHH

 
= It (6.3)

where It denotes the identity matrix of dimension t. Thus, multiplying the matrix FZF with

the channel matrix indeed produces the identity matrix. In this sense, the matrix FZF acts

as an inverse of the channel matrix H. However, observe that for r > t, the matrix H is

rectangular and strictly speaking does NOT have a matrix inverse. Hence, this matrix FZF is

termed the pseudo-inverse ofH. Observe that it is, however, not the inverse of the matrixH in

the usual sense. For instance, ifFZF to be the inverse ofH, it must also satisfy the property that

HFZF = I. However, we have,

HFZF = H
 
HHH

 −1
HH  = It

Thus, the matrix product HFZF is not equal to the identity matrix in general. Further, the

matrix inverse is a unique matrix. However, it can be shown that the left or pseudo-inverse

of the matrix is H when r > t is not unique. Thus, in general, FZF is not the inverse of the
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channel matrixH. However, if r = t and the matrixH is invertible then the pseudo-inverse is

actually equal to the inverse. This can be seen as follows.

FZF = H
 
HHH

 −1
HH

= H−1  HH −1HH
= H−1

Thus, for this particular case, the pseudo-inverse reduces to the matrix inverse and is unique.

6.3.2 Principle of Orthogonality Interpretation of ZF Receiver

In this section, we present an intuitive-reasoning-based approach to derive the zero-forcing

decoder above. Consider once again the system of equations at the receiver for r > t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 (k)

y2 (k)
...
...
...

yr (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
y(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11

h21
...
...
...

hr1    
h1

h12

h22
...
...
...

hr2    
h2

. . .

. . .
. . .

. . .

. . .

. . .

h1t

h2t
...
...
...

hrt    
ht

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
H

⎡
⎢⎢⎢⎢⎢⎣

x1 (k)

x2 (k)
...

xt (k)

⎤
⎥⎥⎥⎥⎥⎦

    
x(k)

Denoting the column hi = [h1i, h2i, . . . , hri]
T
we denote the ith column of the channel

matrixH. Then, the system of equations above can be succinctly represented as

y = x1h1 + x2h2 + . . .+ xtht    
ŷ

where ŷ is the approximation of y and we are interested in minimizing  y− ŷ 2. Observe that
there are t columns of the channel matrixH, which are h1, h2, . . . , ht. Hence, they represent

a t-dimensional subspace. However, the vector y can lie anywhere in the r-dimensional space,

and is unlikely to lie exclusively in the t-dimensional subspace represented by the columns of

the channel. This is shown schematically in Figure 6.3, where approximation error e = y − ŷ
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the error is shown for different choices of ŷ. It can be clearly seen that the approximation is

minimum, when it is orthogonal to the space spanned by the columns ofH. This is termed the

principle of orthogonality, which is extremely helpful in understanding the intuition behind

complex estimation problems. Observe that the error vector e is orthogonal to hi if h
H
i e = 0.

Therefore, since e is orthogonal to the subspace spanned by the columns ofH, it follows that

it is orthogonal to each of the columns ofH.

Min. error vector ,
orthogonal to the
column space of

e

H

Vector belonging to a
general -dimensional
space

y
r

Approximation of
in the column

space of
y

Ht-dimensional
space of columns
of the matrix H.

Figure 6.3 Zero-forcing: principle of orthogonality

Hence, we have

hH1 e = 0

hH2 e = 0

...

hHt e = 0,

from which it follows naturally that

HHe = 0t×1

We now employ the above principle of orthogonality to derive the expression for the zero-

forcing estimate x̂ZF of the transmitted symbol vector x. This can be derived by substituting

the expression e = y −Hx̂ZF in the above result as
HH (y −Hx̂ZF)    

e

= 0

HHy −HHHx̂ZF = 0
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HHy = HHHx̂ZF

x̂ZF =
 
HHH

 −1
HHy

which is exactly identical to the expression for the zero-forcing MIMO decoder derived earlier

in Eq. (6.2). Thus, the principle of orthogonality can be conveniently employed to deduce

the expression for the optimal ZF MIMO decoder while also giving valuable insights into the

decoding procedure.

EXAMPLE 6.1

Compute the MIMO zero-forcing receiver for the channel matrixH given as

H =

⎡
⎢⎢⎣

2 3

1 3

4 2

⎤
⎥⎥⎦ (6.4)

Solution: It can be seen that the MIMO channel matrix above is of size 3× 2, implying that
the number of receive antennas is r = 3, while the number of transmit antennas is t = 2. Thus,

the MIMO system model can be described as

⎡
⎢⎢⎣

y1

y2

y3

⎤
⎥⎥⎦

    
y

=

⎡
⎢⎢⎣

2 3

1 3

4 2

⎤
⎥⎥⎦

    
H

⎡
⎣ x1

x2

⎤
⎦

    
x

+

⎡
⎢⎢⎣

n1

n2

n3

⎤
⎥⎥⎦

    
n

Thus, as can be seen from the model above, the transmit vector x is of dimension 2× 1, while
the receive and noise vectors y, n respectively are of dimension 3× 1. The above MIMO
system model can also be explicitly written to describe the signal received at each receive

antenna as

y1 = 2x1 + 3x2 + n1

y2 = x1 + 3x2 + n2
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y3 = 4x1 + 2x2 + n3

which basically represents a system of r = 3 equations for t = 2 unknownsx1, x2. To compute

the zero-forcing decoder FZF , we first compute the matrix
 
HHH

 −1
HH . Observe that

HHH can be simplified as

HHH =

⎡
⎣ 2 1 4

3 3 2

⎤
⎦
⎡
⎢⎢⎣

2 3

1 3

4 2

⎤
⎥⎥⎦

=

⎡
⎣ 21 17

17 22

⎤
⎦

Hence, the expression for
 
HHH

 −1
can be simplified as

 
HHH

 −1
=

1

21× 22− 17× 17

⎡
⎣ 22 −17

−17 21

⎤
⎦

=
1

173

⎡
⎣ 22 −17

−17 21

⎤
⎦

Thus, the zero-forcing receiver matrix FZF =
 
HHH

 −1
HH can be expressed as

FZF =
 
HHH

 −1
HH

=
1

173

⎡
⎣ 22 −17

−17 21

⎤
⎦
⎡
⎣ 2 1 4

3 3 2

⎤
⎦

=
1

173

⎡
⎣ −7 −29 54

29 46 −26

⎤
⎦

=

⎡
⎣ −0.04 −0.17 0.31

0.17 0.27 −0.15

⎤
⎦ (6.5)
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Thus, the zero-forcing estimate of the transmit vector is given as

x̂ZF = FZFy

=
 
HHH

 −1
HHy

=

⎡
⎣ −0.04 −0.17 0.31

0.17 0.27 −0.15

⎤
⎦
⎡
⎢⎢⎣

y1

y2

y3

⎤
⎥⎥⎦

These expressions can now be explicitly written for the estimate of each of the transmit

symbols x̂1, x̂2 as

x̂1 = −0.04y1 − 0.17y2+ 0.31y3
x̂2 = +0.17y1 + 0.27y2 − 0.15y3

It can also be confirmed that the zero-forcing receiver matrix matrix FZF is of dimension

2× 3, i.e., t× r.

One of the chief disadvantages of the zero-forcing receivers is noise amplification. This

can be understood as follows. Consider the SISO wireless system for r = t = 1. We have the

system model given as

y = hx+ n

Hence, the zero-forcing receiver is given as fZF = (h
∗h)−1 h∗ = h−1 = 1

h
. Hence, the zero-

forcing estimate of the transmitted symbol x is given as

x̂ZF = fZF × y

=
1

h
(hx + n)

= x+
n

h
(6.6)

Observe that if the fading coefficient h is close to zero then the factor n
h
is very high. This is

termed noise amplification, which significantly distorts the performance of the receiver. The

MMSE receiver which is proposed next addresses this problem.
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6.4 MIMO MMSE Receiver

In this section, we develop the Minimum Mean-Squared Error (MMSE) receiver for the

MIMOwireless communication system. TheMMSE receiver is based on a Bayesian approach,

meaning that the transmit vector x is assumed to be random in nature. Thus, if x̂MMSE denotes

the estimated symbol vector, theMMSE receiver minimizes the average or mean of the squared

error

E
 
 x̂MMSE − x 2

 
Thus, it is aptly named minimummean-squared error estimator. To illustrate the development

of the MMSE receiver, we consider a single-input multiple-output (SIMO) wireless system,

i.e., t = 1, and generalize the result to the case of a MIMO system. Hence, consider the SIMO

system model given as

y = hx+ n

where x is now a scalar transmitted symbol. Thus, the basic problem can be interpreted as

estimating the symbol x given the vector y = [y1, y2, . . . , yr]
T
. Let c = [c1, c2, . . . , cr]

T
.

One can now define a linear estimator of x as

x̂ = cTy (6.7)

=
 

c1 c2 . . . cr

 
⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yr

⎤
⎥⎥⎥⎥⎥⎦

= c1y1 + c2y2 + . . .+ cryr

Such an estimator as above is termed as a linear estimator, since the estimate is a linear function

of y. We now wish to find the best or optimal linear estimator x̂MMSE, which minimizes the

mean squared error and hence is also termed the Linear Minimum Mean Squared Estimator

(LMMSE). This is frequently also referred to simply as the MMSE, although strictly speaking

belongs to the specific class of linear estimators. The average mean squared error is defined as

E
 
 x̂− x 2
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Employing the form in Eq. (6.7), the resulting equation can be simplified as

E
 
 x̂− x 2

 
= E

  
cTy − x  cTy− x T 

= E
  
cTy − x  yTc − xT   

= E
 
cTyyTc− xyTc− cTyx+ xxT

 
= cT E

 
yyT

     
Ryy

c− E xyT     
Rxy

c− cT E {yx}    
Ryx

+E
 
x2
 
Rxx

= cTRyyc− 2cTRyx +Rxx
where the covariance matrix Ryy is defined as Ryy = E

 
yyH

 
. Similarly, Ryx = E {yx}

= RTxy and Rxx = E
 
x2
 
. Also note that we have used the fact cTRyx =

 
cTRyx

 T
=

Rxyc. Hence, the average MSE as a function of the receive beamformer c, denoted by

MSE (c), is given as

MSE (c) = cTRyyc − 2cTRyx +Rxx

Thus, the optimal beamformer c which minimizes the average or mean squared error can be

obtained by differentiating MSE (c) with respect to c and setting equal to zero as

∂MSE (c)

∂c
= 0

∂

∂c

 
cTRyyc− 2cTRyx +Rxx

 
= 0

2Ryyc− 2Ryx = 0

c = R−1
yyRyx

Thus, the optimal LMMSE beamforming vector c is given as c = R−1
yyRyx. This is also termed

in signal processing as the optimal Wiener filter. The above can be generalized in the case of

complex vectors by replacing the transpose by the Hermitian operation.
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Hence, the MMSE estimate of x is given as

x̂MMSE = c
Hy

=
 
R−1
yyRyx

 H
y

= RxyR
−1
yy y

We now compute the MMSE receiver for the MIMO wireless system. Consider again the

MIMO system model given as

y = Hx+ n

Let the transmit symbols xi, 1 ≤ i ≤ t be such that each is of power Pd, i.e., E
 
|xi|2

 
=

Pd, with elements on different transmit antennas being uncorrelated, i.e., E
 
xix

∗
j

 
= 0 when

i  = j. Hence, the covariance Rxx of the transmit symbols is given as

Rxx = E
 
xxH

 

= E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xt

⎤
⎥⎥⎥⎥⎥⎦
 

x∗1 x∗2 . . . x∗t

 
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
 
|x1|2

 
E {x1x∗2} . . . E {x1x∗t}

E {x2x∗1} E
 
|x2|2

 
. . . E {x2x∗t}

...
...

. . .
...

E {xtx∗1} E {xtx∗2} . . . E
 
|xt|2

 

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Pd 0 0 . . . 0

0 Pd 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Pd

⎤
⎥⎥⎥⎥⎥⎦

= PdIt
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Hence, Ryy , the covariance of the receive vector y can be simplified as

Ryy = E
 
yyH

 
= E

 
(Hx+ n) (Hx+ n)H

 
= E

 
HxxHH+ nxHHH +HxnH + nnH

 
= HE

 
xxH

     
Rxx

H+E
 
nxH

     
0

HH +HE
 
xnH

     
0

+E
 
nnH

     
Rnn

= PdHH
H + σ2nIr    
Ryy

where we have used the fact that E
 
nxH

 
= E

 
xnH

 
= 0, since the noise at the

receiver and transmit symbols are uncorrelated, in the above simplification. Further, the

cross-covariance matrixRyx can be simplified as

Ryx = E
 
yxH

 
= E

 
(Hx+ n) xH

 
= E

 
HxxH + nxH

 
= HE

 
xxH

     
Rxx

+E
 
nxH

     
0

= PdH

Thus, the optimal MMSE receiver is given as

C = R−1
yyRyx

=
 
PdHH

H + σ2nI
 −1

PdH

= Pd
 
PdHH

H + σ2nI
 −1
H

Hence, the MMSE estimate x̂MMSE of the transmit vector x is given as

x̂MMSE = C
Hy

= PdH
H
 
PdHH

H + σ2nI
 −1
y (6.8)
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We now derive an alternative structure for the MIMO MMSE receiver. Observe that, we have,

PdH
HHHH + σ2nH

H = PdH
HHHH + σ2nH

H

⇒  
PdH

HH+ σ2nI
 
HH = HH

 
PdHH

H + σ2nI
 

⇒ HH
 
PdHH

H + σ2nI
 −1

=
 
PdH

HH+ σ2nI
 −1
HH

Thus, the MIMOMMSE receiver in Eq. (6.8) can also be expressed as

x̂MMSE = PdH
H
 
PdHH

H + σ2nI
 −1
y

= Pd
 
PdH

HH+ σ2nI
 −1
HHy (6.9)

Thus, the above expression is an alternative form of implementation of the MIMO MMSE

receiver. Observe that the matrix HHH + σ2nI is of dimension r × r, while PdH
HH+ σ2nI

is t× t dimensional. Thus, if r > t, inversion of the latter matrix is of a lower computation

complexity. Since this is frequently the case in MIMO wireless systems, the alternative MIMO

MMSE receiver version is more popular for implementation.

6.4.1 Robustness of MMSE to Noise Amplification

Further, the MMSE receiver does not lead to noise amplification, as is the case with the ZF

receiver, which was seen in Eq. (6.6). Consider the SISO case for which H = h. The system

model is given as

y = hx+ n

The MMSE estimate of x is given from Eq. (6.8) as

x̂MMSE = Pd
h∗

Pdhh∗ + σ2n
y

= Pd
h∗

Pd |h|2 + σ2n
y

Thus, it can be seen that for |h| ≈ 0, the MMSE receiver becomes

x̂MMSE ≈ Pd
h∗

σ2n
y
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Thus, since it does not lead to division by a quantity close to 0, unlike the ZF, it does not lead

to noise enhancement.

6.4.2 Low and High SNR Properties of the MMSE Receiver

In this section, we explore the low and high SNR behaviour of the MMSE receiver, which

provides valuable insights into its nature. Consider the expression for the MMSE receiver in

Eq. (6.9). Observe that at high SNR, i.e., Pd
σ2
n

→ ∞, the term PdH
HH dominates over σ2nIt.

Hence, we have

PdH
HH+ σ2nI ≈ PdH

HH

Employing this approximation in the MMSE receiver in Eq. (6.9), we have

x̂MMSE = Pd
 
PdH

HH+ σ2nI
 −1
HHy

≈ Pd
 
PdH

HH
 −1
HHy

=
 
HHH

 −1
HHy

which is identical to the MIMO zero-forcing receiver from Eq. (6.2). Thus, at high SNR, the

MMSE receiver reduces to the MIMO zero-forcing receiver. On the other hand, at low SNR,

i.e., as Pdσ2
n
→ 0, the term PdH

HH is negligible compared to σ2nIt. Thus, we have

PdH
HH+ σ2nIt ≈ σ2nIt

Employing the above approximation at low SNR, the MMSE receiver can be simplified as

x̂MMSE = Pd
 
PdH

HH+ σ2nI
 −1
HHy

≈ Pd
 
σ2nI
 −1
HHy

=
Pd
σ2n
HHy

which reduces to thematched filter, i.e., proportional toHH . Thus, the optimalMMSE receiver

can be approximated as the zero-forcing receiver at high SNR, while at low SNR, it behaves

similar to thematched filter. This behaviour of theMMSE decoder is schematically represented

in Figure 6.4.
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MIMO ZF
receiver

MIMO
Matched Filter
(MF) receiver

at HIGH
SNR

at LOW
SNR

MIMO LMMSE
receiver

Figure 6.4 MIMO MMSE receiver: asymptotic behaviour

6.5 Singular Value Decomposition (SVD) of the MIMO Channel

In this section, we will begin to explore the Singular ValueDecomposition (SVD) of theMIMO

channel matrix H, which is a very important tool to understand the behaviour of a MIMO

wireless communication system. Consider an r × tMIMO channelH with r ≥ t, i.e., number

of receive antennas greater than or equal to the number of transmit antennas. The SVD of the

channel matrixH is given as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11

u21
...

ur1    
u1

u12

u22
...

ur2    
u2

. . .

. . .
. . .

. . .

u1t

u2t
...

urt    
ut

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
U

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

    
Σ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v∗11 v∗21 . . . v∗t1

 
vH1

v∗12 v∗22 . . . v∗t2

 
vH2

...
...

. . .
...

v∗1t v∗2t . . . v∗tt

 
vHt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

    
VH

,

= UΣVH (6.10)

where the matricesU, Σ, V, which are r × t, t× t and t× t dimensional respectively, satisfy

important properties, which we examine next. The columns of the matrix U and V are unit-
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norm, i.e., we have

 ui 2 =  vi 2 = 1, 1 ≤ i ≤ t

Further, the columns of matrixU andV are orthogonal, i.e.,

uHi uj = v
H
i vj = 0, i  = j, 1 ≤ i, j ≤ t

Thus, the columns of matrices U and V are orthonormal. As a result, the t× t dimensional

square matrixV is unitary, i.e.,

VHV = VVH = It

Further, since if r = t, the matrixU is also a unitary matrix. Otherwise,U simply satisfies the

relationUHU = It. Further, the quantities σ1, σ2, . . . , σt are known as the singular values of

the matrixΣ. These singular values are non-negative and ordered, i.e., each σi ≥ 0 and

σ1 ≥ σ2 ≥ . . . ≥ σt

Finally, an important property of the singular values is that the number of nonzero singular

values is equal to the rank of the matrix H. Below, we illustrate some examples of singular

value decomposition to give insights into the structure of the SVD.

6.5.1 Examples of Singular Value Decomposition

EXAMPLE 6.2

Consider a 2× 1 SIMO wireless system with channel matrixH given as

H =

⎡
⎣ 1

1

⎤
⎦ (6.11)

This can be simplified as

H =

⎡
⎣ 1

1

⎤
⎦ ,=

⎡
⎣ 1√

2

1√
2

⎤
⎦√

2

=

⎡
⎣ 1√

2

1√
2

⎤
⎦

    
U

 √
2

 
    

Σ

 
1

 
    

VH
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This is a simple example of the SVD and yet illustrates several important properties. For

instance,U =
 

1√
2
, 1√

2

 T
, which is of dimension r × t, i.e., 2× 1. Further,U only has a single

column u1 =
 

1√
2
, 1√

2

 T
, which is unit-norm, i.e.,  u1 2 = 1. Further, the singular value

σ1 =
√
2, which is greater than 0. Also, the number of nonzero singular values is 1, which

is equal to the rank of the matrix. The rank of the matrix is easily seen to be equal to 1 in this

case since it is simply a column vector. Also observe thatV = [1]. Hence, we trivially have

VHV = VVH = 1 = I1

Thus, the above decomposition satisfies all the properties of the SVD. Next, we define a slightly

more nuanced example to illustrate the concept of SVD.

EXAMPLE 6.3

Let the 2× 2 channel matrixH be given as

H =

⎡
⎣ 1 0

0
√
5

⎤
⎦

In this example, it is very intuitive to simplifyH simply as

H =

⎡
⎣ 1 0

0 1

⎤
⎦

    
U

⎡
⎣ 1 0

0
√
5

⎤
⎦

    
Σ

⎡
⎣ 1 0

0 1

⎤
⎦

    
VH

and claim that σ1 = 1, σ2 =
√
5 are the singular values of H. However, this is incorrect

since σ1 < σ2, meaning that the above is not a valid SVD. However, one can recast H as

follows.

H =

⎡
⎣ 0 1

1 0

⎤
⎦

    
U

⎡
⎣ √

5 0

0 1

⎤
⎦

    
Σ

⎡
⎣ 0 1

1 0

⎤
⎦

    
VH
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where the matrices U, V are 2× 2 permutation matrices which flip the rows and columns of
the inner diagonal matrix respectively. It can also be observed thatVVH = VHV = It. Also,

in this case, since r = t, we also haveUUH = UHU = It. Further, σ1 =
√
5 > σ2 = 1 > 0.

