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Preface
The third edition of this book builds on user and reviewer comments on the previous
editions. Our goal remains to provide students with an accessible overview of the
whole field of physical chemistry while focusing on basic principles that unite 
the subdisciplines of the field. We continue to present new research developments in
the field to emphasize the vibrancy of physical chemistry. Many chapters have been
extensively revised as described below. We include additional end-of-chapter concept
problems and most of the numerical problems have been revised. The target audience
remains undergraduate students majoring in chemistry, biochemistry, and chemical
engineering, as well as many students majoring in the atmospheric sciences and the
biological sciences. The following objectives, illustrated with brief examples, outline
our approach to teaching physical chemistry.

• Focus on teaching core concepts. The central principles of physical chemistry
are explored by focusing on core ideas, and then extending these ideas to a variety
of problems. The goal is to build a solid foundation of student understanding rather
than cover a wide variety of topics in modest detail.

• Illustrate the relevance of physical chemistry to the world around us. Many
students struggle to connect physical chemistry concepts to the world around them.
To address this issue, example problems and specific topics are tied together to
help the student develop this connection. Fuel cells, refrigerators, heat pumps, and
real engines are discussed in connection with the second law of thermodynamics.
The particle in the box model is used to explain why metals conduct electricity
and why valence electrons rather than core electrons are important in chemical
bond formation. Examples are used to show the applications of chemical 
spectroscopies. Every attempt is made to connect fundamental ideas to applica-
tions that are familiar to the student. Art is used to convey complex information in
an accessible manner as in the images here of the use of quantum dots to image
lymph nodes in a mouse in vivo.

a
Color video 5 min

post-injection
Pre-injection

autofluorescence
NIR fluorescence

5 min post-injection

1 cm

b
NIR fluorescenceColor video



• Present exciting new science in the field of physical chemistry. Physical
chemistry lies at the forefront of many emerging areas of modern chemical research. 
Recent applications of quantum behavior include band-gap engineering, quantum
dots, quantum wells, teleportation, and quantum computing. Single-molecule spec-
troscopy has led to a deeper understanding of chemical kinetics, and heterogeneous
catalysis has benefited greatly from mechanistic studies carried out using the
techniques of modern surface science. Atomic scale electrochemistry has become
possible through scanning tunneling microscopy. The role of physical chemistry in
these and other emerging areas is highlighted throughout the text. The following
figure shows direct imaging of the arrangement of the atoms in pentacene as well as
imaging of a delocalized molecular orbital using scanning tunneling and atomic
force miscroscopies.

• Web-based simulations illustrate the concepts being explored and avoid math
overload. Mathematics is central to physical chemistry; however, the mathemat-
ics can distract the student from “seeing” the underlying concepts. To circumvent
this problem, web-based simulations have been incorporated as end-of-chapter
problems throughout the book so that the student can focus on the science and avoid
a math overload. These web-based simulations can also be used by instructors dur-
ing lecture. An important feature of the simulations is that each problem has been
designed as an assignable exercise with a printable answer sheet that the student can
submit to the instructor. The Study Area in MasteringChemistry® also includes a
graphing routine with a curve-fitting capability, which allows students to print and
submit graphical data. The 50 web-based simulations listed in the end-of-chapter
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xii PREFACE

problems are available in the Study Area of MasteringChemistry® for Physical Chem-
istry. MasteringChemistry® also includes a broad selection of end-of-chapter problems
with answer-specific feedback.

• Show that learning problem-solving skills is an essential part of physical chemistry.
Many example problems are worked through in each chapter. They introduce the 
student to a useful method to solve physical chemistry problems.



• The End-of-Chapter Problems cover a range of difficulties suitable for students
at all levels.

• Conceptual questions at the end of each chapter ensure that students learn to
express their ideas in the language of science.

PREFACE xiii
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This text contains more material than can be covered in an academic year, and this is
entirely intentional. Effective use of the text does not require a class to proceed sequen-
tially through the chapters, or to include all sections. Some topics are discussed in sup-
plemental sections that can be omitted if they are not viewed as essential to the course.
Also, many sections are self contained so that they can be readily omitted if they do not
serve the needs of the instructor. This text is constructed to be flexible to your needs, not
the other way around. We welcome the comments of both students and instructors on how
the material was used and how the presentation can be improved.

Thomas Engel
University of Washington

Philip Reid
University of Washington

• Integrate computational chemistry into the standard curriculum. The teaching of
quantum mechanics has not taken advantage of the widespread availability of Ab Initio
Software. Many chapters include computational problems for which detailed instruc-
tions for the student are available in the Study Area in MasteringChemistry®. It is our 
experience that students welcome this material, (see L. Johnson and T. Engel, Journal of
Chemical Education 2011, 88 [569-573]) which transforms the teaching of chemical
bonding and molecular structure from being qualitative to quantitative. For example, an
electrostatic potential map of acetonitrile built in Spartan Student is shown here. 

• Key equations. Physical chemistry is a chemistry subdiscipline that is mathemat-
ics intensive in nature. Key equations that summarize fundamental relationships
between variables are colored in red for emphasis.

• Green boxes. Fundamental principles such as the laws of thermodynamics and
the quantum mechanical postulates are displayed in green boxes.

• Updated graph design. Color is used in graphs to clearly display different rela-
tionships in a single figure as shown in the potential energy function and the total
energy eigenfunctions for the hydrogen atom and important transitions in the elec-
tron spectroscopy of molecules.
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New to This Edition
The third edition of Quantum Chemistry & Spectroscopy includes changes at several levels.
The most far-reaching change is the introduction of MasteringChemistry® for Physical
Chemistry. Over 460 tutorials will augment the example problems in the book and enhance
active learning and problem solving. Selected end of chapter problems are now assignable
within MasteringChemistry® and numerical, equation, and symbolic answer types are
automatically graded.

The art program has been updated and expanded, and several levels of accuracy
checking have been incorporated to increase accuracy throughout the text. Many new
conceptual problems have been added to the book and most of the numerical problems
have been revised. Problems have been added to the end of Chapter 3 and a new sec-
tion on superposition wave functions has been added. A new section on traveling
waves and potential energy barriers has been added to Chapter 5. The discussion of the
classical harmonic oscillator and rigid rotor has been better integrated by placing these
sections before the corresponding quantum models in Chapter 7. Chapter 12 has been
revised to better introduce molecular orbital theory. A new section on computational
results and a set of new problems working with molecular orbitals has been added to
Chapter 13. The number and breadth of the numerical problems has been increased
substantially in Chapter 14. 

Acknowledgments
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improvement, for which we are very grateful. All those involved in the production process
have helped to make this book a reality through their efforts. Special thanks are due to Jim
Smith, who helped initiate this project, to our editors Jeanne Zalesky and Jessica
Neumann, and to the staff at Pearson, who have guided the production process.



Alexander Angerhofer, 
University of Florida

Clayton Baum,
Florida Institute of Technology

Jennifer Mihalik, 
University of Wisconsin–Oshkosh

David Zax, 
Cornell University

xvi PREFACE

Nathan Hammer, 
The University of Mississippi

Geoffrey Hutchinson, 
University of Pittsburgh 

George Kaminski, 
Central Michigan University

Herve Marand,
Virginia Polytechnic Institute and
State University

Paul Siders,
University of Minnesota–Duluth

3RD EDITION

MANUSCRIPT REVIEWERS

ACCURACY REVIEWERS

PRESCRIPTIVE REVIEWERS 

Geoffrey Hutchinson, 
University of Pittsburgh 

William Lester, 
University of California–Berkeley 

Herve Marand, 
Virginia Polytechnic Institute and
State University

Thomas Mason, 
University of California–Los Angeles

Paul Siders, 
University of Minnesota–Duluth

2ND EDITION

PRESCRIPTIVE REVIEWERS

David L. Cedeño, 
Illinois State University

Rosemarie Chinni, 
Alvernia College

Allen Clabo, 
Francis Marion University

Lorrie Comeford, 
Salem State College

John M. Jean, 
Regis University

Martina Kaledin, 
Kennesaw State University

Daniel Lawson, 
University of Michigan–Dearborn

Dmitrii E. Makarov, 
University of Texas at Austin

Enrique Peacock-López, 
Williams College

Anthony K. Rappe, 
Colorado State University

Markku Räsänen, 
University of Helsinki

Richard W. Schwenz, 
University of Northern Colorado

Jie Song, 
University of Michigan–Flint

Michael E. Starzak, 
Binghamton University

Liliya Vugmeyster, 
University of Alaska–Anchorage

James E. Whitten, 
University of Massachusetts–Lowell



PREFACE xvii

ART REVIEWER

Lorrie Comeford, 
Salem State College

MATH REVIEWER

Leon Gerber, 
St. John’s University

MANUSCRIPT REVIEWERS

Alexander Angerhofer, 
University of Florida

Martha Bruch, 
State University of New York 
at Oswego

Stephen Cooke, 
University of North Texas

Douglas English, 
University of Maryland–College Park

Sophya Garashchuk, 
University of South Carolina

Cynthia Hartzell, 
Northern Arizona University

George Kaminski, 
Central Michigan University

Herve Marand, 
Virginia Polytechnic Institute and
State University

Thomas Pentecost, 
University of Colorado

Rajeev Prabhakar, 
University of Miami

Sanford Safron, 
Florida State University

Ali Sezer, 
California University of Pennsylvania

Andrew Teplyakov, 
University of Delaware

Daniel Zeroka, 
Lehigh University



MasteringChemistry® is designed with a single purpose: to help students reach the moment 
of  understanding. The Mastering online homework and tutoring system delivers self-paced 
tutorials that provide students with individualized coaching set to your course objectives. 
MasteringChemistry® helps students arrive better prepared for lecture and lab. 

www.masteringchemistry.com

Engaging Experiences

MasteringChemistry® promotes interactivity in Physical Chemistry. Research shows that 
Mastering’s immediate feedback and tutorial assistance helps students understand and 
master concepts and skills in Chemistry—allowing them to retain more knowledge and 
perform better in this course and beyond.

STUDENT TUTORIALS

MasteringChemistry® is the only system to provide 
instantaneous feedback specifi c to individual 
student entries. Students can submit an answer and 
receive immediate, error-specifi c feedback. Simpler 
sub-problems—hints—help students think through 
the problem. Over 460 tutorials will be available 
with MasteringChemistry® for Physical Chemistry 
including new ones on The Cyclic Rule, Particle in a 
Box, and Components of  U.

END-OF-CHAPTER CONTENT 
AVAILABLE IN MASTERINGCHEMISTRY®:

Selected end-of-chapter problems are 
assignable within MasteringChemistry®,
including:

• Numerical answers with hints 
and feedback

• Equation and Symbolic answer types so 
that the results of  a self-derivation can 
be entered to check for correctness, 
feedback, and assistance

•  A Solution View that allows students 
to see intermediate steps involved in 
calculations of  the fi nal numerical result 

www.masteringchemistry.com


Trusted Partner

The Mastering platform was developed by scientists for science students and 
instructors, and has a proven history with over 10 years of  student use. Mastering 
currently has more than 1.5 million active registrations with active users in all 50 
states and in 41 countries. The Mastering platform has 99.8% server reliability.

PEARSON ETEXT

Pearson eText provides access to the 
text when and wherever students have 
access to the Internet. eText pages look 
exactly like the printed text, o  ering 
powerful new functionality. Users 
can create notes, highlight the text in 
di  erent colors, create bookmarks, 
zoom, click hyperlinked words and 
phrases to view defi nitions, view as 
single or two-pages. Pearson eText also 
links students to associated media fi les, 
enabling them to view an animation 
as they read the text, and o  ers a full 
text search and the ability to save and 
export notes.

GRADEBOOK

Every assignment is automatically graded. 
Shades of  red highlight vulnerable 
students and challenging assignments.

GRADEBOOK DIAGNOSTICS

This screen provides you with your favorite 
diagnostics. With a single click, charts summarize 
the most di   cult problems, vulnerable students, 
grade distribution, and even score improvement 
over the course.



This page intentionally left blank 



1.1 Why Study Quantum
Mechanics?

1.2 Quantum Mechanics Arose
out of the Interplay of
Experiments and Theory
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1.5 Particles Exhibit Wave-Like
Behavior
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1.7 Atomic Spectra and the Bohr
Model for the Hydrogen
Atom

From Classical to
Quantum Mechanics

As scientists became able to investigate the atomic realm, they

obtained results that were inconsistent with classical physics. Classical

physics predicted that all bodies at a temperature other than zero kelvin

radiate an infinite amount of energy. It incorrectly predicted that the

kinetic energy of electrons produced upon illuminating a metal surface in

vacuum with light is proportional to the light intensity, and it could not

explain the diffraction of an electron by a crystalline solid. Rutherford’s

laboratory showed that atoms consist of a small, positively charged

nucleus surrounded by a diffuse cloud of electrons. Classical physics, how-

ever, predicted that such an atom was unstable and that the electrons

would spiral into the nucleus while radiating energy to the environment.

These inconsistencies between classical theory and experimental observa-

tions provided the stimulus for the development of quantum mechanics. 

1.1Why Study Quantum Mechanics?
Imagine how difficult it would be for humans to function in a world governed by under-
lying principles without knowing what they were. If we could not calculate the trajec-
tory of a projectile, we could not launch a satellite. Without understanding how energy
is transformed into work, we could not design an automobile that gets more mileage for
a given amount of fuel. Technology arises from an understanding of matter and energy,
which argues for a broad understanding of scientific principles.

Chemistry is a molecular science; the goal of chemists is to understand macro-
scopic behavior in terms of the properties of individual atoms and molecules. In the
first decade of the 20th century, scientists learned that an atom consisted of a small,
positively charged nucleus surrounded by a diffuse electron cloud. However, this struc-
ture was not compatible with classical physics (the physics of pre-1900), which pre-
dicted that the electrons would follow a spiral trajectory and end in the nucleus.
Classical physics was also unable to explain why graphite conducts electricity and dia-
mond does not or why the light emitted by a hydrogen discharge lamp appears at only a
small number of wavelengths.
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These deficiencies in classical physics made it clear that another physical model
was needed to describe matter at the microscopic scale of atoms and molecules. Over a
period of about 20 years, quantum mechanics was developed, and scientists found that
the puzzling phenomena just cited can be explained using quantum mechanics. The
central feature that distinguishes quantum and classical mechanics is wave-particle
duality. At the atomic level, electrons, protons, and light all behave as wave/particles 
as opposed to waves or particles. It is the experiment that determines whether wave or
particle behavior will be observed.

Although few people may know it, we are already users of quantum mechanics. We
take the stability of the atom with its central positively charged nucleus and surround-
ing electron cloud, the laser in our CD players, the integrated circuit in our computers,
and the chemical bond between atoms to form molecules for granted. We know that
infrared spectroscopy provides a useful way to identify chemical compounds and that
nuclear magnetic resonance spectroscopy provides a powerful tool to image internal
organs. However, these spectroscopies would not be possible if atoms and molecules
could have any value of energy as predicted by classical physics. Quantum mechanics
predicts that atoms and molecules can only have discrete energies and provides a com-
mon basis for understanding all spectroscopies.

Many areas of modern technology such as microfabrication of integrated circuits are
based on quantum mechanics. Quantum mechanical calculations of chemical properties
of pharmaceutical molecules are now sufficiently accurate that molecules can be designed
for a specific application before they are tested at the laboratory bench. Quantum comput-
ing, in which a logic state can be described by zero and one rather than zero or one, is a
very active area of research. If quantum computers can ultimately be realized, they will be
much more powerful than current computers. As many sciences such as biology become
increasingly focused on the molecular level, more scientists will need to be able to think
in terms of quantum mechanical models. Therefore, a basic understanding of quantum
mechanics is an essential part of the chemist’s knowledge base.

1.2 Quantum Mechanics Arose out of the
Interplay of Experiments and Theory

Scientific theories gain acceptance if they help us to understand the world around us. 
A key feature of validating theories is to compare the result of new experiments with
the prediction of currently accepted theories. If the experiment and the theory agree, we
gain confidence in the model underlying the theory; if not, the model needs to be mod-
ified. At the end of the 19th century, Maxwell’s electromagnetic theory unified existing
knowledge in the areas of electricity, magnetism, and waves. This theory, combined
with the well-established field of Newtonian mechanics, ushered in a new era of matu-
rity for the physical sciences. Many scientists of that era believed that there was little
left in the natural sciences to learn. However, the growing ability of scientists to probe
natural phenomena at an atomic level soon showed that this presumption was incorrect.
The field of quantum mechanics arose in the early 1900s as scientists became able to
investigate natural phenomena at the newly accessible atomic level. A number of key
experiments showed that the predictions of classical physics were inconsistent with
experimental outcomes. Several of these experiments are described in more detail in
this chapter in order to show the important role that experiments have had—and con-
tinue to have—in stimulating the development of theories to describe the natural world.

In the rest of this chapter, experimental evidence is presented for two key properties
that have come to distinguish classical and quantum physics. The first of these is
quantization. Energy at the atomic level is not a continuous variable, but it comes in
discrete packets called quanta. The second key property is wave-particle duality. At
the atomic level, light waves have particle-like properties, and atoms as well as sub-
atomic particles such as electrons have wave-like properties. Neither quantization nor
wave-particle duality were known concepts until the experiments described in Sections 1.3
through 1.7 were conducted.
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1.3 Blackbody Radiation
Think of the heat that a person feels from the embers of a fire. The energy that the body
absorbs is radiated from the glowing coals. An idealization of this system that is more
amenable to theoretical study is a red-hot block of metal with a spherical cavity in its
interior that can be observed through a hole small enough that the conditions inside the
block are not perturbed. An ideal blackbody is shown in Figure 1.1. Under the condi-
tion of equilibrium between the radiation field inside the cavity and the glowing piece
of matter, classical electromagnetic theory can predict what frequencies of light are
radiated and their relative magnitudes. The result is

(1.1)

In this equation, is the spectral density, which has the units of energy 
. The spectral density is a function of the temperature T and the fre-

quency . The speed of light is c, and is the average energy of an oscillating dipole
in the solid. In words, the spectral density is the energy stored in the electromagnetic
field of the blackbody radiator at frequency per unit volume and unit frequency.

The factor is used on both sides of this equation because we are asking for the
energy density observed within the frequency interval of width centered at the fre-
quency . Classical theory further predicts that the average energy of an oscillator is
simply related to the temperature by

(1.2)

in which k is the Boltzmann constant. Combining these two equations results in an
expression for , the amount of energy per unit volume in the frequency range
between and in equilibrium with a blackbody at temperature T:

(1.3)

It is possible to measure the spectral density of the radiation emitted by a black-
body, and the results are shown in Figure 1.2 for several temperatures together with
the result predicted by classical theory. The experimental curves have a common
behavior. The spectral density is peaked in a broad maximum and falls off to both
lower and higher frequencies. The shift of the maxima to higher frequencies with
increasing temperatures is consistent with our experience that if more power is put
into an electrical heater, its color will change from dull red to yellow (increasing
frequency).

The comparison of the spectral density distribution predicted by classical theory
with that observed experimentally for T = 6000. K is particularly instructive. The two
curves show similar behavior at low frequencies, but the theoretical curve keeps on
increasing with frequency as Equation (1.3) predicts. Because the area under the

curves gives the total energy per unit volume of the field of the black-
body, classical theory predicts that a blackbody will emit an infinite amount of energy
at all temperatures above absolute zero! It is clear that this prediction is incorrect, but
scientists at the beginning of the 20th century were greatly puzzled about where the
theory went wrong.

In looking at data such as that shown in Figure 1.2, the German physicist Max
Planck was able to develop some important insights that ultimately led to an under-
standing of blackbody radiation. It was understood at the time that the origin of
blackbody radiation was the vibration of electric dipoles formed by atomic nuclei and
their associated electrons that emit radiation at the frequency at which they oscillate.
Planck saw that the discrepancy between experiment and classical theory occurred at
high and not at low frequencies. The absence of high-frequency radiation at low 
temperatures showed that the high-frequency dipole oscillators emitted radiation
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FIGURE 1.1
An idealized blackbody. A cubical solid at
a high temperature emits photons from an
interior spherical surface. The photons
reflect several times before emerging
through a narrow channel. The reflections
ensure that the radiation is in thermal
equilibrium with the solid.
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FIGURE 1.2
The red curves show the light intensity
emitted from an ideal blackbody as a
function of the frequency for different
temperatures. The dashed curve shows the
predictions of classical theory for T =
6000. K.
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only at high temperatures. Unless a large amount of energy is put into the blackbody
(high temperature) it will not be possible to excite the high-energy (high-frequency)
oscillators.

Planck found that he could obtain agreement between theory and experiment only if
he assumed that the energy radiated by the blackbody was related to the frequency by

(1.4)

Planck’s constant h was initially an unknown proportionality constant and n is a pos-
itive integer (n = 1, 2, . . .). The frequency is continuous, but for a given , the
energy is quantized. Equation (1.4) was a radical departure from classical theory, in
which the energy stored in electromagnetic radiation is proportional to the square of
the amplitude but independent of the frequency. This relationship between energy and
frequency ushered in a new era of physics. Energy in classical theory is a continuous
quantity, which means that it can take on all values. Equation (1.4) states that the
energy radiated by a blackbody can take on only a set of discrete values for each fre-
quency. Its main justification was that agreement between theory and experiment
could be obtained. Using Equation (1.4) and some classical physics, Planck obtained
the following relationship:

(1.5)

It is useful to obtain an approximate value for from this equation in two limits: at
high temperatures, where , and at low temperatures, where .
At high temperatures, the exponential function in Equation (1.5) can be expanded in a
Taylor-Maclaurin series (see the Math Supplement, Appendix A), giving

(1.6)

just as classical theory had predicted. However, for low temperatures corresponding to
the denominator in Equation (1.5) becomes very large, and 

approaches zero. The high-frequency oscillators do not contribute to the radiated
energy at low and moderate temperatures.

Using Equation (1.5), in 1901 Planck obtained the following general formula for
the spectral radiation density from a blackbody:

(1.7)

The value of the constant h was not known and Planck used it as a parameter to fit the
data. He was able to reproduce the experimental data at all temperatures with the single
adjustable parameter h which through more accurate measurements currently has the
value . In calculations in this book, we use only four sig-
nificant figures. Obtaining this degree of agreement using a single adjustable parameter
was a remarkable achievement. However, Planck’s explanation, which relied on the
assumption that the energy of the radiation came in discrete packets or quanta, was not
accepted initially. Soon afterward, Einstein’s explanation of the photoelectric effect
gave support to Planck’s hypothesis.

1.4 The Photoelectric Effect
Imagine a copper plate in a vacuum. Light incident on the plate can be absorbed,
leading to the excitation of electrons to unoccupied energy levels. Sufficient energy
can be transferred to the electrons such that some leave the metal and are ejected into
the vacuum. The electrons that have been emitted from the copper upon illumination
can be collected by another electrode in the vacuum system, called the collector. 
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This process of electron ejection by light is called the photoelectric effect. A
schematic apparatus is shown in Figure 1.3. The absorbed light energy must be bal-
anced by the energy required to eject an electron at equilibrium and the kinetic
energy of the emitted electrons, because the energy of the system is constant.
Classical theory makes the following predictions:

• Light is incident as a plane wave over the whole copper plate. Therefore, the light is
absorbed by many electrons in the solid. Any one electron can absorb only a small
fraction of the incident light.

• Electrons are emitted to the collector for all light frequencies, provided that the
light is sufficiently intense.

• The kinetic energy per electron increases with the light intensity.

The results of the experiment can be summarized as follows:

• The number of emitted electrons is proportional to the light intensity, but their
kinetic energy is independent of the light intensity.

• No electrons are emitted unless the frequency is above a threshold frequency 
even for high light intensities.

• The kinetic energy of the emitted electrons depends on the frequency in the manner
depicted in Figure 1.4.

• Electrons are emitted even at such low light intensities that all the light absorbed by
the entire copper plate is barely enough to eject a single electron, based on energy
conservation considerations.

Just as for blackbody radiation, the inability of classical theory to correctly predict
experimental results stimulated a new theory. In 1905, Albert Einstein hypothesized
that the energy of light was proportional to its frequency:

(1.8)

where is a constant to be determined. This is a marked departure from classical elec-
trodynamics, in which there is no relation between the energy of a light wave and its
frequency. Invoking energy conservation, the energy of the electron is related to that
of the light by

(1.9)

The binding energy of the electron in the solid, which is analogous to the ionization
energy of an atom, is designated by in this equation and is called the work 
function. In words, this equation says that the kinetic energy of the photoelectron
that has escaped from the solid is smaller than the photon energy by the amount with
which the electron is bound to the solid. Einstein’s theory gives a prediction of the
dependence of the kinetic energy of the photoelectrons as a function of the light fre-
quency that can be compared directly with experiment. Because can be deter-
mined independently, only is unknown. It can be obtained by fitting the 
data points in Figure 1.4 to Equation (1.9). The results shown by the red line in
Figure 1.4 not only reproduce the data very well, but they yield the striking result
that , the slope of the line, is identical to Planck’s constant h. The equation that
relates the energy of light to its frequency

(1.10)

is one of the most widely used equations in quantum mechanics and earned Albert
Einstein a Nobel Prize in physics. A calculation involving the photoelectric effect is
carried out in Example Problem 1.1.

The agreement between the theoretical prediction and the experimental data vali-
dates Einstein’s fundamental assumption that the energy of light is proportional to its
frequency. This result also suggested that h is a “universal constant” that appears in
seemingly unrelated phenomena. Its appearance in this context gained greater accept-
ance for the assumptions Planck used to explain blackbody radiation.
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FIGURE 1.3
The electrons emitted by the surface upon
illumination are incident on the collector,
which is at an appropriate electrical
potential to attract them. The experiment
is carried out in a vacuum chamber to
avoid collisions and capture of electrons
by gas molecules.
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EXAMPLE PROBLEM 1.1

Light with a wavelength of 300. nm is incident on a potassium surface for which the
work function is 2.26 eV. Calculate the kinetic energy and speed of the ejected
electrons.

Solution

Using Equation (1.9), we write and convert the units of 
from electron-volts to joules: .
Electrons will only be ejected if the photon energy is greater than . The photon
energy is calculated to be

which is sufficient to eject electrons.
Using Equation (1.9), we obtain . Using 

Ee = 1/2 mv2, we calculate that

Another important conclusion can be drawn from the observation that even at
very low light intensities, photoelectrons are emitted from the solid. More precisely,
photoelectrons are detected even at intensities so low that all the energy incident on
the solid surface is only slightly more than the threshold energy required to yield a
single photoelectron. This means that the light that liberates the photoelectron is not
uniformly distributed over the surface. If this were true, no individual electron could
receive enough energy to escape into the vacuum. The surprising conclusion of this
experiment is that all of the incident light energy can be concentrated in a single elec-
tron excitation. This led to the coining of the term photon to describe a spatially
localized packet of light. Because this spatial localization is characteristic of parti-
cles, the conclusion that light can exhibit particle-like behavior under some circum-
stances was inescapable.

Many experiments have shown that light exhibits wave-like behavior. It has long
been known that light can be diffracted by an aperture or slit. However, the photon in
the photoelectric effect that exhibits particle-like properties and the photon in a
diffraction experiment that exhibits wave-like properties are one and the same. This
recognition forces us to conclude that light has a wave-particle duality, and depend-
ing on the experiment, it can manifest as a wave or as a particle. This important
recognition leads us to the third fundamental experiment to be described: the
diffraction of electrons by a crystalline solid. Because diffraction is proof of wave-
like behavior, if particles can be diffracted, they exhibit a particle-wave duality just
as light does.

1.5 Particles Exhibit Wave-Like Behavior
In 1924, Louis de Broglie suggested that a relationship that had been derived to relate
momentum and wavelength for light should also apply to particles. The de Broglie
relation states that

(1.11)l =
h

p

v = A
2Ee

m
= A

2 (3.00 * 10-19 J)
9.109 * 10-31 kg

= 8.12 * 105 m s-1

Ee = (hc>l) - f = 3.00 * 10-19 J

hc

l
=

(6.626 * 10-34 J s)(2.998 * 108 m s-1)

300. * 10-9 m
= 6.62 * 10-19 J

fhn
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fEe = hn - f = (hc>l) - f

f



1.5 PARTICLES EXHIBIT WAVE-LIKE BEHAVIOR 7

in which h is the by now familiar Planck constant and p is the particle momentum
given by p = mv, in which the momentum is expressed in terms of the particle mass
and velocity. This proposed relation was confirmed in 1927 by Davisson and Germer,
who carried out a diffraction experiment. Diffraction is the change in the directions
and intensities of waves after passing by or through an aperture or grating whose 
characteristic size is approximately the same as the wavelength of the waves.
Diffraction by a double slit is discussed in more detail in Section 1.6. Putting numbers
in Equation (1.11) will demonstrate that it is difficult to obtain wavelengths much
longer than 1 nm even with particles as light as the electron, as shown in Example
Problem 1.2. Therefore, diffraction requires a grating with atomic dimensions, and an
ideal candidate is a crystalline solid. Davisson and Germer observed diffraction of
electrons from crystalline NiO in their classic experiment to verify the de Broglie rela-
tion. Figure 1.5 shows a scan through a diffraction pattern obtained by diffracting a
beam of He atoms from a crystal surface of nickel.

EXAMPLE PROBLEM 1.2

Electrons are used to determine the structure of crystal surfaces. To have diffraction, the
wavelength of the electrons should be on the order of the lattice constant, which is typi-
cally 0.30 nm. What energy do such electrons have, expressed in electron-volts and joules?

Solution

Using Equation (1.11) and the expression E = p2/2m for the kinetic energy, we obtain

The Davisson-Germer experiment was critical in the development of quantum
mechanics in that it showed that particles exhibit wave behavior. If this is the case, there
must be a wave equation that relates the spatial and time dependencies of the wave
amplitude for the (wave-like) particle. This equation could be used to describe an atomic
scale system rather than Newton’s second law F = ma. It was Erwin Schrödinger who
formulated this wave equation, which will be discussed in Chapter 2.

= 2.7 * 10-18 J or 17 eV
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FIGURE 1.5
Diffraction scan obtained by rotating a
mass spectrometer around a nickel single
crystal surface on which a collimated He
beam was incident. Each peak corresponds
to a different diffraction maximum. 
Source: Reprinted with permission from “A
helium diffraction study of the structure of the
Ni(115) surface,” by D.S. Kaufman et al., from
The Journal of Chemical Physics, Vol. 86, 
issue 6, pp. 3682 (1987). Copyright 1987,
American Institute of Physics.
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FIGURE 1.6
Diffraction of light of wavelength from
a slit whose long axis is perpendicular to
the page. The arrows from the left indi-
cate parallel rays of light incident on an
opaque plate containing the slit. Instead of
seeing a sharp image of the slit on the
screen, a diffraction pattern will be seen.
This is schematically indicated in a plot of
intensity versus distance. In the absence
of diffraction, the intensity versus dis-
tance indicated by the blue lines would be
observed.
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1.6 Diffraction by a Double Slit
There is probably no single experiment that exhibits the surprising nature of quantum
mechanics as well as the diffraction of particles by a double slit. An idealized version
of this experiment is described next, but everything in the explanation has been con-
firmed by experiments carried out with particles such as neutrons, electrons, and He
atoms. We first briefly review classical diffraction of waves.

Diffraction is a phenomenon that is widely exploited in science. For example, the
atomic level structure of DNA was in large part determined by analyzing the diffraction
of X rays from crystalline DNA samples. Figure 1.6 illustrates diffraction of light from
a thin slit in an otherwise opaque wall.

It turns out that the analysis of this problem is much simpler if the screen on which the
image is projected is far away from the slit. Mathematically, this requires that b a.
In ray optics, which is used to determine the focusing effect of a lens on light, the light
incident on the slit from the left in Figure 1.6 would give a sharp image of the slit on the
screen. In this case parallel light is assumed to be incident on the slit and, therefore,
the image and slit dimensions are identical. The expected intensity pattern is that shown by
the blue lines in the figure. Instead, an intensity distribution like that shown by the red
curve is observed if the light wavelength is comparable in magnitude to the slit width.

The origin of this pattern of alternating maxima and minima (which lies well out-
side the profile expected from ray optics) is wave interference. Its origin can be under-
stood by treating each point in the plane of the slit as a source of cylindrical waves
(Huygens’ construction). Maxima and minima arise as a result of a path difference
between the sources of the cylindrical waves and the screen, as shown in Figure 1.7.
The condition that the minima satisfy is

(1.12)

This equation helps us to understand under what conditions we might observe diffrac-
tion. The wavelength of light in the middle of the visible spectrum is about 600. nm or

. If this light is allowed to pass through a 1.00-mm-wide slit and the
angle calculated at which the first minimum will appear, the result is for n = 1.
This minimum is not easily observable because it lies so close to the maximum, and we
expect to see a sharp image of the slit on our screen, just as in ray optics. However, if
the slit width is decreased to , then . This minimum is easily
observable and successive bands of light and darkness will be observed instead of a
sharp image. Note that there is no clear demarcation between ray optics and diffraction.
The crossover between the two is continuous and depends on the resolution of the
experimental techniques. The exact same behavior is observed in wave-particle duality
in quantum mechanics. If the slit is much larger than the wavelength, diffraction by
particles will not be observed, and ray optics holds.

u = 3.4°1.00 * 10-2 mm

u = 0.03°
6.00 * 10-4 mm

sin u =
nl

a
, n = ;1, ;2, ;3, ; Á

W
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(a) (b) (c)

FIGURE 1.7
Each segment of a slit through which light
is diffracted can be viewed as a source of
waves that interfere with one another. 
(a) The waves that emerge perpendicular
to the slit are all in phase and give rise to
the principal maximum in the diffraction
pattern. (b) Successive waves that emerge
at the angle shown are exactly out of
phase. They will interfere destructively
and a minimum intensity will be
observed. (c) Every other wave is out of
phase and destructive interference with a
minimum intensity will be observed. The
wavelength and slit width are not drawn
to scale.

Consider the experimental setup designed to detect the diffraction of particles
shown in Figure 1.8. The essential feature of the apparatus is a metal plate in which two
rectangular slits of width a have been cut. The long axis of the rectangles is perpendicu-
lar to the plane of the page. Why two slits? Rather than detecting the diffraction from
the individual slits, the apparatus is designed to detect diffraction from the combination
of the two slits. Diffraction will only be observed for case 2 if the particle passes
through both slits simultaneously which is hard to imagine from the vantage point of
classical physics.

First, we need a source of particles, for instance, an electron gun. By controlling the
energy of the electron, the wavelength is varied. Each electron has a random phase
angle with respect to every other electron. Consequently, two electrons can never
interfere with one another to produce a diffraction pattern. One electron gives rise to
the diffraction pattern, but many electrons are needed to amplify the signal so that we
can see the pattern. A more exact way to say this is that the intensities of the electron
waves add together rather than the amplitudes.

A phosphorescent screen that lights up when energy from an incident wave or
particle is absorbed (as in a television picture tube) is mounted behind the plate with the
slits. The electron energy is adjusted so that diffraction by the single slits of width a
results in broad maxima with the first intensity minimum at a large diffraction angle.
The distance between the two slits, b, has been chosen such that we will observe a
number of intensity oscillations for small diffraction angles. The diffraction patterns in
Figure 1.8 (case 2) were calculated for the ratio b a = 5.>
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FIGURE 1.8
The double-slit diffraction experiment.
case 1 describes the outcome of the dif-
fraction when one of the slits is blocked.
case 2 describes the outcome when both
slits are open.
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Now let’s talk about the results. If one slit is closed and an observer looks at the
screen, he or she will see the broad intensity versus distance pattern shown as case 1 in
Figure 1.8. (i) Depending on which slit has been closed, the observer sees one of the
two diffraction patterns shown, and concludes that the electron acts like a wave. (ii) If
the observer measures the electron current, he or she finds that exactly 50% land on the
screen and 50% land on the device that blocks one slit for a large number of electrons.
(iii) When working with very sensitive phosphors, the arrival of each individual
electron at the screen is detected by a flash of light localized to a small area of a screen.
Which of these three results is consistent with both wave and particle behavior, and
which is only consistent with wave or particle behavior?

In the next experiment, both slits are left open. The result of this experiment is shown
in Figure 1.8 as case 2. For very small electron currents, the observer again sees individual
light flashes localized to small areas of the screen in a random pattern, which looks like
particle behavior. Figure 1.9 shows what the observer would see if the results of a number
of these individual electron experiments are stored. However, unmistakable diffraction
features are seen if we accumulate the results of many individual light flashes. This shows
that a wave (a single electron) is incident on both of the slits simultaneously.

How can the results of this experiment be understood? The fact that diffraction is
seen from a single slit as well as from the double slit shows the wave-like behavior of
the electron. Yet individual light flashes are observed on the screen, which is what we
expect from particle trajectories. To add to the complexity, the spatial distribution of the
individual flashes on the screen is what we expect from waves rather than from parti-
cles. The measurement of the electron current to the slit blocker seems to indicate that
the electron either went through one slit or through the other. However, this conclusion
is inconsistent with the appearance of a diffraction pattern because a diffraction pattern
only arises if one and the same electron goes through both slits!

Regardless of how we turn these results around, we will find that all the results are
inconsistent with the logic of classical physics, namely, the electron goes through one slit
or the other. This either/or logic cannot explain the results. In a quantum mechanical
description, the electron wave function is a superposition of wave functions for going
through the top slit and the bottom slit, which is equivalent to saying that the electron can
go through both slits. We will have much more to say about wave functions in the next
few chapters. The act of measurement, such as blocking one slit, changes the wave func-
tion such that the electron goes through either the top slit or the bottom one. The results
represent a mixture of particle and wave behavior. Individual electrons move through the
slits and generate points of light on the screen. This behavior is particle-like. However,
the location of the points of light on the screen is not what is expected from classical

(a)

(b)

(c)

(d)

(e)

FIGURE 1.9
Simulation of the diffraction pattern
observed in the double-slit experiment for
(top to bottom) (a) 60, (b) 250, (c) 1000,
and (d) 3000 particles. The bottom panel
shows what would be expected for a wave
incident on the apparatus. Bright red cor-
responds to high intensity and blue corre-
sponds to low intensity. Note that the
diffraction pattern only becomes obvious
after a large number of particles have
passed through the apparatus, although
intensity minima are evident even for 
60 incident particles.
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trajectories; it is governed by the diffraction pattern. This behavior is wave-like. Whereas
in classical mechanics the operative word concerning several possible modes of behavior
is or, in quantum mechanics it is and. If all of this seems strange at first sight, welcome to
the crowd! Although particle diffraction has been observed directly only for atomic and
molecular masses up to 20 amu (neon), the de Broglie relation has been verified for mol-
ecules as heavy as tetraphenylporphyrin, which has a molecular mass of 614 amu.

1.7 Atomic Spectra and the Bohr Model of
the Hydrogen Atom

The most direct evidence of energy quantization comes from the analysis of the light
emitted from highly excited atoms in a plasma. The structure of the atom was not
known until fundamental studies using the scattering of alpha particles were carried out
in Ernest Rutherford’s laboratory beginning in 1910. These experiments showed that
the positive and negative charges in an atom were separated. The positive charge is con-
tained in the nucleus, whereas the negative charge of the electrons occupies a much
greater volume that is centered at the nucleus. In analogy to our solar system, the first
picture that emerged of the atom was of electrons orbiting the nucleus.

However, this picture of the atom is inconsistent with electrodynamic theory. An
electron orbiting the nucleus is constantly accelerating and must therefore radiate
energy. In a classical picture, the electron would continually radiate away its kinetic
energy and eventually fall into the nucleus as depicted in Figure 1.10.

This clearly was not happening, but why? We will answer this question when we
discuss the hydrogen atom in Chapter 9. Even before Rutherford’s experiments, it was
known that if an electrical arc is placed across a vacuum tube with a small partial pres-
sure of hydrogen, light is emitted. Our present picture of this phenomenon is that the
atom takes up energy from the electromagnetic field and makes a transition to an
excited state. The excited state has a limited lifetime, and when the transition to a state
of lower energy occurs, light is emitted. An apparatus used to obtain atomic spectra and
a typical spectrum are shown schematically in Figure 1.11.

How did scientists working in the 1890s explain these spectra? The most important
experimental observation made is that over a wide range of wavelengths, light emitted
from atoms is only observed at certain discrete wavelengths; that is, it is quantized. This
result was not understandable on the basis of classical theory because in classical
physics, energy is a continuous variable. Even more baffling to these first spectro-
scopists was that they could derive a simple relationship to explain all of the frequencies
that appeared in the hydrogen emission spectrum. For the emission spectra observed, the
inverse of the wavelength of all lines in an atomic hydrogen spectrum is given
by equations of the type

(1.13)

in which only a single parameter n1 appears. In this equation, n is an integer that takes
on the values n1 + 1, n1 + 2, n1 + 3, . . ., and RH is called the Rydberg constant, which
has the value . What gives rise to such a simple relationship and why
does n take on only integral values?

In 1911 Niels Bohr, who played a seminal role in the development of quantum
mechanics, proposed a model for the hydrogen atom that explained its emission spec-
trum. Even though Bohr’s model was superseded by the Schrödinger model described in
Chapter 9, it offered the first explanation of how quantized energy levels arise in atoms
as a result of wave-particle duality. Bohr assumed a simple model of the hydrogen atom
in which an electron revolved around the nucleus in a circular orbit. The orbiting elec-
tron experiences two forces: a Coulombic attraction to the nucleus, and a centrifugal
force that is opposite in direction. In a stable orbit, these two forces are equal.

(1.14)
e2

4pe0r2 =
mev

2

r

109,677.581 cm-1

(cm-1) = RH (cm-1) a 1

n2
1

-
1

n2 b , n 7 n1n~

n~1>l =

spiral trajectory

circular orbit

FIGURE 1.10
Classical particle-based physics predicts
that an electron in a circular orbit will lose
energy by radiation and spiral into the
nucleus.
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In Equation (1.14), e is the charge on the electron, me and v are its mass and speed, and
r is the orbit radius.

Bohr next introduced wave-particle duality by asserting that the electron had the de
Broglie wavelength . He made a new assumption that the length of an orbit
had to be an integral number of wavelengths.

(1.15)

Which leads to the condition

(1.16)

We have introduced the symbol for h 2 . The rationale for Equation (1.15) is shown
in Figure 1.12.

Bohr reasoned that unless the orbit length is an integral number of wavelengths, the
wave will destructively interfere with itself, and the amplitude will decrease to zero in a

p>U

mevr = nU, where n = 1,2,3 Á

2pr = nl = n
h

p

l = h>p

Photographic film

Dispersing element

Slit

High
voltage

H�

H�

H�
H	

H


Hydrogen
discharge
tube

∼

FIGURE 1.11
Light emitted from a hydrogen discharge
lamp is passed through a narrow slit and
separated into its component wavelengths
by a dispersing element. As a result, multi-
ple images of the slit, each corresponding
to a different wavelength, are seen on the
photographic film. One of the different
series of spectral lines for H is shown.

represents the inverse wavelength 
[see Equation (1.13)].
n~

L

3� � L

3� � 2r

2r � L

r

FIGURE 1.12
In analogy to a wave on a string (upper
image), Bohr postulated a wave traveling
on a circular orbit (lower image). Unless
the circumference of the orbit is an inte-
gral number of wavelengths, the wave will
cancel itself out.
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EXAMPLE PROBLEM 1.3

Calculate the radius of the electron in H in its lowest energy state, corresponding to n = 1.

Solution

The total energy of the electron in the hydrogen atom is the sum of its kinetic and
potential energies.

(1.18)

We transform Equation (1.18) into a more useful form by first eliminating v using
Equation (1.14).

(1.19)

We next eliminate r using Equation (1.17), obtaining Equation (1.20), which shows that
the energy levels in the Bohr model are discrete.

(1.20)

All energy values have negative values because the zero of energy, which is arbitrary,
corresponds to corresponding to a proton and an electron at infinite separation.
The ground state energy is the lowest energy that a hydrogen atom can have that corre-
sponds to n = 1.

Because the energy of the electron can have only certain discrete values, the light
emitted when an electron makes a transition from a higher to a lower energy level has a
discrete set of frequencies:

(1.21)

We see that Equation (1.21) provides a rationale for the empirical formula given by
Equation (1.13), and the calculated and measured frequencies for the hydrogen atom
are in quantitative agreement. This agreement between theory and experiment appears
to justify the assumptions made. A number of possible energy transitions in the Bohr
model are shown in Figure 1.13.

Although the Bohr model predicts the absorption and emission frequencies
observed in the hydrogen atom, it does not give quantitative agreement with spectra
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0h3 a 1
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2
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  =
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mee
2

few orbits. The assertion that there is a stable orbit for the electron goes beyond
classical physics as shown in Figure 1.10.

Solving Equation (1.16) for v and substituting the result in Equation (1.14) gives
the following expression for the orbit radius r:

(1.17)

Equation (1.17) shows that the electron can only have certain discrete values for the
orbit radii, each corresponding to a different value of n. We next show that the discrete
set of orbit radii gives rise to a discrete set of energy levels.

r =
e0h2n2

pmee
2 =

4pE0U2n2

mee
2

FIGURE 1.13
Transitions in the Bohr model giving
rise to light emission are shown. The
series differ in the quantum number of
the final state.

n � 1
n � 2

n � 3
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n � 5
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observed for any atom containing more than one electron, for reasons that will become
clear in Chapters 10 and 11. There is also a fundamental flaw in the Bohr model that
was discovered by Werner Heisenberg 14 years after the model was introduced.
Heisenberg showed that it is not possible to simultaneously know the electron orbit
radius and its momentum as Bohr had assumed. We discuss Heisenberg’s work on the
uncertainty principle in Chapter 6.

Vocabulary

Conceptual Problems

Q1.1 Why is there an upper limit to the photon energy that
can be observed in the discrete emission spectrum of the
hydrogen atom?

Q1.2 Why was the wave nature of particles not discovered
until atomic level experiments became possible?

Q1.3 Classical physics predicts that there is no stable orbit
for an electron moving around a proton. The Bohr model of
the hydrogen atom preceded quantum mechanics. Justify the
criterion that Niels Bohr used to define special orbits that he
assumed were stable.

Q1.4 You observe light passing through a slit of width a as
decreases from to . Will you observe a

sharp transition between ray optics and diffraction? Explain
why or why not.

Q1.5 Which of the experimental results for the photo-
electric effect suggests that light can display particle-like
behavior?

Q1.6 Is the intensity observed from the diffraction experi-
ment depicted in Figure 1.7 the same for the angles shown in
parts (b) and (c)?

Q1.7 What feature of the distribution depicted as case 1 in
Figure 1.8 tells you that it arises from diffraction?

Q1.8 Why does the analysis of the photoelectric effect
based on classical physics predict that the kinetic energy of
electrons will increase with increasing light intensity?

Q1.9 In the double-slit experiment, researchers found that
an equal number of electrons pass through each slit. Does this

result allow you to distinguish between particle-like and
wave-like behavior?

Q1.10 The inability of classical theory to explain the 
spectral density distribution of a blackbody was called the
ultraviolet catastrophe. Why is this name appropriate?

Q1.11 In the diffraction of electrons by crystals, the 
depth sampled by the diffracting electrons is on the order of 
3 to 10 atomic layers. If He atoms are diffracted from the 
surface, only the topmost atomic layer is sampled. Can you
explain this difference?

Q1.12 Why is a diffraction pattern generated by an electron
gun formed by electrons interfering with themselves rather
than with one another?

Q1.13 How can data from photoelectric effect experi-
ments be used to obtain numerical values for the Planck
constant h?

Q1.14 How did Planck conclude that the discrepancy
between experiments and classical theory for blackbody radi-
ation was at high and not low frequencies?

Q1.15 Write down formulas relating the wave number
with the frequency, wavelength, and energy of a photon.

Q1.16 Planck’s explanation of blackbody radiation was
met by skepticism by his colleagues because Equation (1.4)
seemed like a mathematical trick rather than being based on
a microscopic model. Justify this equation using Einstein’s
explanation of the photoelectric effect that came five 
years later.

l V al W al

blackbody radiation

de Broglie relation

ideal blackbody

photoelectric effect

photon

Planck’s constant

quantization

random phase angle

Rydberg constant

spectral density

wave-particle duality

work function

Numerical Problems
Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P1.1 When a molecule absorbs a photon, momentum is con-
served. If an H2 molecule at 500. K absorbs an ultraviolet photon
of wavelength 175 nm, what is the change in its velocity ?¢v

Given that its average speed is , what is
?

P1.2 A more accurate expression for would be obtained
by including additional terms in the Taylor-Maclaurin series.

Eosc

¢v>vrms

vrms = 23kBT>m



The Taylor-Maclaurin series expansion of f(x) in the vicinity
of x0 is given by (see Math Supplement)

Use this formalism to better approximate by expanding 

in powers of out to in the vicinity of 

. Calculate the relative error 

if you had not included the additional terms for
at temperatures of 1000., 600.,

and 200. K.

P1.3 The observed lines in the emission spectrum of atomic
hydrogen are given by

In the notation favored by spectroscopists, 
and . The Lyman, Balmer, and Paschen
series refers to n1 = 1, 2, and 3, respectively, for emission
from atomic hydrogen. What is the highest value of 
in each of these series?

P1.4 Calculate the speed that a gas-phase fluorine mole-
cule would have if it had the same energy as an infrared
photon ( ), a visible photon ( = 500. nm),
an ultraviolet photon ( = 100. nm), and an X-ray photon
( = 0.100 nm). What temperature would the gas have if it
had the same energy as each of these photons? Use the root
mean square speed, , for this
calculation.

P1.5 Calculate the highest possible energy of a photon that
can be observed in the emission spectrum of H.

P1.6 What is the maximum number of electrons that can be
emitted if a potassium surface of work function 2.40 eV
absorbs of radiation at a wavelength of
325 nm? What is the kinetic energy and velocity of the elec-
trons emitted?

P1.7 Show that the energy density radiated by a blackbody

depends on the temperature as T4. (Hint: Make the substitution
of variables .) The definite integral 

. Using your result, calculate the

energy density radiated by a blackbody at 1100. and 6000. K.

P1.8 What speed does an F2 molecule have if it has the
same momentum as a photon of wavelength 225 nm?

1q

0
3x3>(ex - 1)4dx = p4>15

x = hn>kBT

Etotal(T)

V
= L

q

0
r(n,T)dn = L

q

0

8phn3

c3

1

ehn>kBT - 1
dn

5.00 * 10-3 J

vrms = 8v291>2 = 23kBT>m
l

l

ll = 1.00 * 10 4 nm
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f(x) = f(x0) + adf(x)

dx
b

x=x0

(x - x0)
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P1.9 A newly developed substance that emits 250. W of
photons with a wavelength of 325 nm is mounted in a small
rocket initially at rest in outer space such that all of the radia-
tion is released in the same direction. Because momentum is
conserved, the rocket will be accelerated in the opposite
direction. If the total mass of the rocket is 14.2 kg, how fast
will it be traveling at the end of 30.0 days in the absence of
frictional forces?

P1.10 In the discussion of blackbody radiation, the average

energy of an oscillator was 

approximated as forEosc = hn>3(1 + hn>kBT) - 14 = kBT

Eosc = hn>(ehn>kBT - 1)

. Calculate the 

in making this approximation for at temper-

atures of 5000., 1500., and 300. K. Can you predict what the sign

of the relative error will be without a detailed calculation?

P1.11 Using the root mean square speed, 

, calculate the gas temperatures of He and Ar for
which = 0.25 nm, a typical value needed to resolve diffrac-
tion from the surface of a metal crystal. On the basis of your
result, explain why Xe atomic beams are not suitable for
atomic diffraction experiments.

P1.12 Electrons have been used to determine molecular
structure by diffraction. Calculate the speed and kinetic
energy of an electron for which the wavelength is equal to a
typical bond length, namely, 0.125 nm.

P1.13 For a monatomic gas, one measure of the “average
speed” of the atoms is the root mean square speed,

, in which m is the molecular
mass and k is the Boltzmann constant. Using this formula, cal-
culate the de Broglie wavelength for H2 and Ar at 200. and at
900. K.

P1.14 The distribution in wavelengths of the light emitted
from a radiating blackbody is a sensitive function of the tem-
perature. This dependence is used to measure the temperature
of hot objects, without making physical contact with those
objects, in a technique called optical pyrometry. In the limit

, the maximum in a plot of versus is
given by . At what wavelength does the
maximum in occur for T = 675, 1150., and 6200. K?

P1.15 A beam of electrons with a speed of 
is incident on a slit of width 200. nm. The distance to the
detector plane is chosen such that the distance between the
central maximum of the diffraction pattern and the first
diffraction minimum is 0.300 cm. How far is the detector 
plane from the slit?

P1.16 If an electron passes through an electrical potential
difference of 1 V, it has an energy of 1 electron-volt. What
potential difference must it pass through in order to have a
wavelength of 0.300 nm?

P1.17 Calculate the longest and the shortest wavelength
observed in the Balmer series.

P1.18 X rays can be generated by accelerating electrons in a
vacuum and letting them impact on atoms in a metal surface.
If the 1250. eV kinetic energy of the electrons is completely
converted to the photon energy, what is the wavelength of the

5.25 * 104 m>s
r(l,T)

lmax = hc>5kBT
lr(l,T)(hc>lkBT) W 1

vrms = 8v291>2 = 23kBT>m

l

23kBT>m
vrms = 8v291>2 =

n = 7.5 * 1012 s-1
relative error = (E - Eapprox)>Ehn>kBT V 1



X rays produced? If the electron current is ,
how many photons are produced per second?

P1.19 The following data were observed in an experiment
on the photoelectric effect from potassium:

3.50 *  10-5 A required to heat 5.75 g of water by 1.00 K? The heat capacity
of water is .

P1.23 Calculate the longest and the shortest wavelength
observed in the Lyman series.

P1.24 A 1000. W gas discharge lamp emits 4.50 W of ultra-
violet radiation in a narrow range centered near 275 nm. How
many photons of this wavelength are emitted per second?

P1.25 The power per unit area emitted by a blackbody is
given by .
Calculate the power radiated per second by a spherical black-
body of radius 0.500 m at 925 K. What would the radius of a
blackbody at 3000. K be if it emitted the same power as the
spherical blackbody of radius 0.500 m at 925 K?

P1.26 A ground state H atom absorbs a photon and makes a
transition to the n = 4 energy level. It then emits a photon of
frequency . What is the final energy and n
value of the atom?

P1.27 Pulsed lasers are powerful sources of nearly mono-
chromatic radiation. Lasers that emit photons in a pulse of
5.00 ns duration with a total energy in the pulse of 0.175 J at
875 nm are commercially available.

a. What is the average power (energy per unit time) in units
of watts (1 W = 1 J s) associated with such a pulse?

b. How many photons are emitted in such a pulse?

>

1.598 * 1014 s-1

P = sT4 with s = 5.67 * 10-8 Wm-2 K-4

75.3 J mol-1 K-1
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W1.1 The maximum in a plot of the spectral density of
blackbody radiation versus T is determined for a number of
values of T using numerical methods. Using these results, the
validity of the approximation is tested 
graphically.

W1.2 The total radiated energy of blackbody radiation is
calculated numerically for the temperatures of W1.1. Using
these results, the exponent in the relation is deter-
mined graphically.

W1.3 Diffraction of visible light from a single slit is simu-
lated. The slit width and light wavelength are varied using
sliders. The student is asked to draw conclusions about how
the diffraction pattern depends on these parameters.

W1.4 Diffraction of a particle from single and double slits
is simulated. The intensity distribution on the detector plane
is updated as each particle passes through the slits. The slit
width and light wavelength are varied using sliders. The
student is asked to draw conclusions about how the diffraction
pattern depends on these parameters.

E = CTa

lmax = hc>5kBT

Web-Based Simulations, Animations, and Problems

1019 Kinetic Energy (J) 4.49 3.09 1.89 1.34 0.700 0.311

Wavelength (nm) 250. 300. 350. 400. 450. 500.

Graphically evaluate these data to obtain values for the work
function and Planck’s constant.

P1.20 The power (energy per unit time) radiated by a black-
body per unit area of surface expressed in units of is
given by with . The
radius of the sun is approximately and the sur-
face temperature is 5800. K. Calculate the total energy radiated
per second by the sun. Assume ideal blackbody behavior.

P1.21 The work function of palladium is 5.22 eV. What is
the minimum frequency of light required to observe the pho-
toelectric effect on Pd? If light with a 200. nm wavelength is
absorbed by the surface, what is the velocity of the emitted
electrons?

P1.22 Assume that water absorbs light of wavelength
with 100% efficiency. How many photons are4.20 * 10-6 m

7.00 * 105 km
s = 5.67 * 10-8 W m-2 K-4P = sT4

W m-2



2.1 What Determines If a System
Needs to Be Described Using
Quantum Mechanics?

2.2 Classical Waves and the
Nondispersive Wave
Equation

2.3 Waves Are Conveniently
Represented as Complex
Functions

2.4 Quantum Mechanical Waves
and the Schrödinger
Equation

2.5 Solving the Schrödinger
Equation: Operators,
Observables, Eigenfunctions,
and Eigenvalues

2.6 The Eigenfunctions of a
Quantum Mechanical
Operator Are Orthogonal

2.7 The Eigenfunctions of a
Quantum Mechanical
Operator Form a 
Complete Set

2.8 Summing Up the New
Concepts

The Schrödinger
Equation

The key to understanding why classical mechanics does not provide an

appropriate framework for understanding phenomena at the atomic level

is the recognition that wave-particle duality needs to be integrated into the

physics. Rather than solving Newton’s equations of motion for a particle, an

appropriate wave equation needs to be solved for the wave-particle. Erwin

Schrödinger was the first to formulate such an equation successfully.

Operators, eigenfunctions, wave functions, and eigenvalues are key con-

cepts that arise in a viable framework to solve quantum mechanical wave

equations. The eigenvalues correspond to the possible values of measured

results, or observables, in an experiment. These new concepts are intro-

duced in this chapter, and will be discussed in Chapters 3 and 4.

2.1
What Determines If a System Needs to
Be Described Using Quantum
Mechanics?

Quantum mechanics was viewed as a radically different way of looking at matter at the
molecular, atomic, and subatomic levels in the 1920s. However, the historical distance
we have from what was a revolution at the time makes the quantum view much more
familiar today. It is important to realize that classical and quantum mechanics are not
two competing ways to describe the world around us. Each has its usefulness in a dif-
ferent regime of physical properties that describe reality. Quantum mechanics merges
seamlessly into classical mechanics in moving from atoms to masses the size of base-
balls. Classical mechanics can be derived from quantum mechanics in the limit that
allowed energy values are continuous rather than discrete. Some of these complexities
will require differentiated thinking as you gain an understanding of quantum mechan-
ics. For instance, it is not correct to say that in dealing with atoms, a quantum mechan-
ical description must always be used.

To illustrate this point, consider a container filled with argon gas at a low pressure.
At the atomic level, the origin of pressure is the collision of rapidly and randomly mov-
ing argon atoms with the container walls. Classical mechanics gives a perfectly good
description of the origin of pressure in this case. However, if we pass ultraviolet light
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through hydrogen gas and ask how much energy can be taken up by an H2 molecule,
we must use a quantum mechanical description. At first, this seems puzzling—why do
we need quantum mechanics in one case but not the other? On further consideration, we
discover that a very few important relationships govern whether a classical description
suffices in a given case. We next discuss these relationships in order to develop an under-
standing of when to use a classical description and when to use a quantum description
for a given system.

The essence of quantum mechanics is that particles and waves are not really separate
and distinct entities. Waves can show particle-like behavior as illustrated by the photo-
electric effect. Particles can also show wave-like properties as shown by the diffraction
of atomic beams from surfaces. How can we develop criteria that tell us when a particle
description (classical) of an atomic or molecular system is sufficient and when we need
to use a wave description (quantum mechanical)? Two criteria are used: the magnitude
of the wavelength of the particle relative to the dimensions of the problem and the
degree to which the allowed energy values form a continuous energy spectrum.

A good starting point is to think about diffraction of light of wavelength passing
through a slit of width a. Ray optics is a good description as long as 
Diffraction is only observed when the wavelength is comparable to the slit width. How
big is the wavelength of a molecule? Of a macroscopic mass like a baseball? By putting
numbers into Equation (1.11), we will find that the wavelength for a room temperature
H2 molecule is about m and that for a baseball is about Keep in mind
that because p rather than v appears in the denominator of Equation (1.11) which
defines the wavelength of a particle, the wavelength of a toluene molecule with the
same velocity as an H2 molecule is about a factor of 50 smaller. As we learned in dis-
cussing the Davisson–Germer experiment in Chapter 1, crystalline solids have regular
spacings that are appropriate for the diffraction of electrons as well as light atoms and
molecules. Particle diffraction is a demonstration of wave-particle duality. To see the
wave character of a baseball, we need to come up with a diffraction experiment. We
will not see diffraction of a baseball because we cannot construct an opening whose
size is This does not mean that wave-particle duality breaks down for
macroscopic masses; it simply means that the wave character of a baseball does not
manifest. There is no sharp boundary such that above a certain value for the momentum
we are dealing with a particle and below it we are dealing with a wave. The degree to
which each of these properties is exhibited flows smoothly from one extreme to the
other. Consider the second example cited earlier. Adding energy to hydrogen molecules
using UV light cannot be treated classically, because energy is taken up by the electrons
in H2. The localization of the electrons to a small volume around the nuclei brings out
their wave-like character, and therefore the process must be described using quantum
mechanics.

We next discuss the second criterion for determining when we need a quantum
mechanical description of a system. It is based on the energy spectrum of the system.
Because all values of the energy are allowed for a classical system, it is said to have a
continuous energy spectrum. In a bounded quantum mechanical system, only certain
values of the energy are allowed, and such a system has a discrete energy spectrum.
To make this criterion quantitative, we need to discuss the Boltzmann distribution.

We will cover more of Boltzmann’s work in statistical thermodynamics. At this
point, we attempt to make his most important result plausible so that we can apply it in
our studies of quantum mechanics. Consider a one-liter container filled with an ideal
atomic gas at the standard conditions of 1 bar and a temperature of 298.15 K. Because
the atoms have no rotational or vibrational degrees of freedom, all of their energy is in
the form of translational kinetic energy. At equilibrium, not all of the atoms have the
same kinetic energy. In fact, the atoms exhibit a broad range of energies. To define the
distribution of atoms having a given energy, descriptors, such as the mean, the median,
or the most probable energy per atom are used. For the atoms under consideration, the
root mean square energy is simply related to the absolute temperature T by

(2.1)Erms =
3

2
kBT

~1 * 10-34 m.

10-34 m.10-10

l V a.
l
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The Boltzmann constant kB is the familiar ideal gas law constant R divided by
Avogadro’s number.

We said that there is a broad distribution of kinetic energy in the gas for the indi-
vidual atoms. What governs the probability of observing one value of the energy as
opposed to another? This question led Ludwig Boltzmann to one of the most impor-
tant equations in physics and chemistry. Looking specifically at our case, it relates the
number of atoms ni that have energy to the number of atoms nj that have energy 
by the equation

(2.2)

This formula is called the Boltzmann distribution. An important concept to keep
in mind is that a formula is just a shorthand way of describing phenomena that
occur in the real world. It is critical to understand what lies behind the formula.
Take a closer look at this equation. It says that the ratio of the number of atoms
having the energy to the number having the energy depends on three things. It
depends exponentially on the difference in the energies and the reciprocal of the
temperature. This means that this ratio varies rapidly with temperature and 
The equation also states that it is the ratio of the energy difference to kBT that is
important. What is kBT? It has the units of energy and is approximately the average
energy that an atom has at temperature T. We can understand this exponential term
as telling us that the larger the temperature, the closer the ratio will be to
unity; the probability of an atom having a given energy falls off exponentially with
increasing energy.

The third factor that influences the ratio is the ratio The quantities gi
and gj are the degeneracies of the energy levels i and j. The degeneracy of an energy
level counts the number of ways that an atom can have an energy within the interval

The degeneracy can depend on the energy. In our example,
degeneracy can be illustrated as follows. The energy of an atom is deter-
mined by We have explicitly written that the energy depends
only on the speed of the atom and not on its individual velocity components. For a
fixed value of there are many more ways of combining different individual
velocity components to give the same speed at large speeds than there are for low
speeds. Therefore, the degeneracy corresponding to a particular energy increases
with the speed.

The importance of these considerations will become clearer as we continue to apply
quantum mechanics to atoms and molecules. As already stated, a quantum mechanical
system has a discrete rather than continuous energy spectrum. If kBT is small compared
to the spacing between allowed energies, the distribution of states in energy will be
very different from a classical system, which has a continuous energy spectrum. On the
other hand, if kBT is much larger than the energy spacing, classical and quantum
mechanics will give the same result for the relative numbers of atoms or molecules of
different energy. This scenario occurs in either of two limits: large T or small 
illustrating how it is possible to have a continuous transition between classical and
quantum mechanics. A large increase in T could cause a system that exhibited quantum
behavior at low temperatures to exhibit classical behavior at high temperatures. A cal-
culation using the Boltzmann distribution for a two-level system is carried out in
Example Problem 2.1.
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EXAMPLE PROBLEM 2.1

Consider a system of 1000. particles that can only have two energies, with
The difference in the energy between these two values is 

Assume that 

a. Graph the number of particles, n1 and n2, in states as a function of
Explain your result.

b. At what value of do 750. of the particles have the energy ?e1kBT>¢e
kBT>¢e. e1 and e2

g1 = g2 = 1.
¢e = e2 - e1.e2 7 e1.
e1 and e2,



We see from the left graph that as long as is small, the vast majority of the
particles have the lower energy. How can we interpret this result? As long as the thermal
energy of the particle, which is approximately kBT, is much less than the difference in
energy between the two allowed values, the particles with the lower energy are unable to
gain energy through collisions with other particles. However, as increases
(which is equivalent to a temperature increase for a fixed energy difference between the
two values), the random thermal energy available to the particles enables some of them
to jump up to the higher energy value. Therefore, n1 decreases and n2 increases. For all
finite temperatures, n1 n2. As T approaches infinity, n1 becomes equal to n2.

Part (b) is solved graphically. n1 is shown as a function of on an
expanded scale on the right side of the preceding graphs, and we see that 
for kBT>¢e = 0.91.

n1 = 750.
kBT>¢e7

kBT>¢e

kBT>¢e
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Solution

Using information from the problem and Equation (2.2), we can write down the
following two equations: and We solve these 
two equations for n2 and n1 to obtain

If these functions are plotted as a function of the following graphs result:kT>¢e,
n2 =

1000. e-¢e>kBT

1 + e-¢e>kBT
 and n1 =

1000.

1 + e-¢e>kBT

n1 + n2 = 1000.n2>n1 = e-¢e>kBT

Example Problem 2.1 shows that the population of states associated with the energy
values are very different if

(2.3)

and very similar if the inequality is reversed. What are the consequences of this result?
Consider a quantum mechanical system, which, unlike a classical system, has a

discrete energy spectrum. The allowed values of energy are called energy levels.
Anticipating a system that we will deal with in Chapter 7, we refer specifically to
the vibrational energy levels of a molecule. The allowed levels are equally spaced
with an interval These discrete energy levels are numbered with integers,
beginning with one. Under what conditions will this quantum mechanical system
appear to follow classical behavior? It will do so if the discrete energy spectrum
appears to be continuous. How can this occur? In a gas at equilibrium, the total
energy of an individual molecule fluctuates within a range through colli-
sions of molecules with one another. Therefore, the energy of a molecule with a par-
ticular vibrational quantum number fluctuates within a range of width kBT centered at
the particular energy level. A plot of the relative number of molecules having a vibra-
tional energy E as a function of E is shown in Figure 2.1 for sharp energy levels and

¢E L kBT

¢E.

(ei - ej)
kBT

W 1

ei and ej
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for the two indicated limits, and The plot is generated
using the Boltzmann distribution.

For each discrete energy level is sufficiently broadened by energy fluctu-
ations that adjacent energy levels can no longer be distinguished. This is indicated by the
overlap of the purple bars representing individual states shown in Figure 2.1b. In this limit,
any energy that we choose in the range shown lies in the purple area. It corresponds to an
allowed value and therefore the discrete energy spectrum appears to be continuous.
Classical behavior will be observed under these conditions. However, if an
arbitrarily chosen energy in the range lies in the green area with high probability, because
the purple bars of width kBT are widely separated. The range between the two purple bars
corresponds to forbidden energies and, therefore, the discontinuous nature of the energy
spectrum is observable. Quantum mechanical behavior is observed under these conditions.

Summarizing this discussion, if the allowed energies form a continuum, classical
mechanics is sufficient to describe that feature of the system. If the allowed energies
are discrete, a quantum mechanical description is needed. The words “that feature”
require emphasis. The pressure exerted by the H2 molecules in the box arises from
momentum transfer governed by the molecules’ translational energy spectrum, which
appears to be continuous, as we will learn in Chapter 4. Therefore, we do not need
quantum mechanics to discuss the pressure in the box. However, if we discuss light
absorption by the same H2 molecules, a quantum mechanical description of light
absorption is required. This is so because light absorption involves an electronic excita-
tion of the molecule, with electronic energy level spacings much larger than kBT.
Therefore, these levels remain discrete at all reasonable temperatures.

2.2 Classical Waves and the Nondispersive
Wave Equation

In Chapter 1, we learned that particles exhibit wave character under certain conditions.
This suggests that there is a wave equation that should be used to describe particles. This
equation is called the Schrödinger equation, and it is the fundamental equation used to
describe atoms and molecules. However, before discussing the Schrödinger equation, we
briefly review classical waves and the classical wave equation.

What characteristics differentiate waves and particles? Think about the collision
between two billiard balls. We can treat the balls as point masses (any pool player will
recognize this as an idealization) and apply Newton’s laws of motion to calculate tra-
jectories, momenta, and energies as a function of time if we know all the forces acting
on the balls. Now think of a person shouting. Often there is an echo. What is happen-
ing here? The vocal cords create a local compression of the air in the larynx. This
compression zone propagates away from its source as a wave with the speed of sound.

¢E W kBT,

¢E L kBT,

¢E W kBT.¢E L kBT

1
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105 15 20 25

(a)

�E

kBT

Energy
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�E ≈ kBT
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�E �� kBT
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Energy
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(c)

1

FIGURE 2.1
The relative population in the different
energy levels designated by the 
integers 1–25 (vertical axis) is plotted 
at constant T as a function of energy 
for (a) sharp energy levels, (b) for

and (c) for In
parts (a), (b), and (c), the Boltzmann
distribution describes the relative popu-
lations. However, the system behaves as
if it has a continuous energy spectrum
only if or if ¢E 6 kBT .¢E L kBT

¢E W kBT.¢E L kBT,



The louder the sound, the larger the pressure is in the compressed zone. The pressure
variation is the amplitude of the wave and the energy contained in this wave is propor-
tional to the square of the amplitude. The sound reflects from a surface and comes
back as a weakened local compression of the air. When the wave is incident on the
eardrum, a signal that we recognize as sound is generated. Note that the energy associ-
ated with the sound wave is only localized at its origin in the larynx. Unlike billiard
balls, waves are not just located at a single point in space. A further important charac-
teristic of a wave is that it has a characteristic velocity and frequency with which it
propagates. The velocity and frequency govern the variation of the amplitude of the
wave with time.

A wave can be represented pictorially by a succession of wave fronts, correspon-
ding to surfaces over which the amplitude of the wave has a maximum or minimum
value. A point source emits spherical waves as shown in Figure 2.2b, and the light
passing through a rectangular slit can be represented by cylindrical waves as shown in
Figure 2.2c. The waves sent out from a faraway source such as the sun when viewed
from Earth are spherical waves with such little curvature that they can be represented as
plane waves as shown in Figure 2.2a.

Mathematically, the amplitude of a wave can be described by a wave function. The
wave function describes how the amplitude of the wave depends on the variables x and
t. The variable x is measured along the direction of propagation. For convenience, only
sinusoidal waves of and the single frequency where T is the
period, are considered. The velocity v, frequency and wavelength are related by

The peak-to-peak amplitude of the wave is 2A:

(2.4)

In this equation we have arbitrarily chosen our zero of time and distance such that
This equation represents a wave that is moving in the direction of posi-

tive x. We can prove this by considering how a specific feature of this wave changes
with time. The wave amplitude is zero for

(2.5)

where n is an integer. Solving for x, the location of the nodes is obtained:

(2.6)

Note that x increases as t increases, showing that the wave is moving in the direction of
positive x. Figure 2.3 shows a graph of the wave function given in Equation (2.4). To
graph this function in two dimensions, one of the variables is kept constant.

The functional form in Equation (2.4) appears so often that it is convenient to com-
bine some of the constants and variables to write the wave amplitude as

(2.7)

The quantity k is called the wave vector and is defined by The quantity
is called the angular frequency.

Because the wave amplitude is a simple sine function in our case, it has the same
value as the argument changes by The choice of a zero in position or time is 
arbitrary and is chosen at our convenience. To illustrate this, consider Equation (2.7)
rewritten in the form

(2.8)

in which the quantity has been added to the argument of the sin function. This is
appropriate when The argument of the wave function is called the phase,
and a change in the initial phase shifts the wave function to the right or left relative to
the horizontal axes in Figure 2.3 depending on the sign of f.

f

°(0, 0) Z 0.
f

°(x, t) = A sin(kx - vt + f)

2p.

v = 2pn
k = 2p>l.

°(x, t) = A sin(kx - vt)

x = lan

2
+

t

T
b

2pa x

l
-

t

T
b = np

°(0,0) = 0.

°(x, t) = A sin 2pa x

l
-

t

T
b

v = ln.
l,n,

n = 1>T,wavelength l

22 CHAPTER 2 The Schrödinger Equation

(a)

(b)

(c)

FIGURE 2.2
Waves can be represented by a succession
of surfaces over which the amplitude of
the wave has its maximum or minimum
value. The distance between successive
surfaces is the wavelength. Representative
surfaces are shown for (a) plane waves,
(b) spherical waves, and (c) cylindrical
waves. The direction of propagation of the
waves is perpendicular to the surfaces as
indicated by the blue arrows.
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When two or more waves are present in the same region of space, their time-
dependent amplitudes add together, and the waves are said to interfere with one
another. The interference between two waves gives rises to an enhancement in a
region of space (constructive interference) if the wave amplitudes are both positive
or both negative. It can also lead to a cancellation of the wave amplitude in a region
of space (destructive interference) if the wave amplitudes are opposite in sign and
equal in amplitude. At the constructive interference condition, maxima of the waves
from the two sources line up (constructive interference) because the phases of the
two waves are the same to within an integral multiple of They are out of phase
at the destructive interference condition where the phases differ by 
where n is an integer.

Interference can also result in a very different time dependence of the wave ampli-
tude than was discussed for a traveling wave, namely, the formation of spatially fixed
nodes where the amplitude is zero at all times. Consider the superposition of two waves
of the same frequency and amplitude that are moving in opposite directions. The result-
ant wave amplitude is the sum of the individual amplitudes:

(2.9)

Using the standard trigonometric identity ,
Equation (2.9) can be simplified to

(2.10)°(x, t) = 2A sin kx cos vt = c(x)cos vt

sin(a ; b) = sin a cos b ; cos a sin b

°(x, t) = A 3sin(kx - vt) + sin(kx + vt)4

(2n + 1)p,
2p.
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The upper panel shows the wave ampli-
tude as a function of time at a fixed point.
The wave is completely defined by the
period, the maximum amplitude, and the
amplitude at The lower panel
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This function of x and t is a product of two functions, each of which depends only on
one of the variables. Therefore, the position of the nodes, which is determined by sin

is the same at all times. This property distinguishes standing waves from
traveling waves, in which the whole wave, including the nodes, propagates at the
same velocity.

The form that the standing wave amplitudes take is shown in Figure 2.4. Standing
waves arise if the space in which the waves can propagate is bounded. For instance,
plucking a guitar string gives rise to a standing wave because the string is fixed at both
ends. Standing waves play an important role in quantum mechanics because, as demon-
strated later, they represent stationary states, which are states of the system in which
the measurable properties of the system do not change with time.

We return to the functional dependencies of the wave amplitude on time and dis-
tance for a traveling wave. For wave propagation in a medium for which all frequencies
move with the same velocity (a nondispersive medium), the variation of the amplitude
with time and distance are related by

(2.11)

Equation (2.11) is known as the classical nondispersive wave equation and v
designates the velocity at which the wave propagates. This equation provides a
starting point in justifying the Schrödinger equation, which is the fundamental
quantum mechanical wave equation. (See the Math Supplement, Appendix A, for a
discussion of partial differentiation.) Example Problem 2.2 demonstrates that the
traveling wave that we have used in Equation (2.8) is a solution of the nondisper-
sive wave equation.

02°(x, t)

0x2 =
1

v2

02°(x, t)

0t2

kx = 0,
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FIGURE 2.4
Time evolution of a standing wave at a fixed point. The time intervals are shown as a function of
the period T. The vertical lines indicate the nodal positions x0. Note that the wave function has
temporal nodes for and 3T>4.t = T>4

EXAMPLE PROBLEM 2.2

The nondispersive wave equation in one dimension is given by

Show that the traveling wave is a solution of the
nondispersive wave equation. How is the velocity of the wave related to in
this case?

k and v
°(x, t) = A sin(kx - vt + f)

02°(x, t)

0x2 =
1

v2

02°(x, t)

0t2
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2.3 Waves Are Conveniently Represented as
Complex Functions

The mathematics of dealing with wave functions is much simpler if they are repre-
sented in the complex number plane. As discussed, a wave traveling in the positive x
direction can be described by the function

(2.12)

where Using Euler’s formula, ,
Equation (2.12) can be written as

(2.13)

in which the notation Re indicates that we are considering only the real part of the com-
plex function that follows.

Whereas the wave functions considered previously (for example, sound waves)
have real amplitudes, quantum mechanical wave functions can have complex ampli-
tudes. Working with only the real part of the functions makes some of the mathematical
treatment more cumbersome, so it is easier to work with the whole complex function
knowing that we can always extract the real part if we wish to do so.

The wave function of Equation (2.13) can then be written in the form

(2.14)

where A is a constant. All quantities that fully characterize the wave, namely the maxi-
mum amplitude, the wavelength, the period of oscillation, and the phase angle for 
and , are contained in Equation (2.14). Operations such as differentiation, integra-
tion, and adding two waves to form a superposition are much easier when working with
complex exponential notation than with real trigonometric wave functions.

The following bullets list the properties of complex numbers that will be used fre-
quently in this book. Example Problems 2.3 and 2.4 show how to work with complex
numbers. See the Math Supplement (Appendix A) for a more detailed discussion of
complex numbers.

• A complex number or function can be written as where a and b are real
numbers or real functions and , or equivalently in the form where

and

• The complex conjugate of a complex number or function f is denoted f*. The com-
plex conjugate is obtained by substituting in f wherever i occurs. The complex
conjugate of the number or function is , and the complex conjugate
of is 

• The magnitude of a complex number or function f is a real number or function 
denoted where For or or
r, respectively.

ƒf ƒ = 2a2 + b2,re-iu,f = a + ibƒf ƒ = 2f*f.ƒf ƒ ,

re-iu.reiu
a - iba + ib,

- i

u = sin-1(b>r).r = 2a2 + b2
reiu,i = 2-1

a + ib,

x = 0
t = 0

°(x, t) = A exp i(kx - vt + f¿)

 = Re(A exp i(kx - vt + f¿))

 °(x, t) = Re(Aei(kx-vt+f¿))

eia = exp(ia) = cos a + i sin af¿ = f - p>2.

 = A cos(kx - vt + f¿)

 °(x, t) = A sin(kx - vt + f) = A cos(kx - vt + f - p>2)

Solution

Because the nondispersive wave equation is obeyed.v = v/k,

1

v2

02 A sin(kx - vt + f)

0t2 =
-v2

v2 A sin(kx - vt + f)

02 A sin(kx - vt + f)

0x2 = -k2 A sin(kx - vt + f)

02°(x, t)

0x2 =
1

v2

02°(x, t)

0t2



2.4 Quantum Mechanical Waves and the
Schrödinger Equation

In this section, we justify the time-independent Schrödinger equation by combining the
classical nondispersive wave equation and the de Broglie relation. For classical stand-
ing waves, we showed in Equation (2.10) that the wave function is a product of two
functions, one of which depends only on spatial coordinates, and the other of which
depends only on time:

(2.15)

If this function is substituted in Equation (2.11), we obtain

(2.16)
d2c(x)

dx2 +
v2

v2 c(x) = 0

°(x, t) = c(x)cos vt
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EXAMPLE PROBLEM 2.3

a. Express the complex number in the form 

b. Express the complex number in the form 

Solution

a. The magnitude of is The phase is given by

Therefore, can be written as 

b. Using the relation can be written as

3acos
3p

2
+ i sin

3p

2
b = 3(0 - i) = -3i

3ei3p/2eia = exp(ia) = cos a + i sin a,

422e-i(p>4).4 - 4i

sin u =
-4

422
= -

1

22
  or u = sin-1¢ - 1

22
≤ = -

p

4
  or

7p

4

3(4 + 4i)(4 - 4i)41>2 = 422.4 + 4i

a + ib.3ei3p>2
reiu.4 - 4i

EXAMPLE PROBLEM 2.4

Determine the magnitude of the following complex numbers:

a. c.

b. d.

Solution

The magnitude of a complex number or function f is Note that the magnitude
of a complex number is a real number.

a.

b.

c.

d. A
1 + 6i

i

1 - 6i

- i
= 237

C
e12ipe-3ip

4eip>4
e-12ipe+3ip

4e-ip>4 =
1

4

C
1 + 23i

11 - 2i

1 - 23i

11 + 2i
=

2

525

3(1 + i)(22 + 5i)(1 - i)(22 - 5i) = 326

2f*f.

1 + 6i

i

1 + 23i

11 - 2i

e12ipe-3ip

4eip>4(1 + i)(22 + 5i)
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The time-dependent part cancels because it appears on both sides of the
equation after the derivative with respect to time is taken. Using the relations 
and , Equation (2.16) becomes

(2.17)

To this point, everything that we have written is for a classical wave. We
introduce quantum mechanics by using the de Broglie relation, for the
wavelength. The momentum is related to the total energy E and the potential energy
V(x) by

(2.18)

Introducing this expression for the momentum into the de Broglie relation, and sub-
stituting the expression obtained for into Equation (2.17), we obtain

(2.19)

Using the abbreviation and rewriting Equation (2.19), we obtain the
time-independent Schrödinger equation in one dimension:

(2.20)

This is the fundamental equation used to study the stationary states of quantum
mechanical systems. The familiar 1s and 2pz orbitals of the hydrogen atom are examples
of stationary states obtained from the time-independent Schrödinger equation.

There is an analogous quantum mechanical form of the time-dependent classical
nondispersive wave equation. It is called the time-dependent Schrödinger equation
and has the following form:

(2.21)

This equation relates the temporal and spatial derivatives of with the poten-
tial energy function V(x, t). It is applied in systems in which the energy changes with
time. For example, the time-dependent equation is used to model transitions, in which
the energy of a molecule changes as it absorbs a photon.

These two equations that Schrödinger formulated are the basis of all quantum
mechanical calculations. Their validity has been confirmed by countless experiments
carried out during the last 80 years. The equations look very different from Newton’s
equations of motion. The mass of the particle appears in both forms of the
Schrödinger equation, but what meaning can be attached to and ? This
question will be discussed in some detail in Chapter 3. For now, we say that 
and represent the amplitude of the wave that describes the particle or system of
particles under consideration. To keep the notation simple, we have considered a one-
dimentional system, but, in general, the spatial part of denoted depends on all
spatial coordinates.

Our main focus is on the stationary states of a quantum mechanical system. For
these states, both the time-dependent and time-independent Schrödinger equations are
satisfied. In this case,

(2.22)

For stationary states, Substituting this expression in
Equation (2.22) gives

(2.23)iU
df(t)

dt
= Ef(t) or df(t)

dt
= - i

E

U
f(t)

°(x, t) = c(x)f(t).

iU
0°(x, t)

0 t
= E°(x, t)

c,°,

c(x)
°(x, t)

c(x)°(x, t)

°(x, t)

-
U2

2m

02°(x, t)

0x2 + V(x, t)°(x, t) = iU
0°(x, t)

0 t

-
U2

2m

d2c(x)

dx2 + V(x)c(x) = Ec(x)

U = h>2p

d2c(x)

dx2 +
8p2m

h2 3E - V(x)4c(x) = 0

l

p2

2m
= E - V(x) or p2 = 2m(E - V(x))

l = h>p,

d2c(x)

dx2 +
4p2

l2 c(x) = 0

nl = v
v = 2pn

cos vt



Solving this equation, we obtain We have shown that wave func-
tions that describe states whose energy is independent of time have the form

(2.24)

Note that is the product of two functions, each of which depends on only
one variable. A standing wave as in Equation (2.15) has the same form. That is not a
coincidence, because stationary states in quantum mechanics are represented by
standing waves.

2.5
Solving the Schrödinger Equation:
Operators, Observables, Eigenfunctions,
and Eigenvalues

Now that we have introduced the quantum mechanical wave equation, we need to learn
how to work with it. In this section, we develop this topic by introducing the language
used in solving the Schrödinger equation. The key concepts introduced are those of
operators, observables, eigenfunctions, and eigenvalues. These terms are defined later.
A good understanding of these concepts is necessary to understand the quantum
mechanical postulates in Chapter 3.

Both forms of the Schrödinger equation are differential equations whose solu-
tions depend on the potential energy V(x). Our emphasis in the next chapters will
be on using the solutions of the time-independent equation for various problems
such as the harmonic oscillator or the H atom to enhance our understanding of
chemistry. We do not focus on methods to solve differential equations. However, it
is very useful to develop a general understanding of the formalism used to solve the
time-independent Schrödinger equation. This initial introduction is brief because
our primary goal is to obtain a broad overview of the language of quantum mechan-
ics. As we work with these new concepts in successive chapters, they will become
more familiar.

We begin by illustrating the meaning of the term operator in the context of clas-
sical mechanics. Think about how we would describe the time evolution of a sys-
tem consisting of a particle on which a force is acting. The velocity at time t1 is
known and we wish to know the velocity at a later time t2. We write down Newton’s
second law

(2.25)

and integrate it to give

(2.26)

In words, one could describe this process as the series of operations:

• Integrate the force acting on the particle over the interval t1 to t2.

• Multiply by the inverse of the mass.

• Add this quantity to the velocity at time t1.

These actions have the names integrate, form the inverse, multiply, and add, and
they are all called operators. Note that we started at the right-hand side of the equation
and worked our way to the left.

How are operators used in quantum mechanics? To every measurable quantity
(observable), such as energy, momentum, or position, there is a corresponding
operator in quantum mechanics. Quantum mechanical operators usually involve dif-
ferentiation with respect to a variable such as x or multiplication by x or a function of
the energy such as V(x). Operators are denoted by a caret: .ON

v(t2) = v(t1) +
1

m3
t2

t1

F(x, t) dt

m
d2x

dt2 = F(x, t)

°(x, t)

°(x, t) = c(x)e-i(E>U)t

f(t) = e-i(E>U)t.
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Just as a differential equation has a set of solutions, an operator has a set of
eigenfunctions and eigenvalues. This means that there is a set of wave functions 
with the index n such that

(2.27)

The operator acting on these special wave functions returns the wave function mul-
tiplied by a number. These special functions are called the eigenfunctions of the opera-
tor and the an are called the eigenvalues. The eigenvalues for quantum mechanical
operators are always real numbers because they correspond to the values of observables
that are measured in an experiment. There are in general an infinite number of eigen-
functions for a given operator for the specific system under consideration. For example,
the eigenfunctions for the total energy operator (kinetic plus potential energy) for the
hydrogen atom are the wave functions that describe the orbitals that we know as 1s, 2s,
2px, . . . The set of these eigenfunctions is infinite in size. The corresponding eigen-
values are the 1s, 2s, 2px, . . . orbital energies.

We can now recognize that the time-independent Schrödinger equation is an eigen-
value equation for the total energy, E

(2.28)

where the expression in the curly brackets {} is the total energy operator. This operator is
given the symbol in quantum mechanics and is called the Hamiltonian for historical
reasons. With this notation, Equation (2.28) can be written in the form

(2.29)

The operator acting on one of its eigenfunctions returns the eigenfunction multiplied by
the corresponding eigenvalue. In Example Problem 2.5, this formalism is applied for
two operators. Solving the time-independent Schrödinger equation is equivalent to
finding the set of eigenfunctions and eigenvalues that are the solutions to the eigenvalue
problem of Equation (2.29). In this chapter, we consider only a single operator acting
on a function. In Chapter 6, we will show that the outcome of two sequential operations
on a wave function can depend on the order in which the operations occur. This fact has
important implications for the measurement process in quantum mechanics.

cn(x) = Encn(x)HN

HN

b -U2

2m

02

0x2 + V(x) rcn(x) = Encn(x)

cn = ancnON

cn

ON

EXAMPLE PROBLEM 2.5

Consider the operators Is an eigenfunction of
these operators? If so, what are the eigenvalues? A, B, and k are real numbers.

Solution

To test if a function is an eigenfunction of an operator, we carry out the operation and
see if the result is the same function multiplied by a constant:

In this case, the result is not multiplied by a constant, so is not an eigenfunc-
tion of the operator unless either A or B is zero. We consider the second operator.

This result shows that is an eigenfunction of the operator with the 
eigenvalue 

In general, a quantum mechanical operator such as has an infinite number of
eigenfunctions. How are the eigenfunctions of a quantum mechanical operator related
to one another? We discuss two of the most important properties in the next sections,
namely, orthogonality and completeness.

HN

-k2.
d2>dx2c(x)

 = -k2(Aeikx + Be-ikx) = -k2c(x)

 
d2(Aeikx + Be-ikx)

dx2 = (ik)2 Aeikx + (- ik)2 Be-ikx

d>dx
c(x)c(x)

d(Aeikx + Be-ikx)

dx
= ik Aeikx - ik Be-ikx = ik(Aeikx - Be-ikx)

c(x) = Aeikx + Be-ikxd>dx and d2>dx2.



2.6 The Eigenfunctions of a Quantum
Mechanical Operator Are Orthogonal

We are familiar with the concept of orthogonal vectors. For example, orthogonality in
three-dimensional Cartesian coordinate space is defined by

(2.30)

in which the scalar product between the unit vectors along the x, y, and z axes is zero. In
function space, the analogous expression that defines orthogonality between the eigen-
functions of a quantum mechanical operator is

(2.31)

Example Problem 2.6 shows that graphical methods can be used to determine if two
functions are orthogonal.

3
q

- q

c*
i (x)cj(x) dx = 0 unless i = j

ci(x) and cj(x)

x # y = x # z = y # z = 0
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EXAMPLE PROBLEM 2.6

Show graphically that sin x and cos 3x are orthogonal functions over the interval
where for the purposes of our discussion j is a very large integer. Also

show graphically that 

Solution

The functions are shown in the following graphs. The vertical axes have been offset to
avoid overlap and the horizontal line indicates the zero for each plot. Because the
functions are periodic, we can draw conclusions about their behavior in a very large
interval that is an integral multiple of by considering their behavior in any interval
that is an integral multiple of the period.

2p

for n = m = 1.12jp
-2jp(sin mx)(sin nx) dx Z 0

3-2jp, 2jp4

2 4 6 8 10

0

0

0

0

f(
x

)

sin x

cos 3x

sin x cos 3x

sin2 x

x

The integral of these functions equals the sum of the areas between the curves and
the zero line. Areas above and below the line contribute with positive and negative signs,
respectively, and indicate that and 
By similar means, we could show that any two functions of the type sin mx and sin nx or
cos mx and cos nx are orthogonal unless Are the functions cos mx and sin mx

orthogonal?

Recall that the superscript * on a function indicates the complex conjugate. The
product rather than occurs in Equation (2.31) because wave
functions in quantum mechanics can be complex functions of x and t. If in addition to
Equation (2.31) the integral has the value one for we say that the functions 
are normalized and form an orthonormal set. As we will see in Chapter 3, wave

i = j,

ci(x)cj(x)c*
i (x)cj(x)

(m = n)
n = m.

1q
- q sin x sin x dx 7 0.1q

- q sin x cos 3x dx = 0
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functions must be normalized so that they can be used to calculate probabilities. We
show how to normalize wave functions in Example Problems 2.7 and 2.8.

EXAMPLE PROBLEM 2.7

Normalize the function over the interval 

Solution

To normalize a function over the given interval, we multiply it by a constant N,
and then calculate N from the equation 

In this particular case,

Up until now, we have considered functions of a single variable. This restricts us
to dealing with a single spatial dimension. As we will see in Chapter 7, important
problems such as the harmonic oscillator can be solved in a one-dimensional frame-
work. The extension to three independent variables becomes important in describing
three-dimensional systems. The three-dimensional system of most importance to us
is the atom. Closed-shell atoms are spherically symmetric, and atomic wave func-
tions are best described by spherical coordinates, shown in Figure 2.5. Therefore, it is
helpful to become familiar with integrations in these coordinates. The Math
Supplement (Appendix A) provides a more detailed discussion of working with

The normalized wave function is A
3

a5 a(a - x)

N2 a5

3
= 1  so that N = A

3

a5

N2aa4x - a3 x2 + a2 x3

3
ba

0
= 1

N2a2

3
a

0

3a2 - 2ax + x24 dx = 1

N2

3
a

0

3a(a - x)42 dx = 1

N21a
0 c

*(x)c(x) dx = 1.
c(x)

0 … x … a.a(a - x)

rsin

rd

rsin   d dr

x

y

z rsin   d

d
dr

d

rd

r

FIGURE 2.5
Defining variables and the volume ele-
ment in spherical coordinates.



spherical coordinates. Note in particular that the volume element in spherical coordi-
nates is and not A function is normalized in spherical
coordinates in Example Problem 2.8.

dr du df.r2 sin u dr du df
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EXAMPLE PROBLEM 2.8

Normalize the function over the interval 

Solution

We proceed as in Example Problem 2.7, remembering that the volume element in
spherical coordinates is :

Using the standard integral is a positive
integer we obtain

Note that the integration of any function involving r where
requires integration over all three variables, even if the function does not explicitly
involve or f.u

r = 2x2 + y2 + z2

4pN2 2!

23 = 1  so that N = A
1
p

 . The normalized wave function is A
1
p

e-r.

2, n1q
0 xn e-ax dx = n!>an+1 1a 7 0,

 4pN2

3
q

0

r2 e-2rdr = 1

 N2

3
2p

0

df3
p

0

 sinu du3
q

0

r2 e-2r dr = 1

r2 sin u dr du df

0 … f … 2p.0 … r … q ; 0 … u … p;e-r

2.7
The Eigenfunctions of a Quantum
Mechanical Operator Form a 
Complete Set

The eigenfunctions of a quantum mechanical operator have another very important prop-
erty that we will use frequently in later chapters, namely that the eigenfunctions of a
quantum mechanical operator form a complete set. The idea of a complete set is familiar
from the three-dimensional Cartesian coordinate system. Because any three-dimensional
vector can be expressed as a linear combination of the three mutually perpendicular unit
vectors x, y, and z, we say that these three unit vectors form a complete set.

Completeness is also an important concept in function space. To say that the eigen-
functions of any quantum mechanical vector form a complete set means that any well-
behaved wave function can be expanded in the eigenfunctions of any of the
quantum mechanical operators of interest to us defined in the same space, x in this case:

(2.32)

Before we expand wave functions in a complete set of functions in later chapters, we
first illustrate how to expand a simple sawtooth function in a Fourier sine and cosine series.
See the Math Supplement (Appendix A) for a more detailed discussion of Fourier series.

We approximate the sawtooth function shown in Figure 2.6 by a linear combina-
tion of the mutually orthogonal functions These func-
tions form an infinitely large complete set for Because these
functions form a complete set only as the approximation becomes exact as

The degree to which the approximation approaches the exact function
depends only on how many terms we include in the sum. Because we are interested in
knowing how good our approximation is, we start with the sawtooth function,

n: q .
n: q ,

n = 1, 2, 3, Á q .
sin(npx>b) and cos(npx>b).

c(x) = a
q

n=1
bnfn(x)

fn(x)f(x)
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approximate it by the finite sum in Equation (2.33), and evaluate how well we suc-
ceed for different values of m.

(2.33)

We first need a way to calculate the coefficients d0, cm, and dm. In our case, the func-
tion is even, so that all the coefficients cm are identically zero. For the
Fourier series, the values for the dm are easily obtained using the mutual orthogonality
property of the sine and cosine functions demonstrated in Example Problem 2.6. 

To obtain the dm, we multiply both sides of Equation (2.33) by one of the expansion
functions, for example and integrate over the interval b:

Only one term in the summation within the integral gives a nonzero contribution,
because all cosine functions for which are orthogonal. We have used one of the
standard integrals listed in the Math Supplement (Appendix A) to obtain this result. We
conclude that the optimal values for the coefficients are given by

Using these equations to obtain the optimal coefficients will make the finite sum of
Equation (2.33) nearly exact if enough terms can be included in the sum. How good is the
approximation if m is finite? This question is answered in Figure 2.6, which shows that the
sawtooth function can be described reasonably well for m < 30. To make this statement

d0 =
1

2b3
b

-b

f(x) dx

dm =
1

b3
b

-b

f(x) cosampx

b
b dx, m Z 0 and

m Z n

 = 3
b

-b

acosampx

b
b b dm cosampx

b
b dx = bdm

 * ad0 + a
n

dn cosanpx

b
b b dx

 3
b

-b

f(x) cosampx

b
b dx = 3

b

-b

cosampx

b
b

-b,cos(mpx>b),

f(x) = f(-x),

f(x) = d0 + a
m

n=1
ccn sinanpx

b
b + dn cosanpx

b
b d

m � 2

1

0.2

0.4

0.6

0.8
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f(x
), 

f(
n,
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)

f(x
), 

f(
n,

 x
)

f(x
), 

f(
n,

 x
)

f(x
) �

f(
10

0,
 x

)

FIGURE 2.6
The sawtooth function (red curve) is com-
pared with the finite Fourier series defined
by Equation (2.33) (blue curve) contain-
ing m terms for The
difference between the sawtooth function
and the finite Fourier series for 
is shown in the bottom right panel as a
function of x.

m = 100

m = 2, 6, and 30.
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more quantitative, we graph 

versus x in Figure 2.6 for a 101 term series. We see that the difference is less than 0.1%
of the maximum amplitude for the sawtooth function. Generalizing this result to other
functions, the maximum error occurs at the points for which the slope of the function is
discontinuous.

2.8 Summing Up the New Concepts
In this chapter we introduced a number of the key tools in quantum mechanics that are used
to solve the Schrödinger equation. The time-dependent and time-independent Schrödinger
equations play the role in solving quantum mechanical problems that Newton’s laws play
in classical mechanics. Operators, eigenfunctions, and observables form the framework for
solving the time-independent Schrödinger equation. All of these concepts will be applied to
problems of chemical interest in the next few chapters. However, we will first introduce and
discuss the five postulates of quantum mechanics in Chapter 3. 

f(x) - ad0 + a
100

n=1
ccn sinanpx

b
b + dn cosanpx

b
b  d b

Vocabulary

angular frequency

Boltzmann distribution

classical nondispersive wave equation

complete set

completeness

complex conjugate

constructive interference

continuous energy spectrum

degeneracy

destructive interference

discrete energy spectrum

eigenfunction

eigenvalue

energy levels 

Fourier sine and cosine series

frequency

interference

normalized

observable

operator

orthogonality

orthonormal

period

phase

plane wave

spherical wave

standing wave

stationary state

time-dependent Schrödinger equation

time-independent Schrödinger equation

traveling wave

wave front

wave function

wave vector

wavelength

Q2.1 One source emits spherical waves and another emits
plane waves. For which source does the intensity measured by a
detector of fixed size fall off more rapidly with distance? Why?

Q2.2 What is the relationship between evaluating an inte-
gral and graphing the integrand?

Q2.3 A traveling wave with arbitrary phase can be writ-
ten as What are the units of

? Show that could be used to represent a shift in the origin
of time or distance.

Q2.4 Why is it true for any quantum mechanical problem
that the set of wave functions is larger than the set of eigen-
functions?

Q2.5 By discussing the diffraction of a beam of particles by
a single slit, justify the statement that there is no sharp bound-
ary between particle-like and wave-like behavior.

ff

c(x, t) = A sin(kx - vt + f).
f

Q2.6 Redraw Figure 2.2 to show surfaces corresponding to
both minimum and maximum values of the amplitude.

Q2.7 Give three examples of properties of a gas phase mol-
ecule of H2 that are quantized and three properties that are not
quantized.

Q2.8 Why is it necessary in normalizing the function 
in spherical coordinates to integrate over even though
it is not a function of ?

Q2.9 If describes a wave travel-
ing in the plus x direction, how would you describe a wave
traveling in the minus x direction? Justify your answer. 

Q2.10 In Figure 2.6 the extent to which the approximate
and true functions agree was judged visually. How could you
quantify the quality of the fit?

c(x, t) = A sin(kx - vt)

u and f
u and f

re-r

Conceptual Problems
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Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P2.1 A wave traveling in the z direction is described by the
wave function 

where x and y are vectors of unit
length along the x and y axes, respectively. Because the
amplitude is perpendicular to the propagation direction,

represents a transverse wave.

a. What requirements must A1 and A2 satisfy for a plane
polarized wave in the x-z plane? The amplitude of a plane
polarized wave is non-zero only in one plane. 

b. What requirements must A1 and A2 satisfy for a plane
polarized wave in the y-z plane?

c. What requirements must A1 and A2 and satisfy
for a plane polarized wave in a plane oriented at to the
x-z plane?

d. What requirements must A1 and A2 and satisfy
for a circularly polarized wave? The phases of the two
components of a circularly polarized wave differ by 

P2.2 Because
the functions 

form an orthogonal set in the interval (-d, d). What 
constant must these functions be multiplied by to form 
an orthonormal set? 

P2.3 Determine in each of the following cases if the func-
tion in the first column is an eigenfunction of the operator in
the second column. If so, what is the eigenvalue?

a.

b.

c. 04>0u4sin 2u cos f

x3(03>0x3) + y3(03>0y3)x3 + y3

x2

8
d2>dx2x2

cos(npx>d) for n = 1, 2, 3, Ám Z n,
1d
-d cos(npx>d) cos(mpx>d) dx = 0,

p>2.

f1 and f2

45°
f1 and f2

°(z, t)

A2 y sin(kz - vt + f2),
°(z, t) = A1 x sin(kz - vt + f1) +

P2.4 If two operators act on a wave function as indicated
by it is important to carry out the operations in suc-
cession with the first operation being that nearest to the func-
tion. Mathematically,  and 

. Evaluate the following successive
operations . The operators and are listed in the
first two columns and is listed in the third column.

a.

b.

c.

d.

Are your answers to parts (a) and (b) identical? Are your
answers to parts (c) and (d) identical? As we will learn in
Chapter 6, switching the order of the operators can change the
outcome of the operation 

P2.5 Let (1, 0) and (0, 1) represent the unit vectors along
the x and y directions, respectively. The operator

effects a rotation in the x-y plane. Show that the length of an
arbitrary vector

which is defined as , is unchanged by this rota-
tion. See the Math Supplement (Appendix A) for a discussion
of matrices.

2a2 + b2

aa

b
b = aa1

0
b + ba0

1
b

acos u -sin u

sin u cos u
b

f(x).BNAN

e-2(x+y)y
0
0x

x
0
0y

e-2(x+y)x
0
0y

y
0
0x

ye-2y3d

dy
y

ye-2y3
y

d

dy

f(x)
BNANf(x)BNAN

f(x))AN(AN2f(x) =AN
f(x))BN(ANf(x) =BNAN

f(x),BNAN

Numerical Problems

Q2.11 Why does a quantum mechanical system with dis-
crete vibrational energy levels behave as if it has a continuous
energy spectrum if the energy difference between vibrational
energy levels satisfies the relationship ?

Q2.12 Distinguish between the following terms 
applied to a set of functions: orthogonal, normalized,
and orthonormal.

Q2.13 Why can we conclude that the wave function
represents a standing wave?

Q2.14 What is the usefulness of a set of complete 
functions?

Q2.15 Can the function sin kx be normalized over the inter-
val ? Explain your answer.

Q2.16 A linear operator satisfies the condition 
Are or linear

operators if and ?f(x) = df(x)>dxBNf(x) = (f(x))2AN
BNANg(x).ANf(x) +AN(f(x) + g(x)) =AN

-q 6 x 6 q

c(x, t) = c(x)e-i(E>U)t

¢E V kBT¢E

Q2.17 Is a linear operator if

?

Q2.18 Two operators can be applied to a function in succes-
sion. By definition, Evaluate 
if .

Q2.19 Is an eigenfunction of the operator if 
?

Q2.20 Which of the following functions are eigenfunctions
of the operator if : ?
State the eigenvalue if applicable. 

e-3ixcos x,x2,f(x) = d2f(x)>dx2BNBN

f(x) = xf(x)AN
ANcos x

= x, and f(x) = cos xBN= d>dx,AN
f(x)BNANf(x)4.BN3ANf(x) =BNAN

ANf(x) = d2f(x)>dx2 + xf(x)

AN
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P2.6 Carry out the following coordinate transformations:

a. Express the point in spherical
coordinates.

b. Express the point in Cartesian

coordinates.

P2.7 Operators can also be expressed as matrices and wave
functions as column vectors. The operator matrix

acts on the wave function according to the rule

In words, the matrix operator acting on the two-
element column wave function generates another two-element
column wave function. If the wave function generated by the
operation is the original wave function multiplied by a con-
stant, the wave function is an eigenfunction of the operator.
What is the effect of the operator

on the column vectors (1, 0), (0, 1), (1, 1), and , 1)? Are
these wave functions eigenfunctions of the operator? See the
Math Supplement (Appendix A) for a discussion of matrices.

P2.8 Show that

P2.9 Express the following complex numbers in the 
form

a. d.

b. e.

c. 4

P2.10 Show that the set of functions 

is orthogonal if n is an integer. To do so, you

need to show that the integral 

if n and m are integers.

P2.11 Operate with (a) and 

(b) on the function 

Is the function an eigenfunction of either

operator? If so, what is the eigenvalue?

Ae-ik1x e-ik2y e-ik3z.

02

0z2

02

0y2 +
02

0x2 +

0
0x

+
0
0y

+
0
0z

for m Z n

du = 012p
0 f

*
m(u)fn(u)

0 … u … 2p,

fn(u) = einu,

2 - i

1 + i
2i

5 + i

3 - 4i
5 + 6i

reiu.

a + ib

c + id
=

ac + bd + i(bc - ad)

c2 + d2

1-1

a0 1

1 0
b

2 * 2

aa b

d e
b aa

b
b = aaa + b b

da + eb
b

aa

b
b

aa b

d e
b

r = 5, u =
p

4
, and f =

3p

4

x = 3, y = 1, and z = 1

P2.12 Which of the following wave functions are eigenfunc-
tions of the operator ? If they are eigenfunctions, what
is the eigenvalue?

a. d.

b. e.

c.

P2.13 Does the superposition 
generate a standing wave? Answer this 

question by using trigonometric identities to combine the 
two terms.

P2.14 Determine in each of the following cases if the func-
tion in the first column is an eigenfunction of the operator in
the second column. If so, what is the eigenvalue?

a.

b.

c.

P2.15 Show by carrying out the integration that
where m is an integer, are

orthogonal over the interval Would you get the
same result if you used the interval ? Explain
your result.

P2.16 To plot as a function of
one of the variables x and t, the other variable needs to be set
at a fixed value, x0 or t0. If , what
is the constant value of x0 in the upper panel of Figure 2.3? If

what is the constant value of t0 in
the lower panel of Figure 2.3? (Hint: The inverse sine func-
tion has two solutions within an interval of Make sure
that you choose the correct one.)

P2.17 Determine in each of the following cases if the func-
tion in the first column is an eigenfunction of the operator in
the second column. If so, what is the eigenvalue?

a.

b.

c.

P2.18 Assume that a system has a very large number of
energy levels given by the formula 

where l takes on the integral values 1, 2, 
3, . Assume further that the degeneracy of a level is 
given by Calculate the ratios for

K and K.

P2.19 Is the function an eigenfunction of the oper-
ator ? If so, what is the
eigenvalue?

-(3>2 - x2)(d2>dx2) + 2x(d>dx)
2x2 - 1

T = 750.T = 125
n4>n1 and n8>n1gl = 2l.

Á
1.75 * 10-22 J,

el = e0l2 with e0 =

 
1

sin u

d

du
asin u

d

du
bsin u cos u

(1>3x)(3x2 + 2y2)
0
0x

23x2 + 2y2

02

0x2e-i(7x+y)

2p.

°(0, t0)>°max = -0.309,

°(x0, 0)>°max = -0.280

°(x, t) = A sin(kx - vt)

0 … x … 3a>40 … x … a.
and cos(mpx>a),sin(mpx>a)

d2

dx2 - 2cos x sin x

d2

dx2 + 16x2e-(2ix2)

1

sin u

d

du
asin u

d

du
bcosu

2A sin(kx + vt)
c(x, t) = A sin(kx - vt) +

e-2ix

e-ix2
sin

2px

a

cos
ax
p

a(e-3x + e-3ix)

d2>dx2
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P2.28 Normalize the set of functions 
To do so, you need to multiply the functions by

a normalization constant N so that the integral

P2.29 In normalizing wave functions, the integration is over
all space in which the wave function is defined. 

a. Normalize the wave function over the
range The element of area in
two-dimensional Cartesian coordinates is ; a and b
are constants.

b. Normalize the wave function over the
interval The
volume element in three-dimensional spherical coordinates
is and b is a constant.

P2.30 Operate with (a) and 

(b) on the function . 

Under what conditions is the function an eigenfunction of one
or both operators? What is the eigenvalue?

P2.31 Form the operator if . Be sure to
include an arbitrary function on which the operator acts.

P2.32 Use a Fourier series expansion to express the func-
tion in the form

Obtain d0 and the first five pairs of coefficients cn and dn.

P2.33 Is the function an eigenfunction of the opera-
tor ? If so, what is the eigenvalue?

P2.34 Show that the following pairs of wave functions are
orthogonal over the indicated range.

a. and is a
constant that is greater than zero

b. and over the
interval 

P2.35 Express the following complex numbers in the form

a. c.

b. d.

P2.36 Which of the following wave functions are eigen-
functions of the operator ? If they are eigenfunctions,
what is the eigenvalue?

a. d.

b. e.

c.

P2.37 Form the operator if
Be sure to include an arbitrary

function on which the operator acts.
AN = d2>dy2 + 3y(d>dy) - 5.

AN2

e-ix

e-ix2
sin2x

cos axae-3x + be-3ix

d>dx

25

1 + 22
eip>4423 eip>4

eip2e3ip>2
a + ib.

0 … r 6 q  , 0 … u … p, 0 … f … 2p
(r/a0)e-r/2a0 cos u(6r/a0 - r2/a2

0)e-r/3a0

where a-q  …  x 6  qx(x2 - 1)e-ax2
,e-ax2

d2>dy2 - a2y2
e-(ay>2)

f(y) = d0 + a
m

n=1
cn sinanpy

a
b + dn cosanpy

a
b

f(y) = y2, -a … y … a,

AN = x - d>dxAN2

A e- ik1xe- ik1ye- ik1z
02

0z2

02

0x2 +
02

0y2 +

0
0x

+
0
0y

+
0
0z

r2 sin u dr du df,

0 … r 6 q  , 0 … u … p, 0 … f … 2p.
e-(2r>b) sin u sin f

dx dy
0 … x … a, 0 … y … b.

x(a - x)y(b - y)

N N* 12p
0 f

*
m(u)fn(u) du = 1 for m = n.

0 … u … 2p.
fn(u) = einu,P2.20 Find the result of operating with on

the function What must the value of a be to make this 
function an eigenfunction of the operator? What is the 
eigenvalue?

P2.21 Determine in each of the following cases if the func-
tion in the first column is an eigenfunction of the operator in
the second column. If so, what is the eigenvalue?

a.

b.

c.

P2.22 Find the result of operating with 
on the function Is this function an

eigenfunction of the operator?

P2.23 Using the exponential representation of the sine and

cosine functions, 

show that

a.

b.

c.

P2.24 If two operators act on a wave function as indicated

by it is important to carry out the operations in suc-

cession with the first operation being that nearest to the func-

tion. Mathematically, and 

Evaluate the following successive operations 

The operators and are listed in the first and sec-

ond columns and is listed in the third column. Compare

your answers to parts (a) and (b), and to (c) and (d).

a.

b.

c.

d.

P2.25 Make the three polynomial functions 
orthonormal in the interval

by determining appropriate values for the
constants

P2.26 Consider a two-level system with 
and If what value of

T is required to obtain What value of T is
required to obtain 

P2.27 Find the result of operating with
on the function What

must the values of A and b be to make this function an eigen-
function of the operator?

Ae-br.(1>r2)(d>dr)(r2 d>dr) + 2>r
n2/n1 = 0.750?

n2/n1 = 0.175?
g2 = 2g1,e2 = 4.50 * 10-21 J.10-22 J

e1 = 2.25 *
a0, a1, b1, a2, b2, and c2.

-1 … x … +1
b1x, and a2 + b2x + c2x2

a0, a1 +

(cos 3y) sin2 x
02

0y2y2

(cos 3y) sin2 xy202

0y2

x2 + eax2d

dx
x

x2 + eax2
x

d

dx

f(x)

BNANf(x).BNAN
f(x)).AN(AN

2f(x) =ANf(x))BN(ANf(x) =BNAN

f(x),BNAN

sin(u +
p

2
) = cos u

d(cos u)/du = -sin u

cos2 u + sin2 u = 1

sin u = 1
2i (e

iu - e-iu),

cos u = 1
2 (eiu + e-iu)and

x2 + y2 + z2.d2>dz2
d2>dx2 + d2>dy2 +

a1>tan
2px

a
b d>dxcos

2px

a

(1>x) d>dxe-A3x2>12B
04>0f4sin u cos f

e-ax2
.

d2>dx2 - 2x2



38 CHAPTER 2 The Schrödinger Equation

W2.1 The motion of transverse, longitudinal, and surface
traveling waves is analyzed by varying the frequency and
amplitude.

W2.2 Two waves of the same frequency traveling in oppo-
site directions are combined. The relative amplitude is
changed with sliders and the relative phase of the waves is
varied. The effect of these changes on the superposition wave
is investigated.

W2.3 Two waves, both of which are standing waves, are
combined. The effect of varying the wavelength, period, and
phase of the waves on the resulting wave using sliders is
investigated.

W2.4 Several functions are approximated by a Fourier
series in which the number of sine and cosine terms is varied.
The degree to which the approximate function differs from
the exact function is assessed.

Web-Based Simulations, Animations, and Problems



3.1 The Physical Meaning
Associated with the Wave
Function Is Probability

3.2 Every Observable Has a
Corresponding Operator

3.3 The Result of an Individual
Measurement

3.4 The Expectation Value

3.5 The Evolution in Time of a
Quantum Mechanical System

3.6 Do Superposition Wave
Functions Really Exist?

The Quantum
Mechanical
Postulates

Quantum mechanics can be formulated in terms of six postulates. 

A postulate is a claim or an assumption of truth, especially as a basis for

reasoning. Postulates cannot be proven, but they can be tested. The five

postulates discussed in this chapter provide a framework for summarizing

the basic concepts of quantum mechanics. The quantum mechanical pos-

tulates have been extensively tested since they were proposed in the

early 1930s. No case has been found in which they predict an outcome

that is in conflict with the result of an experiment.

The previous chapters focused on the classical mechanics of particles

and on the mathematical description of waves. Wave-particle duality and

the conditions under which the wave character of a particle (which is

always present) becomes evident were discussed. We briefly discussed

quantum mechanical wave functions and quantum mechanical operators

and showed that values for the observables are obtained by operating

on the wave function with the relevant operator. The rules for how infor-

mation is obtained from wave functions can be summarized in a few

postulates. The test of any set of postulates is their ability to explain the

world around us.

In this chapter, five postulates are stated and explained. In the follow-

ing chapters, we apply these postulates to model systems and compare

the results with those obtained from classical mechanics. In Chapter 10, a

sixth postulate is introduced.
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3.1 The Physical Meaning Associated with
the Wave Function Is Probability

sin x

tan x

f(
x)

x

FIGURE 3.2
Examples of continuous and discontinuous
functions.
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�2

�1

1

2

3

4

x

x
�1 1 2 3 4 5

�2

�1

1

f(
x)

f(
x)

(a)

(b)

FIGURE 3.1
(a) f(x) has two values for nearly all values
of x, and (b) f(x) has only one value for
each value of x.

