
275
Genome Stability. http://dx.doi.org/10.1016/B978-0-12-803309-8.00017-3
Copyright © 2016 Elsevier Inc. All rights reserved.

Chapter 17

Base Excision Repair and Nucleotide 
Excision Repair
T. Izumi, I. Mellon
University of Kentucky, Lexington, KY, United States

Chapter Outline
	1.	� General Overview and Historical Perspectives of Two  

DNA Excision-Repair Pathways, BER and NER� 275
	2.	� Mammalian BER� 276
	 2.1	� History and Overview of BER� 276
	 2.2	� Types of DNA Damage Repaired by BER� 276
	 2.2.1	� Base Damage and DNA Single-Strand Breaks� 276
	 2.2.2	� SSBs With Tyrosyl–DNA Covalent Linkage� 277
	 2.3	� Mechanism of Mammalian BER� 277
	 2.3.1	� DNA Glycosylases� 279
	 2.3.2	� AP Endonuclease 1� 280
	 2.3.3	� Enzymes That Process DNA Termini in BER� 280
	 2.3.4	� Completion of an Entire BER Reaction:  

DNA Polymerases and DNA Ligases in  
Coordinated Reactions� 281

	 2.3.5	� Scaffolding Proteins in BER: Proteins That  
Do Not Directly Participate in DNA Processing� 282

	 2.4	� BER Gene Knockout in Mice and Cells� 283
	3.	� Mammalian NER� 283
	 3.1	� History and Overview of NER� 283
	 3.2	� Types of DNA Damage Repaired by NER� 286
	 3.3	� Mechanisms of Mammalian NER� 286
	 3.3.1	� DNA-Damage Recognition and Unwinding  

of the Damaged DNA Duplex� 286

	 3.3.2	� Incision, Repair Synthesis and Ligation� 288
	 3.4	� Transcription-Coupled NER� 289
	 3.5	� NER and Chromatin Structure� 290
	 3.6	� Alterations in NER and Cancer  

Predisposition� 290
	4.	� Biological Implications Beyond DNA Damage and  

Repair� 291
	 4.1	� Diversity of Immune Cells by Activation-Induced  

Deaminase� 291
	 4.2	� DNA Demethylation� 291
	5.	� Interplay Between NER and BER: The Key Role of  

the DNA-Damage Response for Prevention of Cellular 
Degeneration� 291

	 5.1	� Overlapping Substrate Specificity Between  
BER and NER� 291

	 5.2	� A Nuclear–Mitochondria Signaling Network  
as a Main Platform of BER/NER Interplay� 292

	6.	� Concluding Remarks� 293
Glossary� 293
List of Abbreviations� 294
Acknowledgment� 295
References� 295

1. � GENERAL OVERVIEW AND HISTORICAL PERSPECTIVES OF TWO DNA  
EXCISION-REPAIR PATHWAYS, BER AND NER

Base excision repair (BER) and nucleotide excision repair (NER) are two major DNA excision-repair pathways. They 
are conserved among eukaryotes from yeast to mammals, and prototype-repair systems exist in prokaryotes including  
Escherichia coli. It is well established that deficiencies in BER and NER can lead to mutations and cell death after exposure 
of cells to exogenous and endogenous forms of DNA-damaging agents. Biochemical, cell biological, and genetic studies 
unequivocally support the notion that BER and NER are pivotal for cells to survive exposure to different forms of DNA 
damage. If left unrepaired, mutations and cell death are unavoidable, and diseases arise in multicellular eukaryotes. There-
fore, BER and NER have been intensively studied in molecular toxicology.

BER is capable of repairing small base damage, apurinic/apyrimidinic sites (AP-site, lacking a base), and DNA 
single-strand breaks [1–3]. NER, on the other hand, repairs relatively large (“bulky”) adducts of DNA. These include 
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photoproducts formed by ultraviolet irradiation and a multitude of base modifications produced by exposure to chemical 
carcinogens such as benzo(a)pyrenes and other aromatic hydrocarbons, aflatoxins, 2-acetylamiofluorenes, and chemo-
therapeutic agents such as platinum [4–8].

Four processes occur during both BER and NER: (1) recognition of damaged DNA, (2) excision of the damage, (3) DNA 
synthesis to fill the nucleotide(s) gap, and (4) the sealing of nicks (3′-OH and 5′-P pairs without gaps) in DNA. This simplified 
description will be expanded upon in greater detail later. Many BER and NER genes were identified and cloned by the mid-1990s, 
and we saw significant progress in understanding these core BER and NER reactions by using purified DNA-repair enzymes.

However, multicellular organisms conduct DNA repair in the context of the entire organism. Consequently, it is impor-
tant to investigate and understand how DNA-repair proteins communicate with factors controlling cell-cycle checkpoints 
and apoptosis, and discern whether damage introduction and repair are influenced by other cellular processes such as 
transcription and DNA replication. These signaling activities are often referred to DDR (DNA-damage response), and they 
are currently extremely active topics of research. The sequencing of mammalian genomes and the development of new 
genomic approaches have required refinement of earlier studies of DNA repair to consider the consequences of the highly 
complex and dynamic DDR networks, to reveal the full scale of the cellular mechanisms needed to recover from DNA dam-
age. We describe the basic mechanisms of BER and NER, and discuss recent advances in DDR that may functionally unite 
components of the BER and NER pathways.

2. � MAMMALIAN BER

2.1 � History and Overview of BER

Many BER proteins are relatively small, ranging from 20 to 60 kDa, and many enzymatic activities can be detected 
in biochemical assays without forming multi-subunit structures. This is in sharp contrast to many components of 
the NER pathway. In the late 1960s, enzymes functioning in BER were purified and characterized in studies using 
E. coli. An endonuclease that can recognize and cleave AP sites was biochemically isolated in the late 1960s and 
characterized in the 1970s. Also a uracil DNA glycosylase that recognizes and removes uracil in DNA to generate 
AP site was characterized by the early 1970s [9–11]. These studies helped scientists construct the concept of BER in 
the 1970s of a systematic DNA-repair pathway for small base damage [12]. This also had the important ramification 
for the understanding that cells are continuously attacked by not only exogenous DNA-damaging agents, but also by 
endogenously generated damage [13]. Since it was understood that the concept of “decaying DNA” was associated 
with mutation and genetic evolution, BER was then recognized as an essential cellular function. The identification, 
cloning, and characterization of many BER genes and recombinant proteins of E. coli occurred during the 1970s to 
1980s. This was followed by similar advances in understanding BER in yeast and mammalian cells. Cloning the BER 
genes led to detailed genetic and biochemical characterization and the elucidation of X-ray crystal structures of many 
BER proteins [14,15]. By the end of the 1990s, a clear picture of the BER pathway was drawn. However, questions 
remained unsolved regarding the efficiencies of the recombinant BER proteins, particularly those of DNA glycosyl-
ases that carry out the first base removal steps. Purified DNA glycosylases exhibit very low catalytic activities when 
studied in vitro which questioned how BER proteins in cells succeeded in maintaining genomic integrity [16]. Based 
on studies carried out mostly in the 2000s, it became apparent that the BER reactions are coordinated to bring about 
efficient repair. A DNA–protein complex formed by a BER enzyme (eg, APE1) and the resulting cleaved DNA (eg, 
DNA cleaved by APE1) is in a conformation favored for interacting with a BER enzyme carrying out the next reaction 
(eg, DNA polymerase beta, Polβ) [17–19]. The BER coordination achieved by this “hand-off” mechanism is ensured 
by XRCC1, a BER scaffolding protein critical for facilitating the BER efficiency in vivo [20–24]. Understanding the 
coordination of BER that involves the scaffolding protein XRCC1 and the damage sensory protein poly(ADP-ribose)
polymerases (PARPs) has greatly increased the possibility of modulation of BER in the intervention of diseases 
including cancer and neurodegeneration [25–27].

2.2 � Types of DNA Damage Repaired by BER

We can define the BER pathway as a series of reactions by proteins that are capable of repairing abnormal bases, AP sites, 
and DNA single-strand breaks (SSBs).

2.2.1 � Base Damage and DNA Single-Strand Breaks

DNA bases are vulnerable to alkylation, deamination, and oxidation.
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2.2.1.1 � Alkylation

A number of DNA-alkylating agents are known, including methyl methanesulfonate (MMS), 1-methyl-3-nitro-1- 
nitrosoguanidine (methylnitronitrosoguanidine; MNNG), and N-nitroso-N-methylurea (NMU) [1]. Temozolomide is an  
alkylating agent that is an FDA-approved chemotherapeutic drugs used for glioblastoma treatment [28,29]. Alkylation of 
purines may also occur endogenously with S-methyladenosine [30]. N7- and N3-alkyl purines are the major adducts in 
DNA caused by alkylating reagents; more than 80% of adducts produced by MMS are N7-alkylguanine, and about 10% 
are N3-alkyladenine [31]. Alkylated purines become highly unstable, and readily undergo depurination (loss of purine 
bases) in physiological conditions [32]. It is noted that O6-methylguanine produced by alkylating agents is a highly 
mutagenic base adduct, but in mammals the lesion is repaired by a single enzyme MGMT (O6-methylguanine-DNA 
methyltransferase) through a direct reversal mechanism [33].

2.2.1.2 � Deamination

Exocyclic amino groups in the bases are subject to deamination. Deamination at N4 of cytosine results in the conversion 
of cytosine to uracil. Similarly, deamination of adenine at N6 changes the purine base to hypoxanthine. These reactions 
are mutagenic as uracil pairs with adenine in DNA, and hypoxanthine with cytosine. Another important deamination reac-
tion occurs at N4 of 5-methylcytosine (5mC). 5mC is the result of methylation in CpG di-nucleotide in mammalian cells. 
Deamination of 5mC converts cytosine to thymine, and thus generates a G:T mispair which is mutagenic. These incorrect 
uracil and thymine bases are removed by uracil DNA glycosylase and thymine DNA glycosylase in the BER pathway (see 
Section 2.3.1 and Table 17.1).