Thus, the singular values are positive and ordered. Hence, this is a valid SVD of the channel

matrixH. This example demonstrates how an otherwise seemingly simple diagonal matrix can

have an SVD that is not straightforward to compute.

EXAMPLE 6.4

We now look at another example of a channel matrix H and compute its SVD. Let H be

given as

H =

⎡
⎣ 1 2

1 −2

⎤
⎦

Observe that in this case, the columns of H, i.e., h1 = [1, 1]
T and h2 = [2, −2]T are

orthogonal since hH1 h2 = 1× 2 + 1× (−2) = 0. This fact can be employed to compute the
SVD. Thus, the matrixH can be decomposed in steps as

H =

⎡
⎣ 1 2

1 −2

⎤
⎦

=

⎡
⎣ 1 1

1 −1

⎤
⎦ ×

⎡
⎣ 1 0

0 2

⎤
⎦

=

⎡
⎣ 1 1

−1 1

⎤
⎦ ×

⎡
⎣ 2 0

0 1

⎤
⎦ ×

⎡
⎣ 0 1

1 0

⎤
⎦

The above decomposition has a structure that looks very close to the SVD. It now remains to

normalize the columns of the left and right matrices to generate orthonormal vectors. This can

be done as follows.

H =

⎡
⎣ 1√

2
1√
2

− 1√
2

1√
2

⎤
⎦

    
U

⎡
⎣ 2

√
2 0

0
√
2

⎤
⎦

    
Σ

⎡
⎣ 0 1

1 0

⎤
⎦

    
VH
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It can be seen that the singular values are σ1 = 2
√
2 > σ2 =

√
2 > 0. Further, the number of

nonzero singular values and, hence, the rank is 2. Since r = t = 2, the matricesU, V are both

square 2× 2, unitary and contain orthonormal columns.

6.6 Singular Value Decomposition and MIMO Capacity

The singular value decomposition is central to understanding the spatial multiplexing

properties of the MIMO channel and deriving the fundamental limit on the capacity of the

MIMO channel. Consider the r × tMIMO wireless system,

y = Hx+ n

Let the SVD of the channel matrix H be given as H = UΣVH . Thus, replacing H with its

SVD, the above MIMO system model is given as

y = UΣVH    
H

x+ n

At the receiver, multiplying byUH , we have

UHy    
ỹ

= UH
 
UΣVHx+ n

 

ỹ = UHU    
It

ΣVHx+UHn    
ñ

= ΣVHx+ ñ

This operation of multiplying by UH at the receiver is a part of the signal processing at the

receiver or receive processing. Further, prior to transmission, let the transmit vector x be

generated as x = Vx̃, where the vector x̃ contains the transmit symbols. This operation is

termed as transmit precoding. Thus, substituting this expression for x above, we have

ỹ = ΣVHx+ ñ
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= ΣVHVx̃+ ñ

= Σx̃+ ñ

The above equivalent system model of the MIMO system after the receive and transmit

processing operations can be explicity written as

⎡
⎢⎢⎢⎢⎢⎣

ỹ1

ỹ2
...

ỹt

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x̃1

x̃2
...

x̃t

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

ñ1

ñ2
...

ñt

⎤
⎥⎥⎥⎥⎥⎦

The above system can, in fact, be written in a much simpler decoupled form as

ỹ1 = σ1x̃1 + ñ1

ỹ2 = σ2x̃2 + ñ2

...

ỹt = σtx̃t + ñt (6.12)

Thus, the above equivalent system represents the parallelization of the MIMO channel with

t information streams being transmitted in parallel. As can be seen, there is no interference

between the t information streams carrying symbols x̃1, x̃2, . . . , x̃t. This is termed spatial

multiplexing, where the t independent information streams are being multiplexed over the

multiple spatial dimensions, arising due to the presence of multiple transmit and receive

antennas in the system. Also, the covariance of the modified noise ñ can be derived as

Rñ = E
 
ññH

 
= E

 
UHn

 
UHn

 H 
= E

 
UHnnHU

 
= UH E

 
nnH

     
σ2
nI

U
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= UHσ2nIU = σ2nU
HU    
It

= σ2nIt (6.13)

Thus, once again, the noise ñ has a covariance proportional to the identity matrix, indicating

equal variance, uncorrelated noise components. Further, the variance of each noise component

ñi, 1 ≤ i ≤ t is equal to σ2n. Consider now the ith parallel MIMO channel above. This is

given as

ỹi = σix̃i + ñi.

Hence, the SNR of the system is given as σ2i
E{|xi|2}
σ2
n

= σ2i
Pi
σ2
n

, where Pi is the power of the i
th

data stream xi. Thus, the MIMO system can be viewed as a collection of t parallel channels

each with noise power σ2n and power gain σ
2
i . This is schematically shown in Figure 6.5. From

the above expression for the SNR of the ith channel, the Shannon capacity Ci of the channel

s1 n1

y1x1

s2 n2

x2 y2

st nt

xt yt

Figure 6.5 MIMO SVD parallel channels

can be derived as

Ci = log2

 
1 +

Piσ
2
i

σ2n
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Thus, the MIMO system can be thought of as a collection of t parallel data pipes, with

capacities

C1 = log2

 
1 +

P1σ
2
1

σ2n

 

C2 = log2

 
1 +

P2σ
2
2

σ2n

 
...

Ct = log2

 
1 +

Ptσ
2
t

σ2n

 
Thus, the net MIMO C capacity is given as the sum of the individual capacities

C =

t 
i=1

log2

 
1 +

Piσ
2
i

σ2i

 

The total power P at the transmitter can be allocated to the individual streams to maximize the

net capacity. Thus, one can maximize the above sum capacity subject to the power constraint

P1 + P2 + . . .+ Pt ≤ P

Next, we describe computation of the optimal MIMO capacity.

6.6.1 Optimal MIMO Capacity

Thus, the optimal MIMO power allocation problem can be formulated as

max .

t 
i=1

log2

 
1 +

Piσ
2
i

σ2i

 

s.t.

t 
i=1

Pi ≤ P

where s.t. in the above problem statement stands for subject to and denotes the optimization

constraint. We employ the standard Lagrange-multiplier-based technique for the above

constrained optimization problem. Denoting the Lagrange multiplier by λ, the Lagrangian cost
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function f
 
P, λ

 
for the above optimization problem can be formulated as

f
 
P, λ

 
=

t 
i=1

log2

 
1 +

Piσ
2
i

σ2i

 
+ λ

 
P −

t 
i=1

Pi

 

where P = [P1, P2, . . . , Pt]
T
. Differentiating f

 
P, λ

 
with respect to Pi and setting equal to

0, we obtain

∂

∂Pi
f
 
P, λ

 
= 0

σ2
i

σ2
n

1 +
Piσ

2
i

σ2
n

− λ = 0

Solving the above equation yields

σ2i
σ2n

1

λ
= 1 +

Piσ
2
i

σ2n

Pi =

 
1

λ
− σ2n
σ2i

 +

where the function x+ = x if x ≥ 0 and 0 otherwise. This is because of the fact that each

power Pi ≥ 0, i.e., power cannot be negative. It now remains to find the Lagrange multiplier

λ, which can be found from the constraint equation as

t 
i=1

Pi = P

t 
i=1

 
1

λ
− σ2n
σ2i

 +

= P (6.14)

The above optimal power allocation is also termed water filling. This can be seen as follows.

Consider a vessel with t bars and the height of the ith bar equal to σ
2
n

σ2
i

. It water is poured into

this vessel to the level 1
λ then the level of water at the i

th bar is
!
1
λ − σ2

n

σ2
i

"+
. This is shown

schematically in Figure 6.6. Observe that the power allocated is proportional to the singular

value, i.e., larger the σi, larger is the power allocated. Further, also observe that due to the

nature of water filling, weak channels with low σi are not allocated any power.
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Figure 6.6 MIMO water-filling capacity

Observe that the water-filling equation in Eq. (6.14) above is nonlinear due to the x+

function. It can be solved iteratively as follows. Set N = t initially. Assume 1
λ − σ2

n

σ2
i

for

1 ≤ i ≤ N . Solve the equation

N 
i=1

 
1

λ
− σ2n
σ2i

 
= P

Now, check if 1
λ
− σ2

n

σ2
N

≥ 0. If this is the case then the λ computed yields the desired power

allocation. However, if 1
λ − σ2

n

σ2
N

< 0, then set PN = 0 andN = t− 1 and repeat the process as
above. Example clarifies this concept of MIMO capacity and optimal power allocation.

EXAMPLE 6.5

Consider the MIMO channel matrixH given as

H =

⎡
⎢⎢⎣

2 −6 0

3 4 0

0 0 2

⎤
⎥⎥⎦

Considering a transmit power of P = −1.25 dB and noise power σ2n = 3 dB, compute the
MIMO capacity and optimal power allocation.
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Solution: The above MIMO channel matrix is 3× 3, i.e., a MIMO system with r = t = 3

antennas.We also have, σ2n = 3 dB = 2 and P = −1.25 dB = 0.75. Observe that the columns
of the channel matrixH are orthogonal. For instance, if c1, c2 denote the first two columns of

H, we have

cH1 c2 = 2× (−6) + 3× (4)

= 0

Hence, the SVD of the channel matrixH is given as

H =

⎡
⎢⎢⎣

2 −6 0

3 4 0

0 0 2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

2√
13

− 6√
52

0

3√
13

4√
52

0

0 0 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

− 6√
52

2√
13

0

4√
52

3√
13

0

0 0 1

⎤
⎥⎥⎥⎦

    
U

⎡
⎢⎢⎣

√
52 0 0

0
√
13 0

0 0 2

⎤
⎥⎥⎦

    
Σ

⎡
⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

    
VH

Thus, the singular values σ1, σ2, σ3 for the above channel matrix are given as

σ1 =
√
52⇒ σ21 = 52

σ2 =
√
13⇒ σ22 = 13

σ3 = 2⇒ σ23 = 4

It can be seen that the channel matrixH has 3 nonzero singular values. Hence, the rank of the

channel matrix is 3. The channel capacity C in terms of the powers P1, P2, P3 assigned to the
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different channel singular modes is given as

C = log2

 
1 +

P1σ
2
1

σ2n

 
+ log2

 
1 +

P2σ
2
2

σ2n

 
+ log2

 
1 +

P3σ
2
3

σ2n

 

= log2

 
1 +

P1 × 52
2

 
+ log2

 
1 +

P2 × 13
2

 
+ log2

 
1 +

P3 × 4
2

 

The above expression for capacity has to be maximized for total power P1 + P2 + P3 = 0.75.

We set N = t = 3 and solve the Lagrangian in Eq. (6.14) as

 
1

λ
− 1

26

 
+

 
1

λ
− 2

13

 
+

 
1

λ
− 1

2

 
= 0.75

1

λ
=

0.75 + 1
26 +

2
13 +

1
2

3

1

λ
= 0.48

Let us now compute the power allocation to the channel 3, i.e., P3, which is given as,

P3 =
1
λ
− 1

2 = 0.48− 0.5 = −0.02 ≤ 0. Thus, since the power P3 is coming out to be

negative, this is not a possible allocation. This implies that the power bar corresponding to

the channel 3 lies above the water level 1
λ
, as per the schematic shown in Figure 6.6. Thus, the

singular mode 3 is allotted 0 power in the optimal allocation. Hence, we now set N = 2 and

resolve the equation for the Lagrangian variable λ as

 
1

λ
− 1

26

 
+

 
1

λ
− 2

13

 
= 0.75

1

λ
=

0.75 + 1
26 +

2
13

2

= 0.4712

Recomputing the powers P1, P2, we have

P1 = 0.4712− 1

26
= 0.4327 > 0

P2 = 0.4712− 2

13
= 0.3174 > 0
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Thus, since P1, P2 > 0, this is a feasible power allocation. Hence, we have, P1 = 0.4327

= −3.63 dB and P2 = 0.3174 = −4.98 dB. As already described, P3 = 0. Therefore, the
capacity C is given as

Cmax = log2

 
1 +

52× 0.4327
2

 
+ log2

 
1 +

13× 0.3174
2

 

= 5.23 b/s/Hz

where the units b/s/Hz is read as bits per second per hertz. The optimal MIMO transmission

scheme can now be derived as follows. Observe from the SVD of H = UΣVH computed

above that the matrixV is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0    
v1

1

0

0    
v2

0

0

1    
v3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

    
V

As described in Section 6.6, the transmit vector x is given as

x =
 
v1 v2 v3

 ⎡⎢⎢⎣
x̃1

x̃2

x̃3

⎤
⎥⎥⎦

= v1x̃1 + v2x̃2

where x̃3 = 0 since P3 = 0. Also, we have
√
P1 = 0.66 and

√
P2 = 0.56. Therefore, the net

transmit vector x is given as

x =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ x̃1    √

P1 b1

+

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ x̃2    √

P2 b2
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=

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ 0.66 b1 +

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ 0.56 b2

where b1, b2 are unit power-transmit symbols belonging to an appropriate transmit

constellation such as BPSK, QPSK, etc. Thus, one can compute the optimal power allocation

corresponding to the capacity of the MIMO channel to derive the optimal precoded transmit

vectors for the MIMO system.

6.7 Asymptotic MIMO Capacity

We now describe a simple scenario to illustrate the asymptotic capacity of the MIMO channel.

Let the transmit covariance matrix Rx = E
 
x (k) xH (k)

 
. It can then be demonstrated that

the capacity of the MIMO channel, for a general transmit covariance matrixRx is given as

C = log2

    I+ 1

σ2n
HRxH

H

    
where the notation |A| above denotes the determinant of the matrix A. Consider now equal
power allocation, i.e., transmit covariance given as Rx =

Pt
t
I, where the transmit power Pt

is equally allocated to all the t transmit antennas. Also, let us look at a special scenario of

t >> r, corresponding to a much larger number of transmit than receive antennas. Substituting

the value of Rx =
Pt
t I, the above MIMO capacity C reduces to

C = log2

    I+ Pt
tσ2n
HHH

    
Let us now examine the structure of the matrixHHH . Let the r columns of the matrixHH be

denoted by h1, h2, . . . , hr.
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Hence, HHH can be simplified as

HHH =

⎡
⎢⎢⎢⎢⎢⎣
hH1

hH2
...

hHr

⎤
⎥⎥⎥⎥⎥⎦
 
h1 h2 . . . hr

 

=

⎡
⎢⎢⎢⎢⎢⎣
hH1 h1 hH1 h2 . . . hH1 hr

hH2 h1 hH2 h2 . . . hH2 hr
...

...
. . .

...

hHr h1 hHr h2 . . . hHr hr

⎤
⎥⎥⎥⎥⎥⎦

Observe now that all the vectors hi, 1 ≤ i ≤ r are t-dimensional. Further, considering a rich

scattering environment, they consist of uncorrelated random flat-fading channel coefficients.

Hence, we have

hHi hi =

t 
k=1

|hik|2

→ tE
 
|hik|2

 
≈ t

where we have assumed that all channel coefficients hik and independent identically distributed

with E
 
|hik|2

 
= 1. Further, the quantities hHi hj , for i  = j can be approximated as

hHi hj =

t 
k=1

h∗ikhjk

→ 0

≈ 0
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since the elements hik and hjk are uncorrelated. Hence, the matrixHH
H for t >> r, can be

approximated as

HHH =

⎡
⎢⎢⎢⎢⎢⎣

t 0 . . . 0

0 t . . . 0
...

...
. . .

...

0 0 . . . t

⎤
⎥⎥⎥⎥⎥⎦

= tIr

Therefore, the asymptotic MIMO capacity Ca is given as

log2

    I+ Pt
tσ2n

× tIr

    = log2

    I+ Pt
σ2n
Ir

    
= r log2

 
1 +

Pt
σ2n

 

The above simplification can be better seen as follows. Consider Ir +
Pt
σ2
n

Ir, which can be

written as

Ir +
Pt
σ2n
Ir =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + Pt
σ2
n

0 . . . 0

0 1 + Pt
σ2
n

. . . 0
...

...
. . .

...

0 0 . . . 1 + Pt
σ2
n

⎤
⎥⎥⎥⎥⎥⎥⎦ (6.15)

It can be readily seen that the determinant of the above matrix is
!
1 + Pt

σ2
n

"r
. Hence, the

capacity is simplified as, log2

!
1 + Pt

σ2
n

"r
= r log2

!
1 + Pt

σ2
n

"
. Also, it can be seen that in this

case, since t >> r, we have min{r, t} = r. The asymptotic capacity can, therefore, also be

written as

Ca = (min {r, t}) log2
 
1 +

Pt
σ2n

 

from which it can be seen that the capacity increases linearly with the minimumof the number

of transmit or receive antennas, which also indicates the number of degrees of freedom of
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the MIMO system. Further, also observe that this gain is achieved with a constant transmit

power Pt, i.e., one does not need to increase the net transmit power to achieve a higher

throughput usingMIMO. This indicates the power of employingMIMO in broadband wireless

communication systems. The throughput can be increased significantly without any need for a

higher transmit power.

6.8 Alamouti and Space-Time Codes

In this section, we describe a power set of codes which are termed space-time codes for

error protection coding in MIMO communication systems. In a traditional error-control coding

framework, the block code is applied only over the time dimension or basically over a block

of concatenated symbols. However, due to the nature of the MIMO system, one can exploit

the spatial dimension as well. That is to say, the one can additionally encode the symbols

over the spatial dimension or across the multiple antennas, in addition to coding over the

time dimension. This gives rise to the paradigm of space-time encoding, which leads to a

significantly superior performance in MIMO systems and multiple-antenna systems in general.

We begin with a basic introduction to the Alamouti code which is described for a 1× 2
system, i.e., for a system with r = 1 receive antenna and t = 2 transmit antennas. This is

an example of a MISO system, which is a special case of the MIMO system, and has been

described in the beginning of this chapter. Let the 1× 2 channel matrix be denoted by [h1, h2],
where h1, h2 denote the channel coefficients between transmit antennas 1, 2 and the single

receive antenna respectively. Hence, the system model can be represented as

y =
 

h1 h2

 ⎡⎣ x1

x2

⎤
⎦ + n (6.16)

where x1, x2 are the symbols transmitted from the two transmit antennas and n denotes the

additive white Gaussian noise at the receiver. Before we discuss the Alamouti code, let us

discuss another possible mode of transmission, which is termed beamforming. Consider now

a symbol x which is transmitted as follows. Let x1 be generated as
h∗1
 h x and similarly, x2 be

generated as x2 =
h∗2
 h x. Here,  h denotes the norm of vector h and is defined as
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 h =
#

|h1|2 + |h2|2. Thus, the transmit vector is now given as
⎡
⎣ x1

x2

⎤
⎦ =

⎡
⎣ h∗1

 h 
h∗2
 h 

⎤
⎦x

This is termed transmit beamforming, i.e., transmitting the symbol x in the direction given by

the vector ⎡
⎣ h∗1

 h 
h∗2
 h 

⎤
⎦ .

Substituting the above expression for the beamformed symbol in Eq. (6.16), the output y is

given as

y =
 

h1 h2

 ⎡⎣ h∗1
 h 
h∗2
 h 

⎤
⎦x+ n,

=

 
|h1|2
 h +

|h2|2
 h 

 
x+ n,

=  h x+ n

Observe that the SNR for the above system is, therefore, given as

SNR =
 h 2 P
σ2n

(6.17)

which is identical to that of the receive diversity with Maximum Ratio Combining (MRC).

Thus, the above example seems to indicate that the performance that can be achieved through

multiple antennas at the transmitter is equivalent to that achieved with multiple antennas at the

receiver. However, a close examination reveals the following point. Consider again the transmit

vector given as

⎡
⎣ x1

x2

⎤
⎦ =

⎡
⎣ h∗1

 h 
h∗2
 h 

⎤
⎦x
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Observe that to perform this at the transmitter requires knowledge of the channel coefficients

h1, h2 at the transmitter, which is termed Channel State Information (CSI) in the context

of wireless communications. However, the channel coefficients h1, h2 are estimated at the

receiver. To implement beamforming at the transmitter, information about these channel

coefficients has to be fed back to the transmitter. This is a challenging task. Therefore, one

cannot always count on possessing the knowledge of the channel at the transmitter. The

Alamouti space-time code is an ingenuous scheme which overcomes this constraint through a

novel transmission procedure and is described next.