POSTULATE 1
The state of a quantum mechanical particle is completely specified by a wave
function . To simplify the notation, only one spatial coordinate is
considered. The probability that the particle will be found at time t0 in a spatial
interval of width centered at x0 is given by .°*1x0, t0)°1x0, t0) dxdx

°1x, t2

For a sound wave, the wave function is the pressure at a time t and position x.
For a water wave, is the height of the wave as a function of position and time.
What physical meaning can we associate with for quantum systems? For a par-
ticle (which also has wave character), the probability P(x0, t0) of finding the particle at
position x0 at time t0 within an interval is

(3.1)

Unlike classical waves such as sound waves, the wave amplitude itself has
no direct physical meaning in quantum mechanics. Because the probability is related
to the square of the magnitude of , given by , the wave func-
tion can be complex or negative and still be associated with a probability that lies
between zero and one. The wave amplitude can be multiplied by , or its
phase can be changed by multiplying it by a complex function of magnitude one such
as , without changing . Therefore, all wave functions that are°*1x, t)°1x, t)eiu(x,t)

-1°(x, t)

°*1x, t)°1x, t)°(x, t)

°(x, t)

P1x0, t0) = °*1x0, t0)°1x0, t0) dx = ƒ °1x0, t0) ƒ 2 dx

dx

°(x, t)
°(x, t)

°(x, t)

identical except for a phase angle are indistinguishable in that they generate
the same observables. The wave function is a complete description of the system in
that any measurable property (observable) can be obtained from the wave function as
will be described later.

The association of the wave function with the probability places an important
requirement on a wave function called normalization. The probability that the particle
is found in an interval of width centered at the position x must lie between zero and
one. The sum of the probabilities over all intervals accessible to the particle is one
because the particle is somewhere in its range. Consider a particle that is confined to a
one-dimensional space of infinite extent. The requirement that the particle is some-
where in the interval leads to the following normalization condition:

(3.2)

Such a definition is obviously meaningless if the integral does not exist. Therefore,
must satisfy several mathematical conditions to ensure that it represents a pos-

sible physical state. These conditions are as follows:

• The wave function must be a single-valued function of the spatial coordinates. If
this were not the case, a particle would have more than one probability of being
found in the same interval. For example, for the ellipse depicted in Figure 3.1a, f(x)
has two values for each value of x except the two points at which the tangent line is
vertical. If only the part of the ellipse is considered for which as in
Figure 3.1b, f(x) has only one value for each value of x.

• The second derivative must exist and be well behaved. If this were not the case, we
could not set up the Schrödinger equation. This is not the case if the wave function
and/or its first derivative are discontinuous. As shown in Figure 3.2, sin x is a

f(x) 6 1,

°(x, t)

3
q

-q

°*1x, t)°1x, t) dx = 1

dx

u(x, t)



3.2 EVERY OBSERVABLE HAS A CORRESPONDING OPERATOR 41

continuous function of x. A function f(x) is continuous at the point a if the follow-
ing conditions hold:

• f (x) is defined at a.

• exists.

• lim
x:a

f(x) = f(a)

lim
x:a

f(x)

3.2 Every Observable Has a Corresponding
Operator

All quantum mechanical operators belong to a mathematical class called Hermitian
operators that have real eigenvalues. For a Hermitian operator

. The most important observables in classical mechanics, the
corresponding quantum mechanical operators, and the symbols for these operators
are listed in Table 3.1. To simplify the notation, only one spatial coordinate is

1c(x) [A  N
  c (x)]*dx

AN,  1c*(x)[ANc(x)] dx =

POSTULATE 2
For every measurable property of a system such as position, momentum, and
energy, there exists a corresponding operator in quantum mechanics. An experi-
ment in the laboratory to measure a value for such an observable is simulated in
the theory by operating on the wave function of the system with the correspon-
ding operator.

The function tan x is not continuous, because is not defined and
does not exist.

• The wave function cannot have an infinite amplitude over a finite interval. If this
were the case, the wave function could not be normalized. For example, the function

cannot be normalized.°1x, t) = e- i(E>U)t 1
x2

 sin 
2px

a
, 0 … x … a

lim
x:p/ 2

f(x)tanp>2

TABLE 3.1 Observables and Their Quantum Mechanical Operators

Observable Operator Symbol for Operator

Momentum - iU
0
0x

pN x

Kinetic energy 
-

U2

2m

0 2

0x2
EN kinetic =

1

2m
ApN x B ApN x B

Position x xN

Potential energy V(x) EN potential

Total energy 
-

U2

2m

0 2

0x2
+ V(x)

HN

Angular momentum 
- iU¢y

0
0z

- z
0
0y
≤ lNx

- iU¢z
0
0x

- x
0
0z
≤ lNy

- iU¢x
0
0y

- y
0
0x
≤  l Nz
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considered, except for angular momentum. Partial derivatives have been retained
because the wave function depends on both position and time. The total energy
operator is called the Hamiltonian for historical reasons and is given the symbol .
For the position and potential energy operators, the operation is “multiply on the left
by the position or potential energy.” Operators act on a wave function from the left,
and the order of operation is important. For example, operating on the wavepN xxN

HN

function gives , whereas operating on the same wave
function gives . As discussed in Chapter 6, operators for which the inter-
changing of the order does not change the result have a particular role in quantum
mechanics.

3.3 The Result of an Individual 
Measurement

- iUx cos x
xN pN x- iU(sin x + x cos x)sin x

This postulate states, for example, that if the energy of the hydrogen atom is measured,
the only values obtained are the energies that are the eigenvalues En of the time-
independent Schrödinger equation:

(3.3)

This makes sense because the energy levels of the hydrogen atom are discrete and,
therefore, only those energies are allowed. What gives pause for thought is that the
wave function need not be an eigenfunction of , because the eigenfunctions are a
subset of the infinite number of functions that satisfy all the requirements to be an
acceptable wave function. We address this issue in the following postulate.

3.4 The Expectation Value

HN

HN °n(x, t) = En°n(x, t)

POSTULATE 3
In any single measurement of the observable that corresponds to the operator ,
the only values that will ever be measured are the eigenvalues of that operator.

AN

POSTULATE 4
If the system is in a state described by the wave function , and the value
of the observable a is measured once on each of many identically prepared
systems, the average value (also called the expectation value) of all of these
measurements is given by

(3.4)8a9 =
3
q

-q
°*(x, t)AN °(x, t) dx

3
q

-q
   
°*(x, t)°(x, t) dx

°(x, t)

For the case in which is normalized, the denominator in this expression has the
value 1. Wave functions are usually normalized, and in Equations (3.5) through (3.8),
this is assumed to be the case. This postulate requires some explanation. As we know,
two cases apply with regard to : it either is or is not an eigenfunction of the
operator . These two cases need to be examined separately.AN

°(x, t)

°(x, t)
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In the first case, is a normalized eigenfunction of , for example, .fj(x, t)AN°(x, t)
Because ,

(3.5)

If is , all measurements will give the same answer, namely, aj.
Now consider the second case, in which is not an eigenfunction of the

operator . Because the eigenfunctions of form a complete set, can be
expanded in terms of these eigenfunctions:

(3.6)

Because is normalized, . The expression for
in Equation (3.6) can be inserted in Equation (3.4), giving

(3.7)

This expression can be greatly simplified by making use of the property that the
eigenfunctions of a quantum mechanical operator are orthogonal. Because the eigen-
functions of form an orthonormal set, the only terms in this double sum for which
the integral is nonzero are those for which The integral has the value 1 for these
terms, because the eigenfunctions of are normalized. Therefore,

(3.8)

What are the bm? They are the expansion coefficients of the wave function in the com-
plete set of the eigenfunctions of the operator . The coefficient bm is a measure of the
extent to which the wave function “looks like” the mth eigenfunction of the operator .
To illustrate this point, consider the case in which . In this case, all of
the bm except the one value corresponding to are zero, bn = 1, and . So if

is one of the eigenfunctions of , only one of the bm is nonzero and the average
value is just the eigenvalue corresponding to that eigenfunction. If only three of the bm are
nonzero, for example b2, b8, and b11, then and is given by

(3.9)

Note that is not simply an average of these three eigenvalues; instead, it is a
weighted average. The weighting factor is directly related to the contribution of
the mth eigenfunction to the wave function .

The fourth postulate allows us to calculate the result of a large number of measure-
ments, each carried out only once on a large number of identically prepared systems.
What will be measured in each of these individual measurements? The third postulate
says that the only possible result of a single measurement is one of the eigenvalues an.
However, it does not tell us which of the an will be measured. The answer is that there
is no way of knowing the outcome of an individual measurement, and that the out-
comes from identically prepared systems are not the same. This is a sharp break with
the predictability we have come to depend on in classical mechanics.

°(x, t)
ƒbm ƒ 2

8a9
8a9 = ƒb2 ƒ 2 a2 + ƒb8 ƒ 2 a8 + ƒb11 ƒ 2 a11

8a9b2
2 + b2

8 + b2
11 = 1

ANf(x, t)
8a9 = anm = n

°(x, t) = fn(x, t)
AN

AN

8a9 = a
q

m=1
amb*

mbm = a
q

m=1
ƒbm ƒ 2 am

AN
m = n.

AN

 = a
q

m=1
a
q

n=1
b*

mbnan 3
q

-q
f*

m(x, t)fn(x, t) dx

 = 3
q

-q

c a
q

m=1
b*

mf
*
m(x, t) d  ca

q

n=1
anbnfn(x, t) d  dx

  8a9 = 3°*(x, t)AN°(x, t)dx

°(x, t)
amb*

mbm = am ƒbm ƒ 2 = 1°(x, t)

°(x, t) = a
n

bnfn(x, t)

°(x, t)ANAN
°(x, t)

fj(x, t)°(x, t)

= aj

8a9 = 3
q

-q
f*

j(x, t)ANfj(x, t) dx = aj3
q

-q
fj

*(x, t)fj(x, t) dx

ANfj (x, t) = aj fj (x, t)
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Consider a hypothetical example. Suppose that a single hydrogen atom could be
isolated in a box and the electronic wave function prepared such that it is in a super-
position of the ground state, in which the electron is in the 1s orbital, and the excited
states, in which the electron is in the 2s, 2px, and 3s orbitals. Assume that the wave
function for this superposition state is

(3.10)

An example of a superposition state is the particle in the double-slit experiment going
through both slits simultaneously. We now prepare a large number of these systems,
each of which has the same wave function, and carry out a measurement of the total
energy of the atom. The results that would be obtained are illustrated in Figure 3.3.
Even though the systems are identical, the same value is not obtained for the energy of
the atom in each measurement.

More generally, the particular value observed in one measurement will be any one
of the eigenvalues an for which the corresponding bn is nonzero. This is a probabilistic
outcome, similar to asking what the chance is of rolling a six with one throw of a die.
In this more familiar case, there is no way to predict the outcome of a single throw.
However, if the die is thrown a large number of times, the six will land facing up a pro-
portion of times that almost always approaches 1/6. The equivalent case to the die for
the wave function is that all of the coefficients bm have the same value. In the particular
case under consideration, we have only four nonzero coefficients and, therefore, we
will only measure one of the values E1s, E2s, E2p, or E3s in an individual measurement,
but we have no way of knowing which of these values we will obtain. The certainty that
we are familiar with from classical mechanics—that identically prepared systems all
have the same outcomes in a measurement—is replaced in quantum mechanics by the
probabilistic outcome just described.

More can be said about the outcome of a large number of measurements than about
the outcome of a single measurement. Consider the more general result stated in
Equation (3.8): the average value of a large number of measurements carried out once
on identically prepared systems is given by a sum containing the possible eigenvalues of
the operator weighted by , the square of the expansion coefficient.The bigger theƒbm ƒ 2

°electronic = b1°1s + b2°2s + b3°2px
+ b4°3s

First
measurement

Each successive
measurement

E1s E3s E1s E2s E2px

E1s E3s E1s E2s E2px

�electronic�b1�1s � b2�2s � b3�2px � b4�3s

H
H H H

H

FIGURE 3.3
A large number of identically prepared
systems consist of a single hydrogen atom in
a three-dimensional box. The atom is
described by the superposition state

. Consider a hypothetical
experiment that measures the total energy
and is completed in such a short time that
transitions to the ground state can be neg-
lected. The result of the first measurement
on each system is probabilistic, whereas
successive measurements are deterministic.

b3°2px
+ b4°3s

°electronic = b1°1s + b2°2s +

�0.5

0.5

0

1.0

1.5

0.2 0.4 0.80.6

x /a
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)

�

2� 1�
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FIGURE 3.4
The three normalized wave functions

(blue, purple, and
red curves, respectively) are defined over
the interval . The amplitude 
of the wave functions is zero at both ends
of the interval.

0 … x … a

c1(x),c2(x), and c3(x)

contribution of an eigenfunction of to , the more prob-
able it is that the outcome of an individual measurement will be am and the more am will
influence the average value . There is no way to predict which of the am will be found
in an individual measurement. However, if this same experiment is repeated many times
on identical systems, the average value can be predicted with very high precision. It is
important to realize that this is not a shortcoming of how the “identical” systems were
prepared. These systems are identical in every way and there is no reason to believe that
we have left something out that resulted in this probabilistic result.

To illustrate the preceding discussion, consider the three different normalized
superposition wave functions shown in Figure 3.4. They are made of the normalized

8a9
A larger ƒbm ƒ 2 B°(x, t)ANfm(x, t)
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eigenfunctions of the operator with eigenvalues a1, 4a1, and
9a1, respectively. The superposition wave functions are the following combinations of

:

(3.11)

An individual measurement of the observable a gives only one of the values a1, 4a1,
and 9a1 regardless of which wave function describes the system. However, the proba-
bility of observing these values depends on the system wave function. For example, the
probability of observing the value 9a1 is given by the square of the magnitude of 
the coefficient of and is , , and , respectively, depending on whether
the state is described by .

Notice that the postulate specified that the measurement was to be carried out only
once on each of a large number of identically prepared systems. What lies behind this
requirement? We have just learned that the first measurement will give one of the
eigenvalues of the operator corresponding to the observable being measured. We have
also learned that we have no way to predict the outcome of a single measurement. What
is expected if a second measurement of the same observable were carried out on the
same system? The experimentally established answer to this question is illustrated in
Figure 3.3. In successive measurements on the same system, exactly the same result
will be obtained that was obtained in the first experiment. If further successive meas-
urements are carried out, all of the results will be the same. The probabilistic result is
obtained only on the first measurement; after that, the result is deterministic.

How can this transition from a probabilistic to a deterministic outcome be under-
stood? Note that the second and all successive results are exactly what would be
expected if the system were in a particular eigenstate of the operator for which only one
coefficient bm is nonzero, namely, , and not in the original
superposition state . In fact, this is
the key to understanding this very puzzling result. The act of carrying out a quantum
mechanical measurement appears to convert the wave function of a system to an eigen-
function of the operator corresponding to the measured quantity! We are accustomed to
thinking of our role in carrying out a measurement in classical mechanics as being pas-
sive. We simply note what the system is doing and it is not influenced by us. The
measurement process in quantum mechanics is radically different. In fact, the stan-
dard interpretation of quantum mechanics attributed to the school of Niels Bohr gives
the measurement process a central role in the outcome of the experiment. This has
vexed many scientists, most notably Albert Einstein. Applying this reasoning to the
macroscopic world, he remarked to a colleague, “Do you really think that the moon is
not there when we are not looking at it?” However strange this may all seem, no one
has devised an experiment to show that the view of the measurement process in quan-
tum mechanics stated in this postulate is incorrect.

Assume now that the superposition state that describes the system is not known. This
is generally the case for a real system. Can we determine the wave function from meas-
urements like those shown in Figure 3.3? By measuring the frequency with which a par-
ticular eigenvalue is measured, the various can be determined. However, this onlyƒbm ƒ 2

°electronic = b1°1s + b2°2s + b3°2px
+ b4°3s

°1s, or °2s, or °2px
, or °3s

c1(x),c2(x), or c3(x)
1>1611>161>4f3(x)

c3(x) =
1

2
f1(x) +

211

4
f2(x) +

1

4
f3(x)

c2(x) =
1

2
f1(x) +

1

4
f2(x) +

211

4
f3(x)

c1(x) =
211

4
f1(x) +

1

4
f2(x) +

1

2
f3(x)

f1(x),f2(x), and f3(x)

ANf1(x),f2(x), and f3(x)

allows bm to be determined to within a multiplicative factor . Unfortunately, this
does not provide enough information to reconstruct the wave function from experimen-
tal measurements. This is a general result; the wave function of a superposition state
cannot be determined by any experimental means.

eiu(x,t)
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3.5 The Evolution in Time of a Quantum
Mechanical System

Vertical

Incident beam

Horizontal

Polarization
beam splitter

FIGURE 3.5
Schematic representation of the action of a
polarization beam splitter on a plane polar-
ized beam of photons. A plane polarized
beam of photons is incident on the beam
splitter. If a measurement of the polarization
of the exiting photon beams is carried out, we
find that the photons whose direction is
unchanged are vertically polarized relative to
the beam splitter, and those that are reflected
are horizontally polarized. The incident beam
has a plane of polarization midway between
the horizontal and vertical directions.

POSTULATE 5
The evolution in time of a quantum mechanical system is governed by the time-
dependent Schrödinger equation:

(3.12)HN °(x, t) = iU
0°(x, t)

0t

In this case, the total energy operator is given by . ThisHN =  
1-U2>2m2102>0x22 + V1x, t2

looks like more familiar territory in that the equation has a unique solution for a set of
given initial conditions. We call this behavior deterministic (like Newton’s second law) in
contrast to the probabilistic nature of Postulate 4. The fourth and fifth postulates are not
contradictory. If a measurement is carried out at time t0, Postulate 4 applies. If we ask
what state the system will be in for a time without carrying out a measurement in
this time interval, Postulate 5 applies. If at time t1 we carry out a measurement again,
Postulate 4 will apply.

Note that for wave functions that are solutions of the time-independent Schrödinger
equation, . In this case, in solving the eigenvalue equation for
any operator that is not a function of time, we can write

(3.13)

This means that eigenvalue equations can be written for using only the spatial
part of the wave function , knowing that and are related by

.

3.6 Do Superposition Wave Functions Really
Exist?

A simple demonstration of superposition can be made using a beam of light that
passes through a polarizing filter. Such a filter, which is widely used in sunglasses, is
made up of long polyvinyl alcohol molecules embedded in a polymer film that
become oriented parallel to one another by stretching the film. Elemental iodine mole-
cules that are added to the film before stretching also become oriented, leading to a
much enhanced electrical conductivity parallel to the PVA molecules. Light incident
on the polarization filter has random polarization, and we can express the polarization
as having a component parallel to the molecular axis of the filter and a second compo-
nent perpendicular to the axis. When a light beam is incident on the filter, the oscillat-
ing electric field associated with electromagnetic radiation can set the electrons
associated with the I2 molecules in motion if the electric field is parallel to the PVA
molecules. In this case, the light is absorbed by the filter. If the electric field is perpen-
dicular to the axis of the oriented molecules, the electrons cannot couple to the oscil-
lating field, and the light passes through the filter. The light that passes through the
filter will have its electric field oriented perpendicular to the molecular axis and is said
to be plane polarized.

It is also possible to construct a polarization filter that will reflect one direction 
of the polarization and allow the other direction to pass through as shown in 
Figure 3.5.

°(x, t) = c(x)e-i(E/U)t
°(x, t)c(x)c(x)

AN(x)

 AN(x)cn(x) =  ancn(x)

 AN(x)cn(x)e-i(E>U)t =  ancn(x)e-i(E>U)t or

 AN(x)°n(x, t) = an°n(x, t)

AN
°(x, t) = c(x)e-i(E>U)t

t1 7 t0,
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Such a filter is called a polarization beam splitter. We direct plane polarized light on the
splitter where we choose the plane of polarization to be midway between parallel and
perpendicular so that the outgoing beams have equal amplitude. So far we have consid-
ered light only in the wave picture. However, we also know that light consists of pho-
tons in a particle picture. We can reduce the light intensity to a level such that only one
photon at a time is in the splitter. What do we observe in this case? We observe that an
individual photon is either reflected or transmitted by the splitter and consequently has
either parallel or perpendicular polarization with respect to the splitter. An interpreta-
tion of this result is that each photon is forced into an eigenfunction of the polarization
operator that has only two possible eigenvalues, namely parallel and perpendicular.

We now combine two polarization beam splitters as shown in Figure 3.6. Using the
mirrors, we recombine the two beams of photons exiting the first splitter. We observe
that photons exit the second splitter in only one of the possible directions and the plane
of polarization of the emerging light is identical to that incident on the first splitter. No
photons are observed in the second possible direction. How can this result be
explained? We note that there is an important difference between the two experiments
shown in Figures 3.5 and 3.6.

In the experiment with a single splitter, we carry out a measurement immediately
after the splitter and thereby force the photons into one of the two possible eigen-
functions of the polarization operator. In the second case, we do not carry out a meas-
urement until after the second splitter. We consider two possibilities for the
polarization of the photons that exit the first splitter in Figure 3.6. The first is that
each photon passing through the first splitter in Figure 3.6 has a well-defined plane of
polarization just as in Figure 3.5. In this case, the photons reflected from the upper
mirror have vertical polarization and pass through the second splitter in the down-
ward direction of Figure 3.6. The photons reflected from the lower mirror have hori-
zontal polarization and are reflected from the second splitter. Both photons emerge in
the observed direction. However, if this is the case, we should observe a stream of
exiting photons each of which has either vertical or horizontal polarization. This is
not consistent with the observed result.

The second possibility for the polarization of the photons that exit the first splitter is
a superposition of parallel and perpendicular polarization in each of the two directions.
This possibility is equivalent to each photon taking both possible paths through the first
splitter rather than one path or the other. In this case, recombining the two paths at the
second splitter recreates the original polarization direction midway between parallel
and perpendicular, just as observed. Therefore, this experiment demonstrates that each
photon exiting the first splitter is in a superposition state of the two possible polariza-
tions rather than being either vertically or horizontally polarized.

Second polarization
beam splitter

No photons exit
in this direction

First polarization
beam splitter

Mirror

Mirror

FIGURE 3.6
A second splitter and two mirrors are added to the experiment shown in Figure 3.15 in order to
recombine the two beams of photons exiting the first splitter. Photons exit the apparatus only in the
direction shown, and their polarization is identical to that incident on the first splitter. The polariza-
tion between the two splitters is not known because it is not measured. See text.
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Vocabulary

continuous function

deterministic outcome

eigenfunction

eigenvalue

expansion coefficient

expectation value

Hermitian operator

individual measurement

measurement process

normalization

observable

operator

orthonormal set

postulate

probabilistic outcome

single-valued function

superposition state

wave function

weighted average

Q3.1 The amplitude of a standing wave function represent-
ing a moving particle changes from positive to negative val-
ues in the domain (0, a) over which the wave function is
defined. It must therefore pass through a stationary node at
some value x0, where 0 < x0 < a. Therefore the probability of
the particle being at x0 is zero and the particle cannot get from
a position x < x0 to a position x > x0. Is this reasoning correct?

Q3.2 According to the 3rd postulate, in any single measure-
ment of the total energy, the only values that will ever be meas-
ured are the eigenvalues of the total energy operator. Apart from
the discrete energy values characteristic of a quantum mechani-
cal system, is the result of an individual measurement of the total
energy identical to the result obtained on a classical system?

Q3.3 Why must an acceptable wave function be 
single-valued?

Q3.4 Why must the first derivative of an acceptable wave
function be continuous?

Q3.5 Why must a quantum mechanical operator satisfy
the relation, ?

Q3.6 If you flip a coin, what prediction can you make about
it coming up heads in a single event?

Q3.7 If you flip a coin 1000. times, what prediction can you
make about the number of times it comes up heads?

1c(x)3ANc(x)4* dx1c*(x)3ANc(x)4 dx =
AN

Q3.8 A superposition wave function can be expanded in the
eigenfunctions of the operator corresponding to an observable
to be measured. In analogy to rolling a single die, each of the
infinite number of eigenvalues of the operator is equally
likely to be measured. Is this statement correct?

Q3.9 If a system is in an eigenstate of the operator of inter-
est, the wave function of the system can be determined.
Explain this assertion. How could you know that the system is
in an eigenstate of the operator of interest?

Q3.10 If the wave function for a system is a superposition
wave function, the wave function of the system cannot be
determined. Explain this assertion.

Q3.11 If hair color were a quantum mechanical observable,
you would not have a hair color until you looked in the mirror
or someone else looked at you. Is this reasoning consistent
with the discussion of quantum mechanics in this chapter?

Q3.12 What did Einstein mean in his famous remark “Do
you really think that the moon is not there when we are not
looking at it?”

Q3.13 Would the outcome of the experiment shown in
Figure 3.6 change if you carried out a measurement of the
polarization between the two polarization beam splitters?

Conceptual Problems

P3.1 Which of the following functions are single-valued
functions of the variable x?

a.

b.

c.

d.  cos-1  
2px

a

2x + 3x

2x

x2

P3.2 Which of the following functions are single-valued
functions of the variable x?

a.

b.

c.

d. e2pix

1 - 3 sin2 x

e31x

 sin
2px

a

Numerical Problems
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P3.3 Graph

over the inter-

val . Is f(x) a continuous function of x?

P3.4 Graph and its first derivative over the
interval . Are continuous
functions of x?

P3.5 Is the function continuous at x = 1?
Answer this question by evaluating f(1) and .

P3.6 Is the function continuous at x = 1?
Answer this question using the criteria listed in Section 3.1.

P3.7 Consider the function 
and .

Graph over the interval .

Which, if any, of the functions is continuous over the interval?

P3.8 Which of the following functions are acceptable wave
functions over the indicated interval?

a.

b.

c.

d.

Explain your answers.

P3.9 Which of the following functions are acceptable wave
functions over the indicated interval?

a.

b.

c.

d.

Explain your answers.

xe-x 0 6 x 6 q
x2e-2pix 0 6 x 6 q
e- ix 0 6 x 6 2p

e-x2>2 -q 6 x 6 q

1

x
 1 6 x 6 q

e-2pix -100 6 x 6 100

e-x -q 6 x 6 q
e-x 0 6 x 6 q

-2 6 x 6 2f(x), 
df

dx
, and  

d2f

dx2

f(x) = -1, x … -1, f(x) = 1, x Ú 1
f(x) = sinpx>2, -1 6 x 6 1

1>(1 - x)2

lim
x:1

f(x)
(x2 - 1)>(x - 1)

f(x) and df(x)>dx-4 … x … 4
f(x) = ƒx ƒ

-4 … x … 4

f(x) = bx2 + 1, -1 … x … 1 except x = 0

0, x = 0

P3.10 In combining operators sequentially, it is useful to
insert an arbitrary function after the operator to avoid errors.
For example if the operators are , thenx and d>dxAN and BN

using the classical relation for the kinetic energy, , and
the operator for linear momentum listed in Table 3.1.

P3.11 For a Hermetian operator , 1c(x)3ANc(x)4 dx =AN

p2>2m
. Derive the operator for kinetic energyANBN  f1x2 = xdf(x)>dx

. Assume that f(x) = (a + ib)f(x)AN1c(x)3ANc(x)4*dx

where a and b are constants. Show that if is a Hermetian
operator, b = 0 so that the eigenvalues of f(x) are real.

P3.12 Show that if are solutions 
of the time independent Schrödinger equation, 

is a solution of
the time dependent Schrödinger equation.

P3.13 Is the relation always obeyed? If
not, give an example to support your conclusion.

P3.14 Is the relation 
always obeyed? If not, give an example to support your 
conclusion.

P3.15 In classical mechanics, the angular momentum vector
L is defined by . Determine the x component of L.
Substitute quantum mechanical operators for the

components of r and p to prove that = .

P3.16 Show that the three wave functions in Equation 3.11
are normalized.

- iUay
0
0 z

- z
0
0 y
blNx

L = r * p

AN3f(x) + g(x)4 = ANf(x) + ANg(x)

(ANf(x))>f(x) = AN

cn(x)e-(iEn/U)t + cm(x)e-(iEm/U)t°(x,t) =

cn(x) and cm(x)

AN
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4.1 The Free Particle

4.2 The Particle in a 
One-Dimensional Box

4.3 Two- and Three-
Dimensional Boxes

4.4 Using the Postulates to
Understand the Particle 
in the Box and Vice Versa

Using Quantum
Mechanics on 

Simple Systems

The framework described in Chapters 2 and 3 is used to solve two

problems in a quantum mechanical framework that are familiar from clas-

sical mechanics. Both involve the motion of a particle on which no forces

are acting. In the first case, the particle is not constrained. In the second, it

is constrained to move within the confines of a box but has no other

forces acting on it. We find that unlike classical mechanics, where the

energy spectrum is continuous and the particle is equally likely to be

found anywhere the box, the quantum mechanical particle in the box has

a discrete energy spectrum and is more likely to be found in locations

within the box that depend on the quantum mechanical state.

4.1 The Free Particle
The simplest classical system imaginable is the free particle, a particle in a one-
dimensional space on which no forces are acting. We begin with

(4.1)

This differential equation can be solved to obtain

(4.2)

Verify that this is a solution by substitution in Equation (4.1). We can calculate the
position at any time if the boundary conditions of the problem, namely the initial posi-
tion and velocity, are known.

How do we calculate the position of the wave-particle using quantum mechanics?
The condition that no forces can be acting on the particle means that the potential

x = x0 + v0t

F = ma = m
d2x

dt2 = 0
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energy is constant and independent of x and t. Therefore, we use the time-independent
Schrödinger equation in one dimension,

(4.3)

to solve for the dependence of the wave function on x. Whenever the potential
energy is constant, we can choose to make it zero because there is no fixed
reference point for the zero of potential energy, and only changes in this quantity are
measurable. The Schrödinger equation for this problem reduces to

(4.4)

In words, is a function that when differentiated twice returns the same function
multiplied by a constant. Equation (4.4) has two solutions and the most appropriate
form of these solutions (trigonometric or exponential) for our purposes is

(4.5)

in which the constants in the exponent have been combined using

(4.6)

Note that the last equality is consistent with the definition of the classical kinetic
energy, E = 1 2 mv2 using the de Broglie relation [Equation (1.11)]. We have been>

k = 2p>l = 22mE>U2

c-(x) = A-e-i2(2mE>U2) x = A-e-ikx

c+(x) = A+e+i2(2mE>U2) x = A+e+ikx

c(x)

d2c(x)

dx2 = -
2m

U2 Ec(x)

V(x)
c(x)

-
U2

2m

d2c(x)

dx2 + V(x)c(x) = Ec(x)

multiplied by , where the relation has been used.
These solutions are plane waves, one moving to the right (positive x direction),

the other moving to the left (negative x direction). The eigenvalues for the total
energy can be found by substituting the wave functions of Equation (4.5) into
Equation (4.4). For both solutions, . Because k is a constant, these
wave functions represent waves moving at a constant velocity determined by their
initial velocity. Therefore, the quantum mechanical solution of this problem contains
the same information as the classical problem, namely, motion with a constant veloc-
ity. One other important similarity between the classical and quantum mechanical
free particle is that both can take on all values of energy because k is a continuous
variable. The quantum mechanical free particle has a continuous energy spectrum.
Why is this the case? We will learn the answer to this question in the next section of
this chapter.

Because a plane wave is not localized in space, we cannot speak of its position as
we did for the particle. However, the probability of finding the particle in an interval of
length dx can be calculated. The free-particle wave functions cannot be normalized
over the interval , but if x is restricted to the interval 
where L can be very large, the probability of finding the particle described by at
position x in the interval dx is

(4.7)

The same result is found for . The coefficients cancel because they
appear in both the numerator and the denominator. We find that P(x) dx is independent of
x, which means that the particle is equally likely to be anywhere in the interval. This
result is equivalent to saying that nothing is known about the position of the particle. As
will be shown in Chapter 6, this result is linked to the fact that the momentum of the par-
ticle has been precisely specified to have the values and for the wave functions-UkUk

A+ and A-c-(x)

P(x) dx =
c+*(x) c+(x) dx

L
L

-L
c+*(x) c+(x) dx

=
A*

+A+e- ikx e+ ikx dx

A *
+A+L

L

-L
e- ikx e+ ikx dx

=
dx

2L

c+(x)
-L … x … L-q 6 x 6 q

E = U2 k2>2m

E = Uvor equivalently e-ivte-i(E>U)t
working with rather than . To obtain , these two solutions are°(x, t)°(x, t)c(x)
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and , respectively. We can verify that the eigenfunctions of the total energy
operator are also eigenfunctions of the momentum operator by applying the momentum
operator to these total energy eigenfunctions.

4.2 The Particle in a One-Dimensional Box
The next case to be considered is the particle in a box. To keep the mathematics sim-
ple, the box is one dimensional; that is, it is the one-dimensional analog of a single
atom moving freely in a cube that has impenetrable walls. Two- and three-dimensional
boxes are dealt with in Section 4.3 and in the problems at the end of this chapter. The
impenetrable walls are modeled by making the potential energy infinite outside of a
region of width a. The potential is depicted in Figure 4.1.

(4.8)

How does this change in the potential affect the eigenfunctions that were obtained for
the free particle? To answer this question, the Schrödinger equation is written in the
following form:

(4.9)

Outside of the box, where the potential energy is infinite, the second derivative of the
wave function would be infinite if were not zero for all x values outside the box.c(x)

d2c(x)

dx2 =
2m

U2 3V(x) - E4 c(x)

 V(x) = q ,  for x 7 a, x 6 0

 V(x) = 0,  for a Ú x Ú 0

c-(x)c+(x)

V�0V�∞

x0 a

V�∞

FIGURE 4.1
The potential described by Equation (4.8)
is depicted. Because the particle is con-
fined to the range , we say that
it is confined to a one-dimensional box.

0 … x … a

Because must exist and be well behaved, must be zero everywhere
outside of the box as well as at and .

(4.10)

Equation (4.10) lists boundary conditions that any well-behaved wave function for the
one-dimensional box must satisfy.

Inside the box, where , the Schrödinger equation is identical to that for a
free particle [Equation (4.4)], so the solutions must be the same. For ease in applying
the boundary conditions, the solution is written in a trigonometric form equivalent to
that of Equation (4.5):

(4.11)

Now the boundary conditions given by Equation (4.10) are applied. Putting the values
and in Equation (4.11), we obtain

(4.12)

The first condition can only be satisfied by the condition that . The second con-
dition can be satisfied if either or with n being an integer. Setting A
equal to zero would mean that the wave function is always zero, which is unacceptable
because then there is no particle in the box. Therefore, we conclude that

(4.13)

The requirement that will turn out to have important consequences for the
energy spectrum of the particle in the box. Each different value of n corresponds to a

ka = np

cn(x) = A sinanpx

a
b , for n = 1, 2, 3, 4, Á

ka = npA = 0
B = 0

c(a) = A sin ka = 0

c(0) = 0 + B = 0

x = ax = 0

c(x) = A sin kx + B cos kx

V(x) = 0

c(0) = c(a) = 0, c(x) = 0  for x 7 a, x 6 0

x = ax = 0
c(x)d2c(x)>dx2
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different eigenfunction. To use operator language, we have found the infinite set of
eigenfunctions of the total energy operator for the potential energy defined by
Equation (4.8).

Note the undefined constant A in these equations. This constant can be determined
by normalization, that is, by realizing that represents the probability of
finding the particle in the interval of width dx centered at x. Because the probability of
finding the particle somewhere in the entire interval is 1,

(4.14)

This integral is evaluated using the standard integral

resulting in , so the normalized eigenfunctions are

(4.15)

What are the energy eigenvalues that go with these eigenfunctions? Applying the total
energy operator to the eigenfunctions will give back the eigenfunction multiplied by the
eigenvalue. We find that

(4.16)

Because

the following result is obtained:

(4.17)

An important difference is seen when this result is compared to that
obtained for the free particle. The energy for the particle in the box can
only take on discrete values. We say that the energy of the particle in the
box is quantized and the integer n is a quantum number. Another impor-
tant result of this calculation is that the lowest allowed energy is greater
than zero. The particle has a nonzero minimum energy, known as a zero
point energy.

Why are quite different results obtained for the free and the confined
particle? A comparison of these two problems reveals that quantization
entered through the confinement of the particle. Because the particle is
confined to the box, the amplitude of all allowed wave functions must be
zero everywhere outside the box. By considering the limit , the

confinement condition is removed. Example Problem 4.1 shows that the discrete
energy spectrum becomes continuous in this limit.

The lowest four energy levels for the particle in the box are shown in Figure 4.2 super-
imposed on an energy-versus-distance-diagram. The eigenfunctions are also shown in this
figure. Keep in mind that the time-independent part of the wave function is graphed. The
full wave function is obtained by multiplying the wave functions shown in Figure 4.2
by . If this is done, the variation of the total wave function with time is exactly
what was shown in Figure 2.4 for a standing wave, if the real and imaginary parts of

e-i(E>U)t

a: q

En =
U2

2m
anp

a
b2

=
h2n2

8ma2 , for n = 1, 2, 3, Á

-
U2

2m

d2cn(x)

dx2 = Encn(x)

-
U2

2m

d2cn(x)

dx2 =
U2

2m
anp

a
b2

A
2
a

 sinanpx

a
b

cn(x) = A
2
a

 sinanpx

a
b

A = 22>a
Lsin2 (by) dy =

y

2
-

sin (2by)

4b

= A*AL
a

0

sin2anpx

a
b dx = 1L
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0

c*(x) c(x) dx
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FIGURE 4.2
The first few eigenfunctions for the parti-
cle in a box are shown together with the
corresponding energy eigenvalues. The
energy scale is shown on the left. The
wave function amplitude is shown on the
right with the zero for each level indicated
by the dashed line.
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are considered separately. This result turns out to be general: the
wave function for a state whose energy is independent of time is a standing
and not a traveling wave. A standing wave has nodes that are at fixed dis-
tances independent of time, whereas the nodes move in time for a traveling
wave. For this reason, the boundary conditions of Equation (4.10) cannot be
satisfied for a traveling wave. A node is a point where a wave function goes
through zero. An end point is not a node.

The particle in the box is also useful for showing that the quantiza-
tion of the energy ultimately has its origin in the coupling of wave prop-
erties and boundary conditions. In moving from , the
number of half-wavelengths, and therefore the number of nodes, has
been increased by one. There is no way to add anything other than an
integral number of half-wavelengths and still have at the
ends of the box. Therefore, the wave vector k will increase in discrete
increments rather than continuously in going from one stationary state
to another. Because

the allowed energies E also increase in jumps rather than in a continuous
fashion as in classical mechanics. Thinking in this way also helps in
understanding the origin of the zero point energy. Because ,
zero energy corresponds to an infinite wavelength, but the longest wave-
length for which at the ends of the box is . Substituting
this value in the equation for E gives exactly the zero point energy. Note
that the zero point energy approaches zero as a approaches infinity. In this limit, the
particle becomes free.

Looking at Equation (4.17), which shows the dependence of the total energy eigen-
values on the quantum number n, it is not immediately obvious that the energy spectrum
will become continuous in the classical limit of very large n because the spacing between
adjacent levels increases with n. This issue is addressed in Example Problem 4.1.

The total energy is one example of an observable that can be calculated once the
eigenfunctions of the time-independent Schrödinger equation are known. Another
observable that comes directly from solving this equation is the quantum mechani-
cal analogue of position. Recall that the probability of finding the particle in any
interval of width dx in the one-dimensional box is given by . The
probability density at a given point is shown in Figure 4.3 for the first
few eigenfunctions.

How can these results be understood? Looking back at the discussion of waves in
Chapter 2, recall that to ask for the position of a wave is not meaningful because the
wave is not localized at a point. Wave-particle duality modifies the classical picture of
being able to specify the location of a particle. Figure 4.3 shows the probability density
of finding the particle in the vicinity of a given value of x rather than the position of that
particle. We see that the probability of finding the particle outside of the box is zero, but
that the probability of finding the particle within an interval dx in the box depends on the

c*(x)c(x)
c*(x)c(x) dx

l = 2acn(x) = 0

E = h2>2ml2

k =
2p

l
=

p

U
=
22mE

U

cn(x) = 0

cn(x) to cn+1(x)
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FIGURE 4.3
The square of the magnitude of the wave
function, or probability density, is shown
as a function of distance together with the
corresponding energy eigenvalues. The
energy scale is shown on the left. The
square of the wave function amplitude is
shown on the right with the zero for each
level indicated by the dashed line.

is never zero for a finite interval inside the box. This¢x1x+¢x

x-¢x
c*(x¿)c(x¿) dx¿

position and the quantum number. Although can be zero at nodal positions,ƒc(x) ƒ2

means that there is no finite length interval inside the box in which the particle is not
found. For the ground state, it is much more likely that the particle is found near the cen-
ter of the box than at the edges. A classical particle would be found with the same prob-
ability everywhere. Does this mean that quantum mechanics and classical mechanics are
in conflict? No, because we need to consider large values of n to compare with the clas-
sical limit. However, a feature in Figure 4.3 that appears hard to understand is the oscil-
lations in . They will not disappear for large n; they will just be spaced more
closely together. Because there are no such oscillations for the classical case, we need to
make the quantum oscillations disappear for very large n.

c2(x)
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The way to understand the convergence to the classical limit is to consider the
measurement process. Any measurement has a certain resolution that averages data
over the resolution range. What effect will the limited resolution have on a measure-
ment like probability? The result is shown in Figure 4.4. The probability density

is shown for the 1st, 30th, and 50th eigenstates of the particle in the box for
three different limits of resolution. The probability density for the ground state is
unaffected by including a resolution limit. However, as the resolution of the measure-
ment decreases, we see that the probability density for the 50th state is beginning to
approach the classical behavior of a constant probability everywhere. The classical
limit is closer to rather than 50 for at realistic temperatures and
box dimensions on the order of centimeters. The difference between the quantum and
classical results disappears as n becomes large. This is a general result known as the
correspondence principle.

This first attempt to apply quantum rather than classical mechanics to two familiar prob-
lems has led to several useful insights. By representing a wave-particle as a wave, familiar
questions that can be asked in classical mechanics become inappropriate. An example is
“Where is the particle at time t0?” The appropriate question in quantum mechanics is “What
is the probability of finding the particle at time t0 in an interval of length dx centered at the
position x0?” For the free particle, we found that the relationship between momentum and
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an increasingly wider range. Note that the
probability of finding the particle in an
interval dx becomes increasingly inde-
pendent of position as n increases for
lower resolution.
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energy is the same as in classical mechanics and that there are no restrictions on the
allowed energy. Restricting the motion of a particle to a finite region on the order of its
wavelength has a significant effect on many observables associated with the particle. We
saw that the origin of the effect is the requirement that the amplitude of the wave function be
zero at the ends of the box for all times. This requirement changes the eigenfunctions of
the Schrödinger equation from the traveling waves of the free particle to standing waves.
Only discrete values of the particle momentum are allowed because of the condition

. Because , the particle can only have certain
values for the energy, and these values are determined by the length of the box. Wave-
particle duality also leads to a nonuniform probability for finding the particle in the box.

EXAMPLE PROBLEM 4.1

From the formula given for the energy levels for the particle in the box, 
, we can see that the spacing between adjacent levels increases with

n. This appears to indicate that the energy spectrum does not become continuous for large
n, which must be the case for the quantum mechanical result to be identical to the classi-
cal result in the high-energy limit. A better way to look at the spacing between levels is to
consider the ratio . Form this ratio and show that becomes a
smaller fraction of the energy as . This result shows that the energy spectrum
becomes continuous for large n.

Solution

which approaches zero as . Both the level spacing and the energy increase
with n, but the energy increases faster (as n2), making the energy spectrum appear to
be continuous as . This is another example of the correspondence principle.

4.3 Two- and Three-Dimensional Boxes
The one-dimensional box is a useful model system because the conceptual simplic-
ity allows the focus to be on the quantum mechanics rather than on the mathemat-
ics. The extension of the formalism developed for the one-dimensional problem to
two and three dimensions has several aspects that are of use in understanding top-
ics such as the rotation of molecules and the electronic structure of atoms, which
cannot be reduced to one-dimensional problems.

Our focus here is on the three-dimensional box because the reduction in dimension-
ality from three to two is straightforward. The potential energy is given by

(4.18)

As before, the amplitude of the eigenfunctions of the total energy operator is identically
zero outside the box. Inside the box, the Schrödinger equation can be written as

(4.19)

This differential equation is solved assuming that has the form

(4.20)

in which is the product of three functions, each of which depends on only one
of the variables. The assumption is valid in this case because V(x, y, z) is independent of

c(x, y, z)

c(x, y, z) = X(x)Y(y)Z(z)

c(x, y, z)

-
U2

2m
a 02

0x2 +
02

0y2 +
02

0z2 bc(x, y, z) = Ec(x, y, z)

= q   otherwise

 V(x, y, z) = 0 for 0 … x … a; 0 … y … b; 0 … z … c

n: q

n: q

En+1 - En

En
= ah23(n + 1)2 - n24>8ma2

h2n2>8ma2 b =
2n + 1

n2

n: q
¢E>E(En+1 - En)>En

for n = 1, 2, 3, Á
En = h2n2>8ma2

E = h2n2>8ma2ka = np, n = 1, 2, 3, Á
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x, y, and z inside the box. This process is referred to as a separation of variables. It is
also valid for a potential of the form . Substituting
Equation (4.20) in Equation (4.19), we obtain

(4.21)

Note that Equation (4.21) no longer contains partial derivatives, because each of the
three functions X, Y, and Z depends on only one variable. Dividing by the product

results in

(4.22)

The form of this equation shows that E can be viewed as having independent contribu-
tions from the three coordinates, , and the original differential
equation in three variables reduces to three differential equations, each in one variable:

(4.23)

Each of these equations has the same form as the equation that was solved for the one-
dimensional problem. Therefore, the total energy eigenfunctions have the form

(4.24)

and the total energy has the form

(4.25)

This is a general result. If the total energy can be written as a sum of independent terms
corresponding to different degrees of freedom, then the wave function is a product of
individual terms, each corresponding to one of the degrees of freedom.

Because this is a three-dimensional problem, the eigenfunctions depend on three
quantum numbers. Because more than one set of the three quantum numbers may have
the same energy [for example, (1, 2, 1), (2, 1, 1), and (1, 1, 2) if ], several dis-
tinct eigenfunctions of the total energy operator may have the same energy. In this case,
we say that the energy level is degenerate, and the number of states, each represented by
a distinct eigenfunction, that have the same energy is the degeneracy of the level.

What form do and E take for the two-dimensional box? How many quantum
numbers are needed to characterize and E for the two-dimensional problem?
Additional issues related to the functional form, degeneracy, and normalization of the
total energy eigenfunctions are covered in the end-of-chapter problems.

We have made a considerable effort to understand the particle in the box, because
this model is very useful in understanding properties that can be measured for real sys-
tems. Some of these systems will be discussed in Chapter 5. However, we first return to
the postulates introduced in Chapter 3, now that the Schrödinger equation has been
solved for an interesting system.

4.4 Using the Postulates to Understand 
the Particle in the Box and Vice Versa

Because of its simplicity, the particle in a box is an excellent teaching tool for learning
how to apply quantum mechanics to a specific system. In this section, each of the pos-
tulates is applied to this problem using the eigenvalues and eigenfunctions calculated
earlier. We begin with the first postulate.

c
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POSTULATE 1:
The state of a quantum mechanical system is completely specified by a wave
function . The probability that a particle will be found at time t in a spa-
tial interval of width dx centered at x0 is given by .°*(x0, t)°(x0, t) dx

°(x, t)

Problem 4.2.

EXAMPLE PROBLEM 4.2

Consider the superposition wave function .

a. Is an acceptable wave function for the particle in the box?

b. Is an eigenfunction of the total energy operator ?

c. Is normalized?

Solution

a. If is to be an acceptable wave function, it must satisfy the boundary condi-
tions . The first and second derivatives of 
must also be well-behaved functions between . This is the case
for . We conclude that is an acceptable
wave function for the particle in the box.

b. Although may be an acceptable wave
function, it need not be an eigenfunction of a given operator. To see if 
is an eigenfunction of the total energy operator, the operator is applied to 
the wave function:

The result of this operation is not multiplied by a constant. Therefore, 
is not an eigenfunction of the total energy operator.

c. To see if is normalized, the following integral is evaluated:
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c(x) = c sin(px>a) + d sin(2px>a)

This postulate states that all the information that can ever be obtained about the system
is contained in the wave function. At this point it is useful to review the distinction
between a wave function and an eigenfunction. A wave function is any mathematically
well-behaved function that satisfies the boundary conditions and that can be normalized
to allow a meaningful definition of probability. An eigenfunction must satisfy these and
one more criterion. A wave function is an eigenfunction of an operator only if it sat-
isfies the relationship . These criteria are illustrated in ExampleANcn(x) = ancn(x)

AN
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Using the standard integral and recog-
nizing that the third integral is zero because all sin nx functions with different n
are orthogonal,

Therefore, is not normalized in general, but the wave function

is normalized for the condition that .
Note that a superposition wave function has a more complicated dependence on

time than does an eigenfunction of the total energy operator. For instance, for
the wave function under consideration is given by

This wave function cannot be written as a product of a function of x and a function 
of t. It is not a standing wave and does not describe a state whose properties are, in
general, independent of time.

All of the particle in the box eigenfunctions, for
are normalized, meaning that the total probability of finding the particle

somewhere between and is one. In other words, the particle is somewhere
in the box. We cannot predict with certainty the outcome of a single measurement in
which the position of the particle is determined, because these eigenfunctions of the
total energy operator are not eigenfunctions of the position operator. In Chapter 6, we
will discuss why the eigenvalues of and cannot be determined simultaneously. We
can, however, predict the average value determined in a large number of independent
measurements of the particle position. This is equivalent to asking for the probability
density of finding the particle at a given position. The formula for calculating this prob-
ability is stated in the first postulate. The total probability of finding the particle in a
finite length interval is obtained by integrating the probability density, as shown in
Example Problem 4.3.

EXAMPLE PROBLEM 4.3

What is the probability P of finding the particle in the central third of the box if it is in
its ground state?

Solution

For the ground state, . From the postulate, P is the sum of
all the probabilities of finding the particle in intervals of width dx within the central
third of the box. This probability is given by the integral
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a 3
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Solving this integral as in Example Problem 4.2,

Although we cannot predict the outcome of a single measurement, we can predict that for
60.9% of a large number of individual measurements, the particle is found in the central
third of the box. What is the probability of finding a classical particle in this interval?

Postulate 2 is a recipe for associating classical observables with quantum mechanical
operators and need not be considered further. Postulates 3 and 4 are best understood by
considering them together.

P =
2
a
C a

6
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4p
asin

4p

3
- sin

2p

3
b S = 0.609

POSTULATE 3:
In any single measurement of the observable that corresponds to the operator , the
only values that will ever be measured are the eigenvalues of that operator.

POSTULATE 4:
If the system is in a state described by the wave function , and the value
of the observable a is measured once each on many identically prepared systems,
the average value of all of these measurements is given by

(4.26)8a9 = L
q

-q
°*1x, t2AN°1x, t2 dx

L
q

-q
°*1x, t2°1x, t2 dx

°(x, t)

AN

The wave function for particle in its ground state is which is a
normalized eigenfunction of the total energy operator. Applying the operator to this wave
function returns the function multiplied by the constant. This is the value of the energy that
is determined in any single measurement and, therefore, it is also the average of all values
for the energy that are measured on many particles prepared in the same state.

Now consider a measurement of the total energy for a case in which the wave func-
tion of the system is not an eigenfunction of this operator. As you convinced yourself in
Example Problem 4.2, the normalized superposition wave function

where is not an eigenfunction of . Postulate 4 says that the average
value of the energy for a large number of identical measurements on a system whose
state is described by a normalized wave function is

(4.27)

We now substitute the expression for into Equation (4.27):

(4.28)
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Multiplying out the terms in the brackets, and recognizing that each of the individual
terms in the parentheses is an eigenfunction of the operator, reduces to

(4.29)

We know the value of each of the first two integrals is a 2 from our efforts to normalize the
functions. Each of the last two integrals is identically zero because the sine functions with
different arguments are mutually orthogonal. Therefore, the result of these calculations is

(4.30)

where . Because is a weighted average of E1
and E2. As seen in Example Problem 4.2, the superposition wave function does not
describe a stationary state, and the average values of observables such as 
are functions of time as shown in Problem W4.6. However, the average energy is inde-
pendent of time because the energy is conserved.

Note that this result is exactly what was derived for a more general case in dis-
cussing Postulate 4 (see Chapter 3). We next discuss in more detail what will be
obtained for an individual measurement of the total energy and relate it to the result that
was just derived for the average of many individual measurements. Postulate 3 says 
that in an individual measurement, only one of the eigenvalues of the operator can be
measured. In this case, it means that only one of the infinite set of En given by

is a possible result of an individual measurement.
What is the likelihood that the value E2 will be measured? Postulate 4 gives a recipe for
answering this question. It tells us to expand the system wave function in the complete
set of functions that are the eigenfunctions of the operator of interest. The probability
that an individual measurement will give En is given by the square of the expansion
coefficient of that eigenfunction in the expression for the wave function. In the particu-
lar case under consideration, the wave function can be written as follows:

(4.31)

in which it has been made explicit that the coefficients of all the eigenfunctions other
than are zero. Therefore, given the wave function for the system, indi-
vidual measurements on identically prepared systems will never give anything other
than E1 or E2. The probability of obtaining E1 is and the probability of obtaining E2
is . From this result, it is clear that the average value for the energy determined from
a large number of measurements is .

A more detailed discussion of causality in quantum mechanics would lead us to 
a number of conclusions that differ significantly from our experience with classical
mechanics. For instance, it is not possible to predict whether E1 or E2 would be meas-
ured in an individual measurement any more than the outcome of a single throw of a
die can be predicted. However, if the energy is measured again on the same system
(rather than carrying out a second measurement on an identically prepared system), the
same result will be obtained as in the initial measurement. This conclusion also holds
for all subsequent measurements. This last result is particularly intriguing because it
suggests that through the measurement process, the system has been forced into an
eigenfunction of the operator corresponding to the quantity being measured.

Now consider a measurement of the momentum or the position. As shown earlier,
we need to know the wave function that describes the system to carry out such a cal-
culation. For this calculation, assume that the system is in one of the eigenstates of
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the total energy operator, for which . From the second
postulate, and Table 3.1, the quantum mechanical operator associated with momentum
is . Although is an eigenfunction of the total energy operator, it is not
clear if it is an eigenfunction of the momentum operator. Verify that it is not an
eigenfunction of this operator by operating on the wave function with the momentum

c(x)- iU(d>dx)

cn(x) = 22>a sin(npx>a)
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operator. We will return to the significance of this result in Chapter 6, but we first
proceed in applying the postulates. Postulate 4 defines how the average value of the
momentum obtained in a large number of individual measurements on an identically
prepared system can be calculated. The result is given by

(4.32)

Note that the result is the same for all values of n. We know that the energy of the lowest
state is greater than zero and that all the energy is in the form of kinetic energy. Because

, the magnitude of p must be greater than zero for an individual measure-
ment. How can the result that the average value of the momentum is zero be understood?

Keep in mind that, classically, the particle is bouncing back and forth between the two
walls of the one-dimensional box with a constant velocity. Therefore, it is equally likely
that the particle is moving in the and directions and that its momentum is positive
or negative. For this reason, the average momentum is zero. This result holds up in a quan-
tum mechanical picture. However, a major difference exists between the quantum and clas-
sical pictures. In classical mechanics, the magnitude of the momentum of the particle is
known to be exactly. In quantum mechanics, a consequence of confining the
particle to a box of length a is that an uncertainty has been introduced in its momentum
that is proportional to 1 a. This issue will be discussed in depth in Chapter 6. The calcula-
tion for the average value of position is carried out in Example Problem 4.4.

EXAMPLE PROBLEM 4.4

Assume that a particle is confined to a box of length a, and that the system wave func-
tion is .

a. Is this state an eigenfunction of the position operator?

b. Calculate the average value of the position that would be obtained for a large
number of measurements. Explain your result.

Solution

a. The position operator . Because
where c is a constant, the wave function is not an eigenfunction of the position operator.

b. The expectation value is calculated using the fourth postulate:

The average position is midway in the box. This is exactly what we would expect,
because the particle is equally likely to be in each half of the box.
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Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P4.1 This problem explores under what conditions the classi-
cal limit is reached for a macroscopic cubic box of edge length a.

A nitrogen molecule of average translational energy 3 2 kBT is
confined in a cubic box of volume at 298 K. Use
the result from Equation (4.25) for the dependence of the energy
levels on a and on the quantum numbers nx, ny, and nz.

V = 1.250 m3
>
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Q4.1 We set the potential energy in the particle in the box
equal to zero and justified it by saying that there is no
absolute scale for potential energy. Is this also true for 
kinetic energy?

Q4.2 Discuss why a quantum mechanical particle in a box
has a zero point energy in terms of its wavelength.

Q4.3 How does an expectation value for an observable
differ from an average of all possible eigenvalues?

Q4.4 Is the probability distribution for a free particle 
consistent with a purely particle picture, a purely wave
picture, or both?

Q4.5 Show that it is not possible to normalize the free-
particle wave functions over the whole range of motion of 
the particle.

Q4.6 The probability density for a particle in a box is an
oscillatory function even for very large energies. Explain how
the classical limit of a constant probability density that is
independent of position is achieved for large quantum
numbers.

Q4.7 Explain using words, rather than equations, why if
, the total energy eigen-

functions cannot be written in the form 
.

Q4.8 Can a guitar string be in a superposition of states or is
such a superposition only possible for a quantum mechanical
system?

Q4.9 Show that for the particle in the box total energy
eigenfunctions, , 
continuous function at the edges of the box. Is a
continuous function of x at the edges of the box?

dc>dx
c(x) is acn(x) = 22>a sin(npx>a)

X(x)Y(y)Z(z)
c(x, y, z) =

V(x, y, z) Z Vx(x) + Vy(y) + Vz(z)

Q4.10 Why are standing-wave solutions for the free particle
not compatible with the classical result ?

Q4.11 What is the difference between probability and prob-
ability density?

Q4.12 Why are traveling-wave solutions for the particle in
the box not compatible with the boundary conditions?

Q4.13 Can the particles in a one-dimensional box, a square
two-dimensional box, and a cubic three-dimensional box all
have degenerate energy levels?

Q4.14 Invoke wave-particle duality to address the following
question: How does a particle get through a node in a wave
function to get to the other side of the box?

Q4.15 Why is the zero point energy lower for a He atom in
a box than for an electron?

Q4.16 What are the units of the probability density for the
particle in a one-dimensional box?

Q4.17 What are the units of the probability density for the
particle in a three-dimensional box?

Q4.18 What is the relationship between the zero 
point energy for a H atom and a H2 molecule in a one-
dimensional box?

Q4.19 Show that the correct energy eigenvalues for the par-
ticle in a one-dimensional box are obtained even if the total
energy eigenfunctions are not normalized.

Q4.20 What are the possible results for the energy that
would be obtained in a measurement on the particle in a 
one-dimensional box if the wave function is

?cn(x) = 22>a sin(7px>a)

x = x0 + v0t

Vocabulary

boundary condition

classical limit

correspondence principle

degeneracy

degenerate

node

particle in a box

probability

probability density

quantized

quantum number

separation of variables

standing wave

traveling wave

wave vector

zero point energy

Conceptual Problems

Numerical Problems
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a. What is the value of the “reduced quantum number”
for

b. What is the energy separation between the levels and
(Hint: Subtract from before plugging in

numbers.)

c. Calculate the ratio and use your result
to conclude whether a classical or quantum mechanical
description is appropriate for the particle.

P4.2 Calculate the expectation values and for a
particle in the state moving in a one-dimensional box
of length 2.50 * 10-10. Is ? Explain your answer.

P4.3 Normalize the total energy eigenfunctions for the
three-dimensional box in the interval 

.

P4.4 Is the superposition wave function for the free 

particle an
eigenfunction of the momentum operator? Is it an eigenfunc-
tion of the total energy operator? Explain your result.

P4.5 Suppose that the wave function for a system can be
written as

and that are orthonormal eigenfunc-
tions of the operator with eigenvalues E1, 2E1, and
4E1, respectively.

a. Verify that is normalized.

b. What are the possible values that you could obtain in
measuring the kinetic energy on identically prepared
systems?

c. What is the probability of measuring each of these
eigenvalues?

d. What is the average value of Ekinetic that you would obtain
from a large number of measurements?

P4.6 Consider a free particle moving in one dimension
whose probability of moving in the positive x direction is four
times that for moving in the negative x direction. Give as
much information as you can about the wave function of 
the particle.

P4.7 Are the eigenfunctions of for the particle in the one-
dimensional box also eigenfunctions of the momentum operator

x? Calculate the average value of px for the case . Repeatn = 3pN

HN

c(x)

EN kinetic

f1(x), f2(x), and f3(x)

c(x) =
23

4
f1(x) +

23

222
f2(x) +

2 + 23 i

4
f3(x)

c(x) = A+e+i2(2mE>U2)x + A-e- i2(2mE>U2)x

0 … y … b, 0 … z … c
0 … x … a,

8x29 = 8x92n = 5
8x298x9

(Ea+1 - Ea)>kBT

EaEa + 1a + 1?
a

T = 298 K?a = 2n2
x + n2

y + n2
z

P4.10 What is the solution of the time-dependent
Schrödinger equation for the total energy 

eigenfunction for an electron 
in a one-dimensional box of length 1.00 * 10-10 m? Write
explicitly in terms of the parameters of the problem. Give
numerical values for the angular frequency and the wave-
length of the particle.

P4.11 Derive an equation for the probability that a particle
characterized by the quantum number n is in the first 25%

of an infinite depth box. Show that this
probability approaches the classical limit as .

P4.12 It is useful to consider the result for the energy 
eigenvalues for the one-dimensional box 

as a function of n, m, and a.

a. By what factor do you need to change the box length to
decrease the zero point energy by a factor of 50 for a fixed
value of m?

b. By what factor would you have to change n for fixed val-
ues of a and m to increase the energy by a factor of 600?

c. By what factor would you have to increase a at constant n
to have the zero point energies of a Ne atom be equal to
the zero point energy of a hydrogen atom in the box?

P4.13 Show that the energy eigenvalues for the free 

particle, , are consistent with the classical 

result .

P4.14 a. Show by substitution into Equation (4.19) that the
eigenfunctions of for a box with lengths along the x, y, and
z directions of a, b, and c, respectively, are 

b. Obtain an expression for in terms of nx, ny, nz,
and a, b, and c.

P4.15 Calculate the wavelength of the light emitted when
an electron in a one-dimensional box of length 5.0 nm makes
a transition from the state to the state.

P4.16 A bowling ball has a weight of 12 lb and the length
of the lane is approximately 60. ft. Treat the ball in the lane as
a particle in a one-dimensional box. What quantum number
corresponds to a velocity of 7.5 miles per hour?

P4.17 For a particle in a two-dimensional box, the total 

energy eigenfunctions are cnxny
(x, y) = N sin 

nxpx

a
 sin 

nypy

b

n = 6n = 7

Enx, ny, nz

cnx, ny, nz
(x, y, z) = N sinanxpx

a
b  sinanypy

b
b  sinanzpz

c
b

HN

E = (1>2)mv2
E = U2k2>2m

n = 1, 2, 3, Á
En = h2n2>8ma2,

n: q
(0 … x … 0.25a)

v

c4(x) = 22>a sin(3px>a)

°(x, t)

by substituting this wave function into the two-
dimensional analog of Equation (4.19).

b. Contour plots of several eigenfunctions are shown 
here. The x and y directions of the box lie along the
horizontal and vertical directions, respectively. The
amplitude has been displayed as a gradation in colors.
Regions of positive and negative amplitude are indi-
cated. Identify the values of the quantum numbers nx
and ny for plots a–f.

your calculation for and, from these two results, suggest
an expression valid for all values of n. How does your result
compare with the prediction based on classical physics?

P4.8 Evaluate the normalization integral for the eigenfunc-
tions of for the particle in the box 
using the trigonometric identity .

P4.9 Is the function an accept-
able wave function for the particle in the one-dimensional infi-
nite depth box of length b? Calculate the normalization constant
A and the expectation values .8y9 and 8y29

c(y) = A(y>b)31 - (y>b)4
sin2 y = (1 - cos 2y)>2
cn(x) = A sin(npx>a)HN

n = 5
a. Obtain an expression for in terms of nx, ny, a, and bEnx, ny
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P4.22 Generally, the quantization of translational motion is
not significant for atoms because of their mass. However, this
conclusion depends on the dimensions of the space to which
they are confined. Zeolites are structures with small pores that
we describe by a cube with edge length 1.00 nm. Calculate the
energy of a H2 molecule with Compare
this energy to kBT at . K. Is a classical or a quantum
description appropriate?

P4.23 Are the eigenfunctions of for the particle in the
one-dimensional box also eigenfunctions of the position oper-
ator ? Calculate the average value of x for the case where

. Explain your result by comparing it with what you
would expect for a classical particle. Repeat your calculation
for and, from these two results, suggest an expression
valid for all values of n. How does your result compare with
the prediction based on classical physics?

P4.24 What is the zero point energy and what are 
the energies of the lowest seven energy levels in a three-
dimensional box with What is the degeneracy 
of each level?

P4.25 In discussing the Boltzmann distribution in
Chapter 2, we used the symbols gi and gj to indicate the
degeneracies of the energy levels i and j. By degeneracy, we
mean the number of distinct quantum states (different quan-
tum numbers) all of which have the same energy.

a. Using your answer to Problem P4.17a, what is the
degeneracy of the energy level for the square
two-dimensional box of edge length a?

b. Using your answer to Problem P4.14b, what is the
degeneracy of the energy level for a three-
dimensional cubic box of edge length a?

P4.26 Show by examining the position of the nodes that
represent plane waves

moving in the positive and negative x directions, respectively.
The notation Re[ ] refers to the real part of the function in the
brackets.

P4.27 Two wave functions are distinguishable if they lead
to a different probability density. Which of the following
wave functions are distinguishable from sin kx?

a.
b.

c.

d.

P4.28 Is the superposition wave function
an eigenfunction

of the total energy operator for the particle in the box?

P4.29 The smallest observed frequency for a transition
between states of an electron in a one-dimensional box is

What is the length of the box?

P4.30 Are the total energy eigenfunctions for the free

particle in one dimension, and  c+(x) = A+e+i2(2mE>U2)x

3.0 * 1013 s-1.

c(x) = 22/a3sin(npx>a) + sin(mpx>a)4
u is a constant

i cos (kx + p>2)(sin u + i cos u)a - 22

2
+ i
22

2
b ,

cos(kx - p>2)

eiu sin kx, u a constant

(eikx - e- ikx)>2

Re3A+ei(kx-vt)4 and Re3A-ei(-kx-vt)4

17h2>8ma2

9h2>4ma2

a = b = c?

n = 5

n = 3
xN

HN

T = 300
nx = ny = nz = 10.
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P4.18 Consider the contour plots of Problem P4.17.

a. What are the most likely area or areas x y to find the
particle for each of the eigenfunctions of depicted in
plots

b. For the one-dimensional box, the nodes are points. What
form do the nodes take for the two-dimensional box?
Where are the nodes located in plots How many
nodes are there in each contour plot?

P4.19 Using your result from P4.17, how many energy 
levels does a particle of mass m in a two-dimensional box of
edge length a have with ? What is the
degeneracy of each level?

P4.20 Calculate (a) the zero point energy of a He atom in a
one-dimensional box of length 1.00 cm and (b) the ratio of
the zero point energy to kBT at 300. K.

P4.21 Normalize the total energy eigenfunction for the rec-
tangular two-dimensional box,

in the interval .0 … x … a, 0 … y … b

cnx, ny
(x, y) = N sinanxpx

a
b  sinanypy

b
b

E … 29h2>8ma2

a–f?

a–f?
HN
¢¢



c.

d.

e.

P4.33 Use your result from Problem P4.17 and make an
energy level diagram for the first five energy levels of a
square two-dimensional box of edge length b. Indicate which
of the energy levels are degenerate and the degeneracy of
these levels.

P4.34 Calculate the probability that a particle in a one-
dimensional box of length a is found between 0.32a and
0.35a when it is described by the following wave functions:

a.

b.

What would you expect for a classical particle? Compare
your results for (a) and (b) with the classical result.

A
2

a
 sin a 3px

a
b

A
2

a
 sin apx

a
b

E

cos(npx>a)

D1a - x2x
Cx3(x - a)
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, eigenfunctions of the one-
dimensional linear momentum operator? If so, what are 
the eigenvalues?

P4.31 Use the eigenfunction 
rather than to apply the bound-
ary conditions for the particle in the box.

a. How do the boundary conditions restrict the acceptable
choices for and for k?

b. Do these two functions give different probability densities
if each is normalized?

P4.32 Consider a particle in a one-dimensional box defined
by .
Explain why each of the following unnormalized functions is
or is not an acceptable wave function based on criteria such as
being consistent with the boundary conditions, and with the
association of with probability. All constants
are nonzero.

a.

b. Ca1 - sin
npx

a
b

A cos 
npx

a
+ B sin 

npx

a

c*(x)c(x) dx

V(x) = 0, a 7 x 7 0 and V(x) = q , x Ú a, x … 0

A¿ and B¿

c(x) = A sin kx + B cos kx
c(x) = A¿e+ikx + B¿e-ikx

c-(x) = A-e-i2 (2mE>U2)x

The student is asked questions about the nodal structure of
these eigenfunctions and asked to assign quantum numbers 
nx and ny to each contour plot.

W4.5 The student is asked to determine if the normalized
wave function

is an acceptable wave function for the particle in the infinite
depth box based on graphs of as a func-
tion of x. The wave function is expanded in eigenfunc-
tions of the total energy operator. The student is asked to
determine the probability of observing certain values of the
total energy in a measurement on the system.

W4.6 The normalized wave function,

with is a superposition of the ground state
and first excited state for the particle in the infinite depth box.
Simulations are carried out to determine if 
are independent of time for this superposition state.

8E9, 8p9, and 8x9
ƒ c ƒ 2 + ƒd ƒ 2 = 1

°(x, t) = A
2
a
C ce-iE1t>U sinapx

a
b + de-iE2t>U sina2px

a
b S

c(x)
c(x) and dc(x)>dx

c(x) = A
105

a7 x2(x - a)2

Web-Based Simulations, Animations, and Problems

W4.1 The motion of a classical particle in a box potential is
simulated. The particle energy and the potential in the two
halves of the box are varied using sliders. The kinetic energy
is displayed as a function of the position x, and the result of
measuring the probability of detecting the particle at x is
displayed as a density plot. The student is asked to use the
information gathered to explain the motion of the particle.

W4.2 Wave functions for are shown for the
particle in the infinite depth box, and the energy levels are
calculated. Sliders are used to vary the box length and the
mass of the particle. The student is asked questions that
clarify the relationship between the level energy, the mass,
and the box length.

W4.3 The probability is calculated for finding a 
particle in the infinite depth box in the interval 

. The student is asked to explain these results.

W4.4 Contour plots are generated for the total energy
eigenfunctions of the particle in the two-dimensional infinite
depth box,

cnxny
(x, y) = N sin 

nxpx

a
 sin 

nypy

b

n = 50
for n = 1, n = 2, and 0.9a: 1.0a0.1a: 0.2a, Á ,

0: 0.1a,

n = 1–5
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5.1 The Particle in the Finite
Depth Box

5.2 Differences in Overlap
between Core and Valence
Electrons

5.3 Pi Electrons in Conjugated
Molecules Can Be Treated as
Moving Freely in a Box

5.4 Why Does Sodium Conduct
Electricity and Why Is
Diamond an Insulator?

5.5 Traveling Waves and
Potential Energy Barriers

5.6 Tunneling through a Barrier

5.7 The Scanning Tunneling
Microscope and the Atomic
Force Microscope

5.8 Tunneling in Chemical
Reactions

5.9 (Supplemental) Quantum
Wells and Quantum Dots

The Particle in the
Box and the 
Real World

Why have we spent so much time trying to understand the quan-

tum mechanical particle in a box? The particle in a box is a simple model

that can be used to explore concepts such as why core electrons are not

involved in chemical bonds, the stabilizing effect of delocalized elec-

trons in aromatic molecules, and the ability of metals to conduct electrons.

It also provides a framework for understanding the tunneling of quantum

mechanical particles through (not over!) barriers and size quantization,

both of which find applications in quantum wells and quantum dots.

p

5.1 The Particle in the Finite Depth Box
Before applying the particle in a box model to the “real world,” the box must be modi-
fied to make it more realistic. This is done by letting the box have a finite depth, which
allows the particle to escape. This modification is necessary to model problems such as
the ionization of an atom. The potential is defined by

(5.1)

The origin of the x coordinate has been changed from one end of the box (Chapter 4) to
the center of the box to simplify the mathematics of solving the Schrödinger equation.
The shift of the origin changes the functional form of the total energy eigenfunctions,
as you will see in the end-of-chapter problems. However, it has no physical conse-
quences in that eigenvalues and graphs of the eigenfunctions superimposed on the
potential are identical for both choices of the point .

How do the eigenfunctions and eigenvalues for the Schrödinger equation for the finite
depth box differ from those for the infinitely deep potential? For (inside the
box), the eigenfunctions have the oscillatory behavior that was exhibited for the infinitely
deep box. However, because , the reasoning following Equation (4.8) no longer
holds; the amplitude of the eigenfunctions need not be zero at the ends of the box. For

(outside of the box), the eigenfunctions decay exponentially with distanceE 6 V(x)

V0 6 q

E 7 V(x)

x = 0

 V(x) = V0,  for x 7 a>2 , x 6 -a>2
 V(x) = 0,  for -a>2 … x … a>2
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from the box, as we will show next. These two regions are considered separately. Inside
the box, , and

(5.2)

Outside of the box, the Schrödinger equation has the form

(5.3)

The difference in sign on the right-hand side makes a big difference in the eigen-
functions! Inside the box, the solutions have the same general form as discussed in
Chapter 4, but outside the box, they have the form

(5.4)

The functions of Equation (5.4) are solutions to Equation (5.3). The coefficients 
(A, B and ) are different on each side of the box. Because must remain finite
for very large positive and negative values of . By requiring that

are continuous at the box boundaries and imposing a normaliza-
tion condition, the Schrödinger equation can be solved for the eigenfunctions and
eigenvalues in the potential for given values of m, a, and V0. If was not continu-
ous at the boundaries, the probability density would have two different values at the
same point, which makes no sense. If was not continuous at the boundaries,

would not exist and we could not solve the Schrödinger equation. If the
wave functions were not normalized, we could not associate with a proba-
bility density. The details of the solution are left to the end-of-chapter problems. The
allowed energy levels and the corresponding eigenfunctions for a finite depth potential
are shown in Figure 5.1. The yellow areas correspond to the region for which

. Because in this region.

For a particle, and a negative value for implies that the
momentum is imaginary. For this reason, defines what is called the
classically forbidden region.

Two major differences in the solutions between the finite and the infinite depth box
are immediately apparent. First, the potential has only a finite number of total energy
eigenvalues, which correspond to bound states. The number depends on m, a, and V0.
Second, the amplitude of the wave function does not go to zero at the edge of the box.
We explore the consequences of this second difference when discussing tunneling later.
As seen in Figure 5.2, the falloff of the wave function outside of the box is not the same
for all eigenfunctions: falls off most rapidly with distance for the most strongly
bound state in the potential and most slowly for the least strongly bound
state in the potential (V0 E). Equation (5.4) predicts this trend.

5.2 Differences in Overlap between 
Core and Valence Electrons

Figure 5.2 shows that weakly bound states have wave functions that leak quite strongly
into the region outside of the box. What are the consequences of this behavior? Take this
potential as a crude model for electrons in an atom. Strongly bound levels correspond to
core electrons and weakly bound levels correspond to valence electrons. What happens
when a second atom is placed close enough to the first atom that a chemical bond is
formed? The results in Figure 5.3 show that the falloff of the wave functions for the
weakly bound states in the box is gradual enough that both wave functions have a
nonzero amplitude in the region between the wells. These wave functions have a

~
(V0 W E)

c(x)

Ekinetic 6 0
EkineticEkinetic = p2>2m

Etotal = Ekinetic + Epotential, Ekinetic 6 0Epotential 7 Etotal

c*(x)c(x)
d2c(x)>dx2

dc(x)>dx

c(x)

c(x) and dc(x)>dx
x, B = A¿ = 0

c(x)A¿, B¿

where k = A
2m(V0 - E)

U2

 c(x) = A¿ e-kx + B¿e+kx  for -q … x … -a>2
 c(x) = A e-kx + Be+kx  for q Ú x Ú a>2 and

d2c(x)

dx2 =
2m(V0 - E)

U2 c(x)

d2c(x)

dx2 = -
2mE

U2 c(x)

V(x) = 0
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FIGURE 5.2
Decrease of the amplitude of the eigen-
functions as a function of distance from
the center of the box. All eigenfunctions
have been normalized to the value one at

for purposes of comparison.x = a>2
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FIGURE 5.1
Eigenfunctions and allowed energy levels
are shown for an electron in a well of
depth and width 
a = .1.00 * 10-9 m

V0 = 1.20 * 10-18 J
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significant overlap. Note that this is not the case for the strongly bound levels; these energy
eigenfunctions have a small overlap.

We conclude that a correlation exists between the nonzero overlap required for
chemical bond formation and the position of the energy level in the potential. This is
our first application of the particle in the box model. It provides an understanding of
why chemical bonds involve the least strongly bound, or valence, electrons and not the
more strongly bound, or core, electrons. We will have more to say on this topic when
the chemical bond is discussed in Chapter 12.

5.3 Pi Electrons in Conjugated Molecules Can
Be Treated as Moving Freely 
in a Box

The absorption of light in the visible and ultraviolet (UV) part of the electromag-
netic spectrum in molecules is a result of the excitation of electrons from occupied
to unoccupied energy levels. If the electrons are delocalized as in an organic mole-
cule with a -bonded network, the maximum in the absorption spectrum shifts
from the UV into the visible range. The greater the degree of delocalization, the
more the absorption maximum shifts toward the red end of the visible spectrum. The
energy levels for such a conjugated system can be described quite well with a one-
dimensional particle in a box model. The series of dyes, 1,4-diphenyl–1,3-butadiene,
1,6-diphenyl–1,3,5-hexatriene, and 1,8-diphenyl–1,3,5,7-octatetraene consist of a
planar backbone of alternating and bonds and have phenyl groups
attached to the ends. The phenyl groups serve the purpose of decreasing the volatil-
ity of the compound. The -bonded network does not include the phenyl groups, but
does include the terminal carbon–phenyl group bond length. Only the -bonded
electrons are modeled using the particle in the box. Because each energy level can
be occupied by two electrons, the highest occupied energy level corresponds to

for the series of molecules considered.
The longest wavelength at which light is absorbed occurs when one of the electrons

in the highest occupied energy level is promoted to the lowest lying unoccupied level.
As Equation (4.17) shows, the energy level spacing depends on the length of the 

-bonded network. For 1,4-diphenyl–1,3-butadiene, 1,6-diphenyl–1,3,5-hexatriene,
and 1,8-diphenyl–1,3,5,7-octatetraene, the maximum wavelength at which absorption
occurs is 345, 375, and 390 nm, respectively. From these data, and taking into account
the quantum numbers corresponding to the highest occupied and lowest unoccupied
levels, the apparent network length can be calculated. We demonstrate the calculation for
1,6-diphenyl–1,3,5-hexatriene, for which the transition corresponds to 
as indicated in Figure 5.4.

(5.5)

The apparent and calculated network length has been compared for each of the three
molecules by B. D. Anderson [J. Chemical Education 74 (1997): 985]. Values are
shown in Table 5.1. The agreement is reasonably good, given the simplicity of the
model. Most importantly, the model correctly predicts that because is proportional to

, shorter -bonded networks show absorption at smaller wavelengths. This trend is
confirmed by experiment.

For 1,6-diphenyl–1,3,5-hexatriene in the ground state, the highest occupied energy
level corresponds to . Does this mean that in a large number of molecules there will
be very few molecules for which the level is occupied at 300. K? This question can
be answered with the help of the Boltzmann distribution.

n = 4
n = 3

pa2
l

= 892 pm

 = C
(42 - 32)(6.626 * 10-34 J s)(375 * 10-9 m)
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FIGURE 5.3
Overlap of wave functions from two
closely spaced finite depth wells. The ver-
tical scale has been expanded relative to
Figure 5.1 to better display the overlap.
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The energy difference between the two levels is given by

(5.6)

Because there are two quantum states for each value of . The ratio of
the population in the level to that in the level is given by

(5.7)

Therefore, the transition cannot be achieved by the exchange of trans-
lational energy in the collision between molecules at 300. K, and essentially all
molecules are in their electronic ground state.

5.4Why Does Sodium Conduct Electricity
and Why Is Diamond an Insulator?

As discussed earlier, valence electrons on adjacent atoms in a molecule or a solid can
have an appreciable overlap. This means that the electrons can “hop” from one atom to
the next. Consider Na, which has one valence electron per atom. If two Na atoms are
bonded to form a dimer, the valence level that was localized on each atom will be
delocalized over both atoms as is illustrated in Figure 5.5. Now add additional Na
atoms to form a one-dimensional Na crystal. A crystalline metal can be thought of as a
box with a periodic corrugated potential at the bottom. To illustrate the relationship to
a box model, the potential of a one-dimensional periodic array of potentials aris-
ing from the atomic cores at lattice sites is shown in Figure 5.6. Because the Na 3s
valence electrons can be found with equal probability at any Na atom, one electron per
atom is delocalized over the whole metal sample. This is exactly the model of the par-
ticle in the box.

The potential of Figure 5.6 can be idealized to a box as shown in Figure 5.7. This
box differs from the simple boxes discussed earlier in an essential way. There are many
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TABLE 5.1 Calculated Network Length for Conjugated Molecules

Compound Apparent Network 
Length (pm)

Calculated Network 
Length (pm)

1,4-diphenyl–1,3-butadiene 723 695

1,6-diphenyl–1,3,5-hexatriene 892 973

1,8-diphenyl–1,3,5,7-octatetraene 1030 1251

a b a b
x

xe

V(x)

FIGURE 5.5
At large distances, the valence level on each Na atom is localized on that atom. When they are
brought close enough together to form the dimer, the barrier between them is lowered, and the
level is delocalized over both atoms. The quantity xe represents the bond length of the dimer.

x

V
(x

)
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FIGURE 5.6
The potential energy resulting from a one-
dimensional periodic array of ions.
One valence electron per Na is delocal-
ized over this box. The quantity xe repre-
sents the lattice spacing.

Na+
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atoms in the atomic chain under consideration (large a), such that the energy levels for
the delocalized electrons are very closely spaced in what is called the conduction band
as discussed next. What is the energy-level spacing for the delocalized electrons in a
1.00-cm-long box? About Na atoms will fit into the box. If each atom donates
one electron to the band, we can easily show that at the highest filled level,

(5.8)

This spacing between levels is at most only for K and, there-
fore, the energy spectrum is essentially continuous. All energies within the range
bounded by the bottom of the red shaded area in Figure 5.7 for low energies and the
dashed line for high energies are accessible. This set of continuous energy levels is
referred to as an energy band. The band shown in Figure 5.7a extends up to the
dashed line, beyond which there are no allowed energy levels until the energy has
increased by . An energy range, , in which there are no allowed states is
called a band gap (See Figure 5.15). For Na, not all available states in the band are
filled, as shown in Figure 5.7. The range of energies between the top of the red area
and the dashed line corresponds to unfilled conduction band states. The fact that
the band is only partially filled is critical in making Na an electrical conductor, as
explained next.

What happens when an electrical potential is applied between the two ends of the
box? The field gives rise to a gradient of potential energy along the box superimposed
on the original potential as shown in Figure 5.7b. The unoccupied states on the side of
the metal with the more positive electrical potential have a lower energy than the occu-
pied states with the more negative electrical potential. This makes it energetically
favorable for the electrons to move toward the end of the box with the more positive
voltage as shown in Figure 5.7c. This flow of electrons through the metal is the current
that flows through the “wire.” It occurs because of the overlap of wave functions on
adjacent atoms, which leads to hopping, and because the energy levels are so close
together that they form a continuous energy spectrum.

What makes diamond an insulator in this picture? Bands are separated from one
another by band gaps, in which there are no allowed eigenfunctions of the total energy
operator. In diamond, all quantum states in the band accessible to the delocalized
valence electrons are filled. The highest filled energy band in semiconductors and
insulators is called the valence band. In Figure 5.7, this corresponds to extending the
red area up to the dashed line. As the energy increases, a range is encountered in
which there are no allowed states of the system until the conduction band of allowed
energy levels is reached. This means that, although we could draw diagrams just like
the upper two panels of Figure 5.7 for diamond, the system cannot respond as shown
in the lower panel. There are no unoccupied states in the valence band that can be used
to transport electrons through the crystal. Therefore, diamond is an insulator.
Semiconductors also have a band gap separating the fully occupied valence and the
empty conduction band. However, in semiconductors, the band gap is smaller than for
insulators, allowing them to become conductors at elevated temperatures. The band
structure of solids is discussed in more detail in Chapter 13 after the chemical bond
has been discussed.

5.5 Traveling Waves and Potential 
Energy Barriers

In the previous sections, we focused on the energy of bound states for a finite depth
box. We next investigate how a traveling wave-particle is affected by a sudden change
in the potential energy in the form of a step potential in order to develop a framework
for discussing quantum mechanical tunneling in Section 5.6.
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= (2n + 1) (6.02 * 10-34 J)

En+1 - En =
(n + 1)2h2
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FIGURE 5.7
Idealization of a metal in the particle in the
box model. The horizontal scale is greatly 
expanded to show the periodic potential.
Actually, more than 107 Na atoms will fit
into a 1-cm-long box. The red shaded band
shows the range of energies filled by the
valence electrons of the individual atoms.
The highest energy that can be occupied in
this band is indicated by the dashed line.
The energy required to remove an electron
from the highest occupied state is the work
function, . (a) The metal without an
applied potential. (b) The effect on the
energy levels of applying an electric field.
(c) The response of the metal to the change
in the energy levels induced by the electric
field. The thin solid line at the top of the
band in parts (b) and (c) indicates where
the energy of the highest level would lie in
the absence of an electric field.

f
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Figure 5.8a shows an electron that moves from a region in which there is no electric
field and enters a parallel plate capacitor in which the electric field opposes the motion
of the particle. The energetics of this event are shown in Figure 5.8b. The electron is
slowed down abruptly as it enters the region of higher potential energy. Energy is con-
served in this event so that the increase in the potential energy at the step leads to a
decrease in kinetic energy. Classically, we expect that the probability that the electron
passes the step is one for E V0, and zero if E V0.

To solve this problem quantum mechanically, we need to solve the time-independent
Schrödinger equation for the following potential:

(5.9)

Just as we did for the free particle in  Section 4.1, we write the Schrödinger equation in
the form

(5.10)

and solve it in the two separate regions for x 0 and x 0. We then combine these
two solutions while requiring the continuity of at x = 0 where the
electron passes from one region to the other.

In the region x 0, we consider the possibility that the electron will be reflected by
the sudden change in the potential energy. Classically, reflection would not occur for 
E V0, but we know that light waves incident on an interface between two materials of
differing refractive index can be reflected or transmitted. An appropriate wave function
for the electron that includes reflection is

(5.11)

where the first term is the wave incident on the barrier and the second term is the
reflected wave. The wave vector k1 is related to the kinetic energy by

(5.12)

In the region for x 0, we write the wave function in the form

where (5.13)

There is no wave moving in the direction of decreasing x values in this region because
the electron experiences no forces that could turn it around.

We next require that in the two regions have the same values at
x = 0. If the wave functions did not have the same value, the probability density at x = 0
would have two different values at the same point, which makes no sense. If 
for the two regions did not have the same value at x = 0, would not exist
and we could not solve the Schrödinger equation. Applying the continuity condition on

, we obtain

(5.14)

Applying the continuity condition on , we obtain

(5.15)

To obtain the probabilities for reflection and transmission, we must take the speeds of
the particle in the two regions into account. The number of particles reflected or transmit-
ted per unit time is given by the product of the probability density and the speed. The units
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FIGURE 5.8
(a) An electron moves from left to right
from a field free region into a parallel
plate capacitor in which it is slowed down.
(b) The energetics of the electron is
shown in the regions before entering the
capacitor and in the capacitor.
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of this product are probabilityNlength lengthNtime = probabilityNtime as required. The
transmission probability T and the reflection probability R are given by

(5.16)

We can use Equations (5.14) and (5.15) to express B in terms of A to calculate R and to
express C in terms of A to calculate T. The results are

(5.17)

These results can be expressed in terms of E and V0 where E = Ekinetic1.

(5.18)

Note that we are only considering energies for which E V0. The probabilities for
reflection and transmission as a function of the dimensionless parameter ENV0 are shown
in Figure 5.9. Classical physics would predict that T = 1 and R = 0 for and that
T = 0 and R = 1 for . Quantum mechanics predicts that R 1 as E V0, but
R only approaches zero asymptotically for E V0.

5.6 Tunneling through a Barrier
In the preceding section, we saw that a wave-particle approaching a step potential can be
reflected even if its energy is greater than the barrier height. For the step potential, the bar-
rier is present for all positive values of x. We next consider a barrier of finite width for a
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FIGURE 5.9
The probability for reflection R and the
probability for transmission T from a step
potential of height V0 are shown as a
function of the ratio ENV0.
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particle of energy such that . Classically, the particle will not pass the barrier region
because it has insufficient energy to get over the barrier. This situation looks quite different
in quantum mechanics. As we saw for the finite depth box in Section 5.1, the wave function
for the particle can penetrate into the classically forbidden barrier region. For the infinitely
thick barrier presented by the step potential, the amplitude of the wave function decays rap-
idly to a negligibly small value. However, something surprising happens if the barrier is
thin, meaning that only over a distance comparable to the particle wavelength. The
particle can escape through the barrier even though it does not have sufficient energy to go
over the barrier. This process, depicted in Figure 5.10, is known as tunneling.

To investigate tunneling, we modify the step potential as shown in Equation (5.19).
The potential is now described by

(5.19)

The oscillating wave function for two incident particle energies is shown to the left of
the barrier where E V0 in Figure 5.10. Inside the barrier where E V0, the wave
function decays exponentially with distance. If the barrier width a is small enough that

has not decayed to a negligibly small value by the time it arrives at the end of the
barrier at , the wave function in the region will have a finite amplitude.
Because for , the wave function in this region is again a traveling wave.
If the amplitude is greater than zero for , the particle has a finite probability of
escaping from the well even though its energy is less than the height of the barrier.

Figure 5.10 shows that tunneling is much more likely for particles with energies
near the top of the barrier. This is due to the degree to which the wave function in the
barrier falls off with distance as in which the decay length is given by

. Because the wave function decays more slowly as E V0, the
amplitude of the wave function at x = a is greater and tunneling is more likely to occur.

Rather than derive expressions for R and T as for the step potential, we leave the details
of the calculations for the end-of-chapter problems. To illustrate the extreme sensitivity of
the tunneling probability on the barrier width and particle energy, the results of a calcula-
tion for electron tunneling through a barrier of height 10. eV are shown in Figure 5.11.
Note that for the most narrow barrier, the tunneling probability approaches 0.5 as E V0,
and that for wide barriers, the tunneling probably is very small unless E V0.:
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Wave-particles corresponding to the indi-
cated energy are incident from the left on
a barrier of height 
and width . The exponen-
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5.7 The Scanning Tunneling Microscope and
the Atomic Force Microscope

It was not known that particles could tunnel through a barrier until the advent of quantum
mechanics. In the early 1980s, the tunneling of electrons between two solids was used to
develop an atomic resolution microscope. Gerd Binnig and Heinrich Rohrer received a
Nobel Prize for the invention of the scanning tunneling microscope (STM) in 1986.

The STM allows the imaging of solid surfaces with atomic resolution with surpris-
ingly simple instrumentation. The STM and a closely related device called the atomic
force microscope (AFM) have been successfully used to study phenomena at atomic
and near atomic resolution in a wide variety of areas including chemistry, physics, biol-
ogy, and engineering. The invention of the STM and AFM played a significant role in
enabling the development of nanotechnology. The essential elements of an STM are a
sharp metallic tip and a conducting sample over which the tip is scanned to create an
image of the sample surface. In an STM, the barrier between these two conductors is
usually vacuum, and electrons are made to tunnel across this barrier, as discussed later.
As might be expected, the barrier width needs to be on the order of atomic dimensions to
observe tunneling. Electrons with an energy of typically 5 eV are used to tunnel from the
metal tip to the surface. This energy corresponds to the work function as well as to the
barrier height in Figure 5.10. The decay length for such an
electron in the barrier is about 0.1 nm. Therefore, if the tip and sample are brought to
within a nanometer of one another, electron tunneling will be observed between them.

How does a scanning tunneling microscope work? We address this question first in
principle and then from a practical point of view. Because the particle in a box is a good
model for the conduction of electrons in the metal solid, the tip and surface can be rep-
resented by boxes as shown in Figure 5.12. For convenience, the part of the box below
the lowest energy that can be occupied by the core electrons has been omitted, and only
the part of the box immediately adjacent to the tip–sample gap is shown. The tip and
sample in general have different work functions as indicated. If they are not connected
in an external circuit, their energy diagrams line up as in Figure 5.12a. When they are
connected in an external circuit, charge flows between the tip and sample until the
highest occupied level is the same everywhere as shown in Figure 5.12b.

Tunneling takes place at constant energy, which in Figure 5.12 corresponds to the
horizontal dashed line. However, for the configuration shown in Figure 5.12b, there is
no empty state on the sample into which an electron from the tip can tunnel. To allow
tunneling to occur, a small electrical potential is placed between the two
metals. This raises the highest filled energy level of the tip relative to that of the sam-
ple. Now tunneling of electrons can take place from tip to sample, resulting in a net
current flow.
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The tunneling probability for an electron
is shown for seven barrier widths as a
function of the particle energy for a bar-
rier height of 1.6 10-18 J. E = V0
for E = 1.6 10-18 J.*
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FIGURE 5.12
(a) If the conducting tip and surface are
electrically isolated from one another,
their energy diagrams line up. (b) If they
are connected by a wire in an external cir-
cuit, charge flows from the lower work
function material into the higher work
function material until the highest occu-
pied states have the same energy in both
materials. (c) By applying a voltage V
between the two materials, the highest
occupied levels have an offset of energy
eV. This allows tunneling to occur from
left to right. The subscripts t and s refer to
tip and surface.
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Up until now, we have discussed a tunneling junction, not a microscope. Figure 5.13
shows how an STM functions in an imaging mode. A radius of curvature of 100 nm at the
apex of the tip is routinely achievable by electrolytically etching a metal wire. The sample
could be a single crystal whose structure is to be investigated at an atomic scale. This
junction is shown on an atomic scale in the bottom part of Figure 5.13. No matter how
blunt the tip is, one atom is closer to the surface than all the others. At a tunneling gap dis-
tance of about 0.5 nm, the tunneling current decreases by an order of magnitude for every
0.1 nm that the gap is increased. Therefore, the next atoms back from the apex of the tip
make a negligible contribution to the tunneling current, and the whole tip acts like a sin-
gle atom for tunneling.

The tip is mounted on a segmented tubular scanner made of a piezoelectric material
that changes its length in response to an applied voltage. In this way the tip can be
brought close to the surface by applying a voltage to the piezoelectric tube. Assume
that we have managed to bring the tip within tunneling range of the surface. On the
magnified scale shown in Figure 5.13, the individual atoms in the tip and surface are
seen at a tip–surface spacing of about 0.5 nm. Keep in mind that the wave functions for
the tunneling electrons in the tip decay rapidly in the region between tip and sample, as
shown earlier in Figure 5.2. If the tip is directly over a surface atom, the amplitude of
the wave function is large at the surface atom and the tunneling current is high. If the
tip is between surface atoms, the amplitude of the wave functions is smaller and the
tunneling current will be lower. To scan over the surface, different voltages are applied
to the four segmented electrodes on the piezo tube. This allows a topographical image
of the surface to be obtained. Because the tunneling current varies exponentially with
the tip–surface distance, the microscope provides a very high sensitivity to changes in
the height of the surface that occur on an atomic scale.

Computer:
Scan generation and
image display

Electronics:
Positioning and feedback control
Signal conditioning

Preamp

Tip bias

Current
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Probe
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Sample
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i             V
conversion
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FIGURE 5.13
Schematic representation of a scanning
tunneling microscope.
Source: Used by permission of Kevin E.
Johnson (Pacific University), from University
of Washington thesis, 1991.
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In this abbreviated description, some details have been glossed over. The current is
usually kept constant as the tip is scanned over the surface using a feedback circuit to
keep the tip–surface distance constant. This is done by changing the voltage to the piezo
tube electrodes as the tip scans over the surface. Additionally, a vibrational isolation sys-
tem is required for the STM to prevent the tip from crashing into the surface as a result
of vibrations always present in a laboratory. Figure 5.14 provides an example of the
detail that can be seen with a scanning tunneling microscope. The individual planes,
which are stacked together to make the silicon crystal, and the 0.3 nm height change
between planes are clearly seen. Defects in the crystal structure are also clearly resolved.
Researchers are using this microscope in many new applications aimed at understanding
the structure of solid surfaces and modifying surfaces atom by atom.

FIGURE 5.14
STM images of the (111) surface of Si. The
upper image shows a 
region with a high density of atomic steps,
and the light dots correspond to individual
Si atoms. The lower image shows how the
image is related to the structure of parallel
crystal planes separated by steps of one
atom height. The step edges are shown as
dark ribbons.
[Courtesy of Johnson, Kevin. “The Thermal
Decomposition and Desorption Mechanism of
Ultra-Thin Oxide on Silicon Studied by
Scanning Tunneling Microscopy.” PhD thesis,
University of Washington, 1991.]

200. * 200. nm

EXAMPLE PROBLEM 5.1

As was found for the finite depth well, the wave function amplitude decays in the barrier 

according to . This result will be used to calcu-
late the sensitivity of the scanning tunneling microscope. Assume that the tunneling 

current through a barrier of width a is proportional to .

a. If is 4.50 eV, how much larger would the current be for a barrier width
of 0.20 nm than for 0.30 nm?

b. A friend suggests to you that a proton tunneling microscope would be equally
effective as an electron tunneling microscope. For a 0.20 nm barrier width, by what
factor is the tunneling current changed if protons are used instead of electrons?

Solution

a. Putting the numbers into the formula given, we obtain

Even a small distance change results in a substantial change in the tunneling current.

b. We find that the tunneling current for protons is appreciably smaller than that 
for electrons.

This result does not make the proton tunneling microscope look very promising.
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The STM is limited to studies on conductive surfaces because although the tunneling
current is small, the current density is very high. The AFM extends the range of the STM
by allowing studies to be carried out on nonconductive surfaces. It does so by probing
the force between the tip and the surface without any current passing across the junction.
Although the AFM is not based on tunneling, we discuss it here because the atomic
force microscope and the scanning tunneling microscope complement one another in
structural studies of solid surfaces at the molecular and atomic level as we show later.
The German physicist Gerd Binnig is a co-inventor of the AFM as well as the STM.

In an AFM, a tip attached to a flexible cantilever is scanned over the surface of a
sample using the same feedback circuitry as for an STM as shown in Figure 5.15. The
tip and cantilever shown in Figure 5.16 are generally microfabricated from Si, and the
deflection of the cantilever from its horizontal position is given by

(5.20)

Where F is the force exerted on the cantilever, and k is its spring constant, which can
have values in the range 0.01–100 N m-1, depending on the application. The tip has a
radius of curvature of 10–20 nm, and the force of interaction between the tip and the
surface is primarily determined by those few atoms on the tip closest to the surface. The
force is attractive and van der Waals in nature except for very small tip–surface dis-
tances, in which case repulsive electron–electron forces dominate. The deflection of the
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FIGURE 5.15
Schematic diagram of an atomic force
microscope. (a) A tip mounted on a
microfabricated cantilever is scanned over
a surface in the xy plane by applying dc
voltages to a segmented piezoelectric
tube. If the tip experiences an attractive or
repulsive force from the surface, the can-
tilever is deflected from its horizontal
position. As a result, the laser light
reflected from the back of the cantilever
onto a segmented photodetector is differ-
ently distributed on the segments, giving
rise to a difference current that is the input
to a feedback controller. The controller
changes the length of the piezoelectric
tube in such a way to keep the cantilever
deflection constant as the tip scans across
the surface. Therefore, the surface image
obtained corresponds to a constant force
that can be varied using the feedback
circuit. (b) The AFM can be modified to
allow measurements in a liquid or
controlled atmosphere using an o-ring
seal mounted on the piezoelectric tube.
Source: Engel, T., Drobny, G., Reid, P. Physical
Chemistry for the Life Sciences. Prentice Hall.

FIGURE 5.16
Scanning electron micrograph of a micro-
machined silicon cantilever with an inte-
grated tip. This is a Pointprobe sensor
made by Nanosensors GmbH und Co.
KG, D-25870 Norderfriedrichskoog,
Germany. Photo courtesy of Nanosensors
GmbH & Co. KG. 
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cantilever is measured using a laser similar to that in a CD player. The light reflected
from the back of the cantilever is incident on a segmented photodetector, and the
deflection of the cantilever can be determined by comparing the signal from the seg-
ments of the photodetector. The feedback circuit keeps the cantilever deflection, and
therefore the tip–surface force, constant as the tip is scanned across the surface.
Whereas in an STM, an image corresponds to a surface contour at constant tunneling
current, in an AFM, an image corresponds to a surface contour at constant force. Image
acquisition is sufficiently fast that many kinetic processes can be imaged in real time.

The AFM design described is suitable for high resolution work in a controlled envi-
ronment including liquids. To obtain ultrahigh molecular and atomic resolution, the
device must be operated in ultrahigh vacuum in order to avoid contamination of the
surface under study. The highest resolution images have been obtained in microscopes
cooled to a temperature of 5 K to minimize drifts in the area being scanned by thermal
gradients. For atomic resolution studies, the tip must be scanned close enough to the sur-
face that the repulsive rather than the attractive forces between the tip and the surface are
sensed as shown in Figure 5.17. The cantilever is oscillated at an eigenfrequency deter-
mined by its geometry at an amplitude of 1 nm. The repulsive interaction between the
tip and the surface leads to small shifts in the cantilever eigenfrequency that can be used
as the feedback parameter to keep the force constant as the tip is scanned over the sur-
face. If the tip and surface are conductive, both STM and AFM images of the surface can
be obtained with the same instrument. With an appropriate choice of cantilever and tip,
AFM can be used to measure friction, conductivity, temperature and variations of chem-
ical composition on surfaces with high resolution. For more details, see Giessibl, F. J.
“Advances in Atomic Force Microscopy.” Reviews in Modern Physics 75 (2003): 949,
and Gross, L., Mohn, F., Moll, N., Liljeroth, P., and Meyer, G. “The Chemical Structure
of a Molecule Resolved by Atomic Force Microscopy.” Science 325 (2009): 1110.

Figure 5.18 shows images of pentacene molecules bound to a metal surface
obtained using both STM and AFM modes of operation. The STM image arises from
tunneling out of the highest filled molecular orbitals of the molecule which are delocal-
ized over the molecule. For this reason, atomic scale resolution is not obtained. Note
the nodal structure seen in the image. The AFM image in Figure 5.18b arises from the
repulsive electrostatic force between the filled orbitals on CO and the electron density

'

'

Tip

Sample

FIGURE 5.17
If an AFM tip is scanned over the surface
in the more distant attractive part of the
tip–surface potential that probes van der
Waals forces, the atomic scale structure is
averaged out because the tip senses many
atoms as indicated by the blue arrows. If the
tip is sufficiently close to the surface, the
repulsive force between the occupied
orbitals at the end of the tip and the occu-
pied orbitals of the surface atoms (shown in
red) is probed. Because these forces are very
localized, atomic resolution is possible.
Source: Reprinted fig. 6 with permission from
F. Giessibl, “Advances in atomic force
microscopy,” Reviews of Modern Physics 75:
949 (2003). Copyright 2003 by the American
Physical Society. http://link.aps.org/doi/
10.1103/RevModPhys.75.949.

FIGURE 5.18
STM and AFM imaging of pentacene on a
copper surface. The tip has been prepared
with a CO molecule at the apex with the
oxygen atom pointing to the surface being
scanned. (a) Ball-and-stick model of the
pentacene molecule. (b) Constant-current
STM image of a single pentacene mole-
cule. The scale on the right shows the
correspondence between the gray scale
and the height within the molecule.
(c) Constant-height AFM image of a sin-
gle pentacene molecule. The scale on the
right shows the correspondence between
the gray scale and the frequency shift
observed in scanning over the molecule.
(d) Constant height image showing six
pentacene molecules. The scale on the
right shows the correspondence between
the gray scale and the frequency shift
observed in scanning over the molecule.
Source: Gross. L., Mohn, F., Moll, N.,
Liljeroth, P., and Meyer, G. “The Chemical
Structure of a Molecule Resolved by Atomic
Force Microscopy.” Science 325 (2009): 1110.

http://link.aps.org/doi/10.1103/RevModPhys.75.949
http://link.aps.org/doi/10.1103/RevModPhys.75.949
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in the pentacene molecule. The enhanced density due to bonding between the carbon
atoms of the benzene rings as well as the electron density in the C–H bonds can be seen
clearly. This example shows both how tunneling can be used to image the structure of
molecular orbitals directly (See also Section 13.6) and how the electron density in
chemical bonds can be imaged directly using atomic force microscopy.

5.8 Tunneling in Chemical Reactions
Most chemical reactions are thermally activated; they proceed faster as the temperature
of the reaction mixture is increased. This behavior is typical of reactions for which an
energy barrier must be overcome in order to transform reactants into products. This
barrier is referred to as the activation energy for the reaction. By increasing the tem-
perature of the reactants, the fraction that has an energy that exceeds the activation
energy is increased, allowing the reaction to proceed.

Tunneling provides another mechanism to convert reactants to products that does not
require an increase in energy of the reactants for the reaction to proceed. It is well known
that hydrogen transfer reactions can involve tunneling. An example is the reaction

, where and are two different organic groups.
The test for tunneling in this case is to substitute deuterium for hydrogen. If the reaction is
thermally activated, the change in reaction rate is small and can be attributed to the differ-
ent ground-state vibrational frequency of and bonds (see Chapter 8).
However, if tunneling occurs, the rate decreases greatly because the tunneling rate

depends exponentially on the decay length . However, it is not widely
appreciated that tunneling can be important for heavier atoms such as C and O. A report
by Zuev et al. [Science 299 (2003): 867] shows that the rate of the ring expansion reaction
depicted in Figure 5.19 is faster than the predicted thermally activated rate by the factor
10152 at 10 K! This increase is due to the tunneling pathway. Because the tunneling rate
depends exponentially on , heavier atom tunneling is only appreciable
if is very small. However, in a number of reactions, particularly in the fields of
chemical catalysis and enzymology, this condition is met.
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FIGURE 5.19
The structures of four species along the
reaction path from reactant to product are
shown together with a schematic energy
diagram. The reaction occurs not by sur-
mounting the barrier, but by tunneling
through the barrier at the energy indicated
by the wavy line.
Source: Figure 3 from Peter S. Zuev, et al.,
“Carbon Tunneling from a Single Quantum
State,” Science, New Series, Vol. 299: 867–870,
Feb. 7, 2003. Copyright © 2003, The American
Association for the Advancement of Science.
Reprinted with permission from AAAS.
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S U P P L E M E N T A L

5.9 Quantum Wells and Quantum Dots
Just as not all atoms have the same ionization energy, not all solids have the same work
function. The width and energetic position of the bands of allowed states are also not
the same. These facts can be used to engineer some very useful devices. One good
example is a device called a quantum well structure. Gallium arsenide is a widely
used semiconductor in microelectronics applications. is a substitutional
alloy in which some of the Ga atoms are replaced by Al atoms. It can be combined with
GaAs to form crystalline heterostructures that consist of alternating layers of GaAs
and Both substances are semiconductors that, like insulators, have a fully
occupied energy band derived from their valence electrons. The fully occupied band is
referred to as the valence band. As the energy increases, a band gap evolves that has no
states, followed by an empty band that can be occupied by electrons, called the
conduction band. However, there are only enough electrons in the electrically neutral
crystal to fill the valence band. This is analogous to the H atom in which the 1s state is
occupied and the 2s state is empty. This band structure is shown in Figure 5.20.

By means of a technique called molecular beam epitaxy in which materials are
slowly evaporated onto a growing crystal under extremely low pressures, one can grow
a crystalline structure in which a 0.1 to 1 nm layer of GaAs is sandwiched between two
macroscopically thick (several micrometers) layers. Such a heterostruc-
ture is depicted on the left in Figure 5.21. When this GaAs layer is considered as a
three-dimensional (3D) box, it has energy levels that depend on three quantum numbers
because this is a 3D problem:

(5.21)

The length b is on the order of 1000. nm, whereas a is 0.1 to 1.0 nm. Therefore, the
energy spectrum is essentially continuous in nz and ny, but discrete in nx. What does the
band-gap region in such an alternating layer structure look like? This can be deduced
from Figure 5.20 and is shown in Figure 5.21.

In this very thin layer of GaAs, the empty conduction band has lower energy states
in the GaAs region than elsewhere in the heterostructure. The layers have
macroscopic dimensions in all three directions, so that the particle in the box states
form a continuous energy spectrum. By contrast, the GaAs layer has relatively large
dimensions parallel to the layer, but atomic scale dimensions along the x direction
perpendicular to the interface between the substances. Along this direction, the quanti-
zation conditions are those expected from a particle in a finite well, leading to discrete
energy levels as shown in Figure 5.21. Along the other two directions, the energy-level
spectrum is continuous. By choosing this unusual geometry for the box, the system 
has a continuous energy spectrum along the y and z directions and a discrete energy
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=
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FIGURE 5.20
Schematic representation of relative
positions of the bands in GaAs and

connected in an external
circuit as in Figure 5.12b (not to scale).
Note that the smaller band gap in GaAs
lines up with the center of the larger band
gap in .AlaGa1-aAs

AlaGa1-aAs
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spectrum along the x direction. As discussed later, it is possible to selectively change
the discrete energy spectrum.

This is certainly a novel structure, and it is also useful because it can be made to
function as a very efficient laser. In the ground state, the valence band is fully occupied
and the conduction band is empty. The lowest energy excitation from the valence band
into the conduction band lies in the GaAs layer. Therefore, it is possible to efficiently
excite these transitions by putting an amount of energy into the system that is equal to
or larger than the band-gap energy in GaAs but less than the band-gap energy in

. When the system decays to the ground state, a photon is emitted with fre-
quency , in which is the difference in energy between the excited energy
level in the conduction and the empty states in the valence band. A laser of this type
has two advantages over more conventional solid-state lasers. The first is that such
lasers can be very efficient in producing photons. The second is that the energy levels
in the GaAs layer can be changed by varying the layer thickness, as predicted by
Equation (5.21). This allows for tuning of the laser frequency through a limited range.
Devices based on the principles outlined here are called quantum well devices.

The technique used to manufacture heterostructures like those just discussed is
molecular beam epitaxy (MBE). Because the materials must be deposited in a very high
vacuum, MBE is an expensive technique. New techniques involving size-controlled
crystallization in solution offer a less expensive way to synthesize nanoscale particles.
Such techniques can produce crystalline spherical particles of compound semiconduc-
tors such as CdSe with uniform diameters in the range of 1 to 10. nm. This results in the
energy levels being quantized in all three directions and opens up new possibilities for
these structures, which are called quantum dots. Quantum dots have a band-gap energy
that strongly depends on their diameter for the reasons discussed earlier.

Assume that all states below the band gap are filled and all states above the band
gap of width Ebg are empty in the ground state of the quantum dot, making it a semi-
conductor. Transitions from states below to those above the band gap can occur through
absorption of visible light. Subsequently, the electron in the excited state can drop to an
empty state below the band gap, emitting a photon in a process called fluorescence with
a wavelength . Because the energy levels and Ebg depend on the length b,
also depends on b. This property is illustrated in Figure 5.22a. For CdSe quantum dots,
the emission wavelength increases from 450 nm (blue light) to 650 nm (red light) as the
dot diameter increases from 2 to 8 nm. Figure 5.22b shows another important property
of quantum dots. Although they absorb light over a wide range of wavelengths, they
emit light in a much smaller range of wavelengths. This occurs because electrons
excited from occupied states just below the band gap to states well above the band gap
in absorption rapidly lose energy and relax to states just above the band gap. Therefore
the light emitted in fluorescence is in a narrow frequency range determined by the
band-gap energy of the semiconducting quantum dot.

Quantum dots are currently being used in bioanalytical methods. The usefulness of
these quantum dots is their ability to act as tags for biologically interesting substrates

ll = hc>Ebg

¢En = ¢E>hAlaGa1-aAs
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FIGURE 5.21
Schematic depiction of the heterostructure
(left) and the band and band-gap structure
in the immediate vicinity of the GaAs
layer (right). Not to scale.
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FIGURE 5.22
(a) The dependence of the wavelength of the light emitted in a transition from just above to just
below the band gap is shown as a function of the quantum dot diameter for a number of materi-
als. (b) The top panel shows the absorption spectrum of four CdSe/ZnS quantum dots of differ-
ent diameters, and the bottom panel shows the corresponding emission spectrum. Note that
absorption occurs over a much larger range of wavelengths than emission. The vertical bar indi-
cates the wavelength of a 488 nm argon ion laser that can be used to excite electrons from below
to above the band gap for all four diameters. Using this laser ensures that absorption and emis-
sion occur at distinctly different wavelengths.
Source: Figure 5.22a Figure 1A from X. Michalat, et al., “Quantum Dots for Live Cells, in vivo Imaging,
and Diagnostics” from Science, New Series, Vol. 307: 538–544, Jan. 28, 2005. Copyright © 2005, The
American Association for the Advancement of Science. Reprinted with permission from AAAS.

such as proteins, as shown in Figure 5.23. By functionalizing such quantum dots with
an appropriate molecular layer, they can be made soluble in aqueous solutions and teth-
ered to the protein of interest.

The following example illustrates the usefulness of a protein with a fluorescent label.
After letting the tagged proteins enter a cell and attach to their receptors, the cell is illumi-
nated with light and the quantum dots act as point sources of fluorescent light whose loca-
tion can be imaged using optical microscopy. Because the light used for excitation and the
fluorescent light have different wavelengths, it is easy to distinguish between them using
optical filters. The same excitation wavelength can be used for quantum dots of different
size, so that several different ligand–receptor combinations can be probed simultaneously
if the individual ligands are tethered to quantum dots of differing diameter. It might
appear that the number of possible different fluorescent tags is limited by the overlap in
the wavelengths at which they fluoresce. However, one can also tether different combina-
tions of a few different quantum dots to a protein, creating a barcode. For instance, the
intensity versus wavelength distribution of the fluorescent signal from a tagged protein to
which two 1 nm, one 3 nm, and two 5 nm quantum dots have been attached is different
from all other distinct possible permutations of five quantum dots. This analysis method,
which is based on size quantization, offers new analytical techniques for measuring the
spatial distribution of molecules in inherently heterogeneous biological environments.

Because a quantum dot absorbs strongly over a wide range of wavelengths but
fluoresces in a narrow range of wavelengths, it can be used as an internal light source
for imaging the interior of semitransparent specimens. Figure 5.24 shows an image
obtained by projecting the capillary structure of adipose tissue in a 250-μm-thick
specimen surrounding a surgically exposed ovary of a living mouse on a plane
[Larson et al., Science 300 (2003): 1434]. Additionally, the rate of blood flow and the
differences in systolic and diastolic pressure can be directly observed in these experi-
ments. It is not possible to obtain such images with X-ray-based techniques, because
of the absence of a contrast mechanism.
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FIGURE 5.23
A CdSe quantum dot can be made soluble
in an aqueous solution by coating it with a
single molecular layer of an organic acid.
When tethered to a biomolecule of inter-
est, it can be used as a fluorescent tag to
locate the biomolecule when the biomole-
cule is bound to a receptor in a heteroge-
neous environment such as a cell.
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The usefulness of quantum dots in imaging tissues in vivo has significant potential
applications in surgery provided that toxicity issues currently associated with quantum
dots can be resolved. Figure 5.25 shows images obtained with a near-infrared camera
resulting from the injection of quantum dots emitting in the near-infrared region
(840–860 nm) into the paw of a mouse. The quantum dots had a diameter 15 nm
including the functionalization layer, which is a suitable diameter for trapping in lymph
nodes. Fluorescence from the quantum dots allow the lymph node to be imaged through
the overlying tissue layers. Because near-infrared light is invisible to the human eye and
visible light is not registered by the camera, the mouse can be simultaneously illumi-
nated with both types of light. A comparison of images obtained with near-infrared and
visible light can be used to guide the surgeon in the removal of tumors and to verify that
all affected tissues have been removed. Near-infrared light is also useful because this
wavelength minimizes the absorption of light by overlying tissues, allowing tissues con-
taining quantum dots to be imaged through an overlying tissue layer of 6–10 cm.