2.2.1.3 � Oxidation

Reactive oxygen species (ROS) are continuously generated in cells [3]. The mitochondrial respiratory chain is the major 
source of ROS, as the electron transport system in the inner mitochondrial membrane builds a necessary redox gradient, 
and electron leaks inevitably occur and are trapped by oxygens to produce superoxide (O2

− ) [34]. O2
−
 are effectively scav-

enged by mitochondria-specific superoxide dismutase Mn-SOD (SOD2). SOD2 is an extremely efficient enzyme that can 
easily prevent O2

−
 from accumulating inside cells. However, this reaction creates hydrogen peroxide, and in the presence 

of redox metals such as iron and copper, hydrogen peroxide may be further processed to hydroxyl radical (OH•) via the 
Haber–Weiss reaction [3]. OH• is highly reactive and readily attacks DNA to produce a plethora of different types of oxida-
tive DNA base damage (reviewed in Hegde et al. [2] and Evans et al. [35]). Moreover, ROS also directly attacks the DNA 
backbone to produce SSBs [2]. SSBs produced by ROS often possess unusual 3′-end structures including 3′-phosphate and 
3′-phosphoglycolate as the major products, and these have to be processed to 3′-OH termini in order for the repair process 
to be completed.

2.2.2 � SSBs With Tyrosyl–DNA Covalent Linkage

Mammals possess three topoisomerases I, II, and III (TOP1, TOP2, and TOP3), that resolve higher-order supercoils and 
knot structures in DNA by introducing single-strand nicks in the DNA (TOP1 and TOP3), or DNA double-strand breaks 
(DSBs; TOP2) [36,37]. Topoisomerases form tyrosyl–DNA–phosphodiester covalent bonds as intermediate products during 
the reactions. The tyrosyl–DNA complex formation is transient and resolved in normal topoisomerase reactions. However, 
when steps of the reactions are inhibited or aborted, the covalent bonds become trapped. This can occur when the enzymes 
encounter sites of DNA damage such as AP sites and 8-oxoG, or when they are trapped by inhibitors of topoisomerases 
[38]. Tyrosine residues are trapped at either 3′- or 5′-termini depending on the type of topoisomerases. TOP1 generates a 
DNA 3′-tyrosyl-phosphodiester bond and a 5′-OH, while TOP2 generates a DNA 3′-OH and a 5′-tyrosyl-phosphodiester 
bond. In both cases the moieties that are formed block normal DNA synthesis and ligation, and thus they can be regarded 
as termini-blocking SSBs which require BER proteins repair them.

2.3 � Mechanism of Mammalian BER

A model for the basic mechanism of mammalian BER was established by the mid-1990s. The entire BER pathway, the 
“single nucleotide gap-filling reaction” (SN-BER), could be reconstituted by five distinct reactions in vitro (the middle 
scheme in Fig. 17.1). (1) Base damage is recognized and removed by DNA glycosylases which leave AP sites. (2) AP 
sites are recognized by AP endonucleases and are incised, resulting in nicks in the DNA strand with a 3′-OH terminus and 
5′-deoxyribose phosphate (dRP) structure [15]. (3) 5′-dRP is removed by DNA Polβ [39]. (4) Polβ fills a nucleotide in the 
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TABLE 17.1  Enzymes and Reactions in the BER Pathway

BER Sub-pathway # Reaction Description Enzyme Substrate Product

1 nt-filling BER A Base removal DNA glycosylasesa Abnormal bases AP sites

B Incision upstream of AP sites APE1 AP sites SSB with 3′-OH/5′dRP

C/C′ Incision downstream of dRP Polβ(as a dRPase), DNA  
glycosylasesb

dRP SSB with 3′-OH/5′-P gap

D One nucleotide filling Polβ SSB with a 1 nt-gap DNA with 3′-OH/5′-P nick

E DNA ligation LigIIIα DNA with 3′-OH/5′-P nick Repaired DNA

Long-patch BER F Excision of flipped nucleotides FEN1 Flipped strand breaks with 
5′-dRP

SSB with multiple nucleotide 
gap

G Long-patch filling Polβ, Polδ/Polε, PCNA Multinucleotide gap DNA with 3′-OH/5′-P nick

H DNA ligation LigI DNA with 3′-OH/5′-P nick Repaired DNA

APE1-independent BER I δ-Elimination NEIL1, NEIL2 3′-α,β-unsaturated aldehyde SSB with 3′-P/5′-P gap

J 3′-P removal PNKP SSB with 3′-P/5′-P gap SSB with 3′-OH/5′-P gap

TDPc K 3′-Tyrosyl-DNA-phosphodiesterase TDP1 3′-Phosphotyrosyl linkage 3′-P

L Phosphate removal and addition PNKP 3′-P and 5′-OH 3′-OH and 5′-P

M DNA ligation LigIIIα (TDP1), LigIV (TDP2) DNA with 3′-OH/5′-P nick Repaired DNA

N 5′-Tyrosyl-DNA-phosphodiesterase TDP2 5′-Phosphotyrosyl linkage 3′-OH and 5′-P

Non-enzymatic reactions 
and enzymatic  
“mis”-reactions

1 Incision downstream of AP sites Spontaneous β-elimination AP sites SSB with 3′-OH/5′-dRP gap

2 Oxidation of AP site Spontaneous oxidation AP sites Oxidized AP sites

3 Stalled Topo I Topoisomerase I Normal DNA 3′-Phosphotyrosyl linkage

4 Stalled Topo II Topoisomerase II Normal DNA 5′-Phosphotyrosyl linkage

Reactions are linked to the schemes (A–N) in Figs. 17.1 and 17.2.
aDNA glycosylases without AP lyase activity: Methylpurine DNA glycosylase (MPG), uracil DNA glycosylases, MutY-homology (MYH), Thymine DNA glycosylase (TDG).
bDNA glycosylases with AP lyase activity: 8-oxoG DNA glycosylase (OGG1), EndoIII homology (NTH), EndoVIII-like 1 and 2 (NEIL1 and NEIL2). NEIL1 and NEIL2 also carry out βδ-elimination.
cThe reactions do not involve DNA-repair synthesis.
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gap and leaves a nick (3-OH and 5′-P without a gap). (5) The nick is sealed by DNA ligase IIIα [20,40]. Each step takes 
care of one type of DNA damage and leaves an intermediate lesion until the final nick-sealing reaction performed by DNA 
ligases occurs. Repair reactions may start at any of the intermediate lesions. For example, topoisomerase–DNA cross-links 
have been more recently characterized as forms of DNA damage, and repair of these trapped lesions does not follow the 
base removal step in the conventional BER pathway. Instead, resolution of the tyrosyl–DNA complex is followed by DNA 
end-processing reactions and by DNA synthesis and ligation, skipping the reactions described earlier as steps 1 and 2. This 
flexibility confers a versatility to BER and it can act on a plethora of different types of DNA damage that are generated 
endogenously or by exposure to exogenous DNA-damaging agents.

2.3.1 � DNA Glycosylases

There are a total of 10 DNA glycosylases identified in mammals (Table 17.1). All DNA glycosylases cleave N-glycosylic 
bonds that link bases to the DNA-ribose backbone (Fig. 17.1, reaction A). This reaction creates AP sites that are processed 
further by an AP endonuclease (APE1). However, many DNA glycosylases further process the resulting AP sites using their 
intrinsic AP lyase activities (Fig. 17.1C). An AP lyase activity carries out a DNA strand–cleavage reaction through β- or βδ-
elimination (Fig. 17.1B and I). The resulting 3′/5′-end structures are 3′-phospho-α,β-unsaturated aldehydes (3′-PUA)/5′-P 
by β-elimination and 3′-P/5′-P by βδ-elimination [15]. Importantly, these 3′-end structures cannot serve as primers for 
DNA-repair synthesis carried out by DNA polymerases, and require APE1 or polynucleotide kinase/phosphatase (PNKP) 
(Fig. 17.1B and J) to generate 3′-OH termini. Fig. 17.1 and Table 17.1 list the mammalian DNA glycosylases and sum-
marize their reactions.
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FIGURE 17.1  DNA base excision repair. The star in red represents abnormal bases including 8-oxoG and other oxidized and alkylated bases. An 
oxidized AP site after the reaction (2) is shown in red. Newly synthesized nucleotides are shown in green. Schemes (A–J) depict enzymatic reactions 
and (1) and (2) are spontaneously occurring reactions. The open circles at the 3′-end of SSBs denote 3′-OH termini, and the filled circles indicate 3′- or 
5′-phosphate termini. Also see Table 17.1. XRCC1 and PARPs are not directly involved in the DNA processing but are pivotal for efficient BER in vivo. 
Reactions stimulated by XRCC1 (which is recruited to the DNA-damage sites by PARP1) are colored by light blue. PARP-activating DNA structures 
(ie, SSBs) are encircled in red.
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2.3.2 � AP Endonuclease 1

Mammals appear to possess only a single active AP endonuclease; that is, APE1. APE1 not only incises AP sites to create 
3′-OH/5′-dRP termini [15], but also it hydrolyzes 3′-phosphodiester bonds in 3′-PUA to generate 3′-OH (Fig. 17.1B) [40]. 
In both processes, APE1 generates 3′-OH ends which are absolutely required for DNA-repair synthesis carried out by DNA 
polymerases. Early studies of mice with homozygous knockouts of the Ape1 gene (Apex1) found that the gene disruptions 
resulted in early embryonic lethality [41,42], and APE1 was thought to be essential for cell viability [43,44]. However, 
in 2013, Masani et al. successfully created B cells defective in the APE1 gene [45]. Surprisingly, deleting the APE1 gene 
in the B cells did not affect the cell growth, although the cells exhibited a significant decrease in immunoglobulin class 
switch recombination [45,46], and were hypersensitive to treatment with MMS, an alkylating agent that produces AP sites. 
It needs to be determined whether cells other than B cells can survive without APE1, and this should be testable, given the 
advancement of the CRISPR gene–knockout technology. In a 2015 study, a particular mouse embryonic fibroblast cell line 
expressing APE1 at a level only 0.2% of normal cells was established [47]. While the cells with low APE1 grew normally, 
their mitochondrial respiratory activities and intracellular oxidative stress levels were greatly reduced. Thus, cells may be 
able to adapt to conditions with extremely low APE1 activity, which may explain why in previous studies that created an 
acute reduction in APE, the cells underwent apoptosis [43,44].