6.8.1 Alamouti Code: Procedure

The Alamouti code is a space-time code proposed for a 1× 2 MISO system. The interesting
aspect of the Alamouti-code is that it achieves a diversity order of 2 without CSI at the

transmitter. Consider two symbols x1, x2. In an Alamouti-coded system, in the first transmit

instant, the symbol x1 is transmitted from the transmit antenna 1, while x2 is transmitted from

the transmit antenna 2. Therefore, the transmit symbol vector in the first time instant is given

as ⎡
⎣ x1

x2

⎤
⎦

Further, the received symbol y(1) at the receiver corresponding to this transmission is given as

y(1) =
 

h1 h2

 ⎡⎣ x1

x2

⎤
⎦ + n(1) (6.18)

In the second time instant, the symbol−x∗2 is transmitted from the first transmit antenna, while
x∗1 is transmitted from the second transmit antenna. As we will see later, this is the unique

aspect of the Alamouti code which enables it to achieve diversity gain of the order 2 at the

receiver. Therefore, the transmit symbol vector in the second time instant is given as

⎡
⎣ −x∗2

x∗1

⎤
⎦
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Further, the received symbol y(2) can be expressed as

y(2) =
 

h1 h2

 ⎡⎣ −x∗2
x∗1

⎤
⎦+ n(2) (6.19)

Consider the conjugate of y(2) at the receiver, the above equation can be simplified as

y∗(2) =
 

h∗1 h∗2

 ⎡⎣ −x2
x1

⎤
⎦+ n∗(2)

=
 

−h∗1 h∗2

 ⎡⎣ x2

x1

⎤
⎦+ n∗(2)

=
 

h∗2 −h∗1
 ⎡⎣ x1

x2

⎤
⎦+ n∗(2) (6.20)

Now, the received symbols y(1) and y∗(2) from equations (6.18) and (6.20) above can be

stacked to write the combined system model for the first and second time instants in the

Alamouti code as⎡
⎣ y(1)

y∗(2)

⎤
⎦

    
y

=

⎡
⎣ h1 h2

h∗2 −h∗1

⎤
⎦

    
H

⎡
⎣ x1

x2

⎤
⎦+

⎡
⎣ n(1)

n∗(2)

⎤
⎦

    
n

(6.21)

Thus, both the symbols have been stacked which effectively converts the Alamouti coded

system into a 2× 2MIMO system, with the channel matrix
⎡
⎣ h1 h2

h∗2 −h∗1

⎤
⎦ (6.22)

Further, the noise n∗(2) is statistically identical to n(2), i.e., n∗(2) is zero mean circularly
symmetric Gaussian noise with variance σ2n. Moreover, observe a very important property of
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the Alamouti channel matrix. Consider the columns c1, c2 of the channel matrix given as

c1 =

⎡
⎣ h1

h∗2

⎤
⎦ , c2 =

⎡
⎣ h2

−h∗1

⎤
⎦

Then, we have, cH1 c2 given as

cH1 c2 =
 

h∗1 h2

 ⎡⎣ h2

−h∗1

⎤
⎦

= h∗1h2 − h2h
∗
1

= 0

It can, therefore, be seen that the columns c1, c2 are orthogonal. This tremendously simplifies

the receive processing of the Alamouti code. Consider now beamforming using the vector w1

defined in terms of c1 as

w1 =
1

 c1 c1

=
1

 h 

⎡
⎣ h1

h∗2

⎤
⎦

One can now employ this as a receive beamformer to derive the processed symbol as

wH1 y =
 

h∗1
 h 

h2
 h 

 ⎡⎣ h1 h2

h∗2 −h∗1

⎤
⎦
⎡
⎣ x1

x2

⎤
⎦ +wH1 n

=
 

 h 0

 ⎡⎣ x1

x2

⎤
⎦+ ñ1

=  h x1 + ñ1
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Further, since w1 is a unit-norm vector, ñ1 = w
H
1 n is Gaussian noise with variance σ

2
n.

Therefore, the SNR at the receiver is given as

SNR =
 h 2
σ2n

E
 
|x1|2

 

=

$$h2$$
σ2n

P1,

where  h 2 = |h1|2 + |h2|2. Therefore, the diversity gain or diversity order of BER at the
receiver is 2, since it is analogous to the maximum ratio combiner with 2 antennas shown in

Eq. (6.17). Similarly, to decode x2, the beamformer w2 is given as

w2 =
c2

 c2 =
1

 h 

⎡
⎣ h2

−h∗1

⎤
⎦

Thus, the SNR of the decoded streams of the Alamouti code is
 h2 
σ2
n

P1,
 h2 
σ2
n

P2, where P1, P2

are the power allocated to x1, x2 respectively. However, it may be noted that the total transmit

power P is fixed. This has to be allocated to the individual streams. Therefore, we have P1 =

P2 =
P
2 . Hence, the net output SNR of each stream is

SNR =
P

2

$$h2$$
σ2n

=
1

2

$$h2$$
σ2n

P

or in other words, equal to half that with CSI at the transmitter as can be seen from Eq. (6.17).

Thus, the absence of CSI results in a loss of 3 dB in output SNR corresponding to this factor

of 1
2 . Also, the orthogonality of the columns c1, c2 of the effective channel matrix is a key

property of the Alamouti code. Hence, the Alamouti code is also termed an Orthogonal Space-

Time Block Code (OSTBC). The term space-time refers to the fact that the Alamouti code

involves two symbols x1, x2 which are transmitted over two antennas over two instants of

time. Therefore, the symbols are coded across both the space and time dimensions, leading to

the name "space-time" code. This is schematically shown in Figure 6.7. Further, also note that

the Alamouti code transmits a net of two symbols x1, x2 in time instants. Therefore, on an

average it transmits one symbol per time instant. Hence, the net rate of the code is 1 symbol

per time instant, i.e., the rate R = 1. Such a code is termed a full rate code. Therefore, the

Alamouti code is a full-rate code. Example 6.6 given below clarifies the various operations in

the Alamouti code.
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Figure 6.7 Alamouti orthogonal space-time block code

EXAMPLE 6.6

Consider the 1× 2 wireless system given as

y =
 
1 + j 3 + 4j

 ⎡⎣ x1

x2

⎤
⎦+ n

Clearly, indicate the processing at the transmitter and the receiver for the above system with

the Alamouti code.

Solution: Firstly, it can be readily seen that the channel coefficients h1, h2 are 1 + j, 3 + 4j,

corresponding to the channels of transmit antennas 1, 2 respectively. Therefore, corresponding

to the transmission of symbols x1, x2 from the first and second transmit antennas in the first

time instant, we have the received symbol y(1) given as

y(1) =
 
1 + j 3 + 4j

 ⎡⎣ x1

x2

⎤
⎦ + n(1)
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as described in Eq. (6.18). Further, corresponding to the transmission of−x∗2, x∗1 from the first
and second transmit antennas in the second time instant, we have

y(2) =
 
1 + j 3 + 4j

 ⎡⎣ −x∗2
x∗1

⎤
⎦ + n(2)

which can be simplified by considering the conjugate y∗(2) of y(2) as,

y∗(2) =
 
1− j 3− 4j

 ⎡⎣ −x2
x1

⎤
⎦ + n∗(2)

=
 

−1 + j 3− 4j
 ⎡⎣ x2

x1

⎤
⎦ + n∗(2)

=
 
3− 4j −1 + j

 ⎡⎣ x1

x2

⎤
⎦ + n∗(2)

as given in Eq. (6.20). Therefore, stacking now y(1), y∗(2), we have

⎡
⎣ y(1)

y∗(2)

⎤
⎦

    
y

=

⎡
⎣ 1 + j 3 + 4j

3− 4j −1 + j

⎤
⎦

    
H

⎡
⎣ x1

x2

⎤
⎦ + n

whereH above indicates the effective Alamouti channel matrix and y is the effective received

vector. Therefore, the columns c1, c2 are given as

c1 =

⎡
⎣ 1 + j

3− 4j

⎤
⎦ , c2 =

⎡
⎣ 3 + 4j

−1 + j

⎤
⎦
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It can now be easily verified that the columns c1, c2 are orthogonal. Consider c
H
1 c2, which

can be simplified as

cH1 c2 = (1 + j)∗ (3 + 4j) + (3− 4j)∗ (−1 + j)

= (1− j) (3 + 4j) + (3 + 4j) (− (1− j))

= (1− j) (3 + 4j)− (3 + 4j) (1− j)

= 0

Beamformer to detect x1 is given as

w1 =
c1

 c1 =
1√
27

⎡
⎣ 1 + j

3− 4j

⎤
⎦

To detect x1, one has to perform the receive beamforming operation w
H
1 y. Similarly, w2, the

beamformer to detect x2 is given as

w2 =
c2

 c2 =
1√
27

⎡
⎣ 3 + 4j

−1 + j

⎤
⎦

Therefore, x2 can be detected by performing the operation w
H
2 y at the receiver.

6.9 Another OSTBC Example

We now describe another example of an OSTBC for a 1× 3, i.e., a system with 1 receive

and 3 transmit antennas. Consider the channel matrix
 

h1 h2 h3

 
corresponding

to this 1× 3 system. Consider the transmission of 4 symbols x1, x2, x3, x4 over the wireless
channel. The corresponding coded block for the OSTBC is given as

⎡
⎢⎢⎣

x1 −x2 −x3 −x4 x∗1 −x∗2 −x∗3 −x∗4
x2 x1 x4 −x3 x∗2 x∗1 x∗4 −x∗3
x3 −x4 x1 x2 x∗3 −x∗4 x∗1 x∗2

⎤
⎥⎥⎦ (6.23)
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Each column in the above code block gives the three symbols transmitted over each of the 3

transmit antennas. Observe, that there are 8 time instants in total in the above block. Therefore,

the four symbols, i.e., x1, x2, x3, x4 are being transmitted over a total of 8 time instants.

Therefore, the net rate of the code is 4
8 =

1
2 . Consider the first received symbols y (1). This can

be expressed as

y (1) =
 

h1 h2 h3

 ⎡⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦

= h1x1 + h2x2 + h3x3 + 0x4

=
 

h1 h2 h3 0

 
⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦

Further, the second received symbol y(2) is given as

y(2) =
 

h1 h2 h3

 ⎡⎢⎢⎣
−x2
x1

−x4

⎤
⎥⎥⎦

= −h1x2 + h2x1 − h3x4 + 0x3

=
 

h2 −h1 0 −h3
 
⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦ (6.24)

Thus, proceeding similarly, the received symbols y(1), y(2), y(3), y(4) and the complex

conjgates of the symbols y(5), y(6), y(7), y(8) can be stacked to obtain the effective system
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model ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)

y(2)

y(3)

y(4)

y ∗ (5)
y ∗ (6)
y ∗ (7)
y ∗ (8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
y

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 0

h2 −h1 0 −h3
h3 0 −h1 h2

0 h3 −h2 −h1
h∗1 h∗2 h∗3 0

h∗2 −h∗1 0 −h∗3
h∗3 0 −h∗1 h∗2
0 h∗3 −h∗2 −h∗1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

    
H

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦ . (6.25)

Therefore, it can be seen that the effective channel matrix H represents an equivalent 8× 4
MIMO system. Further, the different columns ofH are orthogonal. For instance, consider the

cH1 c2 corresponding to columns c1, c2. This can be simplified as

cH1 c2 =
 

h∗1 h∗2 h∗3 0 h1 h2 h3 0

 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2

−h1
0

h3

h∗2
h∗1
0

h∗3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h∗1h2 − h∗2h1 + 0 + 0 + h1h
∗
2 − h2h

∗
1 + 0 + 0

= 0

Hence, the columns are orthogonal. Therefore, this is an example of an R = 1
2 OSTBC, i.e.,

orthogonal space-time block code.
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6.10 Nonlinear MIMO Receiver: V-BLAST

Previously, we have seen the zero-forcing (ZF) and minimum mean squared error (MMSE)

receivers, which are linear MIMO receivers. We now look at the first nonlinear MIMO

receiver, termed V-BLAST, short for Vertical Bell Labs Layered Space-Time receiver.

V-BLAST employs Successive Interference Cancellation (SIC) in which the impact of each

estimated symbol is cancelled prior to the detection of the next symbol. This SIC principle

on which V-BLAST is based leads to its nonlinear nature. Consider the MIMO system model

given as

y = Hx+ n

=
 
h1 h2 . . . ht

 
⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xt

⎤
⎥⎥⎥⎥⎥⎦+ n (6.26)

The vectors h1, h2, . . . , ht correspond to the t columns of the channel matrix H. Consider

now the left-inverse or pseudo-inverse of the channel matrixQ described in Eq. (6.3). Let this

matrix be denoted by the t× r matrixQ, i.e.,QH = Ir. Further, let the matrixQ be written as

Q =

⎡
⎢⎢⎢⎢⎢⎣
qH1

qH2
...

qHt

⎤
⎥⎥⎥⎥⎥⎦

where qH1 , q
H
2 , . . . , q

H
t denote the t rows of the matrix Q. Therefore, QH = It can be

written as ⎡
⎢⎢⎢⎢⎢⎣
qH1

qH2
...

qHt

⎤
⎥⎥⎥⎥⎥⎦
 
h1 h2 . . . ht

 
= It
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⇒

⎡
⎢⎢⎢⎢⎢⎣
qH1 h1 qH1 h2 . . . qH1 ht

qH2 h1 qH2 h2 . . . qH2 ht
...

...
. . .

...

qHt h1 qHt h2 . . . qHt ht

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ (6.27)

Therefore, we have,

qH1 h1 = q
H
2 h2 = . . . = qHt ht = 0

qH1 h2 = q
H
1 h3 = . . . = qHt−1ht = 0

The above property can be basically summarized as

qHi hj =

⎧⎨
⎩ 1 if i = j

0 if i  = j
(6.28)

From Eq. (6.26), observe that the system model can be explicitly given in terms of the columns

of the channel matrixH as

y = h1x1 + h2x2 + . . .+ htxt + n

Employing now the fact that qH1 h1 = 1 and q
H
1 h2, q

H
1 h3, etc., is zero, one can use q1 as a

receive beamformer. Therefore, performing qH1 y at the receiver, we have

ỹ1 = q
H
1 y

= qH1 (h1x1 + h2x2 + . . .+ htxt + n)

= qH1 h1    
1

x1 + q
H
1 h2    
0

x2 + . . .+ qH1 ht    
0

xt + q
H
1 n    
ñ1

= x1 + ñ1
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Thus, ỹ1 can now be employed to decode x1. Now, the interference caused by x1 is removed

from y to form y̌2 as

y̌2 = y− h1x1

= h1x1 + h2x2 + . . .+ htxt + nh1x1

= h2x2 + . . .+ htxt + n

=
 
h2 h3 . . . ht

 
    

H(2)

⎡
⎢⎢⎢⎢⎢⎣

x2

x3
...

xt

⎤
⎥⎥⎥⎥⎥⎦

    
x(2)

+n

= H(2)x(2) + n

The above system model can now be seen to correspond to a reduced MIMO system with

channel matrix H(2) of r rows and t− 1 columns. Thus, it represents an r × (t− 1) MIMO
system, with x2, x3, . . . , xt denoting the t− 1 transmit symbols. Now, consider Q(2) as

the zero-forcing receiver for H(2) and repeat the above process by decoding x2, and so on.

The advantage of this scheme is that the diversity order and the associated diversity gain

progressively increases as we proceed through the scheme for decoding the different transmit

symbols x1 through xt. In fact, in the last stage, when only one symbol xt is left for decoding,

the effective system model is given as

y̌t = H
(t)xt + n

Notice that the effective channel H(t) is the column vector ht. This can be decoded by receive

beamforming along ht, in other words, maximum ratio combining. In V-BLAST, streams that

are decoded later experience progressively higher diversity. Example 6.7 clearly illustrates the

working of the V-BLAST MIMO receiver.
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EXAMPLE 6.7

Consider the 2× 2 MIMO system given below and describe the various stages of the

V-BLAST receiver.⎡
⎣ y1

y2

⎤
⎦

    
y

=

⎡
⎣ 1 2

1 3

⎤
⎦

    
H

⎡
⎣ x1

x2

⎤
⎦

    
x

+

⎡
⎣ n1

n2

⎤
⎦

    
n

(6.29)

Solution: The channel matrixH is given as

H =

⎡
⎣ 1 2

1 3

⎤
⎦

Therefore, the left inverse of H, i.e., Q = H† is given as Q = H−1 since the matrix H is

square and invertible. Therefore, we have

Q = H−1 =

⎡
⎣ 3 −2

−1 1

⎤
⎦

It can be clearly seen that the rows of the matrix Q are qH1 =
 
3 −2

 
,

qH2 =
 

−1 1

 
. Further, it can be readily seen that qH1 h1 is given as

qH1 h1 =
 
3 −2

 ⎡⎣ 1

1

⎤
⎦ = 1

and qH1 h2 can be simplified as

qH1 h2 =
 
3 −2

 ⎡⎣ 2

3

⎤
⎦ = 0
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Therefore, the first row qH1 is orthogonal to h2, i.e., the second column of the channel matrix

H. Therefore, decoding in qH1 in the first stage of V-BLAST, we have

ỹ1 = q
H
1 y

=
 
3 −2

 ⎛⎝
⎡
⎣ 1 2

1 3

⎤
⎦
⎡
⎣ x1

x2

⎤
⎦+

⎡
⎣ n1

n2

⎤
⎦
⎞
⎠ .

=
 
1 0

 ⎡⎣ x1

x2

⎤
⎦+ qH1 n    

ñ1

= x1 + ñ1

Therefore, the symbol x1 can be detected from ỹ1. The interference caused by this can now be

canceled from the received signal y to form y̌2 as

y̌2 = y − h1x1

=

⎡
⎣ 1 2

1 3

⎤
⎦
⎡
⎣ x1

x2

⎤
⎦ +

⎡
⎣ n1

n2

⎤
⎦ −

⎡
⎣ 1

1

⎤
⎦x1

=

⎡
⎣ 2

3

⎤
⎦x2 + n

It can now be seen that the above system corresponds effectively to a receive diversity system

with 2 receive antennas and a single transmit antenna. In fact, the optimum receiver scheme is

to perform maximum ratio combining with the receive beamformer w =
 
2 3

 T
. The

diversity order of decoding this stream is, therefore, equal to 2.

6.11 MIMO Beamforming

In this section, we describe beamforming in the context of a MIMO wireless system.

Beamforming basically implies that only spatial dimension is used for transmission amongst
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the many dimensions that are available. Consider the MIMO system given as

y = Hx+ n

= UΣVHx+ n

=
 
u1 u2 . . . ut

 
⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
vH1

vH2
...

vHt

⎤
⎥⎥⎥⎥⎥⎦x+ n

where H = UΣVH is the singular value decomposition (SVD) of the channel matrix H

as described in Section 6.6. Observe now that the right and left singular vectors v1, u1

respectively, which correspond to the largest singular value σ1, represent the dominant transmit

and receive modes of the MIMO system. Hence, one can transmit a single symbol x̃1 from the

transmitter by beamforming along the vector v1 as

x = v1x̃1

Array of antennas

Null

Beam pattern

D
ire

ct
io
n 

of

m
ax

im
um

 g
ai
n

Null

Tx
transmitter

Figure 6.8 MIMO beamforming

Thus, the symbol x̃1 is being transmitted along the abstract direction represented by the

vector v1 in t dimensional space as shown in Figure 6.8. Substituting this in the MIMO system



218 Principles of Modern Wireless Communication Systems

model, we have

y =
 
u1 u2 . . . ut

 
⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
vH1

vH2
...

vHt

⎤
⎥⎥⎥⎥⎥⎦v1x̃1 + n

=
 
u1 u2 . . . ut

 
⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
vH1 v1

vH2 v1
...

vHt v1

⎤
⎥⎥⎥⎥⎥⎦ x̃1 + n

It can now be seen that vH1 v1 = 1, while v
H
2 v1 = . . . = vHt v1 = 0, since vi, 2 ≤ i ≤ t are

orthogonal to v1. Therefore, the received signal y can be further simplified as

y =
 
u1 u2 . . . ut

 
⎡
⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎦ x̃1 + n

=
 
u1 u2 . . . ut

 
⎡
⎢⎢⎢⎢⎢⎣

σ1

0
...

0

⎤
⎥⎥⎥⎥⎥⎦ x̃1 + n

= σ1u1x̃1 + n

Thus, it can be readily seen that the received vector y effectively corresponds to a multiple

receive antenna system with the effective channel vector u1. One can now perform MRC at the

receiver using the beamforming vector u1 as,

ỹ1 = u
H
1 y
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= uH1 (σ1u1x̃1 + n)

= σ1u
H
1 u1x̃1 + u

H
1 n    
ñ1

= σ1x̃1 + ñ1

Further, it can be seen from Eq. (6.13) that the variance of the noise ñ1 = u
H
1 n is σ

2
n. Thus,

the SNR at the receiver is given as

SNR = σ21

E
 
|x̃1|2

 
σ2n

= σ21
P

σ2n

where P = E
 
|x̃1|2

 
is the transmit power corresponding to the symbol x̃1. It can be seen

from the above expression that the net transmit power P is amplified by a factor of σ21
corresponding to the largest singular value σ1. This MIMO beamforming scheme is termed

Maximum Ratio Transmission (MRT). Since only one dimension is being used in this scheme,

it results in a simplistic transmission and reception scheme compared to spatial multiplexing

MIMO schemes such as MIMO-ZF, MIMO-MMSE, MIMO V-BLAST, etc. However, since it

is transmitting along the MIMO spatial dimension with channel gain σ1 corresponding to the

largest singular value, it leads to a high SNR at the receiver. Further, two additional points are

worth of being noted about the maximum ration transmission scheme. Firstly, it is capacity

optimal at low SNR. Secondly, it achieves the full diversity order of MIMO communication,

i.e., rt, where r, t denote the number of receive and transmit antennas respectively.