Quantum dots have several applications that are in developmental stages. It may be
possible to use them to couple electrical signal amplification, currently based on charge
carrier conduction in semiconductors, with light amplification, in an application known
as optoelectronics. Additionally, the reduced dimensions of quantum dots utilized as
wavelength-tunable lasers allow them to be integrated into conventional silicon-based
microelectronics.

~

FIGURE 5.24
This image was obtained
by projecting the capillary structure in a
250-μm-thick specimen of adipose tissue
in the skin of a living mouse using CdSe
quantum dots that fluoresce at 550 nm.
[Reproduced with permission from Larson et al.
“Water-Soluble Quantum Dots for Multiphoton
Fluorescence Imaging in Vico.” Science 300
(2003): 1434. © 2003 American Association for
the Advancement of Science.]
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FIGURE 5.25
Quantum dots were injected into the 
paw of a mouse. (a) The middle panel
shows a video image taken 5 minutes 
after the quantum dots were introduced.
The right panel is a fluorescence image
that shows localization of the quantum
dots in the lymph node. The left panel
shows that without the quantum dots, no
fluorescence is observed. (b) Surgery
after injection of a chemical mapping
agent that is known to localize in lymph
nodes confirms that the quantum dots are
localized in the lymph nodes.
[From S. Kim et al. “Near-Infrared Fluorescent
Type II Quantum Dots for Sentinel Lymph
Node Mapping.” Nature Biotechnology 22
(2004): 93–97.]
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Q5.1 Why is it necessary to apply a bias voltage between
the tip and surface in a scanning tunneling microscope?

Q5.2 The amplitude of the wave on the right side of the bar-
rier in Figure 5.10 is much smaller than that of the wave inci-
dent on the barrier. What happened to the “rest of the wave”?

Q5.3 Why is a tunneling current not observed in an STM
when the tip and the surface are 1 mm apart?

Q5.4 Redraw Figure 5.7 for an insulator.

Q5.5 Explain how it is possible to create a three-
dimensional electron conductor that has a continuous energy
spectrum in two dimensions and a discrete energy spectrum 
in the third dimension.

Q5.6 Explain, without using equations, why tunneling is
more likely for the particle with than for

in Figure 5.10.

Q5.7 What is the advantage of using quantum dots that flu-
oresce in the near infrared for surgical applications?

Q5.8 The overlap between wave functions can either be
constructive or destructive, just as for waves. Can you distin-
guish between constructive and destructive overlap for the
various energy levels in Figure 5.3?

Q5.9 Explain how you can use size-quantized quantum dots
to create a protein with a barcode that can be read using light.

Q5.10 An STM can also be operated in a mode in which
electrons tunnel from the surface into the tip. Use Figure 5.12
to explain how you would change the experimental setup to
reverse the tunneling current.

Q5.11 For CdSe quantum dots, the emission wavelength
increases from 450. nm to 650. nm as the dot diameter
increases from 2 to 8 nm. Calculate the band gap energy for
these two particle diameters.

E = 1>4V0

E = 3>4V0

Q5.12 Why is it necessary to functionalize CdSe quantum
dots with groups such as organic acids to make them useful in
bioanalytical applications?

Q5.13 Why must the amplitudes of the first derivatives 
of the energy eigenfunctions in the finite depth box and in
the adjoining barrier regions have the same value at the
boundary?

Q5.14 Why must the amplitudes of the energy eigenfunc-
tions in the finite depth box and in the adjoining barrier
regions have the same value at the boundary?

Q5.15 Explain how a quantum dot can absorb light over a
range of wavelengths and emit light over a much smaller
range of wavelengths.

Q5.16 Explain why the speed of the particle needs to be
taken into account in calculating the probability for transmis-
sion over a step potential.

Q5.17 The reflection probability from a step potential was
calculated for E V0 in  Section 5.5. Is Equation (5.18)
valid for E V0 ? What information can you extract from
Figure 5.1 that will allow you to state the value of R for a step
potential if E V0 ?

Q5.18 Figure 5.17 shows that atomic level 
resolution is only attainable in the repulsive portion 
of the tip–surface potential. What does this tell you 
about the range of the attractive and repulsive parts 
of the potential?

Q5.19 Why is atomic level resolution obtained on pen-
tacene in the AFM mode as shown in Figure 5.18, but not in
the STM mode?

Q5.20 Why were quantum dots emitting in the near-
infrared region used for the surgery experiment shown in
Figure 5.25?

6

6
7

Conceptual Problems

Numerical Problems

P5.1 In this problem, you will calculate the transmission
probability through the barrier illustrated in Figure 5.10. 
We first go through the mathematics leading to the solution.
You will then carry out further calculations.

The domain in which the calculation is carried out is divided
into three regions for which the potentials are

The spatial part of the wave functions must have the follow-
ing form in the three regions if :E 6 V0

V(x) = 0   for x Ú a    Region III

V(x) = V0 for 0 6 x 6 a    Region II

V(x) = 0   for x … 0    Region I

= Fe+ ikx + Ge- ikx Region III

c(x) = Fexp c + iA
2mE

U2 x d + Gexp c - iA
2mE

U2 x d
= C e-kx + D e+kx  Region II

+ D exp c +A
2m(V0 - E)

U2 x d

c(x) = C exp c -A
2m(V0 - E)

U2 x d
= Ae+ikx + Be-ikx  Region I

c(x) = Aexp c + iA
2mE

U2 x d + Bexp c - iA
2mE

U2 x d



Assume that the wave approaches the barrier from the nega-
tive x direction. The coefficient B cannot be set equal to zero

because represents reflection from the barrier.
However, G can be set equal to zero because there is no wave
incident on the barrier from the positive x direction.

a. The wave functions and their derivatives must be continu-
ous at and . Show that the coefficients must
satisfy the following conditions:

b. Because the transmission probability is given by , it
is useful to manipulate these equations to get a relation-
ship between F and A. By adding and subtracting the first
pair of equations, A and B can be expressed in terms of C
and D. The second pair of equations can be combined in
the same way to give equations for D and C in terms of F.
Show that

c. Substitute these results for C and D in terms of F into

to relate A and F. Show that

d. Using the hyperbolic trigonometric functions

and the relationship , show that

e. Plot the transmission probability for an electron as a 
function of energy for and

up to an energy of . At
what energy is the tunneling probability 0.1? At what
energy is the tunneling probability 0.02?

f. Plot the transmission probability for an electron of energy
as a function of the barrier width for

between .
At what barrier width is the transmission probability 0.2?

and 8 * 10-10 m2 * 10-10V0 = 1.6 * 10-19 J
0.50 * 10-19 J

8 * 10-19 Ja = 9.0 * 10-10 m
V0 = 1.6 * 10-19 J
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P5.2 Semiconductors can become conductive if their
temperature is raised sufficiently to populate the (empty)
conduction band from the highest filled levels in the valence
band. The ratio of the populations in the highest level of the
conduction band to that of the lowest level in the valence
band is

where is the band gap, which is 1.12 eV for Si and 5.5 eV
for diamond. Assume for simplicity that the ratio of the
degeneracies is one and that the semiconductor becomes suf-
ficiently conductive when

At what temperatures will silicon and diamond become suffi-
ciently conductive? Given that diamond sublimates near
3000. K, could you heat diamond enough to make it conduc-
tive and not sublimate it?

P5.3 For the network of carotene modeled using the
particle in the box, the position-dependent probability density
of finding 1 of the 22 electrons is given by

The quantum number n in this equation is determined by the
energy level of the electron under consideration. As we saw in
Chapter 4, this function is strongly position dependent. The
question addressed in this problem is as follows: Would
you also expect the total probability density defined by

to be strongly position dependent?
The sum is over all the electrons in the -nework.

a. Calculate the total probability density 

using the box length , and plot
your results as a function of x. Does have the same
value near the ends and at the middle of the molecule?

b. Determine , where is the
peak-to-peak amplitude of in the interval between
1.2 and 1.6 nm.

c. Compare the result of part (b) with what you would obtain
for an electron in the highest occupied energy level.

d. What value would you expect for if the electrons
were uniformly distributed over the molecule? How does
this value compare with your result from part (a)?

P5.4 Calculate the energy levels of the -network in hexa-
triene, C6H8, using the particle in the box model. To calculate
the box length, assume that the molecule is linear and use the
values 135 and 154 pm for and bonds. What is
the wavelength of light required to induce a transition from
the ground state to the first excited state? How does this com-
pare with the experimentally observed value of 240 nm?
What does the comparison made suggest to you about esti-
mating the length of the -network by adding bond lengths
for this molecule?

p
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Ptotal(x)
¢Ptotal(x)¢Ptotal(x)>8Ptotal(x)9

Ptotal(x)
a = 2.9 nman ƒcn(x) ƒ2

Ptotal(x) =
p

Ptotal(x) = an ƒcn(x) ƒ2

Pn(x) = ƒcn(x) ƒ 2 =
2
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 sin2anpx
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b

bp
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nvalence
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¢E
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=
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A, B, C, and D. Show that applying these conditions gives the
following equations:

These two pairs of equations differ on the right side only by
the sign of one term. We can obtain a set of equations that
contain fewer coefficients by adding and subtracting each pair
of equations to give

At this point we notice that by dividing the equations in each
pair, the coefficients can be eliminated to give

Multiplying these equations on both sides by a 2 gives
dimensionless parameters, and the final equations are

The allowed energy values E must satisfy these equations. They
can be obtained by graphing the two sides of each equation
against E. The intersections of the two curves are the allowed
energy eigenvalues. For the parameters in the caption of
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P5.5 Calculate the energy levels of the -network in
octatetraene, C8H10, using the particle in the box model.
To calculate the box length, assume that the molecule is
linear and use the values 135 and 154 pm for and

bonds. What is the wavelength of light required to
induce a transition from the ground state to the first
excited state?

P5.6 The maximum safe current in a copper wire with a
diameter of 3.0 mm is about 20. amperes. In an STM, a cur-
rent of A passes from the tip to the surface in a
filament of diameter 1.0 nm. Compare the current density in
the copper wire with that in the STM.

P5.7 In this problem, you will solve for the total energy
eigenfunctions and eigenvalues for an electron in a finite
depth box. We first go through the calculation for the box
parameters used in Figure 5.1. You will then carry out the 
calculation for a different set of parameters.

We describe the potential in this way:

The eigenfunctions must have the following form in these
three regions:

So that the wave functions remain finite at large positive and
negative values of x, . An additional condition
must also be satisfied. To arrive at physically meaningful
solutions for the eigenfunctions, the wave functions in the
separate regions must have the same amplitude and deriva-
tives at the values of x a 2 and x = -a 2 bounding the
regions. This restricts the possible values for the coefficients
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W5.1 The Schrödinger equation is solved numerically for
the particle in the finite height box. Using the condition that
the wave function must approach zero amplitude in the classi-
cally forbidden region, the energy levels are determined for a
fixed particle mass, box depth, and box length. The particle
mass and energy and the box depth and length are varied with
sliders to demonstrate how the number of bound states varies
with these parameters.

W5.2 The Schrödinger equation is solved numerically to
calculate the tunneling probability for a particle through a
thin finite barrier. Sliders are used to vary the barrier width
and height and the particle energy and mass. The dependence
of the tunneling probability on these variables is investigated.
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Computational Problems

More detailed instructions on carrying out this calculation
using Spartan Student are found on the book website at
www.masteringchemistry.com.

C5.1 Build (a) ethylene, (b) the trans conformation for 
1,3 butadiene, and (c) all trans hexatriene and calculate the
ground-state (singlet) energy of these molecules using the
B3LYP method with the basis set. Repeat your6-311+G**

calculation for the triplet state, which corresponds to the exci-
tation of a electron from the highest filled energy level to
the lowest unoccupied energy level. Use a nonplanar input
geometry for the triplet states. Compare the energy difference
from these calculations to literature values of the maximum in
the UV-visible absorption spectrum.

p

Web-Based Simulations, Animations, and Problems
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The five allowed energy levels are at 
(top figure), and

(bottom figure).

a. Given these values, calculate for each energy level. Is the
relation (for n an integer) that arose from the
calculations on the infinitely deep box still valid? Compare
the values with the corresponding energy level in the infi-
nitely deep box. Explain why the differences arise.

b. Repeat this calculation for 
Do you think that there will be

fewer or more bound states than for the problem just
worked out? How many allowed energy levels are there for
this well depth, and what is the energy corresponding to
each level?

P5.8 An electron of energy 5.0 eV approaches a step poten-
tial of height 2.0 eV. Calculate the probabilities that the
electron will be reflected and transmitted.

a = 0.900 * 10-9 m.
V0 = 5.00 * 10-19 J and

l = 2a>n l

1.84 * 10-19 and 7.13 * 10-19 J
4.09 * 10-19, and 1.07 * 10-18 J

4.61 * 10-20,Figure 5.1, the
following two graphs are obtained:

V0 = 1.20 * 10-18 J and a = 1.00 * 10-9 m,

www.masteringchemistry.com


6.1 Commutation Relations

6.2 The Stern–Gerlach
Experiment

6.3 The Heisenberg Uncertainty
Principle

6.4 (Supplemental) The
Heisenberg Uncertainty
Principle Expressed in Terms
of Standard Deviations

6.5 (Supplemental) A Thought
Experiment Using a Particle
in a Three-Dimensional Box

6.6 (Supplemental) Entangled
States, Teleportation, and
Quantum Computers

Commuting and
Noncommuting

Operators and the
Surprising

Consequences of
Entanglement

Classical physics predicts that there is no limit to the amount of infor-

mation (observables) that can be known about a system at a given instant

of time. This is not the case in quantum mechanics. Two observables can

be known simultaneously only if the outcome of the measurements is

independent of the order in which they are conducted. An uncertainty

relation limits the degree to which observables of other operators can be

known simultaneously. Although this result is counterintuitive from a clas-

sical perspective, the Stern–Gerlach experiment clearly demonstrates that

this prediction of quantum mechanics is obeyed at the atomic level.

Because a quantum state can be a superposition of individual states, two

particles can be entangled. Entanglement is the basis of both teleporta-

tion and quantum computing.

6.1 Commutation Relations
In classical mechanics, a system under consideration can in principle be described
completely. For instance, for a mass falling in a gravitational field, its position, momen-
tum, kinetic energy, and potential energy can be determined simultaneously at any
point on its trajectory. The uncertainty in the measurements is only limited by the capa-
bilities of the measurement technique. All of these observables (and many more) can be
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known simultaneously. This is not generally true from a quantum mechanical perspec-
tive. In the quantum world, in some cases two observables can be known simultane-
ously with high accuracy. However, in other cases, two observables have a fundamental
uncertainty that cannot be removed through any measurement techniques. However, as
will be shown later, in the classical limit of very large quantum numbers, the funda-
mental uncertainty for such observables is less than the uncertainty associated with
experimental techniques. This result shows that quantum mechanics is consistent with
classical mechanics for large quantum numbers.

The values of two different observables a and b, which correspond to the operators 
and , can be simultaneously determined only if the measurement process used does not
change the state of the system. Otherwise, the system on which the second measurement is
carried out is not the same as for the first measurement. Let be the wave function that
characterizes the system. How can the measurements of the observables corresponding to
the operators and be described? Carrying out a measurement of the observables corre-
sponding first to the operator and subsequently to the operator is equivalent to evaluat-
ing . If is an eigenfunction of , then . 
The only case in which the second measurement does not change the state of the system
is if is also an eigenfunction of . In this case, .
Reversing the order of the two operations gives . Because the
eigenvalues are simply constants, and, therefore,

.
We have just shown that the act of measurement changes the state of the system

unless the system wave function is an eigenfunction of the two different operators.
Therefore, this is a condition for being able to simultaneously know the observables
corresponding to these operators. How can one know if two operators have a common
set of eigenfunctions? The example just discussed suggests a simple test that can be
applied. Only if

(6.1)

for f(x), an arbitrary function, will and have a common set of eigenfunctions, and
only then can the corresponding observables be known simultaneously.

If two operators have a common set of eigenfunctions, we say that they
commute. The difference is abbreviated , and
the expression in the square brackets is called the commutator of the operators 

and . If the value of the commutator is not zero for an arbitrary function f(x), the
corresponding observables cannot be determined simultaneously and exactly. We will
have more to say about what is meant by exactly later in this chapter.

EXAMPLE PROBLEM 6.1

Determine whether the momentum and (a) the kinetic energy and (b) the total energy
can be known simultaneously.

Solution

We determine whether two operators and commute by evaluating the commutator
. If the commutator is zero, the two observables can be

determined simultaneously and exactly.

a. For momentum and kinetic energy, we evaluate

In calculating the third derivative, it does not matter if the function is first differ-
entiated twice and then once or the other way around. Therefore, the momentum
and the kinetic energy can be determined simultaneously and exactly.
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FIGURE 6.1
The effect of an inhomogeneous mag-
netic field on magnetic dipoles is to ori-
ent and deflect them in opposite
directions, depending on the sign of the
component of the magnetic moment
along the z direction.

b. For momentum and total energy, we evaluate

Because the kinetic energy and momentum operators commute, per part (a), this
expression is equal to

We conclude the following:

Therefore, the momentum and the total energy cannot be known simultaneously and
exactly. Note that the arbitrary function f(x) is not present in the final expression for
the commutator. Note also that the momentum and the total energy can be known
simultaneously if . This corresponds to a constant potential energy
for all values of x, in other words, the free particle of Section 4.1.

Now apply the formalism just discussed to the particle in the box in its lowest energy
state. In Chapter 4, we found that although the wave function is an eigenfunction of the
total energy operator, it is not an eigenfunction of the momentum operator. Therefore,
these two operators do not commute. If the total energy of the particle is measured, the
value is obtained. If the average momentum is subsequently determined
from a number of individual measurements, the result is . This result merely
states that it is equally likely that positive and negative values will be obtained. There is
no way of knowing what the magnitude and sign of the momentum will be for an individ-
ual measurement. Because the energy is known precisely, nothing is known about the
momentum. This result is consistent with the fact that the two operators do not commute.

6.2 The Stern–Gerlach Experiment
Consider next a real experiment in a simple quantum mechanical framework that illus-
trates some of the concepts discussed in the preceding section in more concrete terms.
This experiment also illustrates how quantum mechanical concepts of measurement
arose out of analyzing results obtained in the laboratory. In this experiment, a beam of
silver atoms having a well-defined direction passes through a magnetic field that has a
constant value in the plane and varies linearly with the z coordinate, which is chosen
to be perpendicular to the path of the atoms. We say that the magnetic field has a gradi-
ent in the z direction. An atomic beam of silver atoms can be made in a vacuum system
by heating solid silver in an oven to a temperature at which the vapor pressure of Ag is
in the range of torr. Letting the atoms escape through a series of collimating aper-
tures in the wall of the oven results in a beam of Ag atoms, all traveling in the same
direction, which is chosen to be the y direction. The atoms pass through the magnetic
field and are detected some distance beyond the magnet. The forces acting on the mag-
netic dipoles representing individual Ag atoms is depicted in Figure 6.1, and the
Stern–Gerlach experiment is shown schematically in Figure 6.2.
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Silver atoms have a single unpaired electron that has an intrinsic magnetic moment.
We return to the consequences of this fact later. The magnetic moment is associated
with what is called the electron spin, although the picture of a spherical electron spinning
around an axis through its center is incorrect. It turns out that the spin emerges naturally
in relativistic quantum mechanics. (View these remarks as an aside because none of this
was known at the time the Stern–Gerlach experiment was conducted.)

Because each atom has a magnetic moment associated with the unpaired electron, the
atom is deflected in the z direction as it passes through the inhomogeneous magnetic
field. The atom is not deflected along the x and y directions, because the magnetic field is
constant along these directions. What outcome is expected in this experiment? Consider
the classical system of a beam of magnetic dipoles. We expect that the magnetic dipoles
are randomly oriented in space and that only their z component is affected by the magnet.
Because the z component takes on all possible values between and , where 

is the magnetic moment of the atom, the silver atoms will be equally distributed along
a range of z values at the detector. The z values can be predicted from the geometry of 
the experiment and the strength of the field gradient if the magnetic moment is known.

What are the results of the experiment? Silver atoms are deflected only in the 
z direction, but only two z values are observed. One corresponds to an upward deflection
and the other to a downward deflection of the same magnitude. What conclusions can be
drawn from this experiment? We conclude that the operator called “measure the z
component of the magnetic moment,” denoted by , has only two eigenfunctions with
eigenvalues that are equal in magnitude but opposite in sign. We call the two eigenfunc-
tions and and assume that they are normalized. Because the experiment shows that
these two eigenfunctions form a complete set (only two deflection angles are observed),
any acceptable wave function can be written as a linear combination of and .
Therefore, the initial normalized wave function that describes a single silver atom is

(6.2)

We cannot specify the values of c1 and c2, because they refer to individual measure-
ments, and only the total number of silver atoms in the two deflected beams at the
detector is measured. However, the relative number of Ag atoms that was deflected
upward and downward can be measured for a large number of atoms. This ratio is one,
and therefore . The average is over all the atoms that
have landed on the detector.

Now carry this experiment a step further. We follow the path of the downwardly
deflected atoms, which have the wave function and deflect them once again.
However, this time the magnet has been turned 90° so that the magnetic field gradient is
in the x direction. Note that now there is an inhomogeneity in the x direction, such that
the atoms are separated along this direction. The operator is now “measure the x com-
ponent of the magnetic moment,” which is denoted . The experiment shows that this
operator also has two and only two eigenfunctions that we call . They have the
same eigenvalues as , respectively. If the relative number of Ag atoms deflected
in the and directions is measured, the ratio is determined to be one. We con-
clude that the wave function prior to entering the second magnet was

(6.3)

As before, .ƒ c3 ƒ 2average = ƒ c4 ƒ 2average = 1>2
c = c3d + c4g with ƒ c3 ƒ 2 + ƒ c4 ƒ 2 = 1
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FIGURE 6.2
Schematic representation of the
Stern–Gerlach experiment. The inhomo-
geneous magnetic field separates the sil-
ver beam into two, and only two,
components.
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One of the beams exiting from the first
magnet has been passed through a second
magnet rotated by 90°. Again the beam is
split into two components. The third mag-
net gives a result that is different than
what would have been expected from
classical physics.

Now comes the punch line. We ask the question “Do the operators and 
commute?” This question is answered by repeating the first measurement to see if the
state of the system has been changed by carrying out the second measurement.
Experimentally, a third magnet that has the same alignment as the first magnet is
added. This third magnet acts on one of the two separated beams that have emerged
from the second magnet, as shown in Figure 6.3. If the operators commute, a single
downwardly deflected beam of Ag atoms corresponding to will be observed. If
they do not commute, the wave function for the atoms entering the third magnet will 
no longer be an eigenfunction of , and two beams will be observed. Why is this? If 
the wave function that describes the Ag atom emerging from the second magnet is not
an eigenfunction of , it still can be represented as a linear combination of the two
eigenfunctions of . A state whose wave function is a linear combination of and 
will give rise to two deflected beams of Ag atoms.

The result of the experiment with the third magnet is that two beams emerge, just 
as was seen from the first magnet! We conclude that the operators , “measure the
z component of the magnetic moment,” and , “measure the x component of the
magnetic moment,” do not commute. This means that a silver atom does not simultane-
ously have well-defined values for both . This is, of course, not the conclu-
sion reached by applying classical mechanics to a classical magnetic moment. The
experiment is a good illustration of how the quantum mechanical postulates arose from
consideration of the outcomes of experiments.

Because the magnetic moment and the angular momentum of a charged particle
differ only by a multiplicative constant, we have also shown that the operators for the
individual components of the angular momentum vector do not commute. The con-
sequences of this result will be discussed in Chapter 7.

6.2.1 The History of the Stern–Gerlach Experiment

This classic experiment, carried out in 1921, was designed to distinguish between the
quantum mechanical model of the atom proposed by Niels Bohr and classical planetary
models. A silver beam generated by an oven in a vacuum chamber was collimated by two
narrow slits of 0.03-mm width. The beam passed through an inhomogeneous magnet
3.5 cm in length and impinged on a glass plate. After about an hour of operation, the plate
was removed and examined visually. Only about one atomic layer of Ag was deposited
on the plate in this time, making the detection of the spatial distribution of the silver
atoms very difficult. The key to their successful detection was that both Stern and Gerlach
smoked cheap cigars with a high sulfur content. The sulfur-containing smoke reacted
with the Ag atoms, producing Ag2S, which was clearly visible under a microscope, even
though the amount deposited was less than mol. Upon successful completion of the
experiment, Gerlach sent Bohr the following postcard, which shows the result obtained
without the magnetic field (left) and with the magnetic field (right). The splitting of the
beam into two distinct components is clearly visible. The handwritten notes explain the
experiment and congratulate Bohr, saying that the results confirm his theory.
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Courtesy of the Niels Bohr Archive, Copenhagen.

Although the results did not confirm the classical model of the atom, the agreement
with the Bohr model turned out to be fortuitous and incorrect. Several years later,
researchers discovered that the electron has an intrinsic angular moment (spin). This
angular moment—and not a magnetic moment produced by electrons orbiting around
the nucleus—is the basis for the deflection observed. A more detailed account of this
experiment can be found in an article by B. Friedrich and D. Herschbach in the
December 2003 issue of Physics Today.

6.3 The Heisenberg Uncertainty Principle
The best-known case of noncommuting operators concerns position and momentum
and is associated with the Heisenberg uncertainty principle. This principle quantifies
the uncertainty in the position and momentum of a quantum mechanical particle that
arises from the fact that , .

The uncertainty principle can be nicely illustrated with the free particle. As dis-
cussed in Section 4.1, the free-particle total energy eigenfunctions have the form

. What can be said about the position and momen-
tum of states described by this wave function? It is convenient to set 
so that we can focus on the spatial variation of .

By operating on this wave function with the momentum operator, it can be easily
shown that it is an eigenfunction of the momentum operator with the eigenvalue

. To discuss probability, this wave function must be normalized. As shown
in Section 4.1, a plane wave cannot be normalized over an interval that is infinite, but it
can be normalized over the finite interval :

(6.4)
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Now that the function is normalized, we calculate the probability of finding the particle
near :

(6.5)

We see that the probability is independent of position. This means
that it is equally probable that the particle will be found anywhere. Now let the interval
length L become arbitrarily large. The probability of finding the particle within the
interval dx centered at approaches zero! We conclude that if a particle is 
prepared in a state in which the momentum is exactly known, then its position is completely
unknown. It turns out that if a particle is prepared such that its position is exactly known
(the wave function is an eigenfunction of the position operator), then its momentum is
completely unknown.

This result is completely at variance with expectations based on classical
mechanics, because a simultaneous knowledge of position and momentum is essen-
tial to calculating trajectories of particles subject to forces. How can this counterin-
tuitive result be understood?

The uncertainty in position arises because the momentum is precisely known. Is it
possible to construct a wave function for which the momentum is not precisely known?
Will such a wave function give more information about the position of the particle
than the plane wave does? These questions can be
answered by constructing a wave function that is a superposition of several plane waves
and then examining its properties. Consider the superposition of plane waves of very
similar wave vectors given by

(6.6)

This superposition wave function is not an eigenfunction of the momentum operator.
The upper portion of Figure 6.4 shows the real part of each of the 21 individual terms in
an interval of approximately seven wavelengths about an arbitrarily chosen zero of dis-
tance for . We also choose to make the amplitude of the wave function zero out-
side of the range of distances shown. This ensures that the particle is somewhere in the
interval.

How does the amplitude of vary over the interval? At , all 21 waves
constructively interfere, but at they undergo destructive 
interference. Consequently, the wave function, which is a superposition of these waves,
has a maximum amplitude at and a value of zero at . 
The amplitude oscillates about zero at intermediate values of x. How does the proba-
bility density vary over the interval? Evaluating Equation (6.6) for and m = 10
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FIGURE 6.4
The top part of the figure shows 
21 waves, each of which has zero ampli-
tude outside the range of distances shown.
They have been displaced vertically for
purposes of display. The bottom part
shows the probability density 
resulting from adding all 21 waves. 
The wave vector k0 has the value

.7.00 * 1010 m-1
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forming , the function shown in the lower part of Figure 6.4 is obtained.
Because is strongly peaked at the center of the interval, by superposing 
these 21 waves we see that the particle has been localized. The oscillations shown in
Figure 6.4 are a result of having taken only 21 terms in the superposition. They
would disappear, leaving a broad smooth curve that is the envelope of the red curve,
if an infinite number of waves of intermediate wavelengths had been included in 
the superposition.

What does this calculation show? Because is not an eigenfunction of
the momentum operator, an uncertainty is connected with the momentum of the
particle. In going from a single plane wave to the superposition function , the
uncertainty in momentum has increased. As the curve for in Figure 6.4 shows,
increasing the uncertainty in momentum has decreased the uncertainty in position.
Such a superposition wave function is referred to as a wave packet because it has wave
character but is localized to a finite interval.

Because 21 waves of differing momentum have been superposed to construct the
wave function, the momentum is no longer exactly known. Can we make this statement
more quantitative? The value of p is known fairly well if , because an
individual measurement of the momentum for a state described by gives values in
the following range:

(6.7)

Comparing the results just obtained for with those for a single plane wave of 
precisely determined momentum allows the following conclusion to be made: as a result
of the superposition of many plane waves, the position of the particle is no longer 
completely unknown, and the momentum of the particle is no longer exactly known.
Figure 6.4 shows that the approximate position of the particle can be known as long as an
uncertainty in its momentum can be tolerated. The lesson of this discussion is that both
position and momentum cannot be known exactly and simultaneously in quantum
mechanics. We must accept a trade-off between the uncertainty in p and that of x. This
result was quantified by Heisenberg in his famous uncertainty principle:

(6.8)

EXAMPLE PROBLEM 6.2

Assume that the double-slit experiment could be carried out with electrons using a 
slit spacing of nm. To be able to observe diffraction, we choose , 
and because diffraction requires reasonably monochromatic radiation, we choose

. Show that with these parameters, the uncertainty in the position 
of the electron is greater than the slit spacing b.

Solution

Using the de Broglie relation, the mean momentum is given by

and . The minimum uncertainty in position is given by

which is greater than the slit spacing. Note that the concept of an electron trajectory is
not well defined under these conditions. This offers an explanation for the observation
that the electron appears to go through both slits simultaneously!
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The trajectory of a particle for which the momentum and energy are exactly
known is not a well-defined concept in quantum mechanics. However, a good
approximation for a “trajectory” in quantum mechanical systems is obtained by using
wave packets.

What is the practical effect of the uncertainty principle? Does this mean that we
have no idea what trajectories the electrons in a TV picture tube will follow or where
a baseball thrown by a pitcher will pass a waiting batter? As mentioned earlier, this
gets down to what is meant by exact. An exact trajectory could be calculated if 
were equal to zero, rather than being a small number. Because is a very small num-
ber, the uncertainty principle does not affect the calculation of the trajectories of
baseballs, rockets, or other macroscopic objects. Although the uncertainty principle
holds for both electrons and for baseballs, the effect is so small that it is not
detectable for large masses.

EXAMPLE PROBLEM 6.3

The electrons in a TV picture tube have an energy of about . If
in the direction of the electron trajectory for this case, calculate the

minimum uncertainty in the position that defines where the electrons land on the
phosphor in the picture tube.

Solution

Using the relation , the momentum is calculated as follows:

Proceeding as in Example Problem 6.2,

This distance is much smaller than could be measured and, therefore, the uncertainty
principle has no effect in this instance.

EXAMPLE PROBLEM 6.4

An (over)educated baseball player tries to convince his manager that he cannot hit a
100 mile per hour baseball that has a mass of 140. g and relative
momentum uncertainty of 1.00% because the uncertainty principle does not allow him
to estimate its position within 0.1 mm. Is his argument valid?

Solution

The momentum is calculated using the following equation:

Substituting in the uncertainty principle,

The uncertainty is not zero, but it is well below the experimental sensitivity. Sorry,
back to the minor leagues.

This result—that it is not possible to know the exact values of two observables
simultaneously—is not restricted to position and momentum. It applies to any two
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observables whose corresponding operators do not commute. Energy and time are
another example of two observables that are linked by an uncertainty principle. The
energy of the H atom with the electron in the 1s state can only be known to high
accuracy because it has a very long lifetime. This is the case because there is no
lower state to which it can decay. Excited states that rapidly decay to the ground
state have an uncertainty in their energy. Evaluation of the commutator is the
means used to test whether any two observables can be determined simultaneously
and exactly.

S U P P L E M E N T A L

6.4
The Heisenberg Uncertainty Principle
Expressed in Terms of Standard
Deviations

This section addresses the topic of how to use the Heisenberg uncertainty principle in a
quantitative fashion. This inequality can be written in the form

(6.9)

In this equation, are the standard deviations that would be obtained by
analyzing the distribution of a large number of measured values of position and
momentum. The standard deviations, , are related to observables by the
relations

(6.10)

where is called the variance in the momentum.

EXAMPLE PROBLEM 6.5

Starting with the definition for the standard deviation in position, 

, derive the expression for in Equation (6.10).

Solution

The fourth postulate of quantum mechanics tells how to calculate these observables
from the normalized wave functions:

Similarly,
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To illustrate how to use the Heisenberg uncertainty principle, we carry out a
calculation for using the particle in the box as an example. The normalizedsp and sx
wave functions are given by and the operators needed are

Using the standard integrals

it is found that

With these results, becomes

(6.12)

Next, these results are verified as being compatible with the uncertainty principle for
:

(6.13)

Because this function has its minimum value for , the uncertainty principle is sat-
isfied for all values of n.

In evaluating a quantum mechanical result, it is useful to make sure that it
converges to the classical result as . To do so, the relative uncertainties in x and
p are evaluated. The quantity is used for this calculation because

The following result is obtained:

(6.14)
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The interesting result is obtained that the relative uncertainty increases as
. How can this result be understood? Looking back at the probability den-

sity in Figure 6.4, we see that the particle is most likely to be found near the center
of the box for , whereas it is equally likely to be anywhere in the box for
large n. The fact that the ground-state particle is more confined than the classical
particle is at first surprising, but is consistent with the discussion in Chapter 4.

The result that the relative uncertainty in momentum is independent of the
momentum is counterintuitive because in the classical limit, the uncertainty in the
momentum is expected to be negligible. It turns out that the result for in 

Equation (6.14) is misleading because there are two values of p for a given value of p2.
The variance calculated earlier is characteristic of the set of the two p values, and what
we want to know is for each value of p individually. How can the desired
result be obtained?

The result is obtained by expanding the eigenfunctions in the eigenfunctions
of the momentum operator. In a fashion similar to that used to generate the data in
Figure 6.4, we ask what values of k and what relative amplitudes Ak are required to rep-
resent the wave functions

(6.15)

in the form

(6.16)

Expressing the eigenfunctions in this way allows the probability density of observing
a particular value of p for a particle whose wave function is an eigenfunction of the
total energy operator to be calculated. As outlined in the discussion of the fourth pos-
tulate in Chapter 3, the probability density of measuring a given momentum is propor-
tional to . This quantity is shown as a function of k for several values of n in
Figure 6.5, where, for , the result looks quite classical in that the observed
values are sharply peaked at the two classically predicted values .
However, as n becomes smaller, quantum effects become much clearer. The most
probable values of p are still given by for and 15, but subsidiary
maxima are seen, and the width of the peaks (which is a measure of the uncertainty
in p) is substantial. For , the distribution is peaked at , rather than the clas-
sical values. For this lowest energy state, quantum and classical mechanics give very
different results.

Figure 6.5 demonstrates that the relative uncertainty decreases as p
increases. You will explore this issue more quantitatively in the end-of-chapter
problems. The counterintuitive result of Equation (6.14)—that the relative uncertainty
in the momentum is constant—is an artifact of characterizing the distribution consist-
ing of two widely separated peaks by one variance, rather than looking at each of the
peaks individually.

S U P P L E M E N T A L

6.5 A Thought Experiment Using a Particle in
a Three-Dimensional Box

Think of the following experiment: one particle is put in an opaque box, and the top
is securely fastened. From the outside, a partition is slid into the box, dividing it into
two equal leak-tight volumes. This partition allows the initial box to be separated into
two separate leak-tight boxes, each with half the volume. These two boxes are sepa-
rated by sending one of them to the moon. Finally, an observer opens one of the
boxes. The observer finds that the box he has opened is either empty or that it
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contains the particle. From the viewpoint of classical mechanics, this is a straightfor-
ward experiment. If the box that was opened is empty, then that half of the box was
empty when the partition was initially inserted. What does this problem look like
from a quantum mechanical point of view? The individual steps are illustrated in
Figure 6.6.

Initially, we know only that the particle is somewhere in the box before the partition
is inserted. Because it exhibits wave-particle duality, the position of the particle cannot
be determined exactly. If two eigenstates of the position operator, , are
defined, then the initial wave function is given by

(6.17)c = acleft + bcright, with ƒa ƒ 2 + ƒb ƒ 2 = 1

cleft and cright

Move apart

Look in box

Insert barrier

FIGURE 6.6
Thought experiment using a particle in a
box. The square of the wave function is
plotted along the x and y coordinates of
the box.



In the figure, it has been assumed that . The square of the wave function is
nonzero everywhere in the box and goes to zero at the walls. When the partition is
inserted, what we have just said is again true, except that now the wave function also
goes to zero along the partition. Classically, the particle is either in the left- or the
right-hand side of the combined box, although it is not known which of these possibil-
ities applies.

From a quantum mechanical perspective, such a definitive statement cannot be
made. We can merely say that there is an equal probability of finding the particle in
each of the two parts of the original box. Therefore, when the two halves of the box are
separated, the integral of the square of the wave function is one-half in each of the
smaller boxes.

Now the box is opened. This is equivalent to applying the position operator to the
wave function of Equation (6.17). According to the discussion in Chapter 3, the wave
function becomes either . We do not know which of these will be the final
wave function of the system, but we do know that in a large number of measurements,
the probability of finding it on the left is a2. Assume the case shown in the top part of
Figure 6.4 in which the particle is found in the left box. In that case, the integral 
of the square of the wave function in that box instantaneously changes from 0.5 to 1.0
at the moment we look into the box, and the integral of the square of the wave function
in the other box drops from 0.5 to zero! Because this result does not depend on the dis-
tance of separation between the boxes, this distance can be made large enough that 
the boxes are not coupled by a physical force. Even so, the one box “knows” instanta-
neously what has been learned about the other box. This is the interpretation of quan-
tum mechanics attributed to the Copenhagen school of Niels Bohr, which gives the act
of measurement a central role in the outcome of an experiment. Nearly 80 years after
the formulation of quantum theory, the search for an “observer-free” theory has not yet
led to a widely accepted alternative to the interpretation of the Copenhagen school.

Before dismissing this scenario as unrealistic, and accepting the classical view that
the particle really is in one part of the box or the other, have another look at Figure 3.3.
The results shown there demonstrate clearly that the outcome of an experiment on
identically prepared quantum mechanical systems is inherently probabilistic. Therefore,
the wave function for an individual system must be formulated in such a way that it
includes all possible outcomes of an experiment. This means that, in general, it describes
a superposition state. The result that measurements on identically prepared systems lead
to different outcomes has been amply documented by experiments at the atomic level,
and this precludes the certainty in the classical assertion that the particle really is in one
part of the box or the other. Where does the classical limit appear in this case? For
instance, one might ask why the motion of a human being is not described by the
Schrödinger equation rather than Newton’s second law if every atom in our body is
described by quantum mechanics. This topic is an active area of research, and the 
current view is that the superposition wave function of a macroscopic system is unstable
because of interactions with the environment. The superposition state decays very rap-
idly to a single term. This decay has the consequence that the strange behavior charac-
teristic of quantum mechanical superposition states is no longer observed in large
“classical systems.”

S U P P L E M E N T A L

6.6 Entangled States, Teleportation, 
and Quantum Computers

Erwin Schrödinger first noted a prediction of quantum mechanics that was very much
at variance with classical physics. It is that two quantum particles can be coupled in
such a way that their properties are no longer independent of one another no matter
how far apart they may be. We say that the particles are entangled. This consequence
of entanglement was pointed out by Einstein and called a “spooky action at a distance”

cleft or cright

a = b
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to indicate what he believed to be a serious flaw in quantum mechanics. Definitive
experiments to determine whether entanglement could be observed were not possible
until the 1970s, when it was shown that Einstein was wrong in this instance.

Consider the following example of entanglement. A particle with no magnetic
moment decays, giving two identical particles whose z component of the magnetic
moment (which we call mz) can take on the values . Each of these particles is sent
through a Stern–Gerlach analyzer as described in Section 6.2. A series of measure-
ments of mz for particle one gives in a random pattern; it is not possible to predict
the outcome of a single measurement. However, because angular momentum is con-
served, if one of the particles is found to have mz equal to , the other must
have There are only two possibilities for the two particles, 
where the left arrow in each case indicates mz for particle one. Because the combina-
tions occur with equal probability, the two particles must be described by a
single superposition wave function, which we write schematically as .
Note that neither particle can be described by its own wave function as a result of the
entanglement.

This result implies that the second particle has no well-defined value of mz until a
measurement is carried out on the first particle. Because the roles of particles one and
two can be reversed, quantum mechanics tells us that neither of the particles has a well-
defined value of mz until a measurement is carried out. This result violates a basic prin-
ciple of classical physics called local realism. Local realism asserts that (1) Measured
results correspond to elements of reality. For example, if I determine that a person’s
hair is black, according to local realism, that person’s hair was black before I make the
measurement and is black regardless of whether a measurement is ever made. 
(2) Measured results are independent of any action that might be taken at a distant loca-
tion at the same time. If a person has an identical twin on the other side of the planet, a
measurement of the twin’s hair color has no influence on a measurement of the other
twin’s hair color made at the same time.

The experiment just described shows that local realism is not valid because
there is no value for mz until a measurement is carried out and because the mz values
of the two particles remain coupled no matter how far apart they are when the first
measurement is made. Another experiment that illustrates this surprising result is
depicted in Figure 6.7. Two entangled photons are passed through optical fibers to
locations spaced 10 km apart. Photon 1 is passed through a double slit and exhibits a
diffraction pattern. If the profile of the light intensity corresponding to photon 2 is
determined, it corresponds to that of a photon that has passed through a double slit,
even though it has not! If a person and his or her identical twin were quantum
mechanically entangled, neither twin’s hair color would be known before a measure-
ment was made. Any possible hair color would be equally likely to be determined
for one twin in a measurement, and the other twin would be found to have the same
hair color.
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The spatial distribution of the light inten-
sity for photon 2 shows a diffraction pat-
tern (black squares) even though it has not
passed through a slit. This result arises
because photons 1 and 2 are entangled.
The red curve is the diffraction pattern cal-
culated using the experimental parameters.
Source: Reprinted fig. 2 with permission
from D.V. Strekalov et al., “Observation of
Two-Photon ‘Ghost’ Interference and
Diffraction,” Physical Review Letters, 74
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Does entanglement suggest that information can be transmitted instantaneously
over an arbitrarily large distance? To answer this question, we consider how informa-
tion about a system can be transmitted to a distant location, first for a classical system
and then for a quantum mechanical system. Classically, a copy of the original informa-
tion or object is created at the distant location. A classical system can be copied as
often as desired, and the accuracy of the copy is limited only by the quality of the tools
used. In principle, the copies can be so well made that they are indistinguishable from
the original. The speed with which information is transferred is limited by the speed of
light. By contrast, the information needed to make a copy of a quantum mechanical
system cannot be obtained, because it is impossible to determine the state of the system
exactly by measurement. If the system wave function is given by

(6.18)

in which the are the eigenfunctions of an appropriate quantum mechanical operator,
experiments can only determine the absolute magnitudes . This is not enough infor-
mation to determine the wave function. Therefore, the information needed to make a copy
is not available. Making a copy of a quantum mechanical system is also in violation of the
Heisenberg uncertainty principle. If a copy could be made, one could easily measure the
momentum of one of the copies and measure the position of the other copy. If this were
possible, both the momentum and position could be known simultaneously.

Given these limitations of knowledge of quantum mechanical systems, how can a
quantum mechanical system be transported to a distant location, and how is this trans-
fer related to entanglement? Consider the following experiment described by Anton
Zeilinger in Scientific American, April 2000, in which a photon at one location was
recreated at a second location. Although photons were used in this experiment, there is
no reason in principle why atoms or molecules could not be transferred from one loca-
tion to another in the same way.

Bob and Alice are at distant locations and share an entangled photon pair, of which
Bob has photon B and Alice has photon A as shown in Figure 6.8. Each of them care-
fully stores his or her photon so that the entanglement is maintained. At a later time,
Alice has another photon that we call X, which she would like to send to Bob. How can
this be done? She cannot measure the polarization state directly and send this informa-
tion to Bob, because the act of measurement would change the state of the photon.
Instead, she entangles X and A.

What are the consequences of the entanglement of A and X on B? We know that
whatever state X has, A must have the orthogonal state. If X is vertically (horizon-
tally) polarized, then A must be horizontally (vertically) polarized. However, the
same logic must apply to A and B because they are also entangled. Whatever state A
has, B must have the orthogonal state. If the state of B is orthogonal to that of A and
the state of A is orthogonal to that of X, then the states of B and X must be identical.
This follows from the fact that there are only two possible eigenfunctions of the
polarization operator.

What has been accomplished by this experiment? Photon B acquires the original
polarization of Alice’s photon X and is therefore identical in every way to the original
state of X. However, the state of X has been irreversibly changed at Alice’s location,
because in order to know that photons A and X have been successfully entangled, Alice
has to pass both her photons through A detector. Therefore, the properties of X have
been changed at Alice’s location and transferred to Bob’s location. This process is
called teleportation, defined as the transfer of A quantum state from one location to
another. Note that the uncertainty principle has not been violated because the photon
has been teleported rather than copied.

Maintaining the entanglement of pairs A and B and A and X is the crucial ingredient
of teleportation. Neither Bob nor Alice knows the state of X at the start or the end of the
experiment. This is the case because neither of them has measured the state of the pho-
ton directly. Had they done so, the state of the photon would have been irreversibly
changed. It is only because they did not determine the state of the photon that the recre-
ation of photon X at Bob’s location was possible.
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If the preceding outcome were the only possible outcome of Alice’s entanglement
of A and X, the transmission of information from Alice to Bob would be instantaneous,
regardless of the distance between them. Therefore, it would be faster than the speed of
light. Unfortunately, it turns out that Alice’s entanglement of A and X has four possible
outcomes, which we will not discuss other than to say that each is equally probable in
the entanglement of an individual photon pair. Although there is no way to predict
which of the four outcomes will occur, Alice has detectors that will tell her after the
fact which outcome occurred.

In each of these outcomes, the entanglement of A and X is transferred to B, but in
three of the four, Bob must carry out an operation on B, such as to rotate its polarization
by a fixed angle, in order to make B identical to X. How does this affect what Bob
knows about B? Without knowing which of the four outcomes Alice detected, Bob does
not know how his photon has been transformed. Only if Alice sends him the result of
her measurement does Bob know what he must do to B to make it indistinguishable
from X. It is the need for this additional information that limits the speed of quantum
information transfer through teleportation. Although the state of Bob’s photon B is
instantaneously transformed as Alice entangles A and X, he cannot interpret his results
without additional information from her. Because Alice’s information must be sent to
Bob using conventional methods such as phone, fax, or e-mail, the overall process of
teleportation is limited by the speed of light. Although the state of entangled particles
changes instantaneously, information transmission utilizing entanglement cannot pro-
ceed faster than the speed of light.

In principle, the same technique could be used to teleport an atom, a molecule, or
even an organism. The primary requirement is that it must be possible to create entan-
gled pairs of the object to be teleported. The initial experiment was carried out with
photons because experimental methods to entangle photons are available. As discussed
earlier, entangled states are fragile and can decay to a single eigenfunction of the oper-
ator rapidly through interactions with the environment. This is especially true of sys-
tems containing a large number of atoms. However, it is possible to entangle atoms, and
it seems within reach to entangle small molecules.

Entanglement has a further interesting application. It provides the basis for the
quantum computer, which currently exists only as a concept. Such a computer would
be far more powerful than the largest supercomputers currently available. How does a
quantum computer differ from a classical computer? In a classical computer, informa-
tion is stored in bits. A bit generally takes the form of a macroscopic object like a wire
or a memory element that can be described in terms of a property such as a voltage. For
example, two different ranges of voltage are used to represent the numbers 0 and 1.
Within this binary system, an n bit memory can have 2n possible states that range
between 00000...00 and 11111...11. A three-bit memory can have the eight states 100,
010, 001, 110, 101, 011, 111, and 000. Information such as text and images can be
stored in the form of such states. Mathematical or logical operations can be represented
as transformations between such states. Logic gates operate on binary strings to carry
out mathematical operations. Software provides an instruction set to route the data
through the logic gates that are the heart of the computer hardware. This is the basis on
which classical computers operate.

The quantum analog of the bit, in which two numbers characterize the entity, is the
qubit, which has the property that it is simultaneously a linear combination of 0 and 1,
rather than being either 1 or 0. The advantage of a qubit over a bit can be illustrated with the
following example. A conventional three-bit array can only have one of eight possible states
at a given time. By contrast, qubits can be entangled with one another so that a 
3-qubit entangled array is in a superposition of all eight possible binary strings of length 3 at
a given time. More generally, an M-qubit entangled array is in a superposition of all 2M pos-
sible binary strings of length M. If this input signal can be processed using quantum gates
without destroying the entanglement, 2M simultaneous calculations ( )
could be done in parallel by an M-qubit quantum computer. One of the most interesting
applications of quantum computing is data encryption. Shor’s algorithm, which allows the
rapid factorization of very large numbers, would allow modestly sized quantum computers
to outperform the largest classical supercomputers in the area of data encryption.

~1030 for M = 100



The generation of a qubit using photons is explained using Figure 6.9. A single
photon is incident from the top left on a beam splitter, which has a probability of
0.5 for reflection and for transmission of a photon. We assign a photon with this
direction the value 0. Just as for a particle incident on a double slit, each photon
follows both pathways of reflection and transmission and reflection, rather than
being either reflected or transmitted as was discussed in Section 3.6. The two mir-
rors are used to combine the two pathways at a second beam splitter where each
incident photon again follows both transmission and reflection pathways. On the
final part of the path to the detectors, the initial reflection and transmission path-
ways are combined and interference of the two beams occurs. To understand what
the detectors register, three simple rules must be followed: (1) If a photon is
reflected at an interface for which the refractive index behind the mirror is larger
than in front of the mirror, a phase shift of (half a wavelength) occurs. (2) If a
photon is reflected at an interface for which the refractive index behind the mirror
is smaller than in front of the mirror, no phase shift occurs. (3) In passing through
the higher-index glass making up the beam splitters, a phase shift occurs that is
proportional to the path length.

We first remove the phase shifter. Along the orange pathway leading to detector 1,
phase shifts of , , and occur for a total of . Along the green pathway
also leading to detector 1, phase shifts of , , and occur for a total of .
Therefore, the two pathways are out of phase by , meaning that destructive interfer-
ence occurs, and no signal is registered at detector 1. We next carry out the same analy-
sis for detector 2. Along the orange pathway leading to detector 2, phase shifts of , ,
and occur for a total of . Along the green pathway also leading to detector 1,
phase shifts of , , and occur for a total of . There is no phase difference
between the two pathways. Therefore, constructive interference occurs, and a signal is
registered at detector 1. Had we considered the incident photon indicated by the dashed
path given the value 1, we would have found that a signal is registered at detector 1 but
not at detector 2. This device forms a NOT gate, because it makes the transformations

and .
If a phase shifter in the form of a piece of glass of variable thickness is inserted into

one leg of the interferometer, the relative phase of the two pathways can be changed to
any value from 0 to . This means that the incoming signals 0 and 1 are transformed
into a superposition of 0 and 1. In this way, a bit has been transformed into a qubit.

Three major hurdles must be overcome to construct a quantum computer: the entan-
glement of real qubits, the maintenance of entanglement over a long enough time to
allow calculations to be carried out, and the extraction of the desired result from the
superposition of all possible outcomes. The most critical task in realizing quantum com-
puters is the requirement that a quantum computer’s internal operation must be isolated
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FIGURE 6.9
A combination of beam splitters and
mirrors with a phase shifter is used to
illustrate how a qubit can be generated.
Partial reflection occurs because a semi-
transparent silver layer is evaporated onto
a glass substrate. The reflecting layer is
on the top of the left beam splitter and on
the bottom of the right beam splitter.
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commutator

commute

entangled

Heisenberg uncertainty principle

local realism

quantum computer

qubit

standard deviation

Stern–Gerlach experiment

teleportation

wave packet

Vocabulary

from the rest of the universe. Small amounts of information leakage from the computer
can destroy the fragile entangled states on which the quantum computer depends. 
Ions trapped in electromagnetic fields, arrays of trapped neutral atoms, and nuclear spins
on different atoms in a molecule have been successfully entangled and are useful models
for quantum computers. However, the ultimate goal is a solid-state device that is com-
patible with current microelectronic technology. Some progress in this direction has
been achieved by using quantum dots or trapped dopant atoms embedded in semicon-
ductors. For a recent review of the various physical systems that have been investigated
to generate qubits and to entangle them, see Ladd, T.D., Jelezko, F., Laflamme, R.,
Nakamura, Y., Monroe, C., and O’Brien, J.L. “Quantum Computers.” Nature, 464
(2010): 45.

Conceptual Problems

Q6.1 How did Stern and Gerlach conclude that the operator
“measure the z component of the magnetic moment of an Ag
atom” has only two eigenfunctions with eigenvalues that have
the same magnitude and opposite sign?

Q6.2 Have a closer look at Equation (6.6) and Figure 6.4.
How would Figure 6.4 change if k decreases for constant m?
How well is the momentum known if k 0?

Q6.3 Why is maintaining the entanglement of pairs A and B
and A and X the crucial ingredient of teleportation?

Q6.4 Why is it not possible to reconstruct the wave 
function of a quantum mechanical superposition state from
experiments?

Q6.5 Why does the relative uncertainty in x for the particle
in the box increase as 

Q6.6 Why is the statistical concept of variance a good meas-
ure of uncertainty in a quantum mechanical measurement?

Q6.7 Derive a relationship between , , .

Q6.8 How does a study of the eigenfunctions for the parti-
cle in the box lead to the conclusion that the position uncer-
tainty has its minimum value for ?

Q6.9 What is the difference between a bit and a qubit?

Q6.10 Why does it follow from the Heisenberg uncertainty
principle that it is not possible to make exact copies of quan-
tum mechanical objects?

Q6.11 Which result of the Stern–Gerlach experiment leads
to the conclusion that the operators for the z and x compo-
nents of the magnetic moment do not commute?

n = 1

4ANBN4 and 3BN3AN

n: q?

:¢
¢

Q6.12 The Heisenberg uncertainty principle says that the
momentum and position of a particle cannot be known simul-
taneously and exactly. Can that information be obtained by
measuring the momentum and quickly following up with a
measurement of the position?

Q6.13 Why isn’t the motion of a human being described
by the Schrödinger equation rather than Newton’s second
law if every atom in our body is described by quantum
mechanics?

Q6.14 Explain the following statement: if , it would
be possible to measure the position and momentum of a parti-
cle exactly and simultaneously.

Q6.15 Why is rather than used to calculate the
relative uncertainty for the particle in the box?

Q6.16 How would the results of the Stern and Gerlach 
be different if they had used a Mg beam instead of 
Ag beam?

Q6.17 How would the results of the Stern and Gerlach be
different if they had used a homogeneous magnetic field
instead of an inhomogeneous field?

Q6.18 Discuss whether the results shown in Figure 6.7 are
consistent with local realism.

Q6.19 An electron and a He atom have the same 
uncertainty in their speed. What can you say about the 
relative uncertainty in position for the two particles?

Q6.20 Describe the trends in Figure 6.5 that you expect to
see as the quantum number n increases.

8p928p29

U = 0
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Numerical Problems
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e. The following graph shows versus for 
and . Use the

width of the peak at half height as a measure of
Using the graphs, determine the dependence of

on n. One way to do this is to assume that the
width depends on n like where is a con-
stant to be determined. If this relationship holds, a plot of

versus ln n will be linear and the slope will
give the constant .a
ln(¢px>px)

a(¢px>px) = na
¢px>px

¢k>n.
|Ak|2
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P6.2 Consider the results of Figure 6.5 more quantitatively.
Describe the values of x and k by .
Evaluate from the zero of distance to the point at which
the envelope of is reduced to one-half of its peak
value. Evaluate from where k0 is
the average wavevector of the set of 21 waves (11th of 21)
and kmin corresponds to the 21st of the 21 waves. Is your esti-
mated value of in reasonable agreement
with the Heisenberg uncertainty principle?

P6.3 Evaluate the commutator by applying the
operators to an arbitrary function f(y).

P6.4 Show

a. that is an eigenfunction of 
and

b. that is another eigenfunc-
tion of .

P6.5 Another important uncertainty principle is encountered
in time-dependent systems. It relates the lifetime of a state 
with the measured spread in the photon energy associated
with the decay of this state to a stationary state of the system.
“Derive” the relation in the following steps.

a. Starting from ,
show that .

b. Using .

c. Estimate the width of a spectral line originating from the
decay of a state of lifetime 
in inverse seconds and inverse centimeters.

P6.6 Evaluate the commutator by apply-
ing the operators to an arbitrary function f(x,y).

P6.7 Evaluate , and 

P6.8 Consider the entangled wave function for two photons,

Assume that the polarization operator has the properties 
where or

. H and V designate horizontal and vertical polarization,
respectively.

a. Show that is not an eigenfunction of or .PN2PN1c12

i = 2
i = 1ici(V) = +ci(V)PNici(H) = -ci(H) and PN

PNi

c12 =
1

22
(c1(H)c2(V) + c1(V)c2(H))

BN = x - d>dx.= x + d>dxAN4 if BN3AN
3x(0>0y), y(0>0x)4

1.0 * 10-9 s and 1.0 * 10-11 s

vx = ¢x>¢t, show that ¢E ¢t = ¢px¢x Ú U>2
¢E = vx ¢px

E = p2
x>2m and ¢E = (dE>dpx)¢px

¢E ¢t Ú U>2
¢E

¢t

AN
= x - 0>0x)BNc(x) (whereBN

02>0x2;AN = x2 -
c(x) = e-x2>2

3d>dy, 1>y24
¢p ¢x = U¢k ¢x

¢k = ƒ 1>2(k0 - kmin) ƒ¢k
c*(x)c(x)

¢x
x ;¢x and k0 ; ¢k

Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P6.1 In this problem, we consider the calculations for
for the particle in the box shown in Figure 6.5 in

more detail. In particular, we want to determine how the
absolute uncertainty and the relative uncertainty 
of a single peak corresponding to either the most probable
positive or negative momentum depends on the quantum
number n.

a. First we must relate k and px. From and
, show that .

b. Use the result from part (a) together with the relation link-
ing the length of the box and the allowed wavelengths to
obtain .

c. Relate and with k and .

d. The following graph shows versus k-kpeak. By plotting
the results of Figure 6.5 in this way, all peaks appear at the
same value of the abscissa. Successive curves have been
shifted upward to avoid overlap. Use the width of the 
peak at half height as a measure of . What can you con-
clude from this graph about the dependence of on n?¢px

¢k
ƒAk ƒ 2

ƒAk ƒ 2
¢k¢px>px¢px

px = Uk

px = nh>2aE = n2h2>8ma2
E = p2

x>2m

¢px>px¢px

sp and sx



b. Show that each of the two terms in is an eigenfunction
of the polarization operator .

c. What is the average value of the polarization that you
will measure on identically prepared systems?

P6.9 Evaluate the commutator , by applying
the operators to an arbitrary function f(x).

P6.10 Revisit the double-slit experiment of Example
Problem 6.2. Using the same geometry and relative uncer-
tainty in the momentum, what electron momentum would
give a position uncertainty of What is the
ratio of the wavelength and the slit spacing for this momen-
tum? Would you expect a pronounced diffraction effect for
this wavelength?

P6.11 Evaluate the commutator by applying
the operators to an arbitrary function f(y).

P6.12 Revisit the TV picture tube of Example Problem 6.3.
Keeping all other parameters the same, what electron energy
would result in a position uncertainty of along
the direction of motion?

P6.13 Evaluate the commutator by applying
the operators to an arbitrary function f(y).

P6.14 If the wave function describing a system is not an
eigenfunction of the operator , measurements on identically
prepared systems will give different results. The variance of
this set of results is defined in error analysis as 

, where B is the value of the observable in a
single measurement and is the average of all measure-
ments. Using the definition of the average value from the
quantum mechanical postulates, ,
show that .

P6.15 Apply the Heisenberg uncertainty principle to
estimate the zero point energy for the particle in the box.

a. First, justify the assumption that and that, as a
result, . Justify the statement that, if ,
we cannot know that is identically zero.

b. Make this application more quantitative. Assume that
and where p is the momentum

in the lowest energy state. Calculate the total energy of
this state based on these assumptions and compare your
result with the ground-state energy for the particle in
the box.

c. Compare your estimates for and with the more
rigorously derived uncertainties of 
Equation (6.13).

P6.16 Evaluate the commutator by applying the
operators to an arbitrary function f(x).

P6.17 Evaluate the commutator , by applying the
operators to an arbitrary function f(x). What value does the
commutator , have?

P6.18 In this problem, you will carry out the calculations
that describe the Stern–Gerlach experiment shown in 
Figure 6.2. Classically, a magnetic dipole � has the potential

4xNxpN3
x4pN3xN

3d>dx, x24
sp and sx

¢x¢p

¢p = 0.35p¢x = 0.35a

E = p2>2m
¢p Ú 0¢p Ú U>2a

¢ x … a

s2
B = 8B29 - 8B92

8A9 = 1c*(x)ANc(x)dx

8B9
81B - 8B9229

s2
B =

BN

y43(d2>dy2)

1.00 * 10-8 m

3y2, d2>dy24

2.50 * 10-10 m?

2
x4pN2

xpNx +3pN
P1

PN1

c12 energy . If the field has a gradient in the 
z direction, the magnetic moment will experience a force,
leading it to be deflected in the z direction. Because classically
� can take on any value in the range , a
continuous range of positive and negative z deflections of a
beam along the y direction will be observed. From a quan-
tum mechanical perspective, the forces are the same as in
the classical picture, but can only take on a discrete set 
of values. Therefore, the incident beam will be split into 
a discrete set of beams that have different deflections in the
z direction.

a. The geometry of the experiment is shown here. In the
region of the magnet indicated by d1, the Ag atom experi-
ences a constant force. It continues its motion in the force-
free region indicated by d2.

mz

- ƒ� ƒ … mz … ƒ� ƒ

E = -� # B
NUMERICAL PROBLEMS 111

d1 d2

z

y

S

N

If the force inside the magnet is Fz, show that
. The flight times t1 and

t2 correspond to the regions d1 and d2.

b. Show that assuming a small deflection,

c. The magnetic moment of the electron is given by
. In this equation, is the Bohr magneton

and has the value J T. The gyromagnetic
ratio of the electron gs has the value 2.00231. If

, and d1 and d2 are 0.175 and 0.225
m, respectively, and , what values of z will
be observed?

P6.19 Evaluate the commutator 
by applying the operators to an arbitrary func-

tion f(y).

P6.20 Evaluate the commutator , by applying the
operators to an arbitrary function f(x).

P6.21 What is wrong with the following argument? We
know that the functions are
eigenfunctions of the total energy operator for the particle
in the infinitely deep box. We also know that in the box,

. Therefore, the operator for
Etotal is proportional to the operator for . Because the
operators for and commute as you can easily 
demonstrate the functions cn(x) = 22>a sin(npx>a)

pxp2
x

p2
x

E = p2
x>2m + V(x) = p2

x>2m

cn(x) = 22>a sin(npx>a)

2
x4pNxN3

(d2>dy2) + y4
3(d2>dy2) - y,

vy = 475 m s-1
0 Bz>0z = 750. T m-1

>9.274 * 10-24
mBƒ� ƒ = gSmB>2

ƒ z ƒ = Fz ad1d2 + 1
2 d2

1

mAgv2
y
b

ƒ z ƒ = 1>2(Fz>mAg)t2
1 + t2 vz(t1)



are eigenfunctions of both the total energy and momentum
operators.

P6.22 For linear operators , , and , show that , 
, , .4CNAN3BN+CN4BNAN=  3 CN 4BN3ANCNBNAN

P6.23 The muzzle velocity of a rifle bullet is along
the direction of motion. If the bullet weighs 35 g, and the uncer-
tainty in its momentum is 0.20%, how accurately can the posi-
tion of the bullet be measured along the direction of motion?

890. m s-1
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Web-Based Simulations, Animations, and Problems
W6.1 The simulation of particle diffraction from a 
single slit is used to illustrate the dependence between 
the uncertainty in the position and momentum. The slit 
width and particle velocity are varied using sliders.

W6.2 The Heisenberg uncertainty principle states that
. In an experiment, it is more likely that is 

varied rather than p, where is the de Broglie wavelength 
of the particle. The relationship between and 
will be determined using a simulation. will be 
measured as a function of at a constant value of , 
and as a function of for a constant value of ¢l.l

l¢l
¢x

¢l¢x
l

l¢p¢x 7 U>2

W6.3 The uncertainty in momentum will be determined for
the total energy eigenfunctions for the particle in the infinite
depth box for several values of the quantum number n. The
function describing the distribution in k,

will be determined. The values of k for which this function
has maxima will be compared with that expected for a classi-
cal particle of momentum . The width in k of the
function gn(k) on n will be investigated.

p = 12mE

gn(k) =
1

12p 3
q

-q

fn(x)e-ikx dx =
1

12p3
a

0

sin
npx

a
e-ikx dx



7.1 The Classical Harmonic
Oscillator

7.2 Angular Motion and the
Classical Rigid Rotor

7.3 The Quantum Mechanical
Harmonic Oscillator

7.4 Quantum Mechanical
Rotation in Two Dimensions

7.5 Quantum Mechanical
Rotation in Three Dimensions

7.6 The Quantization of 
Angular Momentum

7.7 The Spherical Harmonic
Functions

7.8 Spatial Quantization

A Quantum
Mechanical Model for

the Vibration and
Rotation of Molecules

Amolecule has translational, vibrational, and rotational types of motion.

Each of these can be separately described by its own energy spectrum and

energy eigenfunctions. As shown in Chapter 4, the particle in the box is a

useful model for exploring the translational degree of freedom. In this chap-

ter, quantum mechanics is used to study the vibration and rotation of a

diatomic molecule. We first consider the vibrational degree of freedom,

modeled by the harmonic oscillator. Like the particle in the box, the quan-

tum mechanical harmonic oscillator has a discrete energy spectrum. We then

formulate and solve a quantum mechanical model for rotational motion.

This model provides a basis for understanding the orbital motion of elec-

trons around the nucleus of an atom as well as the rotation of a molecule

about its principal axes.

7.1 The Classical Harmonic Oscillator
The harmonic oscillator is reviewed from the perspective of classical mechanics in this
section. Consider two masses m1 and m2 that are connected by a coiled spring. When at
rest, the spring is at its equilibrium length. If the masses are pushed together, the spring
is compressed, and if the masses are pulled apart, the spring is extended. In each case,
the spring resists any attempt to move the masses away from their equilibrium posi-
tions. If the deviation of the spacing between the masses from its rest position is
denoted by , then

(7.1)

Positive and negative values of correspond to stretching and compression of the spring,
respectively, as shown in Figure 7.1. Experimentally, it is found that to double , thex

x

x = 3xm1
(t) + xm2

(t)4 - 3xm1
+ xm2

4equilibrium

x
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m1 m2

x1 x2

FIGURE 7.1
Two unequal masses are shown connected
by a spring of force constant k. The inter-
section of the vertical line with the spring
indicates the center of mass.

force exerted on the system must be doubled. This means that a linear relationship
exists between the force and given by

(7.2)
In this equation, k is called the force constant. The negative sign shows that the force
and the displacement are in opposite directions.

Before developing a mathematical model of the harmonic oscillator, it is useful
to make a mental image of what happens when the spring is either stretched or com-
pressed and then let go. In either case, the force that the spring exerts on each of the
masses will be in the direction opposite that of the applied force. As soon as the spacing
of the masses reaches its equilibrium distance, the direction of the spring’s force
changes. This causes the direction of motion to reverse; an initial stretch becomes a
compression and vice versa. In the absence of dissipative forces, the masses continue
through alternate half cycles of being farther apart and closer together than their equi-
librium distance. This system exhibits oscillatory behavior.

Although the masses move in opposite directions, the magnitudes of their displace-
ments are not equal if their masses are unequal. This makes it hard to develop a simple
picture of the time evolution of this system. However, somewhere between the masses
is a point that does not move. This is called the center of mass, and a transformation to
center of mass coordinates gives us a simpler description of the oscillatory motion of
the harmonic oscillator.

Before going on, it is useful to summarize what information is needed to describe
the harmonic oscillator and what information can be derived using classical mechanics.
The oscillator is described by the two masses m1 and m2 and the force constant k, which
allows the force F acting on each of the masses to be calculated. To solve Newton’s
second law of motion, two independent pieces of information are needed that describe
the state of the system at a given initial time. The value of and the kinetic energy of
the oscillator at a given time will do. From this information, the positions , the
velocities , and the kinetic and potential energies of each mass can be deter-
mined as a function of time. This is more information than necessary because we are
more interested in the potential and kinetic energies associated with the entire oscillator
as a unit than with the values for each of the masses separately. This is the main reason
for working with the center of mass coordinates.

In the center of mass coordinates, the physical picture of the system changes from
two masses connected by a spring of force constant k to a single mass, called the reduced
mass , connected by a spring of the same force constant to an immovable wall. Why is
this transformation used? We do this because only the relative motion of these two masses
with respect to one another and not their individual motions is of interest. This change of
coordinates also reduces the description of the periodic motion to a single coordinate.

The location of the center of mass and the reduced mass are given by the
equations

(7.3)

and

(7.4)

We now use Newton’s second law of motion to investigate the dynamics of the har-
monic oscillator. Because the motion is in one dimension, the scalar magnitude of the
force and acceleration can be used in what follows. Recall that the variable x denotes
the deviation of the spring extension from its equilibrium position. Starting with

(7.5)

where a is the acceleration, and using Equation (7.2) for the force, the differential 
equation

(7.6)m
d2x

dt2 + kx = 0

F = ma = m
d2x

dt2

m =
m1 m2

m1 + m2

xcm =
m1x1 + m2x2

m1 + m2

mxcm

m

v1 and v2

x1 and x2

x

F = -kx

x
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describes the time dependence of the distance between the masses relative to its
equilibrium value.

The general solution to this differential equation is

(7.7)

in which c1 and c2 are arbitrary coefficients. At this point the Euler formula,
, is used to write Equation (7.7) in the form

(7.8)

The last equation can be further simplified to

(7.9)

with . This is the general solution of the differential
equation with no restrictions on . Because the amplitude of oscillation is real,
a boundary condition that requires that be real is imposed. The general solu-
tion contains two constants of integration that can be determined for a specific solution
through the boundary conditions, . For instance, if

, then

(7.10)

The specific solution takes the form

(7.11)

Note that only the second term in Equation (7.9) remains. This is because we arbitrarily
choose . Other boundary conditions could lead to solutions in
which both b1 and b2 are nonzero.

Because the sine and cosine functions are periodic functions of the variable t, x
exhibits oscillatory motion. The period of oscillation T is defined by the relation

(7.12)

giving

(7.13)

The inverse of T is called the frequency :

(7.14)

These definitions of and T allow x to be written in the form

(7.15)

Often, the angular frequency, , is introduced, giving

(7.16)

where the phase shift is explored in Example Problem 7.1. The oscillatory periodic
motion of the harmonic oscillator is depicted in Figure 7.2.
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x(t) = b1 cos vt + b2 sin vt, or equivalently, x(t) = A sin (vt + a)
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With a mathematical description of the motion, our mental picture of the oscilla-
tory behavior can be tested. Because the potential energy Epotential and the kinetic
energy Ekinetic of the oscillator are related to the magnitudes of and by the
equations

(7.17)

Epotential and Ekinetic can be expressed in terms of x, as is done in Example Problem 7.1.
Visualize the harmonic oscillator in terms of the potential and kinetic energies.

Energy can be pumped into a harmonic oscillator at rest by stretching or compress-
ing the spring. The maximum displacement from the equilibrium position depends
on the force constant and the amount of energy taken up. The kinetic and potential
energies also oscillate with time. As the amount of energy increases, its maximum
amplitude of vibration and its maximum velocity increase. The harmonic oscillator
can have any positive value for the total energy. Because there are no constraints
on what value of the energy is allowed, the classical harmonic oscillator has a
continuous energy spectrum.

EXAMPLE PROBLEM 7.1

For a harmonic oscillator described by , answer
the following questions.

a. What are the units of A? What role does have in this equation?

b. Graph the kinetic and potential energies given by the following equations as a
function of time:

c. Show that the sum of the kinetic and potential energies is independent of time.

Solution

a. Because x(t) has the units of length and the sine function is dimensionless, 
A must have the units of length. The quantity sets the value of x at ,
because .

b. We begin by expressing the kinetic and potential energies in terms of x(t):

In the following figure, the energy is expressed in increments of and we
have arbitrarily chosen . Note that the kinetic and potential energies are out
of phase. Why is this the case?
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c. The dashed line in the preceding figure is the sum of the kinetic and 
potential energies, which is a constant. This can be verified algebraically by
adding the expressions for Ekinetic and Epotential:

Note that the sum of the kinetic and potential energies is independent of time, as must
be the case, because no energy is added to the system after the initial stretching of the
spring and there is no mechanism such as frictional forces for losing energy.

7.2 Angular Motion and the Classical
Rigid Rotor

The harmonic oscillator is a good example of linear motion. In this system, the vectors
for the velocity, momentum, and acceleration are all parallel to the direction of motion.
However, not all motion is linear, making it necessary to analyze the motion induced if
the applied force is not along the initial direction of motion. Why is rotational motion
of interest to chemists? Energy can be taken up by a molecule in any of several ways.
The first of these is translational kinetic energy, which is associated with the collective
motion of all atoms in the molecule or with the center of mass. A second way to store
energy, in the form of vibrational energy, was just discussed. It was shown that vibra-
tional energy is both kinetic and potential and can be taken up by stretching bonds
within a molecule. Now set the molecule spinning in addition to having it vibrate and
undergo translational motion. Additional energy is taken up in this collective rotational
motion. The rigid rotor is a simple example of angular motion. It is a good model for
thinking about rotation of a diatomic molecule. The term rigid stems from the assump-
tion that the rotational motion does not result in a stretching of the bond.

Consider the rigid rotor shown in Figure 7.3. The axis of rotation is perpendicular
to the plane of rotation and passes through the center of mass. The distance of the
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FIGURE 7.3
(a) The rigid rotor consists of two
masses separated by a fixed distance.
The dashed vertical line is the axis of
rotation. It is perpendicular to the plane
of rotation and passes through the cen-
ter of mass. (b) The rigid rotor in the
center of mass coordinates is a single
particle of reduced mass rotating on a
ring of radius equal to the bond length.
The position and velocity of the reduced
mass are shown at two times.m

m
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individual masses from the center of mass are indicated. As for the harmonic oscillator,
it is convenient to view the motion of the rigid rotor in the center of mass coordinates
because only the relative motion of the two masses is of interest. In these coordinates,
the dumbbell is equivalent to a single mass moving on a ring
at a distance from a fixed axis equal to the bond length.

In the rotating system under consideration, no force opposes the rotation. For this
reason, potential energy cannot be stored in the motion of the rigid rotor. All energy put
into the rigid rotor is kinetic energy and, in the absence of dissipative losses, will be
retained indefinitely.

We next discuss the observables that characterize this system. Force, momentum,
velocity, and acceleration are all vectors that have two components that could be chosen
to lie along the x and y axes of a fixed coordinate system. However, it is more convenient
to take the two components along the tangential and radial directions. For a circular orbit,
the velocity vector is always in the tangential direction. (See the Math Supplement,
Appendix A for a more detailed discussion of working with vectors.) If no acceleration
occurs along this direction, the magnitude of the velocity is constant in time. Figure 7.4
shows that is not zero because the particle experiences an acceleration on
this orbit. Because the acceleration is given by the acceler-(t2 - t1)a = lim

¢t:0
(v2 - v1)>

¢v = v2 - v1

m = (m1m2)>(m1 + m2)

v1

v2

v

�

�

�

FIGURE 7.4
Vector diagram of , , and from
Figure 7.3.

¢vv2v1

Rotation

Right hand

FIGURE 7.5
The right-hand rule is used to determine
the direction of the angular velocity vector.

ation is not zero for circular motion. Because and have the same magnitude, only
the radial component of the acceleration is nonzero. This component is called the
centripetal acceleration acentripetal and has the magnitude

(7.18)

In circular motion, the total accumulated rotation angle is analogous to the distance
variable in linear motion. The angle is typically measured in radians. A radian is the
angle for which the arc length is equal to the radius; radians are related to degrees by

or . Angular velocity and angular acceleration,
which are analogous to and in linear motion, are defined by

(7.19)

The directions of both are determined by the right-hand rule and point along
the axis of rotation. The application of the right-hand rule in determining the direc-
tion of is illustrated in Figure 7.5. The angular acceleration is nonzero if the parti-
cle is not moving at constant speed on its circular orbit. Keep in mind that is a
vector perpendicular to the plane of rotation. Because the velocity is also defined by
the expression

(7.20)

the magnitudes of the angular and linear velocities can be related. In the case under
consideration, the acceleration along the direction of motion is zero, and the expression
for d dt in Equation (7.19) can be integrated to obtain

(7.21)

For a constant acceleration along the direction of motion,

(7.22)

The kinetic energy can be expressed in the form

(7.23)

The quantity is called the moment of inertia and given the symbol I. With this
definition, the kinetic energy takes on a form similar to that in linear motion with
the moment of inertia and the angular velocity taking on the role of the mass and
linear velocity.
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We next develop a relationship similar to for angular motion.
The angular momentum, l, is defined by

(7.24)

in which indicates the vector cross product between r and p. The use of the right-
hand rule to determine the orientation of l relative to r and p is shown in Figure 7.6.

The magnitude of l is given by

(7.25)

in which is the angle between the vectors r and p. For circular motion, r and p are
perpendicular so that . The equation and the definition of angular
momentum can be used to express the kinetic energy in terms of l:

(7.26)

Classical mechanics does not place any restrictions on the direction or magnitude of l.
As for any observable in a classical system, the magnitude of l can change by an incre-
mentally small amount. Therefore, any amount of energy can be stored in the rigid rotor,
and an increase in the energy appears as an increase in the angular frequency. Because
the amount of energy can be increased by an infinitesimally small amount, the classical
rigid rotor has a continuous energy spectrum, just like the classical harmonic oscillator.

7.3 The Quantum Mechanical Harmonic
Oscillator

In this and the next two sections, we develop quantum mechanical models for the har-
monic oscillator and rigid rotor. The free particle and the particle in the box discussed
in Chapters 4 and 5 were useful for understanding how translational motion in various
potentials is described in the context of wave-particle duality. In applying quantum
mechanics to molecules, two other types of motion that molecules can undergo require
discussion: vibration and rotation. The energy needed to stretch the chemical bond
can be described by a simple potential function such as that shown in Figure 7.7. The
existence of a stable chemical bond implies that a minimum energy exists at the equi-
librium bond length. The position of atoms in a molecule is dynamic rather than static.
Think of the chemical bond as a spring rather than a rigid bar connecting the two
atoms. Thermal energy increases the vibrational amplitude of the atoms about their
equilibrium positions but does not change the vibrational frequency to a good approxima-
tion. The potential becomes steeply repulsive at short distances as the electron clouds of
the atoms interpenetrate. It levels out at large distances because the overlap of electrons
between the atoms required for chemical bond formation falls to zero.

The exact form of V(x) as a function of x depends on the molecule under considera-
tion. However, as will be shown in Chapter 8, only the lowest one or two vibrational
energy levels are occupied for most molecules for . Therefore, it is a good
approximation to say that the functional form of the potential energy near the equilib-
rium bond length can be approximated by the harmonic potential

(7.27)

In Equation (7.27), k is the force constant. For weakly bound molecules or high tem-
peratures, the more realistic Morse potential (red curve in Figure 7.7) discussed in
Section 8.3 should be used.

We expect the wave-particle of mass vibrating around its equilibrium distance to
be described by a set of wave functions . To find these wave functions and the
corresponding allowed vibrational energies, the Schrödinger equation with the appro-
priate potential energy function must be solved:

(7.28)-
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The solution of this second-order differential equation was well known in the mathe-
matical literature from other contexts well before the development of quantum mechan-
ics. We simply state that the normalized wave functions are

(7.29)

EXAMPLE PROBLEM 7.2

Show that the function satisfies the Schrödinger equation for the quantum har-
monic oscillator. What conditions does this place on ? What is E?

Solution

The function is an eigenfunction of the total energy operator only if the last two 
terms cancel:

Finally, 

In the preceding equation, several constants have been combined to give 

, and the normalization constant An is given by

(7.30)

The solution is written in this manner because the set of functions is well
known in mathematics as Hermite polynomials. The first few eigenfunctions 
are given by

(7.31)

are even functions of x, [ ], whereas are
odd functions of x [ ].

A necessary boundary condition is that the amplitude of the wave functions remains
finite at large values of x. As for the particle in the box, this boundary condition gives
rise to quantization. In this case, the quantization condition is not easy to derive.
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However, it can be shown that the amplitude of the wave functions approaches zero for
large x values only if the following condition is met:

(7.32)

Once again, we see that the imposition of boundary conditions has led to a discrete
energy spectrum. Unlike the classical analogue, the energy stored in the quantum
mechanical harmonic oscillator can only take on discrete values. As for the particle in
the box, the lowest state accessible to the system still has an energy greater than zero,
referred to as a zero point energy. The frequency of oscillation is given by

(7.33)

just as for the classical harmonic oscillator.

EXAMPLE PROBLEM 7.3

a. Is an eigenfunction of the kinetic energy opera-
tor? Is it an eigenfunction of the potential energy operator?

b. What are the average values of the kinetic and potential energies for a quantum
mechanical oscillator in this state?

Solution

a. As discussed in Chapter 6, neither the potential energy operator nor the kinetic
energy operator commutes with the total energy operator. Therefore, because

is an eigenfunction of the total energy operator,
it is not an eigenfunction of the potential or kinetic energy operators.

b. The fourth postulate states how the average value of an observable can be calcu-
lated. Because

then

The limits can be changed as indicated in the last integral because the integrand is an
even function of x. To obtain the solution, the following standard integral found in the
Math Supplement is used:

The calculated values for the average potential and kinetic energy are
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Note that just as for the classical harmonic oscillator discussed in Section 7.1, the aver-
age values of the kinetic and potential energies are equal. When the kinetic energy has
its maximum value, the potential energy is zero and vice versa. In general, we find that
for the nth state,

As was done for the particle in the box, it is useful to plot and against x.
They are shown superimposed on the potential energy function in Figures 7.8 and 7.9.

It is instructive to compare the quantum mechanical with the classical results. In quan-
tum mechanics the value of x cannot be known if the system is in an eigenstate of the total
energy operator, because these two operators do not commute. This issue arose earlier in
considering the particle in the box. What can one say about x, the amplitude of the vibration?
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The square of the first few eigenfunctions of the quantum mechani-
cal harmonic oscillator (the probability density) is superimposed on
the energy spectrum and shown together with the potential function.
The yellow area indicates the classically forbidden region.
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Only the probability of the vibrational amplitude having a particular value of x
within an interval dx can be calculated, and this probability is given by .
For the classical harmonic oscillator, the probability of the vibrational amplitude
having a particular value of x within the interval dx can also be calculated. Because
the probability density varies inversely with the velocity, the maximum values are
found at the turning points and its minimum value is found at . To visualize
this behavior, imagine a frictionless ball rolling on a parabolic track under the influ-
ence of gravity. The ball moves fastest at the lowest point on the track and stops
momentarily as it reverses its direction at the highest points on either side of the
track. Figure 7.10 shows a comparison of and the probability density of find-
ing a particular amplitude for a classical oscillator with the same total energy as a
function of x. A large quantum number has been used for comparison because in the
limit of high energies (very large quantum numbers), classical and quantum
mechanics give the same result as required by the correspondence principle.

The main difference between the classical and quantum mechanical results are the
behavior in the classically forbidden region and the oscillations in , which are
absent in the classical result. In calculating the probability of finding the value x for the
oscillation amplitude in the interval , it is necessary to evaluate

rather than the probability density . For large quantum numbers, is large in¢xc2(x)

3
¢x>2

-¢x>2
c2(x)dx

¢x

c2
12(x)

c2
12(x)

x = 0

c2(x)dx

FIGURE 7.10
The calculated probability density for the
vibrational amplitude is shown for the 
12th eigenstate of the quantum mechanical
oscillator (red curve). The classical result is
shown by the purple curve. The yellow area
indicates the classically forbidden region.

comparison to the distance between neighboring oscillations in . Therefore, thec2(x)

, is constructed. The spatial amplitude shown in Figure 7.8 is modulated bye-iv tcn(x)

the factor , which has a frequency given by . Because 
is a standing wave, the nodal positions shown in Figures 7.8 and 7.9 do not move 
with time.

In looking at Figures 7.8 and 7.9, several similarities are seen with Figures 4.2
and 4.3, in which the equivalent results were shown for the particle in the box. The
eigenfunctions are again standing waves, but they are now in a box with a more com-
plicated shape. Successive eigenfunctions add one more oscillation within the “box,”
and the amplitude of the wave function is small at the edge of the “box.” The reason
why it is small rather than zero follows the same lines as the discussion of the particle
in the finite depth box in Chapter 5. The quantum mechanical harmonic oscillator also
has a zero point energy, meaning that the lowest possible energy state still has vibra-
tional energy. The origin of this zero point energy is similar to that for the particle in
the box. By attaching a spring to the particle, its motion has been constrained. As the
spring is made stiffer (larger k), the particle is more constrained and the zero point
energy increases. This is the same trend observed for the particle in the box as the
length is decreased.

Note, however, that important differences exist in the two systems that are a result
of the more complicated shape of the harmonic oscillator “box.” Although the har-
monic oscillator wave functions show oscillatory behavior, they are no longer repre-
sented by simple sine functions because the classical probability density is not
independent of x. The energy spacing is the same between adjacent energy levels; that
is, it does not increase with the quantum number as was the case for the particle in the
box. These differences show the sensitivity of the eigenfunctions and eigenvalues to the
functional form of the potential.

cn(x, t)v = 2k>me-ivt

oscillations in the probability density are averaged out in performing the inte-
gration, so that the quantum and classical results agree well. The argument is the same
as that used in calculating the results for the particle in the box shown in Figure 4.4.

We have been working with the time-independent Schrödinger equation, whose
eigenfunctions allow the probability density to be calculated. To describe the time
dependence of the oscillation amplitude, the total wave function, °n(x, t) =

c2(x)
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7.4 Quantum Mechanical Rotation in 
Two Dimensions

Quantum mechanical models were developed for translation in Chapter 4 and for vibration
in Section 7.3. We now consider rotation to complete the description of the fundamental
types of motion available to a molecule. To a good approximation, the three types of
motion—translation, vibration, and rotation—can be dealt with independently. This treat-
ment is exact rather than approximate (1) if the translational part of the total energy opera-
tor depends only on the translational coordinates of the center of mass, (2) if the rotational
part depends only on the angular coordinates of the center of mass, and (3) if the vibra-
tional part depends only on the internal coordinates of the molecule. This condition cannot
be exactly satisfied, because the types of motion are not totally decoupled. For example,
the average bond length of a rapidly rotating molecule is slightly longer than for a mole-
cule that is not rotating because of the centrifugal forces acting on the atoms. However,
although the coupling between the types of motion can be measured using sensitive spec-
troscopic techniques, it is small for most molecules.

Neglecting this coupling, the total energy operator can be written as a sum of indi-
vidual operators for the types of motion for the molecule:

(7.34)

In this equation, rcm, refer to the spatial coordinates of the center of 
mass in spherical coordinates (see the Math Supplement, Appendix A). The symbol 

internal refers collectively to the vibrational amplitudes of all atoms in the molecule
around their equilibrium position. Because different variables appear in trans (rcm),HN
t

ucm, and fcm

rot(ucm, fcm)HNvib(tinternal) +HNtrans(rcm) +HNtotal =HN

it is possible to solve the Schrödinger equation for
each type of motion separately. In this approximation, the total energy is given by
the sum of the individual contributions, 

(7.35)

and the system wave function is a product of the eigenfunctions for the three types
of motion:

(7.35a)

Because the wave function is a product of individual terms that depend on different variables,
what has been accomplished in Equations (7.35) and (7.35a) is a separation of variables.

Whereas for a diatomic molecule translation can be considered in one to three inde-
pendent dimensions and vibration in one dimension, rotation requires at least a two-
dimensional description. We restrict our considerations to diatomic molecules because the
motion is easy to visualize. However, the process outlined next can be generalized to any
molecule if several angular coordinates are included. Rotation in a two-dimensional space is
discussed first because the mathematical formalism needed to describe such a problem is
less complicated. The formalism is extended in Section 7.5 to rotation in three dimensions.

Rotation in two dimensions occurs only in a constrained geometry. An example is a
molecule adsorbed on a smooth surface. Consider a diatomic molecule with masses m1
and m2 and a fixed bond length r0 freely rotating in the plane. Because the bond
length is assumed to remain constant as the molecule rotates, this model is often
referred to as the rigid rotor. By transforming to the center of mass coordinate system,
this problem becomes equivalent to a single reduced mass 
rotating in the plane on a ring of radius r0, just as for the classical rotor.

EXAMPLE PROBLEM 7.4

The bond length for H19F is . Where does the axis of rotation inter-
sect the molecular axis?

Solution

The position of the center of mass is given by 
We choose the origin of our coordinate system to be at the F atom, so andxF = 0

xcm = (mHxH + mFxF)>(mH + mF).

91.68 * 10-12 m

xy
m = (m1 m2)>(m1 + m2)

xy

 ctotal = ctrans(rcm)cvib(tinternal)crot(ucm, fcm)

 Etotal = Etrans(rcm) + Evib(tinternal) +  Erot(ucm, fcm)

rot(ucm,fcm),HNvib(tinternal), and HN
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. Substituting and 
we find that . Therefore and

. We see that the axis of rotation is very close to the F atom.
This effect is even more pronounced for HI or HCl.

Because it has been assumed that the particle experiences no hindrance to rotation,
the potential energy is constant everywhere. Therefore, we can conveniently set

everywhere without affecting the eigenfunctions of the total energy opera-
tor. The Schrödinger equation in Cartesian coordinates for this problem is

(7.36)

The subscript after the bracket makes it clear that the radius is constant. Although
Equation (7.36) is correct, it is always best to choose a coordinate system that reflects
the symmetry of the system being considered. In this case, two-dimensional polar coor-
dinates with the variables r and are the logical choice. In these coordinates, with 
r fixed at r0, the operator . Therefore, the
Schrödinger equation takes the simple form

(7.37)

where the eigenfunction depends only on the angle . We have changed the
symbol for the wave function to emphasize the change in the variables. This equa-
tion has the same form as the Schrödinger equation for a free particle, which was
solved in Chapter 4. You should verify that the two linearly independent solutions to
this equation are

(7.38)

The two solutions correspond to counterclockwise and clockwise rotation.

EXAMPLE PROBLEM 7.5

Determine the normalization constant in Equation (7.38).

Solution

The variable can take on values between 0 and . The following result is obtained:

To obtain solutions of the Schrödinger equation that describe this physical problem,
it is necessary to introduce the boundary condition . This condi-
tion states that there is no way to distinguish the particle that has rotated n times around
the circle from one that has rotated times around the circle. Without this condi-
tion, the probability density would have multiple values for and , as shown
in Figure 7.11, which is unacceptable. Applying the single-value condition to the 

f + 2npf

n + 1
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f
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2m
a 0
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= Ec(x, y)
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xH = 87.06 * 10-12 m
xF = 4.62 * 10-12 mxcm = 4.62 * 10-12 m

mH = 1.008 amu,mF = 18.9984 amuxH = 91.68 * 10-12 m

ml � �integer

	 �integerml

FIGURE 7.11
If the condition integer is not met,
the wave function does not have the same
value for as for . The real part
of the wave function is plotted as a func-
tion of in each case.f

ff + 2p

ml =
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eigenfunction, . Using Euler’s relation, this expression
is equivalent to

(7.39)

To satisfy this condition, . The boundary condition
generates the quantization rules for the quantum number ml. The motivation for using
the subscript l on the quantum number m will become clear when rotation in three
dimensions is considered.

What do these eigenfunctions look like? Because they are complex functions of the
angle , only the real part of the function is shown in Figure 7.12. The imaginary part
is identical in shape but is shifted in phase by the angle . Note that, as for the parti-
cle in the box and the harmonic oscillator, the lowest energy state has no nodes, and the
number of nodes, which is twice the quantum number, increases with ml.

Putting the eigenfunctions back into Equation (7.37) allows the corresponding
eigenvalues to be calculated. The energy-level spectrum is discrete and is given by

(7.40)

In Equation (7.40), is the moment of inertia. Note that states with and
have the same energy, although the wave functions corresponding to these states

are orthogonal to one another. We say that the energy levels with are twofold
degenerate.

The origin of the energy quantization is again a boundary condition. In this case,
imagine the ring as a box of length defined by the variable . The boundary condi-
tion given in Equation (7.39) states that an integral number of wavelengths must fit into
this “box.” For a classical rigid rotor,

(7.41)

where, throughout this chapter, the symbol is used for the angular momentum vec-
tor, for its magnitude, and for the angular momentum operator. Equation (7.41)
also holds for the quantum mechanical rigid rotor, with the association .
Therefore, the quantization of energy means that only a discrete set of rotational fre-
quencies is allowed.

One aspect of the eigenvalues for free rotation in two dimensions is different from
what was encountered with the particle in the box or the harmonic oscillator: no zero
point energy is associated with free rotational motion; . Why is
this the case? A zero point energy appears only if the potential confines the motion to a
limited region. In free rotation, there is no confinement and no zero point energy.
Of course, a gas phase diatomic molecule also moves and vibrates. Therefore, the rotat-
ing molecule has a zero point energy associated with these degrees of freedom.

The angular momentum can also be calculated for the two-dimensional rigid
rotor. For rotation in the plane, the angular momentum vector lies on the z axis.
The angular momentum operator in these coordinates takes the simple form 

. Applying this operator to an eigenfunction,

(7.42)

A similar equation can be written for . This result shows that the angular momen-
tum is quantized. We see that are eigenfunctions of both the total
energy and the angular momentum operators for the two-dimensional rigid rotor. As we
will see, this is not the case for rotation in three dimensions. Because the angular momen-
tum has the values , Equation (7.40) can be written in the form

just as in classical mechanics.

Eml
=

U2m2
l

2I
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ƒ l ƒ 2

2I

+Uml and -Uml
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0
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 cos 2pml + i sin 2pml = 1
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ml � 1 ml � 2

ml � 3

ml � 5 ml � 6

ml � 4

FIGURE 7.12
The real part of the second through
seventh eigenfunctions for the rigid rotor
with rotation confined to a plane is plotted
as a function of . In the center of mass
coordinates, this problem is equivalent to
the particle on a ring. What does the first
eigenfunction look like?

f
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What can be said about the value of the rotation angle with respect to a fixed direc-
tion in the plane? We know that the probability of finding a particular angle in the
interval d is

(7.43)

The probability of finding the particle in a given interval d is the same for all values
of . Just as for the position of a free particle whose linear momentum is precisely
defined, nothing is known about the angular position of the molecule whose angular
momentum is precisely defined. The origin of this result is that the operators 
do not commute, just as do not commute.

7.5 Quantum Mechanical Rotation in
Three Dimensions

In the case just considered, the motion has been constrained to two dimensions. Now
imagine the more familiar case of a diatomic molecule freely rotating in three-dimensional
space. This problem is not more difficult, but the mathematics is more cumbersome than
the two-dimensional case just considered. Again, we transform to the center of mass coor-
dinate system, and the rotational motion is transformed to the motion of a particle on the
surface of a sphere of radius r0. As before, it is advantageous to express the kinetic and
potential energy operators in an appropriate coordinate system, which in this case is spher-
ical coordinates. Because there is no hindrance to rotation, the potential energy is constant
and can be set equal to zero. In this coordinate system, which is depicted in Figure 2.5, the
Schrödinger equation is

(7.44)

Figure 2.5 defines the relationship between x, y, and z in Cartesian coordinates, and
in spherical coordinates.

Our task is to find the eigenfunctions and the corresponding eigenvalues
that are the solutions of this equation. Although the solution of this partial differential
equation is not discussed in detail here, the first few steps are outlined because they
provide some important physical insights. Combining constants in the form

(7.45)

multiplying through on the left by , and rearranging this equation results in
Equation (7.46)

(7.46)

On the right side of the equation, the differentiation is with respect to only. On the
left side of the equation, the differentiation is with respect to only. If this equality is to
hold for all , must be the product of two functions, each of which
depends on only one of the two independent variables:

(7.47)

This separation of variables leads to a major simplification in solving the Schrödinger
equation Equation (7.44).

The functions are known as the spherical harmonic functions and
are discussed in detail later in this chapter. Substituting Equation (7.47) into
Equation (7.46) and dividing through by , we obtain

(7.48)
1
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Note that this equation no longer contains partial derivatives. Because each side of the
equation depends on only one of the variables and the equality exists for all values of the
variables, it must be true that both sides of the equation are equal to the same constant:

(7.49)

Looking back at the differential equation for rotation in two dimensions, it is clear why
the constant is written in this way. The solutions for the second equation can be
obtained immediately because the same equation was solved for the molecule rotating
in two dimensions:

(7.50)

where the part of that depends on is associated with the quantum number ml.
The first equation in Equation (7.49) allows the part of that depends on to

be determined. It can be solved to give a set of eigenfunctions and their corresponding
eigenvalues. Rather than work through the solution, the results are summarized with a
focus on the eigenvalues. A discussion of the spherical harmonics is postponed until
Section 7.7. Two boundary conditions must be satisfied to solve Equation (7.49).
To ensure that the functions are single-valued functions of and that the
amplitude of these functions remains finite everywhere, the following conditions must
be met. We state rather than derive these conditions:

(7.51)

Both l and ml must be integers. Note that l and ml are the quantum numbers for the
three-dimensional rigid rotor. To emphasize this result, the spherical harmonic func-
tions are written in the form

(7.52)

The function is associated with both quantum numbers l and ml, and the func-
tion is associated only with the quantum number ml. For a given value of l,
there are different values of ml ranging from to . We next consider the
origin of these quantum numbers more closely.

Why are there two quantum numbers for rotation in three dimensions, whereas there
is only one for rotation in two dimensions? The answer is related to the dimensionality
of the problem. For rotation in two dimensions, r was held constant. Therefore, is the
only variable in the problem and there is only one boundary condition. For rotation in
three dimensions, r is again held constant and, therefore, only the two boundary condi-
tions on and generate quantum numbers. For the same reason, the particle in the
one-dimensional box is characterized by a single quantum number, whereas three quan-
tum numbers are required to characterize the particle in the three-dimensional box.

What observables of the rotating molecule are associated with the quantum num-
bers l and ml? From the equation

the energy eigenvalues for rotation in three dimensions can be obtained. This shows
that the quantum number l is associated with the total energy observable,

(7.53)

and that the total energy eigenfunctions satisfy the eigenvalue equation

(7.54)total Yml
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Note that the rotational energy values are quantized and that, once again, the quanti-
zation arises through a boundary condition. Note that the energy levels depend
differently on the quantum number than the energy levels for rotation in two dimen-
sions for which

(7.55)

For rotation in three dimensions the energy depends on the quantum number l, but not
on ml. Why is this the case? As will be shown in Section 7.7, the quantum number ml
determines the z component of the vector . Because , the energy of
rotation depends only on the magnitude of the angular momentum and not its direction.
Therefore, all total energy eigenfunctions that have the same l value but differ-
ent ml values have the same energy. This means that the degeneracy of each energy
level is . Recall that for rotation in two dimensions, the degeneracy of each
energy level is two, except for the level, which is nondegenerate.

7.6 The Quantization of Angular 
Momentum

We continue our discussion of three-dimensional rotation, although now it is discussed
in the context of angular momentum rather than energy as was done earlier. Why is
angular momentum important in quantum chemistry? Consider a familiar example
from introductory chemistry, namely, the s, p, and d orbitals associated with atoms of
the periodic table. This notation will be discussed in more detail in Chapter 9. We know
that the bonding behavior of s, p, and d electrons is quite different. Why is an 
s orbital spherically symmetrical, whereas a p orbital has a dumbbell structure? Why
are three energetically degenerate p orbitals directed along the x, y, and z directions?
The origin of these chemically important properties is the particular value of l or ml
associated with these orbitals.

As discussed earlier, the spherical harmonic functions , are eigenfunc-
tions of the total energy operator for a molecule that rotates freely in three dimensions.
Are these functions also eigenfunctions of other operators of interest to us? Because the
potential energy is zero for a free rotor, the total energy stored in rotational motion is
given by the kinetic energy , in which l is the angular momentum andEtotal = ƒ l ƒ 2>2I

Yml
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sponding operators and also satisfy this relationship. Because they differ only
by a multiplicative constant, these two operators commute with one another and have a
common set of eigenfunctions. Furthermore, because is quantized, it can be con-
cluded that is also quantized. Using the proportionality of and , the eigen-ƒ l2 ƒEtotalƒ l2 ƒ

Etotal

2lNtotalHN

value equation for the operator can immediately be written from Equation (7.54):

(7.56)

The notation explicitly shows that the quantum numbers l and ml are defining indices
for the eigenfunctions of and . Because the eigenvalues for are given by

, the magnitude of the angular momentum takes on the quantized valuesU2l(l + 1)

2lN2lNtotalHN

lN2Yml
l (u, f) = U2l(l + 1)Yml

l (u, f)

2lN

.

Note that it is and not that commutes with . We now focus our attentiontotalHNlN2lN
ƒ l ƒ = U2l(l + 1)

on the angular momentum l and the corresponding operator . How many compo-
nents does l have? For rotation in the plane, the angular momentum vector has
only a single component that lies on the z axis. For rotation in three dimensions, the
angular momentum vector has the three components , , and , which are obtained
from the vector cross product . See the Math Supplement for a more
detailed discussion of the cross product and angular motion. As might be expected
from the discussion of the Stern–Gerlach experiment in Chapter 6, the operators , 

, and do not commute.zl
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yl
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l = r * p
lzlylx

xy
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As you will see when working the end-of-chapter problems, the operators , , and
have the following form in Cartesian coordinates:

(7.57)

Although not derived here, the operators have the following form in spherical coordinates:

(7.58)

As you will verify in the end-of-chapter problems for the operators in Cartesian
coordinates, the commutators relating the operators , , and are given by

(7.59)

Note that the order of the commutator is important, that is, .
What are the consequences of the fact that the operators corresponding to the com-

ponents of the angular momentum do not commute with one another? Because the
commutators are not zero, the direction of the angular momentum vector cannot be
specified for rotation in three dimensions. To do so, it would be necessary to know all
three components simultaneously, which would require that the three commutators in
Equation (7.59) are zero. Given that , , and do not commute, what can be known
about the components of the angular momentum for a molecule whose wave function is
an eigenfunction of the total energy operator?

To answer this question, we look more closely at the operators for the individual
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energy operator and of . We now show that the spherical harmonics are also eigen-2lN

functions of . Applying to the functions , we obtain

(7.60)

showing that the are eigenfunctions of . What can we conclude fromzl
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Equation (7.60)? Because the spherical harmonics are eigenfunctions of both and ,
both the magnitude of and its z component can be known simultaneously. In other
words, one can know the length of the vector and one of its components, but it is not
possible to simultaneously know the other two components of .

Why has rather than or been singled out, and what makes the z component
special? There is nothing special about the z direction, and one could have just as easily
chosen another direction. The way in which the variables are defined in spherical
coordinates makes take on a simple form. Therefore, when a direction is chosen, it is
convenient to make it the z direction. The essence of the preceding discussion is that
one can know the magnitude of and only one of its components simultaneously.l
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The consequences of the different commutation relations among , , , , and are
explored in Section 7.8, which deals with spatial quantization.

7.7 The Spherical Harmonic Functions
Until now, only the eigenvalues for , , and for rotation in three dimensions have
been discussed. We now discuss the spherical harmonic functions, , which
are the eigenfunctions common to these three operators. They are listed here for the
first few values of l and ml:

(7.61)

As seen earlier in Equation (7.50), the dependence is a simple exponential func-
tion. The dependence enters as a polynomial in . The numerical factor
in front of these functions ensures that they are normalized over the intervals

. Because the spherical harmonics are eigenfunctions of
the time-independent Schrödinger equation, they represent standing waves on the sur-
face of a sphere in which the nodal positions are independent of time.

For , the eigenfunction is equal to a constant determined by the normalization
condition. What does this mean? Remember that the square of the wave function gives the
probability density for finding the particle at the coordinates within the interval

. These coordinates specify the angle defining the internuclear axis in a diatomic
molecule. If the wave function is independent of , any orientation of the internuclear
axis in the rotation of a molecule is equally likely. This must be the case for a state in which
the angular momentum is zero. A net angular momentum, corresponding to , requires
that the wave function and the probability density distribution not have spherical symmetry.

The spherical harmonics are complex functions unless . Graphing complex
functions requires double the number of dimensions as for real functions, so that it is
customary to instead form appropriate linear combinations of the to generate
real functions. These functions, which still form an orthonormal set, are given in the
following equations. Equation (7.62) lists the p functions, and Equation (7.63) lists the
d functions. We recognize the abbreviations in connection with the orbital designations
for the hydrogen atom. As shown in Chapter 9, the functions shown in Figures 7.13 and
7.14 appear in the solutions of the Schrödinger equation for the hydrogen atom.
Because of this, they merit more discussion.
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(7.63)

These functions depend on two variables, , and the way in which they are named
refers them back to Cartesian coordinates. In graphing the functions, spherical coordinates
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FIGURE 7.13
Three-dimensional perspective plots of the p and d linear combinations of the spherical harmonics.
The plots show three-dimensional surfaces in which the relationship of the angles to the
Cartesian axes is defined in Figure 2.5. The distance from the origin to a point on the surface

represents the absolute magnitude of the functions defined by Equations (7.62) and (7.63).
The sign of the functions in the different lobes is indicated by plus and minus signs.
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have been used, whereby the radial coordinate is used to display the value of the ampli-
tude, . All the functions generate lobular patterns in which the amplitude of
the function in a lobe is either positive or negative. These signs are indicated in the plots.

The p functions form a set of three mutually perpendicular dumbbell structures.
The wave function has the same amplitude but a different sign in the two lobes, and
each function has a nodal plane passing through the origin. Four of the five d functions
have a more complex four-lobed shape with nodal planes separating lobes in which
the function has opposite signs. Because l is larger for the d than for the p functions,
more nodes are seen in both angles. As for the particle in the box wave functions, an
increase in the number of nodes corresponds to an increase in the energy of the quan-
tum state. For the particle in the box, an increase in the number of nodes over a fixed
interval corresponds to a shorter wavelength and, through the de Broglie relation, to a
higher linear momentum. For the rigid rotor, an increase in the number of nodes over a
fixed interval corresponds to a higher angular momentum. We return to the spherical
harmonic functions when discussing the orbitals for the H atom in Chapter 9.

Up to this point, questions have been asked about the energy and the momentum.
What can be learned about the angular orientation of the internuclear axis for the rotat-
ing molecule? This information is given by the probability density, defined by the first
postulate as the square of the magnitude of the wave function. The probability density
for the p and d functions is very similar in shape to the wave function amplitude shown
in Figure 7.13, although the amplitude in all lobes is positive. Taking the pz plot as an
example, Figure 7.13 shows that the maximum amplitude of is found along the
positive and negative z axis. A point on the z axis corresponds to the probability density
for finding the molecular axis parallel to the z axis.

An alternate graphical representation can be used that recognizes that spherical har-
monics can be used to represent waves on the surface of a sphere. This can be done by
displaying the amplitude of the desired function on the sphere at the location using
a color scale. This is done in Figure 7.15, where the square of the amplitude of the pz
and py functions is plotted as a color scale on the surface of a sphere. Black and red
regions correspond to high and low probability densities, respectively. For the pz func-
tion, there is a much higher probability density of finding the particle near the z axis
than in the plane. This means that the molecular axis is much more likely to be
parallel to the z axis than to lie in the plane. For a state whose wave function is py,
the internuclear axis is much more likely to be parallel to the y axis than to lie in the

plane. This is consistent with the angular orientation of the maxima of these
functions shown in Figure 7.13. Why is the probability density not more sharply
peaked in a small angular region near the z or y axis? If the wave function is the pz
function, Etotal, , and lz are well defined. However, the operators for the angularƒ l2 ƒ

y = 0

xy
z = 0

u, f

ƒY0
1 ƒ2

r = f(u, f)

x

y

z

FIGURE 7.14
Three-dimensional perspective plots show
the three p and the five d linear combina-
tions of the spherical harmonics
superimposed. The convention used in
displaying the functions is explained in 
the text and in the caption for 
Figure 7.13.

coordinates do not commute with the operators for Etotal, , and lz. As a
consequence, the angular position coordinates are not known exactly and only average
values can be determined for these observables.

7.8 Spatial Quantization
The fact that the operators , , and commute whereas , , and do not commute
with one another states that the energy, the magnitude of the angular momentum vector,
and the value of any one of its components can be known simultaneously but that the
other two components of the angular momentum cannot be known. Contrast this with
classical mechanics in which all three components of an angular momentum vector can
be specified simultaneously. In that case, both the length of the vector and its direction
can be known.

We summarize what can be known about the angular momentum vector associated
with a molecule rotating in three dimensions pictorially. In doing so, classical and quantum
mechanical descriptions are mixed. For this reason, the following is a semiclassical
description. The one component that is known is chosen to be along the z direction. In

zl
N
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N
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N

zl
N2lNHN

ƒ l2 ƒf and u
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Possible orientations of the angular
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FIGURE 7.17
Example of an angular momentum 
vector for which only 
are known. In this case, and

. The right side of the figure
illustrates a classical rigid rotor for
which the angular momentum vector has
the same lz component.
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FIGURE 7.15
The absolute magnitude of the amplitude of
the pz and py functions is plotted on the sur-
face of a unit sphere. Black and red regions
correspond to high and low probability
densities, respectively.

Figure 7.16, we show what can be known about and lz. The magnitude of 
is and that of . The vector cannot lie on the z axis becausellz = mlU1l(l + 1) U

ll

so that . From another point of view, cannot lie on the
z axis because the commutators in Equation (7.59) are not zero. If did lie on the 
z axis, then and would both be zero and, therefore, all three components of the vectorlylx

l
lƒml ƒ … lƒ1ml(ml + 1) ƒ Ú ƒml ƒ

could be known simultaneously. The fact that only and one of its components can beƒ l ƒl
known simultaneously is a direct manifestation of the fact that the operators , 

, and do not commute with one another.
Although the picture in Figure 7.16 is useful, it does not depict as a three-dimensional

vector. We modify this figure to take the three-dimensional nature of into account in 
Figure 7.17 for the case where and . The vector is depicted as a line on the
surface of the cone beginning at its apex. The magnitude of and its projection on the z axis
are known exactly and can be determined from the figure. However, the components of the
angular momentum vector along the x and y axes, lx and ly, cannot be known exactly
and simultaneously. All that is knowable about them is that l2 - l2

z = l2
x + l2

y =

l
lml = 2l = 2

l
l

zlNylN
xl

N

. This equation defines the circle terminating the cone at its open
end. Figure 7.17 depicts all that can be known simultaneously about the components of
the angular momentum. To give a more physical picture to Figure 7.17, a classical rigid
rotor for which the z component of the angular momentum vector is the same as for the
quantum mechanical case is also shown. Do not take this comparison literally, because
the rotor can be depicted as shown only because all three components of the angular
momentum can be known simultaneously. This is not possible for a quantum mechanical
rigid rotor.

Figure 7.18 combines the information about all possible values of ml consistent with
in one figure. Such a depiction is often referred to as a vector model of angular

momentum. Only the orientations of for which the vector lies on one of the cones are
allowed. A surprising result emerges from these considerations. Not only are the possi-
ble magnitudes of the angular momentum quantized, but the vector can only have certain
orientations in space! This result is referred to as spatial quantization.

l
l = 2

l(l + 1)U2 - m2
l U2
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Q7.1 Why is the probability of finding the harmonic oscilla-
tor at its maximum extension or compression larger than that
for finding it at its rest position?

Q7.2 Why does the energy of a rotating molecule depend
on l but not on ml?

Q7.3 Are the real functions listed in Equations (7.62) and
(7.63) eigenfunctions of ? Justify your answer.

Q7.4 Spatial quantization was discussed in Section 7.8.
Suppose that we have a gas consisting of atoms, each of
which has a nonzero angular momentum. Are all of their
angular momentum vectors aligned?

Q7.5 Does the average length of a quantum harmonic oscil-
lator depend on its energy? Answer this question by referring
to the harmonic potential function shown in Figure 7.7. 

zl
N

The average length is the midpoint of the horizontal line 
connecting the two parts of V(x).

Q7.6 Does the bond length of a real molecule depend on its
energy? Answer this question by referring to Figure 7.7. The
bond length is the midpoint of the horizontal line connecting
the two parts of V(x).

Q7.7 Why can the angular momentum vector lie on the
z axis for two-dimensional rotation in the plane but not for
rotation in three-dimensional space?

Q7.8 How does the total energy of the quantum harmonic
oscillator depend on its maximum extension?

Q7.9 Explain why the amplitude of the total energy eigen-
functions for the quantum mechanical harmonic oscillator
increases with as shown in Figure 7.10.ƒx ƒ

xy

Vocabulary

angular acceleration

angular momentum

angular velocity

bond length

center of mass coordinates

centripetal acceleration

continuous energy spectrum

degeneracy

Euler formula

force constant

frequency of oscillation

harmonic oscillator

Hermite polynomial

moment of inertia

orbital

oscillatory behavior

radians

rigid rotor

rotation

semiclassical

separation of variables

spatial quantization

spherical harmonic functions

translational motion

vector model of angular momentum

vibration

zero point energy

Conceptual Problems

What is the analogous situation in classical mechanics? Because lx, ly, and lz can be
known simultaneously for a classical system, and because their values are not quan-
tized, the possible orientations of map out a continuous spherical surface. The contrast
between classical and quantum mechanical behavior is clearly evident! It is also appar-
ent how quantum and classical results merge for high energies (large quantum num-
bers) as required by the correspondence principle. For a given l value, there are 
conical surfaces on a vector diagram like that shown in Figure 7.18. For large values of
l, the individual cones are so close together that they merge into a sphere, and the angu-
lar momentum vector no longer seems to exhibit spatial quantization.

EXAMPLE PROBLEM 7.6

How many cones of the type shown in Figure 7.18 will there be for ? What is
the closest allowed angle between and the z axis?

Solution

There will be or 2001 cones. The smallest allowed angle is for ,
and is given by

 f = 0.03 radians = 1.7°

 cos f =
l

2l(l + 1)
=

1000

1000.50

lz = 1000U2l + 1

l
l = 1000

2l + 1

l

z

ml�2

ml�1

ml�0

ml ��1

ml ��2

FIGURE 7.18
All possible orientations of an angular
momentum vector with . The z com-
ponent of the angular momentum is shown
in units of .U

l = 2



Q7.10 Why is it possible to write the total energy eigen-
functions for rotation in three dimensions in the form

?

Q7.11 The two linearly independent total energy eigenfunc-
tions for rotation in two dimensions are 

What is the evolution in time of for each of these solutions?

Q7.12 Why is only one quantum number needed to charac-
terize the eigenfunctions for rotation in two dimensions,
whereas two quantum numbers are needed for rotation in
three dimensions?

Q7.13 What makes the z direction special such that , ,
and commute, whereas do not commute?

Q7.14 How are the spherical harmonics combined 
to form real p and d functions? What is the advantage in
doing so?

xl
N

z, andlNy,lNzl
N

HN2lN

f

£+(f) =
1

22p
ei|ml|f and £-(f) =

1

22p
e-i|ml|f.

Yml
l (u, f) = ®(u)£(f)

Q7.15 The zero point energy of the particle in the box goes
to zero as the length of the box approaches infinity. What is
the appropriate analogue for the quantum harmonic oscillator?