A second AP endonuclease, APE2, was identified based on amino acid sequence homology to APE1. However, its bio-
logical significance is not clear [45].

2.3.3 � Enzymes That Process DNA Termini in BER

2.3.3.1 � 3′-End Cleaning (APE1 and PNKP)

As described earlier, for DNA-repair synthesis to be initiated, the 3′-terminal end used as a substrate for extension by DNA 
polymerases must possess a 3′-OH. However, when the AP lyase activity of a DNA glycosylase processes a damaged base 
instead of using the reaction of APE1 (Fig. 17.1B), a 3′-PUA is generated (Fig. 17.1, reactions 1 and C) and this differs from 
the requisite 3′-OH. Therefore, it is necessary for BER to process the “3′-blocking” damage. As depicted (Fig. 17.1B in the 
right scheme), APE1’s phosphodiesterase activity has the capacity to remove these 3′-end structures including 3′-PUA and 
3′-phosphoglycolate [40,48]. In contrast, APE1 has very weak activity on substrates containing 3′-phosphates (Fig. 17.1, 
product of I) [40]. Instead of APE1, PNKP has been shown to efficiently remove 3′-phosphate (Fig. 17.1J) [40,49,50].

2.3.3.2 � 5′-End Cleaning Enzymes

A 5′-phosphate is the end structure required for a DNA ligase reaction to occur with a 3′-OH (Fig. 17.1, prior to H and 
E reactions). Incision of AP sites by APE1 not only generates 3′-OH but also 5′-dRP which needs to be removed for the 
subsequent BER reaction (Fig. 17.1C). DNA glycosylases with intrinsic AP lyase activities (Table 17.1) remove the 5′-dRP 
moieties via β-elimination (Fig. 17.1C).

In addition to DNA glycosylases, DNA Polβ, the main DNA-repair DNA polymerase, has an intrinsic activity to remove 
5′-dRP [39]. This “dRPase” reaction (Fig. 17.1C′) is catalyzed via hydrolysis and usually requires Mg2+ as a cofactor. The 
reaction leaves 5′-phosphate at the 5′-termini of the DNA strand breaks. While 5′-phosphate termini can also be generated 
by DNA glycosylases with intrinsic AP lyase activity (Fig. 17.1C), dRPase and AP lyase are different enzymatic reactions. 
Although the role of dRPases and AP lyases in cleaning up the 5′-termini is identical (Fig. 17.1C and C′), AP sites can be 
incised by AP lyases (Fig. 17.1C) but not by dRPases [51].

The dRP or AP sites may be oxidized or reduced in cells (Fig. 17.1, reactions 1 and 2). This modification makes it 
impossible for the AP lyase/dRPase to remove the sugar moiety [52]. When AP sites are modified by oxidation/reduction, 
FEN1 (flap structure-specific endonuclease 1) can recognize the 5′-flap end structure (Fig. 17.1F in the left scheme), and 
incise the nucleotide a few bases downstream of the 5′-dRP.

2.3.3.3 � TDP1 and TDP2: Resolving Tyrosyl–DNA Cross-links

Tyrosyl–DNA phosphodiesterases (TDPs) are enzymes that can resolve tyrosyl–DNA cross-links formed during aberrant 
activities by topoisomerases (Fig. 17.2).

TDP1 can resolve this unique structure to resolve the tyrosyl-3′-phosphodiester cross-link (Fig. 17.2, reaction 3), and leave 
3′-phosphate termini in the DNA via hydrolysis (Fig. 17.2K) [38]. Similar to APE1, TDP1 can also remove 3′-phosphoglycolate 
[53]. The 3′-phosphate groups remaining after TDP1 reactions are then processed by PNKP to generate 3′-OH similarly to the 
3′-end cleaning process in Fig. 17.1J. Of note, TDP1 also reacts on 3′-phosphoglycolate to generate 3′-phosphate [53], which may 
be further processed by PNKP to 3′-OH.
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Similar to TOP1, the catalytic Tyr-DNA intermediates of TOP2 may be trapped by TOP2 inhibitors such as etoposide 
[38]. Unlike TOP1, however, TOP2 incises the DNA to generate 3′-OH and 5′-P termini [37], and the Tyr residues form 
covalent cross-links to the 5′-phosphate termini (Fig. 17.2, reaction 4). TOP2 incises both strands and so it temporarily pro-
duces DSBs. When the TOP2 activity is inhibited and trapped, Tyr-5′-P intermediates are formed, DSB accumulate in DNA 
and become highly toxic. The trapped structure can be resolved by TDP2. The TDP2 reaction resolves the trapped linkage 
and releases the 5′-P termini in DNA (Fig. 17.2N).

2.3.4 � Completion of an Entire BER Reaction: DNA Polymerases and DNA Ligases  
in Coordinated Reactions

The excision steps described earlier (Figs. 17.1A–C,F,I,J and 17.2K,L,N) are damage-specific BER reactions, and can only 
be processed by the enzymes that remove the particular lesions. In contrast, the DNA gap-filling (Fig. 17.1D and G) and 
sealing steps (Figs. 17.1E,H and 17.2M) do not involve damaged DNA, and thus theoretically any combinations of DNA 
polymerases and ligases should complete the processes. Although this may be the case in vitro, in cells there appears a 
stringent coordination that determines what DNA polymerases and ligases should follow each damage-specific BER pro-
cess. It is believed that the coordination from the excision steps to the gap-filling/sealing reactions is to minimize the toxic 
effects of the intermediate DNA lesions. For example, gap-containing regions of DNA formed by BER might become even 
more toxic if they had to persist until they were randomly recognized by DNA polymerases. Instead, interactions of DNA 
polymerases and ligases with other BER proteins are known to improve the efficiency of the entire BER reaction. This is 
known as BER coordination [18,19,54,55], and it is controlled by interactions among the BER proteins and damaged DNA 
involved in each reaction step. The coordination of BER is further ensured by the presence of XRCC1 (see Section 2.3.5).

Thus, the DNA synthesis and ligation steps during BER should be viewed as sequential reactions that follow the damage-
excision reactions. DNA polymerases beta, delta/epsilon, and lambda (Polβ, Polδ/ε, and Polλ) have been shown to function in 
DNA synthesis in BER, and DNA ligase I (LIGI) and III (LigIIIα) are the major DNA ligases in BER.

2.3.4.1 � Single-Nucleotide Filling-BER

The involvement of Polβ has been studied since the 1980s. BER can be completed by Polβ with DNA LigIIIα in the sim-
plest sub-pathway named single-nucleotide filling (SN)-BER which is shown in the middle column in Fig. 17.1A–E. As an 
example, uracil forms in DNA as the product of cytosine deamination (resulting in U:G mispair), and can be repaired by 

FIGURE 17.2  Resolution of DNA–protein covalent linkage. Stalled reactions 
on DNA by DNA topoisomerases I and II result in trapped 3′-phosphotyrosyl link-
ages which cause obstruction to transcription and replication, and result in cell 
death. Tyrosyl–DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) resolve the 
stalled linkages followed by direct DNA ligation without DNA synthesis. In the 
case of TDP1, PNKP is required to generate proper 3′- and 5′-termini for DNA 
ligation. The same labels and colored areas as in Fig. 17.1 are used. Also see 
Table 17.1 for details.
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SN-BER [14]. Uracil is removed by uracil DNA glycosylase (UNG) which produces AP site (Fig. 17.1A) [56]. APE1 then 
cleaves the DNA upstream of the AP site, and generates 3′-OH/5′-dRP termini (Fig. 17.1B). Polβ removes the dRP (Fig. 
17.1C), fills the single nucleotide gap (Fig. 17.1D). This reaction leaves a nick with 3′-OH/5-P termini, which is sealed by 
LigIIIα tightly interacting with XRCC1 (Fig. 17.1E). Subsequent studies have shown that Polλ, whose amino acid sequence 
shows high homology to Polβ, can substitute for Polβ in this BER sub-pathway [57]. Interestingly, Polλ appears to be more 
critical than Polβ for cellular protection against oxidative DNA damage [58].

2.3.4.2 � Long-Patch BER

An alternative repair pathway for oxidized (and reduced) AP sites was postulated that involves DNA Polδ and Polε 
(Fig. 17.1F–H) [52]. Oxidized AP sites (Fig. 17.1, reaction 2) are incised by APE1 in the same way as intact AP sites 
(Fig. 17.1B), but the resulting oxidized 5′-dRP cannot be removed by Polβ or by AP lyase-associated DNA glyco-
sylases. Instead, flap structure–specific endonucleases (FEN1) remove the dRP-containing 5′-termini (Fig. 17.1F), 
leaving gaps spanning several nucleotides. DNA synthesis from these gapped DNA structures was shown to be spe-
cifically carried out by Polδ with PCNA as an essential elongation cofactor (Fig. 17.1G). Finally, DNA Lig I seals the 
nicked DNA to complete this BER sub-pathway (Fig. 17.1H).