1. Fill in the blanks below.

(a) The Alamouti scheme belongs to a class of codes known as .

(b) At low SNR, the performance of the MIMO MMSE receiver is equivalent to that of .
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2. Using the properties of singular values or otherwise, compute the singular values of the

channel matrix below.

H =

⎡
⎢⎢⎣

1 2 3.5

1 2 3.5

1 2 3.5

⎤
⎥⎥⎦

3. Consider the MIMO channel matrix given below and σ2n = 3 dB for the system.

H =

⎡
⎢⎢⎣

1 3 0

1 3 0

0 0 2

⎤
⎥⎥⎦

(a) Compute the SVD of the above MIMO channel matrix.

(b) What is the capacity optimal transmit scheme for a transmit power of 3 dB?

4. MIMO Decoding Consider the MIMO channel matrix below.

H =

⎡
⎣ 1 −0.8

0.2 −1

⎤
⎦

Consider a transmit power of P = −3 dB on each transmit antenna, i.e., E
 
|xi|2

 
= −3 dB on each transmit antenna. Let the transmit constellation be BPSK on each

transmit antenna.

(a) Derive the ZF receiver decoding matrix for the above MIMO system.

(b) Let a received noisy output vector of the above MIMO channel be given as

y =

⎡
⎣ −1.50

0.27

⎤
⎦ (6.30)

Employing ZF decoding, compute the linear estimate and the decoded transmitted

symbols on each transmit antenna.

(c) What is the vector transmit constellation corresponding to BPSK?
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(d) Employ the optimal ML decoder and compute the decoded vector belonging to the

transmit constellation above corresponding to the received vector in Eq. (6.30).

Illustrate the steps clearly (Hint: Mind the transmit power on each antenna).

(e) Of both the decoded vectors above, which one do you think is the correct transmit

vector?

5. Answer the questions below.

(a) Compute the SVD of the following 3× 2 channel matrix.

H =

⎡
⎢⎢⎣

1 1

2 −2
3 1

⎤
⎥⎥⎦

(b) Consider BPSK transmission for the above MIMO system with SNR Pd
σ2
n

= 10 dB.

Derive the MMSE MIMO receiver for the above system.

(c) Let a received vector in the above system be given by⎡
⎢⎢⎣

−1.71
12.55

6.08

⎤
⎥⎥⎦

Compute the MMSE decoded transmit BPSK vector corresponding to this received vector.

6. MIMO and Games Consider an r × t flat-fading MIMO system characterized by the

channel matrix H. Assume that the transmitter has to select one transmit antenna for

transmission and the receiver has to select one receive antenna for reception. Answer the

questions that follow.

(a) What is the diversity order of a cooperative transmit/receive antenna selection scenario

in which the receive and transmit antennas are chosen such that

i, j = argmax
i,j

|hi,j|

(b) Consider a game in which the (disruptive) transmitter is trying to choose the worst

possible antenna for transmission while the (angel) receiver is trying to choose the

best possible antenna. What is the diversity order of the resulting system, if it can be

shown that an equilibrium (because it is not the equilibrium) selection strategy in this
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scenario is given by the minimax rule

i, j = argmin
j
max
i

|hi,j|

(c) Repeat the above problem with a disruptive receiver and angel transmitter.

7. Channel Estimation in Alamouti-Coded Systems Consider the following QPSK

modulated pilot symbols which are Alamouti-coded and transmitted across a 1× 2 MISO
system.

1√
2
[1 + j, −1 + j, −1− j, 1− j]

Compute the least-squares estimate of the channel coefficients if the total transmitter power

is 20 dB and the received pilot outputs corresponding to the Alamouti-coded pilot inputs

are

[11.15− 0.66j, −2.23+ 2.70j, −13.54 + 0.99j, 3.03− 2.44j]

8. MIMO Capacity Consider the MIMO channel with channel matrixH given as

H =

⎡
⎢⎢⎣

2 −6 0

3 4 0

0 0 2

⎤
⎥⎥⎦

(a) Compute the SVD of the above matrix and illustrate how youwould do maximum-ratio

transmission (MRT) in this scenario.

(b) Compute the capacity and optimal power allocation for a total transmit power

PT = −1.25 dB and noise power σ2n = 3 dB.
9. Optimal MIMO Power Allocation Consider the MIMO channel matrix H given below

and answer the questions that follow.

H =

⎡
⎢⎢⎣

0 −2 5

1 2 4

−2 1 2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 −1 1

1 2 1

−1 0 1

⎤
⎥⎥⎦

(a) Compute the SVD ofH.
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(b) Only for this part, assume a transmit power of 10 dB at the transmitter and a receiver

noise power σ2n = 0 dB. Compute the optimal power allocation and the optimal

transmit scheme for spatially multiplexing streams x1, x2, x3.

(c) Assume BPSK modulation and unit power loading on each mode corresponding to

each vi. Let the received vector be [36,16, 13]
T . Decode the transmitted BPSK symbol

vector.

10. MIMO SIC Receiver Consider the MIMO channel H given below and answer the

questions that follow.

H =

⎡
⎢⎢⎣

1 1

2 1

3 4

⎤
⎥⎥⎦

(a) Derive the MIMO zero-forcing receiver.

(b) Consider BPSK symbol transmission with unit power for each symbol and received

vector [0.8622,−0.6812,−0.3077]T . Decode the transmitted BPSK vector employing
VBLAST SIC and clearly illustrate the process.

11. Optimal MIMO Power Allocation Consider the MIMO channel matrix H given below

and answer the questions that follow.

H =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 −1 −1
1 −1 1 1

1 1 −1 1

1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 2

5 0 0

0 0 0

0 3 0

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

2 6 3

3 2 −6
6 −3 2

⎤
⎥⎥⎦

(a) Compute the SVD ofH.

(b) Only for this part, assume a transmit power of 2 dB at the transmitter and a receiver

noise power σ2n = 0 dB. Compute the optimal power allocation and the optimal

transmit scheme for spatially multiplexing streams x1, x2, x3.

(c) Assume QPSK modulation and unit power loading on each mode corresponding to

each vi. Let the received vector be [490 + 196j,196 + 490j,−294,−294j]T . Decode
the transmitted QPSK symbol vector.

(d) Derive the MMSE-ZF receiver for the above MIMO channel in terms of the SVD

component matrices (Hint: Employ properties of the SVD for simplification).
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12. Consider a MISO-CDMA system with t transmit antennas modelled as

y (k) = hHx (k) + n (k)

with the standard vector of channel coefficients h = [h1, h2, ..., ht]
T
. Consider the

following transmission scheme. A different spreading code is used to modulate the transmit

symbol on each transmit antenna, i.e., the kth transmitted chip on the lth transmit antenna

is given as s (0) cl (k). Let the length of each spreading sequence beN .

(a) Demonstrate the optimal demodulation scheme for the above MISO-CDMA system.

(b) Derive the SNR at the receiver under the assumption of long spreading codes.

(c) What is the diversity order of the above scheme.

(d) Now consider a different transmit scheme where the transmitted chip is given as

s (0) c (k), i.e., the same spreading sequence is employed on each transmit antenna.

Derive the BER for this scheme. What is the problem with this scheme?

13. Answer the questions below.

(a) Compute the SVD of the following 3× 2 channel matrix.

H =

⎡
⎢⎢⎣

1 1

2 −2
3 1

⎤
⎥⎥⎦

(6.31)

(b) Consider BPSK transmission for the above MIMO system with SNR Pd
σ2
n
= 10 dB.

Derive the MMSE MIMO receiver for the above system.

(c) Compute the MMSE decoded transmit BPSK vector corresponding to the received

vector in the above system be given as

⎡
⎢⎢⎣

−1.71
12.55

6.08

⎤
⎥⎥⎦

14. Consider an r× t MIMO system, i.e., one with r receive and t transmit antennas. The

channel matrix H consists of uncorrelated Rayleigh fading channel coefficients with
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E
 
|hij|2

 
= 1. Consider a transmission scheme in which the same symbol x (k) is

transmitted from each of the t transmit antennas at the time instant k. Also x (k) is BPSK

±√
P . For this scheme, answer the questions below.

(a) Derive the optimal receiver for this scheme.

(b) Compute the signal-to-noise power ratio (SNR) at the receiver.

(c) Derive the average BER and diversity order of detection.

(d) Compute the average BER for SNR = 35 dB and a 3× 2MIMO system.
15. Consider the 3× 3MIMO channel matrixH given below.

H =

⎡
⎢⎢⎣

3 0 −8
0 1 0

4 0 6

⎤
⎥⎥⎦

Consider a transmit power of P = −1.75 dB and receiver noise power σ2n = 3 dB. Answer
the questions below.

(a) Derive the SVD of the channel matrixH above. (2.0)

(b) Compute the optimal power allocation for MIMO rate maximization and the associated

MIMO channel capacity.

(c) Illustrate the optimal transmission scheme clearly demonstrating the precoding

operation at the transmitter.

16. Optimal MIMO Power Allocation: Consider the MIMO channel matrix H given below

and answer the questions that follow.

H =

⎡
⎢⎢⎣

1 1 1

2 0 −1
1 −1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 2 0

3 0 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

2 2 −1
2 −1 2

−1 2 2

⎤
⎥⎥⎦

(a) Compute the SVD ofH.

(b) Only for this part assume a transmit power of −3 dB at the transmitter and a receiver
noise power σ2n = 0 dB. Compute the optimal power allocation.

(c) Demonstrate the optimal transmit precoding scheme for spatially multiplexing streams

x1, x2, x3.
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(d) Assume QPSK modulation and unknown power loading on each mode corresponding

to each vi. Decode the transmitted QPSK symbol on the second mode for the received

vector, ⎡
⎢⎢⎣

−0.36− 0.18j
−0.45+ 0.45j
0.18 + 0.36j

⎤
⎥⎥⎦

17. MIMO Receivers Consider a 3× 2 MIMO system with total transmit power P = 10 dB
and per receiver noise variance σ2n = 3 dB. Answer the questions that follow for theMIMO

channel matrix be as given below.⎡
⎢⎢⎣

1 2

2 1

1 2

⎤
⎥⎥⎦

(a) Derive the MIMO-ZF receiver matrix.

(b) The SNR at the receiver for decoding each symbol x1 (k) , x2 (k) at the receiver.

(c) Illustrate the MIMO V-BLAST receiver procedure, i.e., the beamformer at each stage.

(d) Calculate the SNR at the receiver for the symbol decoded at each stage.

18. MIMO System Consider the instantaneous MIMO channel matrix H given below and

answer the questions that follow.

H =

⎡
⎢⎢⎣

1 −2 2

2 −1 −2
2 2 1

⎤
⎥⎥⎦

(a) What property do the columns c1, c2, c3 of this matrix satisfy?

(b) Compute the SVD of the above channel matrix.

(c) What is the corresponding MIMO zero-forcing receiver matrix ?

(d) If the transmit power of BPSK modulated symbols is P = 5 dB per transmit antenna

and noise power σ2n = 3 dB, what is the instantaneous bit error rate for the zero

forcing decoder?

(e) If the transmit power of BPSK modulated symbols is P = 5 dB per transmit antenna

and noise power σ2n = 3 dB, what is the instantaneous bit error rate for the second
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decoded stream in the V-BLAST decoder, assuming the decoding operation proceeds

in the order of the transmit antennas ? Make the simplifying assumption that there is

no error propagation.

(f) If the transmit power of BPSK modulated symbols is P = 5 dB per transmit antenna

and noise power σ2n = 3 dB, what is the exact (NOT PEP) instantaneous bit error

rate for the maximum likelihood decoder?

(g) Considering a transmit power of P = 30 dB, σ2n = −3 dB, and BPSK symbols, what
is the average BER for zero-forcing with elements of the channel matrix H IID

Rayleigh of average power unity?

(h) Considering a transmit power of P = 30 dB, σ2n = −3 dB, and BPSK symbols, what
is the averageBER for the second decoded stream in the V-BLAST decoder, assuming

the decoding operation proceeds in the order of the transmit antennas, with elements

of the channel matrixH IID Rayleigh of average power unity? Make the simplifying

assumption that there is no error propagation.

19. Considering space-time block code matrices
√
PXA,

√
PXB andL transmit antennas with

IID Rayleigh fading-channel coefficients of average power unity, derive the determinant

criterion discussed in class for space-time code design as

P{XA → XB} ≤ K

SNRL det
!
(XA −XB)(XA −XB)H

" (6.32)

where K is an appropriate constant.

20. MIMO Decoding Consider the instantaneous MIMO channel matrix below.

H =

⎡
⎣ 4 3

3 2

⎤
⎦

Consider a transmit power of P = E
 
|xi|2

 
= 25 dB on each transmit antenna and noise

variance σ2n = 3 dB. Let the transmit constellation be BPSK on each transmit antenna.

(a) Find the MIMO zero-forcing receiver for the above channel matrixH.

(b) Compute the instantaneous BER for BPSK decoding.

(c) If each hij is IID Rayleigh with E
 
|hij |2

 
= 1, compute the average BER for BPSK

decoding.
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21. Consider the MIMO channel matrixH given below and answer the questions that follow.

H =

⎡
⎢⎢⎣

1 3

2 −2
1 1

⎤
⎥⎥⎦

(a) Find the SVD ofH.

(b) Compute the zero-forcing receiver forH.

(c) Find a projection matrix for the column space ofH.

22. Corresponding to a MISO space-time block coded system with L antennas and code

matricesXA, XB, derive the determinant criterion for space-time code design as

P{XA → XB} = K

SNRL det [(XA −XB)(XA−XB)∗]
where K is an appropriate constant. When is the diversity order L achieved.

23. Consider a 2× 2 Alamouti-coded MIMO system with total transmit power P and noise

variance σ2 with i.i.d. noise samples across antennas and time. Consider the channel matrix

H given as below and answer the questions that follow for BPSK modulated transmission.

H =

⎡
⎣ h11 h12

h21 h22

⎤
⎦

(a) Illustrate the decoding process at the receiver and derive the SNR for each symbol.

(b) Consider the instantaneous channel matrixH with h11 = h22 = 2 and h12 = h21 = 1

and derive an expression for the instantaneous BER as a function of the SNR P/σ2.

(c) What is the SNR required for an instantaneous BER of 10−6?

(d) Consider now each channel coefficient to be Rayleigh with average power 2, i.e.,

E
 
|hij|2

 
= 2. Derive the exact expression for the average BER as a function of

P/σ2.

(e) Consider now each channel coefficient to be Rayleigh with average power 2, i.e.,

E
 
|hij|2

 
= 2. Derive a suitable approximation for the average BER as a function

of P/σ2.

(f) What is the diversity order of the above system?
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(g) Employing the approximation above derive the SNR required to achieve an average

BER of 10−6.

24. Consider a r × tMIMO version of the repetition code in which the transmitted symbol on

antenna j is x(j) =
√
ju, where u is the BPSK symbol ±√

P for 1 ≤ j ≤ t. The AWGN

noise is i.i.d across antennas of variance σ2 and channel coefficients hij are i.i.d Rayleigh

fading coefficients with E
 
|hij|2

 
= 1. Derive an expression for the exact BER of this

system with optimal combining at the receiver. What is the associated diversity order?
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Orthogonal Frequency-Division
Multiplexing

7.1 Introduction

Orthogonal Frequency-Division Multiplexing (OFDM) forms the basis for 4G, i.e., Fourth

Generation wireless communication systems. OFDM is used in 4G wireless cellular standards

such as Long-Term Evolution (LTE) and WiMAX (Worldwide Interoperability for Microwave

Access). OFDM is a key broadband wireless technology which supports data rates in excess of

100 Mbps. Similarly, the wireless local area (LAN) standards such as 802.11 a/g/n are based

on OFDM. Next we describe multicarrier transmission, which is the motivation and key idea

behind OFDM.

7.2 Motivation and Multicarrier Basics

Consider a bandwidth B = 2W available for communication, where W is the one-sided

bandwidth, or, in other words, the maximum frequency. For a single carrier communication

system, the symbol time T is given as

T =
1

B

basically implying that symbols can be transmitted at intervals of 1
B seconds each. Therefore,

the symbol rate is given as

Rate =
1

1/B
= B (7.1)
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Such a system is termed a single-carrier communication system. In such a system, a single

carrier is employed for the entire baseband bandwidth of B. Therefore, roughly speaking, the

symbols are transmitted as symbol X(0) from 0 ≤ t < T , symbol X(1) from T ≤ t < 2T ,

and so on, i.e., roughly one symbol transmitted every T = 1
B seconds.

Consider now dividing the total bandwidthB intoN sub-bands of bandwidthB/N each as

shown in Figure 7.1. Each subcarrier can now be represented by a subcarrier. Therefore, the

subcarriers are placed at . . . ,− B
N , 0, B

N , . . ., as shown in the figure. For instance, consider the

bandwidth B = 256 kHz with N = 64 subcarriers. The bandwidth per sub-band is equal to
256
64 = 4 kHz, which is also the frequency spacing between the subcarriers. We now implement

a multi-carrier transmission system as follows. Consider the ith subcarrier at the frequency

fi = iB
N , with −  N2 − 1

 ≤ i ≤ N
2 . Let Xi denote the data transmitted on the ith subcarrier.

Then, the signal si (t) corresponding to the ith subcarrier is given as

si (t) = Xie
j2πfit = Xie

j2πi B
N

t

where fi is the ith subcarrier centre frequency, as described above, and ej2πfit is the ith

subcarrier. The above equation shows the data modulation process over the ith subcarrier.

The N different data symbols Xi are modulated over the N different subcarriers with centre

frequencies fi. Hence, there are a total of N data streams. Next we illustrate the scheme for

multicarrier transmission.

Total bandwidth B

-( /2-1) /N B N - /B N B N/ 2 /B N ( /2) /N B N

Sub-band
Subcarrier
spacing N subcarriers

Figure 7.1 Multi-carrier concept
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7.2.1 Multicarrier Transmission

Consider now the different modulated signals si (t) corresponding to the N different

subcarriers. These signals are then superposed at the transmitted to form the composite signal

s (t) given as

s (t) =
 
i

si (t)

=
 
i

Xie
j2πfit

=
 
i

Xie
j2πi B

N
t (7.2)

This composite signal s (t) is then transmitted over the wireless channels. Thus, N different

data streams are transmitted over N subcarriers in parallel in this multicarrier system. At the

receivers, the individual data streams have then to be isolated from the composite signal s (t)

above. This is accomplished as follows. Consider the signal y (t) received as

y (t) = s (t) =
 
i

Xie
j2πfit

For simplicity, to illustrate the demodulation procedure at the receiver, we have assumed noise

to be absent above. We will consider the general case of a noisy received signal later. From the

expression for the composite signal s (t) in Eq. (7.2), it can be readily seen that the expression

on the right-hand side is indeed the Fourier series respresentation s (t), corresponding to the

fundamental frequency f0 = (B)N and the various Xi representing the Fourier coefficients.

Indeed, all the frequencies iB
N are multiples of the fundamental frequency f0 =

1
T0
= B

N .

Therefore, to extract Xl, which is the Fourier coefficient corresponding to the frequency

fl = lf0, one needs to follow the procedure similar to compute the Fourier series as

f0

 T0

0
y (t)
 
ej2πflt

 ∗
dt =

B

N

 N

B

0

  
i

Xie
j2πiB

N
t

 
e−j2πl B

N
tdt

=
B

N

 
i

 N

B

0
Xie

j2π(i−l)f0tdt
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=
B

N

 N

B

0
Xl dt    

i=l

+
B

N

 
i =l

 N

B

0
Xie

j2π(i−l)f0tdt

= Xl +
B

N

 
i =l

Xi

 N

B

0
ej2π(i−l)f0tdt    

=0

= Xl

where we have used the fact that
 T0
0 ej2π(i−l)f0tdt = 0 for i  = l, since this is basically

integrating a sinusoid of frequency (i − l) f0, which is a multiple of the fundamental frequency

f0 over the period T0. Therefore, since there are an integer number of cycles of the sinusoid

of frequency (i − l) f0, this integral is 0. In fact, this basically implies that the different

sinusoids ej2πif0t and ej2πlf0t are orthogonal. It is this key property of orthogonality which

helps extract the different streams Xi modulated over the different subcarriers. This property

of orthogonality can be summarized as

 N/B

0
ej2π(i−l)B

N
t =

⎧⎨
⎩ 0 i  = l

N
B i = l

Therefore, all the subcarriers other than the lth subcarrier are orthogonal to the lth

subcarrier. Further, observe that multiplying with
 
ej2πflt

 ∗
and integrating is basically

coherent demodulation, i.e., demodulation with the carrier matched to the subcarrier frequency

fl = l BN . Thus, Xl, the data modulated on the different subcarriers, can be conveniently

recovered by coherently demoudulating with each of the subcarriers corresponding to

l = −  N2 − 1
 
, . . . , N

2 . The above scheme of transmission on multiple orthogonal subcarriers

and the associated data recovery at the receiver is termed MultiCarrier Modulation (MCM).