Q7.16 Figure 7.12 shows the solutions to the time inde-
pendent Schrödinger equation for the rigid rotor in two
dimensions. Describe the corresponding solutions for the time
dependent Schrödinger equation.

Q7.17 Use the anharmonic potential function in Figure 7.7 to
demonstrate that rotation and vibration are not separable
degrees of freedom for large quantum numbers.

Q7.18 Conservation of energy requires that the variation of
the potential and kinetic energies with the oscillator extension
be exactly out of phase. Explain this statement.

Q7.19 What is the degeneracy of the energy levels for the
rigid rotor in two dimensions? If it is not 1, explain why.

Q7.20 For a two-dimensional harmonic oscillator,
. Write an expression for the energy

levels of such an oscillator in terms of kx and ky.
V(x,y) = kxx2 + kyy2
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Numerical Problems

Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P7.1 A gas-phase 1H127I molecule, with a bond length of
160.92 pm, rotates in three-dimensional space.

a. Calculate the zero point energy associated with this rotation.

b. What is the smallest quantum of energy that can be
absorbed by this molecule in a rotational excitation?

P7.2 In this problem you will derive the commutator

a. The angular momentum vector in three dimensions has the
form where the unit vectors in the x,
y, and z directions are denoted by . Determine lx,
ly, and lz by expanding the cross product .
The vectors are given by and

.

b. Substitute the operators for position and momentum in
your expressions for lx and ly. Always write the position
operator to the left of the momentum operator in a simple
product of the two.

c. Show that 

P7.3 In discussing molecular rotation, the quantum number
J is used rather than l. Using the Boltzmann distribution, 
calculate for 1H35Cl for , 5, 10, and 20 atJ = 0nJ>n0

3lNx, lNy4 = iUlNz.

p = ipx + jpy + kpz

r = ix + jy + kzr and p
l = r * p3 * 3

i, j, and k
l = i lx + j ly + k lz

3lNx, lNy4 = iUlNz.

corresponding to the lowest energy pure vibrational and
pure rotational transitions. In what regions of the electro-
magnetic spectrum do the transitions lie?

P7.6 The wave functions px and dxz are linear combinations
of the spherical harmonic functions, which are eigenfunctions
of the operators , , and for rotation in three dimensions.
The combinations have been chosen to yield real functions.
Are these functions still eigenfunctions of ? Answer this
question by applying the operator to the functions.

P7.7 At what values of does Y0
2(u, f) = (5>16p)1>2u

zl
N

zl
N2lNHN

have nodes? Are the nodes points, lines,
planes, or other surfaces?

P7.8 The vibrational frequency for D2 expressed in wave
numbers is . What is the force constant associated
with the bond? How much would a classical spring with this
force constant be elongated if a mass of 1.50 kg were attached
to it? Use the gravitational acceleration on Earth at sea level
for this problem.

P7.9 In discussing molecular rotation, the quantum number J
is used rather than l. Calculate for 1H81Br for

, 5, 10, and 20 at 298 K. The bond length is 141.4 pm. J = 0
Erot>kBT

3115 cm-1

(3 cos2 u - 1)

K. Does nJ/n0 go through a maximum as J
increases? If so, what can you say about the value of J corre-
sponding to the maximum?

P7.4 Draw a picture (to scale) showing all angular momen-
tum cones consistent with . Calculate the half angles for
each of the cones.

P7.5 1H19F has a force constant of and a bond
length of 91.68 pm. Calculate the frequency of the light

966 N m-1

l = 5

T = 1025

For which of these values of J is Erot kBT 10.?

P7.10 Show by carrying out the necessary integration that
the eigenfunctions of the Schrödinger equation for rotation 

in two dimensions, 

are orthogonal.

P7.11 Evaluate the average of the square of the linear
momentum of the quantum harmonic oscillator for the
ground state and first two excited states 

. Use the hint about evaluating integrals in 
Problem P7.12.
n = 2)

(n = 1 and (n = 0)
8p2

x9

1

22p
eimlf and 1

22p
einlf, ml Z nl

Ú>



speed from the kinetic gas theory, 
for .

P7.23 The force constant for a 1H127I molecule is .

a. Calculate the zero point vibrational energy for this mole-
cule for a harmonic potential.

b. Calculate the light frequency needed to excite this mole-
cule from the ground state to the first excited state.

P7.24 At 300. K, most molecules are not in their ground
rotational state. Is this also true for their vibrational degree
of freedom? Calculate for theNn=1>Nn=0 and Nn=2>Nn=0

314 N m-1

T = 300. K
ƒv ƒ rms = 23kBT>m
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P7.12 Show by carrying out the appropriate integration that
the total energy eigenfunctions for the harmonic oscillator

and c2(x) = (a>4p)1>4c0(x) = (a>p)1>4e-(1>2)ax2

are orthogonal over the interval
and that is normalized over the 

same interval. In evaluating integrals of this type, 

if f (x) is an odd function of x and

if f (x) is an even function of x.

P7.13 Two 3.25 g masses are attached by a spring with a
force constant of . Calculate the zero point
energy of the system and compare it with the thermal energy
kBT at 298 K. If the zero point energy were converted to
translational energy, what would be the speed of the masses?

P7.14 Calculate the frequency and wavelength of the radi-
ation absorbed when a quantum harmonic oscillator with a
frequency of makes a transition from the

to the state.

P7.15 Evaluate the average kinetic and potential energies,
, for the ground state of 

the harmonic oscillator by carrying out the appropriate 
integrations.

P7.16 The vibrational frequency of 35Cl2 is .
Calculate the force constant of the molecule. How large a
mass would be required to stretch a classical spring with this
force constant by 2.25 cm? Use the gravitational acceleration
on Earth at sea level for this problem.

P7.17 Evaluate for the ground state and first
two excited states of the quantum har-
monic oscillator. Use the hint about evaluating integrals in
Problem P7.12.

P7.18 A coin with a mass of 8.31 g suspended on a rubber
band has a vibrational frequency of . Calculate (a) the
force constant of the rubber band, (b) the zero point energy,
(c) the total vibrational energy if the maximum displacement
is 0.725 cm, and (d) the vibrational quantum number corre-
sponding to the energy in part (c).

P7.19 Calculate the position of the center of mass of 
(a) 1H19F, which has a bond length of 91.68 pm, and (b) HD,
which has a bond length of 74.15 pm.

P7.20 Show that the function (5>16p)1>2Y0
2(u, f) =

7.50 s-1

(n = 1 and n = 2)
(n = 0)8x29

1.68 * 1013 s-1

(n = 0)8Ekinetic9 and 8Epotential9
n = 3n = 2
3.15 * 1013 s-1

k = 450. kg s-2

L
q

- q
f(x)dx = 2L

q

0
f(x)dx

L
q

- q
f(x)dx = 0

c2(x)-q  6  x 6q
(2ax2 - 1)e-(1>2)ax2

molecule for , 1, and 2? The force constant for H35Cl is
.

P7.32 Evaluate for the ground state and first two
excited states of the quantum harmonic
oscillator. Use the hint about evaluating integrals given in
Problem P7.12.

P7.33 Using your results for Problems P7.11, 17, 29, and
32, calculate the uncertainties in the position and momentum

for the ground
state and first two excited states 
of the quantum harmonic oscillator. Compare your results
with the predictions of the Heisenberg uncertainty principle.

(n = 1 and n = 2)(n = 0)
s2

p = 8p29 - 8p92 and s2
x = 8x29 - 8x92

(n = 1 and n = 2)
(n = 0)8x9

516 N m-1
n = 0

is normalized over the interval 
.

P7.21 Is it possible to simultaneously know the angular ori-
entation of a molecule rotating in a two-dimensional space
and its angular momentum? Answer this question by evaluat-
ing the commutator .

P7.22 The force constant for the 35Cl2 molecule is
Calculate the vibrational zero point energy of 

this molecule. If this amount of energy were converted 
to translational energy, how fast would the molecule 
be moving? Compare this speed to the root mean square

323 N m-1.

3f, - iU(0>0f)4

0 … f … 2p
0 … u … p and(3 cos2 u - 1)

127I2 molecule for which the force constant is 172 N m . At
what temperature is ? Repeat the calcu-Nn=2>Nn=0 = 0.500

-1

lation for H2 for which the force constant is 575 N m and
explain the difference in the results.

P7.25 An 1H19F molecule, with a bond length of 91.68 pm,
absorbed on a surface rotates in two dimensions.

a. Calculate the zero point energy associated with this rotation.

b. What is the smallest quantum of energy that can be
absorbed by this molecule in a rotational excitation?

P7.26 Verify that in Equation 7.31 is a solution of the
Schrödinger equation for the quantum harmonic oscillator.
Determine the energy eigenvalue.

P7.27 Evaluate the average kinetic and potential energies,
, for the second excited state 

of the harmonic oscillator by carrying out the appropriate 
integrations.

P7.28 By substituting in the Schrödinger equation for the
harmonic oscillator, show that the ground-state vibrational
wave function is an eigenfunction of the total energy operator.
Determine the energy eigenvalue.

P7.29 Evaluate the average linear momentum of the quan-
tum harmonic oscillator for the ground state 
and first two excited states . Use the hint
about evaluating integrals in Problem P7.12.

P7.30 By substituting in the Schrödinger equation for rota-
tion in three dimensions, show that the rotational wave func-
tion is an eigenfunction of the total
energy operator. Determine the energy eigenvalue.

P7.31 Use as calculated in Problem P7.17 as a
measure of the vibrational amplitude for a molecule. What
fraction is of the 127.5 pm bond length of the 1H35Cl28x29

28x29
(5>16p)1>2(3 cos2 u - 1)

(n = 1 and n = 2)
(n = 0)8px9

(n = 2)8Ekinetic9 and 8Epotential9

c1(x)

-1



P7.34 An H35Cl molecule has the rotational quantum 
number and vibrational quantum number .

a. Calculate the rotational and vibrational energy of 
the molecule. Compare each of these energies with 
kBT at 300. K.

b. Calculate the period for vibration and rotation. How many
times does the molecule rotate during one vibrational period?

P7.35 Calculate the first five energy levels for a 35Cl2 mole-
cule, which has a bond length of 198.8 pm, (a) if it rotates

n = 0J = 8

freely in three dimensions and (b) if it is adsorbed on a sur-
face and forced to rotate in two dimensions.

P7.36 Calculate the constants b1 and b2 in Equation (7.9)
for the condition , the maximum extension of the
oscillator. What is v(0) for this condition?

P7.37 Calculate the reduced mass, the moment of inertia,
the angular momentum, and the energy in the J = 1 rotational
level for H2, which has a bond length of 74.14 pm.

x(0) = xmax

138 CHAPTER 7 A Quantum Mechanical Model for the Vibration and Rotation of Molecules

Web-Based Simulations, Animations, and Problems

W7.1 The motion of a particle in a harmonic potential is
investigated, and the particle energy and force constant k are
varied using sliders. The potential and kinetic energy are dis-
played as a function of the position x, and the result of meas-
uring the probability of detecting the particle at x is displayed
as a density plot. The student is asked to use the information
gathered to explain the motion of the particle.

W7.2 The allowed energy levels for the harmonic oscillator
are determined by numerical integration of the Schrödinger
equation, starting in the classically forbidden region to the left

of the potential. The criterion that the energy is an eigenvalue
for the problem is that the wave function decays to zero in the
classically forbidden region to the right of the potential. The
zero point energy is determined for different values of k. The
results are graphed to obtain a functional relationship between
the zero point energy and k.

W7.3 The probability of finding the harmonic oscillator in
the classically forbidden region Pn is calculated. The student
generates a set of values for Pn for , 1, 2, ..., 20 and
graphs them.

n = 0



8.1 An Introduction to
Spectroscopy

8.2 Absorption, Spontaneous
Emission, and Stimulated
Emission

8.3 An Introduction to
Vibrational Spectroscopy

8.4 The Origin of Selection Rules

8.5 Infrared Absorption
Spectroscopy

8.6 Rotational Spectroscopy

8.7 (Supplemental) Fourier
Transform Infrared
Spectroscopy

8.8 (Supplemental) Raman
Spectroscopy

8.9 (Supplemental) How Does
the Transition Rate between
States Depend on
Frequency?

The Vibrational and
Rotational

Spectroscopy of
Diatomic Molecules

Chemists have a wide range of spectroscopic techniques available to

them. With these techniques, unknown molecules can be identified, bond

lengths can be measured, and the force constants associated with chemical

bonds can be determined. Spectroscopic techniques are based on transitions

that occur between different energy states of molecules when they interact

with electromagnetic radiation. In this chapter, we describe how light inter-

acts with molecules to induce transitions between states. In particular, we

discuss the absorption of electromagnetic radiation in the infrared and

microwave regions of the spectrum. Light of these wavelengths induces

transitions between eigenstates of vibrational and rotational energy.

8.1 An Introduction to Spectroscopy
The various forms of spectroscopy are among the most powerful tools that chemists
have at their disposal to probe the world at an atomic and molecular level. In this chap-
ter, we begin a discussion of molecular spectroscopy that will be taken up again in later
chapters. Atomic spectroscopy will be discussed separately in Chapter 11. The informa-
tion that is accessible through molecular spectroscopy includes bond lengths (rotational
spectroscopy) and the vibrational frequencies of molecules (vibrational spectroscopy).
In addition, the allowed energy levels for electrons in molecules can be determined with
electronic spectroscopy, which is discussed in Chapter 14. This spectroscopic informa-
tion is crucial for a deeper understanding of the chemical bonding and the reactivity of
molecules. In most spectroscopies, atoms or molecules absorb electromagnetic radiation
and undergo transitions between allowed quantum states.

In most experiments, the attenuation or enhancement of the incident radiation result-
ing from absorption or emission of radiation is measured as a function of the incident
wavelength or frequency. Because quantum mechanical systems have a discrete energy
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FIGURE 8.1
The electromagnetic spectrum depicted on
a logarithmic wavelength scale.

spectrum, an absorption or emission spectrum consists of individual peaks, each of
which is associated with a transition between two allowed energy levels of the system.
As we show later in Supplemental Section 8.9, the frequency at which energy is
absorbed or emitted is related to the energy levels involved in the transitions by

(8.1)

The photon energy that is used in chemical spectroscopies spans more than 16 orders
of magnitude in going from the radio frequency to the X-ray region. This is an indication
of the very different energy-level spacings probed by these techniques. The energy-level
spacing is smallest in nuclear magnetic resonance (NMR) spectroscopy, which is dis-
cussed in Chapter 17, and largest for electronic spectroscopy. Transitions between rota-
tional and vibrational energy levels are intermediate between these two extremes, with
rotational energy levels being more closely spaced in energy than vibrational energy lev-
els. The electromagnetic spectrum is depicted schematically in Figure 8.1. Note that vis-
ible light is a very small part of this spectrum.

The spectral regions associated with various spectroscopies are shown in Table 8.1.
Spectroscopists commonly use the quantity wave number which has units of
inverse centimeters, rather than the wavelength or frequency to designate spectral
transitions for historical reasons. The relationship between and is given by ,
where c is the speed of light. It is important to use consistent units when calculating the
energy difference between states associated with a frequency in units of inverse seconds
and wave numbers in units of inverse centimeters. Equation (8.1) expressed for both units
is .

The fact that atoms and molecules possess a set of discrete energy levels is an
essential feature of all spectroscopies. If molecules had a continuous energy spectrum,
it would be very difficult to distinguish them on the basis of their absorption spectra.

n
'ƒE2 - E1 ƒ = hn = hc

cn = n'n
'

n

nl

= 1>ln
'

hn = ƒE2 - E1 ƒ

TABLE 8.1 Important Spectroscopies and Their Spectral Range

Spectral Range (m)l (Hz)n  (cm-1)n
'

Energy (J) Spectroscopy

Radio 70.1 63 * 109 70.1 62 * 10-24 NMR

Microwave 0.001 - 0.1 3 * 109 - 3 * 1011 0.1 - 10 2 * 10-24 - 2 * 10-22 Rotational

Infrared 7 * 10-7 - 1 * 10-3 3 * 1011 - 4 * 1014 10 - 1 * 104 2 * 10-22 - 3 * 10-19 Vibrational

Visible 4 * 10-7 - 7 * 10-7 4 * 1014 - 7 * 1014 1 * 104 - 3 * 104 3 * 10-19 - 5 * 10-19 Electronic

Ultraviolet 1 * 10-8 - 4 * 10-7 7 * 1014 - 3 * 1016 3 * 104 - 1 * 106 5 * 10-19 - 2 * 10-17 Electronic
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However, as discussed in Section 8.4, not all transitions between arbitrarily chosen
states occur. Selection rules tell us which transitions will be experimentally observed.
Because spectroscopies involve transitions between quantum states, we must first
describe how electromagnetic radiation interacts with molecules.

We begin with a qualitative description of energy transfer from the electromagnetic
field to a molecule leading to vibrational excitation. Light is a traveling electromag-
netic wave that has magnetic and electric field components that are perpendicular to the
propagation direction as shown in Figure 8.2. Consider the effect of a time-dependent
electric field on a classical dipolar diatomic “molecule” constrained to move in one
dimension. Such a molecule is depicted in Figure 8.3. If the spring were replaced by a
rigid rod, the molecule could not take up energy from the field. However, the spring
allows the two masses to oscillate about their equilibrium distance, thereby generating
a periodically varying dipole moment. If the electric field and oscillation of the dipole
moment have the same frequency, the molecule can absorb energy from the field. For a
classical “molecule,” any amount of energy can be taken up and the absorption spec-
trum is continuous.

For a real quantum mechanical molecule, the interaction with the electromagnetic field
is similar. The electric field acts on a dipole moment within the molecule that can be of two
types: permanent and dynamic. Polar molecules like HCl have a permanent dipole
moment. As molecules vibrate, an additional induced dynamic dipole moment can be
generated. How does the dynamic dipole arise? The magnitude of the dipole moment
depends on the bond length and the degree to which charge is transferred from one atom to
another. In turn, the charge transfer depends on the overlap of the electron densities of the
atoms, which in turn depends on the internuclear distances. As the molecule vibrates, its
dipole moment changes because of these effects, generating a dynamic dipole moment.
Because the vibrational amplitude is a small fraction of the bond distance, the dynamic
dipole moment is generally small compared to the permanent dipole moment.

As will be seen in the next section, it is the dynamic rather than the permanent
dipole moment that determines if a molecule will absorb energy in the infrared region.
By contrast, it is the permanent dipole moment that determines if a molecule will
undergo rotational transitions by absorbing energy in the microwave region.
Homonuclear diatomic molecules have neither permanent nor dynamic dipole
moments and cannot absorb infrared radiation. However, vibrational spectroscopy on
these molecules can be carried out using the Raman effect as discussed in Section 8.8
or in electronic spectroscopy as discussed in Chapter 14.

8.2 Absorption, Spontaneous Emission, and
Stimulated Emission

We now move from a classical picture to a quantum mechanical description involving
discrete energy levels. The basic processes by which photon-assisted transitions
between energy levels occur are absorption, spontaneous emission, and stimulated
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between two peaks

Electric field,
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to magnetic field

Radiant energy
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Magnetic field,
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electric field

FIGURE 8.2
The electric and magnetic fields
associated with a traveling light wave.
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FIGURE 8.3
Schematic of the interaction of a classical
harmonic oscillator constrained to move in
one dimension under the influence of an
electric field. The sinusoidally varying
electric field shown at the top of the figure
is applied between a pair of capacitor
plates. The arrows indicate the direction of
force on each of the two charged masses. If
the phases of the field and vibration are as
shown and the frequencies are equal, the
oscillator will absorb energy in both the
stretching and compression half cycles.
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emission. For simplicity, only transitions in a two-level system are considered as
shown in Figure 8.4.

In absorption, the incident photon induces a transition to a higher level, and in emis-
sion, a photon is emitted as an excited state relaxes to one of lower energy. Absorption
and stimulated emission are initiated by a photon incident on the molecule of interest.
As the name implies, spontaneous emission is a random event and its rate is related to
the lifetime of the excited state. These three processes are not independent in a system at
equilibrium, as can be seen by considering Figure 8.5. At equilibrium, the overall transi-
tion rate from level 1 to 2 must be the same as that from 2 to 1. This means that

(8.2)

Whereas spontaneous emission is independent of the radiation density at a given frequency
, the rates of absorption and stimulated emission are directly proportional to .

The proportionality constants for the three processes are A21, B12, and B21, respectively.
Each of these rates is directly proportional to the number of molecules (N1 or N2) in the
state from which the transition originates. This means that unless the lower state is popu-
lated, a signal will not be observed in an absorption experiment. Similarly, unless the upper
state is populated, a signal will not be observed in an emission experiment.

The appropriate function to use for in Equation (8.2) is the blackbody spectral
density function of Equation (1.7), because is the distribution of frequencies at
equilibrium for a given temperature. Following this reasoning, Einstein concluded that

(8.3)

This result is derived in Example Problem 8.1.

EXAMPLE PROBLEM 8.1

Derive the equations using these two pieces of
information: (1) the overall rate of transition between levels 1 and 2 (see Figure 8.5) is zero
at equilibrium, and (2) the ratio of N2 to N1 is governed by the Boltzmann distribution.

Solution

The rate of transitions from level 1 to level 2 is equal and opposite to the transitions
from level 2 to level 1. This gives the equation .
The Boltzmann distribution function states that

N2

N1
=

g2

g1
e-hn>k

B
T

B12r(n)N1 = B21r(n)N2 + A21N2

B12 = B21 and A21>B21 = 16p2Un3>c3

B12 = B21 and A21

B21
=

16p2Un3

c3

r(n)
r(n)

r(n)r(n)
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FIGURE 8.5
The rate at which transitions occur between
two levels. It is in each case proportional to
the product of the appropriate rate coeffi-
cient A21, B12, or B21 for the process and
the population in the originating state, 
N1 or N2. For absorption and stimulated
emission, the rate is additionally propor-
tional to the radiation density .r(n)
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FIGURE 8.4
The three basic processes by which
photon-assisted transitions occur. 
Orange- and red-filled circles indicate
final and initial levels, respectively.

In this case, . These two equations can be solved for , giving 
. As Planck showed, has the form shown in Equation (1.7)

so that

For these two expressions to be equal, 
.16p2Un3>c3

B12 = B21 and A21>B21 = 8phn3>c3 =

r(n) =
A21

B12ehn>kBT - B21

=
8phn3

c3

1

ehn>kBT - 1

r(n)A21>(B12ehn>kBT - B21)
r(n) =r(n)g2 = g1
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Spontaneous emission and stimulated emission differ in an important respect.
Spontaneous emission is a completely random process, and the emitted photons are
incoherent, by which we mean that their phases are random. In stimulated emission, the
phase and direction of propagation are the same as that of the incident photon. This is
referred to as coherent photon emission. A lightbulb is an incoherent photon source.
The phase relation between individual photons is random, and because the propagation
direction of the photons is also random, the intensity of the source falls off as the
square of the distance. A laser is a coherent source of radiation. All photons are in
phase, and because they have the same propagation direction, the divergence of the
beam is very small. This explains why a laser beam that is reflected from the moon still
has a measurable intensity when it returns to Earth. We will have more to say about
lasers when atomic spectroscopy is discussed in Chapter 11.

8.3 An Introduction to Vibrational
Spectroscopy

We now have a framework with which we can discuss spectroscopy as a chemical tool. Two
features have enabled vibrational spectroscopy to achieve the importance that it has as a tool
in chemistry. The first is that the vibrational frequency depends primarily on the identity of
the two vibrating atoms on either end of the bond and to a much lesser degree on the pres-
ence of atoms farther away from the bond. This property generates characteristic frequencies
for atoms joined by a bond known as group frequencies. We discuss group frequencies fur-
ther in Section 8.5. The second feature is that a particular vibrational mode in a molecule has
only one characteristic frequency of appreciable intensity. We discuss this feature next.

In any spectroscopy, transitions occur from one energy level to another. As
discussed in Section 8.2, the energy level from which the transition originates must be
occupied in order to generate a spectral signal. Which of the infinite set of vibrational
levels has a substantial probability of being occupied? Table 8.2 shows the number of
diatomic molecules in the first excited vibrational state (N1) relative to those in the
ground state (N0) at 300. and 1000. K. The calculations have been carried out using the
Boltzmann distribution. We see that nearly all the molecules in a macroscopic sample
are in their ground vibrational state at room temperature because . Even at
1000. K, is very small except for Br2. This means that for these molecules,
absorption of light at the characteristic frequency will occur from molecules in the

state. What final states are possible? As shown in the next section, for absorption
by a quantum mechanical harmonic oscillator, . Because
only the state has an appreciable population, with few exceptions only the

transition is observed in vibrational spectroscopy.n = 0: n = 1
n = 0

¢ n = nfinal - ninitial = +1
n = 0

N1>N0

N1>N0 V 1

TABLE 8.2 Vibrational State Populations for Selected Diatomic Molecules

Molecule (cm-1)n
'

n (s-1) N1 N0 for 300. K> N1 N0 for 1000. K>
H H¬ 4400 1.32 * 1014 6.88 * 10-10 1.78 * 10-3

H F¬ 4138 1.24 * 1014 2.42 * 10-9 2.60 * 10-3

H Br¬ 2649 7.94 * 1013 3.05 * 10-6 2.21 * 10-2

N N¬ 2358 7.07 * 1013 1.23 * 10-5 3.36 * 10-2

C O¬ 2170 6.51 * 1013 3.03 * 10-5 4.41 * 10-2

Br Br¬ 323 9.68 * 1012 0.213 0.628

EXAMPLE PROBLEM 8.2

A strong absorption of infrared radiation is observed for 

• Calculate the force constant k for this molecule.

• By what factor do you expect this frequency to shift if deuterium is substituted for
hydrogen in this molecule? The force constant is unaffected by this substitution.

1H35Cl at 2991 cm-1.
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Solution

a. We first write . Solving for k,

b.

The vibrational frequency for DCl is lower by a substantial amount. Would the 
shift be as great if 37Cl were substituted for 35Cl? The fact that vibrational frequen-
cies are so strongly shifted by isotopic substitution of deuterium for hydrogen 
makes infrared spectroscopy a valuable tool for determining the presence of
hydrogen atoms in molecules.

Note that the high sensitivity available in modern instrumentation to carry out
vibrational spectroscopy does make it possible in favorable cases to see vibrational
transitions originating from the state for which . These
overtone transitions are much weaker than the absorption but are possible
because the selection rule is not rigorously obeyed for an anharmonic poten-
tial, as discussed later. This more advanced topic is explored in Problem P8.22 at the
end of the chapter.

The overtone transitions are useful because they allow us to determine the degree
to which real molecular potentials differ from the simple harmonic potential,

. To a good approximation, a realistic anharmonic potential can be
described in analytical form by the Morse potential:

(8.4)

in which De is the dissociation energy relative to the bottom of the potential and

V(x) = De c1 - e-a(x-xe) d2

V(x) = (1>2)kx2

¢n = +1
¢n = +1

¢ n = +2,+3, Án = 0

= 0.717

nDCl

nHCl
= D

mHCl

mDCl
= D

mHmCl

mDmCl

(mD + mCl)

(mH + mCl)
= Da

1.0078

2.0140
b a 36.983

35.977
b

 = 516.3 N m-1

* a 1.661 * 10-27 kg

1 amu
b

 = 4p2(2.998 * 108 m s-1)2 a2991

cm
*

100 cm

1 m
b2 (1.008)(34.969) amu

35.977

 k = 4p2a c

l
b2

m

¢E = hn = hc>l = U2k>m

. The force constant k for the Morse potential is defined bya = 2k>(2De)
just as for the harmonic potential. The bond energy D0 is defined

with respect to the lowest allowed level, rather than to the bottom of the potential, as
shown in Figure 8.6.

The energy levels for this potential are given by

(8.5)

The second term gives the anharmonic correction to the energy levels. Measurements
of the frequencies of the overtone vibrations allow the parameter De in the Morse
potential to be determined for a specific molecule. This provides a useful method for
determining the details of the interaction potential in a molecule. CO is an example
of a diatomic molecule for which overtone vibrations are easily observed.

En = hnan +
1

2
b -

(hn)2

4De
an +

1

2
b2

k = (d2V>dx2)x=xe
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EXAMPLE PROBLEM 8.3

The Morse potential can be used to model dissociation as illustrated in this example. The
1H35Cl molecule can be described by a Morse potential with . The
force constant k for this molecule is and . Calculate 
the number of allowed vibrational states in this potential and the bond energy for the
1H35Cl molecule.

Solution

We solve the equation

to obtain the highest value of n consistent with the potential. Using the parameters
given earlier, we obtain the following equation for n:

Both solutions to this quadratic equation give , so we conclude that the
potential has 24 allowed levels. If the left side of the equation is graphed versus n, we
obtain the results shown in the following figure.

n = 24.4

-1.1918 * 10-21 n2 + 5.8243 * 10-20 n + 2.942 * 10-20 = 7.41 * 10-19

En = hnan +
1

2
b -

(hn)2

4De
an +

1

2
b2

= De

n = 8.97 * 1013 s-1516.3 N m-1
De = 7.41 * 10-19 J
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FIGURE 8.6
Morse potential, V(x) (red
curve), as a function of the
bond length x for HCl, using
the parameters from Example
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bottom of the potential. The
purple curve shows a har-
monic potential, which is a
good approximation to the
Morse potential near the bot-
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Note that En decreases for . This is mathematically correct, but unphysical
because for , the molecule has a continuous energy spectrum, and Equation (8.5)
is no longer valid.

The bond energy D0 is not De but where

from Equation (8.5), because the molecule has a zero point vibrational energy. Using
the parameters given earlier, the bond energy is . The Morse and har-
monic potentials as well as the allowed energy levels for this molecule are shown in
Figure 8.6.

The material-dependent parameters that determine the frequencies observed in
vibrational spectroscopy for diatomic molecules are the force constant k and
the reduced mass . The corresponding parameters for rotational spectroscopy
(see Section 8.6) are the rotational constant in which the bond
length, r0 or xe, and the reduced mass appear. These parameters, along with the bond
energy D0, are listed in Table 8.3 for selected molecules. The quantities B and are
expressed in units of inverse centimeters.

8.4 The Origin of Selection Rules
Every spectroscopy has selection rules that govern the transitions that can occur
between different states of a system. This is a great simplification in the interpretation
of spectra, because far fewer transitions occur than if there were no selection rules.
How do these selection rules arise? We next derive the selection rules for vibrational
spectroscopy based on the quantum mechanical harmonic oscillator.

n
'm

B = h>(8p2cmr2
0)

m

7.11 * 10-19 J

E0 =
hn

2
-

(hn)2

16De

De - E0

n 7 24
n 7 25

TABLE 8.3 Values of Molecular Constants for Selected Diatomic Molecules

(cm-1)n
'

(s-1)n
'

xe (pm) k (Nm-1) B (cm-1) D0 (kJ mol-1) D0 (J molecule-1)

H2 4401 1.32 * 1014 74.14 575 60.853 436 7.24 * 10-19

D2 3115 9.33 * 1013 74.15 577 30.444 443 7.36 * 10-19

1H81Br 2649 7.94 * 1013 141.4 412 8.4649 366 6.08 * 10-19

1H35Cl 2991 8.97 * 1013 127.5 516 10.5934 432 7.17 * 10-19

1H19F 4138 1.24 * 1014 91.68 966 20.9557 570 9.46 * 10-19

1H127I 2309 6.92 * 1013 160.92 314 6.4264 298 4.95 * 10-19

35Cl2 559.7 1.68 * 1013 198.8 323 0.2440 243 4.03 * 10-19

79Br2 325.3 9.75 * 1012 228.1 246 0.082107 194 3.22 * 10-19

19F2 916.6 2.75 * 1013 141.2 470 0.89019 159 2.64 * 10-19

127I2 214.5 6.43 * 1012 266.6 172 0.03737 152 2.52 * 10-19

14N2 2359 7.07 * 1013 109.8 2295 1.99824 945 1.57 * 10-18

16O2 1580. 4.74 * 1013 120.8 1177 1.44563 498 8.27 * 10-19

12C16O 2170. 6.51 * 1013 112.8 1902 1.9313 1076 1.79 * 10-18

Source: Lide, D. R., ed. CRC Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2003.
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As discussed later in Supplemental Section 8.9, the transition probability from state
n to state m is only nonzero if the transition dipole moment satisfies the
following condition:

(8.6)

In this equation, x is the vibrational amplitude and is the dipole moment along the
electric field direction, which we take to be the x axis.

In the following discussion, we show how selection rules for vibrational excitation arise
from Equation (8.6). As discussed in Section 8.1, the dipole moment will change slightly
as the molecule vibrates. Because the amplitude of vibration x is an oscillatory function of t,
the molecule has a time-dependent dynamic dipole moment. We take this into account by
expanding in a Taylor series about the equilibrium bond length. Because x is the ampli-
tude of vibration, the equilibrium bond length xe corresponds to :

(8.7)

in which the values of depend on the molecule under considera-
tion. Note that because , is a function of time. The first term in
Equation (8.7) is the permanent dipole moment at the equilibrium position, and the sec-
ond term is the dynamic dipole moment. As we saw earlier, for absorption experiments, it
is reasonable to assume that only the state is populated. Using Equation (7.29),
which gives explicit expressions for the eigenfunctions m,

(8.8)

The first integral is zero because different eigenfunctions are orthogonal. To solve the sec-
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in the integrand is an odd function of x and, therefore, is zero ifmm0
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is even. This simplifies the problem because only transitions of the type

(8.9)n = 0: m = 2b + 1, for b = 0, 1, 2, Á
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can have nonzero values for .
Do all the transitions indicated in Equation (8.9) lead to nonzero values of ? Tomm0
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FIGURE 8.7
The integrand Hm(a1>2x) *

is graphed as a function
of x for the transitions ,

, and .
The dashed line shows the zero level for
each graph.

n = 0: m = 5n = 0: m = 3
n = 0: m = 1

H0(a1>2x)e-ax2

the transitions , , and in Figure 8.7.
Whereas the integrand is positive everywhere for the transition, the areas
above the dashed line exactly cancel those below the line for the and

transitions, showing that . Therefore, only for the
first of the three transitions shown and for . It can be shown more gen-
erally that in the dipole approximation, the selection rule for absorption is , and
for emission, it is . Selection rules are different for different spectroscopies.
However, within the dipole approximation, the selection rules for any spectroscopy are cal-
culated using Equation (8.6) and the appropriate total energy eigenfunctions.

Note that because we found that the first integral in Equation (8.8) was zero, the
absence or presence of a permanent dipole moment is not relevant for the absorp-
tion of infrared radiation. For vibrational excitation to occur, the dynamic dipole
moment must be nonzero. Because of this condition, homonuclear diatomic molecules do
not absorb light in the infrared. This has important consequences for our environment.
The temperature of Earth is determined primarily by an energy balance between visible
and ultraviolet (UV) radiation absorbed from the sun and infrared radiation emitted by

m0x
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¢n Z +1mm0
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mm0
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ond integral, we need to use the specific functional form of . However, because
the integration is over the symmetric interval , this integral is zero if the
integrand is an odd function of x. As Equation (7.31) shows, the Hermite polynomials

are odd functions of x if m is odd and even functions of x if m is even. The termHm(a1>2x)

-q 6 x 6 q
Hm(a1>2x)
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the planet. The molecules N2, O2, and H2, which have no permanent or transient dipole
moment, together with the rare gases make up 99.93% of the atmosphere. These gases
do not absorb the infrared radiation emitted by Earth. Therefore, almost all of the
emitted infrared radiation passes through the atmosphere and escapes into space. By
contrast, greenhouse gases such as CO2, NOx, H2O, and hydrocarbons absorb the
infrared radiation emitted by Earth and radiate a portion of it back to Earth. However, as
you will conclude in Problem P8.15 at the end of the chapter, not all the vibrational
modes of CO2 are infrared active. The concentration of CO2 in the atmosphere has risen
significantly since the beginning of the industrial revolution as shown in Figure 8.8. The
result is an increase in Earth’s temperature and global warming.

8.5 Infrared Absorption Spectroscopy
The most basic result of quantum mechanics is that atoms and molecules possess a
discrete energy spectrum and that energy can only be absorbed or emitted in amounts
that correspond to the difference between two energy levels. Because the energy spec-
trum for each chemical species is unique, the allowed transitions between these levels
provide a “fingerprint” for that species. Using such a fingerprint to identify and quantify
the species is a primary role of all chemical spectroscopies. For a molecule of known
composition, the vibrational spectrum can also be used to determine the symmetry of the
molecule and the force constants associated with the characteristic vibrations.

In absorption spectroscopies in general, electromagnetic radiation from a source of the
appropriate wavelength is incident on a sample that is confined in a cell. The chemical
species in the sample undergo transitions that are allowed by the appropriate selection
rules among rotational, vibrational, or electronic states. The incident light of intensity I0( )
is attenuated in passing a distance dl through the sample as described by the differential
form of the Beer–Lambert law in which M is the concentration of the absorber; I( ) is the
intensity of the transmitted light leaving the cell. Units of moles per liter are commonly
used for M in liquid solutions, and partial pressure is used for gas mixtures:

(8.10)

This equation can be integrated to give

(8.11)

The information on the discrete energy spectrum of the chemical species in the cell is
contained in the wavelength dependence of the molar absorption coefficient . It is
evident that the strength of the absorption is proportional to , which increases
with , M, and with path length l. Because is a function of the wavelength,e(l)e(l)

I(l)>I0(l)
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The atmospheric CO2 concentration is
shown as a function of time since the
industrial revolution began.
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absorption spectroscopy experiments typically consist of the elements shown in
Figure 8.9. In the most basic form of this spectroscopy, a monochromator is used to
separate the broadband radiation from the source into its constituent wavelengths.
After passing through the sample, the transmitted light impinges on the detector. With
this setup, only one wavelength can be measured at a time. This form of absorption
spectroscopy is unnecessarily time consuming in comparison with Fourier transform
techniques, which are discussed in Supplemental Section 8.7.

EXAMPLE PROBLEM 8.4

The molar absorption coefficient for ethane is at a wavelength of
12 μm. Calculate in a 1.0-cm-long absorption cell if ethane is present at a
contamination level of 2.0 ppm in one bar of air. What cell length is required to make

?

Solution

Using

This result shows that for this cell length, light absorption is difficult to detect.
Rearranging the Beer–Lambert equation, we have

Path lengths of this order are possible in sample cells in which the light undergoes
multiple reflections from mirrors outside of the cell. Even longer path lengths are 
possible in cavity ringdown spectroscopy. In this method, the absorption cell is mounted
between two highly focusing mirrors with a reflectivity greater than 99.99%. Because of
the many reflections that take place between the mirrors without appreciable attenuation
of the light, the effective length of the cell is very large. The detection sensitivity to
molecules such as NO2 is less than 10 parts per billion using this technique.

How does depend on the wavelength or frequency? We know that for a harmonice(l)

 = 1.3 * 103 cm

 l = -
1

Me(l)
lna I(l)

I0(l)
b = -

1

40.(cm bar)-1 (2.0 * 10-6 bar)
ln(0.90)

I(l)

I0(l)
= exp E - C40.(cm bar)-1 (2.0 * 10-6 bar)(1.0 cm) D F = 0.9992 L 1.0

I(l)

I0(l)
= e-e(l)Ml

I(l)>I0(l) = 0.90

I(l)>I0(l)
40. (cm bar)-1e(l)

Monochromator

Sample cell

Detector

Light source

FIGURE 8.9
In an absorption experiment, the
dependence of the sample absorp-
tion on wavelength is determined. 
A monochromator is used to filter
out a particular wavelength from 
the broadband light source.

TABLE 8.4 Selected Group Frequencies

Group Frequency (cm-1) Group Frequency (cm-1)

O¬H stretch 3450–3650 C“O stretch 1650–1750

N¬H stretch 3300–3500 C“C stretch 1620–1680

C¬H stretch 2800–3000 C¬C stretch 1200–1300

C¬H bend 1450–1480 C¬Cl stretch 600–800

oscillator, so that the masses of the atoms and the force constant of the
bond determine the resonant frequency. Now consider a molecule such as

The vibrational frequency of the C and O atoms in the carbonyl group is determined
by the force constant for the bond. This force constant is primarily determined
by the chemical bond between these atoms and to a much lesser degree by the adjacent
R and R groups. For this reason, the carbonyl group has a characteristic frequency at
which it absorbs infrared radiation that varies in a narrow range for different molecules.
These group frequencies are very valuable in determining the structure of molecules,
and an illustrative set is shown in Table 8.4.

¿

C“O

R R'C

O

n = (1>2p)2k>m



150 CHAPTER 8 The Vibrational and Rotational Spectroscopy of Diatomic Molecules

We have shown that a diatomic molecule has a single vibrational peak of apprecia-
ble intensity because the overtone frequencies have very low intensities. How many
vibrational peaks are observed for larger molecules in an infrared absorption experi-
ment? A molecule consisting of n atoms has three translational degrees of freedom, and
two or three rotational degrees of freedom depending on whether it is a linear or non-
linear molecule. The remaining (nonlinear molecule) or (linear)
degrees of freedom are vibrational modes. For example, benzene has 30 vibrational
modes. However, some of these modes have the same frequency (they are degenerate in
energy), so that benzene has only 20 distinct vibrational frequencies.

We now examine some experimental data. Vibrational spectra for gas-phase CO
and CH4 are shown in Figure 8.10. Because CO and CH4 are linear and nonlinear mol-
ecules, we expect one and nine vibrational modes, respectively. However, the spectrum
for CH4 shows two rather than nine peaks that we might associate with vibrational tran-
sitions. We also see several unexpected broad peaks in the CH4 spectrum. The single
peak in the CO spectrum is much broader than would be expected for a vibrational
peak, and it has a deep minimum at the central frequency.

These spectra look different than expected for two reasons. The broadening in the
CO absorption peak and the broad envelopes of additional peaks for CH4 result from
transitions between different rotational energy states that occur simultaneously with the

transition between vibrational energy levels. We discuss transitions
between rotational energy levels and analyze a high-resolution infrared absorption
spectrum for a diatomic molecule in some detail in Section 8.6. At this point we simply
note that absorption of infrared radiation results in both rotational and vibrational rather
than just vibrational transitions.

The second unexpected feature in Figure 8.10 is that two and not nine peaks are
observed in the CH4 spectrum. Why is this? To discuss the vibrational modes of
polyatomic species in more detail, the information about molecular symmetry and
group theory discussed in Chapter 16 is needed. At this point, we simply state the
results. In applying group theory to the CH4 molecule, the peak can be
associated with three degenerate bending modes, and the peak can
be associated with three degenerate stretching modes. This still leaves three
vibrational modes unaccounted for. Again applying group theory to the CH4 mole-
cule, one finds that these modes are symmetric and do not satisfy the condition

. Therefore, they are infrared inactive. However, the stretching mode
for CO and all modes for CH4 are active in Raman spectroscopy, which we discuss
in Supplemental Section 8.8.

Of the 30 vibrational modes for benzene, four peaks (corresponding to 7 of the 
30 modes) are observed in infrared spectroscopy, and seven peaks (corresponding to 12 of
the 30 modes) are observed in Raman spectroscopy. None of the frequencies is
observed in both Raman and infrared spectroscopy. Eleven vibrational modes are
neither infrared nor Raman active.

Although the discussion to this point might lead us to believe that each bonded pair
of atoms in a molecule vibrates independently of the others, this is not the case. For
example, we might think that the linear CO2 molecule has a single stretchingC“O

dmx>dx Z 0

C¬H
3020 cm-1C¬H

1306 cm-1

n = 0: n = 1

3n - 53n - 6

1000 1500 2000
1/  /(cm–1)

2500 3000 3500

A
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or
ba

nc
e

CH4

CO

FIGURE 8.10
Infrared absorption spectra of gaseous CO
and CH4. The curves are offset vertically
for clarity.
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frequency, because the two bonds are equivalent. However, experiments show
that this molecule has two distinct stretching frequencies. Why is this the case?
When one bond vibrates, the atomic positions and electron distribution through-
out the molecule are changed, thereby influencing the other bond. In other
words, we can view the CO2 molecule as consisting of two coupled harmonic oscilla-
tors. In the center of mass coordinates, each of the two groups is modeled as a
mass coupled to a wall by a spring with force constant k1 (see Section 7.1). We model
the coupling as a second spring with force constant k2 that connects the two oscillators.
The model is depicted in Figure 8.11.

This coupled system has two vibrational frequencies: the symmetrical and antisym-
metric modes. In the symmetrical mode, the vibrational amplitude is equal in both
magnitude and sign for the individual oscillators. In this case, the C atom does not
move. This is equivalent to the coupling spring in Figure 8.11 having the same length
during the whole vibrational period. Therefore, the vibrational frequency is unaffected
by the coupling and is given by

(8.12)

In the antisymmetric mode, the C atom does move. This is equivalent to the vibra-
tional amplitude being equal in magnitude and opposite in sign for the individual
oscillators. In this mode, the spring representing the coupling is doubly stretched,
once by each of the oscillators. The resulting force on the reduced mass representing
each oscillator is

(8.13)

and the resulting frequency of this antisymmetric mode is

(8.14)

We see that the bond coupling gives rise to two different vibrational stretching
frequencies and that the antisymmetric mode has the higher frequency as illustrated in
Figure 8.12 for H2O.

8.6 Rotational Spectroscopy
As for the harmonic oscillator, a selection rule governs the absorption of electromagnetic
energy for a molecule to change its rotational energy, namely, .
Although we do not derive this selection rule, Example Problem 8.5 shows that it holds
for a specific case.

Note that we have just changed the symbol for the angular momentum quantum
number from l to J. The quantum number l is usually used for orbital angular momen-
tum (for example, the electron orbiting around the nucleus), and J is usually used for
rotating molecules.

= ;1¢J = Jfinal - Jinitial

C“O

nantisymmetric =
1

2pA
k1 + 2k2

m

F = -(k1 + 2k2)x

nsymmetric =
1

2pA
k1

m

C“O

C“O
C“O

C“O
C“O
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k1 k2 k1

k1 k2 k1
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x1 x2

FIGURE 8.11
The coupled oscillator model of CO2 is
shown. The vertical dashed lines show the
equilibrium positions. The symmetric
vibrational mode is shown in the upper
part of the figure, and the antisymmetric
(or asymmetric) vibrational mode is
shown in the lower part of the figure.
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3657 cm�1

Antisymmetric
stretch
3756 cm�1

FIGURE 8.12
The two stretching modes for the
H2O molecule are shown. Note that neither
of them corresponds to the stretching of a
single localized bond. This is the
case because, although equivalent, the two
bonds are coupled, rather than independent.

O¬H

O¬H
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EXAMPLE PROBLEM 8.5

Using the following total energy eigenfunctions for the three-dimensional rigid rotor,
show that the transition is allowed and that the tran-
sition is forbidden:

The notation is used for the preceding functions.

Solution

Assuming the electromagnetic field to lie along the z axis, , and the
transition dipole moment takes the form

For the transition,

For the transition,

The preceding calculations show that the transition is allowed and
that the transition is forbidden.

In discussing vibrational spectroscopy, we learned that a molecule must have a
nonzero dynamic dipole moment to absorb infrared radiation. By contrast, a molecule
must have a permanent dipole moment to absorb energy in the microwave frequency
range in which rotational transitions occur. As was the case for vibrational spec-
troscopy, the dominant interaction with the electric field is through the dipole moment.
This is shown schematically in Figure 8.13.

As shown in Section 7.5, the dependence of the rotational energy on the quantum
number is given by

(8.15)

In this equation, the constants specific to a molecule are combined in the so-called
rotational constant . The factor c is included in B so that it has theB = h>(8p2cmr2
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FIGURE 8.13
The interaction of a rigid rotor with an
electric field. Imagine the sinusoidally
varying electric field shown at the top 
of the figure applied between a pair of
capacitor plates. The arrows indicate the
direction of force on each of the two
charged masses. If the frequencies of the
field and rotation are equal, the rotor will
absorb energy from or emit energy into
the electric field.
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units of inverse centimeters rather than inverse seconds. The energy levels and transi-
tions allowed by the selection rule as well as a simulated
rotational spectrum are shown in Figure 8.14.

We can calculate the energy corresponding to rotational transitions for 
and originating from energy level J. corresponds to absorption
and corresponds to emission of a photon. In the following equations, J is the
quantum number of the state from which the transition occurs.

(8.16)

Note that because the energy levels are not equally spaced. We see
that the larger the J value of the originating energy level, the more energetic the photon
must be to promote excitation to the next highest energy level. Because the rotational
energy does not depend on mJ, each energy level is -fold degenerate.

EXAMPLE PROBLEM 8.6

Because of the very high precision of frequency measurements, bond lengths can be
determined with a correspondingly high precision, as illustrated in this example. From
the rotational microwave spectrum of 1H35Cl, we find that . Given
that the masses of 1H and 35Cl are 1.0078250 and 34.9688527 amu, respectively,
determine the bond length of the 1H35Cl molecule.

Solution

r0 = A
h

8p2mcB

B =
h

8p2mcr2
0
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FIGURE 8.14
The energy levels for a rigid rotor are
shown in the top panel and the spectrum
observed through absorption of microwave
radiation is shown in the bottom panel.
The allowed transitions between levels are
shown as vertical bars.

=

T
6.62606957 * 10-34 J s

8p2 ca (1.0078250)(34.9688527) amu

1.0078250 + 34.9688527
b A1.66054 * 10-27 kg amu-1 B A10.59342 cm-1 B

The structure of a rotational spectrum becomes more apparent when we consider the
energy-level spacing in more detail. Table 8.5 shows the frequencies needed to excite
various transitions consistent with the selection rule in
general and also for 1H35Cl. Each of these transitions can lead to absorption of electro-
magnetic radiation. We see that for successive initial values of J, the associated with¢E

¢J = Jfinal - Jinitial = +1

= 1.274551 * 10-10 m
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the transition increases in such a way that the difference between these , which we
call , is constant. This means that the spectrum for a molecule immersed in a
microwave field with a broad range of frequencies shows a series of equally spaced
lines, separated in frequency by 2cB as seen in Figure 8.14.

How many absorption peaks will be observed? For vibrational spectroscopy, we
expect only one intense peak for the following reasons. The energy-level spacing between
adjacent levels is the same for all values of the quantum number in the harmonic approxi-
mation so that given the selection rule , all transitions have the same frequency.
Also, in general only the energy level has a significant population so that even tak-
ing anharmonicity into account will not generate additional peaks originating from peaks
with . However, the situation is different for rotational transitions. Note that
because the rotational energy levels are not equally spaced in energy, different transitions
give rise to separate peaks. Additionally, under most conditions so that
many rotational energy levels will be populated. Therefore, many peaks are generally
observed in a rotational spectrum.

Up to this point, we have considered rotation and vibration separately. In the
microwave region of the electromagnetic spectrum, the photon energy is sufficient to
excite rotational transitions but not to excite vibrational transitions. However, this is not
the case for infrared radiation. Diatomic molecules that absorb infrared radiation can
make transitions in which both n and J change according to the selection rules

. Therefore, an infrared absorption spectrum contains both
vibrational and rotational transitions. What does a rotational-vibrational spectrum look
like? To answer this question, first consider the relative photon energies associated with
rotational and vibrational excitation. The energy levels for both degrees of freedom are
indicated schematically in Figure 8.15. The ratio of the smallest value of in a rota-
tional transition to that in a vibrational transition is

(8.17)

This ratio is molecule specific, but we consider two extremes. For H2 and I2,
is 0.028 and 0.00034, respectively, where is for the

transition. In both cases, there are many rotational levels between
adjacent vibrational levels. Large moments of inertia (large atomic masses and/or long
bonds) and large force constants (strong bonds) lead to a smaller value of

. It is largely the difference in the moment of inertia that makes
the ratio so different for I2 and H2.

On the basis of the previous discussion, what will be seen in an infrared absorption
experiment on a diatomic molecule in which both rotational and vibrational transitions
occur? As discussed in Section 8.3, the dominant vibrational transition is

. All transitions must now satisfy two selection rules, 
. As discussed earlier, a vibrational-rotational spectrum will exhibit many

different rotational transitions. What can one predict about the relative intensities of the
peaks? Recall that the intensity of a spectral line in an absorption experiment is deter-
mined by the number of molecules in the energy level from which the transition origi-
nates. (This rule holds as long as the upper state population is small compared to the
lower state population.) How many molecules are there in states for a given value of J

¢ J = ;1
¢ n = +1 andn = 0: n = 1

I = mr2
0¢Erot>¢Evib

J = 0: J = 1
¢Erot¢Erot>¢Evib
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=
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TABLE 8.5 Rotational Frequencies, and for 1H35Cl¢E>kBT at 300 . K¢(¢N)

J: J¿ ¢n ¢n HCl>s-1 ¢(¢n) ¢(¢n) HCl>s-1 ¢E>kBT at 300. K

0: 1 2cB 6.3158 * 1011 2cB 6.3158 * 1011 0.102

1: 2 4cB 1.27036 * 1012 2cB 6.3158 * 1011 0.203

2: 3 6cB 1.90554 * 1012 2cB 6.3158 * 1011 0.305

3: 4 8cB 2.54072 * 1012 2cB 6.3158 * 1011 0.406

4: 5 10cB 3.1759 * 1012 2cB 6.3158 * 1011 0.508

J�12

J�10

J�8

J�6
J�4

n�0

n�1

n�2

n�3

FIGURE 8.15
Schematic representation of rotational and
vibrational levels. Each vibrational level
has a set of rotational levels associated
with it. Therefore, vibrational transitions
usually also involve rotational transitions.
The rotational levels are shown on an
expanded energy scale and are much more
closely spaced for real molecules.
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relative to the number in the ground state for which This ratio can be calculated
using the Boltzmann distribution:

(8.18)

The term in front of the exponential is the ratio of the degeneracy of the energy level J to
that for J 0. It generally dominates for small J and sufficiently large T. However,
as J increases, the exponential term causes to decrease rapidly with increasing J.
For molecules with a large moment of inertia, the exponential term does not dominate
until J is quite large. As a result, many rotational energy levels are occupied; this behavior
is seen for CO in Figure 8.16. Because many levels are occupied, a large number of peaks
are observed in a rotational spectrum. For a molecule with a small moment of inertia, the
rotational levels can be far enough apart that few rotational states are populated. This
behavior is shown in Figure 8.16 for HD. At 100. K, only the , 1, and 2 states have
an appreciable population. Increasing the temperature raises this upper value of J to
approximately 4 and 7 for 300. and 700. K, respectively. The corresponding J values for
CO are 13, 23, and 33.

Therefore, as long as increases with J, the intensity of the spectral peaks orig-
inating from states with those J values will increase. Beyond the J values for which

increases, the intensity of the peaks decreases.
A simulated rotational-vibrational infrared absorption spectrum for HCl is shown in

Figure 8.17. Such a spectrum consists of two nearly symmetric parts. The higher frequency
part of the spectrum corresponds to transitions in which and is called the 
R branch. The lower frequency part of the spectrum corresponds to transitions in which

and is called the P branch. Note that the gap in the center of the spectrum corre-
sponds to , which is a forbidden transition in the dipole approximation for a linear
molecule. Without going into more detail, note that Raman spectroscopy (see Supplemental
Section 8.8) also shows both rotational and vibrational transitions. However, the selection
rules are different. For rotational Raman spectra, the selection rule is , and not

as it is for absorption spectra in the infrared or microwave ranges.
Based on this discussion of rotational-vibrational spectroscopy and the results

shown in Figures 8.16 and 8.17, it is useful to revisit the infrared spectra of CO and
CH4 shown in Figure 8.10. The broad unresolved peaks seen for CO between 2000 and

are the P and R branches corresponding to rotational-vibrational excitations.
The minimum near corresponds to the forbidden transition. The
broad and only partially resolved peaks for CH4 seen around the sharp peaks centered
near 1300 and are again the P and R branches. The transition is
allowed for methane and is the reason why the sharp central peaks are observed in the
methane spectrum seen in Figure 8.10. To demonstrate the origin of the broad CO
peaks in Figure 8.10, a high-resolution infrared absorption spectrum for this molecule
is shown in Figure 8.18. It is apparent that the envelopes of the P and R branches in this
figure correspond to the broad unresolved peaks in Figure 8.10.

¢J = 03000 cm-1

¢J = 02150 cm-1
2250 cm-1

¢J = ;1
¢J = 0, ;2

¢J = 0
¢ J = -1

¢J = +1

nJ>n0

nJ>n0

J = 0

nJ>n0

nJ>n0=

nJ

n0
=

gJ

g0
e-(EJ-E0)>kBT = (2J + 1)e-U2J(J+1)>2IkBT

J = 0?
n

J
/n

0

n
J

/n
0

0

0
J

5 10 15 20 25

2

4

6

8

10

12

0.5

0

0

1.0

1.5

2.0

2.5

J
2 4 6 8

700. K

300. K

100. K

HD

700. K

300. K

100. K

CO
FIGURE 8.16
The number of molecules in energy levels
corresponding to the quantum number J
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Simulated 300. K infrared absorption
spectrum and energy diagram for H35Cl.
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S U P P L E M E N T A L

8.7 Fourier Transform Infrared 
Spectroscopy

How are infrared absorption spectra obtained in practice? We now turn to a discussion
of Fourier transform infrared (FTIR) spectroscopy, which is the most widely used tech-
nique for obtaining vibrational absorption spectra. FTIR spectroscopy improves on the
schematic absorption experiment shown in Figure 8.9 by eliminating the monochroma-
tor and by using a broadband blackbody radiation source. By simultaneously analyzing
the absorption throughout the spectral range of the light source, it achieves a multiplex
advantage that is equivalent to carrying out many single-wavelength experiments in
parallel. This technique allows a spectrum to be obtained in a short time and has led 
to a revolution in the field of vibrational spectroscopy. We describe how FTIR
spectroscopy works in this section.

The multiplex advantage in FTIR is gained by using a Michelson interferometer
to determine the frequencies at which radiation is absorbed by molecules. A schematic
drawing of this instrument is shown in Figure 8.19. The functioning of a Michelson
interferometer is first explained by analyzing its effect on monochromatic radiation. An
incoming traveling plane wave of amplitude and intensity 
impinges on a beam splitter S that both transmits and reflects 50% of the incident light.
Each of these two waves is reflected back from a mirror (M1 or M2) and is incident on
the beam splitter S. The wave that is reflected back from the movable mirror M2 and
transmitted by S interferes with the wave that is reflected from the fixed mirror M1 and
reflected from S. The recombined wave resulting from this interference travels in the
negative y direction and has an amplitude at the detector plane given by

(8.19)

The phase difference results from the path difference that the two interfering
waves have traveled . It arises because mirrors M1 and M2 are not equidistant from
the beam splitter:

(8.20)

In this equation, SM1 and SM2 are the distances between the beam splitter and mirrors 1
and 2, respectively. The intensity of the resultant wave at the detector plane I is propor-
tional to the product :

(8.21)

where . The intensity varies periodically with distance as mirror M2 is moved
toward the beam splitter. Whenever , the interference is constructive and the
maximum intensity is transmitted to the detector. Whenever , the
interference is destructive and the wave is fully reflected back into the source.

The signal measured by the detector is called an interferogram because it results
from the interference of the two waves. In this case the interferogram is described by a
single sine wave, so that a frequency analysis of the intensity gives a single frequency
corresponding to the incident plane wave. The output of the interferometer for a single
incident frequency is shown in Figure 8.20. This simple example illustrates how the
frequency of the radiation that enters the interferometer can be determined from the
experimentally obtained interferogram.

We now consider the more interesting case encountered when the incident wave is
composed of a number of different frequencies. This case describes a realistic situation
in which a blackbody source of infrared light passes through a sample and enters the
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Schematic diagram of a Michelson 
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interferometer. Only certain frequencies from the source are absorbed by vibrational
excitations of the molecules. The interferometer sees the blackbody distribution of fre-
quencies of the source from which certain frequencies have been attenuated through
absorption. What can we expect for the case of several incident frequencies? We can
write the amplitude of the wave resulting from the interference of the two reflections
from mirrors M1 and M2 as follows:

(8.22)

In this equation, the subscript j refers to the individual frequencies incident in the beam
entering the interferometer. As you will see in the problems at the end of this chapter, if
the mirror is moving with a velocity v, the measured intensity at the detector is

(8.23)

The interferogram is determined by the distribution of frequencies entering the
interferometer. Figure 8.21b shows interferograms that result from the sample spectra
shown in Figure 8.21a. In practice, the opposite path is followed, in which the meas-
ured interferogram is converted to a spectrum using Fourier transform techniques.
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Equation (8.23).
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Note the contrast between the interferogram of Figure 8.21 and the interferogram in
Figure 8.20. Whereas the interferogram in Figure 8.20 is calculated for a single
frequency, a real spectral line has a finite width in frequency. The effect of this finite
width is to dampen the amplitude of the interferogram for longer and shorter times rela-
tive to the central value of . For our purposes, it is sufficient to note that the inter-
ferograms for the different sample spectra are clearly different. Although the
characteristic absorption frequencies cannot be obtained directly by inspection of the
interferogram, they are readily apparent after the data have been Fourier transformed
from the time domain into the frequency domain.

Because the information about absorption at all frequencies is determined simultane-
ously, an FTIR spectrum can be obtained quickly with high sensitivity. For example, the
components of automobile gas exhaust are typically (percent by volume) N2 (71%), CO2
(18%), H2O (9.2%), CO (0.85%), O2 and noble gases (0.7%), NOx (0.08%), and hydro-
carbons (0.05%). The concentration of these components other than N2, O2, and the rare
gases can be determined in well under a minute by recording a single FTIR spectrum.

S U P P L E M E N T A L

8.8 Raman Spectroscopy
As discussed in the previous sections, absorption of light in the infrared portion of the
spectrum can lead to transitions between eigenstates of the vibrational-rotational energy.
Another interaction between a molecule and an electromagnetic field can also lead to
vibrational and rotational excitation. It is called the Raman effect after its discoverer
and involves scattering of a photon by the molecule. We can think of scattering as the
collision between a molecule and a photon in which energy and momentum are trans-
ferred between the two collision partners. Raman spectroscopy complements infrared
absorption spectroscopy because it obeys different selection rules. For instance, the
stretching mode in a homonuclear diatomic molecule is Raman active but infrared
inactive. The reasons for this difference will become clear after molecular symmetry and
group theory are discussed in Chapter 16.

Consider a molecule with a characteristic vibrational frequency in an electro-
magnetic field that has a time-dependent electric field given by

(8.24)

The electric field distorts the molecule slightly because the negatively charged
valence electrons and the positive nuclei and their tightly bound core electrons experi-
ence forces in opposite directions. This induces a time-dependent dipole moment of
magnitude in the molecule of the same frequency as the field. The dipole
moment is linearly proportional to the magnitude of the electric field, and the propor-
tionality constant is the polarizability . The polarizability is an anisotropic quantity
and its value depends on the direction of the electric field relative to the molecular axes:

(8.25)

The polarizability depends on the bond length , where xe is the equilibrium
value. The polarizability can be expanded in a Taylor-Maclaurin series (see the Math
Supplement, Appendix A) in which terms beyond the first order have been neglected:

(8.26)

Due to the vibration of the molecule, x(t) is time dependent and is given by

(8.27)

Combining this result with Equation (8.26), we can rewrite Equation (8.25) in the form

x(t) = xmax cos (2pnvibt)

a(xe+x) = a(xe) + xada

dx
b

x=xe

+ Á

a

xe + x(t)

minduced(t) = aE0 cos (2pnt)

a

minduced(t)

E = E0 cos (2pnt)
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t = 0

(8.28)minduced(t) = aE = E0 cos (2pnt) Ba(xe) + b ada

dx
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which can be simplified using the trigonometric identity 
to

(8.29)

The time-varying dipole moment radiates light of the same frequency as the dipole
moment, and at the frequencies . These three frequencies
are referred to as the Rayleigh, Stokes, and anti–Stokes frequencies, respectively. We
see that in addition to scattered light at the incident frequency, light will also be scat-
tered at frequencies corresponding to vibrational excitation and de-excitation. Higher
order terms in the expansion for the polarizability [Equation (8.26)] also lead to scat-
tered light at the frequencies , but the scattered intensity at
these frequencies is much weaker than at the primary frequencies.

Equation (8.29) illustrates that the intensity of the Stokes and anti–Stokes peaks is
zero unless . We conclude that for vibrational modes to be Raman active,
the polarizability of the molecule must change as it vibrates. This condition is satisfied
for many vibrational modes and, in particular, it is satisfied for the stretching vibration
of a homonuclear molecule, although for these molecules, making them
infrared inactive. Not all vibrational modes that are infrared active are Raman active
and vice versa. This is why infrared and Raman spectroscopies provide a valuable com-
plement to one another.

A schematic picture of the scattering event in Raman spectroscopy on an energy
scale is shown in Figure 8.22. This diagram is quite different from that considered
earlier in depicting a transition between two states. The initial and final states are the

and states at the bottom of the figure. To visualize the interaction of the
molecule with the photon of energy , which is much greater than the vibrational
energy spacing, we imagine the scattered photon to be “absorbed” by the molecule,
resulting in a much higher intermediate energy “state.” This very short-lived “state”
quickly decays to the final state. Whereas the initial and final states are eigenfunctions
of the time-independent Schrödinger equation, the upper “state” in this energy diagram
need not satisfy this condition. Therefore, it is referred to as a virtual state.

Are the intensities of the Stokes and anti–Stokes peaks equal? We know that their rela-
tive intensity is governed by the relative number of molecules in the originating states. For
the Stokes line, the transition originates from the state, whereas for the anti–Stokes
line, the transition originates from the state. Therefore, the relative intensity of the
Stokes and anti–Stokes peaks can be calculated using the Boltzmann distribution:

(8.30)
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FIGURE 8.22
Schematic depiction of the Raman scatter-
ing event. The spectral peak resulting in
vibrational excitation is called the Stokes
peak, and the spectral peak originating
from vibrational de-excitation is called
the anti–Stokes peak.

between and at 300 K. This calculation shows that the intensities of
the Stokes and anti–Stokes peaks will be quite different. In this discussion of the
Raman effect, we have only considered vibrational transitions. However, just as for
infrared absorption spectra, Raman spectra show peaks originating from both vibra-
tional and rotational transitions.

Raman and infrared spectroscopy are complementary and both can be used to study
the vibrations of molecules. Both techniques can be used to determine the identities of
molecules in a complex mixture by comparing the observed spectral peaks with charac-
teristic group frequencies. The most significant difference between these two spectro-
scopies is the light source needed to implement the technique. For infrared absorption
spectroscopy, the light source is in the infrared. Because Raman spectroscopy is a scat-
tering technique, the frequency of the light used need not match the frequency of the
transition being studied. Therefore, a source in the visible part of the spectrum is gener-
ally used to study rotational and vibrational modes. This has several advantages over
infrared sources. By shifting the vibrational spectrum from the infrared into the visible

5 * 10-78 * 10-3
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part of the spectrum, commonly available lasers can be used to obtain Raman spectra.
Intense lasers are necessary because the probability for Raman scattering is generally
on the order of or less. Furthermore, shifting the frequency of the source from the
infrared into the visible part of the spectrum can reduce interference with absorbing
species that are not of primary interest. For instance, infrared spectra of aqueous solu-
tions always contain strong water peaks that may mask other peaks of interest. By shift-
ing the source frequency to the visible part of the spectrum, such interferences can be
eliminated.

Another interesting application of the Raman effect is the Raman microscope or
microprobe. Because Raman spectroscopy is done in the visible part of the light spec-
trum, it can be combined with optical microscopy to obtain spectroscopic information
with a spatial resolution of better than 0.01 mm. An area in which this technique has
proved particularly useful is as a nondestructive probe of the composition of gas inclu-
sions such as CH4, CO, H2S, N2, and O2 in mineral samples. Raman microscopy has
also been used in biopsy analyses to identify mineral particles in the lung tissues of
silicosis victims and to analyze the composition of gallstones.

S U P P L E M E N T A L

8.9 How Does the Transition Rate between
States Depend on Frequency?

Now that we have some familiarity with the terms absorption, spontaneous emission, and
stimulated emission, the frequency dependence of the interaction of molecules with light
can be examined. Until now, we have only dealt with potential energy functions that are
independent of time. In any spectroscopic method, transitions occur from one state to
another. Transitions cannot be induced by a time-independent potential, because the eigen-
functions of the time-independent Schrödinger equation are stationary states and have a
constant energy. We now outline how a time-dependent electromagnetic field of light inci-
dent on molecules with a discrete set of energy levels can induce transitions between these
levels. To make the mathematics more tractable, we consider a two-state system in which
the states are denoted by 1 and 2 and the normalized solutions to the time-independent
Schrödinger equation are and with eigenvalues , respectively. We
assume that . The corresponding wave functions including the time dependenceE2 7 E1

E1 and E2c2(x)c1(x)

10-6

are . We assume that the system is in the
ground state (state 1) at time t 0.

When the light is turned on, the molecule interacts with the electric field of the light
through its permanent or induced dipole moment, and the time-dependent potential
energy is given by

(8.31)

We have assumed that the electric field E0 lies along the x axis. Writing the operator
in this way is called the dipole approximation, because much smaller

terms involving higher order multipoles are neglected. What change will the system
undergo under the influence of the light? We can expect transitions from the ground
state to the first excited state to occur. 

Because this is a time-dependent system, we must solve the time-dependent
Schrödinger equation . In this two-level sys-
tem, form a complete set, and therefore the eigenfunctions of the operator

must be a linear combination of :

(8.32)

are the probabilities that the state is in level 1 and 2, respectively. At t = 0,
= 1 and = 0. At later times, 1 and 0 as the transition to state 2

occurs. Our goal is to derive an expression for and to determine how it
depends on the frequency of the electric field.
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Substituting Equation (8.32) in the time-dependent Schrödinger equation we obtain

(8.33)

This equation can be simplified by evaluating :

(8.34)
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cancels out on the left side of Equation (8.33) and 
Equation (8.34) takes the simpler form

(8.35)

In order to obtain an equation for , we next multiply Equation 8.35 onda2(t)>dt
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the left by and integrate over the spatial coordinate x to obtain

(8.36)

Because are orthonormal, the last two integrals can be evaluated and
Equation (8.36) can be simplified to

(8.37)

Equation (8.37) can be simplified further if only changes in the coefficients a1(t) and
a2(t) for small values of t are considered. In this limit, we can replace a1(t) and a2(t) on
the right side of this equation by their initial values, and .
Therefore, only one term remains on the right side of Equation (8.37). It turns out that
imposing this limit does not affect the general conclusions drawn next. We also replace

by the complete form .
After doing so, the following equations are obtained:
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In the last equation we have introduced the transition dipole moment defined in
Equation (8.6) by . The transition dipole moment
is important because it generates the selection rules for any spectroscopy, as discussed
in Section 8.4. Next, the last equation in Equation (8.38) is integrated with respect to
time, using the dummy variable to obtain :

(8.39)

(8.40)

This expression looks complicated, but it contains a great deal of useful information
that can be extracted fairly easily. Most importantly, it is seen that for all
times unless the transition dipole moment . Next, we look at the terms in the
parentheses. The numerator in each of the terms is an oscillating function of time. The
period of oscillation approaches zero in the first and second terms as 
and , respectively. In these limits, the denominator approaches zero.
These are the conditions that lead a2 to grow rapidly with time. The second term corre-
sponds to absorption of a photon because we have chosen . The first term
corresponds to stimulated emission of a photon. Stimulated emission is of importance
in understanding lasers; this process is discussed in more detail in Chapter 11.
However, because the current topic is absorption, we focus on the narrow range of
energy around in which only the absorption peak appears. The behavior of

at the resonance is not easy to discern, because .
We use L’Hôpital’s rule,

(8.41)

which in this case takes the form

(8.42)

The important result that emerges from this calculation is that at the resonance condi-
tion increases linearly with t. How does a2(t)
change with t near but not at the resonance condition? We can get this information if
a2(t) is graphed versus t for the values near the resonance as shown in Figure 8.23.

Figure 8.23 shows that and therefore increases nearly linearly with time
for small values of t if is extremely close to hv. This means that the probability of
finding the atom or molecule in the excited state increases with time. However, for photon
energies that deviate even by 1 ppm from this limit, will oscillate and remain small.
The oscillations will be more frequent and smaller in amplitude the more hv differs from

. The probability of finding the atom or molecule in the excited state remains
small if hv differs even slightly from and the atom or molecule is unable to take
up energy from the electromagnetic field. We conclude that the rate of transition from the
ground to the excited state is appreciable only if is equal to .

Our final goal is to find an expression for that represents the probability
of finding the molecule in the excited state with energy E2 after it has been exposed to
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the light for the time t. We leave this part of the derivation for the end-of-chapter prob-
lems and simply state the result here:

(8.43)

Figure 8.24 shows a graph of against for 40,
120, and 400 ps. As expected, the probability of finding the molecule in the excited
state is sharply peaked if the photon energy satisfies the condition .
Because increases linearly with time for , increases
as t2 at resonance. The different curves in Figure 8.24 have been normalized to the
same maximum value to allow a direct comparison of their widths in energy. The rela-
tive amplitudes of at resonance for 40, 120, and 400 ps are 1, 9, and 100,
respectively. Because the peak height varies with time as t2 and the width decreases as
1 t, the total area under the resonance varies as t. This shows that the probability of
finding the molecule in the upper state increases linearly with time.

As Figure 8.24 shows, the photon energy range over which absorption occurs
becomes narrower as the time t increases. What is the origin of this effect? Small values
of t are equivalent to short light pulses. If the time profile of the pulse is expanded as a
Fourier series in the frequency, the 40 ps pulse contains a broader range of frequencies
than the 400 ps pulse. For this reason, the range of energy over which energy is taken
up by the system is larger for the 40 ps pulse than for the 400 ps pulse.

The probability density is closely related to the intensity observed in an
absorption spectrum. How is the broadening that was just discussed related to the
linewidth observed in an experimentally determined spectrum? To answer this ques-
tion, we must distinguish between an intrinsic and a measured linewidth. By intrinsic
linewidth, we mean the linewidth that would be measured if the spectrometer were
perfect. However, a real spectrometer is defined by an instrument function, which is the
output of the spectrometer for a very narrow spectral peak. The observed spectrum
results from the convolution of the instrument function with the intrinsic linewidth.

Based on theoretical calculations, the intrinsic linewidth for vibrational spectra is
less than . This is very small compared with the resolution of conventional
infrared spectrometers, which is typically no better than . Therefore, the width
of peaks in a spectrum is generally determined by the instrumental function as shown in
the top panel of Figure 8.25 and gives no information about the intrinsic linewidth.
However, peaks that are broader than the instrument function are obtained if a sample
contains many different local environments for the entity generating the peak. For
example, the stretching region in an infrared spectrum in liquid water is very
broad. This is the case because of the many different local geometries that arise from
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hydrogen bonding between H2O molecules, and each of them gives rise to a slightly
different stretching frequency. This effect is referred to as inhomogeneous
broadening and is illustrated in the bottom panel of Figure 8.25.

O¬H

Q8.1 Why would you observe a pure rotational spectrum in
the microwave region and a rotational-vibrational spectrum
rather than a pure vibrational spectrum in the infrared region?

Q8.2 Solids generally expand as the temperature increases.
Such an expansion results from an increase in the bond length
between adjacent atoms as the vibrational amplitude increases.
Will a harmonic potential lead to thermal expansion? Will a
Morse potential lead to thermal expansion?

Q8.3 How can you observe vibrational transitions in
Raman spectroscopy using visible light lasers where the

photon energy is much larger than the vibrational energy
spacing?

Q8.4 A molecule in an excited state can decay to the ground
state either by stimulated emission or spontaneous emission.
Use the Einstein coefficients to predict how the relative prob-
ability of these processes changes as the frequency of the
transition doubles.

Q8.5 In Figure 8.16, increases initially with J for all
three temperatures for CO but only for the two highest tem-
peratures for HD. Explain this difference.

nJ>n0
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dipole approximation
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FIGURE 8.25
An experimental spectrum, as shown,
arises from the convolution (indicated
by the symbol *) of the instrument func-
tion and the intrinsic linewidth of the
transition. For a homogeneous sample
(top panel) the width of the spectrum is
often determined by the instrument
function. For an inhomogeneous sam-
ple, the intrinsic linewidth is the sum of
the linewidths of the many different
local environments. For inhomogeneous
samples, the width of the spectrum can
be determined by the intrinsic linewidth,
rather than the instrument function.



Q8.6 What is the difference between the transition dipole
moment and the dynamic dipole moment?

Q8.7 Nitrogen and oxygen do not absorb infrared
radiation and are therefore not greenhouse gases. Why 
is this the case?

Q8.8 Does the initial excitation in Raman spectroscopy result
in a stationary state of the system? Explain your answer.

Q8.9 What feature of the Morse potential makes it suitable
for modeling dissociation of a diatomic molecule?

Q8.10 If the rotational levels of a diatomic molecule were
equally spaced and the selection rule remained unchanged,
how would the appearance of the rotational-vibrational
spectrum in Figure 8.17 change?

Q8.11 If a spectral peak is broadened, can you always con-
clude that the excited state has a short lifetime?

Q8.12 What is the difference between a permanent and a
dynamic dipole moment?

Q8.13 What is the explanation for the absence of a peak in the
rotational-vibrational spectrum near in Figure 8.17?

Q8.14 What is the advantage in acquiring a vibrational spec-
trum using a FTIR spectrometer over a spectrometer in which
the absorption is measured separately at each wavelength?

Q8.15 The number of molecules in a given energy level is
proportional to where is the difference in energy
between the level in question and the ground state. How is it
possible that a higher lying rotational energy level can have a
higher population than the ground state?

Q8.16 The square of a number of vibrational energy eigen-
functions are shown superimposed on a Morse potential in the
following figure. Assign quantum numbers to the levels

¢Ee-¢E>kBT

3000 cm-1
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Q8.17 As a diatomic molecule rotates, the centrifugal force
leads to a small change in the bond length. Do you expect the
bond length to increase or decrease? Do you expect the differ-
ence between adjacent rotational energy peaks to
increase or decrease?

Q8.18 For a harmonic potential, the vibrational force
constant (a) is independent of the quantum number n and
(b) independent of x-xe for the molecule. Do you expect the
same behavior for a Morse potential?

Q8.19 Use your answer from Q8.18 to compare the force
constants for compression and stretching at the classical turn-
ing points for the levels shown in Q8.16. What trend do you
see as n increases?

Q8.20 How many vibrational degrees of freedom do each of
the following molecules have? NH3, HCN, C2H6, C60?

¢(¢n)

x

V
(x

)

Numerical Problems

Problem numbers in red indicate that the solution to the
problem is given in the Student’s Solutions Manual.

P8.1 The 1H35Cl molecule can be described by a Morse
potential with . The force constant k for
this molecule is and .

a. Calculate the lowest four energy levels for a Morse potential.

b. Calculate the fundamental frequency corresponding 
to the transition and the frequencies of 
the first three overtone vibrations. How large would the
relative error be if you assume that the first three overtone
frequencies are , , and ?

P8.2 The infrared spectrum of 7Li19F has an intense line at
. Calculate the force constant and period of vibra-

tion of this molecule.

P8.3 Purification of water for drinking using UV light is a
viable way to provide potable water in many areas of the world.
Experimentally, the decrease in UV light of wavelength 250 nm
follows the empirical relation where l is the I>I0 = e-e¿ l

910.57 cm-1

4n03n02n0

n = 0: n = 1
n0

n = 8.97 * 1013 s-1516 N m-1
De = 7.41 * 10-19 J

distance that the light passed through the water and is an
effective absorption coefficient. for pure
water and for water exiting a wastewater treatment
plant. What distance corresponds to a decrease in I of 15%
from its incident value for (a) pure water and (b) waste water?

P8.4 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

0.30 cm-1
e¿ = 0.070 cm-1

e¿
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shown. Explain the differences in the shape of the eigenfunc-
tions compared to those for a harmonic potential.



P8.7 The rotational constant for 14N2 determined from
microwave spectroscopy is . The atomic mass of
14N is 14.003074007 amu. Calculate the bond length in 14N2
to the maximum number of significant figures consistent with
this information.

P8.8 An infrared absorption spectrum of an organic
compound is shown in the following figure. Use the charac-
teristic group frequencies listed in Section 8.5 to decide
whether this compound is more likely to be ethyl amine,
pentanol, or acetone.

1.99824 cm-1

a. Calculate in the dipole approximation. Can
you see a pattern and discern a selection rule? You may
need to evaluate a few more integrals of the type . 
The standard integral

is useful for solving this problem.

b. Determine the ratio . On the basis of your result,
would you modify the selection rule that you determined
in part (a)?

P8.14 The bond length of 7Li1H is 159.49 pm. Calculate the
value of B and the spacing between lines in the pure rotational
spectrum of this molecule in units of .

P8.15 Calculating the motion of individual atoms in the
vibrational modes of molecules (called normal modes) is an
advanced topic. Given the normal modes shown in the fol-
lowing figure, decide which of the normal modes of CO2
and H2O have a nonzero dynamical dipole moment and are
therefore infrared active. The motion of the atoms in the
second of the two doubly degenerate bend modes for CO2
is identical to the first but is perpendicular to the plane of
the page.
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P8.5 The molecules 16O12C32S and 16O12C34S have values
for of and ,
respectively. Calculate the and bond distances.

P8.6 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

C¬SC¬O
5932.816 * 106 s-16081.490 * 106 s-1h>8p2I

Frequency/cm�1

500 1000 1500 2000 2500 3000 3500 4000

A
bs

or
pt

io
n 

in
te

ns
ity

4000 3500 3000 2500 2000 1500 1000 500
Wave numbers/(cm–1)

A
bs

or
pt

io
n 

in
te

ns
ity

P8.9 Calculate the zero point energies for 1H19F and 2D19F.
Compare the difference in the zero point energies to kBT at 298 K.

P8.10 Write an expression for the moment of inertia of the
acetylene molecule in terms of the bond distances. Does this
molecule have a pure rotational spectrum?

P8.11 Show that the selection rule for the two-dimensional
rotor in the dipole approximation is . Use¢ml = ;1

for the initial and final states of theA+feim1f and A¿+feim2f

rotor and as the dipole moment element.

P8.12 Following Example Problem 8.5, show that the
rotational transition is allowed.

P8.13 Selection rules in the dipole approximation are deter-
mined by the integral . If this
integral is nonzero, the transition will be observed in an absorp-
tion spectrum. If the integral is zero, the transition is “forbidden”
in the dipole approximation. It actually occurs with low probabil-
ity because the dipole approximation is not exact. Consider the
particle in the one-dimensional box and set .mx = -ex

mmn
x = 1c*

m(t)mx(t)cn(t)dt

J = 1: J = 2

mcosf

C

H H

O

Symmetric
stretch

Symmetric
stretch

Asymmetric
stretch

Asymmetric
stretch

Bend

Doubly degenerate bend

OO C OO C OO C OO

H H

O

H H

O

P8.16 The force constants for F2 and I2 are 470. and
, respectively. Calculate the ratio of the vibrational

state populations at and at 1000. K.

P8.17 The rigid rotor model can be improved by recogniz-
ing that in a realistic anharmonic potential, the bond length
increases with the vibrational quantum number n. Therefore,
the rotational constant depends on n, and it can be shown that

, where B is the rigid rotor value. The
constant can be obtained from experimental spectra. For
1H81Br, and . Using this
more accurate formula for Bn, calculate the bond length for
HBr in the ground state and for .n = 3

a = 0.23328 cm-1B = 8.46488 cm-1
a

Bn = B - (n + 1>2)a

T = 300.n1>n0 and n2>n0

172 N m-1



of these gases has a partial pressure of atm.

P8.19 Show that the Morse potential approaches the harmonic
potential for small values of the vibrational amplitude. (Hint:
Expand the Morse potential in a Taylor-Maclaurin series.)

P8.20 The rotational constant for 7Li19F determined from
microwave spectroscopy is . The atomic masses
of 7Li and 19F are 7.00160041 and 18.9984032 amu, respec-
tively. Calculate the bond length in 7Li19F to the maximum
number of significant figures consistent with this information.

P8.21 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

1.342583 cm-1

1.5 * 10-6
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b. Evaluate the effect of adding the additional term to
. You will need the recursion relationship

.

c. Show that both the transitions and
are allowed in this case.

P8.23 The fundamental vibrational frequencies for 1H2 and
2D2 are 4401 and , respectively, and De for both
molecules is 7.677 * 10-19 J. Using this information, calcu-
late the bond energy of both molecules.

P8.24 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

3115 cm-1

n = 0: n = 2
n = 0: n = 1

= nHn-1(a
1>2x) + 1

2 Hn+1(a
1>2x)a1>2xHn(a1>2x)

mmn
x

P8.18 Greenhouse gases generated from human activity absorb
infrared radiation from Earth and keep it from being 
dispersed outside our atmosphere. This is a major cause 
of global warming. Compare the path length required to absorb
90.% of Earth’s radiation near a wavelength of for7 mm

and the chlorofluorocarbonCH3CCl3 3e(l) = 1.8 (cm atm)-14
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P8.22 Overtone transitions in vibrational absorption spectra
for which are forbidden for the harmonic
potential because 
as shown in Section 8.4. However, overtone transitions are
allowed for the more realistic anharmonic potential. In this prob-
lem, you will explore how the selection rule is modified by
including anharmonic terms in the potential. We do so in an indi-
rect manner by including additional terms in the expansion of the
dipole moment 
but assuming that the harmonic oscillator total energy eigen-
functions are still valid. This approximation is valid if the
anharmonic correction to the harmonic potential is small. You
will show that including the next term in the expansion of the
dipole moment, which is proportional to x2, makes the transi-
tions allowed.

a. Show that Equation (8.8) becomes

 +
AmA0

2!
ad2mx

dx2 b
x=0 3

q

- q

Hm(a1>2x)x2H0(a1>2x)e-ax2
dx

 + AmA0admx

dx
b

x=0 3
q

- q

Hm(a1>2x)x H0(a1>2x)e-ax2
dx

mm0
x = AmA0m0x 3

q

- q

Hm(a1>2x) H0(a1>2x)e-ax2
dx

¢ n = ;2

mx(xe + x) = m0x + x(dmx>dx)re
+ Á

mmn
x = 0 for ƒm - n ƒ Z 1V = (1>2)kx2

¢ n = +2, +3, Á
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P8.25 Isotopic substitution is used to identify characteris-
tic groups in an unknown compound using vibrational spec-
troscopy. Consider the bond in ethane (12C2

1H6). By
what factor would the frequency change if deuterium were
substituted for all the hydrogen atoms? Treat the H and D
atoms as being rigidly attached to the carbon.

P8.26 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

C¬C
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P8.27 Fill in the missing step in the derivation that led to
the calculation of the spectral line shape in Figure 8.24.
Starting from

and neglecting the first term in the parentheses, show that

a*
2(t)a2(t) = E2

03m21
x 42 sin23(E2 - E1 - hn)t>2U4

(E2 - E1 - hn)2

a2(t) = m21
x

E0

2
a 1 - e

i
U(E2-E1+hn)t

E2 - E1 + hn
+

1 - e- i
U(E2-E1-hn)t

E2 - E1 - hn
b

assuming that eachCFC-14 3e(l) = 4.1 * 103 (cm atm)-14



P8.28 The force constant for 7Li2 is . Calculate the
vibrational frequency and zero point energy of this 
molecule.

P8.29 Because the intensity of a transition to first order is
proportional to the population of the originating state, the
J value for which the maximum intensity is observed in a rota-
tional-vibrational spectrum is not generally . Treat J in
the equation

as a continuous variable.

a. Show that

nJ

n0
=

gJ

g0
e-(EJ-E0)>kBT = (2J + 1)e-U2J(J+1)>(2IkBT)

J = 0

26.0 N m-1 d. Expressing in terms of the mirror velocity v, show that

P8.33 Calculate the moment of inertia, the magnitude of the
rotational angular momentum, and the energy in the 
rotational state for 14N2.

P8.34 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

J = 4

I(t) =
I0

2
a1 + cos c2v

c
v t d b

¢d(t)
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P8.35 A measurement of the vibrational energy levels of
12C16O gives the relationship

where n is the vibrational quantum number. The fundamental
vibrational frequency is . From these
data, calculate the depth De of the Morse potential for 12C16O.
Calculate the bond energy of the molecule.

P8.36 Using the formula for the energy levels for the Morse
potential,

show that the energy spacing between adjacent levels is given by

P8.37 Use your results from Problem P8.36 to solve the
following problem. For 1H35Cl, and

. As n increases, the energy difference
between adjacent vibrational levels decreases and approaches
zero, corresponding to dissociation. Assuming a Morse
potential, calculate all discrete vibrational energy values for
1H35Cl. What value of n corresponds to dissociation?

P8.38 In Problem P8.29 you obtained the result

Using this result, estimate T for the simulated 1H35Cl rota-
tional spectra shown in the following figure. Give realistic
estimates of the precision with which you can determine T
from the spectra. In generating the simulation, we assumed
that the intensity of the individual peaks is solely determined
by the population in the originating state and that it does not
depend on the initial and final J values.

Jmax = (1>2) c24IkBT>U2 - 1 d

n = 8.97 * 1013 s-1
De = 7.41 * 10-19 J

En+1 - En = hn -
(hn)2

2De
(n + 1)

En = hnan +
1

2
b -

(hn)2

4De
an +

1

2
b2

0 = 2170.21 cm-1n
'

(n) = 2170.21an +
1

2
bcm-1 - 13.461an +

1

2
b2

cm-1n
'

danJ

n0
b

dJ
= 2e-U2J(J+1)>(2I kBT) -

(2J + 1)2 U2

2IkBT
e-U2J(J+1)>(2I kBT)

b. Show that setting gives the equation

c. Show that the solution of this quadratic equation is

In this problem, we assume that the intensity of the indi-
vidual peaks is solely determined by the population in the
originating state and that it does not depend on the initial
and final J values.

P8.30 A strong absorption band in the infrared region of
the electromagnetic spectrum is observed at 
for 40Ca1H. Assuming that the harmonic potential applies,
calculate the fundamental frequency in units of inverse
seconds, the vibrational period in seconds, and the zero
point energy for the molecule in joules and electron-volts.

P8.31 The spacing between lines in the pure rotational
spectrum of 11B2D is . Calculate the bond
length of this molecule.

P8.32 In this problem, you will derive the equations used to
explain the Michelson interferometer for incident light of a
single frequency.

a. Show that the expression

represents the sum of two waves of the form
, one of which is phase shifted

by the amount evaluated at the position yD.

b. Show using the definition that
.

c. Expressing in terms of , show that

I(t) =
I0

2
a1 + cos

2p¢d(t)

l
b

¢d(t)d(t)

I(t) = I0>[2(1 + cos d(t))]
I(t) = A(t)A*(t)

d(t)
A0>22 exp [i(kx - vt)]

A(t) =
A0

22
(1 + eid(t)) exp [i(kyD - vt)]

3.9214 * 1011 s-1

n

= 1298 cm-1n
'

Jmax =
1

2
cA

4IkBT

U2 - 1 d

2 -
(2Jmax + 1)2U2

2IkBT
= 0

d(nJ>n0)>dJ = 0



P8.39 Of the 190 nm wavelength light incident on a 
15.0-mm-thick piece of fused silica quartz glass, 35% passes
through the glass and the remainder is absorbed. What 
percentage of the light will pass through a 35.0-mm-thick
piece of the same glass?

P8.40 The moment of inertia of 7Li2 is 4.161 * 10-46 kg m2.
Calculate the bond length of the molecule.

P8.41 Calculate the angular momentum of 7Li2 in the 
J = 5 state. 

P8.42 The rotational energy of 7Li2 in the J = 5 state is
4.0126 * 10-22 J. Calculate the bond length of the molecule.

P8.43 A simulated infrared absorption spectrum of a gas-
phase organic compound is shown in the following figure.
Use the characteristic group frequencies listed in Section 8.5
to decide whether this compound is more likely to be Cl2CO,
(CH3)2CO, CH3OH, CH3COOH, CH3CN, CCl4, or C3H8.
Explain your reasoning.

P8.44 An infrared absorption spectrum of an organic com-
pound is shown in the following figure. Use the characteristic
group frequencies listed in Section 8.5 to decide whether this
compound is more likely to be hexene, hexane, or hexanol.
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P8.45 If the vibrational potential is not harmonic, the force
constant is not independent of degree of stretching or compres-
sion of a molecule. Using the relation ,
derive an expression for the vibrational force constant for a
Morse potential as a function of x–xe. Using the parameters from 
Table 8.3, plot keffective as a function of x over a 5.0 pm range
from xe for 1H35Cl. What is the variation of keffective over this
range of x?

;

keffective = (d2V(x)>dx2)
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Computational Problems

More detailed instructions on carrying out these calculations
using Spartan Physical Chemistry are found on the book web-
site at www.masteringchemistry.com.

C8.1 Build structures for the gas-phase (a) hydrogen fluo-
ride (1H19F), (b) hydrogen chloride (1H35Cl), (c) carbon
monoxide (12C16O), and (d) sodium chloride (23Na35Cl) mol-
ecules. (For Spartan, these are the default isotopic masses.)
Calculate the equilibrium geometry and the IR spectrum
using the B3LYP method with the basis set.

a. Compare your result for the vibrational frequency with the
experimental value listed in Table 8.3. What is the relative
error in the calculation?

6-311+G**

b. Calculate the force constant from the vibrational frequency
and reduced mass. Determine the relative error using the
experimental value in Table 8.3.

c. Calculate the values for the rotational constant B using the
calculated bond length. Determine the relative error using
the experimental value in Table 8.3.

C8.2 Calculate the bond energy in gaseous (a) hydrogen
fluoride (1H19F), (b) hydrogen chloride (1H35Cl), (c) carbon
monoxide (12C16O), and (d) sodium chloride (23Na35Cl)
molecules by comparing the total energies of the species in
the dissociation reactions .3e.g., HF(g): H(g) + F(g)4
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Use the B3LYP method with the basis set. Determine
the relative error of the calculation using the experimental
value in Table 8.3.

6-31G*

www.masteringchemistry.com


C8.3 Build structures for the gas-phase (a) NF3, (b) PCl3,
and (c) SO3 molecules. Calculate the equilibrium geometry
and the IR spectrum using the B3LYP method with the

basis set. Animate the vibrational normal modes and
classify them as symmetrical stretch, symmetrical deforma-
tion, degenerate stretch, and degenerate deformation.

C8.4 Build structures for the gas-phase (a) F2CO,
(b) Cl2CO, and (c) O2NF molecules of the structural form
X2YZ. Calculate the equilibrium geometry and the IR spec-
trum using the B3LYP method with the basis set.6-311+G**

6-31G*

Animate the vibrational normal modes and classify them as
Y-Z stretch, YX2 scissors, antisymmetric X-Y stretch, 
YX2 rock, and Y-X2 wag.

C8.5 Build structures for the bent gas-phase (a) HOF, 
(b) ClOO, and (c) HSO molecules of the structural form XYZ.
Calculate the equilibrium geometry and the IR spectrum using
the B3LYP method with the basis set. Animate the
vibrational normal modes and classify them as Y-Z stretch, 
X-Y stretch, and X-Y-Z bend.

6-31G*
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Web-Based Simulations, Animations, and Problems

W8.1 A pair of emission spectra, one from an unknown
(hypothetical) atom and one resulting from the electron
energy levels entered using sliders, is displayed. The student
adjusts the displayed energy levels in order to replicate the
atomic spectrum and, hence, determine the actual electron
energy levels in the atom.

W8.2 The number of allowed energy levels in a Morse
potential is determined for variable values of the vibrational
frequency and the well depth.

W8.3 The normal modes for H2O are animated. Each
normal mode is associated with a local motion from a list 
displayed in the simulation.

W8.4 The normal modes for CO2 are animated. Each 
normal mode is associated with a local motion from a list
displayed in the simulation.

W8.5 The normal modes for NH3 are animated. Each
normal mode is associated with a local motion from a list
displayed in the simulation.

W8.6 The normal modes for formaldehyde are animated.
Each normal mode is associated with a local motion from a
list displayed in the simulation.

W8.7 Simulated rotational (microwave) spectra are gener-
ated for one or more of the diatomic molecules 12C16O, 1H19F,
1H35Cl, 1H79Br, and 1H127I. Using a slider, the temperature is
varied. The J value corresponding to the maximum intensity
peak is determined and compared with the prediction from the
formula

The number of peaks that have an intensity greater than half
of that for the largest peak is determined at different tempera-
tures. The frequencies of the peaks are then used to generate
the rotational constants B and .

W8.8 Simulated rotational-vibrational (infrared) spectra are
generated for one or more diatomic molecules including
12C16O, 1H19F, 1H35Cl, 1H79Br, or 1H127I for predetermined
temperatures. The frequencies of the peaks are then used to
generate the rotational constants B and , and the force
constant k.
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9.1 Formulating the Schrödinger
Equation

9.2 Solving the Schrödinger
Equation for the
Hydrogen Atom

9.3 Eigenvalues and
Eigenfunctions for the 
Total Energy

9.4 The Hydrogen Atom Orbitals

9.5 The Radial Probability
Distribution Function

9.6 The Validity of the Shell
Model of an Atom

The Hydrogen Atom

Classical physics is unable to explain the stability of atoms. In this

chapter, we solve the Schrödinger equation for the motion of an electron

in a spherically symmetric Coulomb potential and show that an atom con-

sisting of an electron orbiting around a central positively charged nucleus

is stable. To emphasize the similarities and differences between quantum

mechanical and classical models, a comparison is made between the quan-

tum mechanical picture of the hydrogen atom and the popularly depicted

shell picture of the atom.

9.1 Formulating the Schrödinger Equation
After having applied quantum mechanics to a number of simple problems, we turn to
one of the triumphs of quantum mechanics: the understanding of atomic structure and
spectroscopy. As discussed in Chapter 10, for atoms with more than one electron, the
Schrödinger equation cannot be solved exactly. However, for the hydrogen atom, the
Schrödinger equation can be solved exactly, and many of the results we obtain from
that solution can be generalized to many-electron atoms.

To set the stage historically, experiments by Rutherford had established that the
positive charge associated with an atom was localized at the center of the atom and that
the electrons were spread out over a large volume (relative to nuclear dimensions) cen-
tered at the nucleus. The shell model in which the electrons are confined in spherical
shells centered at the nucleus had a major flaw when viewed from the vantage point of
classical physics. An electron orbiting around the nucleus undergoes accelerated
motion and radiates energy. Therefore, it will eventually fall into the nucleus. Atoms
are not stable according to classical mechanics. The challenge for quantum mechanics
was to provide a framework within which the stability of atoms could be understood.

We model the hydrogen atom as made up of an electron moving about a proton
located at the origin of the coordinate system. The two particles attract one another and
the interaction potential is given by a simple Coulomb potential:

(9.1)V(r) = -
e2

4pe0 ƒ r ƒ
= -

e2

4pe0r
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In this equation, e is the electron charge, and is the permittivityof free space. In thee0
text that follows, we abbreviate the magnitude of the vector , the distance between
the nucleus, and the electron. Because the potential is spherically symmetrical, we

r as r
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choose spherical polar coordinates to formulate the Schrödinger equation for
this problem. In doing so, it takes on the formidable form

(9.2)

In this equation me is the electron mass.

9.2 Solving the Schrödinger Equation for the
Hydrogen Atom

Because V(r) depends only on r and not on the angles , we can achieve a
separation of variables, as discussed in Sections 4.3 and 7.4, and write the wave func-
tion as a product of three functions, each of which depends on only one of the variables:

(9.3)

This simplifies the solution of the partial differential equation greatly. We also recognize
that, apart from constants, the angular part of Equation (9.2), the last two terms in the
brackets, is the operator discussed in Section 7.6. Therefore, the angular part of

is the product that we encountered in solving the Schrödinger equa-
tion for the rigid rotor, namely, the normalized spherical harmonic functions .
Therefore, the only part of that remains unknown is the radial function R(r).

Equation (9.2) can be reduced to a radial equation in the following way. Substituting
the product function into Equation (9.2), and taking out
those parts not affected by the partial derivative in front of each term, we obtain
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FIGURE 9.1
The individual contributions to the effec-
tive potential and their sum are plotted as
a function of distance. The centrifugal
potential used is for ; larger values
of l make the effective potential more
repulsive at small r.

l = 1

We know that . Putting this result into U2l(l + l)®(u)£(f)lN2®(u)£(f) =
Equation (9.4), and canceling the product that appears in each term, a differ-
ential equation is obtained for R(r):

(9.5)

Before continuing, we summarize the preceding discussion. The Schrödinger equation
was formulated for the hydrogen atom. It differs from the rigid rotor problem, where r has
a fixed value, in that the potential is not zero; instead, it depends inversely on r. Because
the potential is not dependent on the angular coordinates, the solutions to the Schrödinger
equation for are the same as those obtained for the rigid rotor. In the rigid rotor, r
was fixed at a constant value that is appropriate for a diatomic molecule with a stiff bond.
For the electron–proton distance in the hydrogen atom, this is clearly not appropriate, and
the wave function will depend on r. We have been able to separate out the dependence of
the wave function on the radial coordinate r from that on the angles . We now take
a closer look at the eigenvalues and eigenfunctions for Equation (9.5).

Note that the second term on the left-hand side of Equation (9.5) can be viewed as
an effective potential, Veff(r). It is made up of the centrifugal potential, which varies
as +1/r2, and the Coulomb potential, which varies as –1/r:
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Each of the terms that contribute to Veff(r) and their sums are graphed as a function of
distance in Figure 9.1.

Because the first term is repulsive and varies more rapidly with r than the Coulomb
potential, it dominates at small distances if . Both terms approach zero for large
values of r. The resultant potential is repulsive at short distances for and is more
repulsive the greater the value of l. The net result of this repulsive centrifugal potential
is to force the electrons in orbitals with (looking ahead, p, d, and f electrons) on
average farther from the nucleus than s electrons for which .

9.3 Eigenvalues and Eigenfunctions for the
Total Energy

Equation (9.5) can be solved using standard mathematical methods, so we concern our-
selves only with the results. Note that the energy E only appears in the radial equation
and not in the angular equation. Because only one variable is involved in this equation,
the energy is expected to depend on a single quantum number. The quantization condi-
tion that results from the restriction that R(r) be well behaved at large values of

is

(9.7)

This formula is usually simplified by combining a number of constants in the form
. The quantity a0 has the value and is called the

Bohr radius. Use of this definition leads to the following formula:

(9.8)

Note that En goes to zero as . As previously emphasized, the zero of energy is a
matter of convention rather than being a quantity that can be determined. As n
approaches infinity, the electron is on average farther and farther from the nucleus, and
the zero of energy corresponds to the electron at infinite separation from the nucleus.
All negative energies correspond to bound states of the electron in the Coulomb
potential. Positive energies correspond to states in which the atom is ionized.

As has been done previously for the particle in the box and the harmonic oscilla-
tor, the energy eigenvalues can be superimposed on a potential energy diagram, as
shown in Figure 9.2. The potential forms a “box” that acts to confine the particle.
This box has a peculiar form in that it is infinitely deep at the center of the atom, and
the depth falls off inversely with distance from the proton. Figure 9.2 shows that the
two lowest energy levels have an appreciable separation in energy and that the sepa-
ration for adjacent energy levels becomes rapidly smaller as . All states for
which have energies in the narrow range between J and
zero. Although this seems strange at first, it is exactly what is expected based on the
results for the particle in the box. Because of the shape of the potential, the H atom
box is very narrow for the first few energy eigenstates but becomes very wide for
large n. The particle in the box formula [Equation (4.17)] predicts that the energy
spacing varies as the inverse of the square of box length. This is the trend seen in
Figure 9.2. Note also that the wave functions penetrate into the classically forbidden
region just as for the particle in the finite depth box and the harmonic oscillator.

Although the energy depends on a single quantum number n, the eigenfunctions
are associated with three quantum numbers because three boundary condi-

tions arise in a three-dimensional problem. The other two quantum numbers are l and
ml, which arise from the angular coordinates. As for the rigid rotor, these quantum
numbers are not independent. Their relationship is given by
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The relationship between l and ml was discussed in Section 7.3. Although we do not
present a justification of the relationship between n and l here, all the conditions in
Equation (9.9) emerge naturally out of the boundary conditions in the solution of the
differential equations.

The radial functions R(r) are products of an exponential function with a polynomial
in the dimensionless variable r a0. Their functional form depends on the quantum
numbers n and l. The first few normalized radial functions Rnl(r) are as follows:

To form the hydrogen atom eigenfunctions, we combine Rnl(r) with the spherical
harmonics and list here the first few of the infinite set of normalized wave functions

for the hydrogen atom. Note that, in general, the
eigenfunctions depend on , but are not functions of for . The
quantum numbers are associated with the wave functions using the notation :
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These functions are referred to both as the H atom eigenfunctions and the H atom orbitals.
A shorthand notation for the quantum numbers is to give the numerical value of n followed
by a symbol indicating the values of l and ml. The letters s, p, d, and f are used to denote

, 1, 2, and 3, respectively, is referred to as the 1s orbital or wave function,
and all three wave functions with and are referred to as 2p orbitals. The wave
functions are real functions if , and complex functions otherwise. The angular and
radial portions of the wave functions have nodes that are discussed in more detail later in
this chapter. These functions have been normalized in keeping with the association
between probability density and stated in the first postulate (see Chapter 3).

EXAMPLE PROBLEM 9.1

Normalize the functions in three-dimensional spher-
ical coordinates.

Solution
In general, a wave function is normalized by multiplying it by a constant N

defined by . In three-dimensional spherical coordinates, 
, as discussed in Section 2.6. The normalization integral dt = r2sinudrdudf
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For the first function,

We use the standard integral

Integrating over the angles , we obtain .
Evaluating the integral over r,

For the second function,

This simplifies to
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Using the same standard integral as in the first part of the problem,

Each eigenfunction listed here describes a separate state of the hydrogen atom.
However, as we have seen, the energy depends only on the quantum number n.
Therefore, all states with the same value for n, but different values for l and ml, have the
same energy and we say that the energy levels are degenerate. Using the formulas given
in Equation (9.9), we can see that the degeneracy of a given level is n2. Therefore, the

level has a fourfold degeneracy and the level has a ninefold degeneracy.
The angular part of each hydrogen atom total energy eigenfunction is a spherical

harmonic function. As discussed in Section 7.5, these functions are complex unless
. To facilitate making graphs, it is useful to form combinations of those hydro-

gen orbitals for which are real functions of . As
discussed in Section 7.5, this is done by forming linear combinations of 
and . The first few of these combinations, resulting in the 2p, 3p, and 3d
orbitals, are shown here:
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When is it appropriate to use these functions as opposed to the complex functions
? The real functions are more useful in visualizing chemical bonds, so those

will generally be used throughout this book. However, both representations are useful
in different applications, and we note that although the real functions are eigenfunctions
of and , they are not eigenfunctions of .

The challenge we posed for quantum mechanics at the beginning of this chapter
was to provide an understanding for the stability of atoms. By verifying that there is a
set of eigenfunctions and eigenvalues of the time-independent Schrödinger equation for
a system consisting of a proton and an electron, we have demonstrated that there are
states whose energy is independent of time. Because the energy eigenvalues are all neg-
ative numbers, all of these states are more stable than the reference state of zero energy
that corresponds to the proton and electron separated by an infinite distance. Because

the energy cannot approach , corresponding to the electron falling into the
nucleus. These results show that when the wave nature of the electron is taken into
account, the H atom is stable.

As with any new theory, the true test is consistency with experimental data.
Although the wave functions are not directly observable, we know that the spectral
lines from a hydrogen arc lamp (measured as early as 1885) must involve transitions
between two stable states of the hydrogen atom. Therefore, the frequencies measured
by the early experimentalists in emission spectra must be given by

(9.10)

In a more exact treatment, the origin of the coordinate system describing the H atom is
placed at the center of mass of the proton and electron rather than at the position of the
proton. Using Equation (9.7) with the reduced mass of the atom in place of me and
Equation (9.10), quantum theory predicts that the frequencies of all the spectral lines
are given by

(9.11)

where is the reduced mass of the atom, which is 0.05% less than
me. Spectroscopists commonly refer to spectral lines in units of wave numbers. Rather
than reporting values of , they use the units . The combination of con-n
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FIGURE 9.3
Energy-level diagram for the hydrogen
atom showing the allowed transitions for

. Because for the energy
levels are continuous, the absorption spec-
trum will be continuous above an energy
that depends on the initial n value. The dif-
ferent sets of transitions are named after
the scientists who first investigated them.
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stants is called the Rydberg constant. It has the value in109,677.581 cm-1mee4>8e20h3c
quantitative agreement with the experimental value. 

Equation (9.11) quantitatively predicts all observed spectral lines for the hydro-
gen atom. It also correctly predicts the very small shifts in frequency observed for
the isotopes of hydrogen, which have slightly different reduced masses. The agree-
ment between theory and experiment verifies that the quantum mechanical model
for the hydrogen atom is valid and accurate. We discuss the selection rules for tran-
sitions between electronic states in atoms in Chapter 11. Some of these transitions
are shown superimposed on a set of energy levels in Figure 9.3.

EXAMPLE PROBLEM 9.2

Consider an excited state of the H atom with the electron in the 2s orbital.

a. Is the wave function that describes this state,

an eigenfunction of the kinetic energy? Of the potential energy?

b. Calculate the average values of the kinetic and potential energies for an atom
described by this wave function.
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Solution

a. We know that this function is an eigenfunction of the total energy operator
because it is a solution of the Schrödinger equation. You can convince yourself
that the total energy operator does not commute with either the kinetic energy
operator or the potential energy operator by extending the discussion of Example
Problem 9.1. Therefore, this wave function cannot be an eigenfunction of either
of these operators.

b. The average value of the kinetic energy is given by

We use the standard integral,

Using the relationship , 

The average potential energy is given by

We see that . The relation-
ship of the kinetic and potential energies is a specific example of the virial
theorem and holds for any system in which the potential is Coulombic.
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9.4 The Hydrogen Atom Orbitals
We now turn to the total energy eigenfunctions (or orbitals) of the hydrogen atom.
What insight can be gained from them? Recall the early quantum mechanics shell
model of atoms proposed by Niels Bohr. It depicted electrons as orbiting around the
nucleus and associated orbits of small radius with more negative energies. Only certain
orbits were allowed in order to give rise to a discrete energy spectrum. This model was
discarded because defining orbits exactly is inconsistent with the Heisenberg uncer-
tainty principle. The model postulated by Schrödinger and other pioneers of quantum
theory replaced knowledge of the location of the electron in the hydrogen atom with
knowledge of the probability of finding it in a small volume element at a specific loca-
tion. As we have seen in considering the particle in the box and the harmonic oscillator,
this probability is proportional to .

To what extent does the exact quantum mechanical solution resemble the shell
model? To answer this question, information must be extracted from the H atom
orbitals. A new concept, the radial distribution function, is introduced for this purpose.
We begin our discussion by focusing on the wave functions . Next we
discuss what can be learned about the probability of finding the electron in a particular
region in space, . Finally, we define the radial distribu-
tion function and look at the similarities and differences between quantum mechanical
and shell models of the hydrogen atom.

The initial step is to look at the ground-state (lowest energy state) wave function for
the hydrogen atom, and to find a good way to visualize this function. Because

is a function of the three spatial coordinates x, y, and z, we need a four-dimensional space to
plot as a function of all its variables. Because such a space is not readily available, the
number of variables will be reduced. The dimensionality of the representation can be
reduced by evaluating in one of the , , or planes by settingyzxzxyr = 2x2 + y2 + z2

c100

c100(r) =
1

2p a
1

a0
b3>2

e-r>a0

c2
nlml

(r, u, f) r2 sin u dr du df

cnlml
(r, u, f)

c*(r, u, f)c(r, u, f)dt

�2 �1 1 20
x /a0

y/
a

0

x /a0

(a)

(b)

3

2

1

�1

�2

�3

0

321�1�2�3 0

FIGURE 9.4
(a) 3D perspective and (b) contour plot of

. Darker contour colors indicate
larger values for the magnitude of the
amplitude.

c100(r)

H 1s
H 2s

�2 0 2

H 3s

�2
�2

�10 �5 0 5 10 �20 �10 0 10 20

FIGURE 9.5
Three-dimensional perspective plots of the
1s, 2s, and 3s orbitals. The dashed lines
indicate the zero of amplitude for the wave
functions. The “ ” refers to the fact that
the amplitude of the wave function has
been multiplied by 2 to make the sub-
sidiary maxima apparent. The horizontal
axis shows radial distance in units of .a0

*2

the third coordinate equal to zero. Three common ways of depicting are shown inc100(r)
Figures 9.4 through 9.6. In Figure 9.4a, a three-dimensional plot of evaluated in thec100(r)

half-plane is shown in perspective. Although it is difficult to extract
quantitative information from such a plot directly, it allows a good visualization of the func-
tion. We clearly see that the wave function has its maximum value at (the nuclear
position) and that it falls off rapidly with increasing distance from the nucleus.

More quantitative information is available in a contour plot shown in Figure 9.4b in
which is evaluated in the plane from a vantage point on the z axis. In this case,
the outermost contour represents 10% of the maximum value, and successive contours are
spaced at equal intervals. The shading indicates the value of the function, with darker col-
ors representing larger values of the amplitude. This way of depicting is more
quantitative than that of Figure 9.4a in that we can recognize that the contours of constant
amplitude are circles and that the contour spacing becomes smaller as r approaches zero.
A third useful representation is to show the value of the function with two variables 
set equal to zero. This represents a cut through in a plane perpendicular to the c100(r)

c100(r)

xyc100(r)

r = 0

(z = 0, y Ú  0)xy
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plane. Because is independent of the angular coordinates, the same result is
obtained for all planes containing the z axis. As we will see later, this is only true for
orbitals for which . This way of depicting is shown as the front edge of the
three-dimensional plot in Figure 9.4a and in Figures 9.5 and 9.6. All of these graphical
representations contain exactly the same information.

Because is a function of the single variable r the function can be graphed
directly. However, it is important to keep in mind that r is a three-dimensional function of
x, y, and z. For , the wave function does not depend on . For , the wave
function does depend on , and a plot of the amplitude of a wave function versus r
assumes that are being held constant at values that need to be specified. These
values generally correspond to a maximum in the angular part of the wave function.

In Figure 9.6, the radial wave function amplitude R(r) is graphed versus r. What
should we expect having solved the particle in the box and harmonic oscillator problems?
Because the eigenfunctions of the Schrödinger equation are standing waves, the solutions
should be oscillating functions that have nodes. There should be no nodes in the ground
state, and the number of nodes should increase as the quantum number increases.

First consider the eigenfunctions with , namely, the 1s, 2s, and 3s orbitals.
From Figure 9.5, we clearly see that has no nodes as expected. The 2s and 3s
orbitals have one and two nodes, respectively. Because these nodes correspond to
constant values of r, they are spherical nodal surfaces, rather than the nodal points
previously encountered for one-dimensional potentials.

Now consider the eigenfunctions with . Why do the 2p and 3d functions in
Figure 9.6 appear not to have nodal surfaces? This is related to the fact that the function
is graphed for particular values of . To see the nodes, the angular part of these
eigenfunctions must be displayed.

Whereas the spherically symmetric s orbitals are equally well represented by the
three forms of graphics described earlier, the p and d orbitals can best be visualized with
a contour plot analogous to that of Figure 9.4b. Contour plots for the 2py, 3py, 3dxy, and

wave functions are shown in Figure 9.7. This nomenclature was defined in 
Section 9.3. We can now see that the 2py wave function has a nodal plane defined by
3dz2

u and f

l 7 0

c100

l = 0

u and f
u and f

l 7 0u and fl = 0

c100(r)

c100(r)l = 0

c100x–y

2 4 6 8 10 12

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2 4 6 8 10 12�0.1

0.1
0.2
0.3

0.4
0.5
0.6

2 4 6 8 10 12

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0.1

0.2

0.3

0.4

5 10 15 20�0.02

0.02

0.04

0.06

0.08

5 10 15 20

0.01

0.02

0.03

0.04

0.05

1s
2s

3s

2p

3p 3d

5 10 15 20

FIGURE 9.6
Plot of for the first
few H atomic orbitals.

a3>2
0 R(r)versus r>a0



9.5 THE RADIAL PROBABILITY DISTRIBUTION FUNCTION 183

; however, it appears in the angular rather than the radial part of the wave function.
It can be shown that the radial part of the energy eigenfunctions has nodal
surfaces. There are l nodal surfaces in the angular part of the energy eigenfunctions,
making a total of nodes, just as was obtained for the particle in the box and the
harmonic oscillator. As can be seen in Figure 9.7, the 3py wave function has a second
nodal surface in addition to the nodal plane at . This second node comes from the
radial part of the energy eigenfunction and is a spherical surface. The d orbitals have a
more complex nodal structure that can include spheres, planes, and cones. The 3dxy
orbital has two nodal planes that intersect in the z axis. The orbital has two conical
nodal surfaces, whose axis of rotation is the z axis.