2.3.4.3 � APE1-Independent BER

As described earlier, two BER sub-pathways rely on APE1 to generate 3′-OH termini at damaged site in DNA, the essential 
primer for DNA polymerases. However, SSBs with 3′-phosphate termini are poor substrates for APE1, and thus the 3′-end 
cleaning step may become rate limiting.

The NEIL family of DNA glycosylases, NEIL1 and NEIL2, carry out β-elimination to generate 3′-PUA after the base 
damage is removed, and they further process PUA by δ-elimination to generate 3′-phosphate at the site (βδ-elimination) 
[59,60]. When PNKP was characterized for its pivotal role in SSB repair (SSBR) as a 3′-phosphatase/5′-kinase, Mitra 
and his colleagues examined the possibility of alternative BER sub-pathway that do not require APE1. Wiederhold 
et al. thus showed that AP sites can be processed to 3′-phosphate and 5′-phosphate by NEIL1 or NEIL2 (Fig. 17.1I), 
and then further processed by PNKP to generate 3′-OH (Fig. 17.1J) [40]. The concept that BER does not require an AP 
endonuclease has an important ramification in that APE1 can be dispensable in BER, and it also underscores the role of 
PNKP in BER.

2.3.5 � Scaffolding Proteins in BER: Proteins That Do Not Directly Participate in DNA Processing

SSBs may be generated directly by DNA-damaging agents such as ROS or by enzymatic processing during BER. PARPs and 
XRCC1 play pivotal roles in SSBR. While PARPs and XRCC1 are not directly involved in DNA processing, they establish 
interactions with other BER enzymes for coordinated and efficient reactions. PARP1, the major PARP, binds to SSBs with 
a high affinity and protects the toxic DNA damage. PARP1 possesses an enzymatic activity that polymerizes ADP–ribosyl 
groups onto many cellular factors including itself. The PARylation activity of PARP1 is triggered by SSBs and by DSBs to 
some extent. PARP1 recruits XRCC1 which possesses a PAR-binding motif in its central domain [21] and thus interacts with 
PAR-modified PARP1 [61]. Auto-modification of PARP1 results in its decreased affinity for SSBs, and PARP1 is then dissoci-
ated from SSBs. XRCC1 then coordinates the BER-repair reactions by interacting with PNKP [23], Polβ [24], and LigIIIα 
[20]. XRCC1–LigIIIα interaction is essential for efficient SSBR. There are other BER proteins that reportedly XRCC1 inter-
acts with to facilitate the whole BER pathway. These include PCNA, APE1, UNG, NEIL1, OGG1, MPG, NTL1, and NEIL2 
[62–67]. However, XRCC1 is recruited on SSBs after PARP activation [21]. Although XRCC1 was shown to possess intrinsic 
affinity for DNA, SSBs are required for efficient interaction of XRCC1 with DNA [68,69]. Therefore, further studies should 
clarify how XRCC1 is recruited to DNA damage prior to the generation of SSBs to enhance the BER efficiency.

PARP1’s role in BER has been studied for more than two decades, but new roles of PARP1 in enhancing BER are still 
being discovered [70,71]. This is partly because the PARylation reaction complicates cellular recovery from DNA damage. 
PARylation consumes cellular NAD+, whose synthesis requires energy. Thus, the overactivation of PARP has long been 
known to deplete intracellular NAD+ and ATP pools and cause cell death [72]. In addition, it was thought that a function of 
PARylation was to enhance the DNA-ligase reaction, given that PAR provides positive charges to the damaged sites, and 
this enhances activities of DNA ligases [73], particularly that of LigIIIα [74]. Intriguingly, in 2015, Weinfeld et al. reported 
that DNA LigIIIα, and not PARP1, is the SSB sensor and acts by recruiting XRCC1 and PNKP to affect the efficiency of 
SSB reactions in cells [75]. As PARP1 is involved in mitochondrial energy metabolism and apoptosis signaling [76,77], a 
definitive answer for PARP’s role in BER needs additional investigation.
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2.4 � BER Gene Knockout in Mice and Cells

Many BER genes have been studied using genetic knockout approaches in mice to understand the roles of BER in 
normal physiology and how alterations impact risks for disease. Table 17.2 summarizes knockout studies of BER 
and NER genes. Homozygous deletions of many BER genes result in embryonic lethality in mice. Unsurprisingly, 
homozygous deletions of BER genes known to be required for essential activities in the cells (eg, DNA replication) 
result in embryonic lethality. Genes that belong to this category are Fen1, DNA ligases, and DNA polymerase genes 
required for DNA replication. However, many BER genes whose essential functions were not well defined can also 
result in embryonic lethality. These genes are Tdg, Apex1 (Ape1), Polb (Polβ), and Xrcc1. Notably, Parp1 homozy-
gous knockout mice are viable, although cells lacking Parp1 are hypersensitive to many DNA-damaging agents, and 
double homozygous knockout of Parp1 and Parp2 result in embryonic lethality [78]. The deletion of individual DNA 
glycosylase genes does not produce serious phenotypic defects in mice except for the Tdg (thymine DNA glycosyl-
ase) gene. It is noted that TDG is required for demethylation of 5mC [79], and thus it is essential for the regulation of 
differentiation. Thus, losing this function is likely the cause of mouse embryonic lethality, rather than the deficiency 
in the repair of G:T mispairs in DNA [79]. These observations validate the belief that cells and the mammalian body 
cannot sustain the accumulation of endogenous DNA damage without BER, and they also underscore the role of BER 
in epigenetic DNA metabolism.

3. � MAMMALIAN NER

3.1 � History and Overview of NER

Excision-repair pathways involve the removal or “excision” of a stretch of DNA containing damaged DNA and the 
resulting gap is filled in by DNA replication using the undamaged DNA as a template. In the 1960s, several groups 
discovered key aspects of the NER pathway in bacteria and in mammalian cells. Paul Howard-Flanders, Richard Setlow, 
and their colleagues found that bacteria treated with UV light remove small fragments of DNA containing pyrimidine 
dimers [80,81]. At roughly the same time, Philip Hanawalt and David Pettijohn demonstrated that “DNA-repair synthe-
sis” coincides with excision of fragments containing pyrimidine dimers in bacteria treated with UV light [82]. Robert 
Painter developed a novel technique to detect “DNA-repair synthesis” in mammalian cells treated with UV light [83]. 
This technique is still used today to measure “unscheduled DNA synthesis” or DNA synthesis that occurs outside of S 
phase as part of the NER pathway after cells are treated with a DNA-damaging agent. An additional seminal observation 
was made by James Cleaver, who working together with Robert Painter, found that cells from patients with the sun-
sensitive and cancer-prone syndrome, xeroderma pigmentosum (XP), are deficient in NER [84]. This observation was 
groundbreaking for many reasons. It provided evidence that deficiencies in the NER pathway can predispose humans to 
the development of cancer. It also led to a cell complementation analysis of the clinically heterogeneous disease, XP and 
this paved the way to identifying many different genes involved in the NER pathway [85]. Seven genetic complementa-
tion groups have been identified in XP, designated XPA through XPG, that represent different genes required for the 
NER pathway [86–88].

Studies performed by many groups around the world during the 1980s and 1990s resulted in the cloning and biochemi-
cal characterization of many genes required for mammalian NER [89–93]. As suggested by the seminal observations made 
in the 1960s, the overall general strategy of NER in mammalian cells is similar to that found in bacteria. An initial step 
in the pathway involves DNA-damage recognition. This is followed by the introduction of two incisions in the damaged 
strand, one on each side of the damage. An oligonucleotide containing the DNA damage is removed, and this is followed 
by synthesis of new DNA to replace the excised, damaged DNA. Finally, there is ligation of the newly synthesized DNA to 
the parental DNA. While the overall strategy of NER has been conserved in mammals and bacteria, it has been estimated 
that NER in mammalian cells, in vivo, requires 30–50 different gene products, and hence it is much more complicated than 
that found in bacteria.

A perhaps unique characteristic of the NER pathway is that it can be coupled to the process of transcription (reviewed in 
Refs. [94,95]). This surprising aspect of NER was first documented by the investigation of DNA repair in specific regions 
of the genome. Using this approach, it was discovered that DNA damage can be preferentially removed from genes active 
in the transcription process [96,97], and this preferential repair is actually targeted to only the transcribed strand of an active 
gene while the nontranscribed stand is unaffected [98]. Subsequent investigations have provided evidence that many of the 
same genes are involved in NER and transcription-coupled NER (TC-NER), but the processes differ at the steps involving 
recognition of the DNA damage.
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TABLE 17.2  Summary of Phenotypes of Homozygous Knockout Mice of BER and NER Genes

Pathway Gene Symbol MGI IDa Reactionb Homozygous knockout mouse phenotype References

BER (Fig. 17.1) Ung 109352 A Viable; no significant phenotype [195]

Smug1 1918976 A Viable; no significant phenotype [196]

Mpg (Aag) 97073 A Viable; no significant phenotype [197]

Nthl1 1313275 C Viable; no significant phenotype; increased tumors in Nthl1 Neil1 
double knockout mice

[198,199]

Mutyh 1917853 A ≫ C Viable; increased intestinal tumors, particularly with exposure to 
KBrO3

[200]

Ogg1 1097693 A > C Viable; KBrO3 induces renal cancer [201,202]

Tdg 108247 A Nonviable; critical to controlling epigenetic status [79]

Neil1 1920024 C, then I Viable; reduced germinal B cell [203]

Neil2 2686058 C, then I Viable; accumulation of oxidative DNA damage in transcriptionally 
active genes in aged mice

[204]

Neil3 2384588 C? Viable; reduced proliferation and sensitive to genotoxic stress [205]

Apex1 (Ape1) 88042 B Nonviable; apoptotic [41,42,206]

Polb 97740 C′, then D Neonatal lethality; immune deficiency [207]

Pold1 97741 G Null likely nonviable; proofreading deficiency to elevated mutation 
and tumors; shortened longevity