Also observe that the window of time associated with detection of this multicarrier signal

is N
B = 1

f0
= T0, which is basically the time period of integration. Hence, MCM basically

transmitsN symbols usingN subcarriers in a time period of N
B . The symbol rate is, therefore,

N
N/B = B. Thus, the overall symbol rate in single carrier vs multicarrier systems is unchanged.

The transmitter and receiver block schematics for this MCM system are shown in figures 7.2

and 7.3 respectively.
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Serial to parallel
conversion because
we are transmitting
symbols in parallel

N

i th data stream is
modulated onto
the subcarrieri th

Sum all the
subcarriers

S/P
DemuxSymbols

Bank
of

modulators

Summer
+

Composite
signal

To channel

Figure 7.2 Multicarrier modulation transmitter

Coherent
demodulation

with exp ( 2 )-j f tp l

Parallel to serial
multiplexing

Bank
of

correlators
or

demodulators

Repeater
y t( )

from channel

P/S
Mux Serail symbol

stream

N Information
symbols

Figure 7.3 Multi-carrier modulation receiver

It is very important now to note the following fact. Observe from Eq. (7.1) and the above

rate for an MCM system. It is clear that the symbol rate in both these systems is exactly

identical, i.e., B. The single-carrier system transmits each symbol in time 1
B , while the

MCM system transmits N symbols in parallel in time N
B . What then is the advantage of

an MCM system over the single-carrier system? To understand this, consider an example

with a transmission bandwidth of B = 1.024 MHz, i.e., 1024 kHz. As seen in an earlier

chapter, notice that this bandwidth B is much greater than the coherence bandwidth Bc

which is typically around 250 kHz, i.e., Bc ≈ 250 kHz. Therefore, since the transmission

bandwidth B >> Bc, the single-carrier system experiences frequency-selective fading and

inter-symbol interference. However, consider an OFDM system with employs N = 256

subcarriers in the same bandwidth. The bandwidth per subcarrier isBs =
1024
256 = 4 kHz. It can

be readily seen that the subcarrier bandwidth of 4 kHz is significantly lower than the coherence
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bandwidth of 250 kHz. Thus, since B
N << Bc, each subcarrier experiences flat fading.

Hence, there is no inter-symbol interference in the data transmitted on any of the subcarriers.

Thus, themost critical and key benefit of thisMCM system is that through parallel transmission

using multiple narrowband subcarriers, it eliminates the Inter-Symbol interference (ISI), thus

avoiding distortion of the received symbols.

However, the above MCM system suffers from a significant bottleneck. Implementing the

bank of N modulators and N demodulators with closely spaced subcarrier frequencies is an

extremely challenging task. This was solved by the key idea proposed by Weinstein and Ebert

in 1972, in the paper titled "Data Transmission by Frequency Division Multiplexing using the

Discrete Fourier Transform". Both of them were engineers at Bell Telephone Laboratories.

Their idea can be described as follows. Consider the MCM transmt signal s (t). Observe that it

is band-limited to the bandwidth B (total bandwidth). Therefore, the Nyquist sampling rate is

B and the associated sampling time is Ts =
1
B . Consider now the composite MCM sigal given

in Eq. (7.2). The uth sample at time instant uTs =
u
B is given as

s (uTs) = x (u) =
 
i

Xie
j2πiB

N

u

B

x (u) =
 
i

Xie
j2π iu

N

    
DFT

Observe from the expression above that the sample x (u) is basically the In-

verse Discrete Fourier Transform (IDFT) coefficient of the information symbols

X (0) , X (1) , . . . , X (N − 1) at the uth time point. Thus, the Inverse Fast Fourier Transform

(IFFT) can be conveniently employed to generate the sample MCM signal. This scheme of

generating the composite transmit signal through IDFT was proposed by Weinstein and Ebert

in 1971. Thus, it drastically reduces the complexity of implementing an OFDM system since

it eliminates the need for the bank of modulators corresponding to the different subcarrier

frequencies. This technique, where the MCM signal is generated by employing the IFFT

operation is termed Orthogonal Frequency Division Multiplexing, or OFDM. At the receiver,

to recover the information symbols, one can correspondingly employ an FFT operation.

Schematic figures of the OFDM transmitter and receiver with the IFFT and FFT blocks are

given in figures 7.4 and 7.5 respectively.
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Figure 7.4 OFDM transmitter schematic with IFFT

Figure 7.5 OFDM receiver schematic with FFT

7.2.2 Cyclic Prefix in OFDM

In this section, we explain the concept of cyclic prefix, which is an important component

of an OFDM system. Consider a frequency-selective channel modelled with channel taps

h (0) , h (1) , . . . , h (L − 1). Thus, the received symbol y at a given time instant n can be

expressed as

y (n) = h (0)x (n) + h (1)x (n − 1) + . . .+ h (L − 1)x (n − L + 1)    
ISI component

,

from which it can be seen that the received symbol y (n) at the time instant n experiences inter

symbol interference from the previous L − 1 transmitted symbols. Consider now two OFDM

symbols as follows. Let x (0) , x (1) , . . . , x (N − 1) denote the IFFT samples of the modu-

lated symbols X (0) , X (1) , . . . , X (N − 1), while x̃ (0) , x̃ (1) , . . . , x̃ (N − 1) denote the
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IFFT samples of the previous modulated symbol block X̃ (0) , X̃ (1) , . . . , X̃ (N − 1). Thus,

the samples corresponding to these two blocks of OFDM symbols are transmitted sequentially

as

x̃ (0) , x̃ (1) , . . . , x̃ (N − 1) ,    
Previous block

x (0) , x (1) , . . . , x (N − 1)    
Current block

Now, consider the received symbol y (0) corresponding to the transmission of x (0). This can

be expressed as

y (0) = h (0)x (0) + h (1) x̃ (N − 1) + . . .+ h (L − 1) x̃ (N − L+ 1)    
ISI from previous OFDM symbol

.

It can be seen from the above equation that the received symbol y (0) experiences inter-symbol

interference from x̃ (N − 1) , x̃ (N − 2) , . . . , x̃ (N − (L − 1)). Thus, there is inter-OFDM

symbol interference in this new OFDM system. The initial samples of the current OFDM

symbol block are being subject to interference from theN − 1 samples of the previous OFDM

block. This is shown in Figure 7.6. Similarly, the received symbol y (1) is given as

y (1) = h (0)x (1) + h (1)x (0)h (2) x̃ (N − 1) + . . .+ h (L − 1) x̃ (N − L+ 2)    
ISI from previous OFDM symbol

,

which can again be seen to experience inter-OFDM symbol interference from the previous

OFDM block symbols x̃ (N − 1) , x̃ (N − 2) , . . . , x̃ (N − L+ 2). Let us now consider a

modified transmission scheme as follows. To each transmitted OFDM sample stream, we pad

the last Lc symbols to make the transmitted stream as follows.

x̃ (0) , x̃ (1) , . . . , x̃ (N − 1) ,
| {z }

Previous block

x (N − Lc) , x (N − Lc +1) , . . . , x (N − 1)
| {z }

Cyclic prefix

x (0) , x (1) , . . . , x (N − 1)
| {z }

Current block

.

OFDM symbol size = / samplesN B

Initial samples, of subject to inter OFDM symbol interference

Figure 7.6 Inter-OFDM symbol interference
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Observe that we are prefixing the transmitted sample block x (0) , x (1) , . . . , x (N − 1) of

the current block with the Lc samples x (N − Lc) , x (N − Lc + 1) , . . . , x (N − 1). Further,

this prefix is cyclic in nature, since the same samples from the end of the block are being cycled

towards the beginning. Therefore, this is known as the cyclic prefix and is an important aspect

of OFDM systems. Consider now the received symbol corresponding to x (0). This is given as

y (0) = h (0) x (0) + h (1)x (N − 1) + . . .+ h (L − 1)x (N − L + 1)    
ISI from same OFDM symbol

The inter-symbol interference can be seen to now be from

x (N − 1) , x (N − 2) , . . . , x (N − L+ 1), if Lc ≥ L − 1. Thus, with the cyclic prefix

of appropriate length, i.e., Lc ≥ L − 1, inter-OFDM symbol interference can be avoided and

inter-symbol interference is restricted to samples from the same OFDM symbol. Therefore,

the samples y (0) , y (1) , . . . , y (N − 1) are given as

y (0) = h (0)x (0) + h (1)x (N − 1) + . . .+ h (L − 1)x (N − L+ 1)

y (1) = h (0)x (1) + h (1)x (0) + . . .+ h (L − 1)x (N − L+ 2)

...

y (N − 1) = h (0)x (N − 1) + h (1)x (N − 2) + . . .+ h (L − 1)x (N − L)

It can now be clearly seen that the output y (n) is a circular convolution between the channel

filter h (n) and the input x (n).

This can, therefore, be expressed as

[y (0) , y (1) , . . . , y (N − 1)] = [h (0) , h (1) , . . . , h (L − 1) , 0, . . . , 0] ∗N [x (0) ,

x (1) , . . . , x (N − 1)]

where ∗N denotes circular convolution of moduloN . Therefore, the output y can be written as

y = h ∗N x

Therefore, taking the DFT of y (n) at the output, we have

Y (k) = H (k)X (k) , 0 ≤ k ≤ N − 1 (7.3)



Orthogonal Frequency-Division Multiplexing 239

where Y (k) , 0 ≤ k ≤ N − 1, denotes the N -point DFT of y (n). Similarly, X (k) denotes

the N -point DFT of x (n). Further, observe that the samples x (n) have been generated as the

IDFT of X (n). Therefore, the DFT of the samples x (n) yields back the original transmitted

symbolsX (n). The coefficients H (k) denotes the DFT of the zero-padded channel filter,

h (0) , h (1) , . . . , h (L − 1) , 0, . . . , 0    
(N−L)

. (7.4)

Thus, observe that Eq. (7.3) represents the flat-fading channel across the kth subcarrier in

the OFDM system. The quantity Y (k) represents the output symbol, while H (k) denotes

the equivalent flat-fading channel coefficient. This holds true for each subcarrier k, i.e., for

0 ≤ k ≤ N − 1. Thus, the frequency-selective fading channel is converted into a group of

narrowband flat-fading channels, one channel across each subcarrier. Observe that if a single

carrier system was used, and the symbols X (0) , X (1) , . . . , X (N − 1) were transmitted

directly then the received symbol y (n) would be given as

y (n) = h (0)X (n) + h (1)X (n − 1) + . . .+ h (L − 1)X (n − L+ 1)

Each symbol X (n) would experience inter-symbol interference of L − 1 past symbols.

Therefore, using this novel scheme of OFDM, we have been able to totally eliminate

the inter-symbol interference arising out of the frequency-selective nature of the channel.

The set of parallel flat-fading channels can be summarized by the expressions

Y (0) = H (0)X (0)

Y (1) = H (1)X (1)

...

Y (N − 1) = H (n − 1)X (N − 1)

This conversion of the frequency-selective wideband channel into N narrowband flat-fading

channels is shown schematically in Figure 7.7. Also, the modified transmitter and receiver

schematics with the blocks corresponding to the cyclic prefix are given in Figures 7.8 and

7.9 respectively. Now, considering the noise at the receiver, the received symbol Y (k) can be

expressed as

Y (k) = H (k)X (k) +N (k) (7.5)
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Figure 7.7 OFDM parallel subchannels

where N (k) denotes the noise across the kth subcarrier. A simple detection scheme for

X (k) is to use the zero-forcing detector for the subcarrier as

X̂ (k) =
1

H (k)
Y (k) = X (k) +

N (k)

H (k)    
Ñ(k)

Further, for a simplistic BPSK or QPSK-modulated transmission, the coherent or matched

filter detector can be simply obtained by multiplying with H∗ (k), i.e., the complex conjugate

of H (k) as

H∗ (k) Y (k) = |H (k)|2 X (k) +H∗ (k)N (k)    
N  (k)

Serial to parallel
conversion

N = # of
Subcarriers

Block for addition of
cyclic prefix (CP)

X(0) x(0)

S/P
Demux

IFFT
N

P/S
Mux

Add
CPSymbols

X N( -1) x N( -1)

To channel

Samples at
rate B

Figure 7.8 OFDM transmitter schematic with CP
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Also, one can employ the MMSE detector as

X̂MMSE (k) =
H∗ (k)

|H (k)|2 + σ2
n

Y (k)

The above equation gives the MMSE receiver across the kth subcarrier in this OFDM system.

Removes CP symbols
subject to inter OFDM
symbol interference

To demodulate
symbol on each
subcarrier

Parallel to serial
multiplexing

CP
removal

Samples
from channel

S/P
demux

x(0) X(0)

x N( -1) X N( -1)

N information
symbols

N-pt
FFT

P/S
mux

Figure 7.9 OFDM receiver schematic with CP

7.2.3 Impact of Cyclic Prefix on Data Rate

Consider the transmitted samples x (n) with the cyclic prefix, as given below.

x (N − Lc) , x (N − Lc + 1) , . . . , x (N − 1)    
Cyclic prefix

x (0) , x (1) , . . . , x (N − 1)    
Current block

.

The minimum required length of the cyclic prefix is L − 1 as was described in the previous

section. Also, observe that L − 1 is the delay spread of the wireless channel. Therefore, it fol-

lows that the length of the cyclic prefix should be greater than the delay spread of the channel.

However, since the samples in the tail, i.e., x (N − Lc) , x (N − Lc + 1) , . . . , x (N − 1) are

simply repeated in the beginning, they do not constitute any additional information. Hence, the

effect of the addition of a long CP is lost in the throughput of the system. More specifically,
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the loss in efficiency can be calculated as

Loss in effciency =
Cyclic prefix

Total OFDM symbol length

=
L − 1

N + L − 1

=
L − 1

N + L − 1

However, as the block length N becomes very large, we have

lim
N→∞

L − 1

N + L − 1
→ 0

Thus, the loss in throughput approaches 0 as the number of subcarriersN increases, for a fixed

length of the delay spread L. Also observe that as the number of subcarriers N increases, the

symbol time N
B increases as shown in Figure 7.10. Increasing N results in increasing OFDM

symbol time, thus restricting the ISI to a small fraction of the OFDM symbol block, i.e., the

fraction L
N is progressively smaller. However, as the block length N increases, the decoding

delay at the receiver also increases as one has to wait for arrival of the entire block ofN samples

before it can be demodulated. Hence, there is a trade-off for increasing N vs decoding delay.

Now, we present another intuitive framework to understand the effect of various parameters.

As we have said previously, the duration of the cyclic prefix has to be greater than the delay

spread.

Figure 7.10 Inter OFDM symbol interference with increasing OFDM symbol time
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Therefore, we need

Lc × Ts ≥ Td

where Ts denotes the sample time and Td denotes the delay spread. Also, the sample time

Ts =
1
B , where B is the total bandwidth of the system and Td =

1
Bc

, whereBc is the coherence

bandwidth of the system. The above condition implies

Lc ≥ Td

Ts
,

=
B

Bs

Combining this with the earlier condition thatN >> Lc for efficiency in terms of the effective

data rate, we have

N >> Lc ≥ B

Bc
.

This can also be recast asBc >> B
N . Interestingly, this is the same condition for frequency flat

fading across each subcarrier since this implies that the subcarrier bandwidth B
N is required to

be much less than the coherence bandwidthBc. Thus, an appropriately designedOFDM system

converts a frequency-selective fading channel into a set of parallel narrowband flat-fading

channels across the subcarriers. The example next illustrates an OFDM systemdesign example.

7.3 OFDM Example

In this section, we consider a practical WiMAX example to illustrate the impact of the various

parameters in the design of a complete OFDM system. As already stated in the beginning,

WiMAX, which stands for Worldwide Interoperability for Microwave Access, is a prominent

4G wireless standard. The total number of subcarriers N = 256, with a bandwidth of 15.625

kHz per subcarrier. Therefore,

B

N
= 15.625kHz

⇒ B = N × 15.625 = 256× 15.625

= 4MHz
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Also, observe that the subcarrier bandwidth is less than the coherence bandwidth, i.e.,

Bs = 15.625kHz << Bc = 250 kHz. Therefore, each subcarrier experiences frequency flat

fading. The OFDM symbol time without CP is

N

B
=

256

4× 106
= 64μs.

The raw OFDM symbol time, corresponding to theN = 256 IFFT samples, is 64μs. WiMAX

employs a cyclic prefix which is 12.5% of the symbol time. Therefore, the duration of the cylic

prefix is

Duration of cyclic prefix = 12.5% of symbol time

=
12.5

100
× 64μs,

= 8 μs

Thus, the total transmitted OFDM symbol duration with cyclic prefix is 64 μs + 8 μs = 72 μs.

Also, the number of samples in the CP is

# Samples in CP =
CP duration

Sample time

=
8 μs

1/B

= 8 μs × 4× 106

= 32

Thus, the length of the cyclic prefix Lc = 32 samples and the total number of samples is

256 + 32 = 288. This break-up of the OFDM symbol in terms of the regular samples and the

cyclic prefix is shown in Figure 7.11. Finally, the loss in spectral efficiency is

Loss in spectral efficiency =
32

288

=
8 μs

72 μs

= 11.1%

This is the loss in spectral efficiency arising because of the addition of the cyclic prefix.
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Figure 7.11 WiMAX OFDM symbol with cyclic prefix

7.4 Bit-Error Rate (BER) for OFDM

Consider the OFDM subcarrier system model given in Eq. (7.5), i.e.,

Y (k) = H (k)X (k) +N (k) (7.6)

where N (k) is the subcarrier noise obtained from the FFT of the noise samples at the output

of the receiver as

N (k) =

N−1 
m=0

n (m) e−j2π km

N

where N is the number of subcarriers, and n (0) , n (1) , . . . , n (N − 1) are additive noise

samples for each of the output samples y (0) , y (1) , . . . , y (N − 1). We now deduce the

statistical properties of these noise samples N (k), which are required to characterize the

BER performance of the OFDM system. Firstly, observe that the noise N (k) is the linear

combination of Gaussian noise samples n (0) , n (1) , . . . , n (N − 1). Hence, it is Gaussian in

nature. Further, the mean or expected value of N (k) is given as

E {N (k)} = E
 

N−1 
m=0

n (m) e−j2π km

N

 

=

N−1 
m=0

E {n (m)} e−j2π km

N
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Further, the variance σ2
N of the noise sample N (k) is given as

σ2
N = E

 
|N (k)|2

 

= E

  
N−1 
m=0

n (m) e−j2π km

N

  
N−1 
l=0

n (l) e−j2π kl

N

 ∗ 

= E

 
N−1 
m=0

N−1 
l=0

n (m)n∗ (l) e−j2π(m−l) k

N

 
(7.7)

Observe that since the noise samples n (m) are independent identically distributed Gaussian

of variance σ2
n, it follows that E {n (m)n∗ (l)} = 0 if m  = l and σ2

n if m = l. Therefore, the

above expression for the noise variance can be simplified as

σ2
N =

N−1 
m=0

N−1 
l=0

E {n (m) n∗ (l)} e−j2π(m−l) k

N

=

N−1 
m=0

σ2
n

= Nσ2
n

Further, let us assume that each of the channel taps h (0) , h (1) , . . . , h (L − 1) is Rayleigh

fading in nature, i.e., has a complex symmetric Gaussian distribution of mean 0 and variance

1. Therefore, the channel coefficient across the kth subcarrier is given as

H (k) =

N−1 
m=0

h (m) e−j2π km

N

As can be seen, H (k) is a linear combination of Gaussian random variables h (k) , 0 ≤ k ≤
L − 1. Therefore, H (k) is indeed complex Gaussian i.e. has a Rayleigh fading envelope.

Further, since each h (k) is zero mean, H (k) also has mean zero. Further, identical to the

development of the noise variance above, it follows on similar lines that the channel power
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gain E
 

|H (k)|2
 
is

E
 

|H (k)|2
 
= E

     m = 0L−1h (m) e−j2π km

N

   2 

=

L−1 
m=0

E
 

|h (m)|2
    e−j2π km

N

   2

= L

Therefore, the system model in Eq. (7.6) represents a standard Rayleigh fading channel of

power gain L with receiver noiseN (k) of variance Nσ2
n. Therefore, the average SNR is LP

Nσ2
n

.