EXAMPLE PROBLEM 9.3

Locate the nodal surfaces in

Solution

We consider the angular and radial nodal surfaces separately. The angular part, , is
zero for . In three-dimensional space, this corresponds to the plane . The 
radial part of the equations is zero for finite values of for .
This occurs at , which is not a node and at . The first value is a point in
three-dimensional space and the second is a spherical surface. This wave function has
one angular and one radial node. In general, an orbital characterized by n and l has l
angular nodes and radial nodes.

9.5 The Radial Probability Distribution
Function

To continue the discussion of the similarities and differences between the quantum
mechanical and shell models of the hydrogen atom, let us see what information can be
obtained from , which is the probability density of finding the electron at
a particular point in space. We again consider the s orbitals and the p and d orbitals
separately. We first show as a three-dimensional graphic in Figure 9.8c2
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0) = 0r>a0

z = 0u = p>2 cos u

c310(r, u, f) =
1

81
a 2
p
b1>2a 1

a0
b3>2a6

r

a0
-

r2

a2
0
b e-r>3a0 cosu

3dz2

y = 0

n - 1

n - l - 1
y = 0

3dxy

y

�

�20 �10 0 10 20
x

�20

�10

0

10

20

3py�

y

�20 �10 0 10 20
x

�20

�10

0

10

20

2py�

y

�20 �10 0 10 20
x

�20

�10

0

10

20

3dz 2

�20 �10 0 10 20
x

�20

�10

0

10

20

z

�

FIGURE 9.7
Contour plots for the orbitals indicated.
Positive and negative amplitudes are shown
as red and blue, respectively. Darker colors
indicate larger values for the magnitude of
the amplitude. Distances are in units of a0.

for , 2, and 3. Subsidiary maxima are seen in addition to the main maximum at
. Figure 9.9 shows a graph of as a function of r.R2

nlml
(r)r = 0

n = 1

Now consider for . As expected from the effect of the centrifu-l 7 0c2
nlml

(r, u, f)
gal potential (see Figure 9.1), the electron is pushed away from the nucleus, so that

goes to zero as r approaches zero. Because a nonzero angular momen-c2
nlml

(r, u, f)
tum is associated with these states, is not spherically symmetric. All of
this makes sense in terms of our picture of p and d orbitals.

EXAMPLE PROBLEM 9.4

a. At what point does the probability density for the electron in a 2s orbital have its
maximum value?

b. Assume that the nuclear diameter for H is . Using this assumption,
calculate the total probability of finding the electron in the nucleus if it occupies
the 2s orbital.

Solution

a. The point at which and, therefore, has its greatest value is
found from the wave function:

which has its maximum value at , or at the nucleus as seen in Figure 9.6.r = 0

c200(r) =
1

232p
a 1

a0
b3>2a2 -

r

a0
b e-r>2a0

c(t)c*(t)c(t) dt

2 * 10-15 m

c2
nlml

(r, u, f)
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b. The result obtained in part (a) seems unphysical, but is a consequence of wave-
particle duality in describing electrons. It is really only a problem if the total
probability of finding the electron within the nucleus is significant. This
probability is given by

Because , we can evaluate the integrand by assuming that 

over the interval :

Because ,

Because this probability is vanishingly small, even though the wave function has its
maximum amplitude at the nucleus the probability of finding the electron in the
nucleus is essentially zero.

At this point, we ask a different question involving probability. What is the most
probable distance from the nucleus at which the electron will be found? For the 1s, 2s,
and 3s orbitals, the maximum probability density is at the nucleus. This result seems to
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a rnucleus

a0
b3

= 9.0 * 10-15

2 - (rnucleus>a0) L 2 and e-rnucleus>a0 L 1
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Three-dimensional perspective plots of the
square of the wave functions for the
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make the subsidiary maxima apparent.
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predict that the most likely orbit for the electron has a radius of zero. Clearly, we are
missing something, because this result is inconsistent with a shell model. It turns out
that we are not asking the right question. The probability as calculated from the proba-
bility density is correct, but it gives the likelihood of finding the particle in the vicinity
of a particular point for a given value of r, , and . Why is this not the information we
are looking for? Imagine that a planet has a circular orbit and we want to determine the
radius of the orbit. To do so, we must find the planet. If we looked at only one point on
a spherical shell of a given radius for different values of the radius, we would be
unlikely to find the planet. To find the planet, we need to look everywhere on a shell of
a given radius simultaneously.

How do we apply this reasoning to finding the electron on the hydrogen atom? The
question we need to ask is “What is the probability of finding the electron at a particular
value of r, regardless of the values of ?” This probability is obtained by integratingu and f

fu

the probability density over all values of . This
gives the probability of finding the electron in a spherical shell of radius r and thick-
ness dr rather than the probability of finding the electron near a given point on the
spherical shell of thickness dr with the particular coordinates . For example,
for the 1s orbital the probability of finding the electron in a spherical shell of radius r
and thickness dr is

(9.12)

EXAMPLE PROBLEM 9.5

Consider an excited hydrogen atom with the electron in the 2s orbital.

a. Calculate the probability of finding the electron in the volume about a point
defined by

b. Calculate the probability of finding the electron in the spherical shell defined by

Solution

a. We numerically solve the integral 
The result is

b. In this case, we integrate over all values of the angles:

 = 0.00995 * 6.76 * 1030 m-3 * 4p * 3.43 * 10-33 m3 = 2.90 * 10-3
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 = 0.00995 * 6.76 * 1030 m-3 * 0.020 * 0.0200 * 3.43 * 10-33 m3 = 9.23 * 10-8



186 CHAPTER 9 The Hydrogen Atom

2 4 6 8 10

1 2 3 4 5

P
20

(r
)

dP
20

(r
)/

dr

r /a0

r /a0

This probability is greater than that calculated in part (a) by a factor of 
because we have integrated the probability density over the whole spherical shell of
thickness .

Because the integration of the probability density over the angles and amounts to an
averaging of over all angles, it is most meaningful for the s orbitals whose
amplitudes are independent of the angular coordinates. However, to arrive at a uniform def-
inition for all orbitals, a new function, the radial distribution function, Pnl(r), is defined.

(9.13)

The radial distribution function is the probability function of choice to determine the
most likely radius to find the electron for a given orbital. Understanding the differ-

Pnl(r)dr = c 3
2p

0

df3
p

0

[Yml
l (u,f)]* [Yml

l (u,f)] sin udu sr2R2
nl(r)dr = r2R2

nl(r)dr

c(r, u, f)2
fu

4 * 10-12 m

3.1 * 104

We see that the principal maximum in is at 5.24 a0. This corresponds to the
most probable distance of a 2s electron from the nucleus. The subsidiary maximum is
at 0.76 a0. The minimum is at 2 a0.

P20(r)

The resulting radial distribution function only depends on r, and not on .
Therefore, we can display Pnl(r) dr versus r in a graph as shown in Figure 9.10.

u and f

ence between the radial distribution function Pnl(r) dr and the probability density
is very important in working with the hydrogenc*

nlml
(r)cnlml

(r) r2 sin u dr du df
atom wave functions.

EXAMPLE PROBLEM 9.6

Calculate the maxima in the radial probability distribution for the 2s orbital. What is
the most probable distance from the nucleus for an electron in this orbital? Are there
subsidiary maxima?

Solution

The radial distribution function is

To find the maxima, we plot and

versus r a0 and look for the nodes in this function. These functions are plotted as a
function of r a0 in the following figure:>>

dP20(r)
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9.6 The Validity of the Shell Model 
of an Atom

What can we conclude from Figure 9.10 regarding a shell model for the hydrogen
atom? By now, we have become accustomed to the idea of wave-particle duality.
Waves are not sharply localized, so a shell model like that shown in Figure 9.11
with electrons as point masses orbiting around the nucleus is not viable in quan-
tum mechanics. If there are some remnants of a shell model in the hydrogen
atom, there is a greater likelihood of finding the electron at some distance from
the nucleus than others.

The quantum mechanical analogue of the shell model can be generated in the
following way. Imagine that three-dimensional images of the shell model for
hydrogen with the electron in the 1s, 2s, or 3s levels were taken at a large number
of random times. A cut through the resulting images at the plane would
reveal sharply defined circles with a different radius for each orbital. The quantum
mechanical analogue of this process is depicted in Figure 9.12. The principal max-
ima seen in Figure 9.10 are the source of the darkest rings in each part of
Figure 9.12. The rings are broad in comparison to the sharp circle of the classical
model. The subsidiary maxima seen in Figure 9.10 appear as less intense rings for
the 2s and 3s orbitals.

The radial distribution function gives results that are more in keeping with our intu-
ition and with a shell model than what we saw in the plots for the probability density

. For the 1s orbital, the radial distribution function is peaked at a
value of a0. However, the peak has a considerable width, whereas a shell model would
give a sharp peak of nearly zero width. This contradiction is reminiscent of our discus-
sion of the double-slit diffraction experiment. Because wave-particle duality is well
established, it is not useful to formulate models that are purely particle-like or purely
wave-like. The broadening of the orbital shell over what we would expect in a particle
picture is a direct manifestation of the wave nature of the electron, and the existence of
an orbit is what we would expect in a particle picture. Both aspects of wave-particle
duality are evident.

It is useful to summarize the main features that appear in Figure 9.10 and 9.12
for the radial probability distribution. We see broad maxima that move to greater values
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FIGURE 9.10
Plot of for the first
few H atomic orbitals. The curves for
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principal maxima for each orbital is indi-
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FIGURE 9.11
A shell model of an atom with electrons
moving on spherical shells around the
nucleus.



Q9.1 What possible geometrical forms can the nodes in the
angular function for p and d orbitals in the H atom have?
What possible geometrical forms can the nodes in the radial
function for s, p, and d orbitals in the H atom have?

Q9.2 What transition gives rise to the highest frequency
spectral line in the Lyman series?

Q9.3 Is it always true that the probability of finding
the electron in the H atom is greater in the interval

than in the interval
, ,

?

Q9.4 Why are the total energy eigenfunctions for the
H atom not eigenfunctions of the kinetic energy?

Q9.5 How do the results shown in Figure 9.10 differ from
the predictions of the Bohr model of the H atom?

f - df 6 f 6 f + df
u - du 6 u 6 u + dur - dr 6 r 6 r + dr

r - dr 6 r 6 r + dr

Q9.6 What effect does the centrifugal potential have in
determining the maximum in the radial function for the 3s,
3p, and 3d orbitals?

Q9.7 How does the effective potential differ for p and d
electrons?

Q9.8 Why does the centrifugal potential dominate the
effective potential for small values of r?

Q9.9 If the probability density of finding the electron in the
1s orbital in the H atom has its maximum value for ,
does this mean that the proton and electron are located at the
same point in space?

Q9.10 Explain the different degree to which the 1s, 2s, and
3s total energy eigenfunctions penetrate into the classically
forbidden region.

r = 0
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Vocabulary
Bohr radius

centrifugal potential

Coulomb potential

degeneracy

effective potential

nodal surface

orbital

radial distribution function

Rydberg constant

of r as n increases. This means that the electron is on average farther away from the
nucleus for large n. From Equation (9.8), as n increases, the electron is less strongly
bound. Both of these results are consistent with that expected from the Coulomb poten-
tial. However, we also see nodes and subsidiary maxima in the radial distribution func-
tion. How can these features be explained? Nodes are always present in standing
waves, and eigenfunctions of the time-independent Schrödinger equation are standing
waves. The nodes are directly analogous to the nodes observed for the particle in the
box wave functions and are a manifestation of wave-particle duality. The subsidiary
maxima are another manifestation of the wave character of the electron and occur
whenever wave interference occurs. Recall that such subsidiary maxima are also
observed in diffraction experiments. It is tempting to assign orbital radii to the H
atomic orbitals with values corresponding to the positions of the principal maxima. The
maxima are indicated by arrows in Figure 9.10. However, this amounts to reducing a
function to a single number and is unwise. 
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The radial probability distribution evalu-
ated for is plotted in the plane
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Q9.11 What are the units of the H atom total energy 
eigenfunctions? Why is graphed in Figure 9.6 rather
than R(r)?

Q9.12 Why is the radial probability function rather than
the best measure of the probability

of finding the electron at a distance r from the nucleus?

Q9.13 Use an analogy with the particle in the box to explain
why the energy levels for the H atom are more closely spaced
as n increases.

Q9.14 Explain why the radial distribution function 
rather than the square of the magnitude of the wave function
should be used to make a comparison with the shell model
of the atom.

c*(r)c(r) r2 sinu dr du df

a3>2
0 R(r)

Q9.15 What is the difference between an angular and a
radial node? How can you distinguish the two types of nodes
in a contour diagram such as Figure 9.7?

Q9.16 What is the minimum photon energy needed to
ionize a hydrogen atom in the ground state?

Q9.17 To what physical state does a hydrogen atom energy
of correspond?

Q9.18 Why does the centrifugal potential force the 3d elec-
trons further from the nucleus than the 3s electrons?

Q9.19 Why is the radial probability density rather than the
probability density used to calculate the most probable
distance of the electron from the nucleus?

+1.0 * 10-19 J

Numerical Problems

Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P9.1 Calculate the wave number corresponding to the most
and least energetic spectral lines in the Lyman, Balmer, and
Paschen series for the hydrogen atom.

P9.2 Show that the function is a solution of the
following differential equation for 

What is the eigenvalue? Using this result, what is the value
for the principal quantum number n for this function?

P9.3 Determine the probability of finding the electron in the
region for which the wavefunction is negative (the
toroidal region).

P9.4 Calculate the expectation value for the potential
energy of the H atom with the electron in the 1s orbital.
Compare your result with the total energy.

P9.5 Calculate the probability that the 1s electron for H will
be found between and .

P9.6 Calculate the distance from the nucleus for which the
radial distribution function for the 2p orbital has its main and
subsidiary maxima.

P9.7 Calculate the expectation value of the radius at
which you would find the electron if the H atom wave
function is .

P9.8 Calculate the expectation value for the kinetic energy
of the H atom with the electron in the 2s orbital. Compare
your result with the total energy.

P9.9 Ions with a single electron such as , , and 
are described by the H atom wave functions with Z/a0 substituted
for 1�a0, where Z is the nuclear charge. The 1s wave function

Be3+Li2+He+

c100(r)

8r9

r = 2a0r = a0

c320

+ c U
2l(l + 1)

2mer
2 -

e2

4pe0r
dR(r) = ER(r)

-
U2

2mer
2

d

dr
cr2

dR(r)

dr
d

l = 1

(r>a0)e-r>2a0

becomes . Using this result, 

calculate the total energy for the 1s state in H, , , and
by substitution in the Schrödinger equation.

P9.10 Ions with a single electron such as , , and
are described by the H atom wave functions with Z a0

substituted for 1/a0, where Z is the nuclear charge. The 1s wave
function becomes . Using this
result, compare the mean value of the radius at which you 
would find the 1s electron in H, , , and 

P9.11 As the principal quantum number n increases, the
electron is more likely to be found far from the nucleus. It can
be shown that for H and for ions with only one electron such 

as , 

Calculate the value of n for an s state in the hydrogen atom
such that . Round up to the nearest integer.
What is the ionization energy of the H atom in this state in
electron-volts? Compare your answer with the ionization
energy of the H atom in the ground state.

P9.12 In this problem, you will calculate the probability of
finding an electron within a sphere of radius r for the H atom
in its ground state.

a. Show using integration by parts, , that 

.

b. Using this result, show that the probability of finding the
electron within a sphere of radius r for the hydrogen atom
in its ground state is

c. Evaluate this probability for .25 a0, a0, and
a0.

P9.13 The radius of an atom ratom can be defined as that
value for which 90% of the electron charge is contained
within a sphere of radius ratom. Use the formula in P9.12b to
calculate the radius of the H atom.

r = 5.5
r = 2.25r = 0

1 - e-2r>a0 -
2r

a0
a1 +

r

a0
be-2r>a0

1r2e-r>a dr = e-r>a(-2a3 - 2a2r - ar2)
1u dv = uv -1v du

8r9 = 500. a0

8r9nl =
n2a0

Z
c1 +

1

2
a1 -

l(l + 1)

n2 b dHe+

Be3+.Li2+He+
8r9c(r) = 1>2p(Z>a0)3>2e-Zr>a0

>Be3+
Li2+He+

Be3+
Li2+He+

c(r) = 1>2p(Z>a0)3>2e-Zr>a0



P9.14 Use the result of P9.13.

a. Calculate the mass density of the H atom.

b. Compare your answer with the nuclear density assuming a
nuclear radius of 1.0 10�15 m.

c. Calculate the mass density of the H atom outside of the
nucleus.

P9.15 Calculate the expectation value if the
H atom wave function is .

P9.16 In spherical coordinates, . Calculate
for the H atom in its ground state. Without doing

the calculation, what would you expect for , and
? Why?

P9.17 The force acting between the electron and the proton
in the H atom is given by . Calculate the
expectation value for the 1s and 2pz states of the H atom
in terms of e, 0, and a0.

P9.18 The d orbitals have the nomenclature 
. Show how the d orbital

can be written in the form yzF(r).

P9.19 Calculate the expectation value of the moment of iner-
tia of the H atom in the 2s and 2pz states in terms of and a0.

P9.20 The energy levels for ions with a single electron such
as , , and are given by

Calculate the 

ionization energies of H, , , and in their ground
states in units of electron-volts (eV).

P9.21 Calculate the mean value of the radius at which
you would find the electron if the H atom wave function is

.

P9.22 The total energy eigenvalues for the hydrogen atom
are given by , and
the three quantum numbers associated with the total energy
eigenfunctions are related by 
. . . .

Using the nomenclature , list all eigenfunctions that have
the following total energy eigenvalues:

a.

b.

c.

d. What is the degeneracy of each of these energy levels?

P9.23 Locate the radial and angular nodes in the H orbitals
.c3px

(r, u, f) and c3pz
(r, u, f)

E = -
e2

128pe0 a0

E = -
e2

72pe0 a0

E = -
e2

32pe0 a0

cnlml

and ml = 0, ; 1, ; 2, ; 3, Á ; l, n-1;
l= 0, 1, 2, 3, n = 1, 2, 3, 4, Á ;

En = -e2>18pe0a0n22, n = 1, 2, 3, 4, Á

c210(r, u, f)

8r9
Be3+Li2+He+

En = -Z2e2>18pe0 a0n22, n = 1, 2, 3, 4, Á .
Be3+Li2+He+

m

c3dyz
(r, u, f) =

22

812p a
1

a0
b3>2 r2

a2
0

e-r>3a0 sinu cosu sinf

dyz, and dx2-y2

dz2, dxy, dxz,

e

8F9 F = -e2>4pe0r2

8x29 and 8y29 8x9 and 8y98z9 and 8z29 z = r cosu

c100(r)
8r - 8r992

*

P9.24 Calculate the average value of the kinetic and poten-
tial energies for the H atom in its ground state.

P9.25 Show by substitution that

is a solution of

What is the eigenvalue for the total energy? Use the relation
to simplify your answer. 

P9.26 Show that the total energy eigenfunctions
are orthogonal.

P9.27 As will be discussed in Chapter 10, core electrons
shield valence electrons so that they experience an effective
nuclear charge Zeff rather than the full nuclear charge. Given
that the first ionization energy of Li is 5.39 eV, use the for-
mula in Problem P9.20 to estimate the effective nuclear
charge experienced by the 2s electron in Li.

P9.28 Is the total energy wave function

an eigenfunction of any other operators? If so, which ones?
What are the eigenvalues?

P9.29 Show that the total energy eigenfunctions
are orthogonal. Do you have

to integrate over all three variables to show that the functions
are orthogonal?

P9.30 Calculate and the most probable value of r for
the H atom in its ground state. Explain why they differ with
a drawing.

P9.31 How many radial and angular nodes are there in the
following H orbitals?

a.

b.

c.

d.

P9.32 Show that and can be 

written in the form where N and
are normalization constants.

P9.33 Using the result of Problem P9.12, calculate the
probability of finding the electron in the 1s state outside a
sphere of radius 0.75a0, 2.5a0, and 4.5a0.

N¿Nxe-r>2a0 and N¿ye-r>2a0

c2py
(r, u, f)c2px

(r, u, f)

c3dx2 - y2(r, u, f)

c3dxz
(r, u, f)

c2s(r)

c2px
(r, u, f)

8r9

and c211(r, u, f)c210(r, u, f)

c310 (r, u, f) =
1

81
a 2
p
b1>2a 1

a0
b3>2a6

r

a0
-

r2

a2
0
be-r>3a0 cosu

c100(r) and c200(r)

a0 = e0h2>(pme e2)

-
e2

4pe0r
c(r, u, f) = Ec(r, u, f)

-
U2

2me
≥

1

r2

0
0r
ar2

0c(r, u, f)

0 r
b + 1

r2 sin u

0
0u
asin u

0c(r,u,f)

0u
b

+
1

r2 sin2 u

02c(r,u,f)

0f2

¥

1>2p(1>a0)3>2e-r>a0

=c100(r, u, f)
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10.1 Helium: The Smallest 
Many-Electron Atom

10.2 Introducing Electron Spin

10.3 Wave Functions Must Reflect
the Indistinguishability of
Electrons

10.4 Using the Variation Method
to Solve the Schrödinger
Equation

10.5 The Hartree–Fock Self-
Consistent Field Method

10.6 Understanding Trends in 
the Periodic Table from
Hartree–Fock Calculations

Many-Electron Atoms

The Schrödinger equation cannot be solved analytically for atoms

containing more than one electron because of the electron–electron

repulsion term in the potential energy. Instead, approximate numerical

methods can be used to obtain the eigenfunctions and eigenvalues of the

Schrödinger equation for many-electron atoms. Having more than one

electron in an atom also raises new issues that we have not considered,

including the indistinguishability of electrons, the electron spin, and the

interaction between orbital and spin magnetic moments. The Hartree–Fock

method provides a way to calculate total energies and orbital energies for

many-electron atoms in the limit that the motion of individual electrons is

assumed to be uncorrelated.

10.1 Helium: The Smallest 
Many-Electron Atom

The Schrödinger equation for the hydrogen atom can be solved analytically because
this atom has only one electron. The complexity of solving the Schrödinger equation
for systems that have more than one electron can be illustrated using the He atom.
Centering the coordinate system at the nucleus and neglecting the kinetic energy of the
nucleus, the Schrödinger equation takes the form

(10.1)

In this equation, are the distances of electrons 1 and 2 from

the nucleus, and is shorthand for

This is the part of the operator that is associated with the kinetic energy of electron 1,
expressed in spherical coordinates. The last three terms in Equation (10.1) are the poten-
tial energy operators for the electron–nucleus attraction and the electron–electron repul-
sion. The variables , and are shown in Figure 10.1.

The eigenfunctions of the Schrödinger equation depend on the coordinates of 
both electrons. If this formalism is applied to argon, each many-electron eigenfunction

r12 = ƒr1 - r2 ƒr1 = ƒr1 ƒ , r2 = ƒr2 ƒ

1

r2
1

0
0r1
ar2

1
0

0r1
b +

1

r2
1 sin2 u1

02

0f2
1

+
1

r2
1 sinu1

0
0u1
asinu1

0
0u1
b

§2
e1r12 = ƒr1 - r2 ƒ ,

r1 = ƒr1 ƒ  and r2 = ƒr2 ƒ
= Ec(r1, r2)

a - U2

2me
§2

e1 -
U2

2me
§2

e2 -
2e2

4pe0r1
-

2e2

4pe0r2
+

e2

4pe0r12
bc(r1, r2)
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depends simultaneously on the coordinates of 18 electrons! However, we also know
that electrons in different atomic orbitals have quite different properties. For instance,
valence electrons are involved in chemical bonds, and core electrons are not. Therefore,
it seems reasonable to express a many-electron eigenfunction in terms of individual
electron orbitals, each of which depends only on the coordinates of one electron. This
is called the orbital approximation, in which the many-electron eigenfunctions of the
Schrödinger equation are expressed as a product of one-electron orbitals:

(10.2)

This is not equivalent to saying that all of the electrons are independent of one another
because, as we will see, the functional form for each is influenced by all the otherfn(rn)

c1r1, r2, Á , rn2 = f11r12f21r22Á fn1rn2
r1�r2

r1

r1

r2

2�

�

�

�

FIGURE 10.1
The top image shows the proton and two
electrons in He. The bottom image shows
that if the position of electron 2 is aver-
aged over its orbit, electron 1 sees a
spherically symmetric charge distribution
due to the proton and electron 2.

electrons. The one-electron orbitals turn out to be quite similar to the functionsfn(rn)
obtained for the hydrogen atom in Chapter 9, and they are labeled with cnlml

(r, u, f)
indices such as 1s, 2p, and 3d. Each of the is associated with a one-electron orbital
energy .

The orbital approximation allows an n-electron Schrödinger equation to be written as n
one-electron Schrödinger equations, one for each electron. However, a further problem
arises in solving these n equations. Because of the form of the electron–electron repulsion
term, , the potential energy operator no longer has spherical symmetry, e2>14pe0r122

En

fn(rn)

so that the potential no longer has the form . This is evident from Figure 10.1V = V(r)
because the vector does not start at the nucleus. Therefore, the Schrödinger equa-
tion cannot be solved analytically, and numerical methods must be used. For these meth-
ods to be effective, further approximations beyond the orbital approximation have to be
made. Perhaps the most serious of these approximations is that one cannot easily include
what electrons do naturally in a many-electron atom, namely, stay out of each other’s way
by undergoing a correlated motion. Whereas electron correlation ensures that the repul-
sion among electrons is minimized, the numerical methods introduced in this chapter to
solve the Schrödinger equation assume that the electrons move independently of one
another. As discussed in Chapter 15, corrections can be made that largely eliminate the
errors generated through this assumption.

A schematic illustration of how a neglect of electron correlation simplifies solving
the Schrödinger equation is shown in Figure 10.1 for the He atom. We know from intro-
ductory chemistry that both electrons occupy what we call the 1s orbital, implying that
the wave functions are similar to

Zeta ( ) is the effective nuclear charge felt by the electron. The importance of in
determining chemical properties is discussed later in this chapter. If the assumption is
made that the motion of electrons 1 and 2 is uncorrelated, electron 1 can interact with the
nucleus and the spatially averaged charge distribution arising from electron 2. This spa-
tially averaged charge distribution is determined by Think of electron 2 as
being smeared out in a distribution that is spherically symmetrical about the nucleus,
with a negative charge in the volume element proportional to .

The advantage of this approximation becomes apparent in Figure 10.1, because the
effective charge distribution that electron 1 experiences is spherically symmetrical.
Because the potential energy V depends only on r, each one-electron wave function can be
written as a product of radial and angular functions, 
Although the radial functions differ from those for the hydrogen atom, the angular func-
tions are the same so that the s, p, d, f, . . . nomenclature used for the hydrogen atom also
applies to many-electron atoms.

This quick look at the helium atom illustrates the approach that we take in the rest
of this chapter. The Schrödinger equation is solved for many-electron atoms by approx-
imating the true wave function by products of orbitals, each of which depends only on
the coordinates of one electron. This approximation reduces the n-electron Schrödinger
equation to n one-electron Schrödinger equations. The set of n equations is solved to
obtain the one-electron energies and orbitals . The solutions are approximateei and fi

f(r) = f(r, u, f) = R(r)™(u)£(f).

-ef*(r2)f(r2)dtdt

f*(r2)f(r2) .

zz

1

2p a
z

a0
b3>2

e-zr>a0

r1 - r2
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because of the orbital approximation and because electron correlation is neglected.
However, before this approach is implemented, two important concepts must be intro-
duced, namely, electron spin and the indistinguishability of electrons.

10.2 Introducing Electron Spin
Electron spin plays an important part in formulating the Schrödinger equation for
many-electron atoms. In discussing the Stern–Gerlach experiment in Chapter 6, we
focused on commutation relations rather than the other surprising result of this experi-
ment, which is that two and only two deflected beams are observed. In order for a silver
atom to be deflected in an inhomogeneous field, it must have a magnetic moment and
an associated angular momentum. What is the origin of this moment? An electric cur-
rent passing through a loop of wire produces a magnetic field and, therefore, the loop
has a magnetic moment. An electron in an orbit around a nucleus for which has a
nonzero angular momentum because of the nonspherical electron charge distribution.
However, Ag has a closed-shell configuration plus a single 5s valence electron. 
A closed shell has a spherical electron charge distribution and no net angular momen-
tum. Therefore, the magnetic moment must be associated with the 5s electron, which
has no orbital angular momentum because l = 0. If this electron has an intrinsic angular
momentum, which we call s, it will be split into components in passing through2s + 1

l 7 0

the magnet. The fact that two components are observed in the Stern–Gerlach experi-
ment shows that . Therefore, there is a z component of angular momentum s = 1>2

How does the existence of spin change what has been discussed up to now? As we
show later, each of the orbitals in a many-electron atom can be doubly occupied; one
electron has , and the other has . This adds a fourth quantumms = -1>2ms = +1>2

How can this additional quantum number be incorporated in the formalism
described for the hydrogen atom? This can be done by defining spin wave functions
called , which are eigenfunctions of the spin angular momentum operators 

. Because all angular momentum operators have the same properties, the spin
operators follow the commutation rules listed in Equation (7.57). As for the orbital angular
momentum, only the magnitude of the spin angular momentum and one of its components
can be known simultaneously. The spin operators have the following properties:

(10.3) 1a*ads = 1 b*b ds = 1

 1a*b ds = 1 b*ads = 0

sNza = msUa =
U
2
a , sNzb = msUb = -

U
2
b

 sN2b = U2s1s + 12b =
U2

2
a 1

2
+ 1bb

 sN2a = U2s 1s + 12a =
U2

2
a 1

2
+ 1ba

zsN2 and sN

zsN2 and sN
a and b

associated with the 5s electron. The origin of this effect cannot be sz = msU = ; U>2

number to the H atom eigenfunctions that is now labeled . Because
electron spin is an intrinsic property of the electron, it does not depend on the spatial
variables .r, u, and f

cnlmlms
(r, u, f)

an orbital angular momentum because for an s electron and because orbital angu-
lar momentum comes in quanta twice that size. This intrinsic electron spin angular
momentum is a vector called , and its z component is called sz to distinguish it from
orbital angular momentum. The term intrinsic refers to the fact that the spin is inde-
pendent of the environment of the electron. The use of the term spin implies that the
electron is spinning about an axis. Although the nomenclature is appealing, there is no
physical basis for this association.

s

l = 0



In these equations, is called the spin variable. It is not a spatial variable and the “inte-
gration” over exists only formally so that we can define orthogonality. The H atom
eigenfunctions are redefined by multiplying them by and including a quantum
number for spin. For example, the H atom 1s eigenfunctions take the form

(10.4)

The eigenfunctions remain orthonormal because with this formalism

(10.5)

These two eigenfunctions have the same energy because the total energy operator of
Equation (10.1) does not depend on the spin. Having discussed how to include electron
spin in a wave function, we now take on the issue of keeping track of electrons in a
many-electron atom.

10.3Wave Functions Must Reflect the
Indistinguishability of Electrons

In discussing He in Section 10.1, the electrons were numbered 1 and 2. Macroscopic
objects can be distinguished from one another, but in an atom we have no way to distin-
guish between any two electrons. This fact needs to be taken into account in the formu-
lation of a wave function. How can indistinguishability be introduced into the orbital
approximation? Consider an n-electron wave function written as the product of n
one-electron wave functions, which we describe using the notation 

. The position variables are suppressed in favor
of keeping track of the electrons. How does indistinguishability affect how the wave
function is written? We know that the wave function itself is not an observable, but the
square of the magnitude of the wave function is proportional to the electron density and
is an observable. Because the two electrons in He are indistinguishable, no observable
of the system can be changed if the electron labels 1 and 2 are interchanged. Therefore,

. This equation can be satisfied either by or

. We refer to the wave function as being a symmetric wave function
if or an antisymmetric wave function if . 
For a ground-state He atom, examples of symmetric and antisymmetric wave functions
are as follows:

(10.6)cantisymmetric(1, 2) = f1s(1)a(1)f1s(2)b(2) - f1s(2)a(2)f1s(1)b(1)

csymmetric(1, 2) = f1s(1)a(1)f1s(2)b(2) + f1s(2)a(2)f1s(1)b(1) and

c(1,2) = -c(2,1)c(1,2) = c(2, 1)
c(1, 2) = -c(2, 1)

c(1, 2) = c(2, 1)c2(1, 2) = c2(2,1)

c(r1u1f1s1, r2u2f2s2, Á , rnunfnsn)
c(1, 2, Á , n) =

 = lc*
1001r2c1001r2dr du dfLa

*ads = 1

oc*
100 1

2
1r, s2c100 1

2
1r, s2dr du df ds

and

 = lc*
1001r2c1001r2dr du dfLa

*b ds = 0

oc*
100 1

2
1r, s2c100- 1

2
1r, s2 dr du df ds

 c100 - 1
2
(r) =

1

2p a
1

a0
b3>2

e-r>a0b

 c100 1
2
(r) =

1

2p a
1

a0
b3>2

e-r>a0a  and

a and b
s

s
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POSTULATE 6:
Wave functions describing a many-electron system must change sign (be anti-
symmetric) under the exchange of any two electrons.

This postulate is also known as the Pauli principle. This principle states that different
product wave functions of the type must be
combined such that the resulting wave function changes sign when any two electrons
are interchanged. A combination of such terms is required because a single-product
wave function cannot be made antisymmetric in the interchange of two electrons. For
example, .

How can antisymmetric wave functions be constructed? Fortunately, there is a sim-
ple way to do so using determinants. They are known as Slater determinants and have
the form

(10.7)

where if n is even and if n is odd. The one-electron orbitals in
which the n electrons are sequentially filled are listed going across each row with one
row for each electron. The factor in front of the determinant takes care of the normaliza-
tion if the one-electron orbitals are individually normalized. The Slater determinant is
simply a recipe for constructing an antisymmetric wave function, and none of the indi-
vidual entries in the determinant has a separate reality. For the ground state of He, the
antisymmetric wave function is the determinant:

(10.8)

The shorthand notation has been
used in the preceding determinant.

Determinants are used in constructing antisymmetric wave functions because their
value automatically changes sign when two rows (which refer to individual electrons)
are interchanged. This can easily be verified by comparing the values of the following
determinants:

Writing the wave function as a determinant also demonstrates another formulation of the
Pauli principle. The value of a determinant is zero if two rows are identical. This is
equivalent to saying that the wave function is zero if all quantum numbers of any two
electrons are the same. Example Problem 10.1 illustrates how to work with determi-
nants. Further information on determinants can be found in the Math Supplement
(see Appendix A).

` 3 6

4 2
`  and ` 4 2

3 6
`

f1s(1)a(1) = f100+ 1
2
(r1, u1, f1, s1) = 1s(1)a(1)

=
1

22
1s(1)1s(2)3a(1)b(2) - b(1)a(2)4

=
1

22
31s(1)a(1)1s(2)b(2) - 1s(1)b(1)1s(2)a(2)4

c(1, 2) =
1

22
` 1s(1)a(1) 1s(1)b(1)

1s(2)a(2) 1s(2)b(2)
`

2 * 2

m = (n + 1)>2m = n>2

c11,2,3, Á ,n2 =
1

1n!
4
f1112a112 f1112b112 Á fm112b112
f1122a122 f1122b122 Á fm122b122

Á Á Á Á
f11n2a1n2 f11n2b1n2 Á fm1n2b1n2

4

f1s(1)a(1)f1s(2)b(2) Z -f1s(2)a(2)f1s(1)b(1)

f1(1)f2(2) Á fn(n)c(1, 2, 3, Á , n) =

where . Wolfgang Pauli showed that only an antisymmetric wave func-
tion is allowed for electrons, a result that can be formulated as a further fundamental
postulate of quantum mechanics.

f(1) = f(r1)



EXAMPLE PROBLEM 10.1

Consider the determinant

a. Evaluate the determinant by expanding it in the cofactors of the first row.

b. Show that the value of the related determinant

in which the first two rows are identical, is zero.

c. Show that exchanging the first two rows changes the sign of the value of the
determinant.

Solution

The value of a determinant

We reduce a higher order determinant to a determinant by expanding it in the
cofactors of a row or column (see the Math Supplement). Any row or column can be
used for this reduction, and all will yield the same result. The cofactor of an element
aij, where i is the index of the row and j is the index of the column, is the 

determinant that is left by ignoring the elements in the ith row and in the jth
column. In our case, we reduce the determinant to a sum of determinants
by adding the first row cofactors, each of which is multiplied by For the
given determinant,

a.

b.

c.

For ground-state helium, both electrons have the same values of n, l, and ml, but
the values of ms are +1 2 for one electron and -1 2 for the other. We now describe the
way in which electrons are assigned to orbitals by a configuration. A configuration

>>

= 4(7 - 10) + 2(21 - 15) + 1(6 - 3) = +3

+ 11-121+3 2 3 1

3 2
2

3 4 -2 1

3 1 5

3 2 7

3 = 41-121+1 2 1 5

2 7
2 - 21-121+2 2 3 5

3 7
2

= 4(-14 - 2) + 2(28 - 3) + 1(8 + 6) = 0

+ 1(-1)1+3 2 4 -2

3 2
2

3 4 -2 1

4 -2 1

3 2 7

3 = 41-121+1 2 -2 1

2 7
2 + 1-221-121+2 2 4 1

3 7
2

= 3(-14 - 2) - 1(28 - 3) + 5(8 + 6) = -3

 3
3 1 5

4 -2 1

3 2 7

3 = 31-121+1 2 -2 1

2 7
2 + 11-121+2 2 4 1

3 7
2 + 51-121+3 2 4 -2

3 2
2

(-1)i+j aij.
2 * 23 * 3

(n - 1)
(n - 1) *

2 * 2

2 a b

c d
2 = ad - bc

2 * 2

3 4 -2 1

4 -2 1

3 2 7

3

3 3 1 5

4 -2 1

3 2 7

3
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specifies the values of n and l for each electron. For example, the configuration for
ground-state He is 1s2 and that for ground state F is 1s22s22p5. The quantum numbers
ml and ms are not specified in a configuration. Describing the quantum state of an
atom requires this information, as will be discussed in Chapter 11.

EXAMPLE PROBLEM 10.2

This problem illustrates how determinantal wave functions can be associated with put-
ting and spins in a set of orbitals. The first excited state of the helium atom can be
described by the configuration 1s12s1. However, four different spin orientations are
consistent with this notation, as shown pictorially in the following figure. Do not take
these pictures too literally, because they imply that one electron can be distinguished
from another.

ba
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1s

2s
E

Keep in mind that the and notation commonly used for and spins is shorthand
for the more accurate vector model depiction discussed in Chapter 7 and shown here:

baTc

and� �

Write determinantal wave functions that correspond to these pictures.

Solution

The neutral atom that has three electrons is Li. If the third electron is put in the 1s
orbital, the determinantal wave function

is obtained, where the third electron can have either or spin. However, the first and
third columns in this determinant are identical, so that . Therefore, the
third electron must go into the next higher energy orbital with . This example
shows that the Pauli exclusion principle requires that each orbital have a maximum
occupancy of two electrons. The configuration of ground-state Li is 1s22s1. For ,
l can take on the value 0 with the only possible ml value of 0, or 1 with the possible ml
values of 0, , and . Each of the possible sets of n, l, and ml can be combined with

. Therefore, there are eight different sets of quantum numbers for .n = 2ms = ;1>2 -1+1

n = 2

n = 2
c(1, 2, 3) = 0
ba

c(1, 2, 3) =
1

23!
3 1s(1)a(1) 1s(1)b(1) 1s(1)a(1)

1s(2)a(2) 1s(2)b(2) 1s(2)a(2)

1s(3)a(3) 1s(3)b(3) 1s(3)a(3)

3

 c311, 22 =
1

12
2 1s112b112 2s112b112
1s122b122 2s122b122 2 ; c411, 22 =

1

22
2 1s112b112 2s112a112
1s122b122 2s122a122 2

 c111, 22 =
1

12
2 1s112a112 2s112b112
1s122a122 2s122b122 2 ; c211, 22 =

1

22
2 1s112a112 2s112a112
1s122a122 2s122a122 2 ;



The set of orbitals with the same values of n and l comprises a subshell, and the set of
orbitals with the same n value comprises a shell. The connotation of a shell is demon-
strated pictorially in Figure 9.12.

10.4 Using the Variation Method 
to Solve the Schrödinger Equation

In Section 10.1, we concluded that electron–electron repulsion terms in the total energy
operator for many-electron atoms preclude an analytical solution to the Schrödinger
equation. However, numerical methods are available for calculating one-electron ener-
gies and the orbitals that include electron–electron repulsion. The goal is to
obtain as good an approximation as possible to the total energy eigenfunctions and
eigenvalues for the many-electron atom. Only one of these methods, the Hartree–Fock
self-consistent field method combined with the variation method, is discussed here.
Other methods that go beyond Hartree–Fock by including electron correlation are dis-
cussed in Chapter 15.

We next discuss the variation method, which is frequently used in computational
chemistry calculations. Consider a system in its ground state with energy E0 and the cor-
responding eigenfunction , which satisfies the equation . Multiplying HN c0 = E0c0c0

ei and fi
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this expression on the left by and integrating results in the following equation:

(10.9)

The denominator takes into account that the wave function may not be normalized. For a
many-electron atom, the total energy operator can be formulated, but the exact total
energy eigenfunctions are unknown. How can the energy be calculated in this case? The
variation theorem states that no matter what approximate wave function is substi-
tuted for the ground-state eigenfunction in Equation (10.9), the energy is always greater
than or equal to the true energy. Expressed mathematically, the theorem says that

(10.10)

The proof of this theorem is included as an end-of-chapter problem. How can this method
be implemented to obtain good approximate wave functions and energies? We parameter-
ize the trial wave function and find the optimal values for the parameters by minimiz-
ing the energy with respect to each parameter. This procedure gives the best energy that
can be obtained for that particular choice of a trial wave function. The better the choice
made for the trial function, the closer the calculated energy will be to the true energy.

We illustrate this formalism using the particle in the box as a specific example. Any
trial function used must satisfy a number of general conditions (single valued, normal-
izable, the function and its first derivative are continuous) and also the boundary condi-
tion that the wave function goes to zero at the ends of the box. We use the trial function
of Equation (10.11) to approximate the ground-state wave function. This wave function
satisfies the criteria just listed. This function contains a single parameter that is used
to minimize the energy:

(10.11)

We first calculate the energy for and obtain

(10.12)E =
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Because the trial function is not the exact ground-state wave function, the energy is
higher than the exact value . How similar is the trial function to
the ground-state eigenfunction? A comparison between the exact solution and the trial
function with is shown in Figure 10.2a.

To find the optimal value for , E is first expressed in terms of h, m, a, and , and
then minimized with respect to . The energy E is given by

(10.13)

Carrying out this integration gives E in terms of , m, a, and :

(10.14)

To minimize the energy with respect to the variational parameter, we differentiate this
function with respect to , set the resulting equation equal to zero, and solve for . The
solutions are and . The second of these solutions corresponds
to the minimum in E. Substituting this value in Equation (10.14) gives

, which is very close to the true value of . The opti-
mized trial function is shown in Figure 10.2b. We can see that, by choosing the optimal
value of , . No better value for the energy can be obtained with
this particular choice of a trial wave function, and this illustrates a limitation of the
variation method. The “best” energy obtained depends on the choice of the
trial function. For example, a lower energy is obtained if a function of the type

is minimized with respect to . This example shows how 
the variation method can be implemented by optimizing approximate solutions to the
Schrödinger equation.

10.5 The Hartree–Fock Self-Consistent 
Field Method

We now return to the problem at hand, namely, solving the Schrödinger equation for
many-electron atoms. The starting point is to use the orbital approximation and to take
the Pauli exclusion principle into account. Antisymmetry of the wave function with
respect to electron exchange is accomplished by expressing the wave function as a
Slater determinant

(10.15)

in which the individual entries are modified H atom orbitals as described later. The
Hartree–Fock method is a prescription for finding the single Slater determinant that
gives the lowest energy for the ground-state atom in the absence of electron correlation.
(More correctly, configurations with more than one unpaired electron require more than
one Slater determinant.)

fj

c11,2, 3, Á , n2 =
1

2n!
4
f1112a112 f1112b112 Á fm112b112
f1122a122 f1122b122 Á fm122b122

Á Á Á Á
f11n2a1n2 f11n2b1n2 Á fm1n2b1n2

4

a£(x) = xa(a - x)a

E: E0 and £: c0a
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a = -0.345a = -5.74
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+
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+
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FIGURE 10.2
Exact (red curve) and approximate (purple
curve) wave functions for the ground
state of the particle in the box.
(a) The approximate wave function
contains only the first term in
Equation (10.11). (b) The optimal
approximate wave function contains both
terms of Equation (10.11). The light blue
curve shows the contribution of the second
term in Equation (10.11) to the approxi-
mate wave function.



As for the helium atom discussed in Section 10.1, it is assumed that the electrons
are uncorrelated and that a particular electron feels the spatially averaged electron
charge distribution of the remaining electrons. These approximations reduce the
radial part of the n-electron Schrödinger equation to n one-electron Schrödinger equa-
tions that have the form

(10.16)

in which the effective potential energy felt by the first electron, , takes into
account the electron-nuclear attraction and the repulsion between electron 1 and all
other electrons. The Hartree–Fock method allows the best (in a variational sense) one-
electron orbitals and the corresponding orbital energies to be calculated.

Because of the neglect of electron correlation, the effective potential is spherically
symmetrical and, therefore, the angular part of the wave functions is identical to the
solutions for the hydrogen atom. This means that the s, p, d, orbital nomenclature
derived for the hydrogen atom remains intact for the one-electron orbitals for all atoms.
What remains to be found are solutions to the radial part of the Schrödinger equation.

To optimize the radial part of the determinantal wave function, the variational
method outlined in Section 10.4 is used. What functions should be used for the individ-
ual entries in the determinant? Each is expressed as a linear combination
of suitable basis functions fi(r) as shown in Equation (10.17).

(10.17)

What do we mean by a set of suitable functions? Recall that a well-behaved function
can be expanded in a Fourier series as a sum of sine and cosine functions, which in this
context are basis functions. There are many other choices for individual members of a
basis set. The criterion for a “good” basis set is that the number of terms in the sum m
representing is as small as possible and that the basis functions enable the
Hartree–Fock calculations to be carried out rapidly. Two examples of basis set expan-
sions for atomic orbitals are shown in Figures 10.3 and 10.4.

In Figure 10.3, the 2p atomic orbital of Ne obtained in a Hartree–Fock calculation
is shown together with the individual contributions to Equation (10.17) where each
member of the basis set is of the form and Ni is a
normalization constant. In a second example, the H 1s AO and the contributions of each
member of the basis set to Equation (10.17) are shown in Figure 10.4, where them = 3

fi(r) = Nirexp3-zir>a04m = 4

fj(r)

fj(r) = a
m

i=1

cifi(r)

fj(r)fj(r)

Á

eifi(r)

V1
eff(r)

¢ U2

2m
§2

i + Vi
eff(r)≤ fi1r2 = eifi1r2, i = 1, Á , n

n - 1
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The left panel shows a fit to a H 1s orbital
with a single Gaussian function. The
agreement is not good. The right panel
shows a best fit (purple curve) using a
basis set of three Gaussian functions
which are also shown. Except very near
the nucleus, the three basis function fit is
very good.

–4 –2 0 2
Distance/a0

Amplitude

4

A
m

pl
itu

de

r /a0

0.5 1 1.5 2

FIGURE 10.3
The top curve shows the radial function
for the 2p orbital in Ne determined in a
Hartree–Fock calculation. It has been
shifted upward for clarity. The bottom
four curves are the individual terms in
the four-element basis set.



basis set functions are of the form (Gaussian functions).
In both cases, the coefficients ci in Equation (10.17) are used as variational parameters
to optimize and the values are optimized separately. Although the Gaussian
functions do not represent the H 1s function accurately near the nucleus, they are well
suited to Hartree–Fock calculations and are the most widely used basis functions in
computational chemistry. (See Chapter 15 for a more detailed discussion of Gaussian
basis functions.)

The preceding discussion describes the input to a calculation of the orbital energies,
but there is a problem in proceeding with the calculation. To solve the Schrödinger
equation for electron 1, must be known, and this means that we must know the
functional form of all the other orbitals . This is also the
case for the remaining electrons. In other words, the answers must be known in
order to solve the problem.

The way out of this quandary is to use an iterative approach. A reasonable guess is
made for an initial set of . Using these orbitals, an effective potential is calculated,
and the energy and improved orbital functions, , for each of the n electrons are
calculated. The are used to calculate a new effective potential, which is used to
calculate a further improved set of orbitals, , and this procedure is repeated for
all electrons until the solutions for the energies and orbitals are self-consistent, mean-
ing that they do not change significantly in a further iteration. This procedure, coupled
with the variation method in optimizing the parameters in the orbitals, is very effective
in giving the best one-electron orbitals and energies available for a many-electron atom
in the absence of electron correlation. More accurate calculations that include electron
correlation are discussed in Chapter 15.

The accuracy of a Hartree–Fock calculation depends primarily on the size of the
basis set. This dependence is illustrated in Table 10.1 in which the calculated total
energy of He and the 1s orbital energy are shown for three different basis sets. In each
case, has the form

(10.18)

where Ni is a normalization constant for the ith basis function and m is the number of
basis functions. It is seen that there is almost no change in going from two to five basis
functions, which represents the Hartree–Fock limit of a complete basis set in this case.
The one element or single zeta basis set gives an energy that differs significantly from
the Hartree–Fock limit. We return to this basis set in discussing the effective nuclear
charge later. The He 1s orbital cannot be accurately represented by a single exponential
function as was the case for the hydrogen atom.

One might think that the total energy of an atom is the sum of the orbital energies,
or for helium, . As shown in Table 10.1, , and this resultetotal - 2e1s 6 0etotal = 2e1s

f1s(r) = a
m

i=1
ciNie

-zir>a0

f1s(r)

f–j(r)
f¿j(r)

f¿j(r)
fj(r)

n-1
f2(r2), f3(r3), Á , fn(rn)

V1
eff(r)

zifj(r)

fi(r) = Ni exp3-zi(r>a0)24
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TABLE 10.1 Total Energy and 1s Orbital Energy for He for Three Different
Basis Sets Used to Represent the 1s Orbital

Number of
Basis
Functions, m

Exponents, Zi Total Energy of
He, (eV)Etotal

1s Orbital
Energy, (eV)E1s (eV)

Etotal � 2E1s

5 1.41714, 2.37682,
4.39628, 6.52699,
7.94252

-77.8703 -24.9787 -27.9129

2 2.91093, 1.45363 -77.8701 -24.9787 -27.9133

1 1.68750 -77.4887 -24.3945 -28.6998

The data is taken from E. Clementi and C. Roetti. “Roothaan-Hartree-Fock Atomic Wavefunctions: Basis
Functions and Their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms,
Z 54.” Atomic Data and Nuclear Data Tables 14 (1974): 177.…



can be understood by considering how electron–electron repulsion is treated in a
Hartree–Fock calculation. The 1s orbital energy is calculated using an effective poten-
tial in which repulsion between the two electrons in the orbital is included. Therefore,
assuming that counts the repulsion between the two electrons twice and
gives a value for that is more positive than the true total energy.

Radial functions for Ar in the Hartree–Fock limit of a large basis set are shown in
Figure 10.5. It is seen that they have the same nodal structure as the orbitals for the
hydrogen atom.

The Hartree–Fock radial functions can be used to obtain the radial probability dis-
tribution for many-electron atoms from

(10.19)

where is the radial function corresponding to the ith subshell, for example 2s, 3p,

or 4d, and ni is the number of electrons in the subshell. P(r) is shown for Ne, Ar, and Kr
in Figure 10.6. Note that the radial distribution exhibits a number of maxima, one for
each occupied shell and that the contributions from different shells overlap. The width
of P(r) for a given shell increases with n; it is smallest for and largest for the
largest n value.

Hartree–Fock orbital energies are shown in Figure 10.7 for the first 36 ele-ei

n = 1

Ri(r)

P(r) = a
i

nir
2R2

i (r)

etotal

etotal = 2e1s
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FIGURE 10.5
Hartree–Fock radial functions are shown
for Ar. The curves are offset vertically to
allow individual functions to be com-
pared. [Calculated from data in E.
Clementi and C. Roetti. “Roothaan-
Hartree-Fock Atomic Wavefunctions:
Basis Functions and Their Coefficients for
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FIGURE 10.6
Radial distribution functions calculated
from Hartree–Fock wave functions are
shown for Ne, Ar, and Kr. The colored
curves show the contributions from the
individual shells and the purple curve
shows the total radial distribution func-
tion. The n = 1 curve for Kr is not shown
for clarity.
[Calculated from data in E. Clementi and
C. Roetti. “Roothaan-Hartree-Fock
Atomic Wavefunctions: Basis Functions
and Their Coefficients for Ground and
Certain Excited States of Neutral and
Ionized Atoms, .” Atomic Data
and Nuclear Data Tables 14 (1974): 177.]

Z … 54

ments in the periodic table. An important result of these calculations is that the for
many-electron atoms depend on both the principal quantum number n and on the
angular momentum quantum number l. Within a shell of principal quantum num-
ber n, . This was not the case for the H atom. This result can
be understood by considering the radial distribution functions for Kr shown in
Figure 10.8. As discussed in Chapter 9, this function gives the probability of finding
an electron at a given distance from the nucleus. The subsidiary maximum near

in the 3s radial distribution function indicates that there is a higher
probability of finding the 3s electron close to the nucleus than is the case for the
r = 0.02 a0

ens 6 enp 6 end 6 Á

ei



3p and 3d electrons. The potential energy associated with the attraction between the
nucleus and the electron falls off as 1 r so that its magnitude increases substantially
as the electron comes closer to the nucleus. As a result, the 3s electron is bound
more strongly to the nucleus and, therefore, the orbital energy is more negative than
for the 3p and 3d electrons. The same argument can be used to understand why the
3p orbital energy is lower than that for the 3d orbital. Figure 10.7 shows that the
energy of a given orbital decreases strongly with the atomic number. This is a result
of the increase in the attractive force between the nucleus and an electron as the
charge on the nucleus increases.

It is important to realize that for a many-electron atom depends on the electron
configuration and on the atomic charge because is determined in part by the average
distribution of all other electrons. For example, the Hartree–Fock limiting value for 
is for neutral Li and for for which the 2s electron has been
removed.

A further useful result from Hartree–Fock calculations are values for the effective
nuclear charge, . The effective nuclear charge takes into account that an electron farther
from the nucleus experiences a smaller nuclear charge than that experienced by an inner

z

Li+-76.0 eV-67.4 eV
e1s

ei

ei

>
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from Hartree–Fock calculations are
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electron. This can be seen by referring to Figure 10.1. To the electron in question, it
looks as though the nuclear charge has been reduced because of the presence of the other
smeared-out electrons. This effect is particularly important for valence electrons and we
say that they are shielded from the full nuclear charge by the core electrons closer to the
nucleus. Table 10.2 shows for all occupied orbitals in the first 10 atoms in the periodic
table. The zeta values are obtained from a Hartree–Fock calculation using the single zeta
basis set discussed earlier (See Table 10.1). The difference between the true and effec-
tive nuclear charge is a direct measure of the shielding. The effective nuclear charge is
nearly equal to the nuclear charge for the 1s orbital but falls off quite rapidly for the out-
ermost electron as the principal quantum number increases. Whereas electrons of
smaller n value are quite effective in shielding electrons with greater n values from the
full nuclear charge, those in the same shell are much less effective. Therefore Z - z

z
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TABLE 10.2 Effective Nuclear Charges for Selected Atoms

H (1) He (2)

1s 1.00 1.69

Li (3) Be (4) B (5) C (6) N (7) O (8) F (9) Ne (10)

1s 2.69 3.68 4.68 5.67 6.66 7.66 8.65 9.64

2s 1.28 1.91 2.58 3.22 3.85 4.49 5.13 5.76

2p 2.42 3.14 3.83 4.45 5.10 5.76

EXAMPLE PROBLEM 10.3

The effective nuclear charge seen by a 2s electron in Li is 1.28. We might expect this
number to be 1.0 rather than 1.28. Why is larger than 1? Similarly, explain the effec-
tive nuclear charge seen by a 2s electron in carbon.

Solution

The effective nuclear charge seen by a 2s electron in Li will be only 1.0 if all the charge
associated with the 1s electrons is located between the nucleus and the 2s shell. As 
Figure 9.10 shows, a significant fraction of the charge is located farther from the nucleus
than the 2s shell, and some of the charge is quite close to the nucleus. Therefore, the
effective nuclear charge seen by the 2s electrons is reduced by a number smaller than 2.
On the basis of the argument presented for Li, we expect the shielding by the 1s electrons
in carbon to be incomplete and we might expect the effective nuclear charge felt by the 2s
electrons in carbon to be more than 4. However, carbon has four electrons in the 
shell, and although shielding by electrons in the same shell is less effective than shielding
by electrons in inner shells, the total effect of all four electrons reduces the effec-
tive nuclear charge felt by the 2s electrons to 3.22.

We now turn our attention to the orbital energies . What observables can be associated
with the orbital energies? The most meaningful link of to physical properties is to the
ionization energy. To a reasonable approximation, for the highest occupied orbital
is the first ionization energy. This association is known as Koopmans’ theorem in the
“frozen core” limit, in which it is assumed that the electron distribution in the atom is
not affected by the removal of an electron in the ionization event. Figure 10.9 shows
that the agreement between the experimentally determined first ionization energy and
the highest occupied orbital energy is quite good.

By analogy, for the lowest unoccupied orbital should give the electron affinity
for a particular atom. However, Hartree–Fock electron affinity calculations are much
less accurate than ionization energies. For example, the electron affinity for F based on

for the lowest unoccupied orbital is negative. This result predicts that the ion isF--ei

-ei

-ei
ei

ei

n = 2

n = 2

z

increases in moving across the periodic table. However, as Example Problem 10.3
shows, some subtle effects are involved.



less stable than the neutral F atom, contrary to experiment. A better estimate of the
electron affinity of F is obtained by comparing the total energies of F and . This
gives a value for the electron affinity of 0.013 eV, which is still much smaller than the
experimental value of 3.34 eV. More accurate calculations, including electron correla-
tion as discussed in Chapter 15, are necessary to obtain accurate results for the ioniza-
tion energy and electron affinity of atoms.

The electron configuration of most atoms can be obtained by using Figure 10.10,
which shows the order in which the atomic orbitals are generally filled based on the
orbital energy sequence of Figure 10.7. Filling orbitals in this sequential order is known
as the Aufbau principle, and it is often asserted that the relative order of orbital ener-
gies explains the electron configurations of the atoms in the periodic table. However,
this assertion is not always true.

To illustrate this point, consider the known configurations of the first transition
series shown in Table 10.3. Figure 10.7 shows that the 4s orbital is lower in energy than
the 3d orbital for K and Ca but that the order is reversed for higher atomic numbers. Is
the order in which the s and d subshells are filled in the 4th period explained by the
relative energy of the orbitals? If this were the case, the configuration [Ar]4s03dn with

10 would be predicted for the sequence scandium-nickel where [Ar] is an
abbreviation for the configuration of Ar. However, with the exception of Cr and Cu, the
experimentally determined configurations are given by [Ar]4s23dn, with 10n = 1, Á ,

n = 3, Á ,

F-
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TABLE 10.3 Configurations for Fourth Row Atoms

Nuclear
Charge

Element Electron
Configuration

Nuclear
Charge

Element Electron
Configuration

19 K [Ar]4s1 25 Mn [Ar]4s 23d 5

20 Ca [Ar]4s2 26 Fe [Ar]4s 23d 6

21 Sc [Ar]4s23d 1 27 Co [Ar]4s 23d 7

22 Ti [Ar]4s23d 2 28 Ni [Ar]4s 23d 8

23 V [Ar]4s23d 3 29 Cu [Ar]4s 13d 10

24 Cr [Ar]4s13d 5 30 Zn [Ar]4s 23d 10



for the sequence scandium-zinc. Cr and Cu have a single 4s electron because a half-
filled or filled d shell lowers the energy of an atom.

As has been shown by L. G. Vanquickenbourne et al. “Transition Metals and the
Aufbau Principle.” J. Chemical Education 71 (1994): 469–471, the observed config-
urations can be explained if the total energies of the various possible configurations
rather than the orbital energies are compared. We show that it is favorable in the
neutral atom to fill the s orbital before the d orbital by considering the energetic cost
of moving a 4s electron to the 3d orbital. The difference in the total energy of the
two configurations is a balance between the orbital energies and the electrostatic
repulsion of the electrons involved in the promotion. for a 
promotion is given by

(10.20)

The second term in Equation (10.20) represents the difference in the repulsive energies
of the two configurations. What is the sign of the second term? Figure 10.6 shows that
the distance corresponding to the principal maxima in the radial probability distribution
for a typical many-electron atom follows the order . We conclude that
the d electrons are more localized than the s electrons, and therefore the repulsive ener-
gies follow the order .
Therefore, the sign of the second term in Equation (10.20) is positive. For this transi-
tion metal series, the magnitude of the repulsive term is greater than the magnitude of
the difference in the orbital energies. Therefore, even though for scan-
dium, the promotion does not occur because 

and is larger than . The
energy lowering from promotion to the lower orbital energy is more than offset by the
energy increase resulting from electron repulsion. Therefore, Sc has the configuration
[Ar]4s23d1 rather than [Ar]4s03d3.

These calculations also explain the seemingly anomalous configurations for the
doubly charged positive ions in the sequence scandium-zinc, which are [Ar]4s03dn with

21. The removal of two electrons significantly increases the effective
nuclear charge felt by the remaining electrons. As a result, both and are lowered
substantially, but is lowered more. Therefore, becomes more negative.
For the doubly charged ions, the magnitude of the repulsive term is less than the magni-
tude of the difference in the orbital energies. As a consequence, the doubly ionized con-
figurations are those that would be predicted by filling the lower lying 3d orbital before
the 4d orbital.

Recall that Hartree–Fock calculations neglect electron correlation. Therefore,
the total energy is larger than the true energy by an amount called the correlation
energy. For example, the correlation energy for He is . This amount
increases somewhat faster than the number of electrons in the atom. Although the
correlation energy is a small percentage of the total energy of the atom and
decreases with the atomic number (1.4% for He and 0.1% for K), it presents a prob-
lem in the application of Hartree–Fock calculations to chemical reactions for the
following reason. In chemical reactions, we are not interested in the total energies of
the reactants and products but rather in GR and HR. These changes are on the¢¢

110 kJ mol-1

e3d - e4se3d

e3de4s

n = 1, Á ,

ƒ (e3d - e4s) ƒ3Erepulsive(3d, 3d) - Erepulsive(3d, 4s)4 7 0
(e3d - e4s) +4s23d1: 4s03d3

(e3d - e4s) 6 0

Erepulsive(3d, 3d) 7 Erepulsive(3d, 4s) 7 Erepulsive(4s, 4s)

3s 7 3p 7 3d

¢E(4s: 3d) � (e3d - e4s) + 3Erepulsive(3d, 3d) - Erepulsive(3d, 4s)4

4s23dn: 4s13dn+1¢E
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order of so that errors in quantum chemical calculations resulting from
the neglect of the electron correlation can lead to significant errors in thermody-
namic calculations. However, the neglect of correlation is often less serious than
might be expected. The resulting error in the total energy is often similar for the
reactants and products if the number of unpaired electrons is the same for reactants
and products. For such reactions, the neglect of electron correlation largely cancels
in thermodynamic calculations. Additionally, the coordinated work of many quan-
tum chemists over decades has led to computational methods that go beyond
Hartree–Fock by including electron correlation. These advances make it possible to
calculate thermodynamic functions and activation energies for many reactions for
which it would be very difficult to obtain experimental data. These computational
methods will be discussed in Chapter 15.

100 kJ mol-1



10.6 Understanding Trends in the Periodic
Table from Hartree–Fock Calculations

We briefly summarize the main results of Hartree–Fock calculations for atoms:

• The orbital energy depends on both n and l. Within a shell of principal quantum
number n, .

• Electrons in a many-electron atom are shielded from the full nuclear charge by other
electrons. Shielding can be modeled in terms of an effective nuclear charge. Core elec-
trons are more effective in shielding outer electrons than electrons in the same shell.

• The ground-state configuration for an atom results from a balance between orbital
energies and electron–electron repulsion.

In addition to the orbital energies, two parameters that can be calculated using the
Hartree–Fock method are very useful in understanding chemical trends in the periodic
table. They are the atomic radius and the electronegativity. Values for atomic radii are
obtained by calculating the radius of the sphere that contains ~90% of the electron
charge. This radius is determined by the effective charge felt by valence shell electrons.

The degree to which atoms accept or donate electrons to other atoms in a reaction is
closely related to the first ionization energy and the electron affinity, which we associ-
ate with the HOMO and LUMO orbitals. For example, the energy of these orbitals
allows us to predict whether the ionic NaCl species is better described by or

. Formation of and ions at infinite separation requires

(10.21)

Formation of oppositely charged ions requires

(10.22)

In each case, additional energy is gained by bringing the ions together. Clearly the forma-
tion of is favored over . The concept of electronegativity, which is given
the symbol , quantifies this tendency of atoms to either accept or donate electrons to
another atom in a chemical bond. Because the noble gases in group VIII do not form
chemical bonds (with very few exceptions), they are not generally assigned values of .

Several definitions of electronegativity (which has no units) exist, but all lead to
similar results when scaled to the same numerical range. For instance, as defined by
Mulliken is given by

(10.23)

where IE is the first ionization energy and EA is the electron affinity. It is basically the
average of the first ionization energy and the electron affinity with the parameters 0.187
and 0.17 chosen to optimize the correlation with the earlier electronegativity scale of
Pauling, which is based on bond energies. The Mulliken definition of can be understood
using Figure 10.11.

x

x = 0.187(IE + EA) + 0.17

x

x

x

Na-Cl+Na+Cl-

¢ E = ECl
ionization - ENa

electron affinity = 12.97 eV - 0.55 eV = 12.42 eV

¢ E = ENa
ionization - ECl

electron affinity = 5.14 eV - 3.61 eV = 1.53 eV

Cl-Na+Na-Cl+
Na+Cl-

ens 6 enp 6 end 6 Á

10.6 UNDERSTANDING TRENDS IN THE PERIODIC TABLE FROM HARTREE–FOCK CALCULATIONS 207

Ionization
energy

Electron
affinity

0

Small electronegativity Large electronegativity

Preferred direction of electron transfer

A BElectron
affinity

�
�

Ionization
energyEnergy

FIGURE 10.11
The energy of the molecule AB is lowered
if electron charge is transferred from A to
B rather than from B to A.



Assume that an atom with a small ionization energy and electron affinity (A) forms
a bond with an atom that has a larger ionization energy and electron affinity (B). Partial
charge transfer from A to B lowers the energy of the system and is therefore favored
over the reverse process, which increases the energy of the system. Chemical bonds
between atoms with large differences in have a strong ionic character because signif-
icant electron transfer occurs. Chemical bonds between atoms that have similar val-
ues are largely covalent, because the driving force for electron transfer is small, and
valence electrons are shared nearly equally by the atoms.

Figure 10.12 compares values for the atomic radius, first ionization energy, and x

x

x
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FIGURE 10.12
The electronegativity, first ionization energy, and covalent atomic radius are plotted as a func-
tion of the atomic number for the first 55 elements. Dashed vertical lines mark the completion of
each period.

as a function of atomic number up to . This range spans one period in which
only the 1s orbital is filled, two short periods in which only s and p orbitals are filled,
and two longer periods in which d orbitals are also filled. Beginning with the covalent
radius, we see the trends predicted from calculated values for the valence electrons
that increase in going across a period and down a group as shown for the main group
elements in Figure 10.13.

The radii decrease continuously in going across a period but increase abruptly as n
increases by one in moving to the next period. Moving down a group of the periodic
table, the radius increases with n because increases more slowly with the nuclear
charge than in moving across a period. Small radii are coupled with large , and this
combination leads to a large ionization energy. Therefore, changes in the ionization
energy follow the opposite trend to that for the atomic radii. The ionization energy falls
in moving down a column, because the atomic radius increases more rapidly than 
increases. The electronegativity follows the same pattern as the ionization energy
because in general the ionization energy is larger than the electron affinity.

z

z

z

z

Z = 55
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Q10.1 Why does the effective nuclear charge for the 1s
orbital increase by 0.99 in going from oxygen to fluorine but
only increases by 0.65 for the 2p orbital?

Q10.2 There are more electrons in the shell than for
the shell in krypton. However, the peak in the radial
distribution in Figure 10.6 is smaller for the shell than
for the shell. Explain this fact.

Q10.3 How is the effective nuclear charge related to the size
of the basis set in a Hartree–Fock calculation?

Q10.4 The angular functions, , for the one-electron
Hartree–Fock orbitals are the same as for the hydrogen atom,
and the radial functions and radial probability functions are
similar to those for the hydrogen atom. The contour coloring is
explained in the caption to figure 9.7. The following figure
shows (a) a contour plot in the plane with the y axis being
the vertical axis, (b) the radial function, and (c) the radial proba-
bility distribution for a one-electron orbital. Identify the orbital
(2s, 4dxz, and so on).

xy

™(u)£(f)

n = 3
n = 4

n = 3
n = 4

Vocabulary

antisymmetric wave function

Aufbau principle

basis functions

configuration

correlation energy

effective nuclear charge

electron affinity

electron correlation

electron–electron repulsion

electron spin

electronegativity

Hartree–Fock self-consistent field
method

indistinguishability

ionization energy

Koopmans’ theorem

orbital

orbital approximation

orbital energy

Pauli exclusion principle

shell

shielding

Slater determinant

subshell

symmetric wave function

trial wave function

variational method

variational theorem

Conceptual Problems

H
1s 1

He
1s 1.69

Li
2s 1.28

Na
3s 2.51

K
4s 3.50

Rb
5s 4.98

Be
2s 1.91

Mg
3s 3.31

Ca
4s 4.40

Sr
5s 6.07

B
2s 2.58
2p 2.42

C
2s 3.22
2p 3.14

N
2s 3.85
2p 3.83

O
2s 4.49
2p 4.45

F
2s 5.13
2p 5.10

Ne
2s 5.76
2p 5.76

Al
3s 4.12
3p 4.07

Si
3s 4.90
3p 4.29

P
3s 5.64
3p 4.89

S
3s 6.37
3p 5.48

Cl
3s 7.07
3p 6.12

Ar
3s 7.76
3p 6.76

Ga
4s 7.07
4p 6.22

Ge
4s 8.04
4p 6.78

As
4s 8.94
4p 7.45

Se
4s 9.76
4p 8.29

Br
4s 10.55
4p 9.03

Kr
4s 11.32
4p 9.77

In
5s 9.51
5p 8.47

Sn
5s 10.63
5p 9.10

Sb
5s 10.61
5p 9.99

Te
5s 12.54
5p 10.81

I
5s 13.40
5p 11.61

Xe
5s 14.22
5p 12.42

FIGURE 10.13
Effective nuclear charges are shown for
valence shell electrons of main group 
elements in the first five periods in the
periodic table.
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Q10.5 What is the functional dependence of the 1s orbital
energy on Z in Figure 10.7? Check your answer against a few
data points.

Q10.6 See Question Q10.4.
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Q10.12 Why is the total energy of a many-electron atom not
equal to the sum of the orbital energies for each electron?

Q10.13 See Question Q10.4.Q10.7 Explain why shielding is more effective by electrons
in a shell of lower principal quantum number than by elec-
trons having the same principal quantum number.

Q10.8 Are the elements of a basis set observable in an
experiment? Explain your reasoning.

Q10.9 Show using an example that the following two for-
mulations of the Pauli exclusion principle are equivalent:

a. Wave functions describing a many-electron system must
change sign under the exchange of any two electrons.

b. No two electrons may have the same values for all four
quantum numbers.

Q10.10 See Question Q10.4.

Q10.11 See Question Q10.4.
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Q10.14 See Question Q10.4. Q10.16 Show that the Slater determinant formalism auto-
matically incorporates the Pauli exclusion principle by evalu-
ating the He ground-state wave function of Equation (10.8),
giving both electrons the same quantum numbers.

Q10.17 Is there a physical reality associated with the indi-
vidual entries of a Slater determinant?

Q10.18 See Question Q10.4.

NUMERICAL PROBLEMS 211

Q10.15 See Question Q10.4.

Q10.19 How can you tell if one basis set is better than
another in calculating the total energy of an atom?

Q10.20 Why is the s, p, d, nomenclature derived for theÁ

Numerical Problems

Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P10.1 Is c(1, 2) = 1s(1)a(1) 1s(2)b(2) +

P10.3 In this problem we represent the spin eigenfunctions
and operators as vectors and matrices.

a. The spin eigenfunctions are often represented as the col-
umn vectors

Show that are orthogonal using this representation.a and b

a = a1

0
b and b = a0

1
b

H atom also valid for many-electron atoms?

Q10.21 Would the trial wave function

have been a suitable choice for the calculations carried out in
Section 10.4? Justify your answer.

£(x) = ax

a
-

x3

a3 b + aax5

a5 -
1

2
ax7

a7 b b , 0 6 x 6 a

an eigenfunction of the operator ? If 

so, what is its eigenvalue MS?

P10.2 Calculate the angles that a spin angular momentum
vector for an individual electron can make with the z axis.

zSN1s(2)a(2)1s(1)b(1)

r

(b)
r

(c)
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b. If the spin angular momentum operators are represented by
the matrices

show that the commutation rule holds.

c. Show that

d. Show that are eigenfunctions of . What 

are the eigenvalues?

e. Show that are not eigenfunctions of .

P10.4 In this problem you will prove that the ground-
state energy for a system obtained using the variational
method is greater than the true energy.

a. The approximate wave function can be expanded in the
true (but unknown) eigenfunctions of the total energy
operator in the form . Show that by 

substituting in the equation

you obtain the result

b. Because the are eigenfunctions of , they are orthonormal 

and . Show that this information allows us to
simplify the expression for E from part (a) to

c. Arrange the terms in the summation such that the first
energy is the true ground-state energy E0 and the energy
increases with the summation index m. Why can you con-
clude that ?

P10.5 In this problem you will show that the charge density
of the filled , subshell is spherically symmetrical 
and that therefore . The angular distribution of the elec-
tron charge is simply the sum of the squares of the magnitude
of the angular part of the wave functions for and

, 0, and 1.

a. Given that the angular part of these wave functions is

Y1
1(u, f) = a 3

8p
b1>2

sin u eif

Y0
1(u, f) = a 3

4p
b1>2

cos u

ml = -1
l = 1

L = 0
l = 1n = 2

E - E0 Ú 0

E =
a
m

Emc*
mcm

a
m

c*
mcm

cn = EncnHN
HNcn

E =
a
n
a
m L1c

*
nc

*
n2HN (cmcm) dt

a
n
a
m L1c

*
nc

*
n21cmcm2dt

E = L
£*HN £ dt

L£*£ dt

£ = ancncn

£ = ancncn

cn

£

ysNx and sNa and b

2sNz and sNa and b

sN2 = sN2
x + sN2

y + sN2
z =

U2

4
a3 0

0 3
b

[sNx, sNy] = iU sNz

sNx =
U
2
a 0  1

1  0
b , sNy =

U
2
a0 - i

i  0
b , sNz =

U
2
a1   0

0  -1
b

write an expression for 
.

b. Show that does
not depend on .

c. Why does this result show that the charge density for the
filled , subshell is spherically symmetrical?

P10.6 The operator for the square of the total spin of two 

l = 1n = 2

u and f
ƒY0

1(u, f) ƒ 2 + ƒY1
1(u, f) ƒ 2 + ƒY-1

1 (u, f) ƒ 2
ƒY-1

1 (u, f) ƒ 2
ƒY0

1(u, f) ƒ 2 + ƒY1
1(u, f) ƒ 2 +

Y-1
1 (u, f) = a 3

8p
b1>2

sin u e-if

electrons is +2
2SN2

1 +SN2)2 =SN1 +SN2
total = (SN

Given that2z).SN1zSN2y +SN1ySN2x +SN1xSN2(

show that (1) (2) and (1) (2) are eigenfunctions of bbaa

zb = -
U
2
b,SNyb = -

iU
2
a,SNxb =

U
2
a,SN

za =
U
2
a,SNya =

iU
2
b,SNxa =

U
2
b,SN

the operator . What is the eigenvalue in each case?2
totalSN

P10.7 Show that the functions 3a (1)b (2) + b (1)a (2)4>
are eigenfunctions of 

. What is the eigenvalue in each case?

P10.8 In this problem, you will use the variational method
to find the optimal 1s wave function for the hydrogen atom
starting from the trial function with as the
variational parameter. You will minimize

with respect to .

a. Show that

b. Obtain the result £ dr =HN£ dt = 4p1q
0 r2£*HN1£*

=
aU2

2mer2(2r - ar2)e-ar -
e2

4pe0r
e-ar

HN £ = -
U2

2me

1

r2

0
0r
ar2 0£(r)

0r
b -

e2

4pe0r
£(r)

a

E(a) = L
£*HN £ dt

L£*£ dt

a£(r) = e-ar

2
totalSN

and 3a (1)b (2) - b (1)a (2)4>22

22

using the standard integrals in
the Math Supplement.

c. Show that using
the standard integrals in the Math Supplement.

d. You now have the result .
Minimize this function with respect to and obtain the
optimal value of .

e. Is equal to or greater than the true 

energy? Why?

E(aoptimal)

a

a

14pe02E(a)=  U2a2>12me2 - e2a>
r2£*£ dr = p>a31£*£ dt = 4p1q

0

pU2>12mea2 - e2>14e0a22



P10.9 You have commissioned a measurement of the sec-
ond ionization energy from two independent research teams.
You find that they do not agree and decide to plot the data
together with known values of the first ionization energy.
The results are shown here:

P10.11 Write the Slater determinant for the ground-state
configuration of Be.

P10.12 The exact energy of a ground state He atom is 
79.01 eV. Calculate the correlation energy and the ratio of

the correlation energy to the total energy for He using the
results in Table 10.1.

P10.13 The ground state wave function of Li2+ is
where Z is the nuclear charge. 

Calculate the expectation value of the potential energy for Li2+.

P10.14 Calculate the position of the maximum in the radial
distribution function for Li2+ in its ground state using the
wave function in P10.13.

P10.15 – P10.20 refer to the first ionization energies and elec-
tron affinities of the first 11 elements (units of eV) shown in
the following table.

p-1>2(Z>a0)3>2e-Zr>a0

-
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Element H He Li Be B C N O F Ne Na

First
Ionization
Energy (eV)

13.6 24.6 5.4 9.3 8.3 11.3 14.5 13.6 17.4 21.6 5.1

Electron
Affinity (eV)

0.8 <0 0.6 <0 0.3 1.3 -0.1 1.5 3.4 <0 0.5

P10.15 Why is the magnitude of the electron affinity for a
given element smaller than the magnitude of the first ioniza-
tion energy?

P10.16 The electron affinities of He, Be, and Ne are nega-
tive, meaning that the negative ion is less stable than the
neutral atom. Give an explanation of why this is so for these
three elements.

P10.17 Are the effective nuclear charges listed in
Figure 10.13 helpful in explaining the trend in the first ion-
ization energy with increasing atomic number? Explain
your answer.

P10.18 Are the effective nuclear charges listed in
Figure 10.13 helpful in explaining the trend in the electron
affinity with increasing atomic number? Explain your answer.

P10.19 Explain why the electron affinity of N is negative.

P10.20 Explain why the first ionization energy and electron
affinity for F are larger than for O.

Computational Problems
More detailed instructions on carrying out these calculations
using Spartan Physical Chemistry are found on the book web-
site at www.masteringchemistry.com. Gaussian basis sets are
discussed in Chapter 15.

C10.1 Calculate the total energy and 1s orbital energy for
Ne using the Hartree–Fock method and the (a) 3-21G, 

(b) 6-31G*, and (c) 6-311+G** basis sets. Note the number
of basis functions used in the calculations. Calculate the
relative error of your result compared with the Hartree–Fock
limit of hartree for each basis set. Rank the
basis sets in terms of their approach to the Hartree–Fock limit
for the total energy.

-128.854705

The lowest curve is for the first ionization energy and the
upper two curves are the results for the second ionization
energy from the two research teams. The uppermost curve has
been shifted vertically to avoid an overlap with the other new
data set. On the basis of your knowledge of the periodic table,
you suddenly know which of the two sets of data is correct
and the error that one of the teams of researchers made.
Which data set is correct? Explain your reasoning.

P10.10 Classify the following functions as symmetric, anti-
symmetric, or neither in the exchange of electrons 1 and 2:

a.

b.

c.

d.

e. 3a(1)b(2) - b(1)a(2) + a(1)a(2)431s(1)2s(2) + 2s(1)1s(2)4 *
31s(1)2s(2) - 2s(1)1s(2)43a(1)b(2) + b(1)a(2)4
31s(1)2s(2) + 2s(1)1s(2)43a(1)b(2) + b(1)a(2)4
31s(1)2s(2) + 2s(1)1s(2)4a(1)a(2)

3a(1)b(2) - b(1)a(2)431s(1)2s(2) + 2s(1)1s(2)4 *

www.masteringchemistry.com


C10.2 Calculate the total energy and 4s orbital energy for K
using the Hartree–Fock method and the (a) 3-21G and 
(b) 6-31G* basis sets. Note the number of basis functions
used in the calculations. Calculate the percentage deviation
from the Hartree–Fock limits, which are for the
total energy and for the 4s orbital energy. Rank
the basis sets in terms of their approach to the Hartree–Fock
limit for the total energy. What percentage error in the
Hartree–Fock limit to the total energy corresponds to a typical
reaction enthalpy change of 

C10.3 Calculate the ionization energy for (a) Li, (b) F, (c) S,
(d) Cl, and (e) Ne using the Hartree–Fock method and the 
6-311+G** basis set. Carry out the calculation in two different
ways: (a) Use Koopmans’ theorem and (b) compare the total
energy of the neutral and singly ionized atom. Compare your
answers with literature values.

C10.4 Calculate the electron affinity for (a) Li, (b) F, (c) S,
and (d) Cl using the Hartree–Fock method and the 6-311+G**

100. kJ mol-1?

-3.996 eV
-16245.7 eV
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basis set by comparing the total energy of the neutral and
singly ionized atom. Compare your answers with literature
values.

C10.5 Using your results from C10.3 and C10.4, calculate
the Mulliken electronegativity for (a) Li, (b) F, (c) S, and
(d) Cl. Compare your results with literature values.

C10.6 To assess the accuracy of the Hartree–Fock method
for calculating energy changes in reactions, calculate the total
energy change for the reaction by cal-
culating the difference in the total energy of reactants and
products using the Hartree–Fock method and the 6-31G*
basis set. Compare your result with a calculation using the
B3LYP method and the same basis set and with the experimen-
tal value of . As discussed in Chapter 15, the
B3LYP method takes electron correlation into account. What
percentage error in the Hartree–Fock total energy for CH3OH
would account for the difference between the calculated and
experimental value of ?(¢U)

410. kJ mol-1

(¢U)

CH3OH: CH3 + OH
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11.2 The Energy of a
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Quantum States 
for Many-Electron
Atoms and Atomic

Spectroscopy

Having more than one electron in an atom raises the issues of the

indistinguishability of electrons, the electron spin, and the interaction

between orbital and spin magnetic moments. Taking these issues into

consideration leads to a new set of quantum numbers for the states of

many-electron atoms and the grouping of these states into levels and

terms. Atomic spectroscopies give information on the discrete energy

levels of an atom and provide the basis for understanding the coupling of

the individual spin and orbital angular momentum vectors in a many-

electron atom. Because the discrete energy levels for atoms differ, atomic

spectroscopies give information on the identity and concentration of

atoms in a sample. For this reason, atomic spectroscopies are widely used

in analytical chemistry. The discrete energy spectra of atoms and the dif-

ference in the rates of transition between quantum states can be used to

construct lasers that provide an intense and coherent source of monochro-

matic radiation. Atomic spectroscopies can also provide elemental identifi-

cation specific to the first few atomic layers of a solid. The reactions of

electronically excited atoms can differ dramatically from their ground-state

counterparts, as evidenced by reactions in Earth’s atmosphere.

11.1 Good Quantum Numbers, Terms,
Levels, and States

How are quantum numbers assigned to many-electron atoms? The quantum numbers n,
l, ml, and ms that were used to characterize total energy eigenfunctions for the H atom

215

11 C
H

A
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R

are associated with the eigenvalues of the operators , , , and . It can be shownzsNzl
N2lNHN



216 CHAPTER 11 Quantum States for Many-Electron Atoms and Atomic Spectroscopy

that the eigenvalues of a given operator are independent of time only if the operator
commutes with . The H atom quantum numbers are good quantum numbers
because the set of operators , , , and commutes with the total energy 

operator . Operators that generate good quantum numbers are of particular 
interest to us in obtaining the values of time-independent observables for atoms and
molecules.

However, n, l, ml, and ms are not good quantum numbers for any many-electron
atom or ion. Therefore, another set of quantum numbers whose corresponding opera-
tors do commute with must be found. Our primary focus is on a model that ade-
quately describes atoms with , and we extend this model to atoms for which

in Section 11.3, where the reason for this restriction on the value of the atomic
number is explained. Good quantum numbers are generated by forming vector sums of
the electron orbital and spin angular momenta separately, , which have the z
components ML and MS, respectively. Only electrons in unfilled subshells contribute to
these sums:

(11.1)

where the summation is over the electrons in unfilled subshells. As discussed in
Chapter 7 for , the magnitudes of are ,
respectively.

Figure 11.1 illustrates vector addition in classical physics. Note that in order to
carry out the vector summations, all three vector components must be known. However,
it follows from the commutation rules between , , and [see Equation (7.57)] that
only the length of an angular momentum vector and one of its components (which we
choose to be on the z axis) can be known in quantum mechanics. This means that the
summation shown in Figure 11.1 cannot actually be carried out. By contrast, it is easy
to form the sum ML because the known components lzi add as scalars, . As
we will see later, it is sufficient to know ML and MS in order to determine the good
quantum numbers L and S.

We next discuss many electron-atom operators , , , and , which are formed

from one-electron operators. These operators commute with for a many-electron
atom with . The capitalized form of the operators refers to the resultant for all
electrons in unfilled subshells of the atom. These operators are defined by

(11.2)

in which the index i refers to the individual electrons in unfilled subshells. The good
quantum numbers for many-electron atoms for are L, S, ML, and MS.

As can be inferred from Equation (11.2), the calculation for is somewhat complex 
and is not discussed here. By contrast, can be calculated easily as shown in
Example Problem 11.1.

SN z

SN 2
Z 6 40

LN z = a
i

lNz, i and LN 2 = aa
i

lNib
2

SN z = a
i

sNz, i and SN 2 = aa
i

sNib
2

Z 6 40
HN

SN zSN 2LN zLN 2

ML = a ilzi

lNzlNylNx

and 2S(S + 1)U2L(L + 1)UL and Sl

L = a
i

li,  S = a
i

si

L and S

Z 7 40
Z 6 40

HN

HN
zsNsN2

zl
N2lN

HN

FIGURE 11.1
The sum of three classical angular
momentum vectors is depicted.
Whereas it is necessary to know the
direction of each vector to calculate

, this is not necessary to calculate
ML. As discussed in Section 7.8,
each angular momentum vector
would need to be represented by a
cone to be consistent with the com-
mutation relations among , ,
and .LN z

LN yLN x

L

l3

l1
l1Z

l2Z

l3Z

LZ

ML
l2

L

No electron–electron 
repulsion

Electron–electron
repulsion and 
indistinguishability
included

Spin–orbit interaction
included

External 
magnetic field

Configuration Terms Levels States

n,l L,S J,MJ J,MJ

FIGURE 11.2
The top line shows the level of approxi-
mation, the second line shows the group
of states that are degenerate in energy, and
the bottom line shows the good quantum
numbers in each level of approximation.



11.2 THE ENERGY OF A CONFIGURATION DEPENDS ON BOTH ORBITAL AND SPIN ANGULAR MOMENTUM 217

EXAMPLE PROBLEM 11.1

Is an eigenfunction of the 

operator ? If so, what is its eigenvalue MS?

Solution

This result shows that the wave function is an eigenfunction of with .

The occupied orbitals of an atom are specified in a configuration. For example, the
electron configuration of neon is 1s22s22p6. Although a configuration is a very useful
way to describe the electronic structure of atoms, it does not completely specify the
quantum state of a many-electron atom because it is based on the one-electron quantum
numbers n and l. Taking electron–electron repulsion into account and invoking the
Pauli exclusion principle splits a configuration into terms as shown in Figure 11.2.
A term is a group of states that has the same L and S values. Describing the states of
many-electron atoms by terms is appropriate for atoms with a nuclear charge of 
because L and S are “good enough” quantum numbers for these atoms, meaning that the
difference in energy between quantum states in a term is very small compared to the
energy separation of the terms. Levels will be discussed in Section 11.3.

11.2 The Energy of a Configuration
Depends on Both Orbital and Spin
Angular Momentum

As proved in Supplemental Section 11.11, the energy of an atom depends on the value of
the quantum number S. If an atom has at least two unpaired electrons (electrons in orbitals
that are singly occupied), then the atom can have more than one value for S. Consider the
excited state of He with the configuration 1s12s1. Because both electrons have ,

. We next show that there are two different values of consistent with the 1s12s1

configuration and formulate antisymmetric wave functions for each value of .
Recall that an individual electron can be characterized by a spin angular momentum

vector s of magnitude , where the quantum number s can only have
the single value 1 2. The vector has possible orientations with the z
component . We say that two spins can only be parallel, and

, or antiparallel, .
Figure 11.3 shows that adding the scalar components ms for the two electrons in

each of the four possible combinations gives the values twice, as
well as . Surprisingly, the possible values of S for He
in the 1s12s1 configuration can be deduced using only this information about .
We know that because the spin angular momentum follows the same rulesS Ú ƒMS ƒ

MS

MS = ms1 + ms2 = +1 and -1
ms2 = 0MS = ms1 +

a(1)b(2) and b(1)a(2)b(1)b(2)
a(1)a(2)sz = ;1>2U

2s + 1 = 2s>s =
ƒ s ƒ = 2s(s + 1)U

S
ƒS ƒƒL ƒ = 0

l = 0

Z 6 40

MS = 0zSN

 = a U
2

-
U
2
b31s112a1121s122b122 - 1s122a1221s112b1124 = 0 * c11, 22

-
U
2
31s112a1121s122b1224 -

U
2
31s122a1221s112b1124

 =
U
2
31s112a1121s122b1224 +

U
2
31s122a1221s112b1124

+ 1sNz122231s112a1121s122b122 - 1s122a1221s112b1124
 = 1sNz112231s112a1121s122b122 - 1s122a1221s112b1124
 = 1sNz112 + sNz12231s112a1121s122b122 - 1s122a1221s112b1124

 SNzc11, 22 = 1sNz112 + sNz1222c11, 22
 SNz = sNz112 + sNz122 where sNz1i2 acts only on electron i

SN z

c11, 22 = 1s112a1121s122b122 - 1s122a1221s112b112
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as the orbital angular momentum. Because there is no value for among these
four possible spin combinations, is only consistent with . Because 
takes on all integral values between and , the group must include

. This accounts for three of the four values of listed earlier.
The one remaining combination has , which is only consistent with .

We have just shown that three of the four possible spin combinations are characterized
by with and that the fourth has with . Because of
the number of possible Ms values, the spin combination is called a singlet and the

spin combination is called a triplet. Singlet and triplet states are encountered fre-
quently in chemistry and are associated with paired and unpaired electrons, respectively.

Now that we know the S values for the four spin combinations, we can write antisym-
metric wave functions for He 1s12s1 that are eigenfunctions of with and .

(11.3)

For the wave functions that describe the three different states for the triplet, ,
, and (from top to bottom) , , and 0. The singlet consists of a sin-

gle state with and . Note that the antisymmetry of the total wave function
is achieved by making the spatial part symmetric and the spin part antisymmetric for the
singlet wave function and the other way around for the triplet wave functions.

The vector model of angular momentum can be used to depict singlet and triplet
states, as shown in Figure 11.4. Although the individual spins cannot be located on the
cones, their motion is coupled so that and for the singlet state. For a
triplet state, there is a similar coordinated precession, but in this case, the vectors add
rather than cancel and . Because , there must be three different cones corre-
sponding to , 0, and 1.

We next make it plausible that the total energy for many-electron atoms also depends
on . In the Hartree–Fock self-consistent field method, the actual positions of the elec-
trons are approximated by their average positions. This results in a spherically symmetric
charge distribution for closed subshells. As discussed in Chapter 10, this approximation
greatly simplifies the calculations of orbital energies and wave functions for many-electron
atoms. However, by looking at the angular part of the hydrogen atom wave functions
(Figure 9.7), we can see that if l is not zero (for example, the 2p electrons in carbon), the
electron probability distribution is not spherically symmetrical. Electrons in states charac-
terized by that have different values of have different orientations
of the same spatial probability distributions. Two such electrons, therefore, have different
repulsive interactions depending on their ml values. By looking at Figure 7.13, we can see

ml (-1, 0, or +1)l = 1

ƒL ƒ

MS = -1
S = 1S = 1

S = 0MS = 0

MS = 0S = 0
-1MS = 1ƒS ƒ = 22U

S = 1

f
a(1)a(2) or

b(1)b(2) or

1

22
3a(1)b(2) + b(1)a(2)4

v

 S = 1  ctriplet =
1

22
31s1122s122 - 2s1121s1224 *

 S = 0  csinglet =
1

22
31s1122s122 + 2s1121s1224 1

22
3a112b122 - b112a1224

S = 1S = 02SN

S = 1
S = 0

MS = 0S = 0MS = ;1 and 0S = 1

S = 0MS = 0
MSMS = 0, +1, and -1

S = 1-S+S
MSS = 1MS = ;1

MS 7 1

1 2 3 4

E

1s

2s

FIGURE 11.3
Possible alignment of the spins in the He
configuration 1s12s1. An upward-pointing
arrow corresponds to and a
downward-pointing arrow corresponds to

.ms = -1>2
ms = +1>2
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that two electrons in the px orbital repel each other more strongly than if one of the
electrons is in the px orbital and the other is in the pz or py orbital.

Because the ms value constrains the choices for ml for electrons in the same orbital
through the Pauli principle, the repulsive interactions between these electrons are deter-
mined by both l and s. Recall that a configuration specifies only the n and l values for the
electrons and not the ml and ms values. For many atoms, the configuration does not com-
pletely define the quantum state. When is this the case and how does the angular momen-
tum affect the orbital energies of the atom? As you will verify in the end-of-chapter
problems, only partially filled subshells contribute to . Under what conditions do
the values of ml and ms for a given configuration lead to different spatial distributions of
electrons and therefore to a different electron–electron repulsion? This occurs when there
are at least two electrons in the valence shell and when there are multiple possible choices
in ml and ms for these electrons consistent with the Pauli principle and the configuration.
This is not the case for the ground states of the rare gases, the alkali metals, the alkaline
earth metals, group III, and the halogens. Atoms in all of these groups have either a filled
shell or subshell or only one electron or one electron fewer than the maximum number of
electrons in a subshell. None of these atoms has more than one unpaired electron in its
ground state and all are uniquely described by their configuration. However, the ground
states for carbon, nitrogen, and oxygen are not completely described by a configuration.
Several quantum states, all of which are consistent with the configuration, have signifi-
cantly different values for the total energy as well as different chemical reactivities.

For atoms with , the total energy is essentially independent of MS and ML.
Therefore, a group of different quantum states that have the same values for L and S but
different values of ML and MS is degenerate in energy. Such a group of states is called a
term, and the L and S values for the term are indicated by the term symbol . Terms
with , 1, 2, 3, 4,... are given the symbols S, P, D, F, G,..., respectively. Because there
are quantum states (different ML values) for a given value of L and the 
states (different MS values) for a given value of S, a term will include 
quantum states, all of which have the same energy to a good approximation. This is the
degeneracy of a term. The superscript is called the multiplicity, and the words
singlet and triplet refer to and 3, respectively. Extending this formalism,

and 4 are associated with doublets and quartets. For a filled subshell or shell,

(11.4)

and and are only consistent with and . Therefore all
atoms with no unpaired electrons that have either a filled valence subshell or shell are
characterized by the term 1S. Note that the term symbols do not depend on the principal
quantum number of the valence shell. Carbon, which has the 1s22s22p2 configuration,
has the same set of terms as silicon, which has the 1s22s22p63s23p2 configuration.

S = 0L = 0MS = 0ML = 0

ML = a
i

mli = MS = a
i

msi = 0

2S + 1 = 2
2S + 1 = 1

2S + 1

(2L + 1)(2S + 1)
2S + 12L + 1

L = 0

(2S+1)L

Z 6 40

L and S

S�1, MS�1

S�1, MS��1

S�0, MS�0 S�1, MS�0

FIGURE 11.4
Vector model of the singlet and triplet
states. The individual spin angular
momentum vectors and their vector
sum (black arrow) are shown for the
triplet states. For the singlet state (left
image), . The
dashed arrow in the left image indi-
cates that the vector on the yellow
cone is on the opposite side of the cone
from the vector on the purple cone.

ƒS ƒ = 0 and MS = 0

S
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How are terms generated for a given configuration? The simplest case is for a configu-
ration with singly occupied subshells. An example is C 1s22s22p13d1, in which an electron
has been promoted from the 2p to the 3d orbital. Only the 2p and 3d electrons need to be
considered, because the other electrons are in filled subshells. The possible values of L and
S are given by the Clebsch–Gordon series. When applied to the two-electron case,
allowed L values are given by . Using
the same rule, the allowed S values are and . For our example, ,

, and . Therefore, L can have the values 3, 2, and 1, and S can have 
the values 1 and 0. We conclude that the 1s22s22p13d1 configuration generates 3F, 3D, 3P, 1F,
1D, and 1P terms. The degeneracy of these terms, , is 21, 15, 9, 7, 5, and
3, respectively, which corresponds to a total of 60 quantum states. Looking back at the con-
figuration, the 2p electron can have and 0 and . This gives six possi-
ble combinations of ml and ms. The 3d electron can have , , and 0, and

. This gives 10 possible combinations of ml and ms. Because any combination
for the 2p electron can be used with any combination of the 3d electron, there are a total of

combinations of ml and ms consistent with the 1s22s22p13d1 configuration.
These combinations generate the 60 states that belong to the 3F, 3D, 3P, 1F, 1D, and 1P terms.

The same method can be extended to more than two electrons by first calculating L and
S for two electrons and adding in the remaining electrons one by one. For example, consider
the L values associated with the C 1s22s12p13p13d1 configuration. Combining the 2s and 2p
electrons gives only . Combining this L value with the 3p electron gives 2, 1, and 0.
Combining these values with the 3d electron gives possible L values of 4, 3, 2, 1, and 0. The
maximum value of S is , where n is the number of different singly filled subshells. The
minimum value of S is 0 if n is even, and if n is odd. For our example, the possible S
values are 2, 1, and 0. Which terms are generated by these values of L and S?

Assigning terms to a configuration is more complicated if subshells contain more
than one electron, because the Pauli exclusion principle must be obeyed. To illustrate
such a case, consider the ground state of carbon, which has the configuration 1s22s22p2.
We need only consider the 2p electrons. Because ml can have any of the values , 0,
or , and ms can have the values and for p electrons, six combinations of
the quantum numbers ms and ml for the first electron are possible. The second electron
will have one fewer possible combination because of the Pauli principle. This appears
to give a total of combinations of quantum numbers for the two electrons.
However, this assumes that the electrons are distinguishable, which overcounts the 
possible number of combinations by a factor of 2. Taking this into account, there are 
15 possible quantum states of the carbon atom consistent with the configuration
1s22s22p2, which are shown schematically in Figure 11.5.

To determine the possible terms consistent with a p2 configuration, it is convenient to
display the information in Figure 11.5 in tabular form, as shown in Table 11.1. In setting up
Table 11.1, we have relied only on the z components and . Using these components,

can be easily calculated because no vector addition is
involved. To derive terms from this table, it is necessary to determine what values for L and
S are consistent with the tabulated and values. How can this be done knowing only

and ? We first determine which values of L and S are consistent with the entries for
and in the table given that . A good way

to start is to look at the highest value for first. This requires careful bookkeeping.ƒML ƒ
-S … MS … +S and -L … ML … +LMSML

MSML

MLMS

MS = a imsi and ML = a imli

mlimsi

6 * 5 = 30

-1>2+1>2+1
-1

1>2n>2
L = 1

6 * 10 = 60

ms = ;1>2 ;2ml = ;1
ms = ;1>2ml = ;1

(2L + 1)(2S + 1)

s1 = s2 = 1>2l2 = 2
l1 = 1s1 + s2s1 - s2

l1 + l2 - 2, Á , ƒ l1 - l2 ƒl1 + l2, l1 + l2 - 1,
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FIGURE 11.5
The different ways in which two electrons
can be placed in p orbitals is shown.
Upward- and downward-pointing arrows
correspond to and ,
respectively, and and ML are the scalar
sums of the ms and ml, respectively.

MS

ms = -1>2ms = +1>2
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The top and bottom entries in the table have the largest values of and ,
respectively. They must belong to a term with (a D term), because can be no
greater than L. All states with values of and have because the set of
quantum numbers for each electron must differ. Stated differently, because 

, and therefore . We conclude that , , and the D term
must be 1D. This term has states associated with it. It includes
states with , , 0, , and , all of which have . These 5 states are
mentally removed from the table, which leaves us with 10 states. Of those remaining, the
next highest value of is , which must belong to a P term. Because there is a combi-
nation with and , the P term must be 3P. This term has 

states associated with it and by mentally removing these 9 states from the
table, a single state is left with . This is a complete 1S term. By a process of
elimination, we have found that the 15 combinations of ml and ms consistent with the con-
figuration 1s22s22p2 separate into 1D, 1S, and 3P terms. This conclusion is true for any np2

configuration. Because the 1D, 1S, and 3P terms have 5, 1, and 9 states associated with them,
a total of 15 states are associated with the terms of the 1s22s22p2 configuration just as for the
classification scheme based on the individual quantum numbers n, l, ms, and ml.

EXAMPLE PROBLEM 11.2

What terms result from the configuration ns1d1? How many quantum states are associ-
ated with each term?

Solution

Because the electrons are not in the same subshell, the Pauli principle does not 
limit the combinations of ml and ms. Using the guidelines formulated earlier,

, , , and 

. Therefore, the terms that arise from the configuration ns1d1

are 3D and 1D. Table 11.2 shows how these terms arise from the individual quantum
numbers. In setting up the table, we have relied only on the z components of the
vectors and . Using these components, and can beML = a

i
mliMS = a

i
msimlimsi

Lmax = 2 + 0 = 2

Lmin = 2 - 0 = 2Smax = 1>2 + 1>2 = 1Smin = 1>2 - 1>2 = 0

ML = MS = 0
(2L + 1) = 9

(2S + 1)MS = 1ML = 1
+1ƒML ƒ

MS = 0+2+1-1ML = -2
(2S + 1)(2L + 1) = 5

2S + 1 = 1S = 0MS = 0ms1 Z ms2

ml1 = ml2, 
MS = 0+2-2ML

ƒML ƒL = 2
+2-2ML

TABLE 11.1 States and Terms for the np2 Configuration

ml1 ml2 ML = ml1 + ml2 ms1 ms2 Ms = ms1 + ms2 Term

-1 -1 -2 1>2 -1>2 0 1D

0 -1 -1 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3P

1D, 3P

3P

0

1

0

-1

0

0 d
-1>2
   1>2
-1>2
   1>2

1>2

1>2
-1>2
-1>2

1>2
-1>2

1

-1

0

0

0

s 1D, 3P, 1S

3P
3P

1

1

0

1

1

2 1>2

d
-1>2
-1>2
   1>2
   1>2

-1>2
1>2

-1>2
1>2

-1>2

1

0

0

0
f

-1 3P

1D, 3P

3P

1D

easily calculated because no vector addition is involved. Because each term has
states, the 3D term consists of 15 states, and the 1D term consists 

of 5 states as shown in Table 11.2.
(2S + 1)(2L + 1)
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The preceding discussion has demonstrated how to generate the terms associated
with a particular configuration. The same procedure can be followed for any configu-
ration and a few examples are shown in Table 11.3 for electrons in the same shell.
The numbers in parentheses behind the term symbol indicate the number of different
terms of that type that belong to the configuration. A simplifying feature in generat-
ing terms is that the same results are obtained for a given number of electrons or
“missing electrons” (sometimes called holes) in a subshell. For example, d1 and d9

configurations result in the same terms. Note that configurations with a single elec-
tron or hole in the unfilled shell or subshell give only a single term as discussed
earlier. In filled shells or subshells, because ml and ms take on all
possible values between their maximum positive and negative values. For this reason
the term symbol for s2, p6, and d10 is 1S.

ML = MS = 0

TABLE 11.2 States and Terms for the ns1d1 Configuration

ml1 ml2 ML = ml1 + ml2 ms1 ms2 MS = ms1 + ms2 Term

0 -2 -2 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3D

1D, 3D

3D

0 -1 -1 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3D

1D, 3D

3D

0 0 0 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3D

1D, 3D

3D

0 1 1 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3D

1D, 3D

3D

0 2 2 d
-1>2
-1>2
   1>2
   1>2 1>2

-1>2
1>2

-1>2

1

0

0
f

-1 3D

1D, 3D

3D

TABLE 11.3 Possible Terms for Indicated Configurations

Electron Configuration Term Symbol

s1 2S

p1, p5 2P

p2, p4 1S, 1D, 3P

p3 2P, 2D, 4S

d1, d9 2D

d2, d8 1S, 1D, 1G, 3P, 3F

d3, d7 4F, 4P, 2H, 2G, 2F, 2D (2), 2P

d4, d6 5D, 3H, 3G, 3F (2), 3D, 3P (2), 1I, 1G (2), 1F, 1D (2), 1S (2)

d5 6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G (2), 2F (2), 2D (3), 2P, 2S
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Hund’s rules predict that in placing electrons in one-electron orbitals, the number of
unpaired electrons should be maximized. This is why Cr has the configuration
[Ar]4s13d5 rather than [Ar]4s23d4. Hund’s rules imply that the energetic consequences
of electron–electron repulsion are greater for spin than for orbital angular momentum.
As we will see in Section 11.10, atoms in quantum states described by different terms
can have substantially different chemical reactivity.

Although some care is needed to establish the terms that belong to a particular con-
figuration such as pn or d n, it is straightforward to predict the lowest energy term
among the possible terms using the following recipe. Create boxes, one for each of the

1 0 �1

ml

ml

p2

d 6

2 1 0 �1 �2

possible values of ml. Place the electrons specified by the configuration in the boxes in
such a way that is maximized and that the number of unpaired spins isML = a

i
mli

maximized. L and S for the lowest energy term are given by andL = ML, max

EXAMPLE PROBLEM 11.4

Determine the lowest energy term for the p2 and d6 configurations.

Solution

The placement of the electrons is as shown here:

EXAMPLE PROBLEM 11.3

How many states are consistent with a d2 configuration? What L values result from
this configuration?

Solution

The first electron can have any of the ml values and either of the ms values
. This gives 10 combinations. The second electron can have 9 combinations, and the

total number of combinations for both electrons is . However, because the
electrons are not distinguishable, we must divide this number by 2 and obtain 45 states.
Using the formula , we conclude that L values
of 4, 3, 2, 1, and 0 are allowed. Therefore, this configuration gives rise to G, F, D, P, and
S terms. Table 11.3 shows that the allowed terms for these L values are 1S, 1D, 1G, 3P, and
3F. The degeneracy of each term is given by and is 1, 5, 9, 9, and 21,
respectively. Therefore, the d2 configuration gives rise to 45 distinct quantum states, just
as was calculated based on the possible combinations of ml and ms.

The relative energy of the different terms has not been discussed yet. From the
examination of a large body of spectroscopic data, Friedrich Hund deduced Hund’s
rules, which state that for a given configuration the following are true:

RULE 1:
The lowest energy term is that which has the greatest spin multiplicity. For exam-
ple, the 3P term of an np2 configuration is lower in energy than the 1D and 1S terms.

RULE 2:
For terms that have the same spin multiplicity, the term with the greatest orbital
angular momentum lies lowest in energy. For example, the 1D term of an np2

configuration is lower in energy than the 1S term.

(2L + 1)(2S + 1)

L = l1 + l2, l1 + l2 - 1, Á , ƒ l1 - l2 ƒ

10 * 9 = 90
;1>2 ;2, ;1, and 0,

. This procedure is illustrated for the configurations in Example
Problem 11.4.

p2 and d6S = MS, max
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For the p2 configuration, and . Therefore, the lowest energy MS, max = 1ML, max = 1
term is . For the configuration, and . Therefore, the lowest MS, max = 2ML, max = 2d63P
energy term is . It is important to realize that this procedure only provides a recipe
for finding the lowest energy term. The picture used in the recipe has no basis in real-
ity, because no association of a term with particular values of ms and ml can be made.

11.3 Spin-Orbit Coupling Breaks Up a Term
into Levels

Up until now, we have said that all states in a term have the same energy. This is a good
approximation for atoms with . However, even for these atoms, the terms are
split into closely spaced levels. What is this splitting due to? We know that electrons
have nonzero magnetic moments if and . The separate spin and orbital
magnetic moments can interact through spin-orbit coupling, just as two bar magnets
interact. As a result of this interaction, the total energy operator contains an extra term
proportional to . Under these conditions, the operators , , , and no longerSN zSN 2LN zLN 2L # S

S 7 0L 7 0

Z 6 40

5D

For example, the 3P term has J values of 2, 1, and 0. All quantum states with the
same J value have the same energy and belong to the same level. The additional quan-
tum number J is included in the nomenclature for a level as a subscript in the form

. In counting states, states with different MJ values are associated with
each J value. This gives five states associated with 3P2, three states associated with 3P1,
and one state associated with 3P0. The total of nine states in the three levels is the same
as the number of states in the 3P term, as deduced from the formula .

Taking spin-orbit coupling into account gives Hund’s third rule:
(2L + 1)(2S + 1)

2J + 1(2S+1)LJ

Therefore, the 3P0 level has the lowest energy for an np2 configuration. The 3P2 level has
the lowest energy for an np4 configuration, which describes O.

In a magnetic field, states with the same J, but different MJ, have different energies.
For atoms with , this energy splitting is less than the energy separation between
levels, which is in turn less than the energy separation between terms. However, all of
these effects are observable in spectroscopies as shown for carbon in Figure 11.6, and
many of them have practical implications in analytical chemistry. Clearly the energy
levels of many-electron atoms have a higher level of complexity than those for the
hydrogen atom. This complexity gives more detailed information about atoms through
spectroscopic experiments that can be used to better understand the quantum mechanics
of many-electron atoms.

EXAMPLE PROBLEM 11.5

What values of J are consistent with the terms 2P and 3D? How many states with
different values of MJ correspond to each?

Z 6 40

RULE 3:
The order in energy of levels in a term is given by the following:

• If the unfilled subshell is exactly or more than half full, the level with the
highest J value has the lowest energy.

• If the unfilled subshell is less than half full, the level with the lowest J value
has the lowest energy.

1S0

1D2

3P2

3P1

3P0

1S

1D

3P

11454 cm�1

43.5 cm�1

10194 cm�1

E
ne

rg
y

FIGURE 11.6
Assuming a spherically symmetric electron
distribution, there would be a single energy
for a configuration of the carbon atom.
Taking the dependence of the electron
repulsion on the directions of L and S into
account splits the configuration into terms
of different energy as shown. Taking the
coupling of L and S into account leads to a
further splitting of the terms into levels
according to the J values as shown on the
right. The separation of the levels for the
3P term has been multiplied by a factor of
25 to make it visible.

commute with , but the operators and where is the total angular momentum
defined by

(11.5)

do commute with . If the coupling is sufficiently large as in atoms for which ,
the only good quantum numbers are J and MJ, the projection of J on the z axis. The mag-
nitude of can take on all values given by 

and MJ can take on all values between zero and J that differ by one.ƒL - S ƒ
J = L + S, L + S - 1, L + S - 2, Á ,J

Z 7 40HN

J = L + S

JJN zJN 2HN
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Solution

The quantum number J can take on all values given by 
. For the 2P term, and . Therefore, J can have

the values and . There are values of MJ, or 4 and 2 states, respectively.2J + 11>23>2 S = 1>2L = 1L + S - 2, Á , ƒL - S ƒ
J = L + S, L + S - 1,

For the 3D term, and . Therefore, J can have the values 3, 2, and 1.
There are values of MJ or 7, 5, and 3 states, respectively.

11.4 The Essentials of Atomic 
Spectroscopy

With an understanding of the quantum states of many-electron atoms, we turn our
attention to atomic spectroscopy. All spectroscopies involve the absorption or emission
of electromagnetic radiation that induces transitions between states of a quantum
mechanical system. In this chapter, we discuss transitions between electronic states in
atoms. Whereas the energies involved in rotational and vibrational transitions are on the
order of 1 and , respectively, photon energies associated with electronic
transitions are on the order of 200 to . Typically, such energies are
associated with visible, UV, or X-ray photons.

The information on atomic energy levels discussed in previous sections is
derived from atomic spectra. The interpretation of spectra requires knowledge of the
selection rules for the spectroscopy being used. Selection rules can be derived
based on the dipole approximation (Section 8.4). Although transitions that are for-
bidden in the dipole approximation may be allowed in a higher level theory, the
absorption or emission peaks are very weak. In Chapter 8, the dipole selection rule

was derived for vibrational transitions, and it was stated without proof
that the selection rule for rotational transitions in diatomic molecules is .
What selection rules apply for transitions between atomic levels? If the 
coupling scheme outlined in Section 11.2 applies (atomic numbers less than 

40), the dipole selection rules for atomic transitions are , and
. There is an additional selection rule, , for

the spin angular momentum. Note that the first selection rule refers to the angular
momentum of an electron involved in the transition, whereas the other rules refer to
the vector sums for all electrons in the atom. Keep in mind that aside from the rota-
tional spectroscopy selection rule cited earlier, the quantum number J in this chapter
refers to the total electron angular momentum and not to the rotational angular
momentum.

Atomic spectroscopy is important in many practical applications such as analytical
chemistry and lasers, which we discuss in this chapter. At a fundamental level, the
relative energy of individual quantum states can be measured to high precision using
spectroscopic techniques. An application of such high-precision measurements is the
standard for the time unit of a second, which is based on a transition between states in
the cesium atom that has the frequency .

Because the energy levels of the hydrogen atom can be written as

(11.6)

where n is the principal quantum number, the frequency for absorption lines in the
hydrogen spectrum is given by

(11.7)

where RH is the Rydberg constant and is the reduced mass of the atom. The deriva-
tion of this formula was one of the early major triumphs of quantum mechanics. The
Rydberg constant is one of the most precisely known fundamental constants, and it has
the value . The series of spectral lines associated with is
called the Lyman series, and the series associated with , 3, 4, and 5 areninitial = 2

ninitial = 1109677.581 cm-1

m

=
me4

8e20h3c
¢ 1

n2
initial

-
1

n2
final
≤ = RH¢ 1

n2
initial

-
1

n2
final
≤n

'

En = -
me4

8e20h2n2

9.192631770 * 109 s-1

¢S = 0¢L = 0, ;1, and ¢J = 0, ;1
¢l = ;1'

L-S
¢J = ;1

¢n = ;1

1000 kJ mol-1
10 kJ mol-1

2J + 1
S = 1L = 2
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called the Balmer, Paschen, Brackett, and Pfund series, respectively, after the spectro-
scopists who identified them.

EXAMPLE PROBLEM 11.6

The absorption spectrum of the hydrogen atom shows lines at 82,258; 97,491; 102,823;
105,290; and . There are no lower frequency lines in the spectrum.
Use graphical methods to determine ninitial and the ionization energy of the hydrogen
atom in this state.