[208]

Pole 1196391 G Null likely nonviable; proofreading deficiency to elevated mutation 
and tumors; shortened longevity

[209]

Poll 1889000 D Viable [210]

Fen1 102779 F Nonviable; heterozygous knockout mice predisposed to  
adenocarcinoma; E359K mutation oncogenic

[211,212]

Lig1 101789 H Nonviable [213]

Lig3 109152 E Nonviable [214]

Xrcc1 99137 – Nonviable; increased spontaneous SSBs [215]

Parp1 1340806 – Viable; cells sensitive to DNA damage; improved ischemic injury 
recovery; resistance to diabetes; Parp1 Parp2 double knockout 
embryonic lethal

[72,216–218]
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NER (Fig. 17.3) Ddb1 (Xpe) 1202384 A Nonviable [219]

Ddb2 (Xpe) 1355314 A Susceptible to UV-induced DNA damage and skin tumor [220]

Xpc (Rad4) 103557 A High incidence of UV-induced skin tumors; high mutation  
frequency

[221]

Rad23b 105128 A Neonatal mortality; growth retardation and other abnormality; 
shortened life

[222]

Ercc8 (Csa) 1919241 D Increased skin tumor by UV irradiation [223]

Ercc6 (Csb) 1100494 C UV sensitivity; increased skin and eye tumors; circling behavior; 
low body weight

[224]

Ercc3 (Xpb) 95414 E, F Null nonviable [225]

Ercc2 (Xpd) 95413 E, F Null nonviable; a missense knock-in with brittle and graying hair, 
cachexia

[226,227]

Xpa 99135 G, H Predisposition to skin tumors induced by UV and other bulky DNA 
damage

[228]

Ercc5 (Xpg) 103582 G, J Postnatal mortality; hypersensitive to UV [229]

Ercc1 (Rad10) 95412 I Growth and liver failure; postnatal death; early aging and sensitive 
to oxidative stress

[230]

Ercc4 (Xpf) 1354163 I Impaired growth; short life (∼several weeks); cells  
hypersensitive to UV

[231]

aMGI, Mouse Genome Informatics (http://www.informatics.jax.org).
bReactions depicted in Fig. 17.1 (BER) and in Fig. 17.3 (NER).

http://www.informatics.jax.org
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3.2 � Types of DNA Damage Repaired by NER

The NER pathway is unusual, in that it recognizes and removes a wide spectrum of different types of DNA damage and the 
damage is usually formed by some covalent alteration or modification to one of the DNA bases [99–102]. It is generally 
held that the NER pathway actually recognizes a distortion in the localized structure of the DNA helix produced by the 
presence of a damaged base and it does not directly recognize the modified base in “a hand in clove” manner (described in 
Section 2.3.1 in more detail) [103,104]. Hence, NER can recognize and remove structurally unrelated base modifications 
including those formed by exposure to UV light, benzo(a)pyrenes and other aromatic hydrocarbons, aflatoxins, 2-acetyl-
aminofluorenes and chemotherapeutic agents, such as platinum.

UV light has been used extensively to investigate the NER pathway. UV light results in the covalent linkage of adjacent 
pyrimidines and produces two predominant types of DNA damage; the cyclobutane pyrimidine dimer (CPD) and 6-4 photo-
product (6-4PP) [105,106]. Several organisms have developed additional strategies for removing UV photoproducts by the 
process of photoreactivation. However, humans and other placental mammals appear to lack photoreactivation pathways, 
and hence, NER is their sole means of removing CPDs and 6-4PPs. Left unrepaired, CPDs and 6-4PPs can produce muta-
tions and contribute to the development of skin cancer. One of the hallmarks of the disease XP is an extremely elevated 
incidence of skin cancer. Many XP patients develop a form of skin cancer within the first decade of their life and develop 
many tumors in sun-exposed regions of their body. It is likely that UV photoproducts are formed in the skin of XP patients 
beginning early in life; however, since XP patients have a deficiency in NER, the photoproducts persist and lead to the 
formation of mutations, a driving force in cancer etiology and progression [107]. Efforts to protect XP patients from the 
harmful effects of sunlight and UV radiation are prolonging their lives but their deficiencies in NER appear to contribute to 
the development of other forms of cancer.

Thousands of compounds have been identified in the vapor and particulate phases of cigarette smoke and they include 
carcinogens, co-carcinogens, mutagens, and tumor promoters. About 70 of these compounds have been classified as car-
cinogens [108,109]. Different classes of carcinogens are present in tobacco smoke and include the polycyclic aromatic 
hydrocarbons (PAH) such as benzo(a)pyrene (BP), dibenz(a,h)anthracene, and dibenzo(a,i)pyrene. Metabolic activation 
of these and other chemical compounds found in tobacco smoke can create intermediates that react with DNA bases and 
produce DNA adducts that are substrates of NER. Hence, DNA adducts are likely continually formed in the lung tissues of 
people who smoke, and if they are not removed by DNA-repair processes, their persistence could lead to the formation of 
mutations and ultimately to lung cancer.

3.3 � Mechanisms of Mammalian NER

Advances in the 1980s and 1990s led to the development of mammalian cell–free systems to investigate detailed mechanis-
tic steps in NER [89,91,93,110]. During the mid-1990s, NER was reconstituted in vitro using the purified repair proteins: 
XPC-RAD23B, TFIIH (containing XPB and XPD), XPA, XPG, and ERCC1-XPF and the purified replication proteins: 
RPA, PCNA, and DNA Polδ [89,111]. Subsequent studies indicate that these and additional proteins function in the cell 
through an ordered and sequential assembly onto damaged DNA (reviewed in Refs. [99,101,107]).

3.3.1 � DNA-Damage Recognition and Unwinding of the Damaged DNA Duplex

The properties that govern the ability of NER to recognize structurally diverse types of DNA damage were originally 
described in a model described as “bipartite recognition” [103,104]. In this model, the more favorable substrates for NER 
are those in which the DNA damage destabilizes the DNA helix and is bulky. Damage substrates that destabilize the helix 
can promote disruption of hydrogen bonding and bending of the DNA helix. The bipartite recognition model has been sup-
ported by studies that have compared the efficiency of NER on damaged substrates that differ in the degree to which they 
destabilize helix. Hence, it was discovered that 6-4PPs have a strong destabilizing effect on the DNA helix and are efficient 
substrates for NER, while CPDs do not and can be poorly repaired [112].

DNA-damage recognition in NER is achieved by the XPC protein (Fig. 17.3A) [113]. XPC binding to damaged DNA 
is promoted by destabilization of the DNA helix and XPC can even bind destabilized DNA in the absence of DNA damage 
as seen using substrates containing small loops or bubbles [114]. XPC resides in a complex with RAD23B and centrin-2, 
a member of the calmodulin family of calcium-binding proteins [113,115]. RAD23B stabilizes XPC and may help deliver 
it to the site of damage (Fig. 17.3A) [116]. The role of centrin-2 is less clear. Since the presence of CPDs in DNA do not 
promote disruption of hydrogen bonding or destabilizing of the helix, they are not efficiently recognized by XPC. An 
additional protein, UV DNA damage–binding protein 2 (UV-DDB2), is required for the removal of CPDs in cells and may 
directly and indirectly promote binding of XPC to CPDs (Fig. 17.3A) [115].
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TFIIH is a large complex that functions in both NER and transcription [117]. It is loaded onto sites of damaged DNA 
through interactions with XPC–RAD23B (Fig. 17.3E) [118–120]. It is comprised of 10 subunits that can be divided into 
the core complex which contains XPB and the cyclin-activated kinase (CAK) sub-complex which is not required for NER. 
XPD appears to serve as bridge between the core and CAK complexes. XPB and XPD are both helicases and ATPases and 
the roles of these activities in NER have been extensively studied. XPB helicase activity functions in 3′–5′-translocation 
and XPD helicase activity functions in 5′​–3′-translocation (Fig. 17.3F, Table 17.3). In contrast to XPD, the ATPase activity 
of XPB is required for NER but not its helicase activity [121]. A major function of XPB in NER appears to be in disrupting 
the DNA helix, which assists in the loading of TFIIH onto damaged DNA. Once TFIIH is loaded onto DNA, XPD helicase 
activity results in its translocation along the DNA, unwinding the damaged duplex in the 5′–3′-direction until it encounters 
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a bulky covalent DNA base modification that results in blockage of additional translocation [114,121]. This blockage of 
XPD-mediated translocation of TFIIH at sites of damage is viewed as one step in DNA-damage verification which serves 
to prevent or reduce gratuitous NER at undamaged locations in the DNA (Fig. 17.3F, Table 17.3).

For many years it was held that XPA rather than XPC was involved in DNA-damage recognition. Instead, XPA appears 
to hold a central role in coordinating the loading of additional NER proteins at the site of damage and perhaps serves as an 
additional step in DNA-damage verification (Fig. 17.3G) [122–127]. When the translocation of XPD becomes stalled at a 
damaged site, XPC–HHR23B dissociates and XPA, RPA, and XPG bind the damaged site. A stable pre-incision complex 
is formed and comprised of TFIIH, XPA, RPA, and XPG. XPA serves an important role in assembling the pre-incision 
complex in its interaction with other NER proteins and single-stranded DNA. XPG binds through interactions with TFIIH.