Hence, the BER is given by the standard expression for that of a Rayleigh fading wireless

channel as

BEROFDM =
1

2

⎛
⎝1−

    LP
Nσ2

n

2 + LP
Nσ2

n

⎞
⎠

7.5 MIMO-OFDM

MIMO-OFDM is a combination of the Multiple-Input Multiple-Output (MIMO) wireless

technologywith that of OFDM, to further increase the rate in broadband multi-antennawireless

systems. Similar to OFDM, MIMO-OFDM converts a frequency-selective MIMO channel into

multiple parallel flat fading MIMO channels. Hence, MIMO-OFDM significantly simplifies

baseband receive processing by eliminating the need for a complex MIMO equalizer. We have

already seen that the frequency-selective SISO channel is modelled as an FIR channel filter,

with the output y (n) at time instant n given as

y (n) =

L−1 
l=0

h (l)x (n − l) + w (n) ,

= h (0)x (n) + h (1)x (n − 1) + . . .+ h (L − 1)x (n − L+ 1)    
ISI from previous symbols

+w (n)
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Figure 7.12 MIMO OFDM transmitter schematic

where w (n) denotes the noise. Hence, a MIMO frequency-selective channel can be modelled

as a MIMO FIR filter, which can be described as

y (n) =

L−1 
l=0

H (l)x (n − l) +w (n)

= H (0)x (n) +H (1)x (n − 1) + . . .+H (L − 1)x (n − L+ 1)    
ISI from previous symbol vectors

+w (n)

Therefore, the symbol vector y (n) at the time instant n is affected by inter-symbol vector inter-

ference from x (n − 1) , x (n − 2) , . . . , x (n − L+ 1). This is an L-tap frequency-selective

MIMO channel. As can be seen, in a MIMO frequency-selective channel, the interference

occurs between current and previous transmit symbol vectors. In a MIMO-OFDM system,

one needs to perform the IFFT operation at each transmit antenna. The schematic figures

showing clearly the processing at the transmitter and receiver of the MIMO-OFDM system

are shown in figures 7.12 and 7.13 respectively. Hence, employingMIMO-OFDM, the MIMO

frequency-selective channel can be converted into a set of parallel flat-fading MIMO channels.



Orthogonal Frequency-Division Multiplexing 249

These can be described as,

ỹ (0) = H̃ (0) x̃ (0)

ỹ (1) = H̃ (1) x̃ (1)

...

ỹ (N − 1) = H̃ (N − 1) x̃ (N − 1)

The model across the kth subcarrier is ỹ (k) = H̃ (k) x̃ (k), where ỹ (k) and x̃ (k) are the

received and transmitted symbol vectors corresponding to the kth subcarrier, and H̃ (k) is

the flat-fading channel matrix corresponding to the subcarrier k. Each of the received vectors

ỹ (0) , ỹ (1) , . . . , ỹ (N − 1) can be processed by a simple MIMO zero-forcing receiver or a

MIMO-MMSE receiver for detection of the vectors x̃ (0) , x̃ (1) , . . . , x̃ (N − 1). The zero-

forcing MIMO receiver is given as

ˆ̃xZF (k) =
 
H̃ (k)

 †
ỹ (k)

=
 
H̃H (k) H̃ (k)

 −1
H̃H (k) ỹ (k)

Also, the MMSE receiver for the subcarrier k of the MIMO-OFDM system is given as

ˆ̃xMMSE (k) =
 
H̃ (k)

 †
ỹ (k)

= Pd

 
PdH̃

H (k) H̃ (k) + σ2
wI
 −1

H̃H (k) ỹ (k)

where Pd denotes the data power. The channel matrices H̃ (0) , H̃ (1) , . . . , H̃ (N − 1)

corresponding to the OFDM subcarriers are given as follows. Let hu,v (k) , h̃u,v (k) denote

the (u, v)th entries of the matrices H (k) , H̃ (k) respectively. Then, h̃u,v (k) is given as the

N -point DFT of the zero-padded coefficients

hu,v (0) , hu,v (1) , . . . , hu,v (L − 1) , 0, . . . 0    
(N−L)

In effect, the channel matrix H̃ (k) is the kth frequency point corresponding to the FFT of the

zero padded channel matrices [H (0) , H (1) . . . , H (L − 1) , 0r×t, . . . , 0r×t].
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Figure 7.13 MIMO-OFDM receiver schematic

7.6 Effect of Frequency Offset in OFDM

OFDM divides the available wideband amongst a set of orthogonal overlapping subcarriers.

Hence, the presence of a carrier-frequency offset can introduce severe distortion in an OFDM

system, as it results in a loss of orthogonality amongst the subcarriers. Hence, the presence

of a carrier-frequency offset introduces Inter-Carrier Interference (ICI) in OFDM systems. In

this section, we characterize the effect of frequency offset on the performance of the OFDM

system. Consider a frequency offset Δf such that

 =
Δf

B/N

where  denotes the normalized frequency offset, normalized with respect to the subcarrier

bandwidthB/N . Corresponding to the frequency offset  , the baseband received samples y (n)

are given as

y (n) =
1

N

N

2 
k=−N

2

X (k)H (k) ej2πn
k+ 

N +w (n) (7.8)
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To verify the above equation, set  = 0. The above equation then reduces to

y (n) =
1

N

N

2 
k=−N

2

X (k)H (k) ej2πn
k

N + w (n)

Performing now the FFT of y (0) , y (1) , . . . , y (N − 1) at the receiver, Y (l), which

corresponds to the symbol received on the lth subcarrier, is given as

Y (l) =
1

N

 
n

y (n) e−j2π nl

N

=
1

N

 
n

N

2 
k=−N

2

X (k)H (k) ej2πn
k

N e−j2π nl

N +
1

N

 
n

w (n) e−j2π nl

N

    
W (l)

=
1

N

 
n

N

2 
k=−N

2

X (k)H (k) ej2πn
k−l

N +W (l)

= X (l)H (l) +
1

N

N

2 
k=−N

2
, k  =l

X (k)H (k)

  
n

ej2πn
k−l

N

 
    

0

+W (l)

= X (l)H (l) +W (l)

where we have used the fact that
 

n ej2πn
k−l

N = 0 if k  = l. Thus, in the absence of a carrier-

frequency offset, i.e.,  = 0, the system in Eq. (7.8) reduces to the earlier flat-fading OFDM

system across each subcarrier, i.e.,

Y (l) = X (l)H (l) +W (l)

Now consider the received symbols y (n) in the presence of a carrier-frequency offset

y (n) =
1

N

N

2 
k=−N

2

X (k)H (k) ej2πn
k+ 

N +w (n)
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Therefore, the demodulated symbol Y (l) in the presence of a carrier-frequency offset is given

as

Y (l) =
1

N

 
n

y (n) e−j2π nl

N

=
1

N

 
n

N

2 
k=−N

2

X (k)H (k) ej2πn
k−l+ 

N +
1

N

 
n

w (n) e−j2π nl

N

    
W (l)

=
1

N

 
n

X (l)H (l) ej2πn
 

N +
1

N

N

2 
k=−N

2
, k  =l

 
n

X (k)H (k) ej2πn
k−l+ 

N +W (l)

= X (l)H (l) +W (l)

To simplify the above expression, we will use the result below

N−1 
n=0

ejθn =
sin
 
Nθ
2

 
sin
 
θ
2

 ejφ̃

where ejφ̃ is a phase factor, which does not affect the power at the output. Using the relation

above, the expression for Y (l) can be simplified as

Y (l) = H (l)X (l)
sin (π )

sin
 
π 
N

 1
N

ejφ̃l

    
Desired signal

+

N

2 
k=−N

2
, k  =l

H (k)X (k)

 
sin (π )

N sin
 
π l−k+ 

N

 
 

ejφ̃kl

    
Inter-carrier interferenceIl

+W (l)

The SINR is given as

SINR =
Signal power

Interference + Noise power

=
Signal power

E
 

|Il|2
 
+ σ2

n

The desired signal power can be calculated as

Signal power = E
 

|H (l)|2
 
E
 

|X (l)|2
 ! sin (π )

N sin π 
N

"2
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For a large value of N , i.e., number of subcarriers, we have

lim
N→∞

sin
 π 

N

 
≈ π 

N

⇒ N sin
π 

N
→ N

π 

N
= π 

Hence, the signal power for a large number of subcarriers N is given as

Signal Power = E
 

|H (l)|2
 

P

!
sin (π )

π 

"2

= P |H |2
!
sin (π )

π 

"2
where P = E

 
|X (l)|2

 
is the power of the transmitted data symbols and

|H |2 = E
 

|H (l)|2
 

denotes the average channel-power gain across each subcarrier.

The interference power is given as,

E
 

|Il|2
 
= E
 

|X (l)|2
 
E
 

|H (l)|2
 k=N

2 
k=−N

2
, k  =l

 
sin (π )

N sin
 
π l−k+ 

N

 
 2

Setting k − l = u and lettingN → ∞, we have

E
 

|Il|2
 
= P |H |2

∞ 
u=−∞,u =0

!
sinπ 

N sinπ u
N

"2

= P |H |2 (sinπ )2
∞ 

u=−∞,u =0

!
1

N sinπ u
N

"2

Employing the inequality sin θ ≥ 2θ
π , we have

sin
πu

N
≥ 2πu/N

π
=
2u

N

⇒ N sin
πu

N
≥ 2u (7.9)
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The interference power E
 

|Il|2
 
can, therefore, be approximated as

E
 

|Il|2
 

≤ P |H |2 (sinπ )2
∞ 

u=−∞, u =0

!
1

2u

"2

= P |H |2 2 (sinπ )2
∞ 

u=1

!
1

2u

"2

=
1

2
P |H |2 (sinπ )2

∞ 
u=1

!
1

u

"2
    

π2

6

=
π2

12
P |H |2 sin2 π 

= 0.822P |H |2 sin2 π 

Hence, the SINR in the presence of carrier-frequency offset of  is given as

SINR =
P |H |2  sinπ 

π 

 2
0.822P |H |2 sin2 π + σ2

n

(7.10)

Example 7.1 illustrates the effect of ICI in reducing the SINR at the output of the OFDM

receiver.

EXAMPLE 7.1

Consider |H |2 = 1, and data power P = 10 dB with noise power σ2
n = 0 dB. Derive the

SNR/SINR with and without a carrier-frquency offset of  = 5% = 0.05 in a WiMAX

system.

Solution: If the carrier-frequency offset  = 0, the SNR at the receiver is given as

SNR =
P |H |2

σ2
n

= 10 dB
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Considering now a carrier-frequency offset of  = 0.05 and employing the expression in

Eq. (7.10), the SINR is given as

SINR =
10×  sinπ0.05

π0.05

 2
0.82210× sin2 (π0.05)+ 1

= 8.25

Therefore, the reduction in SINR is a factor of 1.75 or, basically, 17.5%. Further, the WiMAX

subcarrier bandwidth is 15.625 kHz. The absolution value of the frequency offset Δf , is

therefore,

Δf =  Bs = 0.05× 15.625 ≈ 0.78kHz

Further, considering a typical 4G carrier frequency of 2.4 GHz, the carrier-frequency offset as

a fraction of the centre frequency is

0.78× 103

2.4× 109
=
1

3
× 10−6

This is also termed as 0.33 ppm or parts per million with respect to the carrier frequency since

1× 10−6 = 1
1000000 is equivalent to 1 part per million.

7.7 OFDM–Peak-to-Average Power Ratio (PAPR)

The Peak-to-Average Power Ratio (PAPR) is a critical problem in OFDM systems, which needs

to be handled effectively in order to limit the distortion at the receiver. Consider a non-OFDM

or single-carrier system with BPSK modulated symbols. For example, let the symbol stream

x (0) , x (1) , x (2) , . . . be given as +a, −a, +a, . . . and so on. The power in each symbol

equals a2. Further, also observe that this is the peak power at any given instant of time.

Therefore, we have

Peak power = Average power = E
 

|x (k)|2
 
= a2
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Thus, since the peak and average power are equal, the peak-to-average power ratio, or PAPR,

is given as

PAPR =
Peak power

Average power

=
a2

a2

= 1 = 0 dB

N = # of
subcarriers

IFFT
N

x(0)

x N( -1)

X(0)

X N( -1)

Figure 7.14 OFDM subcarrier loading

The above relation clearly shows that there is no significant deviation of the instantaneous

power level from the mean power level. Now, consider an OFDM system in which the different

information symbols X (0) , X (1) , X (2) , . . . given by +a, −a, +a, . . . for instance, are

loaded onto the subcarriers. This is shown schematically in Figure 7.14. The actual samples

transmitted over the wireless channel are x (0) , x (1) , x (2) , . . . , x (N − 1), which are the

IFFT samples of the information symbols X (0) , X (1) , X (2) , . . . , X (N − 1). Consider

the kth IFFT sample x (k) given as

x (k) =
1

N

N−1 
i=0

X (i) ej2π
ki

N

where X (i) denotes the information symbols. The average power in the symbols is given as

Average power = E
 

|x (k)|2
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=
1

N

N−1 
i=0

E
 

|X (i)|2
 
E

    ej2π ki

N

   2     
1

=
1

N 2

N−1 
i=0

E
 

|X (i)|2
 

=
1

N 2

N−1 
i=0

a2

=
1

N 2
a2N =

a2

N

As can be seen from the above equation, the average power of transmission is a2

N . The peak

power can be found as follows. Observe that the peak of the OFDM sample arises for all

symbolsX (i) = +a or X (i) = −a. This can be verified as follows.

|x (k)| =
     1N

N−1 
i=0

X (i) ej2π
ki

N

     
≤ 1

N

N−1 
i=0

   X (i) ej2π
ki

N

   

=
1

N

N−1 
i=0

|X (i)|    
a

   ej2π ki

N

       
1

=
1

N

N−1 
i=0

a

= a

Therefore, the peak power is given as a2. Hence, the peak-to-average power ratio in an OFDM

system is given as

OFDM PAPR =
a2

a2/N
= N
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OFDM CCDF of PAPR for Various Subcarriers N
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Figure 7.15 OFDM PAPR for various number of subcarriersN

From the above expression, it can be seen that the peak-to-average power ratio in an OFDM

system isN , which is significantly higher compared to that of the single-carrier system, which

is 1. Further, interestingly, this PAPR rises with N , i.e., the number of subcarriers. Larger the

number of subcarriers, larger is the PAPR. This high PAPR of the OFDM arises because of the

IFFT operation. The data symbols across the subcarriers can add up to produce a high peak

valued signal as seen above. For instance, in an OFDM system with 512 subcarriers and BPSK

modulation, the PAPR at the output can be as high as 10 dB. The PAPR of an OFDM system

is characterized using the CCDF, i.e., the complementary cumulative distribution function.

The CCDF FX (x) of a random variableX is given as the probability thatX > x, expressed as

FX (x) = Pr (X > x)
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Naturally, the CCDF is related to the CDF, i.e., cumulative distribution functionFX (x) ofX as

FX (x) = Pr (X ≤ x)

= 1− Pr (X > x)

= 1− FX (x)

The CCDF of the PAPR then shows the probability that the PAPR, which is a random quantity,

exceeds a particular threshold. A plot of the CCDF of the PAPR for various values of N , the

total number of subcarriers, is shown in Figure 7.15.

The impact of PAPR on the OFDM system hardware can be understood as follows. Every

communication system has a receiver amplifier, which serves to amplify the amplitude of the

receive signal, in order to boost its strength. However, the characteristic of the amplifier is

linear only for a limited amplitude range of the signal. Typically, the amplifier operates around

a bias point, as shown in Figure 7.16, which is roughly around the average power of the signal.

As long as the signal amplitude is restricted to the dynamic range of the amplifier around this

bias point, for which the amplifier characteristic is linear, there is no noninear distortion at the

output. However, in the case of OFDM, since the peak power deviates significantly from the

average power, there is a high chance that the signal crosses into the voltage region outside the

Figure 7.16 Nonlinear amplifier characteristic
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dynamic range of the amplifier, thus resulting in a noninear distortion of the received signal.

This nonlinear effect, arising out of amplifier saturation, leads to loss of orthogonality of the

subcarriers and inter-carrier interference. The net result is a poor decoding performance and a

rise in the bit-error rate. A slightly modified OFDM technique, which can significantly reduce

the PAPR, is SC-FDMA, which is described next.

7.8 SC-FDMA

SC-FDMA, which stands for Single-Carrier Frequency Division for Multiple Access, can

be employed to reduce the peak-to-average power ratio in an OFDM system. Consider the

following hypothetical modification of the OFDM transmitter, shown in Figure 7.17, by the

insertion of an N -point FFT block before the N -point IFFT block. It can then be seen that the

FFT and the IFFT cancel the effect of each other and the net output is the exact input symbol

stream, i.e., corresponding to a single-carrier system. This drastically reduces the PAPR, since,

as seen previously, the PAPR of a single-carrier system is 0 dB. However, instead of using an

N -point FFT, one can use an M -point FFT, where M < N , to reduce the PAPR, while still

retaining the properties of the OFDM system. This proposed SC-FDMA schematic is shown in

Figure 7.18. Hence, introduction of the M -point FFT in SC-FDMA significantly reduces the

PAPR of the system. This is the central principle of SC-FDMA.

Transmitted
Symbols

Add
CP

P/S
Mux

N pt
IFFT

N pt
FFT

S/P
Demux

Symbol
Stream

Figure 7.17 Hypothetical modification of OFDM transmitter

2 new blocks in SC-FDMA
transmitter schematic

M pt
FFT

S/P
demux

Symbol
stream

Subcarrier
mapping

N pt
IFFT

P/S
mux

Add
CP

Transmitted
symbols

Figure 7.18 SC-FDMA transmitter schematic
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7.8.1 SC-FDMA Receiver

The SC-FDMA receiver schematic is shown in Figure 7.19. The SC-FDMA receiver

incorporates two new blocks compared to the OFDM receiver. The purpose of these additional

blocks can be described as follows. After theN -point FFT operation at the receiver, the signals

are equalized across all the subcarrires, to remove the effect of the fading-channel coefficient

across the subcarriers. Following the above operation, they are demapped from the subcarriers,

which are N in number, to the original FFT block size of M . Finally, the M -point FFT is

performed on these samples to generate the symbol stream.

2 new blocks in SC-FDMA
receiver schematic

P/S
mux

Symbol
stream

M pt
IFFT

Equalizer
and

demapping

N pt
FFT

S/P
demux

CP
removal

Figure 7.19 SC-FDMA receiver schematic

7.8.2 Subcarrier Mapping in SC-FDMA

Subcarrier mapping, in which the M samples at the output of the M -point FFT are mapped

to the N subcarriers, is a key operation in SC-FDMA, a block representation of which

can be seen in the SC-FDMA transmitter schematic in Figure 7.18. The various possible

SC-FDMA subcarrier mappings are illustrated through the following example. Consider

M = 4 SC-FDMA symbols and N = 12 subcarriers. Let x (0) , x (1) , x (2) , x (3) denote

the symbols and X (0) , X (1) , X (2) , X (3) denote the corresponding M = 4-point FFT

samples which are to be loaded onto the subcarriers. Let the number of subcarriers be N = 12.

In Interleaved FDMA (IFDMA) shown in Figure 7.20, the samples X (i) are interleaved with

zeros. In LFDMA, which is also employed in the uplink of the 4G mobile standard LTE,

the samples are loaded as a block onto the subcarriers, with appropriate zero padding. This

is shown in Figure 7.20. Post this subcarrier mapping, the rest of the procedure prior to

transmission proceeds as shown in the SC-FDMA transmitter block.
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Zero-Padding

L-FDMA
Employed in LTE Uplink

I-FDMA

Interleaving Zeroes

X(0) 0 0 0 0 0 0 0 0X(1) X(2) X(3)

X(0) X(1) X(2) X(3) 0 0 0 0 0 0 0 0

Figure 7.20 SC-FDMA various subcarrier mapping schemes

1. Consider a three-tap wireless channel [h (0) , 0, h (2)] (i.e., h (1) = 0) with each tap a unif-

norm Rayleigh fading channel coefficient. Employ the WSSUS channel assumption. Let an

OFDM system with 256 subcarriers in the 2.1 GHz band be implemented over this channel

with delay spread Td = 8 μ s. The DFT operation at the receiver is given as

F (k) =
1√
N

N−1 
l=0

f (l) e−j 2πlk
N

(a) With a bare minimum cyclic-prefix duration, the system has a useful bit rate of 8.6486

Mbps for QPSK transmission. What is the bandwidth of the system?

(b) For a cyclic prefix of 12 μs duration, what is the loss in spectral efficiency for this

system?

(c) Consider the channel coefficients H (0) and H (64) at the 0th and 64th subcarriers

respectively. What is their joint distribution?

(d) It is not difficult to see that every OFDM systemmust satisfy a very important constraint

that the wireless channel is constant during the transmission of the total OFDM symbol

(i.e., useful plus cyclic). Assuming a system with 20% loss of spectral efficiency and

an extreme vehicle moving at 200 km/h, what is the maximum possible number of

subcarriers?
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2. OFDM System Design Consider an OFDM system with N = 256 subcarriers over a

bandwidth of B = 5 MHz. Let the corresponding frequency selective fading channel have

an impulse response with 3 multipath components at delays of [0, 0.40,1.0] μs, with each

component of −3 dB average power. Noise power at the receiver is σ2
v = 3 dB. Assume

that the IFFT and FFT operations are given respectively as

x (n) =
1

N

N−1 
k=0

X (k) ej2πkn/N , X (k) =

N−1 
n=0

x (n) e−j2πkn/N

In that case, the system model after FFT at the receiver becomes Y (k) = H (k)X (k)

+ V (k), where V (k) is the FFT of the AWGN. Answer the following questions.

(a) Describe the time-domain model of the above frequency-selective channel.

(b) What is the minimum number of samples required in the cyclic prefix?

(c) What is the duration of this minimum cyclic prefix?

(d) If the actual cyclic prefix employed is twice the minimum length required with QPSK

modulated subcarriers, what is the effective bit rate of the OFDM system?