Solution

The knowledge that frequencies for transitions follow a formula like that of Equation (11.7)
allows ninitial and the ionization energy to be determined from a limited number of
transitions between bound states. The plot of versus assumed values of 1>n2

finaln~

106,631 cm-1

has a slope of and an intercept with the frequency axis of . However,
both ninitial and nfinal are unknown, so that in plotting the data, nfinal values have to be
assigned to the observed frequencies. For the lowest energy transition, nfinal is

. We try different combinations of nfinal and ninitial values to see if the slope
and intercept are consistent with the expected values of and . In this
case, the sequence of spectral lines is assumed to correspond to , 3, 4, 5, and
6 for an assumed value of ; , 4, 5, 6, and 7 for an assumed value
of ; and , 5, 6, 7, and 8 for an assumed value of .
The plots are shown in the following figure:

ninitial = 3nfinal = 4ninitial = 2
nfinal = 3ninitial = 1

nfinal = 2
RH>n2

initial-RH

ninitial + 1

RH>n2
initial-RH

0.05 0.1 0.15 0.2 0.25

60000

50000

70000

80000

90000

100000

110000

Fr
eq

ue
nc

y/
cm

�
1

1/nfinal
2

ninitial�1

ninitial�2

ninitial�3

The slopes and intercepts calculated for these assumed values of ninitial are

Assumed ninitial (cm�1)Slope (cm�1)Intercept

1 -1.10 * 105 1.10 * 105

2 -2.71 * 105 1.13 * 105

3 -5.23 * 105 1.16 * 105

Because the slope is , for only one of the three assumed values, we conclude
that . The ionization energy of the hydrogen atom in this state is hcRH,
corresponding to , or . The appropriate number of signifi-
cant figures for the slope and intercept is approximate in this example and must be
based on an error analysis of the data.

Information from atomic spectra is generally displayed in a standard format called a
Grotrian diagram. An example is shown in Figure 11.7 for He, for which 
coupling is a good model. The figure shows the configuration information next to the
energy level, and the configurations are arranged according to their energy and term
symbols. The triplet and singlet states are shown in separate parts of the diagram because

L-S

2.18 * 10-18 Jnfinal¡ q
ninitial = 1

-RH
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transitions between these states do not occur as a consequence of the selection
rule. The 3P and 3D He terms are split into levels with different J values, but because the
spin-orbit interaction is so small for He, the splitting is not shown in Figure 11.7.
For example, the 3P0 and 3P2 levels arising from the 1s2p configuration differ in energy
by only 0.0006%.

11.5 Analytical Techniques Based 
on Atomic Spectroscopy

The absorption and emission of light that occurs in transitions between different atomic
levels provides a powerful tool for qualitative and quantitative analysis of samples of
chemical interest. For example, the concentration of lead in human blood and the pres-
ence of toxic metals in drinking water are routinely determined using atomic emission
and atomic absorption spectroscopy. Figure 11.8 illustrates how these two spectro-
scopic techniques are implemented. A sample, ideally in the form of very small droplets

of a solution or suspension, is injected into the heated zone of
the spectrometer. The heated zone may take the form of a flame, an electrically heated
('1-10 mm in diameter)
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FIGURE 11.7
The ground and the first few excited states
of the He atom are shown on an energy
scale. All terms for which and

have been omitted to simplify the
presentation. The top horizontal line indi-
cates the ionization energy of He. Below
this energy, all states are discrete. Above
this level, the energy spectrum is continu-
ous. Several, but not all, allowed (solid
lines) and forbidden (dashed lines) transi-
tions are shown. Which selection rule do
the forbidden transitions violate?
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Atomic emission spectroscopy

Atomic absorption spectroscopy

Sample introduction
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Heated zone Monochromator Detector

Sample introduction
system

Heated zoneRadiation source Monochromator Detector
FIGURE 11.8
Schematic diagram of atomic emission
and atomic absorption spectroscopies.



graphite furnace, or a plasma arc source. The main requirement of the heated zone is that
it must convert a portion of the molecules in the sample of interest into atoms in their
ground and excited states.

We first discuss atomic emission spectroscopy. In this technique, the light emitted by
excited-state atoms as they undergo transitions back down to the ground state is
dispersed into its component wavelengths by a monochromator and the intensity of the
radiation is measured as a function of wavelength. Because the emitted light intensity is
proportional to the number of excited-state atoms and because the wavelengths at which
emission occurs are characteristic for the atom, the technique can be used for both
qualitative and quantitative analysis. Temperatures in the range of 1800 to 3500 K can be
achieved in flames and carbon furnaces and up to 10,000 K can be reached in plasma arc
sources. These high temperatures are required to produce sufficient excited-state atoms
that emit light as demonstrated in Example Problem 11.7.

EXAMPLE PROBLEM 11.7

The transition in sodium has a wavelength of 589.0 nm. This is one
of the lines characteristic of the sodium vapor lamps used for lighting streets, and it
gives the lamps their yellow-orange color. Calculate the ratio of the number of atoms
in these two states at 1500., 2500., and 3500. K. The following figure is a Grotrian
diagram for Na (not to scale) in which the transition of interest is shown as a blue line.

2S1>2 ¡ 2P3>2

228 CHAPTER 11 Quantum States for Many-Electron Atoms and Atomic Spectroscopy

1.0

0

2.0

3.0

4.0

5.0

2S 2P 2P 2D
Ionization limit

4p

5p

6p

4p

5p

6p

3d

4d

5d
6d

4s

5s

6s

7s

3p 3p

3s

E
ne

rg
y-

E
3s

/e
V

568.21183.3

616.0

589.6 589.0

818.3

5
2

3
2,3

2
1
2

1
2

Solution

The ratio of atoms in the upper and lower levels is given by the Boltzmann distribution:

The degeneracies g are given by , which is the number of states in each level:

gupper = 2 *
3

2
+ 1 = 4 and glower = 2 *

1

2
+ 1 = 2

2J + 1

nupper

nlower
=

gupper

glower
e-(eupper-elower)>kBT
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From the Boltzmann distribution,

As seen in the preceding example problem, the fraction of atoms in the excited state
is quite small, but it increases rapidly with temperature. The very high temperature
plasma arc sources are widely used because they allow light emission from both more
highly excited states and from ions to be observed. This greatly increases the sensitivity
of the technique. However, because photons can be detected with very high efficiency,
measurements can be obtained from systems for which is quite small.
For instance, a temperature of 3000 K is reached in an oxygen-natural gas flame. If a
small amount of NaCl is put into the flame, for Na as shown
in Example Problem 11.7. Even with this rather low degree of excitation, a bright yellow
emission resulting from the 589.0 and 589.6 nm emission lines in the flame is clearly
visible with the naked eye. The sensitivity of the technique can be greatly enhanced
using photomultipliers, and spectral transitions for which are
routinely used in analytical chemistry.

Atomic absorption spectroscopy differs from atomic emission spectroscopy in that
light is passed through the heated zone and the absorption associated with transitions
from the lower to the upper state is detected. Because this technique relies on the popu-
lation of low-lying rather than highly excited atomic states, it has some advantages in
sensitivity over atomic emission spectroscopy. It became a very widely used technique
when researchers realized that the sensitivity would be greatly enhanced if the light source
were nearly monochromatic with a wavelength centered at transition. The advantage of this
arrangement can be seen from Figure 11.9.

Only a small fraction of the broadband light that passes through the heated zone is
absorbed in the transition of interest. To detect the absorption, the light needs to be dis-
persed with a grating and the intensity of the light must be measured as a function of
frequency. Because the monochromatic source matches the transition both in frequency
and in linewidth, detection is much easier. Only a simple monochromator is needed to
remove background light before the light is focused on the detector. The key to the
implementation of this technique was the development of hollow cathode gas discharge

l
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FIGURE 11.9
The intensity of light as a function of 
its frequency is shown at the entrance to
the heated zone and at the detector for
broadband and monochromatic sources.
The absorption spectrum of the atom to be
detected is shown in the middle column.
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lamps that emit light at the characteristic frequencies of the cathode materials. By using
an array of these relatively inexpensive lamps on a single spectrometer, analyses for a
number of different elements of interest can be carried out.

The sensitivity of atomic emission and absorption spectroscopy depends on the
element and ranges from for Mg to for Pt. These techniques
are used in a wide variety of applications, including drinking water analysis and engine
wear, by detecting trace amounts of abraded metals in lubricating oil.

11.6 The Doppler Effect
A further application of atomic spectroscopy results from the Doppler effect. If a
source is radiating light and moving relative to an observer, the observer sees a change
in the frequency of the light as shown in Figure 11.10 for sound.

The shift in frequency is given by the formula

(11.8)

In this formula, vz is the velocity component in the observation direction, c is the speed of
light, and is the light frequency in the frame in which the source is stationary. The upper
and lower signs refer to the object approaching and receding from the observer, respec-
tively. Note that the frequency shift is positive for objects that are approaching (a so-called
“blue shift”) and negative for objects that are receding (a so-called “red shift”). The
Doppler shift is used to measure the speed at which stars and other radiating astronomical
objects are moving relative to Earth.

EXAMPLE PROBLEM 11.8

A line in the Lyman emission series for atomic hydrogen , for which the
wavelength is at 121.6 nm for an atom at rest, is seen for a particular quasar at 445.1 nm.
Is the source approaching toward or receding from the observer? What is the magnitude
of the velocity?

Solution

Because the frequency observed is less than that which would be observed for an atom
at rest, the object is receding. The relative velocity is given by

For source velocities much less than the speed of light, the nonrelativistic formula

(11.9)

applies. This formula is appropriate for a gas of atoms or molecules for which the
distribution of speeds is given by the Maxwell–Boltzmann distribution. Because all
velocity directions are equally represented for a particular speed, vz has a large range
for a gas at a given temperature, centered at . Therefore, the frequency is not
shifted; instead, the spectral line is broadened. This is called Doppler broadening.
Because atomic and molecular velocities are very small compared with the speed of
light, the broadening of a line of frequency is on the order of 1 part in 106.
This effect is not as dramatic as the shift in frequency for the quasar, but it is still of
importance in determining the linewidth of a laser, as we will see in the next section.
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11.7 The Helium-Neon Laser
In this section, we demonstrate the relevance of the basic principles discussed earlier to
the functioning of a laser. We focus on the He-Ne laser. To understand this laser, the
concepts of absorption, spontaneous emission, and stimulated emission introduced in
Chapter 8 are used. All three processes obey the same selection rules for an atom:

for an electron and or .
Spontaneous and stimulated emission differ in an important respect. Spontaneous

emission is a completely random process in time, and the photons that are emitted are
incoherent, meaning that their phases are random. A light bulb is an incoherent photon
source. Because all propagation directions are equally likely, the intensity of the source
falls off as the square of the distance. In stimulated emission, the phase and direction of
propagation are the same as that of the incident photon. This is referred to as coherent
photon emission. A laser is a coherent photon source. All photons are in phase, and
because they have the same propagation direction, the divergence of the beam is very
small. This explains why a laser beam that is reflected from the moon still has a measur-
able intensity when it returns to Earth. This discussion makes it clear that a coherent
photon source must be based on stimulated rather than spontaneous emission. However,

, as was shown in Section 8.2. Therefore, the rates of absorption and stimu-
lated emission are equal for . Stimulated emission will only dominate over
absorption if . This condition is called a population inversion because for
equal level degeneracies, the higher energy state has the higher population. The key to
making a practical laser is to create a stable population inversion. Although a population
inversion is not possible under equilibrium conditions, it is possible to maintain such a
distribution under steady-state conditions if the relative rates of the transitions between
levels are appropriate. This is illustrated in Figure 11.11.

Figure 11.11 can be used to understand how the population inversion between the
levels involved in the lasing transition is established and maintained. The lengths of the
horizontal lines representing the levels are proportional to the level populations N1 to
N4. The initial step involves creating a significant population in level 4 by transitions
from level 1. This is accomplished by an external source, which for the He-Ne laser is
an electrical discharge in a tube containing the gas mixture. Relaxation to level 3 can
occur through spontaneous emission of a photon as indicated by the wavy arrow.
Similarly, relaxation from level 2 to level 1 can also occur through spontaneous emis-
sion of a photon. If this second relaxation process is fast compared to the first, N3 will
be maintained at a higher level than N2. In this way, a population inversion is estab-
lished between levels two and three. The advantage of having the lasing transition
between levels 3 and 2 rather than 2 and 1 is that N2 can be kept low if relaxation to
level 1 from level 2 is fast. It is not possible to keep N1 at a low level because atoms in
the ground state cannot decay to a lower state.

This discussion shows how a population inversion can be established. How can a
continuous lasing transition based on stimulated emission be maintained? This is made
possible by carrying out the process indicated in Figure 11.11 in an optical resonator
as shown in Figure 11.12.

The He-Ne mixture is put into a glass tube with carefully aligned parallel mirrors on
each end. Electrodes are inserted to maintain the electrical discharge that pumps level 4
from level 1. Light reflected back and forth in the optical cavity between the two mirrors
interferes constructively only if , where d is the distance between mir-
rors and n is an integer. The next constructive interference occurs when . The
difference in frequency between these two modes is , which defines the band-
width of the cavity. The number of modes that contribute to laser action is determined by
two factors: the frequencies of the resonator modes and the width in frequency of the
stimulated emission transition. The width of the transition is determined by Doppler
broadening, which arises through the thermal motion of gas-phase Ne atoms. A schematic
diagram of a He-Ne laser, including the anode, cathode, and power supply needed to
maintain the electrical discharge as well as the optical resonator, is shown in Figure 11.13.
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FIGURE 11.11
Schematic representation of a four-state
laser. The energy is plotted vertically, and
the level population is plotted horizontally.
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Six of the possible resonator modes are indicated in Figure 11.14. The curve
labeled “Doppler linewidth” gives the relative number of atoms in the resonator as a
function of the frequency at which they emit light. The product of these two functions
gives the relative intensities of the stimulated emission at the different frequencies sup-
ported by the resonator. This product is shown as a function of frequency in Figure 11.14b.
Because of losses in the cavity, the number of atoms in level 3 is continuously depleted.
A laser transition can only be sustained if enough atoms in the cavity are in the
excited state at a supported resonance. In Figure 11.14, only two resonator modes lead
to a sufficient intensity to sustain the laser. The main function of the optical resonator
is to decrease the associated with the frequency of the lasing transition to less than
the Doppler limit. Example Problem 11.9 shows how the number of supported modes
varies with the gas temperature.

¢n

Totally reflecting 
mirror

Partially reflecting 
mirror

Pumping energy

FIGURE 11.12
Schematic representation of a He-Ne laser
operated as an optical resonator. The par-
allel lines in the resonator represent
coherent stimulated emission that is
amplified by the resonator, and the red
waves represent incoherent spontaneous
emission events.
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(100% reflective)

Cathode

Anode

Glass discharge tube
containing He-Ne mixture
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(95% reflective)

Power supplyFIGURE 11.13
Schematic diagram of a He-Ne laser.
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EXAMPLE PROBLEM 11.9

As shown in Chapter 16 of Thermodynamics, Statistical Thermodynamics, and Kinetics,
the distribution function that describes the probability of finding a particular value of
magnitude of the velocity along one dimension v in a gas at temperature T is given by

This velocity distribution leads to the broadening of a laser line in frequency given by

The symbol c stands for the speed of light, and k is the Boltzmann constant. We next
calculate the broadening of the 632.8 nm line in the He-Ne laser as a function of T.

a. Plot for , 300.0, and 1000. K, using the mass appropriate for a Ne
atom, and determine the width in frequency at half the maximum amplitude of

for each of the three temperatures.

b. Assuming that the amplification threshold is 50% of the maximum amplitude,
how many modes could lead to amplification in a cavity of length 100. cm?

Solution

a. This function is of the form of a normal or Gaussian distribution given by

The full width at half height is 2.35 , or for this case, . 
This gives half widths of , , and 
at temperatures of 100.0, 300.0, and 1000. K, respectively. The functions 
are plotted here:
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FIGURE 11.14
The linewidth of a transition in a He-Ne
laser is Doppler broadened through the
Maxwell–Boltzmann velocity distribution.
(a) The resonator transmission decreases
the linewidth of the lasing transition to
less than the Doppler limit. (b) The
amplification threshold further reduces
the number of frequencies supported by
the resonator.
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b. The frequency spacing between two modes is given by

The width of the velocity distribution will support 5 modes at 100.0 K, 8 modes at
300.0 K, and 15 modes at 1000. K. The smaller Doppler broadening at low tempera-
tures reduces the number of possible modes considerably.

By adding a further optical filter in the laser tube, it is possible to have only one mode
enhanced by multiple reflections in the optical resonator. In addition, all light of the correct
frequency but with a propagation direction that is not perpendicular to the mirrors, is not
enhanced through multiple reflections. In this way, the resonator establishes a standing

¢n =
c

2d
=

2.998 * 108 m s-1

2 * 1.00 m
= 1.50 * 108 s-1
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wave at the lasing frequency that has a propagation direction aligned along the laser tube
axis. This standing wave causes further photons to be emitted from the lasing medium
(He-Ne mixture) through stimulated emission. As discussed previously, these photons are
exactly in phase with the photons that stimulate the emission and have the same propaga-
tion direction. These photons amplify the standing wave, which because of its greater
intensity causes even more stimulated emission. Allowing one of the end mirrors to be
partially transmitting lets some of the light escape, and the result is a coherent, well-
collimated laser beam.

To this point, the laser has been discussed at a schematic level. How does this
discussion relate to the atomic energy levels of He and Ne shown schematically in
Figure 11.15? The electrical discharge in the laser tube produces electrons and posi-
tively charged ions. The electrons are accelerated in the electric field and can excite the
He atoms from states in the 1S term of the 1s2 configuration to states in the 1S and 3S
terms of the 1s2s configuration. This is the pumping transition in the scheme shown
in Figure 11.11. This transition occurs through a collision rather than through the
absorption of a photon and, therefore, the normal selection rules do not apply. Because
the selection rules prohibit transitions to the ground state, these
states are long lived. The excited He atoms efficiently transfer their energy through col-
lisions to states in the 2p55s and 2p54s configurations of Ne. This creates a population
inversion relative to Ne states in the 2p54p and 2p53p configuration. These levels are
involved in the lasing transition through stimulated emission. Spontaneous emission
to states in the 2p53s configuration and collisional deactivation at the inner surface of
the optical resonator depopulate the lower state of the lasing transitions and ensure that
the population inversion is maintained. The initial excitation is to excited states of He,
which consist of a single term. However, the excited-state configurations of Ne give
rise to several terms (3P and 1P for 2p54s and 2p55s, and 3D, 1D, 3P, 1P, 3S, and 1S for
2p53p and 2p54p). The manifold of these states is indicated in the figure by thicker
lines, indicating a range of energies.

Note that a number of wavelengths can lead to lasing transitions. Coating the mir-
rors in the optical resonator ensures that they are reflective only in the range of interest.
The resonator is usually configured to support the 632.8 nm transition in the visible
part of the spectrum. This corresponds to the red light characteristic of He-Ne lasers.

11.8 Laser Isotope Separation
A number of ways are available for separating atoms and molecules into their different
isotopes. Separation by diffusion in the gas phase is possible because the speed of mole-
cules depends on the molecular weight M as . To fabricate fuel rods for nuclear
reactors, uranium fuel, which contains the isotopes 234U, 235U, and 238U must be enriched
in the fissionable isotope 235U. This has been done on a large scale by reacting uranium
with fluorine to produce the gas-phase molecule UF6. This gas is enriched in the 235U
isotope by centrifugation.
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FIGURE 11.15
Transitions in the He-Ne laser.
The slanted solid lines in the upper 
right side of the figure show three
possible lasing transitions.
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It is feasible, although not practical on an industrial scale, to create a much higher
degree of enrichment by using selective laser ionization of the 235U isotope. The princi-
ple is shown schematically in Figure 11.16. A tunable copper vapor laser with a very
narrow linewidth is used to excite ground-state uranium atoms to an excited state involv-
ing the 7s electrons. As Figure 11.16b indicates, the electronic states of the different
isotopes have slightly different energies, and the bandwidth of the laser is sufficiently
small that only one isotope is excited. A second laser pulse is used to ionize the selec-
tively excited isotope. The ions can be collected by electrostatic attraction to a metal elec-
trode at an appropriate electrical potential. Because neither of the lasers produce photons
of energy sufficient to ionize the uranium atoms directly, only those atoms selectively
excited by the copper vapor laser by the first pulse are ionized by the second pulse.

Why do the different isotopes have slightly different atomic energy levels? The
Coulomb potential that attracts the electron to the nucleus is valid outside the nucleus, but
the potential levels off inside the nucleus, which has a diameter of about 
or . The distance at which the Coulomb potential is no longer valid depends
on the nuclear diameter and, therefore, on the number of neutrons in the nucleus. This
effect is negligible for states with , because the effective potential discussed in
Section 9.2 keeps these electrons away from the nucleus. Only s states, for which the
wave function has its maximum amplitude at the center of the nucleus, exhibit energy-
level splitting. The magnitude of the splitting depends on the nuclear diameter. The split-
ting for the uranium isotopes is only about percent of the ionization energy.
However, the very small bandwidth that is attainable in lasers allows selective excitation
to a single level even in cases for which the energy-level spacing is very small.

11.9 Auger Electron and X-Ray
Photoelectron Spectroscopies

Most of the atomic spectroscopies that we have discussed have been illustrated with
gas-phase examples. Another useful application of spectroscopic methods is in the
analysis of the elemental composition of surfaces. This capability is important in such
fields as corrosion and heterogeneous catalysis in which a chemical reaction takes
place at the interface between a solid phase and a gaseous or liquid phase. Sampling of
a surface in a way that is relevant to the localization of the reaction at the surface
requires that the method be sensitive only to the first few atomic layers of the solid. The
two spectroscopies described in this section satisfy this requirement for reasons to be
discussed next. They are also applicable in other environments such as the gas phase.

Both of these spectroscopies involve the ejection of an electron from individual
atoms in a solid and the measurement of the electron energy. To avoid energy losses
due to collisions of the ejected electron with gas-phase molecules, the solid sample is
examined in a vacuum chamber. If the electron has sufficient energy to escape from the
solid into the vacuum, it will have a characteristic energy simply related to the energy
level from which it originated. To escape into the vacuum, it must travel from its point
of origin to the surface of the solid. This process is analogous to a gas-phase atom trav-
eling through a gas. The atom will travel a certain distance (that depends on the gas
pressure) before it collides with another atom. In the collision, it exchanges energy and
momentum with its collision partner and thereby loses memory about its previous
momentum and energy. Similarly, an electron generated in the solid traveling toward
the surface suffers collisions with other electrons and loses memory of the energy lev-
els from which it originated if its path is too long. Only those atoms within one
inelastic mean free path of the surface eject electrons into the gas phase whose energy
is simply related to the atomic energy levels. Electrons emitted from other atoms sim-
ply contribute to the background signal. The mean free path for electrons depends on
the energy of the electrons but is relatively material independent. It has its minimum
value of about 2 atomic layers near 40 eV and increases slowly to about 10 atomic lay-
ers at 1000 eV. Electrons in this energy range that have been ejected from atoms can
provide information that is highly surface sensitive.
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FIGURE 11.16
The principle of laser isotope excitation is
shown schematically (not to scale). The
electron-nucleus potential deviates from a
Coulomb potential at the nuclear radius,
which is indicated by the vertical arrows in
part (a). Because this distance depends on
the nuclear volume, it depends on the num-
ber of neutrons in the nucleus for a given
atomic number. (b) This very small varia-
tion in V(r) for isotopes 234U through 238U
gives rise to an energy splitting for states
involving s electrons. By means of a com-
bined two-photon excitation and ionization,
this splitting can be utilized to selectively
ionize a particular isotope.
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EXAMPLE PROBLEM 11.10

Upon impingement of X rays from a laboratory source, titanium atoms near the sur-
face of bulk TiO2 emit electrons into a vacuum with energy of 790 eV. The finite mean
free path of these electrons leads to an attenuation of the signal for Ti atoms beneath
the surface according to . In this equation, d is the distance to
the surface and is the mean free path. If is 2.0 nm, what is the sensitivity of Ti
atoms 10.0 nm below the surface relative to those at the surface?

Solution

Substituting in the equation , we obtain3I(d)4>3I(0)4 = e-d>l

ll
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FIGURE 11.17
The principle of Auger electron spec-
troscopy is illustrated schematically. 
(a) A core level hole is formed by energy
transfer from an incident photon or elec-
tron. (b) The core hole is filled through
relaxation from a higher level, and a third
electron is emitted to conserve energy (c). 
The energy of the emitted electron can be
measured and is characteristic of the
particular element.

. This result illustrates the surface 

sensitivity of the technique.

Auger electron spectroscopy (AES) is schematically illustrated in Figure 11.17.
An electron (or photon) ejects an electron from a low-lying level in an atom. This hole
is quickly filled by a transition from a higher state. This event alone, however, does not
conserve energy. Energy conservation is accomplished by the simultaneous ejection of a
second electron into the gas phase. It is the kinetic energy of this electron that is
measured. Although three different energy levels are involved in this spectroscopy, the
signatures of different atoms are quite easy to distinguish. The main advantage of using
electrons rather than photons to create the initial hole is to gain spatial resolution.
Electron beams can be focused to a spot size on the order of 10–100 nm and, therefore,
Auger spectroscopy with electron excitation is routinely used in many industries to map
out elemental distribution at the surfaces of solids with very high lateral resolution.

Results using scanning Auger spectroscopy to study the growth of Cu2O nan-
odots on the surface of a SrTiO3 crystal are shown in Figure 11.18. The scanning
electron microscopy (SEM) image shows the structure of the surface but gives no
information on the elemental composition. Scanning Auger images of the same area
are shown for Cu, Ti, and O. These images show that Cu does not uniformly coat the
surface but instead forms three-dimensional crystallites. This conclusion can be
drawn from the absence of Cu and the presence of Ti in the areas between the nan-
odots. The Cu2O nanodots appear darker (lower O content) than the underlying
SrTiO3 surface in the oxygen image because Cu2O has only one O for every two Cu
cations, whereas the surface has three O in a formula unit containing two cations.
These results show that the nanodot deposition process can be understood using a
surface-sensitive spectroscopy.

X-ray photoelectron spectroscopy (XPS) is simpler than AES in that only one
level is involved. A photon of energy is absorbed by an atom, and to conserve energy,
an electron is ejected with kinetic energy

(11.10)

A small correction term that involves the work functions of the solid (defined in Chapter 1)
and the detector has been omitted. A schematic picture of the process that gives rise to an
ejected electron is shown in Figure 11.19. Currently, no off-the-shelf X-ray lasers are
available, so sources cannot be made with very small bandwidths. However, using mono-
chromatized X-ray sources, distinctly different peaks are observed for substances in which
the same atom is present in chemically nonequivalent environments. This chemical shift is
also illustrated in Figure 11.19. A positive value for the chemical shift indicates a higher
binding energy for the electron in the atom than would be measured for the free atom.
The origin of the chemical shift can be understood in a simple model, although accurate
calculations require a more detailed treatment.

Consider the different binding environment of the carbon atom in ethyltrifluoroac-
etate, whose structure is shown in Figure 11.19b. The carbon atom in the CF3 group
experiences a net electron withdrawal to the much more electronegative F atoms.

Ekinetic = hn - Ebinding

I(10.0)

I(0)
= e-10.0>2.0 = 6.7 * 10-3
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Therefore, the 1s electrons lose some of the shielding effect they had from the 
2p electrons and, as a result, the C 1s electron experiences a slightly greater nuclear
charge. This leads to an increase in the binding energy or a positive chemical shift.
The carbon atom with double and single bonds to oxygen experiences an electron with-
drawal, although to a lesser degree. The carbon of the methyl group has little electron
transfer, and the methylene carbon experiences a larger electron withdrawal because it is
directly bonded to an oxygen. Although these effects are small, they are easily measura-
ble. Therefore, a photoelectron spectrum gives information on the oxidation state as well
as on the identity of the element.

An example in which the surface sensitivity of XPS is used is shown in Figure 11.20.
The growth of iron and iron oxide films on a crystalline magnesium oxide surface are
monitored under different conditions. The goal is to determine the oxidation state of
the iron in the film. The X-ray photon ejects an electron from the 2p level of Fe
species near the surface, and the signal is dominated by those species within 1 nm of
the surface. The spin angular momentum s of the remaining electron in the Fe 2p level
couples with its orbital angular momentum l to form the total angular momentum vec-
tor j with two possible values for the quantum number, j and . These two
states are of different energy and, therefore, two peaks are observed in the spectrum.
The ratio of the measured photoemission signal from these states is given by the ratio
of their degeneracy, or

The binding energy corresponding to the Fe peaks clearly shows that deposition in vac-
uum leads to metallic or zero valent Fe species. Different crystalline phases of the iron
oxide formed by exposing the film to oxygen gas while depositing iron have different
ratios of Fe(II) and Fe(III).
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FIGURE 11.18
Scanning electron microscopy and
scanning Auger spectroscopy
images for copper, oxygen, 
and titanium are shown for a
0.5 0.5-�m area of a SrTiO3
crystal surface on which Cu2O
nanodots have been deposited by
Cu evaporation in an oxygen con-
taining plasma. (a) The SEM
image obtained without energy
analysis shows structure but gives
no information on the elemental
distribution. (b), (c), and (d) are
obtained using energy analysis of
backscattered electrons. Light and
dark areas correspond to high and
low values respective of Cu (b), O
(c), and Ti (d). An analysis of the
data shows that the light areas in
(b) contain Cu and O, but no Ti,
and that the dark areas in 
(d) contain no Ti.] “Synthesis and
Characterization of Self-
Assembled Cu2O Nano-Dots.”
Source: Liang, Y.; Lea, A. S.; McCready,
D. E.; Meethunkij, P.; Proceedings -
Electrochemical Society (2001): 125.
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11.10 Selective Chemistry of Excited
States: O(3P) and O(1D)

The interaction of sunlight with molecules in the atmosphere leads to an interconnected
set of chemical reactions, which in part determines the composition of Earth’s atmos-
phere. Oxygen is a major species involved in these reactions. Solar radiation in the
ultraviolet range governs the concentrations of , O2, and O3 according to

(11.11)

where M is another molecule in the atmosphere that takes up the energy released in
forming O3. For wavelengths less than 300 nm, 1D oxygen atoms are produced in the
stratosphere by the reaction

(11.12)

For longer wavelengths, ground-state 3P oxygen atoms are produced. Importantly,
has an excess energy of relative to . This energy can be

used to overcome an activation barrier to reaction. For example, the reaction

(11.13)O #(3P) + H2O ¡ #OH + #OH
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FIGURE 11.20
XP spectra are shown for the deposition of Fe films on a crystalline MgO surface. Note the split-
ting of the peaks originating from the 2p core level as a result of spin-orbit interaction. Shake-up
features originate when valence electrons are promoted to higher levels in the photoemission
event. This promotion reduces the kinetic energy of the ejected electron.
Source: Graph courtesy of Scott A. Chambers Pacific Northwest National Laboratory.>
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is endothermic by , whereas the reaction

(11.14)

is exothermic by . Because a radiative transition from to is
forbidden by the selection rule , the (1D) atoms are long lived and their con-
centration is predominantly depleted by reactions with other species.

The atoms are primarily responsible for generating reactive hydroxyl and
methyl radicals through the reactions

(11.15)

As before, the reactivity for is much higher than that for largely
because the excess energy in electronic excitation can be used to overcome the activa-
tion barrier for the reaction. is also involved in generating the reactive NO
intermediate from N2O and from chlorofluorocarbons.

S U P P L E M E N T A L

11.11 Configurations with Paired and
Unpaired Electron Spins Differ 
in Energy

In this section, we show that the energy of a configuration depends on whether
the spins are paired for a specific case, namely, the excited states of He with the
configuration 1s12s1. Antisymmetric wave functions for each value of S were for-
mulated in Section 11.2. In the following, the energy for the singlet and triplet
states is calculated, and we show that the triplet state lies lower in energy than the
singlet state.

The Schrödinger equation for the singlet wave function can be written as

(11.16)

where are the total energy operators neglecting electron–electron repulsion
and the subscripts refer to the electron involved. (1, 2) is the unknown exact wave
function. The spin part of the wave function is not included because the total energy
operator does not contain terms that depend on spin. Because we do not know the exact
wave function, we approximate it by the simple singlet wave function of Equation (11.3).
Keep in mind that the singlet wave function is not an eigenfunction of the total energy
operator. To obtain the expectation value for the total energy using this approximate wave
function, one multiplies on the left by the complex conjugate of the wave function and
integrates over the spatial coordinates. Because the 1s and 2s functions are real, the
function and its complex conjugate are identical.

(11.17)

As you will see when you work the end-of-chapter problems, the two integrals arising from
give where and areE2s = -e2>18pe0 a02E1s = -e2>12pe0 a02E1s + E2s2HN1 and HN

* 31s1122s122 + 2s1121s1224dt1dt2
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2O31s1122s122 + 2s1121s1224aHN 1 + HN 2 +
e2

4pe0r12
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the H atom eigenvalues for . Using this result,
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The remaining integral can be simplified as you will also see in the end-of-chapter
problems to yield Esinglet:

(11.19)

(11.20)

If the calculation is carried out for the triplet state, the corresponding result is

(11.21)

Focus on the results rather than the mathematics. In the absence of the repulsive inter-
action between the two electrons, the total energy is simply . Including the
Coulomb repulsion between the electrons and making the wave function antisymmetric
give rise to the additional terms J12 and K12. The energy shift relative to is

for the singlet state and for the triplet state. This shows that the
triplet and singlet states of He(1s12s1) have energies that differ by 2K12. Because all the
terms that appear in the first integral of Equation (11.20) are positive, . It can
also be shown that K12 is positive. Therefore, it has been shown that the triplet state for
the first excited state of He lies lower in energy than the singlet state. This is a general
result for singlet and triplet states.

Looking back, this result is based on a purely mathematical argument. Can a physi-
cal meaning be attached to J12 and K12? Imagine that electrons 1 and 2 were point
charges. In that case, the integral J12 simplifies to . The electrons of
He can be thought of as diffuse charge clouds. The integral J12 is simply the electro-
static interaction between the diffuse charge distributions where

. Because J12 can be interpreted in this
way, it is called the Coulomb integral. Unlike J12, the integral K12 has no classical
physical interpretation. The product does not fit thedt1dt231s (2)2s (1)431s (1)2s (2)4
r (2) = 32s (2)42 dt2 and r (1) = 31s (1)42 dt1

r (1) and r (2)

e2>14pe0 ƒ r1 - r2 ƒ 2

J12 7 0

J12 - K12J12 + K12

E1s + E2s

E1s + E2s

Etriplet = E1s + E2s + J12 - K12

K12 =
e2

8pe0O31s1122s1224a 1
r12
b31s1222s1124dt1dt2

J12 =
e2

8pe0O31s11242a 1
r12
b32s12242 dt1dt2 and

Esinglet = E1s + E2s + J12 + K12, where

definition of charge because it does not have the form . Because
the electrons have been exchanged between the two parts of this product, K12 is referred
to as the exchange integral. It has no classical analogue and arises from the fact that
the singlet and triplet wave functions are written as a superposition of two parts in order
to satisfy the Pauli principle.

The singlet and triplet wave functions also differ in the degree to which they
include electron correlation. We know that electrons avoid one another because of their
Coulomb repulsion. If we let electron 2 approach electron 1, the spatial part of the
singlet wave function

because , but the spatial part of the triplet wave function

This shows that the triplet wave function has a greater degree of electron correlation
built into it than the singlet wave function, because the probability of finding both elec-
trons in a given region falls to zero as the electrons approach one another.

Why is the energy of the triplet state lower than that of the singlet state? One might
think that the electron–electron repulsion is lower in the triplet state because of the
electron correlation and that this is the origin of the lower total energy. In fact, this is

1

22
31s(1)2s(2) - 2s(1)1s(2)4 ¡

1

22
31s(1)2s(1) - 2s(1)1s(1) 4 = 0

r2, u2, f2 ¡ r1, u1, f1

=
2

22
1s(1)2s(1)

1

22
31s(1)2s(2) + 2s(1)1s(2)4 ¡

1

22
31s(1)2s(1) + 2s(1)1s(1)4

ƒc(1) ƒ 2 ƒc(2) ƒ 2 dt1dt2
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Q11.1 Justify the statement that the Coulomb integral J
defined in Equation (11.20) is positive by explicitly formulat-
ing the integral that describes the interaction between two
negative classical charge clouds.

Q11.2 Without invoking equations, explain why the energy
of the triplet state is lower than that of the singlet state for
He in the 1s12s1 configuration.

Q11.3 How can the width of a laser line be less than that
determined by Doppler broadening?

Q11.4 Why is an electronically excited atom more reactive
than the same ground-state atom?

Q11.5 Why is atomic absorption spectroscopy more sensi-
tive in many applications than atomic emission spectroscopy?

Q11.6 Why does the Doppler effect lead to a shift in the
wavelength of a star but to a broadening of a transition in a gas?

Q11.7 Why are n, l, ml, and ms not good quantum numbers
for many-electron atoms?

Q11.8 Write an equation giving the relationship between
the Rydberg constant for H and for .

Q11.9 Can the individual states in Table 11.1 be distin-
guished experimentally?

Q11.10 How is it possible to determine the L and S value of
a term knowing only the ML and MS values of the states?

Q11.11 What is the origin of the chemical shift in XPS?

Q11.12 Why are two medium-energy photons rather than
one high-energy photon used in laser isotope separation?

Q11.13 Why does one need to put a sample in a vacuum
chamber to study it with XPS or AES?

Q11.14 Why is XPS a surface-sensitive technique?

Q11.15 Explain the direction of the chemical shifts for
Fe(0), Fe(II), and Fe(III) in Figure 11.20.

Li2+
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Conceptual Problems

not correct. A more detailed analysis shows that the electron–electron repulsion is actu-
ally greater in the triplet than in the singlet state. However, on average the electrons are
slightly closer to the nucleus in the triplet state. The increased electron–nucleus attrac-
tion outweighs the electron–electron repulsion and, therefore, the triplet state has a
lower energy. Note that spin influences the energy even though the total energy opera-
tor does not contain any terms involving spin. Spin enters the calculation through the
antisymmetrization required by the Pauli principle. Generalizing this result, it can be
concluded that for a given configuration, a state in which the spins are unpaired has a
lower energy than a state in which the spins are paired.
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Problem numbers in red indicate that the solution to the
problem is given in the Student’s Solutions Manual.

P11.1 The principal line in the emission spectrum of
sodium is yellow. On close examination, the line is seen to be
a doublet with wavelengths of 589.0 and 589.6 nm. Explain
the source of this doublet.

P11.2 The absorption spectrum of the hydrogen atom shows
lines at 5334, 7804, 9145, 9953, and . There are
no lower frequency lines in the spectrum. Use the graphical
methods discussed in Example Problem 11.6 to determine
ninitial and the ionization energy of the hydrogen atom in this
state. Assume values for ninitial of 1, 2, and 3.

P11.3 Using Table 11.3, which lists the possible terms that
arise from a given configuration, and Hund’s rules, write the
term symbols for the ground state of the atoms H through F in
the form .(2S+1)LJ

10,478 cm-1

that the total number of states is the same as that calculated
from the term symbol.

P11.6 Using Table 11.3, which lists the possible terms that
arise from a given configuration, and Hund’s rules, write the
configurations and term symbols for the ground state of the
ions and in the form .(2S+1)LJCa2+F-

Numerical Problems

P11.4 In this problem, you will supply the missing steps in
the derivation of the formula E2s + J + KEsinglet = E1s +
for the singlet level of the 1s12s1 configuration of He.

a. Expand Equation (11.17) to obtain

b. Starting from the equations 

, show that 

c. Expand the previous equation using the definitions

to obtain the desired result, .

P11.5 What J values are possible for a 6H term? Calculate
the number of states associated with each level and show

J + KEsinglet = E1s + E2s +

dt1dt2

 K =
e2

8pe0O31s1122s1224a 1

ƒ r1 -  r2 ƒ
b31s1222s1124 *

J =
e2

8pe0O31s11242a 1

ƒ r1 -  r2 ƒ
b32s12242 dt1dt2 and

31s1122s122 + 2s1121s1224dt1dt2

+
1

2O31s1122s122 + 2s1121s1224a e2

4pe0 ƒ r1 -  r2 ƒ
b *

Esinglet = E1s + E2si2s(i) = E2s2s(i)HN
andi1s(i) = E1s1s(i)HN

31s1122s122 + 2s1121s1224dt1dt2

¢ e2

4pe0 ƒ r1 - r2 ƒ
≤ *

+
1

2O31s1122s122 + 2s1121s1224 *

+
1

2O
[1s1122s122 + 2s1121s122]1HN 22
[1s1122s122 + 2s1121s122]dt1dt2

Esinglet =
1

2O
[1s1122s122 + 2s1121s122]1HN 12
[1s1122s122 + 2s1121s122]dt1dt2

P11.7 The Doppler broadening in a gas can be expressed as

, where M is the molar mass.¢n = (2n0>c)22 ln 2(RT>M)

. Calculate and at 500.0 K.

P11.8 Calculate the transition dipole moment,
where for a tran-

sition from the 1s level to the 2pz level in H. Show that this
transition is allowed. The integration is over r, , and . Use

for the 2pz wave function.

P11.9 Consider the transition in He.
Draw an energy-level diagram, taking the spin-orbit coupling
that splits terms into levels into account. Into how many lev-
els does each term split? The selection rule for transitions in
this case is . How many transitions will be
observed in an absorption spectrum? Show the allowed
transitions in your energy diagram.

P11.10 Atomic emission experiments of a mixture show a
calcium line at 422.673 nm corresponding to a 
transition and a doublet due to potassium and2P3>2 :  2S1>2

1P1 :  1S0

¢J = 0, ;1

1s np 3P : 1s nd 3D

c2101r, u, f2 =
1

232p
a 1

a0
b3>2 r

a0
e-r>2a0 cos u

fu

mz = -er cos ummn
z = 1c*

m(t) mz cn(t) dt

¢n>n0¢n1014 s-15.0933 *
For the sodium transition, n0 =3p 2P3>2 ¡ 3s 2S1>2

transitions at 764.494 and 769.901 nm,
respectively.

a. Calculate the ratio for each of these transitions.

b. Calculate for a temperature of 1600.°C for
each transition.

P11.11 How many ways are there to place three electrons
into an f subshell? What is the ground-state term for the f3

configuration, and how many states are associated with this
term? See Problem P11.36.

P11.12 Calculate the wavelengths of the first three lines of
the Lyman, Balmer, and Paschen series, and the series limit
(the shortest wavelength) for each series.

P11.13 The Lyman series in the hydrogen atom corresponds
to transitions that originate from the level in absorption
or that terminate in the level for emission. Calculate
the energy, frequency (in inverse seconds and inverse
centimeters), and wavelength of the least and most energetic
transition in this series.

P11.14 The inelastic mean free path of electrons in a solid,
, governs the surface sensitivity of techniques such as AES

and XPS. The electrons generated below the surface must
l

n = 1
n = 1

nupper>nlower

gupper>glower

2P1>2 :  2S1>2
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make their way to the surface without losing energy in order
to give elemental and chemical shift information. An empiri-
cal expression for elements that give as a function of the
kinetic energy of the electron generated in AES or XPS is

. The units of are monolayers, 
E is the kinetic energy of the electron in eV, and l is the
monolayer thickness in nanometers. On the basis of this equa-
tion, what kinetic energy maximizes the surface sensitivity for
a monolayer thickness of 0.3 nm? An equation solver would
be helpful in obtaining the answer.

P11.15 The effective path length that an electron travels
before being ejected into the vacuum is related to the depth
below the surface at which it is generated and the exit angle
by , where is the inelastic mean free path and 
is the angle between the surface normal and the exit direction.

a. Justify this equation based on a sketch of the path that an
electron travels before exiting into the vacuum.

b. The XPS signal from a thin layer on a solid surface is
given by , where I0 is the signal
that would be obtained from an infinitely thick layer, and 

is defined in Problem P11.14. Calculate the ratio at
for . Calculate the exit angle required to

increase to 0.50.

P11.16 List the allowed quantum numbers ml and ms for the
following subshells and determine the maximum occupancy
of the subshells:

a. 2p b. 3d c. 4f d. 5g

P11.17 What are the levels that arise from the following
terms? How many states are there in each level?

a. 4F b. 2D c. 2S d. 4P

P11.18 As discussed in Chapter 9, in a more exact solution
of the Schrödinger equation for the hydrogen atom, the coor-
dinate system is placed at the center of mass of the atom
rather than at the nucleus. In that case, the energy levels for a
one-electron atom or ion of nuclear charge Z are given by

where is the reduced mass of the atom. The masses of 
an electron, a proton, and a tritium (3H or T) nucleus are 
given by , , and

, respectively. Calculate the frequency of
the transition in H and T to five significant
figures. Which of the transitions, , ,

, could the frequencies correspond to?

P11.19 Derive the ground-state term symbols for the
following configurations:

a. d5 b. f 3 c. p4

P11.20 Calculate the terms that can arise from the configu-
ration . Compare your results with those
derived in the text for np2. Which configuration has more
terms and why?

P11.21 For a closed-shell atom, an antisymmetric wave
function can be represented by a single Slater determinant.

np1n¿p1, n Z n¿

1s :  4d
1s :  4p1s :  4s

n = 1 :  n = 4
5.0074 * 10-27 kg

1.6726 * 10-27 kg9.1094 * 10-31 kg

m

En = -
Z2me4

32p2e20 U2n2

I>I0

l = 2du = 0
I>I0l

I = I011 - e-d>1l cos u22

uld = l cos u

ll = 538E-2 + 0.41(lE)0.5

l

For an open-shell atom, more than one determinant is needed.
Show that the wave function for the triplet state of
He 1s12s1 is a linear combination of two of the Slater
determinants of Example Problem 10.2. Which of the two are
needed and what is the linear combination?

P11.22 Calculate the transition dipole moment,
for a

transition from the 1s level to the 2s level in H. Show that this
transition is forbidden. The integration is over r, , and .

P11.23 Use the transition frequencies shown in 
Example Problem 11.7 to calculate the energy (in joules
and electron-volts) of the six levels relative to the 3s2S1 2
level. State your answers with the correct number of 
significant figures.

P11.24 Derive the ground-state term symbols for the
following atoms or ions:

a. H b. c. d. Sc

P11.25 The spectrum of the hydrogen atom reflects the
splitting of the 1s2 S and 2p2 P terms into levels. The energy
difference between the levels in each term is much smaller
than the difference in energy between the terms. Given this
information, how many spectral lines are observed in the

transition? Are the frequencies of these
transitions very similar or quite different?

P11.26 Using Table 11.3, which lists the possible terms that
arise from a given configuration, and Hund’s rules, write the
term symbols for the ground state of the atoms K through Cu,
excluding Cr, in the form .

P11.27 What atomic terms are possible for the following
electron configurations? Which of the possible terms has the
lowest energy?

a. ns1np1 b. ns1nd1 c. ns2np1 d. ns1np2

P11.28 Two angular momenta with quantum numbers
and are added. What are the possible

values of J for the resultant angular momentum states?

P11.29 Derive the ground-state term symbols for the
following configurations:

a. d2 b. f 9 c. f12

P11.30 The first ionization potential of ground-state He is
24.6 eV. The wavelength of light associated with the 1s2p 1P
term is 58.44 nm. What is the ionization energy of the He
atom in this excited state?

P11.31 In the Na absorption spectrum, the following transi-
tions are observed:

Calculate the energies of the 4p 2P and 5s 2S states with
respect to the 3s 2S ground state.

P11.32 The Grotrian diagram in Figure 11.7 shows a
number of allowed electronic transitions for He. Which of the

 5s 2S : 3p 2P l = 616.073 nm, 615.421 nm

 3p 2P : 3s 2S l = 589.593 nm, 588.996 nm

 4p 2P : 3s 2S l = 330.26 nm

j2 = 5>2j1 = 3>2

(2S+1)LJ

1s2 S : 2p2 P

Na+F-

>

fu

mmn
z = 1c*

m(t) mz cn(t) dt where mz = -er cos u

MS = 0



and , calculate
the ratio of the number of C atoms in the 3P2 and 3P0 levels at
200.0 and 1000. K.

P11.36 A general way to calculate the number of states that
arise from a given configuration is as follows. Calculate the
combinations of ml and ms for the first electron, and call that
number n. The number of combinations used is the number of
electrons, which we call m. The number of unused combina-
tions is . According to probability theory, the number
of distinct permutations that arise from distributing the m
electrons among the n combinations is .

For example, the number of states arising from a p2 configu-
ration is , which is the result obtained in
Section 11.2. Using this formula, calculate the number of
possible ways to place five electrons in a d subshell. What is
the ground-state term for the d5 configuration and how many
states does the term include?

P11.37 The ground-state level for the phosphorus atom
is . List the possible values of L, Ml, S, MS, J, and MJ
consistent with this level.

P11.38 Derive the ground-state term symbols for the
following atoms:

a. F b. Na c. P

4S3>2

6!>32!4!4 = 15

n!>3m!(n - m)!4
n - m

3P2-3P1 = 27.1 cm-13P1-3P0 = 16.4 cm-1

244 CHAPTER 11 Quantum States for Many-Electron Atoms and Atomic Spectroscopy

following transitions shows multiple spectral peaks due to a
splitting of terms into levels? How many peaks are observed
in each case? Are any of the following transitions between
energy levels forbidden by the selection rules?

a.

b.

c.
d.

P11.33 List the quantum numbers L and S that are consis-
tent with the following terms:

a. 4S b. 4G c. 3P d. 2D

P11.34 The transition Al3Ne4(3s)2(3p)1 :  Al3Ne4

1s2p 3P: 1s3d 3D

1s2s 3S: 1s2p 3P

1s2p 1P: 1s3s 1S

1s2 1S: 1s2p 1P

has two lines given by and = 25354.8 cm-1n
'

(3s)2(4s)1

. The transition Al3Ne4(3s)2(3p)1 := 25242.7 cm-1n
'

Web-Based Simulations, Animations, and Problems

W11.1 The individual processes of absorption, spontaneous
emission, and stimulated emission are simulated in a two-level
system. The level of pumping needed to sustain lasing is

experimentally determined by comparing the population of the
upper and lower levels in the lasing transition.

has three lines given by = 32444.8 cm-1,n
'

Al3Ne4(3s)2(3d)1

, and . Sketch an
energy-level diagram of the states involved and explain the
source of all lines. [Hint: The lowest energy levels are P levels
and the highest are D levels. The energy spacing between the 
D levels is greater than for the P levels.]

P11.35 Given that the levels in the 3P term for carbon have
the relative energies (expressed in wave numbers) of

= 32332.7 cm-1n
'= 32334.0 cm-1n

'
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The Chemical Bond 
in Diatomic Molecules

The chemical bond is at the heart of chemistry. We begin with a

qualitative molecular orbital model for chemical bonding using the 

molecule as an example. We show that is more stable than widely

separated H and because of delocalization of the electron over the

molecule and localization of the electron in the region between the two

nuclei. The molecular orbital model provides a good understanding of the

electronic structure of diatomic molecules and is used to understand the

bond order, bond energy, and bond length of homonuclear diatomic mole-

cules. The formalism is extended to describe bonding in strongly polar

molecules such as HF.
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2

H�
2

12.1 Generating Molecular Orbitals from
Atomic Orbitals

Because the essence of chemistry is bonds between atoms, chemists need to have a firm
understanding of the theory of the chemical bond. In this chapter, the origin of the
chemical bond is explored using the molecule as an example. We then discuss
chemical bonding in first and second row diatomic molecules. In Chapter 13, localized
and delocalized bonding models will be used to understand and predict the shape of
small molecules. The discussion in this chapter and Chapter 13 is largely qualitative in
character. In Chapter 15, numerical methods for quantum chemical calculations on
molecules are discussed. It may be useful to work on Chapter 15 in parallel with
Chapters 12 and 13.

A chemical bond is formed between two atoms if the energy of the molecule passes
through a minimum at an equilibrium distance that is smaller than the energy of the
separated atoms. How does the electron distribution around the nuclei change when a
chemical bond is formed? In answering this question, we consider the relative energies
of two H atoms compared to the H2 molecule. Two H atoms are more stable than the
four infinitely separated charges by . The H2 molecule is more stable
than two infinitely separated H atoms by . Therefore, the chemical bond
lowers the total energy of the two protons and two electrons by 17%. Although appre-
ciable, the bond energy is a small fraction of the total energy of the widely separated
electrons and nuclei. This result suggests that the charge distribution in a molecule is
quite similar to a superposition of the charge distribution of the individual atoms.

436 kJ mol-1
2624 kJ mol-1

H+
2
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H
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However, as we will see later, valence electrons that are localized on an individual atom for
large internuclear distances are delocalized, meaning that they have a finite probability of
being found anywhere in the molecule. Core electrons generally remain localized on
individual atoms.

As discussed in Chapter 10, the introduction of a second electron vastly complicates
the task of finding solutions to the Schrödinger equation for atoms. This is also true for
molecules. The exact molecular wave functions for a molecule with n electrons and m
nuclei are functions of the positions of all the electrons and nuclei

(12.1)

where the r and R are positions of the electrons and nuclei respectively. In order to be
able to solve the Schrodinger equation for a molecule, an approximate wave function
with fewer variables is needed. The parts of for the motion of the nuclei and
the electrons, both of which appear in Equation (12.1), can be separated using the
Born–Oppenheimer approximation. Because the electron is lighter than the proton
by a factor of nearly 2000, the electron charge quickly rearranges in response to the
slower periodic motion of the nuclei in molecular vibrations. Because of the very dif-
ferent timescales for nuclear and electron motion, the two motions can be decoupled
and we can write Equation (12.1) in the form

(12.2)

describes the motions of the nuclei in vibration and rotation of the molecule
and describes the electrons for an instantaneous fixed positions of the nuclei.
We next solve the Schrödinger equation for and calculate the total energy of the
molecule at a fixed set of nuclear positions using further approximations that will be
discussed later. If this procedure is repeated for many values of , we can
determine an energy function, . The values for at the
minimum in E determine the equilibrium nuclear positions.

The total energy operator for a diatomic molecule in the Born–Oppenheimer
approximation is given by

(12.3)

The first term is the kinetic energy of the electrons, the second term is the Coulomb
attraction between the n electrons and two nuclei, the third term is the electron–electron
repulsion, and the last term is the nuclear–nuclear repulsion. The restriction j i on
the summation in the third term ensures that the electron–electron repulsion between
electrons i and j is not counted twice.

The last term in is a constant because we are assuming that the nuclei do not move.
It is convenient to separate out this term and to write an electronic total energy operator

(12.4)

The eigenvalues for the electronic Schrödinger equation are related to
the total energy eigenvalues by

(12.5)

The reason for separating out the nuclear repulsion term will become clear when we
discuss the molecular orbital energy diagram. The energy eigenfunctions are identical
for and . Only the eigenvalues are affected by separating out the nuclear repul-
sion [see Equation (12.5)].

The goal in this chapter is to develop a qualitative model of chemical bonding in
diatomic molecules. Quantitative computational chemistry models discussed in Chapter 15
are required to determine accurate bond lengths and bond energies. The qualitative model
that we discuss assumes that electrons in molecules occupy molecular orbitals (MOs)
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that extend over the molecule similar to how electrons in an atom occupy atomic
orbitals. A given MO, , can be written as a linear combination of the atomic orbitals
(AOs) on individual atoms in the molecule. This is called the LCAO-MO model. The
justification for this assumption is that the linear combination of AOs is the simplest
wave function we can write that leads to the electron delocalization over the molecule.
In the rest of this chapter, we drop the subscript el to simplify the notation. Keep in
mind that we are calculating only the electronic part of and that we are doing
so at a fixed set of nuclear positions. To simplify the mathematics, we consider only a
diatomic molecule AB and assume that each MO is generated by combining only one
AO on each atom, on atoms A and B, respectively. The AOs are the basis
functions for the MO. Such a small basis set is inadequate for quantitative calculations,
and in solving the computational problems at the end of the chapter, you will use much
larger basis sets.

We next write an approximate MO in terms of the atomic orbitals, ,
and minimize the MO energy with respect to the values of the AO coefficients c1 and c2.
The expectation value of the MO energy for this approximate wave function is
given by

(12.6)

Because the AOs are normalized, the first two integrals in the denominator of the last
line of Equation (12.6) have the value 1.

(12.7)

In the preceding equation, the symbol Hij is a shorthand notation for the integrals
involving and the AOs i and j as follows:

(12.8)

Sab is called the overlap integral and is an abbreviation for . The
overlap is a new concept that was not encountered in atomic systems. The meaning of
Sab is indicated pictorially in Figure 12.1. In words, it is a measure of the degree to
which both of the AOs have nonzero values in the same region. Sab can have values
between zero and one. It has the value zero for widely separated atoms and increases as
the atoms approach one another. As we will see later, in order to have chemical bond
formation it is necessary that Sab 0.

To minimize with respect to the coefficients, is first differentiated with
respect to and . We then set the two resulting expressions equal to zero andcbca

ee

7

Sab = 1f*
afb dt

elfj(t)dtHNHij = 1f*
i (t)

elHN

8e9 =
(ca)2 Haa + (cb)2 Hbb + 2cacb Hab

(ca)2 + (cb)2 + 2cacbSab

 =
1ca221f*

aHN elfa dt + 1cb221f*
bHN elfb dt + 2cacb1f*

aHN elfb dt

1ca221f*
afa dt + 1cb221f*
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FIGURE 12.1
The amplitude of two 1s atomic orbitals 
is shown along an axis connecting the
atoms. The overlap is appreciable only 
for regions in which the amplitude of both
AOs is significantly different from zero.
Such a region is shown schematically in
orange. In reality, the overlap occurs in
three-dimensional space.
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solve for and . By multiplying both sides of the equation by the denominator
before differentiating, the following two equations are obtained:

(12.9)

Setting and and rearranging these two equations results in the follow-
ing two linear equations for and , which are called the secular equations:

(12.10)

As shown in the Math Supplement (Appendix A), these equations have a solution other
than only if the secular determinant satisfies the condition

(12.11)

The secular determinant is a determinant because the basis set consists of only
one AO on each atom.

Expanding the determinant generates a quadratic equation for the MO energy .
The two solutions are

(12.12)

For homonuclear diatomic molecules . In this case, Equation (12.12)
simplifies to

(12.13)

We return to hetereonuclear diatomic molecules in Section 12.8. Using the mole-
cule as an example, we show later that Haa and Hab are both negative and since Sab 0,

. Substituting in Equations (12.10), we find that , whereas if is
substituted in the same equations, we obtain .

Figure 12.2 summarizes the following results of this discussion pictorially in a
molecular orbital energy diagram using H2 as an example:

• Two localized AOs combine to form two delocalized MOs provided that Sab is non-
zero. This is the case if there are regions in space in which the amplitudes of both
AOs are nonzero.

• The energy of one MO is lowered and the energy of the other MO is raised relative
to the AO energy. The amount by which the MO energy differs from the AO energy
depends on Hab and Sab.

• Because Sab 0, and is raised relative to the AO energy
more than is lowered.

• The AO coefficients have the same sign (in-phase) in the lower energy MO and the
opposite sign (out-of-phase) in the higher energy MO.

In a molecular orbital energy diagram, the energy of the orbital rather than the total
energy of the molecule is displayed. For this reason, the appropriate energy operator in
calculating the MO energy is rather than .HNelHN
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FIGURE 12.2
Molecular orbital energy diagram for a
qualitative description of bonding in H2.
The atomic orbitals are shown to the left
and right, and the molecular orbitals are
shown in the middle. Dashed lines connect
the MO with the AOs from which it was
constructed. Shaded circles have a diameter
proportional to the coefficients ca and cb.
Red and blue shading signifies positive and
negative signs of the AO coefficients,
respectively. Interchanging red and blue
does not generate a different MO.
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EXAMPLE PROBLEM 12.1

Show that substituting in Equations (12.10) gives the result .

Solution

Substitution in the second of the two Equations (12.10) gives the same result.

12.2 The Simplest One-Electron 
Molecule:

In the previous section, we outlined a formalism to generate MOs from AOs. We next
apply this formalism to the only molecule for which the electronic Schrödinger equa-
tion can be solved exactly, the one-electron molecular ion. Just as for atoms, the
Schrödinger equation cannot be solved exactly for any molecule containing more than
one electron. Rather than discuss the exact solution, we approach using the LCAO-
MO model, which gives considerable insight into chemical bonding and, most impor-
tantly, can be extended easily to many-electron molecules.

We begin by setting up the electronic Schrödinger equation for in the
Born–Oppenheimer approximation. Figure 12.3 shows the relative positions of the two
protons and the electron in at a particular instant in time. The total energy operator
for this molecule has the form

(12.14)

The first term is the electron kinetic energy, the second term is the attractive
Coulombic interaction between the electron and each of the nuclei, and the last term is
the nuclear–nuclear repulsion. We again separate out the nuclear repulsion term and
write an electronic energy operator

(12.15)

From experimental results, we know that is a stable species, so that solving the
Schrödinger equation for must give at least one bound state. We define the zero of
total energy as an H atom and an ion that are infinitely separated. Given this choice
of the zero, a stable molecule has a negative energy. The energy function Etotal(R) has a
minimum value for a distance Re, which is the equilibrium bond length.

We next discuss the approximate wave functions for the molecule in the LCAO-MO
model. Imagine slowly bringing together a H atom and a ion. At infinite separation, the
electron is in a 1s orbital on either one nucleus or the other. However, as the internuclear dis-
tance approaches Re, the potential energy wells for the two species overlap, and the barrier
between them is lowered. Consequently, the electron can move back and forth between the
Coulomb wells on the two nuclei. It is equally likely to be on nucleus a as on nucleus b so
that the molecular wave function looks like the superposition of a 1s orbital on each nucleus
as shown pictorially in Figure 12.4.
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FIGURE 12.3
The two protons and the electron are
shown at one instant in time. The quanti-
ties R, ra, and rb represent the distances
between the charged particles.
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The AOs used to form the MOs are the 1s orbitals, . To allow the electron distri-
bution around each nucleus to change as the bond is formed, a variational parameter
is inserted in each AO:

(12.16)

This parameter looks like an effective nuclear charge. You will see in the end-of-chapter
problems that varying allows the size of the orbital to change.

In the previous section, we showed that . Although the signs of ca and cb can
differ, the magnitude of the coefficients is the same. Using this result, the two MOs are

(12.17)

The wave functions for a homonuclear diatomic molecule are classified as g or u based
on whether they change signs upon undergoing inversion through the center of the mole-
cule. If the origin of the coordinate system is placed at the center of the molecule, inver-
sion corresponds to . If this operation leaves the wave
function unchanged, that is, , it has g symmetry. If

, the wave function has u symmetry. The subscripts g
and u refer to the German words gerade and ungerade, which can be translated as even
and odd and are also referred to as symmetric and antisymmetric. See Figures 12.8 and
12.12 for illustrations of g and u MOs. We will see later that only describes a stable,
chemically bonded molecule.

The values of cg and cu can be determined by normalizing . Note that the
integrals used in the normalization are over all three spatial coordinates. Normalization
requires that

(12.18)

The first two integrals in the second line have the value 1 because the H1s orbitals are
normalized, and we obtain the result

(12.19)

The coefficient cu has a similar form, as you will see in the end-of-chapter problems.
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FIGURE 12.4
The potential energy of the molecule is
shown for two different values of R (red
curves). At large distances, the electron
will be localized in a 1s orbital either on
nucleus a or b. However, at the equilibrium
bond length Re, the two Coulomb poten-
tials overlap, allowing the electron to be
delocalized over the whole molecule. 
The purple curve represents the amplitude
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(bottom panel) wave functions, and the
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corresponding energy eigenvalues.
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12.3 The Energy Corresponding to the 
Molecular Wave Functions and 

Keep in mind that the molecular wave functions we are using are approximate rather
than exact eigenfunctions of the total energy operator of Equation (12.15). Therefore,
we can only calculate the expectation value of the electronic energy for the state corre-
sponding to :

(12.21)

This result was derived in Section 12.1 where we also showed that .

Looking ahead, we will find that the total energy corresponding to is lower thancg

Eu =
Haa - Hab

1 - Sab

=
Haa + Hab

1 + Sab
Eg = 1c

*
gHN elcgdt

1c*
gcg dt

cg

CuCg

H�
2

that corresponding to and that only describes a stable molecule. To under-
stand the difference between and , we must look in more detail at the integrals
Haa and Hab.

To evaluate Haa, we use from Equation (12.15):

(12.22)

Assume initially that , in which case is an eigenfunction of the operator in
parentheses

(12.23)

Because the atomic wave functions are normalized, the first integral is equal to E1s and
Haa is given by

(12.24)

J represents the energy of interaction of the electron viewed as a negative diffuse
charge cloud on atom a with the positively charged nucleus b. This result is exactly
what would be calculated in classical electrostatics for a diffuse negative charge of
density . What is the physical meaning of the energy Haa? The quantity Haa
represents the total energy of an undisturbed hydrogen atom separated from a bare
proton by the distance R excluding the nuclear repulsion. As R , Haa E1s.
What is the sign of Haa? We know that 0 and because all the terms in the inte-
grand for J are positive, J 0. Therefore, Haa 0.

Next, the energy is evaluated. Substituting as before, we find that

(12.25)

Evaluating the first integral gives and

(12.26)

In this model, K plays a central role in the lowering of the energy that leads to the for-
mation of a bond. However, it has no simple physical interpretation. It is a direct con-
sequence of writing the MO as a superposition of two AOs, which leads to an
interference term in as seen in Equation (12.18). Both J and K are positivec*
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because all terms that appear in the integrals are positive over the entire range of the
integration. Quantitative calculations show that near the equilibrium distance ,
both Haa and Hab are negative, and . For many electron atoms, integrals
similar to J and K are generated and are referred to as Coulomb and exchange
integrals, respectively.

The differences between the electronic energy of the molecule in
the states described by and the energy of the H1s AO are calculated in
Example Problem 12.2.

EXAMPLE PROBLEM 12.2

Using Equation (12.13) and (12.21), express the change in the MO energies resulting from
bond formation, , in terms of J, K, and Sab.

Solution

As discussed earlier, both J and K are positive. Quantitative calculations show that
near the equilibrium distance , so that is positive and is negative,
meaning that the u state is raised and the g state is lowered in energy with respect 
to the H1s AO. These calculations also show that in agreement 
with Figure 12.2.

To assess the stability of the molecule with respect to its dissociation products, we
must include the nuclear repulsion term and calculate Etotal rather than Eel as a function
of R. Using the approximate wave function of Equation (12.17), an analytical expres-
sion can be obtained for . For details, see I. N. Levine, Quantum Chemistry.
The energy is minimized with respect to at each of the R values in a variational calcu-
lation. The resulting curves are shown schematically in Figure 12.5. The
value of the energy as is the total energy of a H atom and a proton at infinite
separation, or E1s. For the H atom as for any atom, Etotal = Eel. The most important
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conclusions that can be drawn from this figure are that describes a stable mole-
cule because the energy has a well-defined minimum at and that does not
describe a bound state of H and because for all R, which makes the
molecule unstable with respect to dissociation. Therefore, we conclude that only a
molecule described by is a stable molecule. The wave functions are
referred to as bonding and antibonding molecular orbitals, respectively, to empha-
size their relationship to the chemical bond.

The equilibrium distance Re and the bond energy De are of particular interest and
have the values and 2.36 eV. has the value 1.24 for and 0.90 for at
Re. The result that for shows that the optimal H1s AO to use in constructing

is contracted relative to a free H atom. This means that the electron in in the 
state is pulled in closer to each of the nuclei than it would be in a free hydrogen atom.
The opposite is true for the state.

Values of Etotal, Eel and the nuclear repulsion energy V(R) obtained in an exact
calculation are shown as a function of R in Figure 12.6. As R , V(R) 0, and 
Eel 13.6 eV, which is the electronic energy (and total energy) of a H atom. As 
R 0, Eel 54.4 eV, which is the electronic energy of a He+ ion. At large R values,
Etotal(R) is dominated by Eel(R) and is negative. However, at small R values, Etotal(R) is
dominated by V(R) and is positive. This crossover results in a minimum in the total
energy at R = 1.98 a0 and a bond energy of 2.79 eV or 269 kJ mol-1. The calculated
binding energy De in the simple model is 2.36 eV, which is reasonably close to the exact
value, and the exact and calculated Re values are both 1.98 a0. The fact that the approxi-
mate values are quite close to the exact values validates the assumption that the exact
molecular wave function is quite similar to .

What have we learned so far about the origin of the chemical bond? It is tempting to
attribute the binding to Hab or K and, within the LCAO-MO formalism that we have used,
this is correct. However, other formalisms for solving the Schrödinger equation for the

molecule do not give rise to these integrals. We should, therefore, look for an explana-
tion of chemical binding that is independent of the formalism used. For this reason, we
seek the origin of the chemical bond in the differences between as the wave
functions are essentially independent of the method used to obtain them. This statement is
true without the caveat for sufficiently accurate calculations using different methods.
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12.4 A Closer Look at the Molecular
Wave Functions and 

The values of along the molecular axis are shown in Figure 12.7 together
with the atomic orbitals from which they are derived. Note that the two wave functions
are quite different. The bonding orbital has no nodes, and the amplitude of is quite
high between the nuclei. The antibonding wave function has a node midway between
the nuclei and has its maximum positive and negative amplitudes at the nuclei. Note
that the increase in the number of nodes in the wave function with energy is similar to
the other quantum mechanical systems that have been studied to this point. Both wave
functions are correctly normalized in three dimensions.

Figure 12.8 shows contour plots of evaluated in the plane. If we
compare Figures 12.7 and 12.8, we can see that the node midway between the H atoms
in corresponds to a nodal plane.

The probability density of finding an electron at various points along the molecular
axis is given by the square of the wave function, which is shown in Figure 12.9. For the
antibonding and bonding orbitals, the probability density of finding the electron in is
compared with the probability density of finding the electron in a hypothetical nonbonded
case. For the nonbonded case, the electron is equally likely to be found on each nucleus in
H1s AOs and . Two important conclusions can be drawn from this figure. First, for
both , the volume in which the electron can be found is large compared with the
volume accessible to an electron in a hydrogen atom. This tells us that the electron is
delocalized over the whole molecule in both the bonding and antibonding orbitals.
Second, we see that the probability of finding the electron in the region between the
nuclei is quite different for . For the antibonding orbital, the probability is zero
midway between the two nuclei, but for the bonding orbital, it is quite high. This differ-
ence is what makes the g state a bonding state and the u state an antibonding state.

This pronounced difference between is explored further in Figure 12.10.
The difference between the probability density for these orbitals and the hypothetical
nonbonding state is shown in this figure. This difference tells us how the electron den-
sity would change if we could suddenly switch on the interaction at the equilibrium
geometry. We see that for the antibonding state, electron density would move from the
region between the two nuclei to the outer regions of the molecule. For the bonding
state, electron density would move both to the region between the nuclei and closer to
each nucleus. The origin of the density increase between the nuclei for the bonding
orbital is the interference term in . The origin of the
density increase near each nucleus is the increase in from 1.00 to 1.24 in going from
the free atom to the molecule.

The probability density is increased relative to the nonbonding case in the region
between the nuclei and decreased by the same amount outside of this region. The oppo-
site is true for . Although it may not be apparent in Figures 12.7 to 12.10, the wave
functions satisfy this requirement. Only small changes in the probability density outside
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of the region between the nuclei are needed to balance larger changes in this region,
because the integration volume outside of the region between the nuclei is much larger.
The data shown as a line plot in Figure 12.10 are shown as a contour plot in Figure 12.11.
Red and blue correspond to the most positive and least positive values for ,¢c2

g and ¢c2
u

FIGURE 12.9
The upper two panels show the probability
densities along the internuclear
axis for the bonding and antibonding wave
functions. The dashed lines show 12c
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FIGURE 12.10
The red curve shows (left panel) and the
purple curve shows (right panel). The
light blue curves show the differences
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(right panel). These differ-
ences are a measure of the change in elec-
tron density near the nuclei due to bond
formation. A charge buildup occurs for the
bonding orbital and a charge depletion
occurs for the antibonding orbital in the
region between the nuclei.

- 1>2(cH1sb
)2

respectively. The outermost contour for in Figure 12.11 corresponds to a negative
value, and it is seen that the corresponding area is large. The product of the small nega-
tive charge in with the large volume corresponding to the contour area is equal in
magnitude and opposite in sign to the increase in in the bonding region.

The comparison of the electron charge densities associated with and helps
us to understand the important ingredients in chemical bond formation. For both
states, the electronic charge undergoes a delocalization over the whole molecule.
However, charge is also localized in the molecular orbitals, and this localization is
different in the bonding and antibonding states. In the bonding state, the electronic
charge redistribution relative to the nonbonded state leads to a charge buildup both
near the nuclei and between the nuclei. In the antibonding state, the electronic charge
redistribution leads to a charge buildup outside of the region between the nuclei. We
conclude that electronic charge buildup between the nuclei is an essential ingredient
of a chemical bond.

We now look at how this charge redistribution affects the kinetic and potential energy
of the molecule. A more detailed account is given by N. C. Baird [J. Chemical
Education 63 (1986): 660]. The virial theorem is very helpful in this context. The virial
theorem applies to atoms or molecules described either by exact wave functions or by
approximate wave functions if these wave functions have been optimized with respect to
all possible parameters. This theorem says that for a Coulomb potential, the average
kinetic and potential energies are related by

(12.27)

Because , it follows that

(12.28)

Because this equation applies both to the nonbonded case and to the molecule at its
equilibrium geometry, the change in total, kinetic, and potential energies associated
with bond formation is given by

(12.29)

For the molecule to be stable, and, therefore, and
. Bond formation must lead to an increase in the kinetic energy and a

decrease in the potential energy. How does this result relate to the competing effects of
charge localization and delocalization that we saw for ?

Imagine that we could break down the change in the electron charge distribution as
the bond is formed into two separate steps. First, we bring the proton and H atom to a dis-
tance Re and let them interact, keeping the effective nuclear charge at the value . In
this step, the kinetic energy of the electron decreases, and it can be shown that the poten-
tial energy changes little. Therefore, the total energy will decrease. Why is the kinetic
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energy lower? The explanation follows directly from our analysis of the particle in the
one-dimensional box: as the box length increases, the kinetic energy decreases. Similarly,
as the electron is delocalized over the whole space of the molecule, the kinetic energy
decreases. By looking only at this first step, we see that electron delocalization alone will
lead to bond formation. However, the total energy of the molecule can be reduced further
at the fixed internuclear distance Re by optimizing . At the optimal value of ,
some of the electron charge is withdrawn from the region between the nuclei and redis-
tributed around the two nuclei. Because the size of the “box” around each atom is
decreased, the kinetic energy of the molecule is increased. This increase is sufficiently
large that for the overall two-step process.

However, increasing from 1.0 to 1.24 decreases the potential energy of the molecule
because of the increased Coulombic interaction between the electron and the two protons.
The result is that is lowered more than is raised. Therefore, the
total energy of the molecule decreases further in this second step. Although the changes
in and are both quite large, changes very little as z8¢ Etotal98¢ Ekinetic98¢ Epotential9

8¢ Ekinetic98¢ Epotential9
z

8¢ Ekinetic9 7 0

z = 1.24z

FIGURE 12.11
Contour plots of (top) and (bot-
tom). Positive and negative amplitudes are
shown as blue red and blue respectively.
Darker colors indicate larger values for the
magnitude of the amplitude. 

¢c2
u¢c2

g

increases from 1.0 to 1.24. Although for the two step process, the domi-
nant driving force for bond formation is electron delocalization, which is associated with

. This result holds for bond formation in general.
At this point, we summarize what has been learned about the chemical bond. We

have carried out an approximate solution of the Schrödinger equation for the simplest
molecule imaginable and have developed a formalism based on delocalized molecular
orbitals derived from atomic orbitals. We conclude that both charge delocalization and
localization play a role in chemical bond formation. Delocalization promotes bond for-
mation because the kinetic energy is lowered as the electron occupies a larger region in
the molecule than it would in the atom. However, localization through the contraction
of atomic orbitals and the accumulation of electron density between the atoms in the
state described by lowers the total energy even further. Both localization and
delocalization play a role in bond formation, and it is this complex interplay between
opposites that leads to a strong chemical bond.

12.5 Homonuclear Diatomic Molecules
In this section, we develop a qualitative picture of the shape and spatial extent of
molecular orbitals for homonuclear diatomic molecules. Following the same path used
in going from the H atom to many-electron atoms, we construct MOs for many-electron
molecules on the basis of the excited states of the molecule. These MOs are useful
in describing bonding in first and second row homonuclear diatomic molecules.
Heteronuclear diatomic molecules are discussed in Section 12.8.

All MOs for homonuclear diatomics can be divided into two groups with regard to
each of two symmetry operations. The first of these is rotation about the molecular
axis which is taken to be along the z axis. If this rotation leaves the MO unchanged, it
has no nodes that contain this axis, and the MO has symmetry. Combining s AOs
always gives rise to MOs for diatomic molecules. If the MO has one nodal plane con-
taining the molecular axis, the MO has symmetry. All diatomic MOs have either 
or and either g or u symmetry. Combining px or py AOs always gives rise to MOs if
the AOs have a common nodal plane. The second operation is inversion through the
center of the molecule. Placing the origin at the center of the molecule, inversion corre-
sponds to . If this operation leaves the MO unchanged,
the MO has g symmetry. If , the MO has u symmetry.
All MOs are constructed using and AOs. Molecular orbitals for of g
and u symmetry are shown in Figure 12.12. Note that and are bonding MOs,
whereas and are antibonding MOs showing that u and g cannot be uniquely
associated with bonding and antibonding. The symbol * is usually used to indicate an
antibonding MO.

1p*
g1s*

u

1pu1sg
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Only atomic orbitals of the same symmetry can combine with one another to form a
molecular orbital. For this example, we consider only s and p electrons. Figure 12.13
shows that a net nonzero overlap between two atomic orbitals occurs only if both AOs
are either cylindrically symmetric with respect to the molecular axis ( MOs) or if both
have a common nodal plane that coincides with the molecular axis ( MOs).

Two different notations are commonly used to describe MOs in homonuclear
diatomic molecules. In the first, the MOs are classified according to symmetry and
increasing energy. For instance, a orbital has the same symmetry but a higher
energy than the orbital. In the second notation, the integer indicating the relative
energy is omitted, and the AOs from which the MOs are generated are listed instead. For
instance, the MO has a higher energy than the MO. The superscript * is
used to designate antibonding orbitals. Two types of MOs can be generated by combin-
ing 2p AOs. If the axis of the 2p orbital lies on the intermolecular axis (by convention
the z axis), two MOs are generated. These MOs are called and depending on
the relative phase of the AOs. Adding 2px (or 2py) orbitals on each atom gives MOs
because of the nodal plane containing the molecular axis. These MOs are called and

MOs.
In principle, we should take linear combinations of all the basis functions of the

same symmetry (either or ) when constructing MOs. However, little mixing occurs
between AOs of the same symmetry if they have greatly different orbital energies. For
example, the mixing between 1s and 2s AOs for the second row homonuclear diatomics
can be neglected at our level of discussion. However, for these same molecules, the 2s
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FIGURE 12.12
Contour plots of several bonding and
antibonding orbitals of . Positive and
negative amplitudes are shown as red and
blue respectively. Darker colors indicate
larger values for the magnitude of the
amplitude. The green arrows show the
transformation
for each orbital. If the amplitude of the
wave function changes sign under this 
transformation, it has u symmetry. 
If it is unchanged, it has g symmetry.
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opposite signs, so the net overlap of
these two atomic orbitals of different
symmetry is zero.
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and 2pz AOs both have symmetry and will mix if their energies are not greatly
different. Because the energy difference between the 2s and 2pz atomic orbitals increases
in the sequence , mixing decreases for the second row diatomics in the order
Li2, B2, ..., O2, F2. It is useful to think of MO formation in these molecules as a two-step
process. We first create separate MOs from the 2s and 2p AOs, and subsequently combine
the MOs of the same symmetry to create new MOs that include mixing.

Are the contributions from the s and p AOs equally important in MOs that exhibit
mixing? The answer is no because the AO closest in energy to the resulting MO

has the largest coefficient cij in . Therefore, the 2s AO is the major con-
tributor to the MO because the MO energy is closer to the 2s than to the 2p orbital
energy. Applying the same reasoning, the 2pz atomic orbital is the major contributor to
the MO. The MOs used to describe chemical bonding in first and second row
homonuclear diatomic molecules are shown in Table 12.1. The AO that is the major
contributor to the MO is shown in the last column, and the minor contribution is shown
in parentheses. For the sequence of molecules , the MO energy calculated
using higher level methods with extended basis sets increases in the sequence

. Moving across the periodic
table to O2 and F2, the relative order of the and MOs changes. Note that the
first four MO energies follow the AO sequence and that the and MOs generated
from 2p AOs have different energies.

Figure 12.14 shows contour plots of the first few MOs, including only the major
AO in each case (no mixing). The orbital exponent has not been optimized and

for all AOs. Inclusion of the minor AO for the MOs
alters the plots in Figure 12.14 at a minor rather than a major level.

We next discuss the most important features of these plots. As might be expected, the
orbital has no nodes, whereas the orbital has a nodal surface and the orbital3sg2sg1sg

2sg, 2s*
u, 3sg, and 3s*

uz = 1
s-p

H+
2

ps

3sg1pu

1sg 6 1s*
u 6 2sg 6 2s*

u 6 1pu 6 3sg 6 1p*
g 6 3s*

u

H2: N2

3s

2s
cj = ©icijfi

s-p

s–p

s-pLi: F

s

TABLE 12.1 Molecular Orbitals Used to Describe Chemical Bonding 
in Homonuclear Diatomic Molecules

MO Designation Alternate Character Atomic Orbitals

1sg sg(1s) Bonding 1s

1s*
u (1s)s*

u Antibonding 1s

2sg sg(2s) Bonding 2s (2pz)

2s*
u (2s)s*

u Antibonding 2s (2pz)

3sg sg(2pz) Bonding 2pz (2s)

3s*
u (2pz)s*

u Antibonding 2pz (2s)

1pu (2px, 2py)pu Bonding 2px, 2py

1p*
g (2px, 2py)p*

g Antibonding 2px, 2py

has two nodal surfaces. All orbitals have a nodal plane perpendicular to the internuclear
axis. The orbitals have a nodal plane containing the internuclear axis. The amplitude for
all the antibonding MOs is zero midway between the atoms on the molecular axis. This
means that the probability density for finding electrons in this region will be small. The
antibonding orbitals have a nodal plane, and the orbital has both a nodal
plane and a nodal surface. The orbital has no nodal plane other than on the intermole-
cular axis, whereas the orbital has one nodal plane in the bonding region.

Note that the MOs made up of AOs with do not extend as far away from the
nuclei as the MOs made up of AOs with . In other words, electrons that occupy
valence AOs are more likely to overlap with their counterparts on neighboring atoms
than are electrons in core AOs. This fact is important in understanding which electrons
participate in making bonds in molecules, as well as in understanding reactions between
molecules. The MOs shown in Figure 12.14 are specific to and have been calculated
using and . The detailed shape of these MOs varies from molecule to
molecule and depends primarily on the effective nuclear charge and the bond length.
We can get a qualitative idea of what the MOs look like for other molecules by using the

z

z = 1R = 2.00 a0
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n = 2
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u
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MOs with the effective nuclear charge obtained from Hartree–Fock calculations for
the molecule of interest.

For example, the bond length for F2 is greater than that for and 
and 5.1 for the 1s and 2p orbitals, respectively. Because , the amplitude of the
fluorine AOs falls off much more rapidly with the distance from the nucleus than is
the case for the molecule. Figure 12.15 shows MOs for these1sg, 3s*

u, and 1puH+
2

z 7 1
z = 8.65H+
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FIGURE 12.14
MOs based on the ground and excited
states for generated from 1s, 2s, and
2p atomic orbitals. Contour plots are shown
on the left and line scans along the path
indicated by the green arrow are shown on
the right. Positive and negative amplitudes
are shown as red and blue respectively.
Darker colors indicate larger values for the
magnitude of the amplitude. Dashed lines
and curves indicate nodal surfaces. Lengths
are in units of a0, and .Re = 2.00 a0

H+
2

values generated using the AOs. Note how much more compact the AOs and MOs
are compared with . The overlap between the 1s orbitals used to generate the
lowest energy MO in F2 is very small. For this reason, electrons in this MO do not
contribute to the chemical bond in F2. Note also that the orbital for F2 exhibits
three nodal surfaces between the atoms rather than one node shown in Figure 12.15
for with . Unlike the MO for , the MO shows distinct con-
tributions from each atom because the amplitude of the 2p AOs falls off rapidly
along the internuclear axis. However, apart from these differences, the general fea-
tures shown in Figure 12.15 are common to the MOs of all first and second row
homonuclear diatomics.
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12.6 The Electronic Structure of 
Many-Electron Molecules

To this point, our discussion has been qualitative in nature. The interaction of two AOs
has been shown to give two MOs and the shape and a framework of molecular orbitals,
based on the orbitals, has been introduced that can be used for many-electronH+
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diatomic molecules. To calculate aspects of diatomic molecules such as the MO energies,
the bond length, and the dipole moment, the Schrödinger equation must be solved
numerically. As for many-electron atoms, the starting point for quantitative molecular
calculations is the Hartree–Fock model. As the formulation of the model is more com-
plex for molecules than for atoms, we refer the interested reader to Chapter 15 and to
sources such as I. N. Levine, Quantum Chemistry. As was discussed for many electron
atoms in Chapter 10, the crucial input for a calculation is the expansion of the one-
electron molecular orbitals in a basis set of the N basis functions , and a variety of
basis sets is available in commercially available computational chemistry software.

(12.30)

Although calculations using the Hartree–Fock model generally give sufficiently accu-
rate values for bond lengths in diatomic molecules and bond angles in polyatomic mol-
ecules, accurate energy level calculations require electron correlation to be taken into
account as discussed in Chapter 15.

Once the MO energy levels have been calculated, a molecular configuration is
obtained by putting two electrons in each MO, in order of increasing orbital energy,
until all electrons have been accommodated. If the degeneracy of an energy level is
greater than one, Hund’s first rule is followed and the electrons are placed in the MOs
in such a way that the total number of unpaired electrons is maximized.

We first discuss the molecular configurations for H2 and He2. The MO energy
diagrams in Figure 12.16 show the number and spin of the electrons rather than the
magnitude and sign of the AO coefficients as was the case in Figure 12.2. What can
we say about the magnitude and sign of the AO coefficients for each of the four MOs
in Figure 12.16?

The interaction of 1s orbitals on each atom gives rise to a bonding and an antibond-
ing MO as shown schematically in Figure 12.16. Each MO can hold two electrons of
opposite spin. The configurations for H2 and He2 are and , respec-
tively. We should consider two cautionary remarks about the interpretation of molecu-
lar orbital energy diagrams. First, just as for the many-electron atom, the total energy of
a molecule is not the sum of the MO energies. Therefore, it is not always valid to draw
conclusions about the stability or bond strength of a molecule solely on the basis of the
orbital energy diagram. Secondly, the words bonding and antibonding give information
about the relative signs of the AO coefficients in the MO, but they do not convey
whether the electron is bound to the molecule. The total energy for any stable molecule
is lowered by adding electrons to any orbital for which the energy is less than zero. For
example, is a stable species compared to O2 and an electron at infinity, even though
the additional electron is placed in an antibonding MO.

For H2, both electrons are in the MO, which is lower in energy than the 1s AOs.1sg

O2
-

(1sg)2(1s*
u)2(1sg)2
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N
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cijfi
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FIGURE 12.16
Atomic and molecular orbital energies and
occupation for H2 and He2. Upward- and
downward-pointing arrows indicate and

spins respectively. The energy splitting
between the MO levels is not to scale.
b

a

Calculations show that the MO energy is greater than zero. In this case, the total
energy is lowered by putting electrons in the orbital and rises if electrons are addition-1sg

1s*
u

ally put into the as would be the case for . In the MO model, He2 has two electrons
in each of the and orbitals. Because the energy of the orbital is greater than
zero, He2 is not a stable molecule in this model. In fact, He2 is stable only below as a
result of a very weak van der Waals interaction, rather than chemical bond formation.

The preceding examples used a single 1s orbital on each atom to form molecular
orbitals. We now discuss the molecules F2 and N2, for which both s and p AOs con-
tribute to the MOs. Combining n AOs generates n MOs, so combining the 1s, 2s, 2px,
2py, and 2pz AOs on N and F generates 10 MOs for F2 and N2. Although MOs with con-
tributions from the 1s and 2s AOs are in principle possible, mixing does not occur for
either molecule because the AOs have very different energies. Mixing between 2s, 2px
and 2py, or 2px and 2py AOs does not occur, because the net overlap is zero. We next
consider mixing between the 2s and 2pz AOs. For F2, mixing can be neglected
because the 2s AO lies 21.6 eV below the 2p AO. The F2 MOs, in order of increasing
energy, are and the1sg 6 1s*

u 6 2sg 6 2s*
u 6 3sg 6 1pu = 1pu 6 1p*

g = 1p*
g

s-p

~5 K
1s*

u1s*
u1sg

H-
21s*

u

configuration for F2 is .
For this molecule, the MOs are quite well described by a single 2s AO on each atom,2s

(1sg)2(1s*
u)2(2sg)2(2s*

u)2(3sg)2(1pu)2(1pu)2(1p*
g)2(1p*

g)2
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and the MOs are quite well described by a single 2pz AO on each atom. Because the
2px and 2py AOs have a net zero overlap with each other, each of the doubly degenerate

and molecular orbitals originates from a single AO on each atom. Figure 12.171p*
g1pu
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s-p

p

shows a molecular orbital energy diagram for F2. Note that the MOs have a3sg and 3s*
u

greater energy separation than the MOs. This is the case because the over-
lap of the 2pz AOs is greater than the overlap of the 2px or 2py AOs.

For N2, the 2s AO lies below the 2p AO by only 12.4 eV, and in comparison to 
F2, mixing is not negligible. The MOs, in order of increasing energy, are

and the configura-1sg 6 1s*
u 6 2sg 6 2s*

u 6 1pu = 1pu 6 3sg 6 1p*
g = 1p*

g

s-p

1pu and 1p*
g

tion is . Because of mixing, the
and MOs have significant contributions from both 2s and 2pz AOs with the

result that the MO is higher in energy than the MO. A MO energy diagram for
N2 is shown in Figure 12.18. The shape of the and N2 MOs schematically indi-
cates mixing. The MO has more bonding character because the probability of
finding the electron between the atoms is higher than it was without mixing.s-p

2sgs-p
3s2s

1pu3sg

3s2s
s-p(1sg)2(1s*

u)2(2sg)2(2s*
u)2(1pu)2(1pu)2(3sg)2
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Applying the same reasoning, the MO has become less antibonding and the 
MO has become less bonding for N2 in comparison with F2. We can see from the
overlap in the AOs that the triple bond in N2 arises from electron occupation of the 
and the pair of MOs.

On the basis of this discussion of H2, He2, N2, and F2, the MO formalism is extended
to all first and second row homonuclear diatomic molecules. After the relative energies
of the molecular orbitals are established from numerical calculations, the MOs are filled
in the sequence of increasing energy, and the number of unpaired electrons for each mol-
ecule can be predicted. The results for the second row are shown in Figure 12.19. Using
Hund’s first rule, we see that both B2 and O2 are predicted to have two unpaired elec-
trons; therefore, these molecules should have a net magnetic moment (they are paramag-
netic), whereas all other homonuclear diatomics should have a zero net magnetic
moment (they are diamagnetic). These predictions are in good agreement with experi-
mental measurements, which provides strong support for the validity of the MO model.

Figure 12.19 shows that the energy of the molecular orbitals tends to decrease with
increasing atomic number in this series. This is a result of the increase in in going
across the periodic table. The larger effective nuclear charge and the smaller atomic
size leads to a lower AO energy, which in turn leads to a lower MO energy. However,
the orbital energy falls more rapidly across this series than the orbital. This
occurs because of a number of factors, including the decrease of mixing when
going from Li2 to F2 and the change in overlap of the AOs resulting from changes in the
bond length and effective nuclear charge. As a result, an inversion occurs in the order of
molecular orbital energies between the and orbitals for O2 and F2 relative to
the other molecules in this series.

12.7 Bond Order, Bond Energy, 
and Bond Length

Molecular orbital theory has shown its predictive power by providing an explanation of
the observed net magnetic moment in B2 and O2 and the absence of a net magnetic
moment in the other second row diatomic molecules. We now show that the theory can
also provide an understanding of trends in the binding energy and the vibrational force
constant for these molecules. Figure 12.20 shows data for these observables for the
series . As the number of electrons in the diatomic molecule increases,
the bond energy has a pronounced maximum for N2 and a smaller maximum for H2.
The vibrational force constant k shows the same trend. The bond length increases as the
bond energy and force constant decrease in the series , but it exhibits a more
complicated trend for the lighter molecules. All of these data can be qualitatively
understood using molecular orbital theory.

Consider the MO energy diagrams for H2 and He2 in Figure 12.16. For simplicity,
we assume that the total energy of the molecules is proportional to the sum of the
orbital energies. Because the bonding orbital is lower in energy than the atomic orbitals
from which it was created, putting electrons into a bonding orbital leads to an energy
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lowering with respect to the atoms. This makes the molecule more stable than the sepa-
rated atoms, which is characteristic of a chemical bond. Similarly, putting two electrons
into each of the bonding and antibonding orbitals leads to a total energy that is greater
than that of the separated molecules. Therefore, the molecule is unstable with respect to
dissociation into two atoms. This result suggests that stable bond formation requires
more electrons to be in bonding than in antibonding orbitals. We introduce the concept
of bond order, which is defined as

We expect the bond energy to be very small for a bond order of zero and to increase
with increasing bond order. As shown in Figure 12.20, the bond order shows the same
trend as the bond energies. The bond order also tracks the vibrational force constant
very well. Again, we can explain the data by associating a stiffer bond with a higher
bond order. This agreement is a good example of how a model becomes validated and
useful when it provides an understanding for different sets of experimental data.

The relationship between the bond length and the number of electrons in the mole-
cule is influenced both by the bond order and by the variation of the atomic radius with
the effective nuclear charge. For a given atomic radius, the bond length is expected to
vary inversely with the bond order. This trend is approximately followed for the series

in which the atomic radii are not constant but decrease steadily. The bond
length increases in going from to Li2 because the valence electron in Li is in the 2s
rather than the 1s AO. The correlation between bond order and bond length also breaks
down for He2 because the atoms are not really chemically bonded. On balance, the
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trends shown in Figures 12.19 and 12.20 provide significant support for the concepts
underlying molecular orbital theory.

EXAMPLE PROBLEM 12.3

Arrange the following in terms of increasing bond energy and bond length on the basis
of their bond order: .

Solution

The ground-state configurations for these species are

In this series, the bond order is 2.5, 3, 2.5, and 2. Therefore, the bond energy is pre-
dicted to follow the order using the bond order alone. However,
because of the extra electron in the antibonding MO, the bond energy in willN-

21p*
g

N2 7 N+
2 , N -

2 7 N2-
2

N2-
2 : (1sg)2(1s*

u)2(2sg)2(2s*
u)2(1pu)2(1pu)2(3sg)2(1p*

g)1(1p*
g)1

N -
2 : (1sg)2(1s*

u)2(2sg)2(2s*
u)2(1pu)2(1pu)2(3sg)2(1p*

g)1

N2: (1sg)2(1s*
u)2(2sg)2(2s*

u)2(1pu)2(1pu)2(3sg)2

N+
2 : (1sg)2(1s*

u)2(2sg)2(2s*
u)2(1pu)2(1pu)2(3sg)1

N+
2 , N2, N-

2 , and N2-
2

be less than that in . Because bond lengths decrease as the bond strength increases,
the bond length will follow the opposite order.

Looking back at what we have learned about homonuclear diatomic molecules,
several important concepts stand out. Combining atomic orbitals on each atom to form
molecular orbitals provides a way to generate molecular configurations for molecules.
Although including many AOs on each atom (that is, using a larger basis set) is neces-
sary to calculate accurate MO energies, important trends can be predicted using a
minimal basis set of one or two AOs per atom. The symmetry of atomic orbitals is
important in predicting whether they contribute to a given molecular orbital. The con-
cept of bond order allows us to understand why He2, Be2, and Ne2 are not stable and
why the bond in N2 is so strong.

12.8 Heteronuclear Diatomic Molecules
We extend the discussion of Section 12.1 on generating molecular orbitals to het-
eronuclear diatomic molecules for which the AO energies are not equal. We again
consider only one AO on each atom. To be specific, let be a hydrogen 1s orbital and
let be a fluorine 2pz orbital in the molecule HF. The bonding and antibonding MOs
have the form

(12.31)

where the coefficients are to be determined. The MOs labeled 1 and 2 are the in-phase
and out-of-phase combinations of the AOs, respectively. Normalization requires that

(12.32)

To calculate , we need numerical values for 
. To a good approximation, correspond to the first

ionization energies of H and F, respectively, and fitting experimental data gives the
HHH and HFFand SHFHFF, HHF,

HHH,e1, e2, c1H, c2H, c1F, and c2F

 (c2H)2 + (c2F)2 + 2c2Hc2FSHF = 1

 (c1H)2 + (c1F)2 + 2c1Hc1FSHF = 1 and

c1 = c1HfH1s + c1FfF2pz
 and c2 = c2HfH1s + c2FfF2pz

f2

f1

N+
2

approximate empirical relation . We assume that
, . Weand HFF = -18.6 eV, so that HHF = -8.35 eVHHH = -13.6 eV,SHF = 0.30

HHF = -1.75SHF2HHHHFF
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are looking for trends rather than striving for accuracy, so these approximate values are
sufficiently good for our purposes. Substituting these values in Equation (12.12) gives
the MO energy levels shown next. Example Problem 12.4 shows how to obtain the
corresponding values of the coefficients.

(12.33)

Note that the magnitudes of the coefficients in the MOs are not equal. The coeffi-
cient of the lower energy AO has the larger magnitude in the in-phase (bonding) MO
and the smaller magnitude in the out-of-phase (antibonding) MO. The MO energy
results for HF are shown in a molecular orbital energy diagram in Figure 12.21. The
relative size of the AO coefficents are indicated by the size of the AO, and the sign of
the coefficient is indicated by the color of the symbol.

EXAMPLE PROBLEM 12.4

Calculate and for the antibonding HF MO for which . 
Calculate and for the HF bonding MO for which . Assume that

.

Solution

We first obtain the result . We calculate
by substituting the values for in the first equation in

Equation (12.10) 

Just as for , in the bonding MO, the coefficients of the AOs have the same 
sign (in-phase). In the antibonding MO, they have the opposite sign (out-of-phase).
However, because the AO energies are not equal, the magnitude of the coefficient of
the lower energy AO is larger in the bonding orbital and smaller in the antibonding
orbital.

The relative magnitude of the coefficients of the AOs gives information about the
charge distribution in the molecule, within the framework of the following simple model.
Consider an electron in the HF bonding MO described by .
The molecular dipole moment is greater as the difference between the coefficients
increases. Because of the association made in the first postulate between and probabil-
ity, the individual terms in can be(c1H)2 + (c1F)2 + 2c1Hc1FSHF = 11c*

1c1 dt =
ƒc ƒ 2

0.84fF2pz
c1 = 0.34fH1s +

H+
2

c1H = 0.34, c1F = 0.84, and c1 = 0.34fH1s + 0.84fF2pz

Using this result in the normalization equation c2
1H + c2

1F + 2c1Hc1FSHF = 1

c1H

c1F
= 0.41

 For e1 = -19.6 eV, c1H(-13.6 + 19.6) + c1F(-8.35 + 0.3 * 19.6) = 0

c2H = 0.99, c2F = -0.63, and c2 = 0.99fH1s - 0.63fF2pz

Using this result in the normalization equation c2
2H + c2

2F + 2c2Hc2FSHF = 1

c2H

c2F
= -1.58

For e2 = -10.3 eV, c2H(-13.6 + 10.3) + c2F(-8.35 + 0.30 * 10.3) = 0

c2H(HHH - e2) + c2F(HHF - e2SHF) = 0.

e1 and e2c1H>c1F and c2H>c2F

HHF = -1.75 SHF2HHHHFF = -8.35 eV

SHF = 0.30
e1 = -19.6 eVc1Fc1H

e2 = -10.3 eVc2Fc2H

 e2 = -10.3 eV  c2 = 0.99fH1s - 0.63fF2pz

 e1 = -19.6 eV  c1 = 0.34fH1s + 0.84fF2pz

E
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FIGURE 12.21
Molecular orbital energy diagram for a
qualitative description of bonding in HF.
The atomic orbitals are shown to the left
and right, and the molecular orbitals are
shown in the middle. Dashed lines connect
the MO with the AOs from which it was
constructed. Shaded circles have a 
diameter proportional to the coefficients
cij. Red and blue shading signifies 
positive and negative signs of the AO
coefficients, respectively.

interpreted in the following way. We associate with the probability of find-(c1H)2 = 0.12
ing the electron around the H atom, with the probability of finding the
electron around the F atom, and with the probability of finding the
electron shared by the F and H atoms. We divide the shared probability equally

2c1Hc1FSHF = 0.17
(c1F)2 = 0.71
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between the atoms. This gives the probabilities of and(c1H)2 + c1Hc1FSHF = 0.21
for finding the electron on the H and F atoms, respectively.(c1F)2 + c1Hc1FSHF = 0.79

This result is reasonable given the known electronegativities of F and H. By comparison,
Hartree–Fock calculations using a 28-member basis set give a charge of and 
on the H and F atoms, respectively. These calculated charges give rise to a dipole moment of
2.03 debye , which is in good agreement with the experi-
mental value of 1.91 debye. 

Note that, although this method of assigning charge due to Robert Mulliken is rea-
sonable, there is no unique way to distribute the electron charge in an MO among atoms
because the charge on an atom is not a quantum mechanical observable. For a pictorial
explanation of this assertion, see Figure 15.23. Note, however, that the charge transfer
is in the opposite direction for the antibonding MO. We find that the shared probability
has a positive sign for a bonding orbital and a negative sign for an antibonding orbital.
This is a useful criterion for distinguishing between bonding and antibonding MOs.

The results for HF show that the bonding MO has a greater amplitude on F, which has
the lower energy AO. In other words, the bonding MO is more localized on F than on H.
We generalize this result to a molecule HX where the AO energy of X lies significantly
lower than that of H by calculating for different AO energies of X. The
results are shown in Table 12.2 where and .

Note that as the X AO energy becomes more negative, the X AO coefficient 1
and the H AO in the bonding MO. It is also seen that the MO energy
approaches the lower AO energy as the X AO energy becomes more negative, which
means that the MO is essentially identical to the AO. This result shows that although
we have assumed that MOs are delocalized over the molecule, a MO formed from AOs
that differ substantially in energy is essentially localized on the atom with the lower AO
energy.

We next discuss the nomenclature for MOs for heteronuclear diatomics. Because
the two atoms are dissimilar, the u and g symmetries do not apply since inversion inter-
changes the nuclei. However, the MOs will still have either or symmetry.
Therefore, the MOs on a heteronuclear diatomic molecule are numbered differently
than for the molecules :Li2-N2

ps

coefficient: 0
:

SHX = 0.30HHH = -13.6 eV
e1, c1H, and c1X

(1 debye = 3.34 * 10-30 C m)

-0.48+0.48

TABLE 12.2 AO Coefficients and MO Energies for Different Values of Hxx

Hxx(eV) c1H c1F (eV)e1

-18.6 0.345 0.840 -19.9

-23.6 0.193 0.925 -24.1

-33.6 0.055 0.982 -33.7

-43.6 0.0099 1.00 -43.6

Homonuclear 1sg 1s*
u 2sg 2s*

u 1pu 3sg 1p*
g 3s*

u ....

Heteronuclear 1s 2s 3s 4s 1p 5s 2p 6s ....

For larger molecules, the bonding and antibonding character can become difficult to dis-
cern. In these cases the symbol * is often not used. A common numbering system is to
assign the 1 MO to the lowest-energy valence MO rather than including, for example,
the 1s electrons on F, which are localized on the F atom. 

To illustrate the differences between homonuclear and heteronuclear diatomic mol-
ecules, we consider HF and construct MOs using the 1s AO on H and the 2s and 2p
AOs on F. The molecular orbital energy diagram for HF is shown in Figure 12.22. The
AOs on the two atoms that give rise to the MOs are shown on the right side of the dia-
gram, with the size of the orbital proportional to its coefficient in the MO. Numerical
calculations show that the 1s electrons are almost completely localized on the F atom.
The electrons are completely localized on the F atom because the 2px and 2py1p

s
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FIGURE 12.23
The MOs for HF are
shown from left to right.
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FIGURE 12.22
Schematic energy diagram showing the
relationship between the atomic and
molecular orbital energy levels for the
valence electrons in HF. The degenerate 
p and orbitals are shown slightly offset
in energy. The dominant atomic orbital
contributions to the MOs are shown as
solid lines. Lesser contributions are
shown as dashed lines. The MOs are
depicted to the right of the figure. We
assign the 1s electrons on F to the 1
MO, which is localized on the F atom.

s

p

orbitals on F have a zero net overlap with the 1s orbital on H. Electrons in MOs local-
ized on a single atom are referred to as nonbonding electrons. The mixing of 2s and 2p
AOs in the MOs changes the electron distribution in the HF molecule
somewhat when compared with a homonuclear diatomic molecule. The MO has
less bonding character and the MO has less antibonding character. Note that the
total bond order is approximately one because the MO is largely localized on the F
atom, the MO is not totally bonding, and the MOs are completely localized on
the F atom. The MO energy diagram depicts the MOs in terms of their constituent AOs.
MOs 2 through 4 obtained in calculations using a 28-member basis set are shown in
Figure 12.23.

As expected, in the 2 bonding orbital the electron density is much greater on the
more electronegative fluorine than on the hydrogen. However, in the antibonding 
orbital, this polarity is reversed. As you will see in the end-of-chapter problems, the
estimated dipole moment is smaller in the excited state than in the ground state.

12.9 The Molecular Electrostatic Potential
As discussed in Section 12.8, the charge on an atom in a molecule is not a quantum
mechanical observable and, consequently, atomic charges cannot be assigned uniquely.
However, we know that the electron charge is not uniformly distributed in a polar
molecule. For example, the region around the oxygen atom in H2O has a net negative
charge, whereas the region around the hydrogen atoms has a net positive charge. 

4s*
s

1p3s
3s

4s*
3s

3s and 4s*



12.9 THE MOLECULAR ELECTROSTATIC POTENTIAL 269

How can this non-uniform charge distribution be discussed? To do so, we introduce the
molecular electrostatic potential, which is the electrical potential felt by a test charge
at various points in the molecule.

The molecular electrostatic potential is calculated by considering the contribution
of the valence electrons and the atomic nuclei separately. Consider the nuclei first. For
a point charge of magnitude q, the electrostatic potential (r) at a distance r from the
charge, is given by

(12.34)

Therefore, the contribution to the molecular electrostatic potential from the atomic
nuclei is given by

(12.35)

where qi is the atomic number of nucleus i, and ri is the distance of nucleus i from the
observation point with the coordinates (x1, y1, z1). The sum extends over all atoms in
the molecule.

The electrons in the molecule can be considered as a continuous charge distribution
with a density at a point with the coordinates (x, y, z) that is related to the n-electron
wave function by

(12.36)

The integration is over the position variables of all n electrons. Combining the contribu-
tions of the nuclei and the electrons, the molecular electrostatic potential is given by

(12.37)

where re is the distance of an infinitesimal volume element of electron charge from the
observation point with the coordinates (x1, y1, z1).

The molecular electrostatic potential must be calculated numerically using the
Hartree–Fock method or other methods discussed in Chapter 15. To visualize the polar-
ity in a molecule, it is convenient to display a contour of constant electron density
around the molecule and then display the values of the molecular electrostatic potential
on the density contour using a color scale, as shown for HF in Figure 12.24. Negative
values of the electrostatic potential, shown in red, are found near atoms to which elec-
tron charge transfer occurs. For HF, this is the region around the fluorine atom. Positive
values of the molecular electrostatic potential, shown in blue, are found around atoms
from which electron transfer occurs, as for the hydrogen atom in HF.

The calculated molecular electrostatic potential function identifies regions of a
molecule that are either electron rich or depleted in electrons. We can use this function
to predict regions of a molecule that are susceptible to nucleophilic or electrophilic
attack as in enzyme–substrate reactions. The molecular electrostatic potential is
particularly useful because it can also be used to obtain a set of atomic charges that is
more reliable than the Mulliken model discussed in Section 12.8. This is done by
initially choosing a set of atomic charges and calculating an approximate molecular
electrostatic potential around a molecule using the set of charges in Equation (12.35).
These atomic charges are varied systematically, subject to the constraint that the total
charge is zero for a neutral molecule, until optimal agreement is obtained between the
approximate and the accurate molecular electrostatic potential calculated from
Equation (12.37). The atomic charges obtained in computational chemistry software
such as Spartan are calculated in this way as discussed in Chapter 15. 

f(x1, y1, z1) = a
i

qi

4pe0ri
- e7  

r(x, y, z)

4pe0re
dx dy dz

* dx1 dy1 dz1 Á dxn dyn dzn

r(x, y, z) = -e1 Á 1 (c(x, y, z; x1, y1, z1; Á ; xn, yn, zn))2

fnuclei(x1, y1, z1) = a
i

qi

4pe0 ri

f(r) =
q

4pe0r

f

FIGURE 12.24
The grid shows a surface of constant
electron density for the HF molecule. 
The fluorine atom is shown in green. 
The color shading on the grid indicates
the value of the molecular electrostatic
potential. Red and blue correspond to
negative and positive values, respectively.
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Q12.1 The following images show contours of constant
electron density for H2 calculated using the methods
described in Chapter 15. The values of electron density are 
(a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, and (e) 0.30 electron .>a3

0

Q12.2 Consider the molecular electrostatic potential map
for the NH3 molecule shown here. Is the hydrogen atom
(shown as a white sphere) an electron acceptor or an electron
donor in this molecule?

Vocabulary

symmetry

symmetry

antibonding molecular orbital

antisymmetric wave function

atomic orbital (AO)

basis functions

bond energy

bond order

s

p bonding molecular orbital

Born–Oppenheimer
approximation

delocalization

delocalized

g symmetry

LCAO-MO model

localization

molecular configuration

molecular electrostatic
potential

molecular orbital (MO)

molecular orbital energy
diagram

molecular wave function

overlap integral

Conceptual Problems

secular determinant

secular equations

mixing

symmetric wave function

symmetry operation

u symmetry

variational parameter

virial theorem

s-p

(a) (b)

(c)

(e)

(d)

a. Explain why the apparent size of the H2 molecule as
approximated by the volume inside the contour varies in
the sequence .

b. Notice the neck that forms between the two hydrogen
atoms in contours c and d. What does neck formation tell
you about the relative density in the bonding region and in
the region near the nuclei?

c. Explain the shape of the contours in image e by comparing
this image with Figures 12.9 and 12.10.

d. Estimate the electron density in the bonding region mid-
way between the H atoms by estimating the value of the
electron density at which the neck disappears.

a-e

Q12.3 Give examples of AOs for which the overlap reaches
its maximum value only as the internuclear separation
approaches zero in a diatomic molecule. Also give examples of
AOs for which the overlap goes through a maximum value and
then decreases as the internuclear separation approaches zero.

Q12.4 Why is it reasonable to approximate H11 and H22 by the
appropriate ionization energy of the corresponding neutral atom?

Q12.5 Identify the molecular orbitals for F2 in the images
shown here in terms of the two designations discussed in
Section 12.7. The molecular axis is the z axis, and the y axis
is tilted slightly out of the plane of the image.



Q12.6 The molecular electrostatic potential maps for LiH
and HF are shown here. Does the apparent size of the hydro-
gen atom (shown as a white sphere) tell you whether it is an
electron acceptor or an electron donor in these molecules?
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Q12.7 For , explain why Haa is the total energy of an
undisturbed hydrogen atom separated from a bare proton by
the distance R.

Q12.8 Distinguish between the following concepts used to
describe chemical bond formation: basis set, minimal basis
set, atomic orbital, molecular orbital, and molecular wave
function.

Q12.9 Consider the molecular electrostatic potential map
for the BH3 molecule shown here. Is the hydrogen atom
(shown as a white sphere) an electron acceptor or an electron
donor in this molecule?

H+
2

Q12.10 Using Figures 12.7 and 12.8, explain why
and outside of the bonding region ¢c2

u 7 0¢c2
g 6 0

Q12.14 What is the justification for saying that, in expand-
ing MOs in terms of AOs, the equality 
can in principle be satisfied?

Q12.15 Why are the magnitudes of the coefficients ca and
cb in the wave functions equal?

Q1216 Explain why mixing is more important in Li2
than in F2.

Q12.17 Justify the Born–Oppenheimer approximation based
on vibrational frequencies and the timescale for electron motion.

Q12.18 Why can you conclude that the energy of the anti-
bonding MO in is raised more than the energy of the
bonding MO is lowered?

Q12.19 Does the total energy of a molecule rise or fall
when an electron is put in an antibonding orbital?

Q12.20 Consider the molecular electrostatic potential map
for the LiH molecule shown here. Is the hydrogen atom
(shown as a white sphere) an electron acceptor or an electron
donor in this molecule?

H+
2

s–p

cg and cuH+
2

cj(1) = a i
cijfi(1)

Q12.21 Consider the molecular electrostatic potential map
for the H2O molecule shown here. Is the hydrogen atom
(shown as a white sphere) an electron acceptor or an electron
donor in this molecule?

Q12.12 Why are MOs on heteronuclear diatomic molecules
not labeled with g and u subscripts?

Q12.13 See Question Q12.5 for the images shown here.

of .

Q12.11 Consider the molecular electrostatic potential map
for the BeH2 molecule shown here. Is the hydrogen atom
(shown as a white sphere) an electron acceptor or an electron
donor in this molecule?

H+
2



Q12.22 For the case of two H1s AOs, the value of the overlap
integral Sab is never exactly zero even at very large separation
of the H atoms. Explain this statement.

Q12.23 If there is a node in , is the electron in this wave
function really delocalized? How does it get from one side of
the node to the other?

Q12.24 See Question Q12.5 for the images shown here.

cu
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Q12.25 By considering each term in

K = 1f*
H1sb
a e2

4pe0rb
b fH1sa

dt

and

explain why the values of J and K are positive for .

Q12.26 Why do we neglect the bond length in He2 when
discussing the trends shown in Figure 12.20?

Q12.27 Explain why the nodal structures of the MOs in
H2 and F2 differ.

Q12.28 See Question Q12.5 for the images shown here.

1sg

H+
2

J = 1f*
H1sa
a e2

4pe0rb
b fH1sa

dt

Numerical Problems

Problem numbers in red indicate that the solution to the prob-
lem is given in the Student’s Solutions Manual.

P12.1 Using as a variational parameter in the normalizedz

ground state. The AO ionization energies are O2s: 32.3 eV;
O2p: 15.8 eV; C2s: 19.4 eV; and C2p: 10.9 eV. The MO ener-
gies follow the sequence (from lowest to highest) 

. Connect each MO level with the level of
the major contributing AO on each atom.

P12.4 Explain the difference in the appearance of the MOs in
Problem P12.13 with those for HF. Based on the MO energies, do
you expect to be stable? Do you expect to be stable?

P12.5 Calculate the bond order in each of the following
species. Predict which of the two species in the following
pairs has the higher vibrational frequency:
a. Li2 or b. C2 or

c. O2 or d. F2 or

P12.6 Make a sketch of the highest occupied molecular
orbital (HOMO) for the following species:

a. b. c. d. e.
P12.7 The ionization energy of CO is greater than that of
NO. Explain this difference based on the electron configura-
tion of these two molecules.

P12.8 A Hartree–Fock calculation using the minimal basis
set of the 1s, 2s, 2px, 2py, and 2pz AOs on each of N and O
generated the energy eigenvalues and AO coefficients listed in
the following table:

C+
2H-

2O-
2Li+2N+

2

F-
2O+

2

C+
2Li+2

LiH-LiH+

4s, 1p, 5s, 2p, 6s
1s, 2s, 3s,

function allows one to vary
the size of the orbital. Show this by calculating the probability
of finding the electron inside a sphere of radius a0 for differ-
ent values of using the standard integral

a. Obtain an expression for the probability as a function of .

b. Evaluate the probability for , 2.5, and 3.5.

P12.2 The overlap integral for as defined in
Section 12.3 is given by

Plot Sab as a function of a0 for , 1.0, and 1.2.
Estimate the value of a0 for which for each 
of these values of .