3.3.2 � Incision, Repair Synthesis and Ligation

Once the pre-incision complex is formed, XPA recruits ERCC1–XPF complex (Fig. 17.3H) [125,127]. ERCC1–XPF and 
XPG are junction-specific endonucleases that cleave DNA at junctions between double-stranded and single-stranded DNA. 
The unwinding of DNA by TFIIH and the assembly of XPA, RPA, XPG, and TFIIH produce a bubbled structure at the site 

TABLE 17.3  Enzymes and Reactions in the NER Pathway

NER 
Pathways # Reaction Description Protein

Interaction With 
Preexisting Factor DNA

NER A Damage recognition Bulky damage 
recognition

XPC/Rad23B DNA kink Distortion in DNA 
due to bulky 
damage; CPD 
recognition requires 
UV-DDB

CPD  
recognitiona

DDB1/2 CPD

XPC/Rad23B DDB 1/2

TC-NER B Damage recognition Transcription 
stalling

RNA Pol II DNA damage

C CSB  
recruitment

CSB/UVSSA/
USP7

RNA Pol II

D Backtracking 
RNA Pol II

CSA–CSB CSB

Downstream 
reactions 
common to 
NER/TC-NER

E Strand opening TFIIH DNA strand  
opening

F Damage verification XPB ⇒ XPD Part of TFIIH

G 3′-Incision complex 
(XPG) formation

XPA-RPA-XPG

H 5′-Incision complex 
(ERCC1/XPF) formation

ERCC1/XPF XPA

I 5′-Incision ERCC1/XPF Nick upstream of 
damage

J 3′-Incision XPG Nick downstream 
of damage

K DNA synthesis Polδ/Polκ/
PCNA

22–30 nt  
incorporation

L Polε/PCNA

M DNA ligation LigIIIα/XRCC1 Repaired

N LigI

Reactions (#) are linked to the schemes (A–N) in Fig. 17.3.
aCPD, cyclobutane pyrimidine dimer; CSA(B), cockayne syndrome protein A (B); RNA Pol II, RNA polymerase II holoenzyme; DDB1/2, UV-damage  
DNA-binding protein 1 and 2; UVSSA, UV-stimulated scaffold protein A.
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of DNA damage. Evidence supports an ordered sequence of incisions; ERCC1–XPF makes the first incision on the 5′ side 
of the DNA damage (Fig. 17.3I) and XPG makes the second incision on the 3′ side of the damage (Fig. 17.3J) [128]. The 
oligonucleotide containing the DNA damage and TFIIH are released (Fig. 17.3K) [129]. Once the first incision is made by 
ERCC1–XPF, a free 3′-OH is formed that can be used by DNA polymerases in repair synthesis, and this could even occur 
before the second incision is made by XPG (Fig. 17.3L). The repair synthesis step in NER, about 25–30 nucleotides in 
length, was once assumed to be relatively straightforward. However, the discovery that the error-prone DNA polymerase 
kappa (Polκ), participates in repair synthesis during NER, in addition to Polδ and Polε suggests that this step in NER is 
complex [130–132]. Similarly, the ligation step which seals the final phosphodiester bond between the newly synthesized 
DNA and the parental DNA (Fig. 17.3N) appears more complicated than originally thought. It appears to be regulated by 
the proliferative state of the cell with DNA ligase I used in proliferative cells and DNA ligase IIIα used in quiescent and 
replicating cells (reviewed in Ref. [130]).

3.4 � Transcription-Coupled NER

The process of TC-NER has been studied for several decades (reviewed in Refs. [94,95]). The existence of mechanisms 
that couple DNA repair to transcription was indicated many years ago by studies that followed the recovery of RNA syn-
thesis and DNA-repair levels after cells were exposed to UV light [133]. It was found that RNA synthesis, which is initially 
inhibited by UV light, recovered before significant amounts of DNA damage were found to be removed from total cellular 
DNA. Subsequently, it was found that UV-induced CPDs were selectively removed from transcriptionally active genes 
in mammalian cells and the selective or preferential repair of DNA damage from active genes was due to selective repair 
of only the transcribed strands of the genes [96–98]. The selective repair of DNA damage from the transcribed strands of 
active genes was first documented in mammalian cells and then subsequently documented in E. coli and in yeast. These 
observations led to models of transcription-coupled repair in which recognition of DNA damage present in the transcribed 
strand of an active gene was a direct consequence of the stalling or arrest of RNA polymerase when it encountered the 
damage. This was supported by subsequent studies that found that certain types of bulky damage arrest elongation of RNA 
polymerase when they are located in the transcribed strand of an active gene but they do not block it when they are present 
in the nontranscribed strand (reviewed in Ref. [134]).

Investigating TC-NER in cell-free systems has been challenging and this is likely due to the combined complexities 
involved in the transcription elongation process, in NER and in chromatin structure. Biochemical and genetic studies 
indicate that damage recognition in TC-NER occurs through blockage or stalling of the RNA polymerase complex when 
it encounters damage in the transcribed strand (Fig. 17.3B). Many of the subsequent events, loading of TFIIH, XPA, RPA, 
ERCC1-XPF, and XPG, are likely similar to those found in global NER (Fig. 17.3E–N). However, a notable and major 
difference between NER and TC-NER involves processing of the RNA polymerase when it becomes stalled or arrested at 
DNA damage. Due to the large size of the RNA polymerase complex, some processing events are required to remove or 
displace it in order for the subsequent loading of essential NER proteins to occur. Different models for these processing 
events have been proposed and include the backward translocation of the RNA polymerase complex away from the damage 
(backtracking) and/or ubiquitin-mediated modification of damage-stalled RNA polymerase and subsequent degradation of 
the complex. It remains unclear how these processes occur in mammalian cells. However, genetic and biochemical studies 
support roles for Cockayne syndrome A (CSA), Cockayne syndrome B (CSB), UV-sensitive syndrome A (UVSSA), and 
XPA-binding protein 2 (XAB2) in TC-NER (Fig. 17.3C and D). Cell lines with defects in each of these genes exhibit defi-
ciencies in TC-NER or recovery of RNA synthesis following treatment with DNA-damaging agents [118,135–138]. Studies 
since mid-2000s suggest that degradation of damage-stalled/arrested RNA polymerase complexes may not be a common 
event; instead, actual degradation of the RNA polymerase complex may serve as a less frequent method of simply clearing 
the polymerase from the damaged site which might then allow global NER to act at the damage. Similarly, in some rare or 
unusual instances, the RNA polymerase complex may actually bypass the damage [139]. However, for TC-NER to occur, 
the polymerase more likely backtracks or is transiently displaced or altered, and this movement of the polymerase serves 
as a mechanism for loading TFIIH and subsequent NER factors which ultimately results in DNA-damage removal, DNA-
repair synthesis, and ligation [140–142].

Mutations in a gene required for NER or TC-NER generally renders cells more sensitive to treatment with agents that 
introduce bulky types of DNA damage. Their sensitivity to DNA damage can be severe to moderate depending on the gene 
that is mutated. Clearly, mutations in NER genes can predispose humans to the development of skin and other forms of can-
cer as illustrated by the disease XP and discussed in more detail later. However, mutations in genes specifically required for 
TC-NER such as CSA, CSB, and UVSS2 do not generally predispose humans or mice to cancer (reviewed in Ref. [107]). 
Instead, CS patients display complex phenotypes that include developmental and neurological abnormalities, growth arrest, 



290  SECTION | V  Genome Stability in Mammals

mental retardation, and premature death. Both CS and UVSS2 patients show cutaneous sensitivity to UV irradiation. These 
observations together with biochemical and genetic studies may indicate that deficiencies in proteins required for the cou-
pling of NER to transcription may lead to the persistence of RNA polymerase complexes arrested at sites of damage which 
in turn may trigger apoptotic events leading to cell death.

3.5 � NER and Chromatin Structure

The recognition of DNA damage and the functions of many proteins involved in NER and TC-NER described earlier must 
take into consideration the packaging of DNA into chromatin when repair takes place in vivo. The presence of nucleo-
somes and the assembly of nucleosomes into higher-order chromatin structures likely impede DNA-damage recognition 
and NER. Hence, “an access, repair, restore” model proposes that chromatin and nucleosomes must be altered or displaced 
during DNA-damage recognition and repair, and this is followed by restoration of the nucleosome and chromatin structure 
following repair [143]. It is likely that this involves alterations in the posttranslational modifications of the histone tails 
such as by acetylation, alterations in the distribution of histone variants, and the recruitment of chromatin-remodeling 
complexes. Early studies indicated that nucleosomes become rearranged during NER and that the acetylation of histones 
stimulated NER. More studies conducted between 2012 and 2014 have provided more detailed mechanistic insights into 
how alterations in chromatin impact DNA-damage recognition and processing by NER and TC-NER (reviewed in Refs. 
[95,107,144–146]).

The access step which allows NER proteins to recognize and bind DNA damage appears to be influenced by many pro-
teins. UV-DDB promotes ubiquitylation of core histones and associates with PARP1 to mediate PARylation of chromatin 
to open it up [116,147,148]. Histone acetylation by the histone acetyl transferases, p300 and GCN5, can also contribute to 
relaxing chromatin and the ATP-dependent chromatin-remodeling complexes, SWI/SNF and INO80, can promote repair 
by displacement of nucleosomes and by influencing the recruitment of XPC–RAD23B–centrin complex to the damage 
[149,150]. After repair is completed, the restore step to assemble the newly synthesized DNA into nucleosomes involves 
histone chaperones CCRF-associated factor (CAF1) and alternative splicing factor, ASF1 [151–153].

TC-NER occurs during the elongation stage of transcription since it serves and is signaled by RNA polymerase com-
plex blocked at DNA damage. Hence, this state of chromatin is likely different from chromatin that is not transcriptionally 
active. For TC-NER, the chromatin has already been “opened” to allow transcription initiation and elongation. CSB is 
required for TC-NER and studies have found that it can remodel chromatin in vitro [154]. Whether it has chromatin remod-
eling functions during TC-NER is unclear. CSA and UVSSA can play different roles in targeting CSB for ubiquitylation 
and degradation. CSA promotes ubiquitylation of CSB, while UVSSA inhibits ubiquitylation of CSB [155,156]. CSA and 
CSB appear to promote the association of histone acetyl transferases and proteins that promote chromatin remodeling and 
chaperones to incorporate histones into newly reassembled nucleosomes [142].