(e) What is the bit-error rate across each subcarrier if the total transmit power of 70 dB is

distributed equally across the subcarriers?

(f) What is the reduction in SNR across each subcarrier in the presence of a 5% carrier-

frequency offset relative to the subcarrier bandwidth?

3. OFDM System Design Consider a mobile OFDM profile with N = 512 subcarriers over a

bandwidth of B = 10MHz. Let the corresponding frequency-selective fading channel have

an impulse response with 4 multipath components at delays of 0μs, 0.60μs, 1.2μs, 2.4μs,

with each component of average power- −3 dB. Noise power at the receiver is σ2
n =

3 dB per sample (i.e., before FFT). Assume that the IFFT and FFT operations are given

respectively as,

x (n) =
1

N

N−1 
k=0

X (k) ej2πkn/N X (k) =

N−1 
n=0

x (n) e−j2πkn/N

In that case, the system model after FFT at the receiver becomes Y (k) = H (k)X (k) +

W (k), where W (k) is the FFT of the AWGN. Answer the following questions.

(a) Describe the time-domain model of the above frequency-selective channel, i.e., what
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is the length of the channel impulse response filter and what is the number of nonzero

channel taps?

(b) What is the minimum number of samples required in the cyclic prefix in this system?

(c) What is the duration of this minimum cyclic prefix?

(d) If the actual cyclic prefix employed is three times the minimum length required with

QPSK-modulated subcarriers, what is the effective bit rate of the OFDM system?

(e) What is the QPSK bit-error rate across each subcarrier if the total transmit power of

80 dB is distributed equally across the subcarriers?

(f) What is the reduction in SNR across each subcarrier in the presence of an 8% carrier-

frequency offset relative to the subcarrier bandwidth?

4. Consider an OFDM system with total passband bandwidth B = 5 MHz with N = 512

subcarriers. The channel has a maximum delay spread of Td = 4 μs. Answer the questions

that follow.

(a) What is the symbol time of a corresponding single-carrier system?

(b) What is the sample time of the OFDM system and the raw symbol time without the

cyclic prefix?

(c) What is the minimum number of samples required in the cyclic prefix?

(d) If the length of the cylic prefix is twice the required minimum calculated above, what

is the total OFDM symbol time?

(e) What is the loss in efficiency due to the overhead of the cyclic prefix?

(f) If the modulation employed is 16-QAM, what is the effective bit rate of the above

OFDM system?

(g) At a carrier frequency of fc = 2.4 GHz, what is the maximum possible velocity of a

mobile for the system to be able to function?

5. Alamouti Coded OFDM Consider an Alamouti-coded OFDM system with two transmit

and one receive antennas. Consider symbolsX1 (k) , X2 (k) loaded onto transmit antennas

1,2 respectively on the kth subcarrier of the OFDM system in the first OFDM symbol.

Consider a frequency-selective channel with channel taps h (0) , h (1) , . . . , h (L − 1).

Answer the questions that follow.

(a) Describe the operation of the Alamouti-coded OFDM system above, i.e., the

transmission on each subcarrier and the decoding operation at the receiver.

(b) If the transmit power isP per subcarrier, noise power σ2
n, find the instantaneous receive

SNR expression for each symbol.
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(c) Considering the channel taps to be IID Rayleigh random variables of average power

unity, derive the average Symbol Error Rate (SER) expressions for BPSK and 16-PSK

modulation.

(d) Compute the average SER above for both BPSK and 16-PSK for P = 35 dB, number

of subcarriers N = 128, L = 5, and noise power σ2
n = −3 dB.

(e) Considering the channel taps to be independent Rayleigh random variables of average

power σ2
l , 0 ≤ l ≤ L − 1, derive the average SER expressions for BPSK and 16-PSK

modulation.

(f) Compute the average SER above for both BPSK and 16-PSK for P = 35 dB, number

of subcarriers N = 128, σ2
l = l dB for 0 ≤ l ≤ 4 and noise power σ2

n = −3 dB.
6. Consider a multipath channel with L i.i.d Rayleigh faded taps h(i), 0 ≤ i ≤ L − 1, each

distributed as the symmetric complex Gaussian CN (0, 1). Let H(u), H(v) denote the

complex channel coefficients corresponding to subcarriers u, v respectively in an OFDM

system with N subcarriers and bandwidthB. Consider uncorrelated scattering and answer

the questions that follow.

(a) Express H(u), H(v) in terms of the channel taps.

(b) Compute the auto-correlation R (0) corresponding to the the complex channel

coefficient across each subcarrier.

(c) Derive the exact expression for the correlation between the subcarrier coefficients

H(u), H(v).

(d) Derive a suitable bound for the correlation between the subcarrier coefficients

H(u), H(v) in terms of |u − v| and N .

(e) Derive an expression for the number of subcarriers per coherence bandwidthBc in the

above system. Denote this by Nc.

(f) Let |u − v| = αNc. Derive a bound for the correlation between the subcarrier

coefficients H(u), H(v) as a function of R (0) and α. From this, deduce the rate at

which the correlation is decreasing as a function of α.

7. Consider an OFDM system with N = 4 subcarriers and L = 2 tap wireless channel with

channel coefficients h(0), h(1). Let noise power per subcarrier (i.e., after the FFT at the

receiver) be σ2 = 3 dB. Let the total transmit power be PT . Answer the questions that

follow.

(a) Consider h(0) = h(1) = 1
2 and derive the complex channel coefficients across all the

subcarriers.
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(b) Consider h(0) = h(1) = 1
2 , PT = 18 dB with equal power allocation and derive the

instantaneous BER across each subcarrier for BPSK modulation.

(c) Consider h(0) = h(1) = 1
2 , PT = 18 dB and derive the optimal power allocation for

each subcarrier.

(d) Consider coefficients h(0), h(1) to be Rayleigh fading i.i.d. with average power unity

and derive the average BER as a function of PT , σ2 for BPSK modulation with total

power PT and equal power allocation across subcarriers.



8

Wireless-System Planning

8.1 Introduction

In order to plan the installation and deployment of a comprehensive wireless network, one

needs to characterize the performance of the communication system in terms of the transmitted

power and also the total load in terms of users that can be supported by the network. This

chapter intends to focus on those aspects which are necessary to characterize the overall

performance of a large wireless network.

In this context, it is well known from the theory of electromagnetic waves that the strength

of the transmitted wireless radio signal decreases as the distance of propagation decreases. In

a typical wireless communication scenario, such as the one shown in Figure 8.1, we would

like to characterize the signal strength at the mobile as a function of the distance d. Hence,

we need models which predict the mean signal strength at the receiver as a function of the

separation between the transmitter and the receiver. These models are also termed large-scale-

propagationmodels. We begin with a discussion of the free-space-propagation model next.

Base station

d

Figure 8.1 Propagation loss for a wireless signal
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8.2 Free-Space Propagation Model

The free-space propagation model predicts the received signal strength when there is an

unobstructed propagation path between the transmitter and the receiver. The Friis free-space

equation, which gives the received power Pr (d) as a function of the distance d, is given as

Pr (d) =
PtGtGrλ

2

(4π)2 d2L
(8.1)

where Pt is the transmitted power, Gt is the transmit antenna gain, Gr is the receive antenna

gain, λ is the wavelength, and L ≥ 1 denotes the system-loss factor. Further, the wavelength
λ = c

fc
, where c = 3× 108 m/s is the velocity of light or electromagnetic waves and fc is the

carrier frequency. Let P0 be the power received at a reference distance d0. We, therefore, have

P0 =
PtGtGrλ

2

(4π)2 d2
0L

⇒ P0d
2
0 =

PtGtGrλ
2

(4π)2 L

Hence, for any distance d, we have

Pr (d) =
PtGtGrλ

2

(4π)2 d2L

=
P0d

2
0

d2

from which it can be seen that the received power decays as the inverse of d2. The number 2 in

the exponent of d is also termed the path-loss exponent. Thus, the path-loss exponent for free

space is 2, which basically means that the received power decays as the inverse of the distance

squared. Converting the received power to dB, we have

P dB = 10 log10 P = 10 log10

 
P0d

2
0

d2

 

= 10 log10 P0 + 20 log10

 
d

d0
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= 10 log10 P0 − 2× 10 log10

 
d0

d

 

= 10 log10 P0 − n× 10 log10

 
d0

d

 
where n = 2 is the path-loss exponent for free-space propagation. However, the path-loss

exponent varies from scenario to scenario and is typically greater than 2, especially in the

presence of reflectors. The model described in the next section illustrates one such context.

8.3 Ground-Reflection Scenario

Consider the ground-reflection scenario shown in Figure 8.2. The total received signal ETot is

given as

ETot = ELOS + Eg (8.2)

where ELOS, Eg are the received line-of-sight and ground-reflection components. The

component ELOS can be expressed as

ELOS =
E0d0

dLOS
ej2πfc(t−

dLOS
c )

where E0 is the transmitted signal amplitude at a reference distance d0, and dLOS is the

propagation distance for the LOS component. Since the received power decays as the inverse

square of the distance, the signal amplitude is inversely proportional to the distance of

propagation. Also, the quantity 2πfc

 
t− dLOS

c

 
denotes the phase lag of the carrier at the

receiver arising due to the propagation delay corresponding to this line-of-sight component.

Further, using the approximation dLOS ≈ d for the large-scale path loss, where d is the ground
distance between the transmitter and the receiver as shown in Figure 8.2, we have

ELOS ≈ E0d0

d
ej2πfc(t−

dLOS
c )

Similarly, the quantity Eg corresponding to the ground-reflection component is given as

Eg = −E0d0

d
ej2πfc(t−

dg

c )
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where dg is the distance traversed by the ground-reflected component and the − ve sign arises

because of the phase inversion from ground reflection. Therefore, substituting in Eq. (8.2), it

follows that

ETot = ELOS + Eg

=
E0d0

d
ej2πfc(t−

dLOS
c ) − E0d0

d
et−

dg

c

=
E0d0

d
ej2πfc(t−

dLOS
c )
 
1− ej2πfc Δd

c

 
(8.3)

where Δd = dg − dLOS is the difference in distances. Employing the relation that λ = c
fc
, the

above expression can be further simplified as

ETot =
E0d0

d
ej2πfc(t−

dLOS
c )
 
1− ej2πΔd

λ

 

=
E0d0

d
ej2πfc(t−

dLOS
c )ej2π

Δd

2λ

 
e−j2π

Δd

2λ − ej2πΔd

2λ

 

= −E0d0

d
ej2πfc(t−

dLOS
c )ej2π

Δd

2λ sin

 
2π
Δd

2λ

 

Base
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d

dg q qr i=
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Figure 8.2 Ground-reflection model

Hence, it follows from the above expression that the magnitude |ETOT | of the net signal at the
receiver can be simplified as

|ETOT | = E0d0

d

    sin
 
2π
Δd

2λ

     (8.4)
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The difference of the distances Δd = dg − dLOS can be further simplified as follows. It can
be seen from Figure 8.3 that dLOS can be expressed as

dLOS =

 
(ht − hr)2 + d2 (8.5)

where ht, hr denote the heights of the transmit and receive antennas respectively. Further, as

shown in Figure 8.4, it can be seen that the expression for dg, the total distance traversed by

the ground-reflected component, can be simplified as

dg =

 
(ht + hr)

2 + d2 (8.6)

d

qi
dg

h ht r-

q qr i=

ht

Ground
reflection

dLOS

Line of sight

ELOS

hr

Mobile

Figure 8.3 Line-of-sight distance dLOS in ground-reflection model

Therefore, from the expressions for dLOS, dg from equations (8.5), (8.6) above, the resulting

equation forΔd can be simplified as

Δd = dg − dLOS

=

 
(ht + hr)

2 + d2 −
 
(ht − hr)2 + d2

= d

⎛
⎝
 
1 +

 
ht + hr
d

 2

−
 
1 +

 
ht − hr
d

 2

⎞
⎠
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Mobile
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Figure 8.4 Ground-reflection distance dg in ground-reflection model

Assuming now that ht, hr << d, the expression for Δd can be approximated as

Δd ≈ d
  
1 +

1

2

 
ht + hr
d

 2
 

−
 
1 +

1

2

 
ht − hr
d

 2
  

= d

 
1

2

4hthr
d2

 

=
2hthr
d

(8.7)

Substituting the above expression for Δd in Eq. (8.4) yields

|ETot| = 2E0d0

d
sin

 
2π
Δd

2λ

 

≈ 2E0d0

d
2π
Δd

2λ

=
2E0d0

d

2π

2λ

2hthr
d

=
4πE0d0hthr

λd2
∝ 1

d2

where we have used the approximation sin
 
2πΔd

2λ

 ≈ 2πΔd
2λ
in the above simplification, which

holds whenΔd ≈ 2hthr
d << λ, i.e., basically, when the distance d between the transmitter and

the receiver is large in comparison to the product hthr of the transmit and receive antenna

heights. Therefore, as seen above, since the net magnitue |ETot| of the received signal is
inversely proportional to 1

d2
, it follows that the net received power PTot, which is proportional
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to the squared magnitude, decreases as 1

d4
, indicating a path-loss exponent n = 4. Thus, we

have

PTot ∝ 1

d4

Therefore, considering the dB power level P dB = 10 log10 PTot, we have

P dB = P̃ dB − 40 log10

 
d

d̃

 

where P̃ is the received power at a reference distance d̃. Thus, the path-loss exponent can

vary depending on the scenario and, therefore, the received power decays as 1
dn , where n = 2

for free space, while n can be significantly greater than 2 as seen in the case of the ground-

reflection scenario above.

8.4 Okumura Model

Several models have been developed to accurately model the received signal strength in

practical wireless scenarios. Amongst these, the Okumura model, proposed by the Japanese

engineer Yoshihisa Okumura in 1968 in the paper titled "Field Strength and its Variability

in VHF and UHF Land-Mobile Radio Service", is one of the most widely used models for

signal strength in urban/suburban areas. This is valid roughly in the 150-to-1920 MHz range,

although it can be extrapolated for higher frequencies. According to the Okumura model, the

50th percentile or median-path loss L50 is given as

L50 ( dB) = LF ( dB) + Amu (fc, d)−G (hte)−G (hre)−GArea (8.8)

where LF denotes the free-space-propagation loss; Amu (fc, d) is the correction factor;

G (hte) , G (hre) are the gain factors corresponding to the transmit and receive antenna heights

hte, hre respectively; and GArea is the gain due to the environment.
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The free-space loss is derived from the Friis free space model described in Section 8.2 and is

given as

LF ( dB) =
Pt

Pr
( dB)

= 10 log10

 
(4π)2 d2L

GtGrλ2

 

Further, when L = Gt = Gr = 1, we have

LF ( dB) = 10 log10

 
(4π)2 d2

λ2

 
(8.9)

The transmit and receive antenna-height-gain factors G (hte) , G (hre) respectively are given

as

G (hte) = 20 log10

 
hte

200

 

G (hre) =

⎧⎨
⎩10 log10

 
hre
3

 
hre < 3m

20 log10

 
hre
3

 
3m ≤ hre ≤ 10m

The quantity Amu (fc, d) is a correction factor as a function of the carrier frequency fc and

distance d. This has been plotted for several values of fc, d and can be found in standard

reference books. For example, from the Okumura model, the factor Amu at distance d = 5 km

and fc = 1.8 GHz is given as

Amu (1.8 GHz, 5 km) = 28 dB

The quantity GArea is a correction factor for various environments. It has been computed and

plotted for different frequencies for suburban, quasi-open, and open areas, and is given in

standard references. For example, the factor GArea for a suburban area at 1.8 GHz is given as

GArea = 12 dB. Example 8.1 illustrates an application of the Okumura model for wireless-

signal-strength computation.
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EXAMPLE 8.1

Employing the Okumura model, compute the median loss at a distance of 8 km when the

carrier frequency fc = 2.1 GHz, hte = 40 m, hre = 2 m in a large city.

Solution: Given fc = 2.1 GHz = 2.1× 109 Hz. Therefore, the wavelength λ equals

λ =
3× 108

2× 109
= 0.143m

The quantity LF , the free-space loss, is given as

LF =
(4π)2 ×  8× 103

 2
0.1432

Hence, LF , the free-space loss, is given as

LF =
(4π)2 ×  8× 103

 2
0.1432

Further, the free-space loss LF in dB is

LF ( dB) = 10 log10

 
(4π)2 ×  8× 103

 2
0.1432

 

= 116.93 dB ≈ 117 dB
Since the transmit antenna height hte = 40 m, the transmit antenna-gain factor is given as

G (hte) = 20 log10

 
40

200

 
= −14 dB

Further, since hre = 2 m, the antenna-gain factor G (hre) is given as

G (hre) = 10 log10

 
2

3

 
= −1.76 dB

Further, since the cell radius is 8 km, the correction factor Amu (fc, d) is given as

Amu (2.1GHz, 88Km) = 34 dB
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Since the environment is urban, the factor GArea = 0. Therefore, the 50-percentile path loss

LF dB is given as

L50 dB = LF + Amu (f, d)−G (hte)−Ghre −GArea

= 117 + 34− (−14)− (−1.76)≈ 167 dB

8.5 Hata Model

The Hata model is another popular model for signal strength prediction proposed initially

by the Japanese engineer Masaharu Hata in his 1980 paper titled "Empirical Formula for

Propagation Loss in Land Mobile Radio Services". The Hata model presents an analytical

approximation for the graphical-information-based Okumura model introduced previously.

The median-path loss L50 ( dB) for urban areas under the Hata model is given as

L50 ( dB)= 69.55+ 26.16 log10 f
MHz
c − a (hre)− 13.82 log10 (hte)

+ (44.9− 6.55 log10 hte) log10 d
km

where fMHzc is the carrier frequency expressed in megahertz; a (hre) is the mobile antenna-

correction factor associated with the antenna height hre; hte is the transmit antenna height;

and dkm is the distance in kilometres. The transmit and receive antenna heights hte, hre in the

Hata model are constrained as follows.

30 m < hte < 200 m

1 m < hre < 10 m

The mobile antenna-correction factor a (hre) for a small-to-medium sized city is given as

a (hre) =
 
1.1 log10 f

MHz
c − 0.7 hre −  1.56 log10 f

MHz
c − 0.8 dB

The correction factor for a large city is given as

a (hre) =

⎧⎨
⎩ 8.29 (log10 1.54hre)

2 − 1.1 dB, fc ≤ 300MHz

3.2 (log10 11.75hre)
2 − 4.97 dB, fc > 300MHz
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Example 8.2 illustrates an application of the Hata model for wireless-signal-strength

prediction.

EXAMPLE 8.2

Employing the Hata model, compute the median loss at a distance d = 8 km, when the

carrier frequency fc = 2.1 GHz, hte = 40 m, hre = 2 m for a large city.

Solution: The carrier frequency is fc = 2.1 GHz. Therefore, f
MHz
c , i.e., the carrier-frequency

in MHz is given as

fMHzc =
2.1× 109

106
= 2100

The distance in kilometres dkm = 8. Therefore, the correction factor a (hre) is given as

ahre = 3.2 (log10 11.75× 2)2 − 4.97 = 1.04 dB

Therefore, L50, i.e., the 50
th percentile loss is given from the Hata model as

L50 = 69.55 + 26.16 log10 2100    
86.9 dB

− 13.82log10 2    
22.14 dB

−1.04 + (44.9− 6.55 log10 40) log10 8    
31.07 dB

= 69.55 + 86.90− 22.14− 1.04 + 31.07 dB

= 164.34 dB

8.6 Log-Normal Shadowing

The surrounding environment at different locations is very different in a wireless scenario. For

example, users can be shadowed by large objects such as walls or buildings. Thus, the net

received signal strength is basically a random variable with the mean predicted by the path

loss. This random dB deviation about the mean signal strength can be modelled as a Gaussian

RV Xσ ∼ N  0, σ2
 
. This is shown schematically in Figure 8.5, where the point L50 indicates

the mean/median path loss. Hence, Xσ, the deviation about the mean is Gaussian or normally
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distributed. Also,Xσ, which is in dB, is logarithmically related to the signal power. Thus, log

of the received signal power is Gaussian distributed, or in other words, Xσ is a log normal

Gaussian random variable with variance σ2. Hence, this is also termed log-normal shadowing.

The observed path loss in dB PL dB can therefore, be expressed as

PL dB = L50 +Xσ

where L50 denotes the median-path loss. Therefore, the probability that the path loss is greater

than the threshold γ is given as

Pr
 
PL dB > γ

 
= Pr (L50 +Xσ > γ)

= Pr (Xσ > γ − L50)

= Q

 
γ − L50

σ

 
(8.10)

where Q (·) denotes the Gaussian Q-function. An application of the above log-normal
shadowing principle is shown in the Example 8.3.

PLm

s

Figure 8.5 Probability density function of log-normal shadowing

EXAMPLE 8.3

Consider the previous example where L50 = 167 dB. Let the deviation σ of the log-normal

shadowing be given by σ = 6 dB. Compute the threshold γ such that the path loss (PL) is

greater than γ at only 5% of the locations in the cell. In other words, at 95% of the locations

the path loss is less than γ .
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Solution: From Eq. (8.10), we have,

Q

 
γ − L50

σ

 
= 5% = 0.05

⇒ γ − L50

σ
= Q−1 (0.05) = 1.65v⇒ γ = L50 + σ × 1.65

= 167 dB + 6 dB × 1.65

= 177 dB

Thus, the above example tells us that the path loss is greater than 177 dB only 5% of the time.