P12.3 Sketch out a molecular orbital energy diagram for
CO and place the electrons in the levels appropriate for the

z

Sab = 0.4R> z = 0.8R>
Sab = e-zR>a0a1 + z

R

a0
+

1

3
z2 R

a2
0

2b

cg and cu

z = 1.5

z

1x2e-ax dx = -e-axa 2

a3 + 2
x

a2 +
x2

a
b

z

cH1s = 1>2p(z>a0)3>2e-zr>a0

Q12.29 In discussing Figure 12.2, the following statement is
made: Interchanging red and blue does not generate a different
MO. Justify this statement.



a. Designate the MOs in the table as or symmetry and as
bonding or antibonding. Assign the MOs to the following
images, in which the O atom is red. The molecular axis is
the z axis.

ps
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MO E(eV) cN1s cN2s cN2pz
cN2px

cN2py
cO1s cO2s cO2pz

cO2px
cO2py

3 -41.1 -0.13 +0.39 +0.18 0 0 -0.20 +0.70 +0.18 0 0

4 -24.2 -0.20 0.81 -0.06 0 0 0.16 -0.71 -0.30 0 0

5 -18.5 0 0 0 0 0.70 0 0 0 0 0.59
6 -15.2 +0.09 -0.46 +0.60 0 0 +0.05 -0.25 -0.60 0 0

7 -15.0 0 0 0 0.49 0 0 0 0 0.78 0
8 -9.25 0 0 0 0 0.83 0 0 0 0 -0.74

b. This calculation gives incorrect results for the shape and
energies of MOs 5 and 7. Based on how these MOs arise,
what energies and shapes would you expect for them?

P12.9 Calculate the value for the coefficients of the AOs in
Example Problem 12.4 for . How are they different
from the values calculated in that problem for Can
you offer an explanation for the changes?

P12.10 Using the method of Mulliken, calculate the proba-
bilities of finding an electron involved in the chemical bond
on the H and F atoms for the bonding and antibonding MOs
for Problem P12.9.

P12.11 Arrange the following in terms of decreasing bond
energy and bond length: .

P12.12 Predict the bond order in the following species:

a. b. c. d. e.

P12.13 Images of molecular orbitals for LiH calculated using
the minimal basis set are shown here. In these images, the smaller
atom is H. The H 1s AO has a lower energy than the Li 2s AO.
The energy of the MOs is (left to right) , ,
and . Make a molecular orbital diagram for this mole-
cule, associate the MOs with the images, and designate the MOs
in the following images as filled or empty. Which MO is the
HOMO? Which MO is the LUMO? Do you expect the dipole
moment in this molecule to have the negative end on H or Li?

+2.14 eV
-7.92 eV-63.9 eV

C+
2H-

2O-
2Li+2N+

2

O+
2 , O2, O-

2 , and O2-
2

S12 = 0.3?
S12 = 0.45

P12.14 What is the electron configuration corresponding to
O2, , and ? What do you expect the relative order of
bond strength to be for these species? Which, if any, have
unpaired electrons?

P12.15 Calculate the dipole moment of HF for the bond-
ing MO in Equation (12.33). Use the method outlined in
Section 12.8 to calculate the charge on each atom. The bond
length in HF is 91.7 pm. The experimentally determined
dipole moment of ground-state HF is 1.91 debye, where 
1 . Compare your result with this
value. Does the simple theory give a reliable prediction of 
the dipole moment?

P12.16 Evaluate the energy for the two MOs generated by
combining two H1s AOs. Carry out the calculation for

, 0.30, and 0.45 to mimic the effect of decreasing
the atomic separation in the molecule. Use the parameters

and .
Explain the trend that you observe in the results.

P12.17 Show that calculating Eu in the manner described 
by Equation (12.21) gives the result 

.

P12.18 A surface displaying a contour of the total charge
density in LiH is shown here. The molecular orientation is the
same as in Problem P12.13. What is the relationship between
this surface and the MOs displayed in Problem P12.13? Why
does this surface closely resemble one of the MOs?

(1 - Sab)
Eu = (Haa - Hab)>

H12 = -1.75S122H11H22H11 = H22 = -13.6 eV

S12 = 0.15

debye = 3.33 * 10-30 C m

O+
2O-

2

P12.19 Sketch the molecular orbital energy diagram for the
radical OH based on what you know about the corresponding
diagram for HF. How will the diagrams differ? Characterize the
HOMO and LUMO as antibonding, bonding, or nonbonding.

P12.20 The bond dissociation energies of the species NO,
, and follow the trend . Explain

this trend using MO theory.

P12.21 Evaluate the energy for the two MOs generated by
combining a H1s and a F2p AO. Use Equation (12.12) and
carry out the calculation for , 0.18, and 0.40 toSHF = 0.075

CF+ 7 NO 7 CF-CF+CF-

(a) (b) (c)

(d) (e) (f)

� � �� �
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in the bonding orbital on the F atom for , 0.18,
and 0.40. Explain the trend shown by these results.

P12.23 Follow the procedure outlined in Section 12.2 to
determine cu in Equation (12.17).

P12.24 Calculate the bond order in each of the following
species. Which of the species in parts do you expect to
have the shorter bond length?

a. Li2 or b. C2 or c. O2 or d. F2 or F-
2O+

2C+
2Li+2

(a-d)

SHF = 0.075

, and . 
Explain the trend that you observe in the results.

P12.22 The expressions and(c11)
2 + c11c21S12

H12 = -1.75S122H11H22H22 = -18.6 eV

for the probability of finding an electron
on the H and F atoms in HF, respectively, were derived in
Section 12.8. Use your results from Problem P12.21 and these
expressions to calculate the probability of finding an electron

(c12)2 + c11c21S12

Computational Problems

More detailed instructions on carrying out these calculations
using Spartan Physical Chemistry are found on the book web-
site at www.masteringchemistry.com.

C12.1 According to Hund’s rules, the ground state of O2
should be a triplet because the last two electrons are placed
in a doubly degenerate set of MOs. Calculate the energy
of the singlet and triplet states of O2 using the B3LYP
method and the 6-31G* basis set. Does the singlet or triplet
have the lower energy? Both states will be populated if the
energy difference . For which temperature is this
the case?

C12.2 If the ground state of oxygen is a diradical, you might
think that O2 would dimerize to form square planar O4 to
achieve a molecule in which all electrons are paired. Optimize
the geometry and calculate the energies of triplet O2 and sin-
glet O4 using the B3LYP method and the 6-31G* basis set. Do
you predict O4 to be more or less stable than 2 O2 molecules?
Use a nonplanar shape in building your O4 molecule. Is the
geometry optimized molecule planar or nonplanar?

C12.3 O6 might be more stable than O4 because the bond
angle is larger, leading to less steric strain. Optimize the
geometry and compare the energy of O6 with 1.5 times the
energy of O4 using the B3LYP method and the 6-31G* basis
set. Is O6 more stable than O4? Use a nonplanar shape in
building your O6 molecule. Is the geometry optimized mole-
cule planar or nonplanar?

C12.4 In a LiF crystal, both the Li and F are singly ionized
species. Optimize the geometry and calculate the charge on Li
and F in a single LiF molecule using the B3LYP method and
the 6-31G* basis set. Are the atoms singly ionized? Compare
the value of the bond length with the distance between Li+

and F-ions in the crystalline solid.

¢E ~ kBT

p

C12.5 Does LiF dissociate into neutral atoms or into 
and Answer this question by comparing the energy differ-
ence between reactants and products for the reactions

and
using the B3LYP method and the 6-31G* basis set.

C12.6 Calculate Hartree–Fock MO energy values for HF
using the MP2 method and the 6-31G* basis set. Make a
molecular energy diagram to scale omitting the lowest energy
MO. Why can you neglect this MO? Characterize the other
MOs as bonding, antibonding, or nonbonding.

C12.7

a. Based on the molecular orbital energy diagram in Problem
C12.6, would you expect triplet neutral HF in which an
electron is promoted from the 1 to the 4 * MO to be
more or less stable than singlet HF?

b. Calculate the equilibrium bond length and total energy 
for singlet and triplet HF using the MP2 method and the 
6-31G* basis set. Using the frequency as a criterion, are
both stable molecules? Compare the bond lengths and
vibrational frequencies.

c. Calculate the bond energy of singlet and triplet HF by com-
paring the total energies of the molecules with the total
energy of F and H. Are your results consistent with the bond
lengths and vibrational frequencies obtained in part (b)?

C12.8 Computational chemistry allows you to carry out
calculations for hypothetical molecules that do not exist in
order to see trends in molecular properties. Calculate the
charge on the atoms in singlet HF and in triplet HF for which
the bond length is fixed at 10% greater than the bond length
for singlet HF. Are the trends that you see consistent with
those predicted by Figure 12.22? Explain your answer.

sp

LiF(g) :  Li+(g) + F-(g)LiF(g) :  Li(g) + F(g)

F-?
Li+

Web-Based Simulations, Animations, and Problems

W12.1 Two atomic orbitals are combined to form two
molecular orbitals. The energy levels of the molecular orbitals
and the coefficients of the atomic orbitals in each MO are

calculated by varying the relative energy of the AOs and the
overlap, S12, using sliders.

www.masteringchemistry.com
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For diatomic molecules, the only structural element is the bond length,

whereas in polyatomic molecules, bond lengths, bond angles, and the

arrangement of the atoms determine the energy of the molecule. In this

chapter, we discuss both localized and delocalized bonding models that

enable the structures of small molecules to be predicted. We also discuss

the usefulness of computational chemistry in determining the structure

and energy levels of small molecules.

13.1 Lewis Structures and the VSEPR Model
In Chapter 12, we discussed chemical bonding and the electronic structure of diatomic
molecules. Molecules with more than two atoms introduce a new aspect to our discus-
sion of chemical bonding, namely, bond angles. In this chapter, the discussion of bond-
ing is expanded to include the structure of small molecules. This will allow us to
answer questions such as “Why is the bond angle in H2O and in H2S?”
The most straightforward answer to this question is that the angles and in
H2O and in H2S minimize the total energy of these molecules. As will be shown in
Chapter 15, numerical quantum mechanical calculations of bond angles are in very
good agreement with experimentally determined values. This result confirms that the
approximations made in the calculation are valid and gives confidence that bond angles
in molecules for which there are no data can be calculated. An interpretation of the
numerical calculations is required to provide an understanding about why a bond angle
of minimizes the energy for H2O, whereas a bond angle of minimizes the
energy for H2S.

Results from calculations can be used to formulate useful qualitative theoretical
models. For example, Walsh’s Rules, which are discussed in Section 13.5, predict how
the bond angle in a class of molecules H2X with X equal to O, S, Se, or Te depends on
X. Gaining a qualitative understanding of why small molecules have a particular struc-
ture is the primary goal of this chapter.

Molecular structure is addressed from two different vantage points. The significant
divide between these points of view is their description of the electrons in a molecule as
being localized, as in the valence bond (VB) model, or delocalized, as in the molecular

92.2°104.5°

92.2°104.5°
92.2°104.5°
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FIGURE 13.1
Ethanol depicted in the form of a 
ball-and-stick model.

orbital (MO) model. As discussed in Chapter 12, MO theory is based on electron
orbitals that are delocalized over the entire molecule. By contrast, a Lewis structure
represents molecular fluorine as , which is a description in terms of localized
bonds and lone pairs. These two viewpoints seem to be irreconcilable at first glance.
However, as shown in Section 13.6, each point of view can be reformulated in the
language of the other.

We first discuss molecular structure using localized bonding models. We do so
because there is a long tradition in chemistry of describing chemical bonds in terms of
the interaction between neighboring atoms. A great deal was known about the thermo-
chemical properties, stoichiometry, and structure of molecules before the advent of
quantum mechanics. For instance, scientists knew that a set of two atom bond enthalpies
could be extracted from experimental measurements. Using these bond enthalpies, the
enthalpy of formation of molecules can be calculated with reasonable accuracy as the
sum of the bond enthalpies associated with the reactants minus the sum of the bond
enthalpies for the product. Similarly, the bond length between two specific atoms,

, is found to be nearly the same in many different compounds. As discussed in
Chapter 8, the characteristic vibrational frequency of a group such as is largely
independent of the composition of the rest of the molecule. Results such as these give
strong support for the idea that a molecule can be described by a set of coupled but
nearly independent chemical bonds between adjacent atoms. The molecule can be
assembled by linking these chemical bonds.

Figure 13.1 shows how a structural formula is used to describe ethanol. This struc-
tural formula provides a pictorial statement of a localized bonding model. However, a
picture like this raises a number of questions. Do the spokes in a ball and spoke model
have any reality? Localized bonding models imply that bonding electrons are localized
between adjacent atoms. However, we know from studying the particle in the box, the
hydrogen atom, and many-electron atoms that localizing electrons results in a high
energy cost. We also know that it is not possible to distinguish one electron from
another, so does it make sense to assign some electrons in F2 to lone pairs and others to
the bond? At first glance, a localized model of bonding seems to be at odds with what
we have learned about quantum mechanics. Yet, the preceding discussion provides
credibility for a local model of chemical bonding. Comparing and contrasting the local-
ized and delocalized models of chemical bonding and molecular structure is a major
theme of this chapter.

A useful place to start a discussion of localized bonding is with Lewis structures,
which emphasize the pairing of electrons as the basis for chemical bond formation.
Bonds are shown as connecting lines, and electrons not involved in the bonds are indi-
cated by dots. Lewis structures for a few representative small molecules are shown here:

¬OH
O¬H

F F

C
HH

HH
HO

H

HH N

H

CIHH H

Lewis structures are useful in understanding the stoichiometry of a molecule and in
emphasizing the importance of nonbonding electron pairs, also called lone pairs.
Lewis structures are less useful in predicting the geometrical structure of molecules.

The valence shell electron pair repulsion (VSEPR) model provides a qualitative
rationalization of molecular structures using the Lewis concepts of localized bonds and
lone pairs. The basic assumptions of the model can be summarized in the following
statements about a central atom that may have lone pairs and is bonded to several
atomic ligands:

• The ligands and lone pairs around a central atom act as if they repel one another.
They adopt an arrangement in three dimensional space that maximizes their
angular separation.

• A lone pair occupies more angular space than a ligand.
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• The amount of angular space occupied by a ligand decreases as its electro-
negativity increases and increases as the electronegativity of the central atom
increases.

• A multiply bonded ligand occupies more angular space than a singly bonded ligand.

As Figure 13.2 shows, the structure of a large number of molecules can be under-
stood using the VSEPR model. For example, the decrease in the bond angle in the
molecules CH4, NH3, and H2O can be explained on the basis of the greater angular
space occupied by lone pairs than by ligands. The tendency of lone pairs to maximize
their angular separation also explains why XeF2 is linear, SO2 is bent, and is pla-
nar. However, in some cases the model is inapplicable or does not predict the correct
structure. For instance, a radical, such as CH3, that has an unpaired electron is planar
and, therefore, does not fit into the VSEPR model. Alkaline earth dihalides such as
CaF2 and SrCl2 are angular rather than linear as would be predicted by the model.

and are octahedral even though they each have a lone pair in addition to
the six ligands. This result indicates that lone pairs do not always exert an influence on
molecular shape. In addition, lone pairs do not play as strong a role as the model
suggests in transition metal complexes.

TeCl2-
6SeF2-

6

IF4
-

Linear

Undistorted and
distorted trigonal planar

Undistorted and distorted
trigonal bipyramidal

Undistorted and distorted
octahedral

Undistorted and distorted
tetrahedral

�

Key

Hydrogen (H)

Electron lone pair

Fluorine (F)

Carbon (C)

Nitrogen (N)

Oxygen (O)

Phosphorus (P)

Sulphur (S)

Chlorine (Cl)

Xenon (Xe)

Iodine (I)
FIGURE 13.2
Examples of correctly predicted molecular
shapes using the VSEPR model.
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EXAMPLE PROBLEM 13.1

Using the VSEPR model, predict the shape of and OCl2.

Solution

The following Lewis structure shows one of the three resonance structures of the
nitrate ion:

NO-
3

N
O

O

O

�

O
CICI

Because the central nitrogen atom has no lone pairs and the three oxygens are
equivalent, the nitrate ion should be planar with a bond angle. This is the
observed structure.

The Lewis structure for OCl2 is

120°

The central oxygen atom is surrounded by two ligands and two lone pairs. The 
ligands and lone pairs are described by a distorted tetrahedral arrangement, leading 
to a bent molecule. The bond angle should be less than the tetrahedral angle of . 
The observed bond angle is .

13.2 Describing Localized Bonds Using
Hybridization for Methane, Ethene,
and Ethyne

As discussed earlier, the VSEPR model is useful in predicting the shape of a wide
variety of molecules. Although the rules used in its application do not specifically use
the vocabulary of quantum mechanics, valence bond (VB) theory does use the concept
of localized orbitals to explain molecular structure. In the VB model, AOs on the same
atom are combined to generate a set of directed orbitals in a process called
hybridization. The combined orbitals are referred to as hybrid orbitals. The hybrid
orbitals are assumed to contribute independently to the electron density and to the
energy of the molecule to the maximum extent possible because this allows the assem-
bly of the molecule out of separate and largely independent parts. This requires the set
of hybrid orbitals to be orthogonal.

How is hybridization used to describe molecular structure? Consider the sequence
of molecules methane, ethene, and ethyne. From previous chemistry courses, we know
that carbon in these molecules is characterized by the sp3, sp2, and sp hybridizations,
respectively. What is the functional form associated with these different hybridizations?
We construct the hybrid orbitals for ethene to illustrate the procedure.

To model the three bonds in ethene, the carbon AOs are hybridized to the config-
uration rather than to the configuration 1s22s22p2, which is
appropriate for an isolated carbon atom. The orbitals are the wave func-
tions that are used in a valence bond model for the three bonds in ethene. We next
formulate in terms of the 2s, 2px, and 2pz AOs on carbon.

The three sp2-hybrid orbitals must satisfy the geometry shownca, cb, and cc

ca, cb, and cc

s

ca, cb, and cc

1s2 2py
1(ca)1(cb)1(cc)

1
s

111°
109.5°

schematically in Figure 13.3. They lie in the plane and are oriented at to one
another. The appropriate linear combination of carbon AOs is

(13.1)cc = c7f2pz
+ c8f2s + c9f2px

cb = c4f2pz
+ c5f2s + c6f2px

ca = c1f2pz
+ c2f2s + c3f2px

120°xz
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refers to the 2s AO. This equation states that all of the 2s contributions to the hybrid
orbitals must be accounted for. We choose in the preceding equations to make
the 2s orbital

have a positive amplitude in the bonding region. (For graphs of the 2s AO amplitude
versus r, see Figures 9.5 and 9.6.) Therefore, we conclude that

From the orientation of the orbitals seen in Figure 13.3, because is ori-
ented on the z axis. Because the hybrid orbital points along the positive z axis, .
We can also conclude that that both are negative, and that with

. Based on these considerations, Equation (13.1) simplifies to

(13.2)

As shown in Example Problem 13.2, the remaining unknown coefficients can be deter-
mined by normalizing and orthogonalizing .

EXAMPLE PROBLEM 13.2

Determine the three unknown coefficients in Equation (13.2) by normalizing and
orthogonalizing the hybrid orbitals.

Solution

We first normalize Terms such as and do not appear 
in the following equations because all of the AOs are orthogonal to one another.
Evaluation of the integrals is simplified because the individual AOs are normalized.

which tells us that . Orthogonalizing , we obtain

 c4 = -A
1

6

 = c4A
2

3
+

1

3
= 0 and

 3c
*
acb dt = c4A

2

33f
*
2pz
f2pz

dt + a - 1

23
b2

3f
*
2sf2s dt = 0

ca and cbc1 = 22>3
 = (c1)

2 +
1

3
= 1

 3c
*
aca dt = (c1)

2

3f
*
2pz
f2pz

dt + a - 1

23
b2

3f
*
2sf2s dt = 1

1f*
2sf2px

dt1f*
2px
f2pz

dtca.

ca, cb, and cc

cc = c4f2pz
-

1

23
f2s + c6f2px

cb = c4f2pz
-

1

23
f2s - c6f2px

ca = c1f2pz
-

1

23
f2s

c9 7 0
-c6 = c9c4 = c7,

c1 7 0
cac3 = 0

c2 = c5 = c8 = -
1

23

c200(r) =
1

232p
a 1

a0
b3>2a2 -

r

a0
b e-r>2a0

c2 6 0

z

a

x
��

�

�
�

b�
�

c�
�

FIGURE 13.3
Geometry of the sp2-hybrid orbitals used
in Equation (13.1). In this and in most of
the figures in this chapter, we use a
“slimmed down” picture of hybrid orbitals
to separate individual orbitals. A more
correct form for hybrid orbitals is
shown in Figure 13.5.

s–p

How can c1 through c9 be determined? A few aspects of the chosen geometry simplify
the task of determining the coefficients. Because the 2s orbital is spherically symmetri-
cal, it will contribute equally to each of the hybrid orbitals. Therefore, .
These three coefficients must satisfy the equation , where the subscript 2sg

i
(c2si)

2 = 1
c2 = c5 = c8



280 CHAPTER 13 Molecular Structure and Energy Levels for Polyatomic Molecules

Normalizing , we obtain

We have chosen the positive root so that the coefficient of in is negative.
Using these results, the normalized and orthogonal set of hybrid orbitals is

Note that is normalized and orthogonal to and .

How can the 2s and 2p character of the hybrids be quantified? Because the sum of the
squares of the coefficients for each hybrid orbital equals 1, the p and s character of the
hybrid orbital can be calculated. The fraction of 2p character in is .
The fraction of 2s character is . Because the ratio of the 2p to 2s character is 2:1, we1>3 1>6 + 1>2 = 2>3cb

cbcacc

 cc = -  
1

26
f2pz

-
1

23
f2s +

1

22
f2px

 cb = -  
1

26
f2pz

-
1

23
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 ca = A
2

3
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-
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23
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2px
f2px

dt

 3c
*
bcb dt = a - 1

26
b2

3f
*
2pz
f2pz
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cb

refer to sp2 hybridization.
How do we know that these hybrid orbitals are oriented with respect to one another

as shown in Figure 13.3? Because has no component of the 2px orbital, it must lie
on the z axis, corresponding to a value of zero for the polar angle . To demonstrate that
the orbital is oriented as shown, we find its maximum value with respect to the
variable , which is measured from the z axis.

EXAMPLE PROBLEM 13.3

Demonstrate that the hybrid orbital has the orientation shown in Figure 13.3.

Solution

To carry out this calculation, we have to explicitly include the dependence of the 2px
and 2pz orbitals from Chapter 9. In doing so, we set the azimuthal angle , discussed
in Section 9.4, equal to zero:

This value for tan is satisfied by . Applying the condition that
for the maximum, we conclude that corresponds to the

maximum and corresponds to the minimum. Similarly, it can be shown that
has its maximum value at and a minimum at 300°.120°cc

u = 60°
u = 240°d2cb>du2 6 0

u = 60° and 240°u

1

26
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1

22
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which simplifies to

*
d

du
¢ - 1

26

zr

a0
cosu -

1

23
c2 -

zr

a0
d -

1

22

zr

a0
sinu≤ = 0

dcb

du
= B 1

232p
a z

a0
b3>2

e-zr>2a0R

f

u

cb

u

cb

u

ca



TABLE 13.1 C—C Bond Types

Carbon—Carbon
Single Bond Types

Bond
Hybridization
s s-to-p

Ratio
Angle between 
Equivalent 
Bonds ( )°

s

Carbon—Carbon
Single Bond
Length (pm)

sp3 1:3 109.4 154

sp2 1:2 120 146

sp 1:1 180 138

13.3 CONSTRUCTING HYBRID ORBITALS FOR NONEQUIVALENT LIGANDS 281

Example Problem 13.3 shows that sp2 hybridization generates three equivalent
hybrid orbitals that are separated by an angle of . By following the procedure
outlined earlier, it can be shown that the set of orthonormal sp-hybrid orbitals that are
oriented apart is

(13.3)

and that the set of tetrahedrally oriented orthonormal hybrid orbitals for sp3 hybridiza-
tion that are oriented apart is

(13.4)

By combining s and p orbitals, at most four hybrid orbitals can be generated. To describe
bonding around a central atom with coordination numbers greater than four, d orbitals
need to be included in forming the hybrids. Although hybrid orbitals with d character
are not discussed here, the principles used in constructing them are the same as those
outlined earlier.

 cd =
1

2
(-f2s - f2px

+ f2py
- f2pz

)

 cc =
1

2
(-f2s + f2px

- f2py
- f2pz

)

 cb =
1

2
(-f2s - f2px

- f2py
+ f2pz

)

 ca =
1

2
(-f2s + f2px

+ f2py
+ f2pz

)

109.4°

 cb =
1

22
(-f2s - f2pz

)

 ca =
1

22
(-f2s + f2pz

)

180°

120°

C C

C C

C C

The properties of single bonds depend on the hybridization of the carbon
atoms, as shown in Table 13.1. The most important conclusion that can be drawn from
this table for the discussion in the next section is that increasing the s character in 
hybrids increases the bond angle. Note also that the single bond length becomes
shorter as the s character of the hybridization increases, and that the single bond
energy increases as the s character of the hybridization increases.

13.3 Constructing Hybrid Orbitals 
for Nonequivalent Ligands

In the preceding section, the construction of hybrid orbitals for equivalent ligands was
considered. However, in general, molecules contain nonequivalent ligands as well as non-
bonding electron lone pairs. How can hybrid orbitals be constructed for such molecules if
the bond angles are not known? By considering the experimentally determined structures
of a wide variety of molecules, Henry Bent formulated the following guidelines:

• Central atoms that obey the octet rule can be classified into three structural types.
Central atoms that are surrounded by a combination of four single bonds or electron
pairs are to a first approximation described by a tetrahedral geometry and sp3

C¬C
C¬C

s-p

C¬C
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hybridization. Central atoms that form one double bond and a combination of two
single bonds or electron pairs are to a first approximation described by a trigonal
geometry and sp2 hybridization. Central atoms that form two double bonds or one
triple bond and either a single bond or an electron pair are to a first approximation
described by a linear geometry and sp hybridization.

• The presence of different ligands is taken into account by assigning a different
hybridization to all nonequivalent ligands and lone pairs. The individual hybridiza-
tion is determined by the electronegativity of each ligand. A nonbonding electron
pair can be considered to be electropositive or, equivalently, to have a small
electronegativity. Bent’s rule states that atomic s character concentrates in hybrid
orbitals directed toward electropositive ligands and that p character concentrates in
hybrid orbitals directed toward electronegative ligands.

We now apply these guidelines to H2O. The oxygen atom in H2O is to a first approxi-
mation described by a tetrahedral geometry and sp3 hybridization. However, because
the H atoms are more electronegative than the electron pairs, the p character of the
hybrid orbitals directed toward the hydrogen atoms will be greater than that of sp3

hybridization. Because Table 13.1 shows that increasing the p character decreases the
bond angle, Bent’s rule says that the bond angle will be less than .
Note that the effect of Bent’s rule is the same as the effect of the VSEPR rules listed in
Section 13.1. However, the hybridization model provides a basis for the rules.

Although useful in predicting bond angles, Bent’s rule is not quantitative. To make
it predictive, a method is needed to assign a hybridization to a specific combination of
two atoms that is independent of the other atoms in the molecule. Several authors have
developed methods that meet this need, for example, D. M. Root et al. in J. American
Chemical Society 115 (1993): 4201–4209.

EXAMPLE PROBLEM 13.4

a. Use Bent’s rule to decide if the bond angle in F2CO is larger or
smaller than in H2CO.

b. Use Bent’s rule to estimate whether the bond angle in FCH3 and
ClCH3 differ from .

Solution

a. To first order, the carbon atom exhibits sp2 hybridization. Because F is more
electronegative than H, the hybridization of the ligand contains more p
character than does the ligand. Therefore, the bond angle will
be smaller than the bond angle.

b. For both FCH3 and ClCH3, H is more electropositive than the halogen atom 
so that the bonds have greater s character than the C-halogen bond. 
This makes the bond angle greater than in both molecules.

To test the predictions of Bent’s rule, the hybrid orbitals for water are constructed
using the known bond angle, and their individual hybridizations are determined.
Constructing the lone pair orbitals is left as an end-of-chapter problem. The valence
electron configuration of the water molecule can be written in the form 1s2

oxygen(cOH)2

109.5°H¬C¬H
C¬H

H¬C¬H
F¬C¬FC¬H

C¬F

109.5°
H¬C¬H

X¬C¬X

109.4°H¬O¬H

C O

X

X

. Each describes localized hybrid
orbitals. From the known geometry, the two bonding orbitals are oriented at with
respect to one another, as shown in Figure 13.4. Starting with this input, how do we con-
struct from the atomic orbitals on hydrogen and oxygen? To describe
the H2O molecule, a pair of orthogonal equivalent hybrids, called and , is
constructed on the oxygen atom. The calculation is initially carried out for an arbitrary
bond angle.

cbcas–p
cOH and clone pair

104.5°
cOH and clone pair(cOH)2(clone pair)
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2
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�

FIGURE 13.4
Coordinate system used to generate the
hybrid orbitals on the oxygen atom that are
suitable for describing the structure of H2O.
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The hybrid orbitals are described by

(13.5)

where N is a normalization constant and is the relative amplitude of the 2s and 2p
orbitals.

To derive Equation (13.5), visualize as vectors along the x and z
directions. Because the 2s orbital has one radial node, the 2s orbital coefficient in
Equation (13.5) is negative, which generates a positive amplitude at the position of the
H atom. The two hybrid orbitals are orthogonal only if

(13.6)

Terms such as do not appear in this equation because
all of the atomic orbitals are orthogonal to one another. Because each of the AOs is
normalized, Equation (13.6) reduces to

(13.7)

In simplifying this equation, we have used the identity cos2 x - sin2 y = cos(x + y)

cos 2u = -a2

N23cos2u - sin2u + a24 = N23cos2u + a24 = 0 or

1f*
2px
f2pz

dt and1f*
2s f2px

dt

= N2 ccos2u3f
*
2pz
f2pz

dt - sin2u3f
*
2px
f2px

dt + a2

3f
*
2sf2s dt d = 0

* c1cosu2f2pz
- 1sinu2f2px

- af2s d  dt
3c

*
acb dt = N2

3 c1cosu2f2pz
+ 1sinu2f2px

- af2s d

f2px
 and f2pz

a

cb = N c1cosu2f2pz
- 1sinu2f2px

- af2s d
ca = N c1cosu2f2pz

+ 1sinu2f2px
- af2s d

. Because , and the bond angle .
What has this calculation shown? We have demonstrated that it is possible to create two
hybrid orbitals separated by a bonding angle in this angular range simply by varying
the relative contributions of the 2s and 2p orbitals to the hybrid. 

The hybrid orbitals in Equation (13.5) are not specific to a particular molecule other
than that the two atoms that bond to the central oxygen atom are identical. We now cal-
culate the value of that generates the correct bond angle in H2O. Calculating by
substituting the known value in Equation (13.7), we find that the unnormal-
ized hybrid orbitals that describe bonding in water are

(13.8)

EXAMPLE PROBLEM 13.5

Normalize the hybrid orbitals given in Equation (13.8).

Solution

Other terms do not contribute because the atomic orbitals are orthogonal to one another.

 N = 0.89
3c

*
aca dt = N2(0.61)2 + N2(0.79)2 + N2(0.50)2 = 1.25 N2 = 1

3f
*
2px
f2px

dt + N2(0.50)2

3f
*
2sf2s dt = 1+ N2(0.79)2

3c
*
aca dt = N2(0.61)2

3f
*
2pz
f2pz

dt

cb = N30.61f2pz
- 0.79f2px

- 0.50f2s4
ca = N30.61f2pz

+ 0.79f2px
- 0.50f2s4

u = 52.25°
aa

180° Ú 2u Ú 90°cos 2u 6 0a2 7 0cos(x - y)
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Using the result of Example Problem 13.5, the normalized hybrid orbitals can be
written as follows:

(13.9)

Because the sum of the squares of the coefficients for each hybrid orbital equals 1, we can
calculate their p and s character. The fraction of 2p character is .(0.55)2 + (0.71)2 = 0.80

cb = 0.55f2pz
- 0.71f2px

- 0.45f2s

ca = 0.55f2pz
+ 0.71f2px

- 0.45f2s

ing hybrid orbitals is described as sp4. These hybrid orbitals have more p character than the
first approximation sp3, as predicted by Bent’s rule.

The two hybrid orbitals are shown in Figure 13.5. Note that each of the directed
hybrid orbitals lies along one of the bonding directions and has little amplitude along
the other bonding direction. These hybrid orbitals could be viewed as the basis for the
line connecting bonded atoms in the Lewis structure for water. Figure 13.5 shows a
realistic representation of the hybrid orbitals to compare with the “slimmed down”
version of Figure 13.3.

This calculation for H2O illustrates how to construct bonding hybrid orbitals with a
desired relative orientation. To this point, the energetics of this process have not been
discussed. In many-electron atoms, the 2p orbital energy is greater than that for the
2s orbital. How can these orbitals be mixed in all possible proportions without putting
energy into the atom? To create the set of occupied hybrid orbitals on an isolated
ground-state oxygen atom would indeed require energy; however, the subsequent for-
mation of bonds to the central atom lowers the energy, leading to an overall decrease in
the energy of the molecule relative to the isolated atoms after bond formation. In the
language of the hybridization model, the energy cost of promoting the electrons from
the 1s22s22p4 configuration to the configuration is more than offset by
the energy gained in forming two bonds. Keep in mind that the individual steps
in the formation of the H2O molecule such as promotion of the O atom, followed by the
creation of bonds, are only an aid in describing the formation of H2O, rather
than a series of actual events. The language of the hybridization model should not be
taken too literally because neither the promotion process nor hybrid orbitals are observ-
ables, and it is important to distinguish between a model and reality. The reality of
orbitals is discussed in Section 13.6 in more detail.

13.4 Using Hybridization to Describe
Chemical Bonding

By using the hybridization model to create local bonding orbitals, the concepts inherent
in Lewis structures can be given a quantum mechanical basis. As an example, consider
BeH2, which is not observed as an isolated molecule because it forms a solid through
polymerization of BeH2 units stabilized by hydrogen bonds. We consider only a single
BeH2 unit. Be has the configuration 1s22s22p0, and because it has no unpaired elec-
trons, it is not obvious how bonding to the H atoms can be explained in the Lewis
model. In the VB model, the 2s and 2p orbitals are hybridized to create bonding hybrids
on the Be atom. Because the bond angle is known to be , two equivalent and
orthogonal sp-hybrid orbitals are constructed as given by Equation (13.3). This allows
Be to be described as . In this configuration, Be has two unpaired elec-
trons and, therefore, the hybridized atom is divalent. The orbitals are depicted schemat-
ically in Figure 13.6. To make a connection to Lewis structures, the bonding electron
pair is placed in the overlap region between the Be and H orbitals as indicated by the
dots. In reality, the bonding electron density is distributed over the entire region in
which the orbitals have a nonzero amplitude. We return to BeH2 in Section 13.6 where
we compare localized and delocalized bonding models for this molecule.

The chemically most important use of the hybridization model is in describing bond-
ing in molecules containing carbon. Figure 13.7 depicts valence bond hybridization in
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FIGURE 13.5
Directed hybrid bonding orbitals for
H2O. The black lines show the bond
angle and orbital orientation. Positive
and negative amplitudes are shown as
red and blue respectively. Darker 
colors indicate larger values for the
magnitude of the amplitude.
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FIGURE 13.6
Bonding in BeH2 using two sp-hybrid
orbitals on Be. The two Be—H hybrid
bonding orbitals are shown separately.

The fraction of 2s character is . Therefore, the hybridization of the bond-(-0.45)2 = 0.20
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ethene and ethane. For ethene, each carbon atom is promoted to the
configuration before forming four bonds, a 

bond, and a bond. The maximal overlap between the p orbitals to create a 
bond in ethene occurs when all atoms lie in the same plane. The double bond is made

from one and one bond. For ethane, each carbon atom is promoted to the
configuration before forming six bonds and a

bond.
In closing this discussion of hybridization, we emphasize the positive aspects of the

model and point out some of its shortcomings. The main usefulness of hybridization
is that it is an easily understandable model with considerable predictive power using,
for instance, Bent’s Rule. It retains the main features of Lewis structures in describing
local orthogonal bonds between adjacent atoms in terms of electron pairing, and it
justifies Lewis structures in the language of quantum mechanics. Hybridization also
provides a theoretical basis for the VSEPR rules.

Hybridization also offers more than a useful framework for understanding bond
angles in molecules. Because the 2s AO is lower in energy than the 2p level in many-
electron atoms, the electronegativity of a hybridized atom increases with increasing
s character. Therefore, the hybridization model predicts that an sp-hybridized carbon
atom is more electronegative than an sp3-hybridized carbon atom. Evidence for this
effect is that the positive end of the dipole moment in is on the Cl atom.
We conclude that the carbon atom in the cyanide group is more electronegative than a
chlorine atom. Because increased s character leads to shorter bond lengths, and because
shorter bonds generally have a greater bond strength, the hybridization model provides
a correlation of s character and bond strength.

The hybridization model also has a few shortcomings. For known bond angles, the
hybridization can be calculated as was done for ethane and H2O. However, semiempir-
ical prescriptions must be used to estimate the s and p character of a hybrid orbital for
a molecule in the absence of structural information. It is also more straightforward to
construct an appropriate hybridization for symmetric molecules such as methane than
for molecules with electron lone pairs and several different ligands bonded to the
central atom. Additionally, the depiction of bonding hybrids in Figure 13.7 seems to
imply that the electron density is highly concentrated along the bonding directions.
This is not true, as can be seen by looking at the realistic representation of hybrid
orbitals in Figure 13.5. Finally, the conceptual formalism used in creating hybrid
orbitals—in particular, promotion followed by hybridization—assumes much more
detail than can be verified by experiments.
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the hybrid orbitals for sp2 and sp3 car-
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13.5 Predicting Molecular Structure Using
Qualitative Molecular Orbital Theory

We now consider a delocalized bonding model of the chemical bond. MO theory
approaches the structure of molecules quite differently than local models of chemical
bonding. The electrons involved in bonding are assumed to be delocalized over the
molecule. Each one-electron molecular orbital is expressed as a linear combinationsj
of atomic orbitals such as , which refers to the jth molecularsj(k) = g

i
cij fi(k)
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FIGURE 13.8
The valence MOs occupied in the ground
state of water are shown in order of
increasing orbital energy. The MOs are
depicted in terms of the AOs from which
they are constructed. The second column
gives the MO symmetry, and the third
column lists the dominant AO orbital on
the oxygen atom.

orbital for electron k. The many-electron wave function is written as a Slater determi-
nant in which the individual entries are the .

In quantitative molecular orbital theory, which will be discussed in Chapter 15,
structure emerges naturally as a result of solving the Schrödinger equation and deter-
mining the atomic positions for which the energy has its minimum value. Although this
concept can be formulated in a few words, carrying out this procedure is a complex
exercise in numerical computing. In this section, our focus is on a more qualitative
approach that conveys the spirit of molecular orbital theory, but that can be written
down without extensive mathematics.

To illustrate this approach, we use qualitative MO theory to understand the bond
angle in triatomic molecules of the type H2A, where A is one of the atoms in the
sequence , and show that a qualitative picture of the optimal bond angle can
be obtained by determining how the energy of the individual occupied molecular
orbitals varies with the bond angle. In doing so, we assume that the total energy of the
molecule is proportional to the sum of the orbital energies. This assumption can be
justified, although we do not do so here. Experimentally, we know that BeH2 is a
linear molecule and H2O has a bond angle of . How can this difference be
explained using MO theory?

The minimal basis set used here to construct the MOs consists of the 1s orbitals on
each of the H atoms and the 1s, 2s, 2px, 2py, and 2pz orbitals on atom A. Seven MOs
can be generated using these seven AOs. We omit the two lowest MOs generated from
the 1s oxygen AO from the following discussion because the corresponding electrons
are localized on the oxygen atom. Water has eight valence electrons that occupy four of
the five remaining MOs.

Recall that the orbital energy increases with the number of nodes for the particle in
the box, the harmonic oscillator, and the H atom. We also know that the lower the AO
energies, the lower the MO energy will be. The occupied valence MOs for water are
shown in Figure 13.8 in terms of the AOs from which they are constructed. The relative
MO orbital energies are discussed later. The MOs are labeled according to their symme-
try with respect to a set of rotation and reflection operations that leave the water mole-
cule unchanged. We will discuss the importance of molecular symmetry in constructing
MOs from AOs at some length in Chapter 16. However, in the present context it is suffi-
cient to think of these designations simply as labels. Because the oxygen 2s AO is lower
in energy than the 2p AOs, the MO with no nodes designated 1a1 in Figure 13.8 is
expected to have the lowest energy of all possible valence MOs. The next higher MOs
involve 2p AOs on the O atom and the 1s AO on the H atoms.

The three oxygen 2p orbitals are differently oriented with respect to the plane con-
taining the H atoms. As a result, the MOs that they generate are quite different in
energy. Assume that the H2O molecule lies in the plane with the z axis bisecting the

angle as shown in Figure 13.4. The 1b2 MO, generated using the 2px AO,
and the 2a1 MO, generated using the 2pz AO, each have no nodes in the region
and, therefore, have binding character. However, because each has one node, both MOs
have a higher energy than the 1a1 MO. Calculations show that the MO generated using
the 2px AO has a lower orbital energy than that generated using the 2pz AO. Note that
some mixing has been incorporated in the 2a1 and 3a1 MO generated from the 2s
and 2pz AO. Having discussed the MOs formed using the 2px and 2pz AOs, we turn to
the 2py AO. The 2py orbital has no net overlap with the H atoms and gives rise to the
1b1 nonbonding MO that is localized on the O atom. Because this MO is not stabilized
through interaction with the H 1s AOs, it has the highest energy of all the occupied

s-p

O¬H
H¬O¬H

xz

104.5°

Be: O

sj(k)
c
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MOs. Numerically calculated molecular orbitals including the 3a1 LUMO are depicted
in Figure 13.9.

The preceding discussion about the relative energy of the MOs is sufficient to allow
us to draw the MO energy diagram shown in Figure 13.10. The MO energy levels in
this figure are drawn for a particular bond angle near , but the energy levels vary
with , as shown in Figure 13.11, in what is known as a Walsh correlation diagram.
It is important to understand the trends shown in this figure and are discussed next
because the variation of the MO energies with angle is ultimately responsible for BeH2
being linear and H2O being bent.

How does the 1a1 energy vary with ? The overlap between the s orbitals on A and
H is independent of , but as this angle decreases from , the overlap between
the H atoms increases. This stabilizes the molecule and, therefore, the 1a1 energy
decreases. By contrast, the overlap between the 2py orbital and the H 1s orbitals is a
maximum at and, therefore, the 1b2 energy increases as decreases. Because the
effect of the overlap on the 1a1 energy is a secondary effect, the 1b2 energy falls
more rapidly with increasing than the 1a1 energy increases.

We now consider the 2a1 and 1b1 energies. The 2py and 2pz orbitals are nonbonding
and degenerate for a linear H2A molecule. However, as decreases from , the O
2pz orbital has a net overlap with the H 1s AOs and has increasingly more bonding
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FIGURE 13.9
The first five valence MOs for H2O are
depicted. The 1b1 and 3a1 MOs are the
HOMO and LUMO, respectively. Note
that the 1b1 MO is the AO corresponding
to the nonbonding 2py electrons on
oxygen. The plane of the molecule has
been rotated for the 1b1 MO to better
display the nodal structure.
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character. Therefore, the 2a1 MO energy decreases as decreases from . The 1b1
MO remains nonbonding as decreases from , but electron repulsion effects lead
to a slight decrease of the MO energy. These variations in the MO energies are depicted
in Figure 13.11.

The MO energy diagram of Figure 13.10 is equally valid for H2A molecules with A
being 2nd period elements other than oxygen. Consider the molecules BeH2 and H2O.
BeH2 has four valence electrons that are placed in the two lowest-lying valence MOs,
1a1 and 1b2. Because the 1b2 orbital energy decreases with increasing more than the
2a1 orbital energy increases, the total energy of the molecule is minimized if .
This qualitative argument predicts that BeH2, as well as any other four-valence elec-
tron H2A molecule, is linear and has the valence electron configuration .
Note that the description of H2A in terms of MOs with g or u symmetry applies
only to a linear molecule, whereas a description in terms of 1a1 and 1b2 applies to all
bent molecules.

We now consider H2O, which has eight valence electrons. In this case, the lowest
four MOs are doubly occupied. At what angle is the total energy of the molecule
minimized? For water, the decrease in the energy of the 1a1 and 2a1 MOs as 

decreases more than offsets the increase in energy for the 1b2 MO. Therefore,
H2O is bent rather than linear and has the valence electron configuration
(1a1)2(1b2)2(2a1)2(1b1)2. The degree of bending depends on how rapidly the energy
of the MOs changes with angle. Numerical calculations for water using this approach
predict a bond angle that is very close to the experimental value of . These
examples for BeH2 and H2O illustrate how qualitative MO theory can be used to
predict bond angles.

EXAMPLE PROBLEM 13.6

Predict the equilibrium shape of , LiH2, and NH2 using qualitative MO theory.

Solution

has two valence electrons and is bent as predicted by the variation of the 1a1 MO
energy with angle shown in Figure 13.11. LiH2 or any molecule of the type H2A with
four electrons is predicted to be linear. NH2 has one electron fewer than H2O and,
using the same reasoning as for water, is bent.
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13.6 How Different Are Localized and
Delocalized Bonding Models?

Molecular orbital theory and hybridization-based valence bond theory have been devel-
oped using delocalized and localized bonding, respectively. These models approach the
chemical bond from very different starting points. However, it is instructive to compare
the molecular wave functions generated by these models using BeH2 as an example. We
have already discussed BeH2 using hybridization in Section 13.4 and now formulate the
many-electron wave function using the MO model. To minimize the size of the determi-
nant in Equation (13.11), we assume that the Be 1s electrons are not delocalized over
the molecule. With this assumption, BeH2 has the configuration .
On the basis of the symmetry requirements posed on the MOs by the linear geometry
(see Chapter 16), the two lowest energy MOs are

(13.10)

The many-electron determinantal wave function that satisfies the Pauli requirement is

(13.11)

Each entry in the determinant is an MO multiplied by a spin function.
We now use a property of a determinant that you will prove in the end-of-chapter

problems for a determinant, namely,

(13.12)

This equation says that one can add a column of the determinant multiplied by an
arbitrary constant to another column without changing the value of the determinant.
For reasons that will become apparent shortly, we replace the MOs and with the
new MOs . These hybrid MOs are
related to the AOs by

(13.13)

Transforming from and to and requires two steps like the one in
Equation (13.12). Note that with this transformation, no longer appears in 
and no longer appears in . Because of the property of determinants cited
earlier, neither —nor any molecular observable—will be affected by this
change in the MOs. Therefore, the configurations and (1sBe)

2(1sg)2(1su)2(1sBe)
2

c(1, 2, 3, 4)
s–fH1sA

s¿fH1sB

s–s¿susg
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c3
fBe2pz

b
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susg
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b gb + d
22 a c

b d
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2 * 2
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44!
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are completely equivalent, and no experi-
ment can distinguish between them.
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Why have we made this particular change? Equation (13.13) and Figure 13.12 show
that the new MOs are localized bonding MOs, one combining the 1s orbital
on HA with an hybrid AO on Be, and the other combining the 1s orbital on HB with
an hybrid AO on Be. In other words, the two delocalized MOs and have been
transformed into two localized MOs without changing the molecular wave function

. This result can be generalized to the statement that for any closed-shell
molecular configuration, the set of delocalized MOs can be transformed into a set of
localized orbitals predominantly involving two neighboring atoms. Such a transforma-
tion is not possible for open-shell molecules or conjugated and aromatic molecules in
which at least some of the electrons are delocalized over the molecule.

As the BeH2 example shows, the distinction between localized and delocalized orbitals
is not as clear-cut as it seemed to be at the beginning of this chapter. Working with

has some disadvantages, because they are not eigenfunctions of the total energy
operator. This means that we cannot assign orbital energies to these functions or draw
energy-level diagrams as can be done for the delocalized MOs that are solutions to the
molecular Hartree–Fock equations. Additionally, computional algorithms used to solve the
Schrödinger equation are more efficient when formulated in terms of delocalized MOs
than for localized orbitals. Because of these advantages, delocalized rather than localized
MOs are generally used to calculate wave functions and energy levels in molecules.

The preceding discussion implies that there is no unique set of one-electron MOs
for a molecule and raises the question “How ‘real’ are the molecular orbitals depicted
in this and the previous chapter?” It is useful to distinguish between observables and
elements of a model that are not amenable to measurement. Although a many-electron
wave function cannot be determined experimentally, the electron density isc(1, Á ,n)
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FIGURE 13.12
Schematic representation of the delocal-
ized MOs and and the localized
bonding orbitals .s¿ and s–

susg

diffraction. Because of the summation over all occupied orbitals, X-ray diffraction does
not give information directly about individual MOs.

Although the individual one-electron MOs are also not amenable to direct measure-
ment, experimental measurements can be made that strongly reflect the spatial distribu-
tion of the true many-electron wave function over a molecule for a given energy. An
example is the use of scanning tunneling microscopy to measure the variation of the
tunneling current over a molecule for different values of the energy of the tunneling
electrons. The principle of the measurement is shown in Figure 13.13.

As discussed in Section 5.6, the difference between the highest occupied energy
levels in the tip and sample can be varied by applying a voltage between the two
elements of the STM. With the voltage polarity shown in Figure 13.13, the tunneling
current flows from the surface to the tip, both of which are metals. As discussed in

proportional to and can be measured using techniques such as X-rayg
i

ƒci(1, Á ,n) ƒ 2
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Section 5.4, a metal is characterized by a continuum of states in the conduction band. If
a molecule with discrete energy levels is adsorbed on the surface, the number of states
at a given energy, called the local density of states, has a multi-peaked structure, where
the peaks correspond to the discrete MO energy levels. Tunneling occurs into the high-
est occupied level in the tip and the tunneling current is proportional to the local density
of states. If the highest occupied level of the tip is aligned with a peak in the local den-
sity of states of the adsorbed molecule as shown in case a of Figure 13.13, scanning of
the tip over the molecule will give an image of the magnitude of the molecular orbital
corresponding to the peak energy. However, if the highest occupied level of the tip is
aligned with a gap between peaks in the local density of states of the adsorbed mole-
cule as shown in case b of Figure 13.13, scanning of the tip over the molecule will give
an image of the geometry of the molecule because the density of states on the metal
surface is approximately constant over the region being scanned.

Figure 13.14 shows the results of carrying out the experiment just described on
individual pentacene molecules separated from a copper surface by an atomically thin
layer of NaCl. This ultrathin insulator layer prevents coupling between the electronic
states of pentacene with the delocalized states of the metal. The preceding discussion,
we have assumed that the density of states in the tip has no influence on the measure-
ment. Figure 13.14 shows results for two tip configurations: a bare metal tip and a tip
terminated in a single pentacene molecule. Although the general features of the results
are similar for both tips, the details differ. A comparison of the results obtained with
the pentacene terminated tip with calculations using density functional theory (see
Chapter 15) for a gas phase pentacene molecule show very good agreement between
the calculated and observed HOMO and LUMO probability densities.

What does this experiment tell us about the reality of molecular orbitals? Adsorption
of the molecule on the surface is necessary to immobilize it. This weak “bonding” influ-
ences the electronic structure of the pentacene. Additionally, the local density of states in
the tip and surface influence the results, so that the images shown in Figure 13.14 are not
exact images of the HOMO and LUMO probability densities for an isolated pentacene
molecule. However, the high degree of correspondence between the calculation and
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FIGURE 13.13
In scanning tunneling spectroscopy, 
a voltage applied between the tip and
sample aligns different energy levels of
the molecule adsorbed on the surface 
with the highest occupied energy level in
the tip. Scanning of the tip over the mole-
cule gives an image of the local density of
states in the molecule at a fixed energy
corresponding to the fixed voltage. To a
good approximation, this is the magnitude
of the MO, in case (a) the HOMO. If an
appropriate voltage with the reverse polar-
ity is applied, tunneling from the tip to the
empty states of the sample can occur and
the LUMO can be imaged.
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experimental results imply that orbital approximation that leads to the picture of one-
electron MOs is valid in this case. Because the HOMO and LUMO are occupied by the 
electrons in this aromatic molecule, a delocalized model is necessary for their description.

These experimental results do not contradict the assertion made in Section 6.6 that
it is not possible to reconstruct a wave function from experimental results because at
best only the magnitude of the wave function can be determined.

13.7Molecular Structure and Energy Levels
from Computational Chemistry

Solving the Schrödinger equation analytically is possible only for one-electron atoms
and molecules. MOs and energy levels for many electron atoms and molecules must be
obtained using numerical methods to solve the Schrödinger equation. Fortunately, read-
ily available software can be used to solve structures such as those discussed in this
chapter on standard personal computers in a few minutes. Inexpensive or free versions
of such software are available. At this time, there is little need for oversimplified, non-
quantitative models that were developed before the advent of computers. The methods
and approximations used, as well as the accuracy of these calculations, are discussed
in detail in Chapter 15. At this point, we present a few results from computational
chemistry that support other aspects discussed in Chapters 12 and 13.

Lewis structures represent bonding and lone pair electrons differently. Can this
picture be supported by rigorous calculations? Figure 13.15 shows negative electro-
static potential surfaces for molecules that Lewis structures would assign one, two,
and three lone pairs. It is seen that the shape and extent of the surfaces is consistent

p

FIGURE 13.14
Images of the local density of states of a
pentacene molecule adsorbed on a silver
surface are shown in the first two rows of
columns one and three. Calculated proba-
bility densities for the HOMO and LUMO
are shown in the third row. The first two
rows of the middle column show results
obtained in an energy gap for which the
local density of states for pentacene are
negligible.

Source: Repp, J., Meyer, G., Stojkovic, S.,
Gourdon, A., Joachim, C. Molecules on
Insulating Films: Scanning-Tunneling
Microscopy Imaging of Individual Molecular
Orbitals. Physical Review Letters, 94, no.2
(2005): 026803.

FIGURE 13.15
Electrostatic potential surfaces for 
ammonia (left), water (center), and 
hydrogen fluoride (right) support the 
concept of localized lone pairs.
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with the number of lone pairs as well as their distribution in space to minimize repul-
sive interactions.

Figure 13.16 shows calculated symmetry adapted MOs for the 8 occupied MOs on
formaldehyde, which has 16 electrons. The MO designations indicate whether the MO
changes its sign when the molecule undergoes a rotation about a symmetry axis or a
reflection in a symmetry plane. This topic is discussed in Chapter 16. Consider them
labels for this discussion.

The lowest energy MO, designated 1a1, is localized on O and corresponds to the 1s
AO. The second-lowest MO, designated 2a1, is localized on C and corresponds to the 1s
AO. Note that although these two MOs were assumed to be delocalized over the mole-
cule, the calculation shows that they are localized as expected for core electrons. The next
lowest MO, designated 3a1, has contributions from the O 2s and C 2s AOs and a small
contribution from the H atoms. This MO contributes to bonding in the C—O region.
Participation of the 2p electrons is first observed in the 4a1 MO. It has contributions from
the C sp2 hybrid AO directed in the negative x direction toward the H atoms and the 2px
lone pair on O. This MO is bonding in the C—H regions and antibonding in the C—O
region. The 1b2 MO has contributions from the 2py lone pair AO on O, mixing in-phase
with C—H bonding orbitals formed from 2py on C and the out-of-phase combination of
H 1s AOs. This MO is bonding in both the C—O and C—H regions. The 5a1 MO has
contributions from the 2px lone pair on O, which mixes in phase with the sp2 hybrid
AOs on C. These hybrid orbitals are directed toward the H atoms. This MO is bonding

1a1 2a1

3a1

4a1

1b2

FIGURE13.16
The symmetry-adapted MOs are
shown for formaldehyde. For all
but the localized MOs, two per-
pendicular orientations of the
molecule are shown. The last
image shows a charge density
contour enclosing 90% of the
electron charge with a superim-
posed electrostatic potential map
in which red and blue corre-
spond to negative and positive
regions of the molecule.

5a1

1b1

2b2

electrostatic potential surface
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in both the C—O and C—H regions. The 1b1 MO represents a bond in the C—O
region. Because the net overlap with the H 1s AOs is zero, there is no contribution from H
to this MO. This MO is bonding in the C—O region and nonbonding in the C—H
regions. The 2b2 MO is the HOMO. It is the antibonding version of the 1b2 MO. The 2py
lone pair AO on O interacts in an antibonding fashion with the C—H bonds that are
formed from the 2py AO on C and the out-of-phase combination of H 1s AOs. This MO is
nonbonding in CO and bonding in CH regions.

The electrons in the 3a1, 1b2, 5a1 and 1b1 MOs all contribute to bonding in the C—O
region whereas the 4a1 MO decreases the bond order because of its antibonding
character. The electrons in the 4a1, 1b2, 5a1 and 2b2 MOs all contribute to bonding in the
C—H region.

The charges on the individual atoms calculated as discussed in Section 12.8 are 
H: -0.064, C: +0.60, O: -0.47, and the calculated dipole moment is 2.35 debye, which
compares well with the measured value of 2.33 debye. The MO energy levels are
shown in Figure 13.17. As AOs from three types of atoms are involved, it is not possi-
ble to draw lines linking the MO energy levels to AO energy levels as was done for
diatomic molecules. The HOMO energy level should correspond to the first ionization
energy. The calculated value is 12.0 eV, and the measured value is 11 eV. The accuracy
of these and other calculated quantities depend significantly on the computational
model used, as will be discussed in Chapter 15.

13.8 Qualitative Molecular Orbital Theory
for Conjugated and Aromatic
Molecules: The Hückel Model

The molecules in the preceding sections can be discussed using either a localized or a
delocalized model of chemical bonding. This is not the case for conjugated and aro-
matic molecules, in which a delocalized model must be used. Conjugated molecules
such as 1,3-butadiene have a planar carbon backbone with alternating single and
double bonds. Butadiene has single and double bond lengths of 147 and 134 pm,
respectively. The single bonds are shorter than the single bond length in ethane (154 pm),
which suggests that a delocalized network is formed. Such a delocalized network
can be modeled in terms of the coupling between sp2-hybridized carbon atoms in a

-bonded carbon backbone. The lowering of the total energy that can be attributed to
the formation of the network is responsible for the reduced reactivity of conjugated
molecules compared to molecules with isolated double bonds.

p

s

p

p

FIGURE 13.17
The formaldehyde valence MO energy levels are shown on the left on a linear energy scale. As
the 1a1 and 2a1 MO levels are -560.2 and -308.7 eV, respectively, they are not shown. All MO
energy levels are shown on the right on a logarithmic energy scale. Values were obtained from
an MP2 calculation using the 6-31G* basis set (see Chapter 15).
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Aromatic molecules are a special class of conjugated molecules. They are based
on ring structures that are particularly stable in chemical reactions. The presence of
“closed circuits” of mobile electrons is required for a molecule to be aromatic. Because
such currents imply electron delocalization, bonding in aromatic molecules cannot be
explained by electron pairing in localized bonds. For example, benzene has six 
bonds of equal length, 139 pm, a value between the single and double bond lengths in
1,3-butadiene. This suggests that the six electrons are distributed over all six carbon
atoms. Therefore, a delocalized model is required to discuss aromatic molecules.

Erich Hückel formulated a useful application of qualitative MO theory to calculate the
energy levels of the delocalized electrons in conjugated and aromatic molecules. Despite
its simplicity, the Hückel model correctly predicts the stabilization that arises from delocal-
ization and predicts which of many possible cyclic polyenes will be aromatic. In the Hückel
model, the network of MOs can be treated separately from the network of the carbon
backbone. The Hückel model uses hybridization and the localized valence bond model to
describe the bonded skeleton and MO theory to describe the delocalized electrons.

In the Hückel theory, the p atomic orbitals that combine to form MOs are treated
separately from the sp2 -bonded carbon backbone. For the four-carbon network in
butadiene, the MO can be written in the form

(13.14)

As was done in Section 12.1, the variational method is used to calculate the coefficients
that give the lowest energy for the four MOs that result from combining four AOs. We
obtain the following secular equations:

(13.15)

Similar to the discussion in Chapter 12, integrals of the type Haa are called Coulomb
integrals, integrals of the type Hab are called resonance integrals, and integrals of the
type Sab are called overlap integrals. Rather than evaluate these integrals, in the Hückel
model thermodynamic and spectroscopic data obtained from different conjugated
molecules are used to obtain their values. Because it relies on both theoretical and
experimental input, the Hückel model is a semiempirical theory.

In the Hückel model, the Coulomb and resonance integrals are assumed to be the
same for all conjugated hydrocarbons and are given the symbols and , respectively,
where is the negative of the ionization energy of the 2p orbital, and , which is nega-
tive, is usually left as an adjustable parameter. Do not confuse this notation with spin up
and spin down. The secular determinant that is used to obtain the MO energies and
the coefficients of the AOs for 1,3-butadiene is

(13.16)

Several simplifying assumptions are made in the Hückel model to make it easier to solve
secular determinants. The first is and unless . This is a rather drastic
simplification, because if the overlap between adjacent atoms were zero, no bond forma-
tion would occur. It is also assumed that if i and j are on adjacent C atoms,

if , and otherwise. Setting for nonadjacent carbon atoms
amounts to saying that the primary interaction is between the neighboring 2pz orbitals.
The result of the simplifying assumptions is that all elements of the determinant that are
more than one position removed from the diagonal are zero for non-cyclic polyenes.

Hij = 0Hij = 0i = jHij = a
Hij = b

i = jSij = 0Sii = 1

4
H11 - eS11 H12 - eS12 H13 - eS13 H14 - eS14

H21 - eS21 H22 - eS22 H23 - eS23 H24 - eS24

H31 - eS31 H32 - eS32 H33 - eS33 H34 - eS34

H41 - eS41 H42 - eS42 H43 - eS43 H44 - eS44

4

ba

ba

  c1(H41 - eS41) + c2(H42 - eS42) + c3(H43 - eS43) + c4(H44 - eS44) = 0

  c1(H31 - eS31)  + c2(H32 - eS32)  + c3(H33 - eS33)  + c4(H34 - eS34)  = 0

  c1(H21 - eS21)  + c2(H22 - eS22) + c3(H23 - eS23) + c4(H24 - eS24) = 0

 c1(H11 - eS11)  + c2(H12 - eS12)  + c3(H13 - eS13)  + c4(H14 - eS14)  = 0

cp = c1f2pz1 + c2f2pz2 + c3f2pz3 + c4f2pz4
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With these assumptions, the secular determinant for butadiene is

(13.17)

As shown in Example Problem 13.7, this determinant has the solutions for the orbital
energies shown in Figure 13.18.

Consider several of the results shown in Figure 13.18. First, the coefficients of the AOs
in the different MOs are not the same. Secondly, a pattern of nodes is seen that is identical
to the other quantum mechanical systems that have been solved. The ground state has no
nodes perpendicular to the plane of the molecule, and successively higher MOs have an
increasing number of nodes. Recall that nodes correspond to regions in which the proba-
bility of finding the electron is zero. Because the nodes appear between the carbon atoms,
they add an antibonding character to the MO, which increases the MO energy.

EXAMPLE PROBLEM 13.7

Solve the secular determinant for butadiene to obtain the MO energies.

Solution

The secular determinant can be expanded to yield (see the Math Supplement,
Appendix A) the following equation:

 = (a - e) 3
a - e b 0

b a - e  b

0 b a - e
3 - b 3

b b 0

0 a - e b

0 b a - e
3

4
a - e b 0 0

b a - e b 0

0 b a - e b

0 0 b a - e

4

4 * 4

p

4
a - e b 0 0

b a - e b 0

0 b a - e b

0 0 b a - e

4 = 0

 � 1.62��

 � 0.62��

 � 0.62��

 � 0.62��

�

FIGURE 13.18
Energy levels and molecular orbitals for
butadiene in the Hückel approximation.
The sizes of the 2pz AOs in the left col-
umn are proportional to their coefficients
in the MO. Calculated MOs (see text) 
are shown in the right column. Red and
blue lobes refer to positive and negative
amplitudes, respectively. The vertical
dashed lines indicate nodal planes.
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This equation can be written in the form of a quadratic equation:

which has the four solutions .

The effort required to obtain the energy levels and the AO coefficients for a mono-
cyclic polyene can be greatly simplified by using the following geometrical construc-
tion: inscribe a regular polygon with the shape of the polyene in a circle of radius 
with one vertex of the polygon pointing directly downward. Draw a horizontal line at
each point for which the polygon touches the circle. These lines correspond to the
energy levels, with the center of the circle corresponding to the energy . This method
is illustrated in Example Problem 13.8.

EXAMPLE PROBLEM 13.8

Use the inscribed polygon method to calculate the Hückel MO energy levels for benzene.

a

2b

e = a ; 1.62b and e = a ; 0.62b

(a - e)2

b2 =
3 ; 25

2

 = (a - e)4 - 3(a - e)2b2 + b4 =
(a - e)4

b4 -
3(a - e)2

b2 + 1 = 0

 = (a - e)4 - (a - e)2b2 - (a - e)2b2 - (a - e)2b2 + b4

 = 1a - e22 2 a - e b

b a - e
2 - b1a - e2 2 b b

0 a - e
2

30 sin 30�

�2
�2

2
�

 �� �

�� �

  �2� �
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Solution

The geometrical construction shows that the energy levels are 
and . The sum of the orbital energies for the six electrons 

is .

The benzene MOs and their energies are shown in Figure 13.19. Note that the energy
levels for and are doubly degenerate. As was the case for butadiene, 
the lowest MO has no nodes perpendicular to the molecular plane, and the energy of the
MO increases with the number of additional nodal planes. The average orbital energy of
a electron in benzene is

1

6
C2 Aa + 2b B + 4 Aa + b B D = a + 1.33b

p

a - ba + b

6a + 8b
pa - 2ba - b,

a + b,a + 2b,

- b2 2 a - e b

b a - e
2 + b2 2 0 b

0 a - e
2
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The energy levels for the smaller monocyclic polyenes (CH)m, where m is the num-
ber of bonded carbons, exhibit the pattern shown in Figure 13.20. The energy value 
separates the bonding and antibonding MOs.

This figure provides a justification for the following Hückel rules for a monocyclic
conjugated system with N electrons:

• If , where n is an integer 0, 1, 2, ..., the molecule is stabilized through
the delocalization network.

• If or , the molecule is a free radical.

• If , the molecule has two unpaired electrons and is very reactive.

The justification for these rules can be understood from Figure 13.20. For each cyclic
polyene, the lowest energy level is nondegenerate and has the energy . All
other levels are doubly degenerate, with the exception of the highest level if m is even.
The maximum stabilization is attained if , because all electrons are
paired and in bonding orbitals for which . For , six electrons correspond
to the maximal stabilization. Benzene, for which , is an example of this case.
Next consider benzene with one fewer or one more electron. Because or 7,
both species are radicals because the highest occupied energy level is not filled, and
both are less stable than benzene. What happens to a system of maximum stabilization
if two electrons are removed? Because all energy levels, except the lowest (and if m is
even, the highest), are doubly degenerate, each of the degenerate levels has an occu-
pancy of one for , and the molecule is a diradical.

These rules can be used to make useful predictions. For example, C3H3, which is
formed from cyclopropene by the removal of one H atom, should be more stable as

than as neutral or . Undistorted cyclobuta-
diene with four electrons will be a diradical and, therefore, very reactive.
The maximum stabilization for C5H5 is for , as is seen in Figure 13.20.
Therefore, is predicted to be more stable than C5H5 or . These predictionsC5H

+
5C5H

-
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FIGURE 13.20
The energy of the MOs is shown for
cyclic polyenes described by the formula
(CH)m with to 6 bonded carbons.
The doubly degenerate pairs are shown
slightly separated in energy for clarity.
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FIGURE 13.19
Energy levels and molecular orbitals for
benzene in the Hückel approximation.
The sizes of the 2pz AOs are proportional
to their coefficients in the MO. Calculated
MOs (see text) are shown in a three-
dimensional perspective for the filled
MOs and as an on-top view for the
unfilled MOs. Red and blue lobes refer 
to positive and negative amplitudes. 
Thin dashed lines indicate nodal planes.
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have been verified by experiment and show that the Hückel model has considerable
predictive power, despite its significant approximations.

At present, the Hückel model is primarily useful for explaining the rule.
Readily available computational chemistry software can rapidly calculate MOs and
their corresponding energy levels on personal computers, making the determination of

and from experimental data unnecessary. The calculated MOs shown in Figures
13.18 and 13.19 were obtained in this way using the B3LYP method of density func-
tional theory and the 6-31G* basis set (see Chapter 15).

We now discuss the resonance stabilization energy that arises in aromatic
compounds through the presence of closed circuits of mobile electrons. No unique
method is available for calculating this stabilization energy. However, a reasonable
way to determine this energy is to compare the network energy of the cyclic
polyene with that of a linear polyene that consists of alternating double and single
bonds with the same number and arrangement of hydrogen atoms. In some cases,
this may be a hypothetical molecule whose network energy can be calculated
using the method outlined earlier. As has been shown by L. Schaad and B. Hess 
[J. Chemical Education 51 (1974): 640–643], meaningful results for the resonance
stabilization energy can be obtained only if the reference molecule is similar in all
aspects except one: it is a linear rather than a cyclic polyene. For benzene, the ref-
erence molecule has the total energy . From Figure 13.20, note that
the corresponding value for benzene is . Therefore, the resonance stabi-
lization energy per electron in benzene is . By
considering suitable reference compounds, these authors have calculated the reso-
nance stabilization energy for a large number of compounds, some of which are
shown in Figure 13.21.

Figure 13.21 indicates that benzene and benzocyclobutadiene have the greatest
resonance delocalization energy on this basis. Molecules with negative values for the
resonance stabilization energy are predicted to be more stable as linear polyenes than as
cyclic polyenes and are referred to as antiaromatic molecules. Note that these calcula-
tions only give information on the network energy and that the total energy of the mol-
ecule is assumed to be proportional to the sum of the occupied orbital energies. We
have also ignored the possible effect of strain energy that arises if the bond-
ing angles are significantly different from , which is optimal for sp2 hybridization.
For example, cyclobutadiene, for which the bond angle is , has an appreciable strain90°

120°
C¬C¬C
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FIGURE 13.21
The resonance delocalization energy per

electron of a number of cyclic polyenes
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energy associated with the bonded backbone, which destabilizes the molecule relative
to a linear polyene. A ranking of the degree of aromaticity based on experimental data
such as thermochemistry, reactivity, and chemical shifts using nuclear magnetic reso-
nance spectroscopy (see Chapter 17) is in good agreement with the predictions of the
Hückel model if the appropriate reference molecule is used to calculate the resonance
stabilization energy.

Although the examples used here to illustrate aromaticity are planar compounds,
this is not a requirement for aromaticity. Sandwich compounds such as ferrocene, as
well as the fullerenes, also show aromatic behavior. For these molecules, the closed
circuits of mobile electrons extend over all three dimensions. These calculations for
conjugated and aromatic molecules show the power of the Hückel model in
obtaining useful results with minimal computational effort and without evaluating
any integrals or even using numerical values for and . Fewer simplifying
assumptions are made in the extended Hückel model, which treats the and elec-
trons similarly.

13.9 From Molecules to Solids
The Hückel model is also useful for understanding the energy levels in a solid, which
can be thought of as a giant molecule. In discussing the application of the particle in the
box model to solids in Chapter 5, we learned that a solid has an energy spectrum that
has both continuous and discrete aspects. Within a range of energies called a band, the
energy spectrum is continuous. However, the energy bands are separated by band gaps
in which no quantum states are allowed. The Hückel model (Figure 13.22) is useful in
developing an understanding of how this energy spectrum is generated.

Consider a one-dimensional chain of atoms in which bonds are formed.
Combining N 2px atomic orbitals creates the same number of MOs as was seen for
ethene, butadiene, and benzene. Hückel theory predicts that the difference in energy
between the lowest- and highest-energy MO depends on the length of the conjugated
chain but approaches the value as the chain becomes infinitely long. All N
energy levels still must lie in the range between and . Therefore, as

, the spacing between adjacent levels becomes vanishingly small, and the
energy spectrum becomes continuous, generating a band.

The wave functions of the long one-dimensional chain are schematically
indicated in Figure 13.23. At the bottom of the band, all AOs are in phase (fully
bonding), but at the top of the band the AOs on adjacent atoms are out of phase
(fully antibonding). At energies near the middle of the band, the nodal spacing is
intermediate between N and one atomic spacing, making the state partially bonding.
The energy versus distance curves from Figure 12.4 can be applied to the one-
dimensional chain. This has been done in Figure 13.23. For a two-atom solid
(diatomic molecule), the wave function is either fully bonding or fully antibonding.
For a long chain, all possible wave functions between fully bonding and fully
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FIGURE 13.22
MOs generated in an atom chain
using the Hückel model. As N
becomes very large, the energy
spectrum becomes continuous.
The energy range of the MOs is
shown in units of .b
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antibonding are possible. Therefore, the entire energy range indicated by horizontal
black lines in Figure 13.23 is allowed.

We consider a specific example that demonstrates the contrasts among a conductor,
a semiconductor, and an insulator. In solids, separate bands are generated from differ-
ent AOs, such as the 3s and 3p AOs on Mg. If there is sufficient overlap between AOs
to generate bonding, the bands are wide in energy. If this is not the case, the bands are
narrow in energy. Magnesium, with the [Ne]3s2 atomic configuration, has two 3s
valence electrons that go into a band generated from the overlap of the 3s electrons on
neighboring Mg atoms. Because N Mg atoms generate N MOs, each of which can be
doubly occupied, the 2N Mg valence electrons completely fill the 3s-generated band
(lower band in Figure 13.23). If there were a gap between this and the next-highest
band (upper band in Figure 13.23), which is generated from the 3p electrons, Mg would
be an insulator. This corresponds to the atomic spacing indicated by the vertical blue
line. However, in this case, the 3s and 3p bands overlap, corresponding to the atomic
spacing indicated by the vertical red line. As a result, the unoccupied states in the over-
lapping bands are only infinitesimally higher in energy than the highest filled state. For
this reason, Mg is a conductor.

If there is a gap between a completely filled band and the empty band of next higher
energy, the solid is either an insulator or a semiconductor. The distinction between a
semiconductor and an insulator is the width of the energy gap. If at tem-
peratures below the melting point of the solid, the material is an insulator. Diamond is
an insulator even at very high temperatures because it has a large band gap. However,
if at elevated temperatures the Boltzmann distribution [Equation (2.2)]
predicts that it will be easy to promote an electron from the filled valence band to the
empty conduction band. In this case, the highest filled state is infinitesimally lower in
energy than the lowest unfilled state, and the solid is a conductor. Silicon and germa-
nium are called semiconductors because they behave like insulators at low temperatures
and like conductors at higher temperatures.

13.10Making Semiconductors Conductive
at Room Temperature

In its pure state, silicon is conductive to an appreciable extent only at temperatures
greater than 900 K because it has a band gap of 1.1 eV. Yet computers and other devices
that are based on silicon technology function at room temperature. For this to happen,
these devices must transmit electrical currents at 300. K. What enables silicon to be

Egap ~ kBT,

Egap W kT

E
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FIGURE 13.23
Bands generated from two different AOs
are shown. The width in energy of the
band depends on the atomic spacing. For
the equilibrium spacing indicated by the
red line, the two bands overlap and all
energy values between the top and bottom
of the yellow-shaded area are allowed.
This is not true for significantly larger or
shorter atomic spacings, and the solid
would exhibit a band gap at the spacing
indicated by the blue line. In this case the
two narrow bands indicated by the green
areas do not overlap.
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hybrid orbital
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lone pair

resonance stabilization energy
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valence bond (VB) theory

valence shell electron pair repulsion
(VSEPR) model

Walsh correlation diagram

conductive at such low temperatures? The key to changing the properties of Si is the
introduction of other atoms that occupy Si sites in the silicon crystal structure. The
introduction of these foreign atoms in the Si crystal lattice is called doping.

Silicon is normally doped using atoms such as boron or phosphorus, which have one
fewer or one more valence electron than silicon, respectively. Typically, the dopant con-
centration is on the order of a few parts per million relative to the Si concentration. How
does this make Si conductive at lower temperatures? The Coulomb potential associated
with the phosphorus atoms overlaps with the Coulomb potentials of the neighboring Si
atoms, and the valence electrons of the P atom become delocalized throughout the crys-
tal and form a separate band as discussed in Section 5.4. Because P has one more
valence electron than Si, this band is only partially filled. As indicated in Figure 13.24,
this band is located ~0.04 eV below the bottom of the empty conduction band. Electrons
can be thermally excited from the dopant band to populate the empty Si conduction
band. Importantly, it is the 0.04 eV rather than the Si band gap of 1.1 eV that must be
comparable to kBT to produce delocalized electrons in the conduction band. Therefore,
phosphorus-doped silicon is conductive at 300. K, where kBT 0.04 eV. Because the
dominant charge carriers are negative, one refers to an n-type semiconductor.

Boron can be introduced as a dopant at a ppm concentration. The Si crystal site that a
boron atom occupies has one valence electron fewer than the neighboring sites and acts
like a positive charge, which is referred to as a hole. The hole is delocalized throughout
the lattice and acts like a mobile positive charge because electrons from adjacent Si atoms
can fill it, leaving the B atom with an extra negative charge while the hole jumps from Si
to Si atom. In this case, the empty dopant band is located ~0.045 eV above the top of the
filled valence band. Thermal excitations of electrons from the filled valence band into the
empty dopant band make the p-type semiconductor conductive. Because the dominant
charge carriers in this case are positive, one refers to a p-type semiconductor.

For both n-type and p-type semiconductors, the activation energy to promote charge
carriers and to induce conduction is much less than the Si band gap. The modifications
to the Si band structure introduced by dopants are illustrated in Figure 13.24.

«

Conduction
band

Dopant
band

Valence 
band

Filled

Filled
Empty

Empty

Filled

Empty

FIGURE13.24
Modification of the silicon band structure
generated by the introduction of dopants.
The excitation that leads to conduction is
from the valence band to the dopant band 
(p-type), as shown on the left, or dopant band
to conduction band (n-type), as shown on
the right, rather than across the Si band gap
as indicated by the right-most curved arrow.
Occupied and unoccupied bands are indi-
cated by blue and red coloring, respectively.
Energy increases vertically in the figure.

Conceptual Problems

Q13.1 Why can it be unclear whether a material is a
semiconductor or an insulator?

Q13.2 How do the values of the AO coefficients in a MO
differ for a delocalized and a localized bond?

Q13.3 What experimental evidence can you cite in support
of the hypothesis that the electronegativity of a hybridized
atom increases with increasing s character?

Q13.4 Explain why all possible wave functions between the
fully bonding and the fully antibonding are possible for the
bands shown in Figure 13.22.

Q13.5 On the basis of what you know about the indistinguisha-
bility of electrons and the difference between the wave functions
for bonding electrons and lone pairs, discuss the validity and use-
fulness of the Lewis structure for the fluorine molecule ( ).F F



Q13.6 What evidence can you find in Table 13.1 that 
sp bonds are stronger than sp3 bonds?

Q13.7 How is it possible that a semiconductor would
become metallic if the nearest neighbor spacing could be
changed sufficiently?

Q13.8 Why are localized and delocalized models equally
valid for describing bonding in closed-shell molecules? Why
can’t experiments distinguish between these models?

Q13.9 The hybridization model assumes that atomic orbitals
are recombined to prepare directed orbitals that have the bond
angles appropriate for a given molecule. What aspects of the
model can be tested by experiments, and what aspects are con-
jectures that are not amenable to experimental verification?

Q13.10 Why can’t localized orbitals be represented in an
MO energy diagram?

Q13.11 In using the sum of the occupied MO energies to
predict the bond angle in H2A molecules, the total energy of

C¬C the molecule is assumed to be proportional to the sum of 
the occupied MO energies. This assumption can be justified.
Do you expect this sum to be greater than or smaller than the
total energy? 

Q13.12 In explaining molecular structure, the MO model
uses the change in MO energy with bond angle. Explain 
why the decrease in energy of the 1a1 and 2a1 MOs as 
decreases more than offsets the increase in energy for the 
1b2 MO for water.

Q13.13 In P13.8 you showed that the water hybrid bonding
orbitals are orthogonal. What is the in-plane amplitude of the
wave functions describing the network in the conjugated
molecules shown in Figures 13.18 and 13.19?

Q13.14 What is the rationale for setting for
nonadjacent atoms in the Hückel model?

Q13.15 A certain cyclic polyene is known to be nonplanar.
Are the MO energy levels of this molecule well described by
the Hückel model? Justify your answer.

Hij = 0

p

2u
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Numerical Problems

Problem numbers in red indicate that the solution to the
problem is given in the Student’s Solutions Manual.

P13.1 Show that the determinantal property

used in the discussion of localized and delocalized orbitals in
Section 13.6 is correct.

P13.2 Predict whether and should be linear or
bent based on the Walsh correlation diagram in Figure 13.11.
Explain your answers.

P13.3 Use the framework described in Section 13.3 to
construct normalized hybrid bonding orbitals on the central
oxygen in O3 that are derived from 2s and 2p atomic orbitals.
The bond angle in ozone is .

P13.4 Are the localized bonding orbitals in Equation (13.13)
defined by

orthogonal? Answer this question by evaluating the integral
.

P13.5 Use the method described in Example Problem 13.3 to

1(s¿)*s– dt

 s– = 2c1fH1sB + ac2fBe2s +
c1c4

c3
fBe2pz

b
 s¿ = 2c1fH1sA + ac2fBe2s -

c1c4

c3
fBe2pz

b and

116.8°

NH-
2LiH+

2

` a c

b d
` = ` a ga + c

b gb + d
`

P13.7 Show that two of the set of four equivalent orbitals
appropriate for sp3 hybridization,

are orthogonal.

P13.8 Show that the water hybrid bonding orbitals 
given by andca = 0.55f2pz

+ 0.71f2px
- 0.45f2s

cb =
1

2
(-f2s - f2px

- f2py
+ f2pz

)

 ca =
1

2
(-f2s + f2px

+ f2py
+ f2pz

) and

are orthogonal.

P13.9 Predict which of the bent molecules, BH2 or NH2,
should have the larger bond angle on the basis of the Walsh
correlation diagram in Figure 13.11. Explain your answer.

P13.10 In P13.8 you showed that the water hybrid bonding
orbitals are orthogonal. Derive two additional mutually orthog-
onal hybrid orbitals for the lone pairs on oxygen in H2O, each
of which is orthogonal to and , by following these steps:

a. Starting with the following formulas for the lone pair orbitals

,

use symmetry conditions to determine d2 and d4 and to
determine the ratio of d3 to d7 and of d4 to d8.

b. Use the condition that the sum of the squares of the coeffi-
cients over all the hybrid orbitals and lone pair orbitals is 1
to determine the unknown coefficients.

P13.11 Use the Boltzmann distribution to answer parts 
(a) and (b):

a. Calculate the ratio of the number of electrons at the bottom
of the conduction band to those at the top of the valence
band for pure Si at 300. K. The Si band gap is 1.1 eV.

cd = d5f2pz
+ d6f2py

+ d7f2s + d8f2px

cc = d1f2pz
+ d2f2py

+ d3f2s + d4f2px

cbca

cb = 0.55f2pz
- 0.71f2px

- 0.45f2s

show that the sp-hybrid orbitals ca = 1>22(-f2s + f2pz
)

and are oriented apart.

P13.6 Use the formula and the method in
Section 13.2 to derive the formulas ca = 1>22(-f2s + f2pz

)
cos 2u = -a2

180°cb = 1>22(-f2s - f2pz
)

and for two sp-hybrid orbitals
directed apart. Show that these hybrid orbitals are
orthogonal.

180°
cb = 1>22(-f2s - f2pz

)



b. Calculate the ratio of the number of electrons at the
bottom of the conduction band to those at the top of the
dopant band for P-doped Si at 300. K. The top of the
dopant band lies 0.040 eV below the bottom of the Si
conduction band.

Assume for these calculations that the ratio of the degenera-
cies is unity. What can you conclude about the room tempera-
ture conductivity of these two materials on the basis of your
calculations?

P13.12 Use the VSEPR method to predict the structures of
the following:

a. PCl5 b. SO2 c. XeF2 d. XeF6

P13.13 In P13.3, the hybrid bonding orbitals for ozone were
derived. Use the framework described in Section 13.3 to
derive the normalized hybrid lone pair orbital on the central
oxygen in O3 that is derived from 2s and 2p atomic orbitals.
The bond angle in ozone is .

P13.14 Using your results from Problem P13.10, do the
following:

a. Calculate the s and p character of the water lone pair
hybrid orbitals.

b. Show that the lone pair orbitals are orthogonal to each
other and to the hybrid bonding orbitals.

P13.15 Use the VSEPR model to predict the structures of
the following:

a. PF3 b. CO2 c. BrF5 d.

P13.16 The occupied MOs of ammonia are shown next
along with the MO energies. Indicate which AOs are most
important in each MO and indicate the relative phases of the
AOs. Classify the MOs as localized or delocalized, and
bonding, nonbonding or antibonding.

SO2-
3

116.8°
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�423 eV
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�17.1 eV

�17.1 eV

�11.4 eV

�305.56 eV �305.51 eV

�28.3 eV �21.6 eV

�17.6 eV �16.1 eV

�13.8 eV �10.3 eV

P13.17 Predict whether the ground state or the first excited
state of CH2 should have the larger bond angle on the basis of
the Walsh correlation diagram shown in Figure 13.11. Explain
your answer.

P13.18 The occupied MOs of ethene are shown next
along with the MO energies. Indicate which AOs are
most important in each MO and indicate the relative
phases of the AOs. Classify the MOs as localized or delo-
calized, or bonds, and bonding, nonbonding or anti-
bonding.

ps



P13.20 Use the geometrical construction shown in
Example Problem 13.8 to derive the electron MO levels
for cyclobutadiene. What is the total energy of the mole-
cule? How many unpaired electrons will the molecule have?

P13.21 Determine the AO coefficients for the lowest energy
Hückel MO for butadiene.

P13.22 Use the geometrical construction shown in Example
Problem 13.8 to derive the electron MO levels for the
cyclopentadienyl radical. What is the total energy of the mol-
ecule? How many unpaired electrons will the molecule have?

P13.23 The allyl cation has a delocal-
ized network that can be described by the Hückel method.
Derive the MO energy levels of this species and place the
electrons in the levels appropriate for the ground state. Using
the butadiene MOs as an example, sketch what you would
expect the MOs to look like. Classify the MOs as bonding,
antibonding, or nonbonding.

P13.24 Write down and solve the secular determinant for
the system of ethylene in the Hückel model. Determine the
coefficients for the 2pz AOs on each of the carbons and make
a sketch of the MOs. Characterize the MOs as bonding and
antibonding.

p

p

CH2 “CH¬CH+
2

p

p

p

p

p
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�15.6 eV �13.5 eV

�13.5 eV

MO 29 MO 30 MO 31

MO 33 HOMOMO 32

P13.25 Use the geometrical construction shown in Example
Problem 13.8 to derive the energy levels of the cyclohepta-
trienyl cation. What is the total energy of the molecule?
How many unpaired electrons will the molecule have? Would
you expect this species, the neutral species, or the anion to be
aromatic? Justify your answer.

P13.26 One of the low-energy geometries of 
digermane, Ge2H2, is ethene-like. The Lewis-dot 
structure shown is one of three Lewis-dot resonant forms. The
order of the Ge Ge bond has been described as between two
and three. Bond orders above two rely on the lone electrons
participating in bonding. The five highest-energy occupied
valence molecular orbitals are shown next. Classify the MOs
as localized or delocalized, or bonds, and bonding, non-
bonding or antibonding.

ps

¬

p

P13.19 The occupied MOs of hydrogen cyanide are shown
next along with the MO energies. Indicate which AOs are
most important in each MO and indicate the relative phases of
the AOs. Classify the MOs as localized or delocalized, or 
bonds, and bonding, nonbonding or antibonding.

ps

�307 eV�424 eV

�22.0 eV�33.8 eV

P13.27 S–p hybridization on each Ge atom in planar trans-
digermane has been described as sp1.5 for the Ge—Ge sigma
bond and sp1.8 for the Ge—H bond. Suppose that the Ge lone
electron (in terms of Lewis-dot valence electrons) is in an 
spn-hybrid orbital, where n is the hybrid’s p character. The
three in-plane s–p hybrid orbitals on germanium must be nor-
malized and mutually orthogonal. Assume that the molecule
lies in the xz plane with the Ge—Ge bond on the z axis.
Express the hybrid orbitals as linear combinations of the p
and s AOs and calculate the coefficients. Use these values to
calculate n.

P13.28 S–p hybridization on each Ge atom in planar trans-
digermane has been described as sp1.5 for the Ge—Ge sigma
bond and sp1.8 for the Ge—H bond. Calculate the H—Ge—
Ge bond angle based on this information. Note that the 4px
and 4py orbitals are proportional to cos( ) and sin( ), respec-
tively and use the coefficients determined in Problem P13.27
to solve this problem.

uu

Ge Ge
H

H



P13.30 The following diagram shows the energies of
valence molecular orbitals of boron trifluoride. The energies
of three occupied orbitals (the a2 HOMO and doubly
degenerate e orbitals) are shown. The energy of the unoccu-
pied LUMO is also shown. The angle on the abscissa is the 
F—B—F bond angle. Based on the MO diagram, is boron
trifluoride planar or pyramidal? Which structure does the
VSEPR model predict?

P13.29 The energy of the occupied valence MOs of H2S are
shown as a function of the H—S—H bond angle. Compared to
the analogous diagram, Figure 13.11, for H2O, the 2a1 MO
energy decreases more as the bond angle approaches 90 degrees.
Explain, based on the MO diagram, why H2S is bent, and why its
bond angle (92°) is smaller than the bond angle in water.

For comparison, also offer a bond-angle explanation based
on hybridization rather than on the MO diagram.
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P13.31 The density of states (DOS) of pyrite, crystalline
FeS2, as calculated by Eyert, et al., Physical Review B 55
(6350): 1998 is shown next. The highest occupied energy
level corresponds to zero energy. Based on the DOS, is pyrite
an insulator, a conductor, or a semiconductor? Also, how
does the DOS support the localized-bonding view that some
iron valence orbitals are non-bonding?

Computational Problems

More detailed instructions on carrying out these calculations
using Spartan Physical Chemistry are found on the book web-
site at www.masteringchemistry.com.

C13.1 Calculate the bond angles in NH3 and in NF3 using
the density functional method with the B3LYP functional and
the 6-31G* basis set. Compare your result with literature
values. Do your results agree with the predictions of the
VSEPR model and Bent’s rule?

C13.2 Calculate the bond angles in H2O and in H2S using the
density functional method with the B3LYP functional and the
6-31G* basis set. Compare your result with literature values.
Do your results agree with the predictions of the VSEPR model
and Bent’s rule?

C13.3 Calculate the bond angle in ClO2 using the density
functional method with the B3LYP functional and the 
6-31G* basis set. Compare your result with literature 
values. Does your result agree with the predictions of the
VSEPR model?
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C13.9 How essential is coplanarity to conjugation? Answer
this question by calculating the total energy of butadiene
using the Hartree–Fock method and the 6-31G* basis set for
dihedral angles of 0, 45, and 90 degrees. Calculate the energy
difference in kJ mol–1 between planar 1,3-butadiene and the
two twisted structures. Which costs more energy, to rotate by
45° around the C1—C2 or the C2—/C3 bond? Why?

C13.10 Calculate the equilibrium structures for singlet and
triplet formaldehyde using the density functional method with
the B3LYP functional and the 6-311+G** basis set. Choose
(a) planar and (b) pyramidal starting geometries. Calculate
vibrational frequencies for both starting geometries. Are any
of the frequencies imaginary? Explain your results.

C13.11 Calculate the equilibrium structure for Cl2O using
the density functional method with the B3LYP functional
and the 6-31G* basis set. Obtain an infrared spectrum and
activate the normal modes. What are the frequencies corre-
sponding to the symmetric stretch, the asymmetric stretch,
and the bending modes?

C13.12 Calculate the equilibrium structures for PF3 using
the density functional method with the B3LYP functional
and the 6-31G* basis set. Obtain an infrared spectrum and
activate the normal modes. What are the frequencies
corresponding to the symmetric stretch, the symmetric
deformation, the degenerate stretch, and the degenerate
deformation modes?

C13.13 Calculate the equilibrium structures for C2H2 using
the density functional method with the B3LYP functional and the
6-31G* basis set. Obtain an infrared spectrum and activate 
the normal modes. What are the frequencies corresponding to the
symmetric stretch, the antisymmetric stretch, the

stretch, and the two bending modes?

C13.14 Calculate the structure of using the
density functional method with the B3LYP functional and the
6-31G* basis set. Which is more electronegative, the Cl or the
cyanide group? What result of the calculation did you use to
answer this question?

N‚C¬Cl

C¬C
C¬HC¬H

C13.4 SiF4 has four ligands and one lone pair on the central
S atom. Which of the following structures do you expect to be
the equilibrium form based on a calculation using the density
functional method with the B3LYP functional and the 6-31G*
basis set? In (a) the structure is a trigonal bipyramid, (b) is a
square planar structure, and (c) is a see-saw structure.

C13.5 Calculate the bond angles in singlet BeH2, doublet
NH2, and doublet BH2 using the Hartree–Fock method and 
the 6-31G* basis set. Explain your results using the Walsh
diagram of Figure 13.11.

C13.6 Calculate the bond angle in singlet using the
Hartree–Fock method and the 6-31G* basis set. Can you
explain your results using the Walsh diagram of Figure 13.11?
(Hint: Determine the calculated bond lengths in the

molecule.)

C13.7 Calculate the bond angle in singlet and triplet CH2
and doublet using the Hartree–Fock method and the
6-31G* basis set. Can you explain your results using the
Walsh diagram of Figure 13.11?

C13.8 Calculate the bond angle in singlet , doublet
NH2, and singlet using the Hartree–Fock method and
the 6-31G* basis set. Can you explain your results using the
Walsh diagram of Figure 13.11?

NH2
-

NH2
+

CH2
+

LiH2
+

LiH2
+

(a) (b)

(c)
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Electronic
Spectroscopy

14.1 The Energy of Electronic Transitions
In Chapter 8 spectroscopy and the basic concepts relevant to transitions between energy
levels of a molecule were introduced. Recall that the energy spacing between rotational
levels is much less than the spacing between vibrational levels. Extending this compari-
son to electronic states, . Whereas rotational
and vibrational transitions are induced by microwave and infrared radiation, electronic
transitions are induced by visible and ultraviolet (UV) radiation. Just as an absorption
spectrum in the infrared exhibits both rotational and vibrational transitions, an absorp-
tion spectrum in the visible and UV range exhibits a number of electronic transitions,
and a specific electronic transition will contain vibrational and rotational fine structure.

Electronic excitations are responsible for giving color to the objects we observe
because the human eye is sensitive to light only in the limited range of wavelengths in
which some electronic transitions occur. Either the reflected or the transmitted light is
observed, depending on whether the object is opaque or transparent. Transmitted and
reflected light complement the absorbed light. For example, a leaf is green because
chlorophyll absorbs in the blue (450 nm) and red (650 nm) regions of the visible light
spectrum. Electronic excitations can be detected (at a limited resolution) without the
aid of a spectrometer because the human eye is a very sensitive detector of radiation.

¢Eelectronic W ¢Evibrational 7 ¢Erotational
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Absorption of visible or ultraviolet light can lead to transitions between

the ground state and excited electronic states of atoms and molecules.

Vibrational transitions that occur together with electronic transitions are

governed by the Franck-Condon factors rather than the dipole

selection rule. The excited state can relax to the ground state through a

combination of fluorescence, internal conversion, intersystem crossing,

and phosphorescence. Fluorescence is very useful in analytical chemistry

and can detect as little as of a strongly fluorescing

species. Ultraviolet photoemission can be used to obtain information

about the orbital energies of molecules. Linear and circular dichroism

spectroscopy can be used to determine the secondary and tertiary struc-

ture of biomolecules in solution.
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At a wavelength of 500 nm, the human eye can detect one part in 106 of the intensity of
sunlight on a bright day. This corresponds to as few as 500 photons per second incident
on an area of 1 mm2.

Because the electronic spectroscopy of a molecule is directly linked to its energy
levels, which are in turn determined by its structure and chemical composition, UV-visible
spectroscopy provides a very useful qualitative tool for identifying molecules. In addi-
tion, for a given molecule, electronic spectroscopy can be used to determine energy
levels in molecules. However, the UV and visible photons that initiate an electronic exci-
tation perturb a molecule far more than rotational or vibrational excitation. For example,
the bond length in electronically excited states of O2 is as much as 30% longer than that
in the ground state. Whereas in its ground state, formaldehyde is a planar molecule, it is
pyramidal in its lowest two excited states. As might be expected from such changes in
geometry, the chemical reactivity of excited-state species can be quite different from the
reactivity of the ground-state molecule.

14.2Molecular Term Symbols
We begin our discussion of electronic excitations by introducing molecular term sym-
bols, which describe the electronic states of molecules in the same way that atomic
term symbols describe atomic electronic states. The following discussion is restricted
to diatomic molecules. A quantitative discussion of electronic spectroscopy requires a
knowledge of molecular term symbols. However, electronic spectroscopy can be dis-
cussed at a qualitative level without discussing molecular term symbols. To do so,
move directly to Section 14.4.

The component of and along the molecular axis (ML and MS), which is chosen
to be the z axis, and S are the only good quantum numbers (see Section 11.1) by which
to specify individual states in diatomic molecules. Therefore, term symbols for mole-
cules are defined using these quantities. As for atoms, only unfilled subshells need to
be considered to obtain molecular term symbols. As discussed in Chapter 12, in the
first and second row diatomic molecules, the molecular orbitals (MOs) are either of the

or type. Just as for atoms, the quantum numbers mli and msi can be added to gener-
ate ML and MS for the molecule because they are scalars rather than vectors. The addition
process is described by the equations

(14.1)

in which are the z components of orbital and spin angular momentum for
the ith electron in its molecular orbital and the summation is over unfilled subshells.
The molecular orbitals of diatomic molecules have either symmetry, in which the
orbital is unchanged by rotation around the molecular axis, or symmetry, in which
the MO has a nodal plane passing through the molecular axis. For a orbital, ,
and for a orbital, . Note that the value does not occur for a MO
because this value corresponds to the 2pz AO, which forms a MO. MS is calculated
from the individual spin angular momentum vector components in the
same way for molecules as for atoms (see Chapter 11). The allowed values of the quan-
tum numbers S and L can be calculated from to
generate a molecular term symbol of the form , where . For mole-
cules, the following symbols are used for different values to avoid confusion with
atomic terms:

(14.2)

A g or u right subscript is added to the molecular term symbol for homonuclear
diatomics as illustrated in Example Problem 14.1. Because heteronuclear diatomics do
not possess an inversion center, they do not have g or u symmetry. This formalism will
become clearer with a few examples.

¶ 0 1 2 3

Symbol © ß ¢ £

¶
¶ = ƒ ML ƒ2S+1¶
and -S … MS … S-L … ML … L

msi = ;1>2s

pml = 0ml = ;1p

ml = 0s

p
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mli and msi

ML = a
n

i=1
mli and MS = a

n

i=1
msi
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EXAMPLE PROBLEM 14.1

What is the molecular term symbol for the H2 molecule in its ground state? In its first
two excited states?

Solution

In the ground state, the H2 molecule is described by the configuration. For 
both electrons, . Therefore, , and we are dealing with a term.
Because of the Pauli principle, one electron has and the other has

. Therefore, and it follows that . It remains to be deter-
mined whether the MO has g or u symmetry. Each term in the antisymmetrized
MO is of the form (see Section 12.6). Recall that the products of two
even or odd functions is even, and the product of an odd and an even function is odd.
Therefore, the product of two g (or two u) functions is a g function, and the ground
state of the H2 molecule is .

After promotion of an electron, the configuration is , and because the
electrons are in separate MOs, this configuration leads to both singlet states and triplet
states. Again, because for both electrons, we are dealing with a term. Because
the two electrons are in different MOs, for each electron, giving ms values of

, 0 (twice), and . This is consistent with and . Because the product of a
u and a g function is a u function, both singlet and triplet states are u functions. Therefore,
the first two excited states are described by the terms and . Using Hund’s first
rule, we conclude that the triplet state is lower in energy than the singlet state.

In a more complete description, an additional subscript or is added to 
terms only, depending on whether the antisymmetrized molecular wave function
changes sign or remains unchanged in a reflection through any plane con-
taining the molecular axis. The assignment of or to the terms is an advanced
topic that is discussed in Supplemental Section 14.14. For our purposes, the following
guidelines are sufficient for considering the ground state of second row homonuclear
diatomic molecules:

• If all MOs are filled, applies.

• If all partially filled MOs have symmetry, applies.

• For partially filled MOs of symmetry (for example, B2 and O2), if terms arise,
the triplet state is associated with , and the singlet state is associated with .

These guidelines do not apply to excited states. We conclude that the term correspon-
ding to the ground-state configuration of O2 (see Figure 12.18) is designated by

. The other terms that arise from the ground-state configuration are discussed in
Example Problem 14.2.

EXAMPLE PROBLEM 14.2

Determine the possible molecular terms for O2, which has the following configuration:

Solution

Only the last two electrons contribute to nonzero net values of ML and MS because the
other subshells are filled. The various possibilities for combining the orbital and spin
angular momenta of these two electrons in a way consistent with the Pauli principle
are given in the following table. The values are determined as discussed for atomic
terms in Chapter 11. Because the first two entries in the table belong to a 
term. Because for both entries, it is a term. Of the remaining four entries,
two have , corresponding to a triplet term. One of the two other entries with

must also belong to this term. Because for all four entries, it is a 
term. The remaining entry corresponds to a term.1©

3©ML = 0MS = 0
ƒ MS ƒ = 1

1¢MS = 0
¢ML … L,

¶

(1sg)2(1s*
u)2(2sg)2(2s*

u)2(3sg)2(1pu)2(1pu)2(1p*
g)1(1p*

g)1

3©-
g

(p*)2

+-
©p

+s

+

-+
(+)(-)

©-+

1©u
3©u

S = 0S = 1+1-1
ms = ;1>2 ©ml = 0

(1sg)1(1s*
u)1

1©g

sg * sg

S = 0MS = 0ms = -1>2 ms = +1>2 ©¶ = 0ml = 0
(1sg)2



The next task is the assignment of the g or u label to these molecular terms.
Because both of the electrons are in an MO of g symmetry, the overall symmetry of
the term will be g in all cases.

The and symbols are assigned in Supplemental Section 14.14. We show there
that the singlet term is and the triplet term is . By Hund’s first rule, the 3©-

g
3©-

g
1©+

g

-+
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ml1 ml2 ML = ml1 + ml2 ms1 ms2 MS = ms1 + ms2 Term

1
-1

1
-1

2
-2 +1>2+1>2

-1>2-1>2 0
0 r  1¢

1
1 -1

-1 0
0 -1>2+1>2

-1>2+1>2 1
-1 r  3©

1
1 -1

-1 0
0 -1>2+1>2

+1>2-1>2 0
0 r  1©, 3©

TABLE 14.1 Terms for Ground-State Second Row Diatomics

Molecule Electron Configuration Ground-
State Term

H+
2 (1sg)1 2©+

g

H2 (1sg)2 1©+
g

He+
2 (1sg)2(1s*

u)1 2©+
u

Li2 (1sg)2(1s*
u)2(2sg)2 1©+

g

B2 (1sg)2(1s*
u)2(2sg)2(2s*

u)2(1pu)1(1pu)1 3©-
g

C2 (1sg)2(1s*
u)2(2sg)2(2s*

u)2(1pu)2(1pu)2 1©+
g

N+
2 (1sg)2 (1su

*)2 (2sg)2 (2su
*)2 (1pu)2 (1pu)2 (3sg)1 2©+

g

N2 (1sg)2(1s*
u)2(2sg)2(2s*

u)2(1pu)2(1pu)2(3sg)2 1©+
g

O+
2 (1sg)2(1s*

u)2(2sg)2(2s*
u)2(3sg)2(1pu)2(1pu)2(1p*

g)1 2ßg

O2 (1sg)2(1s*
u)2(2sg)2(2s*

u)2(3sg)2(1pu)2(1pu)2(1p*
g)1(1p*

g)1 3©-
g

F2 (1sg)2(1s*
u)2(2sg)2(2s*

u)2(3sg)2(1pu)2(1pu)2(1p*
g)2(1p*

g)2 1©+
g

term is lowest in energy and is the ground state. Experimentally, the and terms
are found to lie 0.98 and 1.62 eV higher in energy, respectively, than the ground state.

In terms of arrows indicating the spin orientations, the allowed combinations of ml
and ms in the table can be represented in a shorthand notation by

Note that this notation with arrows pointing up and down to indicate and spins is
inadequate because it is not possible to represent the different values of ml1 and ml2.

On the basis of this discussion, the molecular configuration and the ground-state
terms for the first row homonuclear diatomic molecules are listed in Table 14.1. The
procedure for heteronuclear diatomics is similar, but it differs in that the numbering of
the MOs is different and the g and u symmetries do not apply.

ba

f C

     
(1sg) 

2  (1s*
u)2  (2sg)2  (2s*

u)2  (3sg)2  (1pu)2  (1pu)2  (1p*
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(c T) (c T) (c T)  (c T) (c T) (c T)  (c T)   (c)   (c)

(c T) (c T) (c T)  (c T) (c T) (c T)  (c T)   (c)   (T)

                                                      +
(c T) (c T) (c T)  (c T) (c T) (c T)  (c T)   (T)   (c)

(c T) (c T) (c T)  (c T) (c T) (c T)  (c T)   (T)   (T)

S v  3© -
g

(c T) (c T) (c T)  (c T) (c T) (c T)  (c T)   (c)   (T) 1©+
g, 1¢g
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g)1

1©+
g
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14.3 Transitions between Electronic States
of Diatomic Molecules

Diatomic molecules have the most easily interpretable electronic spectra because the
spacing between the various rotational-vibrational-electronic states is sufficiently
large to allow individual states to be resolved. Potential energy curves for the five
lowest lying bound states of O2 are shown in Figure 14.1. Vibrational energy levels
are indicated schematically in the figure, but rotational levels are not shown. Note
that the lowest four states all dissociate to give two ground-state 3P oxygen atoms,
whereas the highest energy state shown dissociates to give one 3P and one 1D oxygen
atom. The letter X before indicates that the term symbol refers to the ground
state. Electronic states of higher energy are designated by A, B, C, if they have
the same multiplicity, as the ground state, and a, b, c, if they have a dif-
ferent multiplicity.

The bond length of excited-state molecules is generally greater and the binding
energy generally less than that for the ground state. This is the case because the excited
states generally have a greater antibonding character than the ground states. The
decrease in bond order leads to a smaller bond energy, a larger bond length, and a lower
vibrational frequency for the excited-state species. You will address the fact that the
bond lengths for the first two excited states are similar to that for the ground state in the
end-of-chapter questions.

Although a symbol such as completely describes the quantum state for a
ground-state O2 molecule, it is also useful to associate a molecular configuration with
the state. Starting with a configuration makes it easier to visualize a transition in terms
of promoting an electron from an occupied to an unoccupied level. To what configura-
tions do the excited states shown in Figure 14.1 correspond? The , , anda1¢gX3©-

g

3©-
g

Á2S + 1,
Á

3©-
g

Bond length

E
ne

rg
y

B3�u
�
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O(3P)�O(1D)

FIGURE 14.1
Potential energy curves for the ground
state of O2 and for the four lowest excited
states. The spectroscopic designation of
the states is explained in the text.
Horizontal lines indicate vibrational levels
for each state.

as was shown in Example Problem 14.2. The and states are associated
with the configuration.
Keep in mind that although a molecular term can be associated with a configuration, in
general, several molecular terms are generated from the same configuration.

Spectroscopy involves transitions between molecular states. What selection rules
govern transitions between different electronic states? The selection rules for molecular
electronic transitions are most well defined for lower molecular weight diatomic mole-
cules in which spin-orbit coupling is not important. This is the case if the atomic number
of the atoms, Z, is less than 40. For these molecules, the selection rules are

(14.3)

Recall that is the component of the total orbital angular momentum along 
the molecular axis. The value applies to a transition, and

applies to transitions. Further selection rules are associated with
the and g u parities. For homonuclear diatomics, transitions are
allowed, but and transitions are forbidden. The transitions 
and are allowed, but transitions are forbidden. All of these
selection rules can be derived by calculating the transition dipole element defined
in Section 8.5.

With these selection rules in mind, we consider the possible transitions among the
states shown in Figure 14.1 for O2. The and transi-X3© -

g : b1© +
gX3© -

g : a1¢g

©+4 ©-©+4 ©+
©-4 ©-g4 gu4 u

u4 g>+>- ©4 ß¢¶ = ;1
©4 ©¢¶ = 0

L¶

¢¶ = 0, ;1, and ¢S = 0

(1sg)2(1s*
u)2(2sg)2(2s*

u)2(3sg)2(1pu)1(1pu)2(1p*
g)1(1p*

g)2
B3©-

uA3©+
u

tions are forbidden because of the selection rule and because transi-
tions are forbidden. The transition is forbidden because 
transitions are forbidden. Therefore, the lowest allowed transition originating from
the ground state is . Absorption from the ground state into variousX3© -

g : B3© -
u

©+4 ©-X3© -
g : A3© +

u

g4 g¢S = 0

vibrational levels of the excited state occurs in a band between 175 and 
200 nm wavelengths. An interesting consequence of these selection rules is that if
transitions from the ground state to the first two excited states were allowed, O2
would absorb light in the visible part of the spectrum, and Earth’s atmosphere would
not be transparent.

B3© -
u

states all belong to the ground-state configuration (1sg)2(1s*
u)2(2sg)2(2s*

u)2b1©+
g

but are associated with different ML and MS values(3sg)2(1pu)2(1pu)2(1p*
g)1(1p*

g)1



If sufficient energy is taken up by the molecule, dissociation can occur through the
pathway

(14.4)

The maximum wavelength consistent with this reaction is 242 nm. This reaction is an
example of a photodissociation reaction. This particular reaction is of great impor-
tance in the stratosphere because it is the only significant pathway for forming the
atomic oxygen needed for ozone production through the reaction

(14.5)

where M designates a gas-phase spectator species that takes up energy released in the
O3 formation reaction. Because O3 absorbs UV radiation strongly over the 220 to 
350 nm range, it plays a vital role in filtering out UV radiation from the sunlight inci-
dent on the planet. The ozone layer located in the stratosphere 10–50 km above Earth’s
surface absorbs 97–99% of the sun’s high frequency ultraviolet light, light that is poten-
tially damaging to life on Earth.

14.4
The Vibrational Fine Structure of
Electronic Transitions in Diatomic
Molecules

Each of the molecular bound states shown in Figure 14.1 has well-defined vibra-
tional and rotational energy levels. As discussed in Chapter 8, changes in the vibra-
tional state can occur together with a change in the rotational state. Similarly, the
vibrational and rotational quantum numbers can change during electronic excitation.
We next discuss the vibrational excitation and de-excitation associated with elec-
tronic transitions but do not discuss the associated rotational transitions. We will see
that the selection rule for vibrational transitions within a given electronic
state does not hold for transitions between two electronic states.

What determines in a vibrational transition between electronic states? This
question can be answered by looking more closely at the Born–Oppenheimer
approximation, which was introduced in Chapter 12. This approximation stated
mathematically says that the total wave function for the molecule can be factored into
two parts. The part that depends only on the position of the nuclei is
associated with vibration of the molecule. The second part depends only on the posi-
tion of the electrons at a fixed position of all the nuclei. This part
describes electron “motion” in the molecule:

(14.6)

As discussed in Section 8.5, the spectral line corresponding to an electronic transition
has a measurable intensity only if the value of the transition dipole

moment is different from zero:

(14.7)

The superscripts and subscripts f and i refer to the final and initial states in the transi-
tion. In Equation (14.7), the dipole moment operator is given by

(14.8)

where the summation is over the positions of the electrons.
Because the total wave function can be written as a product of electronic and vibra-

tional parts, Equation (14.7) becomes

mN = -ea
n

j=1
rj

mN

mfi = 3c
*
f(r1, Á , rn, R1, Á , Rm)mN  ci (r1, Á , rn, R1, Á , Rm) dt Z 0

(initial: final)

* fvibrational1R1, Á , Rm2
c1r1, Á , rn, R1, Á , Rm2 = celectronic1r1, Á , rn, Rfixed

1 , Á , Rfixed
m 2

(r1, Á , rn)

(R1, Á , Rm)

¢n

¢n = ;1

O # +  O2 + M: O3 + M*

O2 + hn: 2O #
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mfi = 3(fvibrational
f (R1, Á , Rm))*fvibrational

i (R1, Á , Rm) dt

* 31c
electronic
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1 , Á , Rfixed
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m 2 dt

= S3c
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FIGURE 14.2
The relation between energy and bond
length is shown for two electronic states.
Only the lowest vibrational energy levels
and the corresponding wave functions are
shown. The vertical line shows the most
probable transition predicted by the
Franck-Condon principle. The inset shows
the relative intensities of different vibra-
tional lines in an absorption spectrum for
the potential energy curves shown.

(14.9)

Note that the first of the two product integrals in Equation (14.9) represents the overlap S
between the vibrational wave functions in the ground and excited states. The magnitude
of the square of this integral for a given transition is known as the Franck-Condon
factor and is a measure of the expected intensity of an electronic transition. The Franck-
Condon factor replaces the selection rule obtained for pure vibrational
transitions derived in Section 8.4 as a criterion for the intensity of a transition:

(14.10)

The Franck-Condon principle states that transitions between electronic states corre-
spond to vertical lines on an energy versus internuclear distance diagram. The basis of
this principle is that electronic transitions occur on a timescale that is very short com-
pared to the vibrational period of a molecule. Therefore, the atoms do not move during
the transition. As Equation (14.10) shows, the intensity of a vibrational-electronic transi-
tion is governed by the overlap between the final and initial vibrational wave functions at
fixed values of the internuclear distances. Is it necessary to consider all vibrational levels in
the ground state as an initial state for an electronic transition? As discussed in Chapter 8,
nearly all of the molecules in the ground state have the vibrational quantum number

, for which the maximum amplitude of the wave function is at the equilibrium bond
length. As shown in Figure 14.2, vertical transitions predominantly occur from this
ground vibrational state to several vibrational states in the upper electronic state.

How does the Franck-Condon principle determine the n values in the excited state
that give the most intense spectral lines? The most intense electronic transitions are to
vibrational levels in the upper electronic state that have the largest overlap with the
ground vibrational level in the lower electronic state. As Figure 7.10 shows, the vibra-
tional wave functions have their largest amplitude near the R value at which the energy
level meets the potential curve, because this corresponds to the classical turning point.
For the example shown in Figure 14.2, the overlap is
greatest between the vibrational state of the ground electronic state and the

vibrational state of the excited electronic state. Although this transition has the
maximum overlap and generates the most intense spectral line, other states close in
energy to the most probable state will also give rise to spectral lines. Their intensity is
lower because S is smaller.

The fact that a number of vibrational transitions are observed in an electronic transi-
tion is very useful in obtaining detailed information about both the ground electronic state
potential energy surface and that of the electronic state to which the transition occurs. For
example, vibrational transitions are observed in the electronic spectra of O2 and N2,
although neither of these molecules absorbs energy in the infrared. Because multiple
vibrational peaks are often observed in electronic spectra, the bond strength of the mole-
cule in the excited states can be determined by fitting the observed frequencies of the
transitions to a model potential such as the Morse potential discussed in Section 8.3.
Because the excited state can also correspond to a photodissociation product, elec-
tronic spectroscopy can be used to determine the vibrational force constant and bond
energy of highly reactive species such as the CN radical that cannot be studied with
conventional IR absorption techniques.

For the example shown in Figure 14.2, the molecule will exhibit a discrete energy
spectrum in the visible or UV region of the spectrum. However, for some conditions the
electronic absorption spectrum for a diatomic molecule is continuous. A continuous spec-
trum is observed if the photon energy is sufficiently high that excitation occurs to an
unbound region of an excited state. This is illustrated in Figure 14.3. In this case, a discrete

n = 4
n = 0

ƒ1(fvibrational
f )*fvibrational

i dt ƒ

n = 0

S2 = ` 3(fvibrational
f )*fvibrational

i dt ` 2
¢n = ;1



energy spectrum is observed for low photon energy and a continuous energy spectrum is
observed for incident light frequencies , where E corresponds to the energy of the
transition to the highest bound state in the excited state potential. A purely continuous
energy spectrum at all energies is observed if the excited state is a nonbinding state, such
as that corresponding to the first excited state for .

The preceding discussion briefly summarizes the most important aspects of the
electronic spectroscopy of diatomic molecules. In general, the vibrational energy levels
for these molecules are sufficiently far apart that individual transitions can be resolved.
We next consider polyatomic molecules, for which this is not usually the case.