3.6 � Alterations in NER and Cancer Predisposition

It is clear that heritable mutations in NER genes can predispose individuals to the development of skin cancer and other 
forms of cancer. Many XP patients develop nonmelanoma skin cancer within the first decade of life. This is in sharp con-
trast to the development of nonmelanoma skin cancer in the general, non-XP population that occurs, on average, when 
people are well into their 60s. XP patients can also develop tumors in internal, non-UV-exposed organs including tumors of 
the brain and central nervous system and the lung [87]. Genetically modified mice with deficiencies in certain NER genes 
are also predisposed to UV-induced skin cancer and carcinogen-induced and spontaneous forms of lung cancer [157].

It is unclear how alterations in NER impact cancer etiology in the general, non-XP population. Deficiencies in NER 
could render an individual with a greater predisposition to the development of cancer and conversely, enhancement of NER 
capacity in an individual could render them less susceptible to the development of cancer. Alterations in individual repair 
capacity could also impact how an individual responds to treatment with chemotherapeutic agents that damage DNA. An 
individual’s capacity to carry out NER could be influenced by the inheritance of polymorphic alleles of NER genes, by 
exposure to agents in the environment that impact NER efficiency, or by some combination of the two. These interactions 
are likely highly complex. There have been numerous studies that have investigated correlations between polymorphisms 
in NER genes and many different forms of cancer including those that occur in the lung, stomach, breast, skin, or blood. 
However, while linkages have been reported in some studies, many of these are either not supported or are found to be weak 
associations when studies are combined and subjected to meta-analyses [158–163]. In addition, while XP is a rare disease, 
the frequency of single mutant alleles is much greater, but it remains unclear if individuals containing only one mutant allele 
of an NER gene are more highly predisposed to the development of cancer.
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4. � BIOLOGICAL IMPLICATIONS BEYOND DNA DAMAGE AND REPAIR

Some functions of excision repair are indispensable for the organisms. The central theme in this section is the versatility of 
BER and that some proteins involved in BER can be utilized in fundamental cellular activities unrelated to DNA repair. As 
there are excellent reviews on these subjects [163,164], this section briefly describes recent studies investigating additional 
roles of proteins involved in BER.

4.1 � Diversity of Immune Cells by Activation-Induced Deaminase

Somatic hypermutation (SHM) and class switch recombination (CSR) are necessary for antibody diversification in antigen-
specific memory B cells, and both mechanisms require activation-induced deaminase (AID) [164–166]. Because AID 
deaminates cytosine to generate uracil in DNA, a well-known BER substrate, involvement of BER in this pathway is being 
established [45,166]. The canonical BER reactions depicted in Fig. 17.1 do not likely occur during SHM and CSR. Instead, 
when uracil is generated in DNA by AID, it serves as a flag to recruit error-prone bypassing DNA polymerases for SHM and 
components of DNA DSB repair cooperate with some of the BER enzymes to lead to CSR [46,164]. Continued understand-
ing of the mechanisms of SHM and CSR involving BER, other DNA-repair and -signaling pathways should illuminate the 
sophisticated crosstalk among the DNA-repair pathways.

4.2 � DNA Demethylation

Methylation of cytosine at CpG dinucleotides generates 5mC. 5mC is a major epigenetic DNA modification that controls 
gene expression. While abnormalities in the distribution of 5mC in the genome are a hallmark of cell transformation in 
cancer genomics, DNA methylation is pivotal in controlling normal cell differentiation during development.

Processes are required to regulate demethylation of DNA and this is necessary to remove 5mC and introduce cytosine. 
Studies in the past several years have established an essential role of the demethylation process not only in cell differentia-
tion, particularly for the stem cell research, but also in cancer development [79,167,168].

An initial event in the demethylation process, described in detail in a previous review by Wu and Zhang [169], is the 
conversion of 5mC to 5-hydroxymethyl cytosine (5hmC) by Tet methylcytosine dioxygeneases (Tet1, Tet2, and Tet3; 
ten-eleven translocation 1, 2, 3 gene protein). The Tet proteins further process 5hmC to 5-formylcytosine (5fC) and then 
to 5-carboxylcytosine (5caC) [170]. Both 5fC and 5caC are processed by BER, as TDG recognizes and removes these 
unusual cytosine derivatives as its substrates, and leaves AP sites at these locations (Fig. 17.1A). The reactions that 
follow the generation of AP sites are not entirely clear. However, a 2010 study showed that the BER proteins includ-
ing TDG, APE1, PARP1, and XRCC1 are upregulated during developmental stages in embryonic mice when whole-
genome demethylation takes place [171]. In zygotic cells, PARP1 and XRCC1 were found to be physically associated 
with the paternal genome where demethylation takes place [171]. Several studies have found that the BER proteins, 
XRCC1, PARP1, and APE1, are utilized in the demethylation process in Arabidopsis and mammalian cells [167,172–
175]. Because of the impact of demethylation on many study fields of study including stem cells, cell differentiation, 
cancer, and cancer stem cells, the advanced technology demonstrating the involvement of BER in the distribution of C, 
5mC, 5hmC, 5fC, and 5caC [168,176,177] has broadened the role of BER beyond DNA repair and toward epigenetic 
maintenance.

5. � INTERPLAY BETWEEN NER AND BER: THE KEY ROLE OF THE DNA-DAMAGE 
RESPONSE FOR PREVENTION OF CELLULAR DEGENERATION

5.1 � Overlapping Substrate Specificity Between BER and NER

BER and NER enzymes may recognize the same types of DNA damage, and hence, this class of substrates could be 
repaired by either pathway. A role of NER in the repair of endogenously generated DNA damage has been suggested 
since it could explain the neurodegenerative phenotypes associated with some NER deficiencies. However, UV damage 
does not occur in neurons and hence the substrates for NER that may produce the neurodegenerative phenotype are an 
unsolved question.

Overlapping substrates for BER and NER were reported in E. coli and yeast [178–183]. Memisoglu et al. found that 
a deficiency in rad13, an NER protein in yeast, produced increased sensitivity to alkylating reagents, and they proposed 
that alkylated bases may be repaired directly by the NER pathway [180]. In 2010, the repair of AP sites was reported to be 
associated with TC-NER in yeast [184], and the investigators proposed a detailed mechanism for this observation.
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Some studies have also reported overlapping roles of BER and NER in the removal of oxidative DNA damage in human 
cells. A biochemical study showed that human NER proteins could recognize and remove 8-oxoG in DNA [185]. Although 
it has been difficult to clearly show a role of NER in the removal of 8-oxoG in vivo, primary cells from XPC patients have 
been found to be hypersensitive to treatment with oxidizing reagents [186].

5.2 � A Nuclear–Mitochondria Signaling Network as a Main Platform of BER/NER Interplay

An emerging field of study, how mitophagy is regulated by a DNA-damage response, is being formed that may finally 
delineate the crosstalk between BER and NER, and perhaps it also involves other DNA-repair pathways.

Mitophagy is a cellular process that degrades damaged mitochondria and facilitates generation of new mitochondria. 
Mitophagy and autophagy require common factors and reactions involving ubiquitin-dependent proteasome systems and 
LC3 conjugation [187,188]. However, compared to autophagy, mitophagy is a mechanism that provides a quality check for 
maintaining the integrity of mitochondria, and its biological role resembles that of apoptosis.

Mitophagy requires a ubiquitin ligase, Parkin [188]. Deficiencies in the gene for Parkin, PARK2, are a major cause of 
both early and late onset of Parkinson’s disease. Parkin is a RING domain containing E3 ligase and it requires an essen-
tial cofactor, PINK1, which is also a Parkinson’s disease–causative gene [189]. The astonishing finding that ubiquitin 
Ser65 phosphorylation regulates mitophagy was reported by several studies [190–193]. Impaired mitochondria lose the 
inner membrane potential, which induces phosphorylation at Ser65 of ubiquitin by PINK1. The Ser65-phosphoubiquitin 
facilitates Parkin’s translocalization from the cytosol to the surface of mitochondria, and enhances its ubiquitination 
reaction. Therefore, cells proactively maintain the quality of mitochondria with Parkin, for which PINK1 plays a central 
regulatory role.

PINK1 is highly sensitive to proteolysis; the truncated PINK1 loses the kinase activity, and thus becomes inca-
pable of activating Parkin and mitophagy. Although the sensitivity of PINK1 to proteolysis may provide an auto-
regulation of the Parkin–PINK1 protein degradation system, in 2014 it became apparent that PINK1 is susceptible 
to oxidative stress in causing its proteolysis [194]. An unexpected finding was that lack of XPA was associated with 
increased PINK1 cleavage, resulting in the impairment of the cellular function to check mitochondrial integrity [194]. 
This study proposed the following degenerative cellular events (Fig. 17.4): (1) Elevation of PARP1 activities in XPA-
deficient cells causes insufficient NAD+ concentration. (2) Low NAD+ causes down-modulation of SIRT1 activity 
which in turn lowers PGC-1α activity. PGC-1α is the master regulator of mitochondrial regeneration and energy-
generating activity in the cells. (3) Low PGC-1α activity causes lower UCP2 levels. Because UCP2 is an uncoupler 
that maintains the proper mitochondrial membrane potential, when UCP2 is increased, it is an inducer of mitophagy. 
In contrast, lower levels of UCP2 result in degradation of PINK1 and suppression of mitophagy. This effect is additive 
and results in the accumulation of damaged mitochondria. The unusually high mitochondrial and oxidative stresses 
are unsustainable and thus cause apoptosis. This phenotype and the novel link to mitochondria was not only found 
to be associated with deficiencies in XPA; it was also associated with Cockayne syndrome B (CSB) and ataxia 
telangiectasia-mutated (ATM) deficiencies. Surprisingly, it was not associated with deficiencies in XPC. Therefore, 
although both XPA and XPC are essential for the NER process, XPA appears to have an independent function in the 
maintenance of mitochondrial integrity.