In other words, 95% of the time, the path loss is lower than 177 dB. Thus, we can say that the

reliability is ρ = 95% = 0.95. In general, if ρ is the required reliability, the required margin

M dB is given as,

σQ−1 (1− ρ)

which, in the above example, is given as 6 dB ×Q−1 (0.05) = 6 dB × 1.65 ≈ 10 dB

8.7 Receiver-Noise Computation

Noise at the receiver arises due to thermal effects and is also known as thermal noise. It is very

important to accurately characterize noise power to compute the signal-to-noise power ratio

at the receiver and the resulting bit-error-rate performance. The noise Power Spectral Density

(PSD) η0 denotes the noise power per hertz of bandwidth. Hence, the total noise power is

given as

Noise power = η0 × B

Further, the noise power spectral density η0 can be derived as

η0 = kTF (8.11)
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where k = 1.38× 10−23 is the Boltzmann constant, T is the temperature in Kelvin, and F is

the noise figure. Example 8.4 serves to clarify this idea.

EXAMPLE 8.4

Compute the noise power at T = 293K and noise figure F = 5 dB. The bandwidthB = 30

kHz.

Solution:Given F = 5 dB. Therefore, the linear value of the noise figure is F = 100.5. Hence,

from Eq. (8.11), the noise power spectral density η0 is given as

η0 = kTF

= 1.38× 10−23 × 293× 100.5

= 1.28× 10−20

Therefore, we have, the dB noise power spectral density given as

η0 dB = 10 log10 η0 = −199 dBW/Hz

Further, the noise power σ2
n is given as

σ2
n = η0B

= 1.28× 10−20 × 30× 103

= 3.84× 10−16

Therefore, the noise power in dB is

10 log10 σ
2
n = 10 log10

 
3.84× 10−16

 ≈ −154 dB

8.8 Link-Budget Analysis

Link-budget of a wireless link is a systematic listing of power losses and gains of

different intermediate components in the transceiver chain. The various additive and negative
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components for the net signal power at the receiver are shown in Table 8.1 below. The + sign

denotes a component which enhances or adds to the received signal strength while the − sign

denotes a component which subtract from the signal strength or SNR. The final = in the last

row denotes the required SNR. Therefore, the link-budget expression for the SNR required is

given as

SNRreq = Pt ( dB) +Gt ( dB)− L50 ( dB)−M dB +Gr ( dB)− Lc ( dB)− (N + 1) dB

Therefore, the above expression can be recast to compute the required transmit power as

Pt ( dB) = SNRreq −Gt ( dB) + L50 ( dB) +M dB −Gr ( dB) + Lc ( dB) + (N + 1) dB

Example 8.5 illustrates a typical link-budget analysis for a wireless communication scenario.

Table 8.1 Components of a typical wireless-link budget

Additive(+)/Negative(−) Component Symbol

+ Transmitter power Pt

+ Transmit-antenna gain Gt

− Median-link-propagation loss L50

− Margin M dB

+ Mobile-receive antenna gain Gr

− Cabling losses Lc

− Receiver (noise + interference) N + I

= Required SNR SNRreq
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EXAMPLE 8.5

Consider a wireless-signal-propagation scenario with cell radius d = 8 km, carrier frequency

fc = 2.1 GHz, transmit antenna height hte = 40 m, and receive antenna height hre = 2 m.

Let the standard deviation σ = 6 dB for the log-normal shadowing and it is required to

achieve a reliability of ρ = 95%. The temperature T = 293 K, bandwidth B = 30 kHz,

noise figure F = 5 dB. Further, the wireless link has a receive antenna gain of 5 dB, cabling

losses of 3 dB and a transmit antenna gain of 12 dB. Consider a scenario with level of

interference equal to the noise power, and a Rayleigh fading channel with average power

unity. Through a link-budget analysis, compute the transmit power required to achieve a

bit-error rate of 10−4 at the receiver for BPSK modulation.

Solution: From Example 8.1, it can be seen that the median-path loss for the above scenario is

L50 ( dB) = 167 dB. For a reliability of ρ = 95% = 0.95, it has been shown in Example 8.3

that the required margin M dB = 10 dB. Also, as derived in Example 8.4, the noise power

at 293 K and bandwidth 30 kHz is 3.84× 10−16 = −154 dB. Further, it is given that the
interference power I is equal to that of the noise power N , i.e., I = N = 3.84× 10−16.

Therefore, we have

N + I = 2× 3.84× 10−16

(N + 1) dB = −154 dB + 3 dB = −151 dB
The required SNR for a BER of 10−4 with BPSK transmission can be calculated as

BER = 10−4 =
1

2

 
1−
 

SNR

2 + SNR

 

Therefore, we have

SNR

2 + SNR
=
 
1− 2× 10−4

 2

SNRreq =
2
 
1− 2× 10−4

 2
1− (1− 2× 10−4)2

≈ 5× 103

SNR dB = 10 log10 5× 103 = 37 dB
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The various components of the link budget for this example are shown in Table 8.2. For the

link-budget analysis, we have

37 = Pt + 12− 167− 10 + 5− 3− (−151)

Pt = 37− 12 + 167 + 10− 5 + 3− 151

= 49 dBW

Thus, the required transmit power at the base station is 49 dBW.

Table 8.2 Components of a typical wireless-link budget

Additive(+)/Negative(−) Component Symbol

+ Transmitter power Pt

+ Transmit-antenna gain 12 dB

− Median-link-propagation Loss 167 dB

− Margin 10 dB

+ Mobile-receive antenna gain 5 dB

− Cabling losses 3 dB

− Receiver (noise + interference) −151 dB
= Required SNR 37 dB

8.9 Teletraffic Theory

Cellular systems employ the priciple of trunking to provide or meet the demands of a large

number of users, with a limited number of channels. Consider an example of a cellular system

with 100 supported users and 100 available channels, as shown in Figure 8.6. Such a one-to-one

or dedicated channel allocation results in wastage of resources as the probability that all users

are active at a given instant of time is low. Only a very small fraction of users or subscribers are

likely to be active at a given point of time. Hence, practically, only a few channels are necessary

to meet the demands of users as they are random in nature. This random nature for the demand
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for communication or the demand to place a call is exploited by the principle of statistical

multiplexing. For instance, consider the example of a cellular system shown in Figure 8.7 in

which there are 100 users as before, with a significantly fewer number of channels. Thus,

the large number of users have to share these limited number of channels, which is basically

statistical multiplexing, i.e., assigning the channels to the various users based on demand.

1
0
0

c
h
a
n
n
e
ls

1
0
0

u
s
e
rs

Figure 8.6 Schematic showing teletraffic system with N = 100 channels and
N = 100 users

In the context of communication systems, this is also termed trunking. In a cellular system,

a small number of wireless channels are available in each cell which are shared by a large

number of subscribers in the cell. Further, in a landline or a PSTN network, very few lines

are available at the exchange for a large number of subscriber home/office lines connected to

the exchange. Thus, all the possible customers on these lines have to share the limited number

of outgoing lines at the telephone exchange. Thus, since the number of users is much greater

than the number of channels available in the cell, there is always a finite probability that all

the lines are occupied. Hence, when a new user requests a channel for communication, his call

is blocked as there are no channels available for communication. This probability with which

calls are blocked is termed blocking probability, or in cellular systems, is also termed grade

of service. The blocking probability is a key parameter of a cellular communication system.

This can be derived using teletraffic theory and was proposed by the Danish engineer Erlang

in 1917. The next section begins with a framework to characterize the traffic in this cellular

system. The traffic per user A0 is defined as follows:

A0 = (user call rate)× (average call duration)

For instance, consider a per-user call rate of 2 calls per hour of 2-minute average duration each.
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Inactive user
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Figure 8.7 Schematic showing teletraffic system with 100 users and much fewer
channels

Therefore, the traffic A0 per user is defined as

A0 =
2calls

hour
× 2

60

hours

call

=
1

15
E

where E denotes the unit erlang of traffic. Hence, traffic is measured in units of erlangs. In the

above example, the traffic is 1

15
erlang. If the total number of users in the system isN , the total

aggregate traffic A is given as,

A = NA0

For instance, considerN = 30 users in the above system. The total traffic is given as

A = 30A0 = 30× 1

15
E = 2E

Further, it can also be noted that the maximum traffic that can be supported on a single channel

is given as

Maximum traffic =
1call

hour
× 1hour

call
= 1E

Hence, a single channel can support a maximum traffic of 1 E. Hence, N channels can support

a maximum of N erlangs of traffic.
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8.10 Teletraffic System Model

Assume a random-call-arrival process modelied by the Poisson distribution. Let the average

call-arrival rate in this system be denoted by λ. Hence, the probability that k calls arrive in a

time duration t is given as

P (k) =
(λt)k e−λt

k!
(8.12)

The Poisson distribution is a discrete distribution defined for k = 0, 1, . . . , ∞. Consider now a
cellular systemwithN available channels. Therefore, a maximumofN users can be supported.

The state of the wireless system is the number of channels occupied at a given point of

time. Therefore, the system can be in states S0, S1, . . . , SN , where Si denotes the state the

i channels are occupied. A schematic representation of the state-space transition diagram is

shown in Figure 8.8. In the state S0, all the channels are vacant, while in the state SN , all the

N channels are occupied. Any new calls arriving in the state SN will, therefore, be blocked.

Let Pk denote the probability of the system being in the state k, i.e., k of the N channels are

occupied. Therefore, PN denotes the probability of the system being in state N , in which any

arriving call is blocked. Therefore, PN denotes the blocking probability of the system.

All channels
vacant

k channels
occupied,

channels vacant
N-k

All channels
occupied. Any new
call will be blocked

N

0 1 2 k-1 k+1k N

Figure 8.8 State-transition diagram for a system with N channels

8.11 Steady-State Analysis

Consider an infinitesimally small time intervalΔt. The probability that one call arrives in time

intervalΔt is given from Eq. (8.12) as

Pr (one call arrival) =
(λΔt)1 e−λΔt

1!

= (λΔt) e−λΔt

≈ λΔt
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where the last approximation follows since e−λΔt ≈ 1. Probability that one call arrives in the
time Δt is λΔt. Similarly, consider the average call time as T . Therefore, the call departure

can be modeled as a Poisson process with departure μ = 1

T
. Therefore, the probability of one

call departure in the timeΔT is given as

Pr (one call departs) = μΔt

Therefore, in the state k, we have k channels occupied. Hence, probability of call departure in

the state k is kμ (Δt). Consider the time instant t. The system is in the state Sk at time t+Δt

if one of the following occurs.

1. The system is in the state Sk−1 at the time t and one call arrives in Δt. The probability of

this event is given as

Prob = Pk−1 × (λΔt)

2. The system is in the state Sk+1 at the time t and one call departs in Δt. The probability of

this event is given as

Prob = Pk+1 × (k + 1) (μΔt)

3. The system is in the state k, and call neither arrives or departs. The probability of this event

is given as

Prob = Pk × (1− λΔt− (k + 1)μΔt)

Therefore, the probability Pk can be expressed as

Pk = Pk−1 × (λΔt) + Pk+1 × (k + 1) (μΔt) + Pk × (1− λΔt− (k + 1)μΔt)

Simplifying the above expression, we have

(λ+ kμ)Pk = λPk−1 + (k + 1)μPk+1 (8.13)



288 Principles of Modern Wireless Communication Systems

Conider now the transition diagram shown for the state S0 given in Figure 8.8. Since no further

calls can depart from S0, the expression for P0 can be derived as

P0 = P0 (1− λΔt) + P1μΔt

P1 =
λ

μ
P0 (8.14)

Substituting k = 1 in Eq. (8.13), we have

(λ+ μ)P1 = λP0 + 2μP2

(λ+ μ)
λ

μ
P0 = λP0 + 2μP2

λ2

μ
P0 + λP0 = λP0 + 2μP2

⇒ λ2

μ
P0 = 2μP2

⇒ P2 =
1

2

 
λ

μ

 2

P0

Proceeding similarly, it can be shown that

Pk =
1

k!

 
λ

μ

 k
P0

Employing the fact now that the total probability must equal 1, we have 
k = 0N = 1

⇒
N 
k=0

1

k!

 
λ

μ

 k
P0 = 1

⇒ P0 =
1 N

k=0
1

k!

 
λ
μ

 k
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Therefore, finally, the blocking probability PN or, in other words, the probability that the

system is in the state N is given as

PN =

 
1

N !

 
λ

μ

 N
P0

 
=

1
N !

 
λ
μ

 N
 N
k=0

1

k!

 
λ
μ

 k
Let λ denote the call-arrival rate and μ = 1

T
denote the call-departure rate. The total traffic A

is given as

Total traffic = Call-arrival rate× T

= λ× 1
μ
=
λ

μ
= A.

Therefore, the blocking probability is given as

PN =

 
1

N !
ANP0

 
=

1
N !
AN N

k=0
1
k!
Ak

Example 8.6 helps illustrate the process of computation of the blocking probability described

above.

EXAMPLE 8.6

Consider a system with N = 50 channels. Let the blocking probability PN = PB = 10
−2

= 1%. What is the total traffic that can be supported?

Solution: It can be seen from the standard Erlang traffic table that the offered load for a

blocking probability of 10−2 corresponding to number of users N = 50 is given as

A = 37.9E ≈ 38E.
Further, another example of the teletraffic framework described above in the context of

cellular system design is given in Example 8.7.
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EXAMPLE 8.7

Consider a cellular system with N = 48 channels per cell, and blocking probability

PB = 0.02 = 2%. The traffic per user is A0 = 0.04 E. The cell radius is 1 km as shown

in Figure 8.9. What is the number of users that can be supported in a city of 603 km2 area?

Solution: For N = 48 channels and blocking probability PB = 0.02, it can be seen that the

net offered load or supported traffic is given as A = 38.4 E. Also, since the total traffic

A = NA0, we have

N =
A

A0

=
38.4

0.02
= 960.

Further, from Figure 8.9, it can be seen that the area of a typical hexagonal cell of radius 1 km

is given as

Cell area = 6× 1× 1√
3
= 3.46 km2.

1/ 3 km÷
30°1 km

Figure 8.9 Cell for Example 8.7

Therefore, the number of cells that are required to cover the entire city is given as

Number of cells =
City area

Cell area
=
603

3.46
≈ 174 cells.

Therefore, the total number of users that can be supported by the cellular provider is given as

Number of users supported = Number of cells×Number of users per cell

≈ 174× 960 = 167, 040
Thus, approximately 167,040 users can be supported by the cellular service provider in the

given city for the desired blocking probability of 2%.
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1. Okumura Model Answer the questions below on the basis of the Okumura model for path

loss in wireless transmission.

(a) At fc = 700MHz, find the median-path loss using d = 50 km, hte = 80m and hre = 6

m in a quasi-open area.

(b) If the noise power at the receiver is -155 dB, what is the exact EIRP (Effective Isotropic

Radiated Power) in watts of the transmitter required to decode BPSK with a BER of

10−5 at 50% of the ensemble locations? Please pay attention to the nature of the wireless

channel.

2. Cellular Communication A GSM cellular system blanketing the city of Mumbai has a cell

radius of 1 km. Assuming that the cellular operator has secured a spectrum of 8.4 MHz

from TRAI, answer the questions that follow.

(a) From Wikipedia, Mumbai has an area that is roughly 603 km2. What is the number of

users that can be supported per cell for a GoS of 2% and per-user traffic of 0.04 E?

Please pay attenation to the specific cellular design of GSM.

(b) What is the maximum number of subscribers that can be served by this cellular

operator in Mumbai?

3. A corporate headquarters has 50 leased telephone lines. For an average per-employee talk

time of 1 minute 20 seconds per hour, what is the employee strength that can be supported

for a blocking probability of 2%?

4. Consider a WCDMA system (bandwidth = 5 MHz) in a large city with Rx antenna gain of

5 dB, cabling losses of 3 dB, Tx antenna gain of 12 dB, and a processing gain of 21 dB.

The system has a noise figure of 15 dB. Answer the questions that follow.

(a) Employing the Hata model, compute the median path loss L50 at the cell edge of a

cellular system with a cell radius of 8 km, fc = 2.1 GHz, hte = 40 m, hre = 2 m.

(b) Using an appropriate approximation, compute the average SNR at the receiver required

to decode Alamouti-coded QPSK symbols with a BER of Pe = 10
−4.

(c) Finally, compute the transmitter power in watts required to support the above decoding

at a minimumof 85% of the cell-edge locations given a variance ofXσ = 6 dB for the
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log-normal shadowing. Assume a temperature of 27oC and an interference level equal

to the noise level.

5. Cellular CDMA Consider an IS-95 based CDMA system (bandwidth = 1.25 MHz) in a

large city with Rx antenna gain of 3 dB, cabling losses of 6 dB, Tx antenna gain of 7 dB,

and a processing gain of 24.08 dB. The system has a noise figure of 4 dB. Assume an

ambient temperature of 27◦C and answer the questions that follow.

(a) What is N , the length of the spreading code?

(b) Employing the Hata model, compute the median-path loss L50 at the cell edge of a

cellular system with a cell radius of 7 km, fc = 2.3 GHz, hte = 35 m, hre = 6 m.

(c) Assuming that on an average, 10 users interfere with any given user and further, each

user has a voice activity factor of 50%, compute the SNR at the receiver required to

decode QPSK-modulated symbols with a BER of Pe = 10
−3. Assume a simplistic

line-of-sight unity gain AWGN baseband channel model for each user and that all

cell-edge users (desired and interferers) have the same SNR.

(d) Finally, compute the average total transmit power of the base station in watts if

100 users are connected to the base station on an average and the above decoding

is supported at a minimum of 85% of the cell-edge locations given a variance of

Xσ = 6 dB for the log-normal shadowing (make sure you do NOT double count the

processing gain).

6. Cellular Capacity: Consider a CDMA operator who operates with spreading codes of

length 64. If each user on an average makes 3 calls per hour of average duration of 2

minutes per call, what is the total number of users that can be supported per cell with a

blocking probability of 1%? Assume each user is allocated one spreading code for a voice

call and that the users are perfectly orthogonal (i.e., neglect the effect of interference). What

is the number of users for a tolerable blocking probability of 5%?

7. Okumura Model Answer the questions below on the basis of the Okumura model for path

loss in wireless transmission. Consider a WCDMA system of bandwidth = 5 MHz, with Rx

antenna gain of 5 dB, cabling losses of 3 dB, Tx antenna gain of 12 dB, and a processing

gain 21 dB. The system has a noise figure of 15 dB. Assume a temperature of 27◦C and an
interference level equal to the noise level.

(a) At fc = 1.8 GHz, find the median-path loss using for d = 20 km, hte = 60 m, and

hre = 2 m in a suburban area.
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(b) If this needs to be supported at a minimum of 85% of the cell-edge locations given

a variance of σ = 10 dB for the log-normal shadowing, compute the power margin

required.

(c) Compute the total sum noise and interference power (η + I) at the receiver.

(d) Using an appropriate approximation, compute the average SNR at the receiver required

to decode 1× 2 Alamouti-coded BPSK symbols with a BER of Pe = 10
−4 if the

channel between each transmit and receive antenna is Rayleigh of average power unity.

Ignore the multi-user interference in CDMA systems.

(e) Finally, compute the transmitter power in watts required to support the above decoding.

8. Okumura Model

(a) Employing the Okumura model, compute the median-path loss for d = 10 km, hte =

60 m, and hre = 8 m, at fc = 600MHz, in a suburban area (Gt = Gr = L = 1).

(b) If the noise power at the receiver is −175 dB, what is the exact EIRP in watts required
at the transmitter to decode QPSK with a BER of 10−4 at 95% of the ensemble

locations? Assume Xσ = 6 dB, the small-scale fading is Rayleigh in nature, and that

path loss is the only loss factor in the system.

9. Cellular MIMO Answer the questions below on the basis of the Okumura model for path

loss in wireless transmission. Consider a MIMO wireless system of bandwidth = 200 kHz,

with Rx antenna gain of 8 dB, cabling losses of 5 dB, Tx antenna gain of 5 dB. The system

has a noise figure of 10 dB. Assume a temperature of 20◦C and an interference level equal
to 2

3
of the noise level.

(a) At fc = 1.5GHz, find the median-path loss using d = 5 km, hte = 30m and hre = 1.5

m in a suburban area.

(b) If this needs to be supported at a minimum of 95% of the cell-edge locations given

a variance of σ = 8 dB for the log-normal shadowing, compute the power margin

required.

(c) Compute the total sum noise and interference power (η + I) at the receiver.

(d) Using an appropriate expression, compute the average SNR at the receiver required to

decode BPSK symbols with a BER of Pe = 10
−4 if the channel between each transmit

and receive antenna is Rayleigh of average power unity.

(e) Finally, compute the transmitter power in watts required to support the above decoding.
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