These are remarkable discoveries in the field of BER and NER, and further studies may provide critical informa-
tion as to why deficiencies in NER cause neurodegenerative diseases. However, an important question regarding the 
mechanism of NER has not been answered: Does XPA’s direct involvement in repairing endogenous DNA damage 
help cells maintain intact mitophagy, or is XPA a signal transducer in this particular DNA-damage response? In other 
words, what initiates mitochondrial degeneration which is exacerbated by a deficiency in XPA? The unusually high 
oxidative stress caused by mitochondrial degeneration and UCP2 down-regulation may be a consequence rather than 
the cause of cellular degeneration. Similarly, PINK1 degradation may be induced by the elevated oxidative stress. 
The fundamental cause of these molecular events could be endogenous DNA damage (Fig. 17.4). Endogenous DNA 
damage is continuously generated under the normal physiology, and keeps PARPs at its equilibrium balance between 
the activated and dormant forms. It is hypothesized that, in a yet unidentified reaction scheme, the presence of XPA 
suppresses the activation of PARP, either by facilitating repair or by inhibiting PARP. Hence, a deficiency in XPA 
could result in the accumulation of active PARP, which results in a gradual, yet irreversible, degeneration of mito-
chondrial and an increase in oxidative stress that ultimately kills the cell. Crucial experiments remain to be carried out 
to identify interactions of XPA with molecules involved in the DNA-damage response, including endogenous DNA 
damage and DNA–repair intermediates (eg, AP sites, DNA-strand breaks, protein–DNA cross-links, and 5meC), and 
NER/BER proteins such as PARPs.
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6. � CONCLUDING REMARKS

Here, we reviewed advances in understanding two mammalian DNA excision-repair mechanisms. We described the basic 
mechanisms of BER and NER, and reviewed recent studies regarding the interplay of BER and NER, revealing a novel 
role of NER which is independent of the repair of UV-induced DNA damage. The versatility of BER was also illustrated 
by describing how BER is also involved in processing modified DNA bases such as 5mC and this role in epigenetics is an 
indispensable function of BER. The stepwise reaction scheme of BER makes it a flexible pathway and thus an ideal DNA-
modifying machinery that can adapt to different types of unusual bases.

Endogenous damage must be repaired by DNA-repair pathways to avoid pathophysiological conditions. NER has been 
studied mainly to understand its role in removing bulky DNA damage generated by UV radiation and by exposure to car-
cinogens. However, recent studies have led to the discovery of novel DNA-damage responses involving NER as well as 
BER that likely play roles in disease. One key to understanding the impact of these novel pathways on disease may be to 
identify the endogenous targets of NER.

GLOSSARY
3′-blocking damage  Non-3′-OH termini at DNA strand breaks that cannot serve as DNA synthesis primers and therefore require 3′-end processing 

to generate 3′-OH termini. 3′-blocking damage includes 3′-phosphate, 3′-α,β-unsaturated aldehyde, 3′-phosphoglycolate.
AP lyase  A lyase that catalyzes DNA-strand breakage at AP sites, and removes 5′-dRP from 5′-ends of DNA strand breaks. The AP lyase reaction 

occurs via β- or βδ-elimination through formation of Schiff base. Many DNA glycosylases possess an AP lyase activity. Also see dRPase.
AP sites (apurinic/apyrimidinic sites)  A type of DNA damage where a base (either purine or pyrimidine) is removed. Also known as abasic sites.
Bipartate recognition of DNA damage during NER  The efficient recognition and removal of DNA damage by NER generally requires that the 

damage to DNA possesses two important features. One feature is that the damage represents a covalent modification to the DNA. The second 
feature is that the presence of the covalent modification creates a significant alteration in the overall structure of the DNA helix.
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FIGURE 17.4  A model of cellular degeneration caused by endogenous DNA damage. (Green, inner ring) A normal cellular cycle in which EDD 
(endogenous DNA damages) are continuously generated but under the control of BER, and PARPs are activated to facilitate the repair process. (Red, outer 
ring) EDD generation at a high rate causes overactivation of PARP. Depletion of NAD+ suppresses SIRT1-dependent PGC-1α activation, which abrogates 
mitochondrial quality check by Parkin/PINK1 [194]. Cells enter a vicious cycle involving ROS elevation and mitochondrial degeneration. XPA, CSB, 
and ATM, all appear to take part in keeping EDD at normal levels [194]. To determine what type of EDD exactly causes the PARP overactivation, and to 
understand the coordination of BER with XPA, CSB, and ATM will help improve precision medicine of degenerative diseases. DGs, DNA glycosylases.
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Deamination  Deamination may occur at exocyclic amino groups of cytosine, 5-methyl cytosine, adenine, and guanine, which are converted to 
uracil, thymidine, hypoxanthine, and xanthine, respectively. The bases resulted from deamination may form base pairs different from original 
pairs (U to A, T to A, HX to C) and thus potentially mutagenic.

Demethylation  A process wherein 5-methyl cytosine is converted to cytosine. An active demethylation process in cells involves enzymes of BER. 
BER proteins that are shown to function in demethylation include TDG, PARP, XRCC1, and APE1.

DNA-alkylating agents  Chemical compounds with electrophilic alkyl groups that attack nucleophilic groups in DNA. Commonly used alkylating 
agents in research include methyl methanesulfonate (MMS), methylnitronitrosoguanidine (MNNG), N-nitroso-N-methylurea (MNU), temo-
zolomide.

dRPase  An enzyme capable of removing 5′-dRP from 5′-ends of DNA strand breaks via hydrolysis. The term dRPase is often used to describe an AP 
lyase, due to the fact that their roles in the BER pathway in producing 5′-phosphate from 5′-dRP are identical. By definition, unlike AP lyases, 
dRPase does not incise AP sites. The difference between AP lyases and dRPases is described in detail by Piersen et al. [51].

Mitophagy  An active process to digest damaged mitochondria involving protein degradation via ubiquitination catalyzed by Parkin and PINK1. It 
is a specialized autophagy for maintaining quality of mitochondria.

Oxidative DNA damage  Bases and backbone of DNA can be oxidized spontaneously or induced by oxidizing reagents. These include 8-oxogua-
nine, thymine glycol, DNA strand breaks with 3′-blocking damage. Find details in Refs. [3,35].

RNA-polymerase backtracking  Instead of moving along the template DNA strand in the 3′ to 5′ direction synthesizing new RNA, the RNA poly-
merase complex can translocate in the opposite direction and move backwards in the 5′ to 3′ direction.

TET  Tet methylcytosine dioxygenase or ten-eleven translocation gene protein. TET enzymes catalyze base conversion reactions using 5-methylcy-
tosine (5mC) as the starting substrate to generate 5-hydroxymethylcytosine (5hmC), then 5-formylcytosine (5fC), and finally 5-carboxycytosine 
(5caC). The converted cytosine derivatives are recognized and removed by TDG. Evidence indicates that AP sites, generated by TDG, are 
repaired by the traditional BER pathway involving APE1, PARP1, XRCC1, Polβ, and DNA ligase III. TET1, TET2, and TET3 belong to the 
TET enzyme family.

LIST OF ABBREVIATIONS
3′-PUA  3′-Phospho-α,β-unsaturated aldehydes
5caC  5-Carboxylcytosine
5fC  5-Formylcytosine
5hmC  5-Hydroxymethyl cytosine
5mC  5-Methylcytosine
6-4PP  6-4 Photoproduct
AID  Activation-induced deaminase
APE1  AP Endonuclease 1
Apex1  Ape1 gene
AP-site  Apurinic/apyrimidinic sites
ASF1  Alternative splicing factor
ATM  Ataxia telangiectasia mutated
BER  Base excision repair
BP  Benzo(a)pyrene
CAF1  CCRF-associated factor
CAK  Cyclin-activated kinase
CPD  Cyclobutane pyrimidine dimer
CSA  Cockayne syndrome A
CSB  Cockayne syndrome B
CSR  Class switch recombination
DDR  DNA-damage response
dRP  2-Deoxyribose 5-phsphate
EDD  Endogenous DNA damages
FEN1  Flap structure–specific endonucleases
LIGI  DNA ligase
MGMT  O6-methylguanine-DNA methyltransferase
MMS  Methanesulfonate
MNNG  Methylnitronitrosoguanidine
MPG  Methylpurine DNA glycosylase
MYH  MutY homology
NEIL1 and NEIL2  EndoVIII-like 1 and 2
NER  Nucleotide excision repair
NMU  N-nitroso-N-methylurea
NTH  EndoIII homology
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O2
−

  Superoxide
OGG1  8-oxoG DNA glycosylase
OH•  Hydroxyl radical
PARPs  Poly(ADP-ribose)polymerases
PNKP  Polynucleotide kinase/phosphatase
Polβ  DNA polymerase beta
Polδ/ε  DNA polymerase delta/epsilon
Polλ  DNA polymerase lambda
ROS  Reactive oxygen species
SHM  Somatic hypermutation
(SN)-BER  Single-nucleotide filling base excision repair
SOD2  Manganese superoxide dismutase 2
SSBs  Single-strand breaks
Tet1, Tet2, and Tet3  Tet methylcytosine dioxygeneases
TC-NER  Transcription-coupled NER
Tdg  Thymine DNA glycosylase
TDPs  Tyrosyl–DNA phosphodiesterases
TOP1, TOP2, TOP3  Topoisomerases I, II, and III
UNG  Uracil DNA glycosylase
UV-DDB2  UV DNA damage-binding protein 2
UVSSA  UV-sensitive syndrome A
XAB2  XPA-binding protein 2
XP  Xeroderma pigmentosum
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