14.5 UV-Visible Light Absorption 
in Polyatomic Molecules

Many rotational and vibrational transitions are possible if an electronic transition
occurs in polyatomic molecules. Large molecules have large moments of inertia, and
as Equation (8.15) shows, this leads to closely spaced rotational energy levels. A
large molecule may have rotational levels in an interval of . For this
reason, individual spectral lines overlap so that broad bands are often observed in
UV-visible absorption spectroscopy. This is schematically indicated in Figure 14.4.
An electronic transition in an atom gives a sharp line. An electronic transition in a
diatomic molecule has additional structure resulting from vibrational and rotational
transitions that can often be resolved into individual peaks. However, the many rota-
tional and vibrational transitions possible in a polyatomic molecule generally over-
lap, giving rise to a broad, nearly featureless band. This overlap makes it difficult to
extract information on the initial and final states involved in an electronic transition
in polyatomic molecules. In addition, there are no good angular momentum quantum
numbers for triatomic and larger molecules. Therefore, the main selection rule that
applies is , together with selection rules based on the symmetry of the initial
and final states.

The number of transitions observed can be reduced dramatically by obtaining spec-
tra at low temperatures. Low-temperature spectra for individual molecules can be
obtained either by embedding the molecule of interest in a solid rare gas matrix at cryo-
genic temperatures or by expanding gaseous He containing the molecules of interest in
dilute concentration through a nozzle into a vacuum. The He gas as well as the mole-
cules of interest are cooled to very low temperatures in the expansion. An example of the
elimination of spectral congestion through such a gas expansion is shown in Figure 14.5.
The temperature of 9 K is reached by simply expanding the 300 K gas mixture into a
vacuum using a molecular beam apparatus.

¢S = 0

1 cm-1'1000

H+
2

n 7 E>h
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FIGURE 14.3
For absorption from the ground vibra-
tional state of the ground electronic state
to the excited electronic state, a continu-
ous energy spectrum will be observed for
sufficiently high photon energy. A dis-
crete energy spectrum is observed for 
an incident light frequency . 
A continuous spectrum is observed for
higher frequencies.
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FIGURE 14.4
The intensity of absorption in a small part of the UV-visible range of the electromagnetic spectrum
is shown schematically for (a) an atom, (b) a diatomic molecule, and (c) a polyatomic molecule.
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The concept of chromophores is particularly useful for discussing the electronic spec-
troscopy of polyatomic molecules. As discussed in Chapter 8, characteristic vibrational
frequencies are associated with neighboring atoms in larger molecules. Similarly, the
absorption of UV and visible light in larger molecules can be understood by visualizing the
molecule as a system of coupled entities, such as or , that are
called chromophores. A chromophore is a chemical entity embedded within a molecule
that absorbs radiation at nearly the same wavelength in different molecules. Common
chromophores in electronic spectroscopy are or groups.
Each chromophore has one or several characteristic absorption frequencies in the UV, and
the UV absorption spectrum of the molecule, to a first approximation, can be thought of as
arising from the sum of the absorption spectra of its chromophores. The wavelengths and
absorption strengths associated with specific chromophores are discussed in Section 14.6.

As discussed in Chapter 13, the electronic structure of molecules can be viewed in
either a localized or delocalized framework. In viewing the transitions involved in elec-
tronic spectroscopy, it is often useful to work from a localized bonding model. However,
electrons in radicals and those in delocalized bonds in conjugated and aromatic mole-
cules need to be described in a delocalized rather than a localized binding model.

What transitions are most likely to be observed in electronic spectroscopy?
Electronic excitation involves the promotion of an electron from an occupied MO to a
higher energy unfilled or partially filled MO. Consider the electronic ground-state con-
figuration of formaldehyde, H2CO, and those of its lowest lying electronically excited
states. In a localized bonding model, the carbon 2s and 2p electrons combine to form
sp2- hybrid orbitals on the carbon atom as shown in Figure 14.6.

We write the ground-state configuration in the localized orbital notation
to emphasize that the

1s and 2s electrons on oxygen and the 1s electrons on carbon remain localized on the
atoms and are not involved in the bonding. There is also an electron lone pair in a non-
bonding MO, designated by nO, localized on the oxygen atom. Bonding orbitals are pri-
marily localized on adjacent or atoms as indicated in the configuration.
The bonds and one of the bonds are bonds, and the remaining 
bond is a bond.

What changes in the occupation of the MO energy levels can be associated with the
electronic transitions observed for formaldehyde? To answer this question, it is useful to
generalize the results obtained for MO formation in diatomic molecules to the CO chro-
mophore in formaldehyde. In a simplified picture of this molecule, we expect that the 
orbital formed primarily from the 2pz orbital on O and one of the sp2-hybrid orbitals on C
has the lowest energy and that the antibonding combination of the same orbitals has the
highest energy. The orbital formed from the 2p levels on each atom has the next lowest
energy, and the antibonding combination has the next highest energy. The lone pair
electrons that occupy the 2p orbital on O have an energy intermediate between the and

levels. The very approximate molecular orbital energy diagram shown in Figure 14.7 is
sufficient to discuss the transitions that formaldehyde undergoes in the UV-visible region.

From the MO energy diagram, we conclude that the nonbonding orbital on O derived
from the 2p AO is the HOMO, and the empty orbital is the LUMO. The lowest excited
state is reached by promoting an electron from the to the orbital and is called an

transition. The resulting state is associated with the configuration
. The next excited state(1sO)2(1sC)2(2sO)2(sCH)2(s¿CH)2(sCO)2(pCO)2(nO)1(p*

CO)1
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FIGURE 14.5
A small portion of the electronic absorp-
tion spectrum of methanol is shown at 300
and 9 K using expansion of a dilute mix-
ture of methanol in He through a nozzle
into a vacuum. At 300 K, the molecule
absorbs almost everywhere in the fre-
quency range. At 9 K, very few rotational
and vibrational states are populated, and
individual spectral features corresponding
to rotational fine structure are observed.
Source: Reprinted from P. Carrick, et al., “The
OH Stretching Fundamental of Methanol,”
Journal of Molecular Structure 223: 171–184,
(June 1990), Copyright 1990, with permission
from Elsevier.
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FIGURE 14.6
Valence bond picture of the formaldehyde
molecule. The solid lines indicate 

bonds and the dashed lines indicate a 
bond. The nonequivalent lone pairs on

oxygen are also shown.
p

s

is reached by promoting an electron from the MO and is called a
transition. The resulting state is associated with the configuration 

.
However, as was the case for atoms, these configurations do not completely

describe the quantum states because the alignment of the spins in the unfilled orbitals is
not specified by the configuration. Because each of the excited-state configurations just
listed has two half-filled MOs, both singlet and triplet states arise from each configura-
tion. The relative energy of these states is indicated in Figure 14.8. Just as for diatomic
molecules, for the same configuration, triplet states lie lower in energy than singlet
states. The difference in energy between the singlet and triplet states is specific to a
molecule but typically lies between 2 and 10 eV.

(1sC)2(2sO)2(sCH)2(s¿CH)2(sCO)2(pCO)1(nO)2(p*
CO)1

(1sO)2P: P*
pCO to the p*

CO



The energy difference between the initial and final states determines the frequency of
the spectral line. Although large variations can occur among different molecules for a
given type of transition, generally the energy increases in the sequence , ,
and . The transitions require multiple bonds, and occur in alkenes,
alkynes, and aromatic compounds. The transitions require both a nonbonding
electron pair and multiple bonds and occur in molecules containing carbonyls, thiocar-
bonyls, nitro, azo, and imine groups and in unsaturated halocarbons. The 
transitions are seen in many molecules, particularly in alkanes, in which none of the
other transitions is possible.

14.6 Transitions among the Ground 
and Excited States

We next generalize the preceding discussion for formaldehyde to an arbitrary mole-
cule. What transitions can take place among ground and excited states? Consider the
energy levels for such a molecule shown schematically in Figure 14.9. The ground
state is, in general, a singlet state, and the excited states can be either a singlet or triplet
state. We include only one excited singlet and triplet state in addition to the ground state
and consider the possible transitions among these states. The restriction is justified
because an initial excitation to higher-lying states will rapidly decay to the lowest-
lying state of the same multiplicity through a process called internal conversion,
which is discussed later. The diagram also includes vibrational levels associated with
each of the electronic levels. Rotational levels are omitted to simplify the diagram.
The fundamental rule governing transitions is that all transitions must conserve energy
and angular momentum. For transitions within a molecule, this condition can be satisfied
by transferring energy between electronic, vibrational, and rotational states. Alternatively,
energy can be conserved by transferring energy between a molecule and its surroundings.

Four types of transitions are indicated in Figure 14.9. Radiative transitions, in which
a photon is absorbed or emitted, are indicated by solid lines. Nonradiative transitions, in

S: S*

n: p*
p: p*s: s*

p: p*n: p*
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alignment of the unpaired spins for the states involved in the most important transitions are also
shown. The energy separation between the singlet and triplet states is not to scale in this figure.



14.7 SINGLET–SINGLET TRANSITIONS: ABSORPTION AND FLUORESCENCE 319

which energy is transferred between different degrees of freedom of a molecule or to the
surroundings, are indicated by wavy vertical lines. Internal conversion occurs without a
change in energy between states of the same multiplicity and is shown as a horizontal
wavy line. An intersystem crossing differs from an internal conversion in that a change
in multiplicity occurs. The pathway by which a molecule in an excited state
decays to the ground state depends on the rates of a number of competing processes. In
the next two sections, these processes are discussed individually.

14.7 Singlet–Singlet Transitions: Absorption
and Fluorescence

As discussed in Section 14.5, an absorption band in an electronic spectrum can be asso-
ciated with a specific chromophore. Whereas in atomic spectroscopy the selection rule

is strictly obeyed, in molecular spectroscopy one finds instead that spectral
lines for transitions corresponding to are much stronger than those for which
this condition is not fulfilled. It is useful to quantify what is meant by strong and weak
absorption. If I0 is the incident light intensity at the frequency of interest and It is the
intensity of transmitted light, the dependence of on the concentration c and the
path length l is described by Beer’s law:

(14.11)

The molar extinction coefficient is a measure of the strength of the transition. It is inde-
pendent of the path length and concentration and is characteristic of the chromophore.
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lines. The nonradiative processes of inter-
system crossing (ISC), internal conversion
(IC), and vibrational relaxation (VR) are
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The integral absorption coefficient, , in which the integration over the
spectral line includes associated vibrational and rotational transitions, is a measure of
the probability that an incident photon will be absorbed in a specific electronic transi-
tion. The terms A and depend on the frequency, and measured at the maximum inten-
sity of the spectral line has been tabulated for many chromophores. Some
characteristic values for spin-allowed transitions are given in Table 14.2.

In Table 14.2, note the large enhancement of that occurs for conjugated
bonds. As a general rule, lies between 10 and for 
spin-allowed transitions , and between for
singlet–triplet transitions . Therefore, the attenuation of light passing
through the sample resulting from singlet–triplet transitions will be smaller by a factor
of to 107 than the attenuation from singlet–singlet transitions. This illustrates
that in an absorption experiment, transitions for which are not totally forbid-
den if spin-orbit coupling is not negligible but are typically too weak to be of much
importance. However, as discussed in Section 14.8, singlet–triplet transitions are
important for phosphorescence.

The excited-state molecule in S1 can return to the ground state S0 through radia-
tive or nonradiative transitions involving collisions with other molecules. What
determines which of these two pathways will be followed? An isolated excited-
state molecule (for instance, in interstellar space) cannot exchange energy with
other molecules through collisions and, therefore, nonradiative transitions (other
than isoenergetic internal electronic-to-vibrational energy transfer) will not occur.
However, excited-state molecules in a crystal, in solution, or in a gas undergo fre-
quent collisions with other molecules in which they lose energy and return to the
lowest vibrational state of S1 through vibrational relaxation. This process generally
occurs much faster than a radiative transition directly from a vibrationally excited
state in S1 to a vibrational state S0. Once in the lowest vibrational state of S1, either
of three events can occur. The molecule can undergo a radiative transition to a
vibrational state in S0 in a process called fluorescence, or it can make a nonradia-
tive transition to an excited vibrational state of T1 through intersystem crossing.
Intersystem crossing violates the selection rule and, therefore, occurs at a
very low rate in comparison with the other processes depicted in Figure 14.9.

Because vibrational relaxation is generally fast in comparison with fluorescence
the vibrationally excited-state molecule will relax to the ground vibrational state of
S1 before undergoing fluorescence to S0. As a result of the relaxation, the fluores-
cence spectrum is shifted to lower energies relative to the absorption spectrum, as
shown in Figure 14.10. When comparing absorption and fluorescence spectra, it is

¢S = 0

¢S = 1

'104

(¢S = 1)
1 * 10-4 and 1 dm3 mol-1cm-1(¢S = 0)

5 * 104 dm3 mol-1 cm-1emax
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TABLE 14.2 Characteristic Parameters for Common Chromophores

Chromophore Transition (nm)lmax emax (dm3 mol-1 cm-1)

N “ O n: p* 660 200

N “ N n: p* 350 100

C “ O n: p* 280 20

NO2 n: p* 270 20

C6H6 (benzene) p: p* 260 200

C “ N n: p* 240 150

C “ C ¬ C “ O p: p* 220 2 * 105

C “ C ¬ C “ C p: p* 220 2 * 105

S “ O n: p* 210 1.5 * 103

C “ C p: p* 180 1 * 103

C ¬ C s: s* 6170 1 * 103

C ¬ H s: s* 6170 1 * 103
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often seen that for potentials that are symmetric about the minimum (for example, a
harmonic potential), the band of lines corresponding to absorption and fluorescence
are mirror images of one another. This relationship is shown in Figure 14.10.

14.8 Intersystem Crossing and
Phosphorescence

Although intersystem crossing between singlet and triplet electronic states is forbidden
by the selection rule, the probability of this happening is high for many mole-
cules. The probability of intersystem crossing transitions is enhanced by two factors: a
very similar molecular geometry in the excited singlet and triplet states, and a strong
spin-orbit coupling, which allows the spin flip associated with a singlet–triplet transi-
tion to occur. The processes involved in phosphorescence are illustrated in a simplified
fashion in Figure 14.11 for a diatomic molecule.

Imagine that a molecule is excited from S0 to S1. This is a dipole-allowed transition,
so it has a high probability of occurring. Through collisions with other molecules, the
excited-state molecule loses vibrational energy and decays to the lowest vibrational state
of S1. As shown in Figure 14.11, the potential energy curves can overlap such that an
excited vibrational state in S1 can have the same energy as an excited vibrational state in
T1. In this case, the molecule has the same geometry and energy in both singlet and triplet
states. In Figure 14.11, this occurs for in the state S1. If the spin-orbit coupling is
strong enough to initiate a spin flip, the molecule can cross over to the triplet state without
a change in geometry or energy. Through vibrational relaxation it will rapidly relax to the
lowest vibrational state of T1. At this point, it can no longer make a transition back to S1
because the ground vibrational state of T1 is lower than any state in S1.

However, from the ground vibrational state of T1, the molecule can decay radiatively
to the ground state in the dipole transition forbidden process called phosphorescence.
This is not a high-probability event because nonradiative processes involving collisions
between molecules or with the walls of the reaction vessel can compete effectively with
phosphorescence. Therefore, the probability for a phosphorescence transition is
generally much lower than for fluorescence. It usually lies in the range of to .
The relative probabilities of fluorescence and phosphorescence if collisional relaxation
can occur is determined by the lifetime of the excited state. Fluorescence is an allowed
transition, and the excited-state lifetime is short, typically less than s. By contrast,
phosphorescence is a forbidden transition and the excited-state lifetime is typically longer
than s. On this time scale collisional relaxation has a high probability.10-3
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Illustration of the absorption and fluores-
cence bands expected if internal conver-
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FIGURE 14.11
Process giving rise to phosphorescence
illustrated for a diatomic molecule.
Absorption from S0 leads to a population
of excited vibrational states in S1.
The molecule has a finite probability 
of making a transition to an excited
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Fluorescence can be induced using broadband radiation or highly monochromatic
laser light. Fluorescence spectroscopy is well suited for detecting very small concentra-
tions of a chemical species if the wavelength of the emission lies in the visible-UV part
of the electromagnetic spectrum where there is little background noise near room tem-
perature. As shown in Figure 14.10, relaxation to lower vibrational levels within the
excited electronic state has the consequence that the fluorescence signal occurs at a
longer wavelength than the light used to create the excited state. Therefore, the contri-
bution of the incident radiation to the background at the wavelength used to detect the
fluorescence is very small.

14.9 Fluorescence Spectroscopy and
Analytical Chemistry

We now describe a particularly powerful application of fluorescence spectroscopy,
namely, the sequencing of the human genome. The goal of the human genome project
was to determine the sequence of the four bases, A, C, T, and G, in DNA that encode all
the genetic information necessary for propagating the human species. A sequencing
technique based on laser-induced fluorescence spectroscopy that has been successfully
used in this effort can be divided into three parts.

In the first part, a section of DNA is cut into small lengths of 1000 to 2000 base pairs
using mechanical shearing. Each of these pieces is replicated to create many copies, and
these replicated pieces are put into a solution with a mixture of the four bases, A, C, T,
and G. A reaction is set in motion that leads to the strands growing in length through
replication. A small fraction of each of the A, C, T, and G bases in solution that are
incorporated into the pieces of DNA has been modified in two ways. The modified base
terminates the replication process. It also contains a dye chosen to fluoresce strongly at a
known wavelength. The initial segments continue to grow if they incorporate unmodi-
fied bases, and no longer grow if they incorporate one of the modified bases. As a result
of these competing processes involving the incorporation of modified or unmodified
bases, a large number of partial replicas of the whole DNA are created, each of which is
terminated in the base that has a fluorescent tag built into it. The ensemble of these par-
tial replicas contains all possible lengths of the original DNA segment that terminate in
the particular base chosen. If the lengths of these segments can be measured, then the
positions of the particular base in the DNA segment can be determined.

The lengths of the partial replicas are measured using capillary electrophoresis cou-
pled with detection using laser-induced fluorescence spectroscopy. In this method, a
solution containing the partial replicas is passed through a glass capillary filled with a
gel. An electrical field along the capillary causes the negatively charged DNA partial
replicas to travel down the column with a speed that depends inversely on their length.
Because of the different migration speeds, a separation in length occurs as the partial
replicas pass through the capillary. At the end of the capillary, the partial replicas
emerge from the capillary into a buffer solution that flows past the capillary, forming a
sheath. The flow pattern of the buffer solution is carefully controlled to achieve a focus-
ing of the emerging stream containing the partial replicas to a diameter somewhat
smaller than the inner diameter of the capillary. A schematic diagram of such a sheath
flow cuvette electrophoresis apparatus is shown in Figure 14.12. An array of capillaries
is used rather than a single capillary in order to obtain the multiplexing advantage of
carrying out several experiments in parallel.

The final part of the sequencing procedure is to measure the time that each of the
partial replicas spent in transit through the capillary, which determines its length, and to
identify the terminating base. The latter task is accomplished by means of laser-induced
fluorescence spectroscopy. A narrow beam of visible laser light is passed through all the
capillaries in series. Because of the very dilute solutions involved, the attenuation of the
laser beam by each successive capillary is very small. The fluorescent light emitted from
each of the capillaries is directed to light-sensing photodiodes by means of a microscope
objective and individual focusing lenses. A rotating filter wheel between the microscope
objective and the focusing lenses allows a discrimination to be made among the four
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different fluorescent dyes with which the bases were tagged. The sensitivity of the sys-
tem shown in Figure 14.12 is molecules in the volume illuminated by the laser
that corresponds to a concentration of This extremely high sensitivity
is a result of coupling the sensitive fluorescence technique to a sample cell designed
with a very small sampling volume. Matching the laser beam diameter to the sample size
and reducing the size of the cuvette result in a significant reduction in background noise.
Commercial versions of this approach utilizing 96 parallel capillaries played a major
part in the first phase of the sequencing of the human genome.

14.10 Ultraviolet Photoelectron
Spectroscopy

Spectroscopy in general, and electronic spectroscopy in particular, gives information
on the energy difference between the initial and final states rather than the energy levels
involved in the transition. However, the energy of both occupied and unoccupied
molecular orbitals is of particular interest to chemists. Information at this level of detail
cannot be obtained directly from a UV absorption spectrum, because only a difference
between energy levels is measured. However, information about the orbitals involved in
the transition can be extracted from an experimentally obtained spectrum using a
model. For example, the molecular orbital model described in Chapter 12 can be used
to calculate the orbital energy levels for a molecule. With these results, an association
can be made between energy-level differences calculated from observed spectral peaks
and orbital energy levels obtained from the model.

Of all the possible forms of electronic spectroscopy, UV photoelectron spectroscopy
comes closest to the goal of directly identifying the orbital energy level from which an
electronic transition originates. What is the principle of this spectroscopy? As in the photo-
electric effect discussed in Chapter 1, an incident photon of sufficiently high energy ejects
an electron from one of the filled valence orbitals of the molecule, creating a positive ion as
shown in Figure 14.13, using O2 as an example. The kinetic energy of the ejected electron
is related to the total energy required to form the positive ion via photoionization,

(14.12)Ekinetic = hn - cEf + anf +
1
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FIGURE 14.12
Schematic diagram of the application 
of fluorescence spectroscopy in the
sequencing of the human genome.
From: Dovichi, Norm. Development of
DNA Sequencer. Science 285 (1999): 1016.



where Ef is the energy of the cation, which is formed by the removal of the electron, in
its ground state. Equation (14.12) takes vibrational excitation of the cation into
account, which by conservation of energy leads to a lower kinetic energy for the pho-
toejected electron. Because, in general, either the initial or final state is a radical, a
delocalized MO model must be used to describe UV photoelectron spectroscopy.

Under the assumptions to be discussed next, the measured value of can be
used to obtain the energy of the orbital from which the electron originated. The
energy of the cation, , which can be determined directly from a photoelectron spec-
trum, is equal to if the following assumptions are valid:

• The nuclear positions are unchanged in the transition (Born–Oppenheimer
approximation).

• The orbitals for the atom and ion are the same (frozen orbital approximation).
This assumes that the electron distribution is unchanged in the ion, even though the
ion has one fewer electron.

• The total electron correlation energy in the molecule and ion are the same.

The association of Ef with for the neutral molecule under these assumptions
is known as Koopmans’ theorem. In comparing spectra obtained for a large number of
molecules with high-level numerical calculations, the measured and calculated orbital
energies are often found to differ by approximately 1 to 3 eV. The difference results pri-
marily from the last two assumptions not being entirely satisfied.

This discussion suggests that a photoelectron spectrum consists of a series of
peaks, each of which can be associated with a particular molecular orbital of the
molecule. Figure 14.14 shows a photoelectron spectrum obtained for gas-phase
water molecules for a photon energy , corresponding to a strong UV
emission peak from a helium discharge lamp. Each of the three groups of peaks can
be associated with a particular molecular orbital of H2O, and the approximately
equally spaced peaks within a group correspond to vibrational excitations of the
cation formed in the photoionization process.

An analysis of this spectrum offers a good opportunity to compare and contrast
localized and delocalized models of chemical bonding in molecules. It turns out that
the assignment of peaks in a molecular photoelectron spectrum to individual localized
orbitals is not valid. This is the case because the molecular wave function must exhibit
the symmetry of the molecule. This important topic will be discussed in some detail in
Chapter 16. Using the photoelectron spectrum of H2O as an example, we show that the
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correct assignment of peaks in photoelectron spectra is to delocalized linear combina-
tions of the localized orbitals, rather than to individual localized orbitals.

In a localized bonding model, water has two lone pairs and two bonding
orbitals. Because the lone pairs and the bonding orbitals are identical except for their
orientation, one might expect to observe one group of peaks associated with the lone
pair and one group of peaks associated with the bonding orbital in the photoelectron
spectrum. In fact, four rather than two groups are observed if the photon energy is sig-
nificantly higher than that used to obtain the data shown in Figure 14.14. In the local-
ized bonding model, this discrepancy can be understood in terms of the coupling
between the lone pairs and between the bonding orbitals. The coupling leads to
symmetric combinations and antisymmetric combinations, just as was observed for
vibrational spectroscopy in Section 8.5. In the molecular orbital model, the result can
be understood by solving the Hartree–Fock equations, which generates four distinct
MOs. We refer to these MOs as symmetric (S) or antisymmetric (A) and as having lone
pair (or nonbonding) character (n) or sigma character .

We now return to the photoelectron spectrum of Figure 14.14. The group of peaks
below 13eV can be attributed to . The corresponding MO wave function is the 1b1
orbital of Figure 13.8, which can be associated with the antisymmetric combination of
the lone pairs. The group of peaks between 14 and 16 eV can be attributed to . The
corresponding wave function is the 2a1 orbital, which can be associated with the sym-
metric combination of the lone pairs. The group between 17 and 20 eV can be attributed
to . The corresponding wave function is the 1b2 orbital, which can be associated with
the antisymmetric combination of the localized bonding orbitals. The group
attributed to lies at higher ionization energies than were accessible in the experiment
and, therefore, is not observed. The corresponding wave function is the 1a1 orbital,
which can be associated with the symmetric combination of the localized bond-
ing orbitals. The nomenclature used for these MOs, which was introduced in Chapter 13,
will be explained in Chapter 16.

The preceding analysis leaves us with the following question: Why do equivalent
bonds or lone pairs give rise to several different orbital energies? A nonmathematical
explanation follows. Although the localized bonding orbitals are equivalent and ortho-
normal, the electron distribution in one bond is not independent of the electron
distribution in the other bond because of Coulombic interactions between the
two bonding regions. Therefore, an electronic excitation in one local bonding orbital
changes the potential energy felt by the electrons in the region of the other local bonding
orbital. This interaction leads to a coupling between the two localized bonds. By form-
ing symmetric and antisymmetric combinations of the local orbitals, the coupling is
removed. However, the local character of the bonding orbitals has also been removed.
Therefore, the decoupled molecular wave functions cannot be identified with a state that
is localized in only one of the two regions. Only the decoupled wave functions,
and not the localized orbitals, are consistent with the symmetry of the molecule.

In the case of water, the two equivalent localized bonds give rise to two dis-
tinct orbital energies. However, in highly symmetric molecules, the number of distinct
orbital energies can be less than the number of equivalent localized bonds. For instance,
the three equivalent localized bonds in NH3 give rise to two distinct orbital
energies, and the four equivalent localized bonds in CH4 give rise to two distinct
orbital energies. The reason for these differences will become apparent after molecular
symmetry is discussed in Chapter 16.

14.11 Single Molecule Spectroscopy
Spectroscopic measurements as described earlier are generally carried out in a sample cell
in which a very large number of the molecules of interest, called an ensemble, are present.
In general, the local environment of the molecules in an ensemble is not identical, which
leads to inhomogeneous broadening of an absorption line as discussed in Section 8.9.
Figure 14.15 shows how a broad absorption band arises if the corresponding narrow bands
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for individual molecules in the ensemble are slightly shifted in frequency because of varia-
tions in the immediate environment of a molecule.

Clearly, more information is obtained from the spectra of the individual molecules
than from the inhomogeneously broadened band. The “true” absorption spectrum for
an individual molecule is observed only if the number of molecules in the volume
being sampled is very small, for example, the bottom spectrum in Figure 14.15.

Single molecule spectroscopy is particularly useful in understanding the structure-
function relationship for biomolecules. The conformation of a biomolecule refers to
the arrangement of its constituent atoms in space and can be discussed in terms of pri-
mary, secondary, and tertiary structure. The primary structure is determined by the
backbone of the molecule, for example, peptide bonds in a polypeptide. The term
secondary structure refers to the local conformation of a part of the polypeptide. Two
common secondary structures of polypeptides are the -helix and the as shown
in Figure 14.16. Tertiary structure refers to the overall shape of the molecule; globu-
lar proteins are folded into a spherical shape, whereas fibrous proteins have polypeptide
chains that arrange into parallel strands or sheets.

Keep in mind that the conformation of a biomolecule in solution is not static.
Collisions with solvent and other solute molecules continuously change the energy and
the conformation of a dissolved biomolecule with time. What are the consequences of
such conformational changes for an enzyme? Because the activity is intimately linked to
structure, conformational changes lead to fluctuations in activity, making an individual
enzyme molecule alternately active and inactive as a function of time. Spectroscopic
measurements carried out on an ensemble of enzyme molecules give an average over
all possible conformations and hence over all possible activities for the enzyme. 
Such measurements are of limited utility in understanding how structure and chemical
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activity are related. As we show in the next section, single molecule spectroscopy can go
beyond the ensemble limit and gives information on the possible conformations of biomol-
ecules and on the timescales on which transitions to different conformations take place.

To carry out single molecule spectroscopy, the number of molecules in the sam-
pling volume must be reduced to approximately one. How is a spectrum of individual
biomolecules in solution obtained? Only molecules in the volume that is both illumi-
nated by the light source and imaged by the detector contribute to the measured
spectrum. For this number to be approximately one, a laser focused to a small diameter
is used to excite the molecules of interest, and a confocal microscope is used to collect
the photons emitted in fluorescence from a small portion of the much larger cylindrical
volume of the solution illuminated by the laser. In a confocal microscope, the sampling
volume is at one focal point and the detector is behind a pinhole aperture located at the
other focal point of the microscope imaging optics. Because photons that originate out-
side of a volume of approximately centered at the focal point
are not imaged on the pinhole aperture, they cannot reach the detector. Therefore, the
sampling volume is much smaller than the illuminated volume. To ensure that no more
than a few molecules are likely to be found in the sampling volume, the concentration
of the biomolecule must be less than M. Fluorescence spectroscopy is well
suited for single molecule studies because as discussed in Section 14.8, vibrational
relaxation ensures that the emitted photons have a lower frequency than the laser used
to excite the molecule. Therefore, optical filters can be used to ensure that scattered
laser light or photons from Raman scattering outside of sampling volume do not reach
the detector. If the molecules being investigated are immobilized, they can also be
imaged using the same experimental techniques.

14.12 Fluorescent Resonance Energy
Transfer (FRET)

FRET is a form of single molecule spectroscopy that has proved to be very useful in
studying biochemical systems. An electronically excited molecule can lose energy
by either radiative or nonradiative events as discussed in Section 14.9. We refer to
the molecule that loses energy as the donor and the molecule that accepts the energy
as the acceptor. If the emission spectrum of the donor overlaps the absorption spec-
trum of the acceptor as shown in Figure 14.17, then we refer to resonance energy
transfer as shown in Figure 14.18. Under resonance conditions, the energy transfer
from the donor to the acceptor can occur with a high efficiency.

The probability for resonant energy transfer is strongly dependent on the distance
between the two molecules. It was shown by Theodor Förster that the rate at which reso-
nant energy transfer occurs decreases as the sixth power of the donor-acceptor distance.

(14.13)

In Equation (14.13), is the lifetime of the donor in its excited state and R0, the criti-
cal Förster radius, is the distance at which the resonance transfer rate and the rate for
spontaneous decay of the excited state donor are equal. Both these quantities can be
determined experimentally. The sensitive dependence of the resonance energy transfer
on the donor-acceptance distance makes it possible to use FRET as a spectroscopic
ruler to measure donor-acceptor distances in the 10–100 nm range.

Figure 14.19 illustrates how FRET can be used to determine the conformation of a bio-
molecule. Schuler et al. attached dyes acting as donor and acceptor molecules to the ends
of polyproline peptides of defined length containing between 6 and 40 proline residues.
The donor absorbed a photon from a laser, and the efficiency with which the photon was
transferred to the acceptor was measured. The efficiency is defined as the fraction of exci-
tations of the donor that result in excitation of the acceptor. As Equation (14.13) shows, the
efficiency falls off as the sixth power of the donor-acceptor distance. The results for a large
number of measurements are shown in Figure 14.19b. A range of values for the efficiency
is seen for each polypeptide. The variation of the maximum efficiency with the length
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demonstrates that the peptide is not a rigid rod. The width of the distribution in effi-
ciency shows that molecules of the same length can have a number of possible confor-
mations, each of which has a different donor-acceptor distance. The width increases
with the peptide length because more twists and turns can occur in a longer strand.

An interesting application of single molecule FRET is in probing the conformational
flexibility of single-stranded DNA in solution. The conformational flexibility of single-
stranded DNA plays an important role in many DNA processes such as replication, repair,
and transcription. Such a strand can be viewed as a flexible rod, approximately 2 nm in
diameter. To put the dimensions of a strand in perspective, if it were a rubber tube of 1 cm
in diameter, its length would be nearly 1 kilometer. A single molecule of DNA can be as
long as in length, yet must fit in the nucleus of a cell, which is typically in
diameter. To do so, the conformation of a DNA strand might take the form of a very long
piece of spaghetti coiled upon itself as shown in Figure 14.20.

Such a complex conformation is best described by statistical models, one of which
is called the worm-like chain model.

In the worm-like chain model, the strand takes the form of a flexible rod that is
continuously and randomly curved in all possible directions. However, there is an

'1 mm'1 cm
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FIGURE 14.17
The red curves show the range in wave-
length over which absorption and emission
occur for the donor and acceptor. Note 
that emission occurs at greater wave-
lengths than absorption as discussed in
Section 14.7. If the emission band for the
donor overlaps the absorption band for 
the acceptor, resonant energy transfer 
can occur.

Resonant transitions

D

123 1' 2' 3'

A

D*

A*
�E

FIGURE 14.18
Individual events in the emission
spectrum of the excited donor and the
absorption spectrum of the acceptor are
shown. The donor emission photon
energies labeled 1, 2, and 3 give rise to
the absorption transitions labeled 1', 2',
and 3', respectively. Note that vibrational
relaxation in the excited acceptor state
will lead to a shift in the wavelength of
the light emitted by the acceptor. This
shift allows the use of optical filters to
detect acceptor emission in the presence
of scattered light from the laser used to
excite the donor.
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energetic cost of bending the strand, which is available to the strand through the
energy transferred in collisions with other species in solution. This energy depends
linearly on the temperature. The energy required to bend the rod depends on the radius
of curvature; a very gentle bend with a large radius of curvature requires much less
energy than a sharp hairpin turn. In the limit of zero kelvin, the collisional energy
transfer approaches zero, and the strand takes the form of a rigid rod. As the tempera-
ture increases, fluctuations in the radius of curvature increasingly occur along the rod.
This behavior is described in the worm-like chain model by the persistence length,
which is the length that can be traveled along the rod in a straight line before the rod
bends in a different direction. As the temperature increases from zero kelvin to room
temperature, a worm-like chain changes in conformation from a rigid rod of infinite
persistence length to the tangle depicted in Figure 14.20, which has a very small per-
sistence length.

How well does the worm-like chain model describe single-stranded DNA? This
was tested by M. C. Murphy et al., who attached flexible single-stranded DNAs to a
rigid tether, which was immobilized by bonding the biotin at the end of the tether to a
streptavidin-coated quartz surface as shown in Figure 14.21.

A donor fluorophore was attached to the free end of the flexible strand and an
acceptor was attached to the rigid end. The length of the strand was varied between 10
and 70 nucleotides corresponding to distances from to between the
donor and acceptor. After measuring and R0, the efficiency of resonant energy trans-
fer from the donor to the acceptor was measured as a function of the strand length in
NaCl solution whose concentration ranged from to 2 M. The results are
shown in Figure 14.22 and compared with calculations in which the persistence length
was used as a parameter.

The peak in Figure 14.22a shifts to lower efficiencies as the strand length
increases, because the donor and acceptor are farther apart. The width of the distribu-
tion in efficiency shows that molecules of the same length can have a number of 
possible conformations, each of which has a different donor-acceptor distance.
Figure 14.22b shows a comparison between measured efficiencies as a function of
strand length with predictions of the worm-like chain model. It is seen that the model
represents the data well and that the persistence length decreases from 3 nm at low
NaCl concentration to 1.5 nm at the highest concentration. The decrease in persist-
ence length as the NaCl concentration increases can be attributed to a reduction in the
repulsive interaction between the charged phosphate groups on the DNA through
screening of the charge by the ionic solution (see Section 10.4 Thermodynamics,
Statistical Thermodynamics, and Kinetics). In this case, FRET measurements have
provided a validation of the worm-like chain model for the conformation of DNA.

2.5 * 10-3 M

t°D

'420 nm'60 nm

(b)

(a)

FIGURE 14.19
(a) Donor (left) and acceptor (right) dyes
are attached to a polyproline peptide,
which becomes increasingly flexible as its
length is increased. (b) The efficiency E
of resonant energy transfer from the donor
to acceptor is shown for peptides of dif-
ferent lengths. The length of the bars rep-
resents the relative event frequency for a
large number of measurements on individ-
ual molecules. Note that the width of the
distribution in E increases with the length
of the peptide. The peak near zero effi-
ciency is an experimental artifact due to
inactive acceptors.
Source: From B. Schuler et al., “Polyproline
and the “Spectroscopic Ruler” Revisited with
Single-Molecule Fluorescence,” Proceedings of
the National Academy of Sciences of the United
States of America 102: 2754–2759 (2005).
Copyright 2005 National Academy of
Sciences, U.S.A. Used by permission.

FIGURE 14.20
The conformation of a long rod-like mole-
cule in solution can be highly tangled.



Similar studies have been carried out using electron transfer reactions rather than
resonant energy transfer between the donor and acceptor in order to probe the time
scale of the conformational fluctuations of a single protein molecule. Yang et al.
[Science 302 (2003): 262] found that conformational fluctuations occur over a wide
range of timescales ranging from hundreds of microseconds to seconds. This result
suggests that there are many different pathways that lead from one conformer to
another and provides valuable data to researchers who model protein folding and other
aspects of the conformational dynamics of biomolecules.
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FIGURE 14.21
A donor and acceptor are attached to
opposite ends of flexible single strands of
DNA. The strands are attached to a silica
substrate. The rigid tether has the function
of moving the acceptor away from the
quartz surface into the solution.
Source: Reprinted from M.C. Murphy et al.,
“Probing Single-Stranded DNA Conformational
Flexibility Using Fluorescence Spectroscopy,”
Biophysical Journal 86 (4): 2530-2537 
(April 2004), fig.1, p. 2531, fig. 3, p. 2533,
Copyright 2004, with permission from Elsevier.
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FIGURE 14.22
(a) The FRET efficiency is shown for 
Poly dT ssDNA of length 40, 27, and 
17 nucleotides (top to bottom panel). The
peak at zero efficiency is an experimental
artifact due to inactive acceptors. The
length of the bars represents the relative
event frequency for a large number of
measurements on individual molecules. 
(b) The FRET efficiency is shown as a
function of N, the number of nucleotides,
for various concentrations of NaCl. The
various curves are calculated curves using
the persistence length as a parameter. The
best fit curves and the corresponding 
persistence length are shown for each salt
concentration.
Source: Reprinted from M.C. Murphy et al.,
“Probing Single-Stranded DNA Conformational
Flexibility Using Fluorescence Spectroscopy,”
Biophysical Journal 86 (4): 2530-2537 
(April 2004), fig.1, p. 2531, fig. 3, p. 2533,
Copyright 2004, with permission from Elsevier.
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14.13 Linear and Circular Dichroism
Because the structure of a molecule is closely linked to its reactivity, it is a goal of
chemists to understand the structure of a molecule of interest. This is a major challenge
in the case of biomolecules because the larger the molecule, the more challenging it is
to determine the structure. However, there are techniques available to determine aspects
of the molecular structure of biomolecules, although they do not give the positions of
all atoms in the molecule. Linear and circular dichroism are particularly useful in giv-
ing information on the secondary structure of biomolecules.

As discussed in Section 8.1, light is a transverse electromagnetic wave that interacts
with molecules through a coupling of the electric field E of the light to the permanent
or transient dipole moment of the molecule. Both E and are vectors, and in classi-
cal physics the strength of the interaction is proportional to the scalar product . In
quantum mechanics, the strength of the interaction is proportional to ,
where the transition dipole moment is defined by

(14.14)

In Equation (14.14), d is the infinitesimal three dimensional volume element and
and refer to the initial and final states in the transition in which a photon is absorbedcf
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FIGURE 14.23
The amide bonds in a polypeptide chain
are shown. The transition dipole moment
is shown for a transition.p: p*

FIGURE 14.24
The arrows in successive images indicate
the direction of the electric field vector as
a function of time or distance. For linearly
polarized light, the amplitude of the elec-
tric field vector changes periodically, but
is confined to the plane of polarization.

pendicular to the molecular axis. The difference relative to the absorbance for
randomly polarized light is the quantity of interest.

We illustrate the application of linear dichroism spectroscopy in determining the
secondary structure of a polypeptide in the following discussion. The amide groups
shown in Figure 14.23 interact with one another because of their close spacing, and the
interaction can give rise to a splitting of the transition into two separate peaks. The ori-
entation of for each peak depends on the polypeptide secondary structure. For theMfi

A|| - A�

near 208 nm. This shows that the secondary structure of this polypeptide isA|| 7 A�

an . By contrast, the absorption for randomly polarized light gives no structural
information.

Because molecules must be oriented in space for linear dichroism spectroscopy, the
technique cannot be used for biomolecules in a static solution. For solutions, circular
dichroism spectroscopy is widely used to obtain secondary structural information. In
this spectroscopy, circularly polarized light, which is depicted in Figure 14.26, is
passed through the solution.

a-helix

or emitted. The spatial orientation of is determined by evaluating an integral such
as Equation (14.14), which goes beyond the level of this text. We show the orientation
of for the amide group, which is the building block for the backbone of a
polypeptide for a given transition in Figure 14.23.

Many biomolecules have a long rod-like shape and can be oriented by embedding
them in a film and then stretching the film. For such a sample, the molecule and there-
fore has a well-defined orientation in space. The electric field E can also be ori-
ented in a plane with any desired orientation using a polarization filter, in which
linearly polarized light is generated, as shown in Figure 14.24.

If the plane of polarization is varied with respect to the molecular orientation, the
measured absorbance A will vary. It has a maximum value if E and are parallel andMfi

Mfi

p: p*
Mfi

Mfi

is zero if E and are perpendicular. In linear dichroism spectroscopy, the variation
of the absorbance with the orientation of plane-polarized light is measured. It is useful
because it allows the direction of to be determined for an oriented molecule whose
secondary structure is not known. One measures the absorbance with E parallel and per-

Mfi

Mfi

case of an , a transition near 208 nm with parallel to the helix axis and aMfia-helix
transition near 190 nm with perpendicular to the helix axis is predicted from the-
ory. Figure 14.25 shows the absorbance for randomly polarized light and for
a polypeptide. The data show that for the transition near 190 nm and thatA|| 6 A�

A|| - A�

Mfi



Biomolecules are optically active, meaning that they do not possess a center of
inversion. For an optically active molecule, the absorption for circularly polarized light
in which the direction of rotation is clockwise (R) differs from that in which the direc-
tion of rotation is counterclockwise (L). This difference in A can be expressed as a dif-
ference in the extinction coefficient .

(14.15)

In Equation (14.15), l is the path length in the sample cell, and c is the concentration. In
practice, the difference between is usually expressed as the molar
residual ellipticity, which is the shift in the phase angle between the components of
the circularly polarized light in the form

(14.16)

Circular dichroism can only be observed if is nonzero and is usually observed in the
visible part of the light spectrum.

As in the case of linear dichroism, for a given transition is largely determined
by the secondary structure and is much less sensitive to other aspects of the conformation.
A discussion of how depends on the secondary structure is beyond the level of
this text, but it can be shown that common secondary structures such as the , the

, a single turn, and a random coil have a distinctly different dependence as
shown in Figure 14.27. In this range of wavelengths, the absorption corresponds to

transitions of the amide group.
The absorbance curves for the different secondary structures in Figure 14.25 are

sufficiently different that the extracted curve obtained for a protein of unknown
secondary structure in solution can be expressed in the form

(14.17)

where is the curve corresponding to one of the possible secondary structures of the
biomolecule and Fi is the fraction of the peptide chromophores in that particular sec-
ondary structure. A best fit of the data to Equation (14.17) using widely available soft-
ware allows a determination of the Fi to be made.

Figure 14.28 shows the results of an application of circular dichroism in deter-
mining the secondary structure of -synuclein bound to unilamellar phospholipid
vesicles, which were used as a model for cell membranes. -Synuclein is a small sol-
uble protein of 140–143 amino acids that is found in high concentration in presynap-
tic nerve terminals. A mutation in this protein has been linked to Parkinson’s disease
and it is believed to be a precursor in the formation of extracellular plaques in
Alzheimer’s disease.
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FIGURE 14.25
The normal isotropic absorbance, A (dashed
line), and (solid line) are shown as a
function of the wavelength for an oriented film
of poly( -ethyl-L-glutamate) in which it has
the conformation of an .
Source: Adapted from data from J. Brahms et al.,
“Application of a New Modulation Method for
Linear Dichroism Studies of Oriented Biopolymers
in The Vacuum Ultraviolet.” Proceedings of the
National Academy of Sciences USA 60 (1968): 1130.
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FIGURE 14.26
The arrows in successive images indicate
the direction of the electric field vector as a
function of time or distance. For circularly
polarized light, the amplitude of the elec-
tric field vector is constant, but its plane of
polarization undergoes a periodic variation.
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As can be seen by comparing the spectra in Figure 14.28 with those of Figure 14.27,
the conformation of -synuclein in solution is that of a random coil. However, upon
binding to unilamellar phospholipid vesicles, the circular dichroism spectrum is dra-
matically changed and is characteristic of an . These results show that the bind-
ing of -synuclein requires a conformational change. This conformational change can
be understood from the known sequence of amino acids in the protein. By forming an

the polar and nonpolar groups in the protein are shifted to opposite sides of the
helix. This allows the polar groups to associate with the acidic phospholipids, leading
to a stronger binding than would be the case for a random coil.

S U P P L E M E N T A L

14.14 Assigning and to Terms 
of Diatomic Molecules

In this section we illustrate how the and symmetry designations are applied to 
terms for homonuclear diatomic molecules. A more complete discussion can be

found in Quantum Chemistry, sixth edition, by I. Levine, or in Atoms and Molecules by
M. Karplus and R. N. Porter.

Recall that only partially filled MOs need to be considered in generating term sym-
bols from a molecular configuration. The and designations refer to the change in
sign of the molecular wave function on reflection in a plane that contains the molecular
axis. If there is no change in sign, the designation applies; if the wave function does
change sign, the designation applies. In the simplest case, all MOs are filled or the
unpaired electrons are all in MOs. For such states, the sign applies because there is
no change in the sign of the wave function as a result of the reflection operation, as can
be seen in Figure 14.29.

We next discuss molecular terms that do not fit into these categories, using O2 as an
example. The configuration for ground-state O2 is (1sg)2(1s*

u)2(2sg)2(2s*
u)2(3sg)2
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FIGURE 14.27
The mean residual ellipticity is shown as a func-
tion of wavelength for biomolecules having different
secondary structures. Because the curves are dis-
tinctly different, circular dichroism spectra can be
used to determine the secondary structure for opti-
cally active molecules. The inset shows the hydrogen
bonding between different amide groups that gener-
ates different secondary structures.
Source: From John T. Pelton, “Secondary
Considerations,” Science 291: 2175–2176, March 16,
2001. Copyright © 2001, The American Association for
the Advancement of Science. Reprinted with permis-
sion from AAAS.
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FIGURE 14.28
The molar ellipticity is shown as a func-
tion of the wavelength for -synuclein 
in solution (red circles) and for

-synuclein bound to unilamellar
phospholipid vesicles (blue circles).
Source: Figure 4B from W.Sean Davidson, et
al., “Stabilization of a-Synuclein Secondary
Structure upon Binding to Synthetic
Membranes,” The Journal of Biological
Chemistry, 273 (16): 9443–9449, April 1998.
Copyright © 1998, by the American Society
for Biochemistry and Molecular Biology.
Reprinted with permission.
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FIGURE 14.29
Reflection of a MO in a plane passing
through the molecular axis, leaving the
wave function unchanged.

s

, where we associate the partially filled MOs with the 
out-of-phase combinations of the 2px and 2py AOs as shown in Figure 14.30. Because
filled MOs can be ignored, O2 has a configuration, with one electron on each of
the two degenerate MOs. Recall that, in general, a configuration gives rise to several
quantum states. Because the two electrons are in different MOs, all six combina-
tions of for ml and for ms are possible. For example, the terms for which

occur as singlet and triplet terms. To satisfy the Pauli exclusion
principle, the overall wave function (which is a product of spin and spatial parts) must be
antisymmetric in the exchange of two electrons.

However, just as the 2px and 2py AOs are not eigenfunctions of the operator , as
discussed in Section 7.5, the MOs depicted in Figure 14.30 are not eigenfunctions 

lNz

ML = ml1 + ml2 = 0
©;1>2;1

1p*
g

p*
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Vocabulary

acceptor

antisymmetric combination

Beer’s law

Born–Oppenheimer approximation

chromophore

conformation

continuous energy spectrum

donor

equivalent bonds

fluorescence

Franck-Condon factor

Franck-Condon principle

of the operator . To discuss the assignment of and to molecular terms, we can-+LN z

only use wave functions that are eigenfunctions of . In the cylindrical coordinatesLN z
appropriate for a diatomic molecule, , where is the angle of rotationfLN z = - iU(0>0f)

(2py)	 (2px)	

x-z plane x-z plane

FIGURE 14.30
The two degenerate wave functions
are depicted.
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FIGURE 14.31
The rotation angle is transformed into

through reflection in a plane that con-
tains the molecular axis. This is equivalent
to changing into .-ML+ML

-f
f

around the molecular axis, and the eigenfunctions of this operator have the form
, as shown in Section 7.4. We cannot depict these complex functions,

because this requires a six-dimensional space, rather than the three-dimensional space
required to depict real functions.

The O2 molecule has a configuration, and antisymmetric molecular wave
functions can be formed either by combining symmetric spatial functions with anti-
symmetric spin functions or vice versa. All possible combinations are shown in the
following equations. The subscript or on the spatial function indicates the
value of ml.

As shown in Section 11.2, the first three wave functions are associated with singlet states,
and the last three are associated with triplet states. Because , belong
to a term, and belong to terms.

We next determine how these six wave functions are changed on reflection through
a plane containing the molecular axis. As shown in Figure 14.31, reflection through
such a plane changes the rotation angle into . As a consequence, each eigen--f+f

©c3 through c6¢
c1 and c2¶ = ƒ ML ƒ

 c6 = (p+1p-1 - p-1p+1)b(1)b(2)

 c5 = (p+1p-1 - p-1p+1) (a(1)b(2) + b(1)a(2))

 c4 = (p+1p-1 - p-1p+1)a(1)a(2)

 c3 = (p+1p-1 + p-1p+1) (a(1)b(2) - b(1)a(2))

 c2 = p-1p-1(a(1)b(2) - b(1)a(2))

 c1 = p+1p+1(a(1)b(2) - b(1)a(2))

-1+1

(p*)2

c(f) = Ae-i¶f

Therefore, the plus sign applies and the term corresponding to is . However,
reflection does change the sign of the wave function for because

therefore, the minus sign applies. Because these three wave(-1) * (+1) = -1;
c4 through c6

1©+
gc3

function of , , which is equivalent to changing the
sign of ML. Therefore, . Note that reflection does not
change the sign of the wave function for because .(-1) * (-1) = 1c1 through c3

p+1: p-1 and p-1: p+1

Ae-i¶f is transformed into Ae+i¶fLN z

functions belong to a triplet term, the term symbol is . A similar analysis can be
carried out for other configurations.
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Q14.1 Predict the number of unpaired electrons and the
ground-state term for the following:

a. BO b. LiO

Q14.2 How can FRET give information about the tertiary
structure of a biological molecule in solution?

Q14.3 Photoionization of a diatomic molecule produces a
singly charged cation. For the molecules listed here, calculate
the bond order of the neutral molecule and the lowest energy
cation. For which of the molecules do you expect the

vibrational peak to have a higher intensity
than the vibrational peak? The term n refers
to the vibrational quantum number in the ground state, and 
refers to the vibrational quantum number in the excited state.

a. H2 b. O2 c. F2 d. NO

Q14.4 What would the intensity versus frequency plot in
Figure 14.10 look like if fluorescence were fast with respect
to internal conversion?

Q14.5 What aspect of the confocal microscope makes sin-
gle molecule spectroscopy in solutions possible?

Q14.6 Explain why the fluorescence and absorption groups of
peaks in Figure 14.10 are shifted and show mirror symmetry for
idealized symmetrical ground-state and excited-state potentials.

Q14.7 The rate of fluorescence is in general higher than that
for phosphorescence. Can you explain this fact?

Q14.8 Can linear dichroism spectroscopy be used for mole-
cules in a static solution or in a flowing solution? Explain
your answer.

Q14.9 Predict the number of unpaired electrons and the
ground-state term for the following:

a. NO b. CO

Q14.10 How many distinguishable states belong to the fol-
lowing terms:

a. b. c. d.

Q14.11 Explain why the spectator species M in
Equation (14.5) is needed to make the reaction proceed.

Q14.12 Because internal conversion is in general very fast,
the absorption and fluorescence spectra are shifted in frequency
as shown in Figure 14.10. This shift is crucial in making 

2¢2ß3©-
g

1©+
g

n¿
n = 0: n¿ = 0

n = 0: n¿ = 1

fluorescence spectroscopy capable of detecting very small con-
centrations. Can you explain why?

Q14.13 What do you expect the electronic spectrum to
look like for the ground and excited states shown in the 
figure below?

frozen orbital approximation

integral absorption coefficient

internal conversion

intersystem crossing

Koopmans’ theorem

linear dichroism spectroscopy

linearly polarized light

molar extinction coefficient

molecular configuration

molecular term

transition

nonradiative transition

transition

persistence length

phosphorescence

photodissociation

photoionization

primary structure

radiative transition

resonance energy transfer

p: p*

n: p* transition

secondary structure

singlet state

spectroscopic ruler

symmetric combination

tertiary structure

transition dipole moment

triplet state

UV photoelectron spectroscopy

worm-like chain model

s: s*

Conceptual Problems

Q14.14 Why are the spectra of the individual molecules
shown in the bottom trace of Figure 14.15 shifted in frequency?

Q14.15 Suppose you obtain the UV photoelectron spectrum
shown here for a gas-phase molecule. Each of the groups corre-
sponds to a cation produced by ejecting an electron from a dif-
ferent MO. What can you conclude about the bond length of the
cations in the three states formed relative to the ground-state
neutral molecule? Use the relative intensities of the individual
vibrational peaks in each group to answer this question.
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Ionization energy

Excited state

Ground state

E
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rg
y

Distance



Q14.16 The ground state of is , and the next few
excited states, in order of increasing energy, are

. On the basis of
selection rules, which of the excited states can be accessed
from the ground state by absorption of UV light?

Q14.17 The relative intensities of vibrational peaks in an
electronic spectrum are determined by the Franck-Condon
factors. How would the potential curve for the excited state in
Figure 14.2 need to be shifted along the distance axis for the

transition to have the highest intensity? The
term n refers to the vibrational quantum number in the ground
state, and refers to the vibrational quantum number in the
excited state.

Q14.18 Calculate the bond order for O2 in the , a1¢g,X3©-
g

n¿

n = 0: n¿ = 0

a4ßu, A2ßu, b4©-
g, 2¢g, 2©-

g, and c4©-
u

X2ßgO+
2
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Numerical Problems

P14.1 Determine whether the following transitions are
allowed or forbidden:

a. b.

c. d.

P14.2 The ground electronic state of O2 is , and the3© -
g

1ßg: 1¢u
3© -

g : 3ßg

1© +
g : 1ßg

3ßu: 3© -
g

next two highest energy states are (7918 cm-1), and 1© +
g

1¢g
(13195 cm-1) where the value in parentheses is the energy of
the state relative to the ground state.

a. Determine the excitation wavelength required for a transition
between the ground state and the first two excited states.

b. Are these transitions allowed? Why or why not?

P14.3 Ozone (O3) has an absorptivity at 300. nm of
0.00500 torr-1 cm-1. In atmospheric chemistry the amount
of ozone in the atmosphere is quantified using the Dobson
unit (DU), where 1 DU is equivalent to a 10-2 mm thick
layer of ozone at 1 atm and 273.15 K.

a. Calculate the absorbance of the ozone layer at 300. nm for
a typical coverage of 300. DU.

b. Seasonal stratospheric ozone depletion results in a decrease
in ozone coverage to values as low as 120. DU. Calculate
the absorbance of the ozone layer at this reduced coverage.

In each part, also calculate the transmission from the
absorbance using Beer’s Law.

P14.4 Consider a diatomic molecule for which the bond
force constant in the ground and excited electronic states is
the same, but the equilibrium bond length is shifted by an
amount in the excited state relative to the ground state. For
this case the vibrational wavefunctions for the n = 0 state are

cg,0 = a a
p
b

1>4
e- 1

2ar2
,ce,0 = a a

p
b

1>4
e- 1

2a(r-d)2
,a = A

km

U2

d

Calculate the Franck-Condon factor for the 0-0 transition for
this molecule by evaluating the following expression:

In evaluating this expression, the following integral will be
useful:

P14.5 One method for determining Franck-Condon factors
between the n = 0 vibrational state of the ground electronic state
and the nth vibrational level of an electronic excited state is:

where is the dimensionless displacement of the excited state
relative to the ground state and can be related to atomic dis-
placements through

a. Determine the Franck-Condon factors for n = 0 to n = 5
when = 0.20 corresponding to the excited-state potential
surface being slightly displaced from that of the ground state.

b. How would you expect the Franck-Condon factors to
change if the excited-state displacement increases to 

= 2.0? Verify your expectation by calculating the Franck-
Condon factors from n = 0 to n = 5 for this displacement.
d

d

d = amv
U
b

1>2 Are -  rg B

d

FC0-n =
1

n!
ad2

2
bn

 expa -
d2

2
b

3
q

- q

e-ax2 -bxdx = ap
a
b

1>2
eb2>4a (a 7 0)

` 3
q

- q

c*
g,0ce,0dr ` 2

of increasing bond length on the basis of bond order. Do 
your results agree with the potential energy curves shown in
Figure 14.1?

Q14.19 How can circular dichroism spectroscopy be used
to determine the secondary structure of a biomolecule?

Q14.20 What does the word resonance in FRET refer to?

Q14.21 In a simple model used to analyze UV photoelectron
spectra, the orbital energies of the neutral molecule and the
cation formed by ejection of an electron are assumed to be the
same. In fact, some relaxation occurs to compensate for the
reduction in the number of electrons by one. Would you expect
the orbital energies to increase or decrease in the relaxation?
Explain your answer.

, , and states. Arrange these states in orderB3©-
uA3©+

ub1©+
g



P14.6 When vibrational transitions are observed in an
electronic absorption spectrum, these transitions can be used to
determine dissociation energies. Specifically, a Birge-Sponer
plot is constructed where the energy difference between
successive vibrational transitions n and n +1 ( ) (see
figure) is plotted versus the vibrational level number. Note that
G does not refer to the Gibbs energy in this context.

The central idea behind the approach is that the dissociation
energy is equal to the sum of these energy differences from 
n = 0 to the dissociation limit:

a. For the ground state of I2 the following values for G versus
n were determined (J. Chem. Phys 32 (1960): 738):

D0 = ¢G1>2 + ¢G3>2 + ¢G5>2 + p = a
ndiss

n=0
¢Gn+ 1>2

¢Gn+ 1>2
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D0
De

0

1

2

3
4

�G7/2

�G5/2

�G3/2

�G1/2

If the potential function can be described by a Morse poten-
tial [Equation (8.5)], G will be a linear function of n .+ 1>2

n G (cm-1)¢
0 213.31
1 212.05
2 210.80
3 209.66
4 208.50
5 207.20
6 205.80
7 204.55
8 203.18
9 201.93

10 199.30
11 198.05
12 196.73
13 195.36
14 194.36
15 192.73
16 191.31
17 189.96
18 188.47
19 187.07

Construct a Birge-Sponer plot ( G versus n ) using
the given data, and using the best fit to a straight line to
determine the value of n where G = 0. This is the I2
ground-state vibrational quantum number at dissociation.

b. The area under the Birge-Sponer plot is equal to the disso-
ciation energy D0. This area can be determined by summing
the G values from n = 0 to n at dissociation (determined
in part a). Perform this summation to determine D0 for
ground state I2. You can also integrate the best fit equation
to determine D0.

¢

¢

+ 1>2¢

P14.7 Birge-Sponer plots are generally made using G for
n values far from the dissociation limit. If the data includes
n values close to the dissociation limit, deviations from a 
linear relationship between G and n are observed.
Taking these deviations into account allows a more accurate
determination of the n value corresponding to dissociation
and D0 to be made. A student determined the following 
values for G versus n for the ground state of H2:¢

+ 1>2¢

¢

n G (cm-1)¢
0 4133
1 3933
2 3733
3 3533
4 3233
5 3000
6 2733
7 2533
8 2267
9 2000

10 1733
11 1400
12 1067
13 633

a. Construct a Birge-Sponer plot ( G versus n ) using 
the given data, and fit the data assuming a linear relation-
ship between G and n. Determine the value of n where 

G = 0. This is the H2 ground-state vibrational quantum
number at dissociation.

b. The area under the Birge-Sponer plot is equal to the dissoci-
ation energy D0. This area can be determined by summing
the G values from n = 0 to n at dissociation (determined in
part a). Perform this summation to determine D0 for ground
state I2. You can also integrate your best fit expression 

G(n) from zero to the n value corresponding to dissociation.
Compare your result with the value shown in Table 8.3.
¢

¢

¢
¢

+ 1>2¢



P14.9 Green fluorescent protein (GFP) and variants of this
protein have been developed for in vivo FRET studies 
(Pollok B. and Heim R. Trends in Cell Biology 9 (1999): 57).
Two variants of GFP, cyan fluorescent protein (CFP) and 
yellow fluorescent protein (YFP), form a FRET pair where 
R0 = 4.72 nm. The excited-state lifetime of the CFP donor in
the absence of YFP is 2.7 ns.

a. At what distance will the rate of energy transfer be equal
to the excited-state decay rate for isolated CFP, equal to
the inverse of the excited-state lifetime?

b. Determine the distance at which the energy transfer rate
will be five times the excited-state decay rate.

P14.10 Structural changes in proteins have been measured
using FRET with the amino acid tryptophan as the donor and
dansyl as the acceptor where dansyl is attached to the protein
through addition to amino acids with aliphatic amine groups
such as lysine. For this pair R0 = 2.1 nm, and the excited state
lifetime of tryptophan is 1.0 ns. Determine the rate of
energy transfer for r = 0.50, 1.0, 2.0, 3.0, and 5.0 nm.

P14.11 In the polyproline “spectroscopic ruler” experiment
shown in Figure 14.19, the FRET pair employed is comprised
of the fluorescent dyes Alexa Fluor 488 (excited-state lifetime
of 4.1 ns) and Alexa Fluor 594. For this FRET pair R0 =
5.4 nm. The distance between the FRET pair ranges from 
2.0 nm for Pro6 to 12.5 nm for Pro40. Calculate the variation
in the energy-transfer rate for r = 2.0, 7.0, and 12.0 nm. Do
your results agree with the trend evident in Figure 14.19?

'a. Construct a Birge-Sponer plot ( G versus n ) using
the given data, and using a best fit to a straight line deter-
mine the value of n where G = 0. This is the vibrational
quantum number at dissociation in the excited state. G
can also be determined from the plot.

b. The area under the Birge-Sponer plot is equal to the dissocia-
tion energy D0 for this van der Waals complex in the excited
state. The area can be determined by summing the G
values from n = 0 to n at dissociation (determined in part a).
You can also integrate the best fit equation to determine D0.

¢

1>2¢
¢

+ 1>2¢
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n G (cm-1)
1 37.2
2 34
3 31.6
4 29.2
5 26.8

c. Determine the value of n where G = 0 and D0, assuming
a quadratic relationship between G and n, 

. Which fit gives better agreement
with the value for D0 shown in Table 8.3?

P14.8 Electronic spectroscopy of the Hg-Ar van der Waals
complex was performed to determine the dissociation energy
of the complex in the first excited state (Quayle, C. J. K. et al.
Journal of Chemical Physics 99 (1993): 9608). As described
in Problem P14.6, the following data regarding G versus n
was obtained:

¢

(n + 1>2) + c(n + 1>2)2
¢G = a + b¢

¢
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The Schrödinger equation can be solved exactly only for atoms or

molecules containing one electron. For this reason, numerical methods that

allow us to calculate approximate wave functions and values for observ-

ables such as energy, equilibrium bond lengths and angles, and dipole

moments are at the heart of computational chemistry. The starting point

for our discussion is the Hartree–Fock molecular orbital model. Although

this model gives good agreement with experiment for some variables such

as bond lengths and angles, it is inadequate for calculating many other

observables. By extending the model to include electron correlation in a

more realistic manner, and by judicious choice of a basis set, more accurate

calculations can be made. The configuration interaction, Møller-Plesset, and

density functional methods are discussed in this chapter, and the trade-off

between computational cost and accuracy is emphasized. The 37 problems

provided with this chapter are designed to give the student a working,

rather than a theoretical, knowledge of computational chemistry.

Warren J. Hehre, CEO, Wavefunction, Inc.
To the memory of Sir John Pople, 1925–2004

15.1 The Promise of Computational
Chemistry

Calculations on molecules based on quantum mechanics, once a mere novelty, are now
poised to complement experiments as a means to uncover and explore new chemistry.
The most important reason for this is that the theories underlying the calculations have
now evolved to the point at which a variety of important quantities, among them molec-
ular equilibrium geometry and reaction energetics, can be obtained with sufficient
accuracy to actually be of use. Also important are the spectacular advances in computer
hardware that have been made during the past decade. Taken together, this means that
good theories can now be routinely applied to real systems. Finally, current computer
software can be easily and productively used with little special training.

Computational
Chemistry

15 C
H

A
P

T
E
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This Icon Indicates That Relevant

Computational Problems are 

Available in the End-of-Chapter

Problems.

1The problems have been designed with the capabilities of the Student Edition of the Spartan molecular mod-
eling program in mind. Other programs that allow equilibrium and transition-state geometry optimization,
conformational searching, energy, property, and graphical calculations using Hartree–Fock, and density func-
tional and MP2 models can also be used. The only exceptions are problems that appear early in the chapter
before calculation models have been fully introduced. These problems make use of precalculated Spartan files
that will be made available to students. See www.masteringchemistry.com.

In making these quantum mechanics calculations, however, significant obstacles
remain. For one, the chemist is confronted with many choices to make and few guide-
lines on how to make these choices. The fundamental problem is that the mathematical
equations that arise from the application of quantum mechanics to chemistry—and that
ultimately govern molecular structure and properties—cannot be solved analytically.
Approximations need to be made in order to realize equations that can actually be
solved. Severe approximations may lead to methods that can be widely applied, but may
not yield accurate information. Less severe approximations may lead to methods that are
more accurate, but too costly to apply routinely. In short, no one method of calculation is
likely to be ideal for all applications, and the ultimate choice of specific methods rests on
a balance between accuracy and cost. We equate cost with the computational time
required to carry out the calculation.

The purpose of this chapter is to guide the student past the point of merely thinking
about quantum mechanics as one of several components of a physical chemistry course
and to instead have the student actually use quantum mechanics to address real chemi-
cal problems. The chapter starts with the many-electronic Schrödinger equation and
then outlines the approximations that need to be made to transform this equation into
what is now commonly known as Hartree–Fock theory. In the spirit of emphasizing the
concepts rather than the theoretical framework, mathematical descriptions of the theo-
retical models discussed appear in boxes. A detailed understanding of this framework,
however desirable, is not necessary to apply quantum mechanics to chemistry.

A focus on the limitations of Hartree–Fock theory leads to ways to improve on it and
to a range of practical quantum chemical models. A few of these models are examined
in detail and their performance and cost discussed. Finally, a series of graphical tech-
niques is presented to portray the results of quantum chemical calculations. Aside from
its practical focus, what sets this chapter apart from the remainder of this text is the
problems. None of these are of the pencil-and-paper type; instead they require use of a
quantum chemical program1 on a digital computer. For the most part, the problems are
open ended (as is an experimental laboratory) meaning that the student is free to
explore. Problems that use the quantum chemical models under discussion are
referenced throughout the chapter. Working problems as they are presented, before pro-
ceeding to the next section, is strongly recommended.

15.2 Potential Energy Surfaces
Chemists are familiar with the plot of energy versus the torsion angle involving the central
carbon–carbon bond in n-butane. Figure 15.1 reveals three energy minima, corresponding
to staggered structures, and three energy maxima, corresponding to eclipsed structures.
One of the minima is given by a torsion angle of (the so-called anti structure), and it
is lower in energy and distinct from the other two minima with torsion angles of approxi-
mately and (so-called gauche structures), which are identical. Similarly, one of
the energy maxima corresponding to a torsion angle of is distinct from the other two
maxima with torsion angles of approximately and , which are identical.

Eclipsed forms of n-butane are not stable molecules; instead they correspond only to
hypothetical structures between anti and gauche minima. Thus, any sample of n-butane
is made up of only two distinct compounds, anti n-butane and gauche n-butane. The
relative abundance of the two compounds as a function of temperature is given by the
Boltzmann distribution (see the discussion in Section 2.1).

The important geometrical coordinate in the example of Figure 15.1 can be clearly
identified as a torsion involving one particular carbon–carbon bond. More generally, the
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FIGURE 15.1
The energy of n-butane is shown as a
function of the CCCC torsion angle,
which is the reaction coordinate.
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important coordinate will be some combination of bond distances and angles and will
be referred to simply as the reaction coordinate. This leads to a general type of plot in
which the energy is given as a function of the reaction coordinate. Diagrams like this are
commonly referred to as reaction coordinate diagrams or potential energy surfaces
and provide essential connections between important chemical observables—structure,
stability, reactivity, and selectivity—and energy.

15.2.1 Potential Energy Surfaces and Geometry

The positions of the energy minima along the reaction coordinate give the equilibrium
structures of the reactants and products as shown in Figure 15.2. Similarly, the position
of the energy maximum defines the transition state. For example, where the reaction
involves gauche n-butane going to the more stable anti conformer, the reaction coordi-
nate may be thought of as a simple torsion about the central carbon–carbon bond, and
the individual reactant, transition-state, and product structures in terms of this coordi-
nate are depicted in Figure 15.3.

Equilibrium structure (geometry) can be determined from experiments as long as
the molecule can be prepared and is sufficiently long lived to be subject to measure-
ment. On the other hand, the geometry of a transition state cannot be established
from measurement. This is simply because the transition state does not exist in terms
of a sufficiently large population of molecules on which measurements can be
performed.

Both equilibrium and transition-state structure can be determined from calculations.
The former requires a search for an energy minimum on a potential energy surface,
whereas the latter requires a search for an energy maximum along the reaction coordi-
nate (and a minimum along each of the remaining coordinates). To see what is actually
involved, the qualitative picture provided earlier must be replaced by a rigorous mathe-
matical treatment. Reactants, products, and transition states are all stationary points on
the potential energy diagram. In the one-dimensional case (the reaction coordinate dia-
gram alluded to previously), this means that the first derivative of the potential energy
with respect to the reaction coordinate is zero:

(15.1)

The same must be true in dealing with a many-dimensional potential energy diagram (a
potential energy surface). Here all partial derivatives of the energy with respect to each
of the (N atoms) independent geometrical coordinates (Ri) are zero:

(15.2)

In the one-dimensional case, reactants and products are energy minima and are charac-
terized by a positive second energy derivative:

(15.3)

The transition state is an energy maximum and is characterized by a negative second
energy derivative:

(15.4)

In the many-dimensional case, each independent coordinate, Ri, gives rise to 
second derivatives:

(15.5)
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FIGURE 15.2
A reaction coordinate diagram shows the
energy as a function of the reaction coor-
dinate. Reactants and products correspond
to minima, and the transition state corre-
sponds to a maximum along this path.
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FIGURE 15.3
The structure of the reactant, product, and
transition state in the “reaction” of gauche
n-butane to anti n-butane.
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This leads to a matrix of second derivatives (the so-called Hessian):

(15.6)

In this form, it is not possible to say whether any given coordinate corresponds to an
energy minimum, an energy maximum, or neither. To see the correspondence, the orig-
inal set of geometrical coordinates (Ri) is replaced by a new set of coordinates ( ),
which leads to a matrix of second derivatives that is diagonal:

(15.7)

The are unique and referred to as normal coordinates. Stationary points for which
all second derivatives (in normal coordinates) are positive are energy minima:

(15.8)

These correspond to equilibrium forms (reactants and products). Stationary points for
which all but one of the second derivatives are positive are so-called (first-order) saddle
points and may correspond to transition states. If they do, the coordinate for which the
second derivative is negative is referred to as the reaction coordinate ( ):

(15.9)

15.2.2 Potential Energy Surfaces and Vibrational Spectra

The vibrational frequency for a diatomic molecule A-B is given by Equation (15.10) as
discussed in Section 7.1:

(15.10)

In this equation, k is the force constant, which is in fact the second energy derivative of
the potential energy, V, with respect to the bond length, R, at its equilibrium position

(15.11)

and is the reduced mass,

(15.12)

where mA and mB are masses of atoms A and B.
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Problems P15.2–P15.3

Transition state

Reactants

Products

“Thermodynamics”

Reaction coordinate

E
nt

ha
lp

y

FIGURE 15.4
The energy difference between the 
reactants and products determines the
thermodynamics of a reaction.

TABLE 15.1
The Ratio of the Major to Minor
Product Is shown as a Function
of the Energy Difference 
between these Products

Energy 
Difference 
kJ mol>

Major: Minor 
(at Room 
Temperature)

2 '80 : 20

4 '90 : 10

8 '95 : 5

12 '99 : 1

Polyatomic systems are treated in a similar manner. Here, the force constants are the
elements in the diagonal representation of the Hessian [Equation (15.7)]. Each vibra-
tional mode is associated with a particular motion of atoms away from their equilibrium
positions on the potential energy surface. Low frequencies correspond to motions in
shallow regions of the surface, whereas high frequencies correspond to motions in steep
regions. Note that one of the elements of the Hessian for a transition state will be a neg-
ative number, meaning that the corresponding frequency will be imaginary [the square
root of a negative number as in Equation (15.10)]. This normal coordinate refers to
motion along the reaction coordinate.

15.2.3 Potential Energy Surfaces and Thermodynamics

The relative stability of reactant and product molecules is indicated on the potential
energy surface by their energies. The thermodynamic state functions internal energy, U,
and enthalpy, H, can be obtained from the energy of a molecule calculated by quantum
mechanics, as discussed in Section 15.8.4.

The most common case is, as depicted in Figure 15.4, the one in which energy is
released in the reaction. This kind of reaction is said to be exothermic, and the dif-
ference in stabilities of reactant and product is simply the enthalpy difference .
For example, the reaction of gauche n-butane to anti n-butane is exothermic, and

as shown in Figure 15.1.
Thermodynamics tells us that if we wait long enough the amount of products in an

exothermic reaction will be greater than the amount of reactants. The actual ratio of the
number of molecules of products (nproducts) to reactants (nreactants) also depends on the
temperature and follows from the Boltzmann distribution:

(15.13)

where Eproducts and Ereactants are the energies per molecule of the products and reactants,
respectively, T is the temperature, and k is the Boltzmann constant. The Boltzmann dis-
tribution tells us the relative amounts of the products and reactants at equilibrium. Even
small energy differences between major and minor products lead to large product ratios,
as shown in Table 15.1. The product formed in greatest abundance is that with the
lowest energy, irrespective of the reaction pathway. In this case, the product is referred
to as the thermodynamic product and the reaction is said to be thermodynamically
controlled.

15.2.4 Potential Energy Surfaces and Kinetics

A potential energy surface also reveals information about the rate at which a reaction
occurs. The difference in energy between reactants and the transition state as shown in
Figure 15.5 determines the kinetics of the reaction. The absolute reaction rate depends
both on the concentrations of the reactants, [A]a, [B]b, , where a, b, are typically
integers or half integers, and a quantity called the rate constant:

(15.14)

The rate constant is given by the Arrhenius equation and depends on the temperature:

(15.15)

Here, Etransition state and Ereactants are the energies per molecule of the transition state and
the reactants, respectively. Note that the rate constant and the overall rate do not depend
on the energies of reactants and products, but only on the difference in energies
between reactants and the transition state. This difference is commonly referred to
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FIGURE 15.5
The energy difference between the reac-
tants and transition state determines the
rate of a reaction.
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FIGURE 15.6
Two different pathways passing through
different transition states. The path in red
is followed for a kinetically controlled
reaction, and the path in purple is
followed for a thermodynamically
controlled reaction. The reaction coordi-
nate differs for the two pathways.

Problem P15.4

as the activation energy and is usually given the symbol Other factors such as
the likelihood of encounters between molecules and the effectiveness of these encoun-
ters in promoting reactions are taken into account by way of the preexponential factor,
A, which is generally assumed to have the same value for reactions involving a single
set of reactants going to different products or for reactions involving closely related
reactants.

In general, the lower the activation energy, the faster the reaction. In the limit
, the reaction rate will be limited entirely by how rapidly the molecules can

move. Such limiting reactions are known as diffusion-controlled reactions. The prod-
uct formed in greatest amount in a kinetically controlled reaction is that proceeding via
the lowest energy transition state, irrespective of whether or not this is the thermody-
namically stable product. For example, a kinetically controlled reaction will proceed
along the red pathway in Figure 15.6, and the product formed is different than that cor-
responding to equilibrium in the system. The kinetic product ratio shows a dependence
on activation energy differences that is analogous to that of Equation (15.13) with
Etransition state in place of Eproduct.

15.3 Hartree–Fock Molecular Orbital Theory:
A Direct Descendant of the
Schrödinger Equation

The Schrödinger equation is deceptive in that, although it is remarkably easy to write
down for any collection of nuclei and electrons, it has proven to be insolvable except for
the one-electron case (the hydrogen atom). This situation was elaborated as early as
1929 by Dirac, one of the early founders of quantum mechanics:

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be solvable.

P. A. M. Dirac, 1902–1984

To realize a practical quantum mechanical theory, it is necessary to make three
approximations to the general multinuclear, multielectron Schrödinger equation:

(15.16)

where E is the total energy of the system and is the n-electron wave function that
depends both on the identities and positions of the nuclei and on the total number of
electrons. The Hamiltonian provides the recipe for specifying the kinetic and
potential energies for each of the particles:

(15.17)

where ZA is the nuclear charge, MA is the mass of nucleus A, me is the mass of the
electron, RAB is the distance between nuclei A and B, rij is the distance between
electrons i and j, riA is the distance between electron i and nucleus A, is the permit-
tivity of free space, and is the Planck constant divided by .

The first approximation takes advantage of the fact that nuclei move much more slowly
than do electrons. We assume that the nuclei are stationary from the perspective of the elec-
trons (see Section 12.2), which is known as the Born–Oppenheimer approximation.
This assumption leads to a nuclear kinetic energy term in Equation (15.17), the second
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term, which is zero, and a nuclear–nuclear Coulombic energy term, the last term, which
is constant. What results is the electronic Schrödinger equation:

(15.18)

(15.19)

The (constant) nuclear–nuclear Coulomb energy, the last term in Equation (15.17)
needs to be added to Eel to get the total energy. Note that nuclear mass does not appear
in the electronic Schrödinger equation. To the extent that the Born–Oppenheimer
approximation is valid, this means that isotope effects on molecular properties must
have a different origin.

Equation (15.18), like Equation (15.16), is insolvable for the general (many-
electron) case and further approximations need to be made. The most obvious thing to
do is to assume that electrons move independently of each other, which is what is done
in the Hartree–Fock approximation. In practice, this can be accomplished by assum-
ing that individual electrons are confined to functions called spin orbitals, i. Each of
the N electrons feels the presence of an average field made up of all of the other

electrons. To ensure that the total (many-electron) wave function is anti-
symmetric upon interchange of electron coordinates, it is written in the form of a single
determinant called the Slater determinant (see Section 10.3):

(15.20)

Individual electrons are represented by different rows in the determinant, which
means that interchanging the coordinates of two electrons is equivalent to interchang-
ing two rows in the determinant, multiplying its value by . Spin orbitals are the
product of spatial functions or molecular orbitals, , and spin functions, or . The
fact that there are only two kinds of spin functions ( and ) leads to the conclusion
that two electrons at most may occupy a given molecular orbital. Were a third electron
to occupy the orbital, two rows in the determinant would be the same, as was shown in
Section 10.3. Therefore, the value of the determinant would be zero. Thus, the notion
that electrons are paired is a consequence of the Hartree–Fock approximation through
the use of a determinant for the wave function. The set of molecular orbitals leading to
the lowest energy is obtained by a process referred to as a self-consistent-field (SCF)
procedure, which was discussed in Section 10.5 for atoms and in Section 13.1 for
molecules.

The Hartree–Fock approximation leads to a set of differential equations, the Hartree–
Fock equations, each involving the coordinates of a single electron. Although they can be
solved numerically, it is advantageous to introduce an additional approximation in order to
transform the Hartree–Fock equations into a set of algebraic equations. The basis for this
approximation is the expectation that the one-electron solutions for many-electron mole-
cules will closely resemble the one-electron wave functions for the hydrogen atom. After
all, molecules are made up of atoms, so why should molecular solutions not be made up of
atomic solutions? As discussed in Section 13.2, the molecular orbitals are expressed as
linear combinations of a basis set of prescribed functions known as basis functions, :

(15.21)

In this equation, the coefficients are the (unknown) molecular orbital coefficients.
Because the are usually centered at the nuclear positions, they are referred to as atomic
orbitals, and Equation (15.21) is called the linear combination of atomic orbitals
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Methods resulting from solution of the Roothaan–Hall equations are called Hartree–
Fock models. The corresponding energy in the limit of a complete basis set is called the
Hartree–Fock energy.

15.4 Properties of Limiting Hartree–Fock
Models

As discussed earlier in Section 10.5, total energies obtained from limiting (complete
basis set) Hartree–Fock calculations will be too large (positive). This can be understood
by recognizing that the Hartree–Fock approximation leads to replacement of instanta-
neous interactions between individual pairs of electrons with a picture in which each
electron interacts with a charge cloud formed by all other electrons. The loss of flexibil-
ity causes electrons to get in each other’s way to a greater extent than would actually be
the case, leading to an overall electron repulsion energy that is too large and, hence, a
total energy that is too large. The direction of the error in the total energy is also a direct

MATHEMATICAL FORMULATION OF THE HARTREE–FOCK METHOD
The Hartree–Fock and LCAO approximations, taken together and applied to the
electronic Schrödinger equation, lead to a set of matrix equations now known as
the Roothaan–Hall equations:

(15.22)

where c are the unknown molecular orbital coefficients [see Equation (15.21)], are
orbital energies, S is the overlap matrix, and F is the Fock matrix, which is analogous
to the Hamiltonian in the Schrödinger equation:

(15.23)

where Hcore is the so-called core Hamiltonian, the elements of which are given by

(15.24)

Coulomb and exchange elements are given by:

(15.25)

(15.26)

where P is called the density matrix, the elements of which involve a product of two
molecular orbital coefficients summed over all occupied molecular orbitals (the
number of which is simply half the total number of electrons for a closed-shell
molecule):

(15.27)

and are two-electron integrals, the number of which increases as the fourth
power of the number of basis functions. Therefore, the cost of a calculation rises
rapidly with the size of the basis set:

(15.28)1mn ƒls2 = LLfm112fn112B
1

r12
R fl122fs122dt1 dt2

1mn ƒls2
Pls = 2 a

occupied molecular
 orbitals

i
cli csi

Kmn =
1

2 a
basis

l
a

functions

s

Pls1ml ƒ ns2

Jmn = a
basis

l
a

functions

s

Pls1mn ƒls2

Hcore
mn = Lfm112B -

U2

2me
§2 -

e2

4pe0
a

nuclei

A

ZA

r1A
R fn112dt

Fmn = Hcore
mn + Jmn - Kmn

e

Fc = eSc

(LCAO) approximation. Note, that in the limit of a complete (infinite) basis set, the
LCAO approximation is exact at the Hartree–Fock level.



15.4 PROPERTIES OF LIMITING HARTREE–FOCK MODELS 347

consequence of the fact that Hartree–Fock models are variational. The limiting Hartree–
Fock energy must be larger than (or at best equal to) the energy that would result from
the solution of the exact Schrödinger equation.

The difference between the limiting Hartree–Fock energy and the exact Schrödinger
energy is called the correlation energy. The name correlation stems from the idea that
the motion of one electron necessarily adjusts to or correlates with the motions of all
other electrons. Any restriction on the freedom of electrons to move independently will,
therefore, reduce their ability to correlate with other electrons.

The magnitude of the correlation energy may be quite large in comparison with typ-
ical bond energies or reaction energies. However, a major part of the total correlation
energy may be insensitive to molecular structure, and Hartree–Fock models, which
provide an incomplete account of correlation, may provide acceptable accounts of the
energy change in some types of chemical reactions. It is also often the case that other
properties, such as equilibrium geometries and dipole moments, are less influenced by
correlation effects than are total energies. The sections that follow explore to what
extent these conclusions are valid.

It is important to realize that calculations cannot actually be carried out at the
Hartree–Fock limit. Presented here under the guise of limiting Hartree–Fock quantities
are the results of calculations performed with a relatively large and flexible basis set,
specifically the basis set. (Basis sets are discussed at length in Section 15.7.)
Although such a treatment leads to total energies that are higher than actual limiting
Hartree–Fock energies by several tens to several hundreds of kilojoules per mole
(depending on the size of the molecule), it is expected that errors in relative energies as
well as in geometries, vibrational frequencies, and properties such as dipole moments
will be much smaller.

15.4.1 Reaction Energies

The most easily understood problem with limiting Hartree–Fock models is uncovered
in comparisons of homolytic bond dissociation energies. In such a reaction, a bond is
broken leading to two radicals, for example, in methanol:

As seen from the data in Table 15.2, Hartree–Fock dissociation energies are too small.
In fact, limiting Hartree–Fock calculations suggest an essentially zero bond
energy in hydrogen peroxide and a negative “bond energy” in the fluorine mole-
cule! Something is seriously wrong. To see what is going on, consider the analogous
bond dissociation reaction in the hydrogen molecule:

Each of the hydrogen atoms that make up the product contains only a single electron,
and its energy is given exactly by the (limiting) Hartree–Fock model. On the other hand,
the reactant contains two electrons and, according to the variation principle, its energy
must be too high (too positive). Therefore, the bond dissociation energy must be too low

H¬H ¡ #H + #H

F¬F
O¬O

CH3 ¬OH ¡ #CH3 + #OH

6-311+ G**

TABLE 15.2 Homolytic Bond Dissociation Energies (kJ/mol)

Molecule (bond) Hartree–Fock Limit Experiment ¢

CH3 ¬CH3 ¡ #CH3 + #CH3 276 406 -130

CH3 ¬NH2 ¡ #CH3 + #NH2 238 389 -151

CH3 ¬OH ¡ #CH3 + #OH 243 410 -167

CH3 ¬F ¡ #CH3 + #F 289 477 -188

NH2 ¬NH2 ¡ #NH2 + #NH2 138 289 -151

HO¬OH ¡ #OH + #OH -8 230 -238

F¬F ¡ #F + #F -163 184 -347
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(too negative). To generalize, because the products of a homolytic bond dissociation
reaction will contain one fewer electron pair than the reactant, the products would be
expected to have lower correlation energy. The correlation energy associated with an
electron pair is greater than that for a separated pair of electrons.

The poor results seen for homolytic bond dissociation reactions do not necessarily
carry over into other types of reactions as long as the total number of electron pairs is
maintained. A good example is found in energy comparisons among structural iso-
mers (see Table 15.3). Although bonding may be quite different in going from one
isomer to another, for example, one single and one double bond in propene versus
three single bonds in cyclopropane, the total number of bonds is the same in reactants
and products:

The errors noted here are an order of magnitude less than those found for homolytic
bond dissociation reactions, although in some of the comparisons they are still quite
large, in particular, where small-ring compounds are compared with (unsaturated)
acyclics, for example, propene with cyclopropane.

The performance of limiting Hartree–Fock models for reactions involving even
more subtle changes in bonding is better still. For example, the data in Table 15.4 show
that calculated energies of protonation of nitrogen bases relative to the energy of

CH3CH
H2C

CH2
CH2

CH2

TABLE 15.3 Relative Energies of Structural Isomers (kJ/mol)

Reference
Compound

Isomer Hartree–Fock 
Limit

Experiment ¢

Acetonitrile Methyl isocyanide 88 88 0

Acetaldehyde Oxirane 134 113 21

Acetic acid Methyl formate 71 75 -4

Ethanol Dimethyl ether 46 50 -4

Propyne Allene 8 4 4

Cyclopropene 117 92 25

Propene Cyclopropane 42 29 13

1,3-Butadiene 2-Butyne 29 38 -9

Cyclobutene 63 46 17

Bicyclo[1.1.0]butane 138 109 29

TABLE 15.4 Proton Affinities of Nitrogen Bases Relative to the Proton
Affinity of Methylamine (kJ/mol)

Base Hartree–Fock Limit Experiment ¢

Ammonia -50 -38 -12

Aniline -25 -10 -15

Methylamine 0 0 ¬
Dimethylamine 29 27 2

Pyridine 29 29 0

Trimethylamine 50 46 4

Diazabicyclooctane 75 60 15

Quinuclidine 92 75 17



15.4 PROPERTIES OF LIMITING HARTREE–FOCK MODELS 349

protonation of methylamine as a standard, for example, pyridine relative to methylamine.

The results are typically in reasonable accord with their respective experimental values.

15.4.2 Equilibrium Geometries

Systematic discrepancies are also noted in comparisons involving limiting Hartree–
Fock and experimental equilibrium geometries. Two comparisons are provided. The first
(Table 15.5) involves the geometries of the hydrogen molecule, lithium hydride, methane,
ammonia, water, and hydrogen fluoride, whereas the second (Table 15.6) involves AB
bond distances in two-heavy-atom hydrides, HmABHn. Most evident is the fact that, aside
from lithium hydride, all calculated bond distances are shorter than experimental values. In
the case of bonds to hydrogen, the magnitude of the error increases with the electronegativ-
ity of the heavy atom. In the case of the two-heavy-atom hydrides, the error increases

H

CH3NH2

N� N

� CH3NH3
��

TABLE 15.6 Bond Distances in Two Heavy Metal Hydrides (Å)

Molecule (Bond) Hartree–Fock Limit Experiment ¢

Ethane 1H3C¬CH32 1.527 1.531 -0.004

Methylamine 1H3C¬NH22 1.453 1.471 -0.018

Methanol 1H3C¬OH2 1.399 1.421 -0.022

Methyl fluoride 1H3C¬F2 1.364 1.383 -0.019

Hydrazine 1H2N¬NH22 1.412 1.449 -0.037

Hydrogen peroxide 1HO¬OH2 1.388 1.452 -0.064

Fluorine 1F¬F2 1.330 1.412 -0.082

Ethylene 1H2C“CH22 1.315 1.339 -0.024

Formaldimine 1H2C“NH2 1.247 1.273 -0.026

Formaldehyde 1H2C“O2 1.178 1.205 -0.027

Diimide 1NH“NH2 1.209 1.252 -0.043

Oxygen 1O“O2 1.158 1.208 -0.050

Acetylene 1HC‚CH2 1.185 1.203 -0.018

Hydrogen cyanide 1HC‚N2 1.124 1.153 -0.029

Nitrogen 1N‚N2 1.067 1.098 -0.031

TABLE 15.5 Structures of One-Heavy-Atom Hydrides 
(bond distances, Å; bond angles, )°

Molecule Geometrical 
Parameter

Hartree–Fock 
Limit

Experiment ¢

H2 r(HH) 0.736 0.742 -0.006

LiH r(LiH) 1.607 1.596 +0.011

CH4 r(CH) 1.083 1.092 -0.009

NH3 r(NH) 1.000 1.012 -0.012

61HNH2 107.9 106.7 -1.2

H2O r(OH) 0.943 0.958 -0.015

61HOH2 106.4 104.5 +1.9

HF r(FH) 0.900 0.917 -0.017



350 C H A P T E R  1 5 Computational Chemistry

substantially when two electronegative elements are involved in the bond. Thus, although
errors in bond distances for methylamine, methanol, and methyl fluoride are fairly small,
those for hydrazine, hydrogen peroxide, and fluorine molecule are much larger.

The reason for this trend—limiting Hartree–Fock bond distances being shorter than
experimental values—as well as the reason that lithium hydride is an exception will
become evident when we examine how Hartree–Fock models can be extended to treat
electron correlation in Section 15.6.

15.4.3 Vibrational Frequencies

A few comparisons of limiting Hartree–Fock and experimental symmetric stretching
frequencies for diatomic and small polyatomic molecules are provided in Table 15.7. (Note
that the experimentally measured frequencies have been corrected for anharmonic behavior
before being compared with calculated harmonic frequencies.) The systematic error in
equilibrium bond distances for limiting Hartree–Fock models (calculated distances are
shorter than experimental lengths) seems to be paralleled by a systematic error in stretching
frequencies (calculated frequencies are larger than experimental frequencies). This is not
unreasonable: too short a bond implies too strong a bond, which translates to a frequency
that is too large. Note, however, that homolytic bond dissociation energies from limiting
Hartree–Fock models are actually smaller (not larger) than experimental values, an obser-
vation that might imply that frequencies should be smaller (not larger) than experimental
values. The reason for the apparent contradiction is that the Hartree–Fock model does not
dissociate to the proper limit of two radicals as a bond is stretched.

15.4.4 Dipole Moments

Electric dipole moments for a few simple molecules from limiting Hartree–Fock cal-
culations are compared with experimental moments in Table 15.8. The calculations
reproduce the overall ordering of dipole moments. Although the sample is too small

TABLE 15.7 Symmetric Stretching Frequencies in Diatomic and Small 
Polyatomic Molecules 1cm�12

Molecule Hartree–Fock Limit Experiment ¢

Lithium fluoride 927 914 13

Fluorine 1224 923 301

Lithium hydride 1429 1406 23

Carbon monoxide 2431 2170 261

Nitrogen 2734 2360 374

Methane 3149 3137 12

Ammonia 3697 3506 193

Water 4142 3832 310

Hydrogen fluoride 4490 4139 351

Hydrogen 4589 4401 188

TABLE 15.8 Electric Dipole Moments (debyes)

Molecule Hartree–Fock Limit Experiment ¢

Methylamine 1.5 1.31 0.2

Ammonia 1.7 1.47 0.2

Methanol 1.9 1.70 0.2

Hydrogen fluoride 2.0 1.82 0.2

Methyl fluoride 2.2 1.85 0.3

Water 2.2 1.85 0.3
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to generalize, the calculated values are consistently larger than the corresponding
experimental quantities. This might seem to be at odds with the notion that limiting
Hartree–Fock bond lengths in these same molecules are smaller than experimental dis-
tances (which would imply dipole moments should be smaller than experimental
values). We address this issue later in Section 15.8.8.

15.5 Theoretical Models and Theoretical
Model Chemistry

As discussed in the preceding sections, limiting Hartree–Fock models do not provide
results that are identical to experimental results. This is, of course, a direct consequence
of the Hartree–Fock approximation, which replaces instantaneous interactions between
individual electrons by interactions between a particular electron and the average field
created by all other electrons. Because of this, electrons get in each other’s way to a
greater extent than they should. This leads to an overestimation of the electron–electron
repulsion energy and too high a total energy.

At this point it is instructive to introduce the idea of a theoretical model, that is,
a detailed recipe starting from the electronic Schrödinger equation and ending with a
useful scheme, as well as the notion that any given theoretical model necessarily
leads to a set of results, a theoretical model chemistry. At the outset, we might
anticipate that the less severe the approximations that make up a particular theoretical
model, the closer will be its results to experiment. The terms theoretical model and
theoretical model chemistry were introduced by Sir John Pople, who in 1998 received
the Nobel Prize in chemistry for his work in bringing quantum chemistry into
widespread use.

All possible theoretical models may be viewed in the context of the two-
dimensional diagram shown in Figure 15.7. The horizontal axis relates the extent to
which the motions of electrons in a many-electron system are independent of each
other or, alternately, the degree to which electron correlation is taken into account.
At the extreme left are Hartree–Fock models. The vertical axis designates the basis
set, which is used to represent the individual molecular orbitals. At the top is a
so-called minimal basis set, which involves the fewest possible functions discussed
in Section 15.7.1, while at the very bottom is the hypothetical complete basis set.
The bottom of the column of Hartree–Fock models (at the far left) is called the
Hartree–Fock limit.

Proceeding all the way to the right in Figure 15.7 (electron correlation fully taken
into account) and then all the way to the bottom (both complete basis set and electron

Electron correlation

“Complete”
electron correlation

“Complete”
basis set

H��E�

Hartree-Fock
models

Expansion
in terms of
a basis set

FIGURE 15.7
Different theoretical models can be classi-
fied by the degree to which electron corre-
lation is taken into account and by the size
of the basis set used.
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correlation taken into account) on this diagram is functionally equivalent to solving the
Schrödinger equation exactly—something that, as stated earlier, cannot be realized.
Note, however, that starting from some position on the diagram, that is, some level
of treatment of electron correlation and some basis set, if moving down and to the
right produces no significant change in a particular property of interest, then we can
reasonably conclude that further motion would also not result in change in this property.
In effect, this would signal that the exact solution has been achieved.

To the extent that it is possible, any theoretical model should satisfy a number of
conditions. Most importantly, it should yield a unique energy, among other molecular
properties, given only the kinds and positions of the nuclei, the total number of elec-
trons, and the number of unpaired electrons. A model should not appeal in any way to
chemical intuition. Also important is that, if at all possible or practical, the magnitude
of the error of the calculated energy should increase roughly in proportion to molecular
size, that is, the model should be size consistent. Only then is it reasonable to anticipate
that reaction energies can be properly described. Less important, but highly desirable, is
that the model energy should represent a bound to the exact energy, that is, the model
should be variational. Finally, a model needs to be practical, that is, able to be applied
not only to very simple or idealized systems, but also to problems that are actually of
interest. Were this not an issue, then it would not be necessary to move beyond the
Schrödinger equation itself.

Hartree–Fock models, which have previously been discussed, are well defined and
yield unique properties. They are both size consistent and variational. Most importantly,
Hartree–Fock models are presently applicable to molecules comprising upward of 50 to
100 atoms. We have already seen that limiting Hartree–Fock models also provide excel-
lent descriptions of a number of important chemical observables, most important
among them, equilibrium geometry and the energies of some kinds of reactions. We
shall see in Section 15.8 that “practical” Hartree–Fock models are also quite successful
in similar situations.

15.6 Moving Beyond Hartree–Fock Theory
We next discuss improvements to the Hartree–Fock model that have the effect of
moving down and to the right in Figure 15.7. Because these improvements increase the
cost of a calculation, it is important to ask if they are necessary for a given calculation.
This question must be answered by determining the extent to which the value of the
observable of interest has the desired accuracy. Sections 15.8.1 through 15.8.11 explicitly
address this question for a number of important observables, among them equilibrium
geometries, reaction energies, and dipole moments.

Two fundamentally different approaches for moving beyond Hartree–Fock theory
have received widespread attention. The first increases the flexibility of the
Hartree–Fock wave function (associated with the electronic ground state) by combin-
ing it with wave functions corresponding to various excited states. The second
introduces an explicit term in the Hamiltonian to account for the interdependence of
electron motions.

Solution of the Roothaan-Hall equations results in a set of molecular orbitals, each of
which is doubly occupied,2 and a set of higher energy unoccupied molecular orbitals.
The number of occupied molecular orbitals is equal to half of the number of electrons 
for closed-shell molecules, whereas the number of unoccupied molecular orbitals
depends on the choice of basis set. Typically this number is much larger than the num-
ber of occupied molecular orbitals, and for the hypothetical case of a complete basis set
it is infinite. The unoccupied molecular orbitals play no part in establishing the Hartree–
Fock energy nor any ground-state properties obtained from Hartree–Fock models. They
are, however, the basis for models that move beyond Hartree–Fock theory.

2This is valid for the vast majority of molecules. Radicals have one singly occupied molecular orbital and the
oxygen molecule has two singly occupied molecular orbitals.
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15.6.1 Configuration Interaction Models

It can be shown that in the limit of a complete basis set, the energy resulting from the
optimum linear combination of the ground-state electronic configuration (that obtained
from Hartree–Fock theory) and all possible excited-state electronic configurations
formed by promotion of one or more electrons from occupied to unoccupied molecular
orbitals is the same as would result from solution of the full many-electron Schrödinger
equation. An example of such a promotion is shown in Figure 15.8.

This result, referred to as full configuration interaction, while interesting, is of no
practical value simply because the number of excited-state electronic configurations is
infinite. Practical configuration interaction models may be realized first by assuming a
finite basis set and then by restricting the number of excited-state electronic configura-
tions included in the mixture. Because of these two restrictions, the final energy is not
the same as would result from solution of the exact Schrödinger equation.
Operationally, what is required is first to obtain the Hartree–Fock wave function, and
then to write a new wave function as a sum, the leading term of which, , is the
Hartree–Fock wave function, and remaining terms, , are wave functions derived
from the Hartree–Fock wave function by electron promotions:

(15.29)

The unknown linear coefficients, as, are determined by solving Equation (15.30):

(15.30)

where the matrix elements are given by

(15.31)

The lowest energy wave function obtained from solution of Equation (15.30) corre-
sponds to the energy of the electronic ground state.

One approach for limiting the number of electron promotions is referred to as the
frozen core approximation. In effect, this eliminates any promotions from molecular
orbitals that correspond essentially to (combinations of) inner-shell or core electrons.
Although the total contribution to the energy arising from inner-shell promotions is not
insignificant, experience suggests that this contribution is nearly identical for the same
types of atoms in different molecules. A more substantial approximation is to limit the
number of promotions based on the total number of electrons involved, that is, single-
electron promotions, double-electron promotions, and so on. Configuration interac-
tion based on single-electron promotions only, the so-called CIS method, leads to no
improvement of the (Hartree–Fock) energy or wave function. The simplest procedure to
use that actually leads to improvement over Hartree–Fock is the so-called CID method,
which is restricted to double-electron promotions:

(15.32)

A somewhat less restricted recipe, the so-called CISD method, considers both
single- and double-electron promotions:

(15.33)

Solution of Equation (15.30) for either CID or CISD methods is practical for reasonably
large systems. Both methods are obviously well defined and they are variational.
However, neither method (or any limited configuration interaction method) is size con-
sistent. This can easily be seen by considering the CISD description of a two-electron
system, for example, a helium atom as shown in Figure 15.9, using just two basis
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functions, which leads to one occupied and one unoccupied molecular orbital. In this
case the CISD description for the isolated atom is exact (within the confines of the basis
set), meaning that all possible electron promotions have been explicitly considered.
Similarly, the description of two helium atoms treated independently is exact.

Next consider the corresponding CISD treatment of two helium atoms together but
at infinite separation, as shown in Figure 15.10. This description is not exact because
three- and four-electron promotions have not been taken into account. Thus, the calcu-
lated energies of two helium atoms treated separately and two helium atoms at infinite
separation will be different. Size consistency is a very important attribute for any quan-
tum chemical model, and its absence for any practical configuration interaction models
makes them much less appealing than they otherwise might be.

15.6.2 Møller-Plesset Models

Practical size-consistent alternatives to configuration interaction models are Møller-
Plesset models, in particular, the second-order Møller-Plesset model (MP2). Møller-
Plesset models are based on the recognition that, while the Hartree–Fock wave function

and ground-state energy E0 are approximate solutions to the Schrödinger equation,
they are exact solutions to an analogous problem involving the Hartree–Fock
Hamiltonian, , in place of the exact Hamiltonian, . Assuming that the Hartree–Fock
wave function and energy are, in fact, very close to the exact wave function and
ground-state energy E, the exact Hamiltonian can then be written in the following form:

(15.34)

In Equation (15.34), is a small perturbation and is a dimensionless parameter.
Using perturbation theory the exact wave function and energy are expanded in terms of
the Hartree–Fock wave function and energy yields

(15.35)

(15.36)° = °0 + l°112 + l2°122 + l3°132 + Á

E = E102 + lE112 + l2E122 + l3 E132 + Á

lVN

HN = HN 0 + lVN

°
HNHN 0

°0
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FIGURE 15.10
The CISD description of He2 restricted to
one- and two-electron promotions.

MATHEMATICAL FORMULATION OF MØLLER-PLESSET MODELS
Substituting the expansions of Equations (15.34) to (15.36) into the Schrödinger
equation and gathering terms in yields

(15.37a)

(15.37b)

(15.37c)

Multiplying each of the Equations (15.37) by and integrating over all space
yields the following expression for the nth-order (MPn) energy:

(15.38a)E102 = L Á L°0HN 0°0 dt1 dt2 Á  dtn

°0

Á

  HN 0°122 + VN °112 = E102°122 + E112°112 + E122°0

  HN 0°112 + VN °0 = E102°112 + E112°0

  HN 0°0 = E102°0

ln
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The MP2 model is well defined and leads to unique results. As mentioned previously,
MP2 is size consistent, although (unlike configuration interaction models) it is not vari-
ational. Therefore, the calculated energy may be lower than the exact value.

15.6.3 Density Functional Models

The second approach for moving beyond the Hartree–Fock model is now commonly
known as density functional theory. It is based on the availability of an exact solu-
tion for an idealized many-electron problem, specifically an electron gas of uniform
density. The part of this solution that relates only to the exchange and correlation con-
tributions is extracted and then directly incorporated into an SCF formalism much
like Hartree–Fock formalism. Because the new exchange and correlation terms derive
from idealized problems, density functional models, unlike configuration interaction
and Møller-Plesset models, do not limit to the exact solution of the Schrödinger equa-
tion. In a sense, they are empirical in that they incorporate external data (the form of
the solution of the idealized problem). What makes density functional models of great
interest is their significantly lower computation cost than either configuration interac-
tion or Møller-Plesset models. For his discovery, leading up to the development of
practical density functional models, Walter Kohn was awarded the Nobel Prize in
chemistry in 1998.

(15.38b)

(15.38c)

In this framework, the Hartree–Fock energy is the sum of the zero- and first-order
Møller-Plesset energies:

(15.39)

The first correction, E(2) can be written as follows:

(15.40)

where and are energies of occupied molecular orbitals, and and are ener-
gies of unoccupied molecular orbitals. The integrals over filled (i and j) and
empty (a and b) molecular orbitals account for changes in electron–electron interac-
tions as a result of electron promotion,

(15.41)

in which the integrals and involve molecular orbitals rather than
basis functions, for example,

(15.42)

The two integrals are related by a simple transformation,

(15.43)

where are given by Equation (15.28).1mn ƒls2
1ij ƒab2 = a

m
a

basis 

n
a

functions

l
a
s

cmicnjclacsb1mn ƒls2

1ia ƒ jb2 = Lci112ca112B 1

r12
Rcj122cb122dt1 dt2

1ib ƒ ja21ij ƒab2
1ia 7jb2 = -1ib ƒ ja2

1ij 7ab2 ebeaejei

E122 = a
occ

i6
a

   
molecular orbitals

j
a
  a6
a

unocc

b

[1ij 7ab2]2

1ea + eb -  ei -  ej2

E102 + E112 = L Á L°01HN 0 + VN 2°0 
 dt1 dt2 Á dtn

Á

E122 = L Á L°0VN °112dt1 dt2 Á  dtn

E112 = L Á L°0VN °0 dt1 dt2 Á  dtn



356 C H A P T E R  1 5 Computational Chemistry

The Hartree–Fock energy may be written as a sum of the kinetic energy, ET, the
electron–nuclear potential energy, EV, Coulomb, EJ, and exchange, EK, components of
the electron–electron interaction energy:

(15.44)

The first three of these terms carry over directly to density functional models, whereas the
Hartree–Fock exchange energy is replaced by a so-called exchange/correlation energy,
EXC, the form of which follows from the solution of the idealized electron gas problem:

(15.45)

Except for ET, all components depend on the total electron density, (r):

(15.46)

The are orbitals, strictly analogous to molecular orbitals in Hartree–Fock theory.ci

r1r2 = 2 a
orbitals

i
ƒci1r2 ƒ 2

r

EDFT = ET + EV + EJ + EXC

EHF = ET + EV + EJ + EK

MATHEMATICAL FORMULATION OF DENSITY FUNCTIONAL THEORY
Within a finite basis set (analogous to the LCAO approximation for Hartree–
Fock models), the components of the density functional energy, EDFT, can be
written as follows:

(15.47)

(15.48)

(15.49)

(15.50)
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electron density, P is the density matrix [Equation (15.27)], and the are 
two-electron integrals [Equation (15.28)]. The is the so-called
exchange/correlation functional, which depends on the electron density. In the
simplest form of the theory, it is obtained by fitting the density resulting from the
idealized electron gas problem to a function. Better models result from also fitting
the gradient of the density. Minimizing EDFT with respect to the unknown orbital
coefficients yields a set of matrix equations, the Kohn-Sham equations, analogous to
the Roothaan–Hall equations [Equation (15.22)]:

(15.51)

Here the elements of the Hartree–Fock matrix are given by

(15.52)

and are defined analogously to Equations (15.25) and (15.26), respectively, and FXC

is the exchange/correlation part, the form of which depends on the particular
exchange/correlation functional used. Note that substitution of the Hartree–Fock
exchange, K, for FXC yields the Roothaan–Hall equations.

Fmn = Hcore
mn + Jmn - FXC

mn

Fc � eSc

f1r1r2, §r1r2, Á 2 1mn ƒls2



15.7 GAUSSIAN BASIS SETS 357

Density functional models are well defined and yield unique results. They are neither
size consistent nor variational. Note that if the exact exchange/correlation functional
had been known for the problem at hand (rather than only for the idealized many-
electron gas problem), then the density functional approach would be exact.
Although better forms of such functionals are constantly being developed, at present,
there is no systematic way to improve the functional to achieve an arbitrary level of
accuracy.

15.6.4 Overview of Quantum Chemical Models

An overview of quantum chemical models, starting with the Schrödinger equation, and
including Hartree–Fock models, configuration interaction and Møller-Plesset models,
and density functional models, is provided in Figure 15.11.

15.7 Gaussian Basis Sets
The LCAO approximation requires the use of a basis set made up of a finite number of
well-defined functions centered on each atom. The obvious choice for the functions
would be those corresponding closely to the exact solution of the hydrogen atom, that
is, a polynomial in the Cartesian coordinates multiplying an exponential in r. However,
the use of these functions was not cost effective, and early numerical calculations were
carried out using nodeless Slater-type orbitals (STOs), defined by

ß (15.53)f1r, u, f2 =
12z>a02n+1>2

[12n2!]1>2 rn-1 e-zr>a0 Ym
l 1u, f2

Schrödinger equation
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Electronic Schrödinger equation

“Guess” how electrons affect
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“Parameterization”

Density functional
models

Electrons move independently;
molecular “solutions” written
in terms of atomic solutions

Hartree-Fock
“molecular orbital” models

Mix in “excited states”

Configuration interaction
and Møller-Plesset models

“Exact” solution

FIGURE 15.11
Schematic diagram showing how
quantum chemical models are related 
to one another.
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The symbols n, m, and l denote the usual quantum numbers and is the effective
nuclear charge. Use of these so-called Slater functions was entertained seriously in
the years immediately following the introduction of the Roothaan–Hall equations,
but soon abandoned because they lead to integrals that are difficult if not impossible
to evaluate analytically. Further work showed that the cost of calculations can be fur-
ther reduced if the AOs are expanded in terms of Gaussian functions, which have
the form

(15.54)

In this equation, x, y, and z are the position coordinates measured from the nucleus of an
atom; i, j, and k are nonnegative integers, and is an orbital exponent. An s-type func-
tion (zeroth order Gaussian) is generated by setting ; a p-type function
(first order Gaussian) is generated if one of i, j, and k is 1 and the remaining two are 0;
and a d-type function (second order Gaussian) is generated by all combinations that
give . Note that this recipe leads to six rather than five d-type functions,
but appropriate combinations of these six functions give the usual five d-type functions
and a sixth function that has s symmetry.

Gaussian functions lead to integrals that are easily evaluated. With the exception of
so-called semi-empirical models, which do not actually entail evaluation of large num-
bers of difficult integrals, all practical quantum chemical models now make use of
Gaussian functions.

Given the different radial dependence of STOs and Gaussian functions, it is not obvious
at first glance that Gaussian functions are appropriate choices for AOs. Figure 15.12 shows
a comparison of the two functional forms. The solution to this problem is to approximate
the STO by a linear combination of Gaussian functions having different values, rather
than by a single Gaussian function. For example, a best fit to a 1s-type STO using three
Gaussians is shown in Figure 15.13. We can see that, although the region near the nucleus
is not fit well, in the bonding region beyond 0.5 a0, the fit is very good. The fit near the
nucleus can be improved by using more Gaussian functions.

In practice, instead of taking individual Gaussian functions as members of the
basis set, a normalized linear combination of Gaussian functions with fixed coeffi-
cients is constructed to provide a best fit to an AO. The value of each coefficient is
optimized either by seeking minimum atom energies or by comparing calculated and
experimental results for “representative” molecules. These linear combinations are
called contracted functions. The contracted functions become the elements of the
basis set. Although the coefficients in the contracted functions are fixed, the coeffi-
cients cmi in Equation (15.21) are variable and are optimized in the solution of the
Schrödinger equation.

15.7.1 Minimal Basis Sets

Although there is no limit to the number of functions that can be placed on an atom,
there is a minimum number. The minimum number is the number of functions required
to hold all the electrons of the atom while still maintaining its overall spherical nature.
This simplest representation or minimal basis set involves a single (1s) function for
hydrogen and helium, a set of five functions (1s, 2s, 2px, 2py, 2pz) for lithium to neon,
and a set of nine functions (1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz) for sodium to argon.
Note that although 2p functions are not occupied in the lithium or beryllium atoms (and
3p functions are not occupied in the sodium or magnesium atoms), they are needed to
provide proper descriptions of the bonding in molecular systems. For example, the
bonding in a molecule such as lithium fluoride involves electron donation from a lone
pair on fluorine to an appropriate (p-type) empty orbital on lithium (back bonding) as
shown in Figure 15.14.

Of the minimal basis sets that have been devised, perhaps the most widely used and
extensively documented is the STO-3G basis set. Here, each of the basis functions is
expanded in terms of three Gaussian functions, where the values of the Gaussian
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FIGURE 15.15
A split-valence basis set provides a way
to allow the electron distribution about an
atom to be nonspherical.

exponents and the linear coefficient have been determined by least squares as best fits to
Slater-type (exponential) functions.

The STO-3G basis set and all minimal basis sets have two obvious shortcomings:
the first is that all basis functions are either themselves spherical or come in sets that,
when taken together, describe a sphere. This means that atoms with spherical molecular
environments or nearly spherical molecular environments will be better described than
atoms with aspherical environments. This suggests that comparisons among different
molecules will be biased in favor of those incorporating the most spherical atoms. The
second shortcoming follows from the fact that basis functions are atom centered. This
restricts their ability to describe electron distributions between nuclei, which are a criti-
cal element of chemical bonds. Minimal basis sets such as STO-3G are primarily of his-
torical interest and have largely been replaced in practical calculations by split-valence
basis sets and polarization basis sets, which have been formulated to address these two
shortcomings. These basis sets are discussed in the following two subsections.

15.7.2 Split-Valence Basis Sets

The first shortcoming of a minimal basis set, namely, a bias toward atoms with spheri-
cal environments, can be addressed by providing two sets of valence basis functions: an
inner set, which is more tightly held and an outer set, which is more loosely held. The
iterative process leading to solution of the Roothaan–Hall equations adjusts the balance
of the two parts independently for the three Cartesian directions, by adjusting the indi-
vidual molecular orbital coefficients. For example, the proper linear combination to
produce a molecular orbital suitable for bonding might involve a large coefficient 
( inner) multiplying the inner basis function (in the direction) and a small coefficient
( outer) multiplying the outer basis function, whereas that to produce a molecular
orbital suitable for bonding might involve a small coefficient ( inner) multiplying the
inner basis function and a large coefficient ( outer) multiplying the outer basis function
as shown in Figure 15.15. The fact that the three Cartesian directions are treated inde-
pendently of each other means that the atom (in the molecule) may be nonspherical.

A split-valence basis set represents core atomic orbitals by one set of functions and
valence atomic orbitals by two sets of functions, 1s, 2si, 2px

i, 2py
i, 2pz

i, 2so, 2px
o, 2py

o, 2pz
o for

lithium to neon and 1s, 2s, 2px, 2py, 2pz, 3si, 3px
i, 3py

i, 3pz
i, 3so, 3px

o, 3py
o, 3pz

o for sodium to
argon. Note that the valence 2s (3s) functions are also split into inner (superscript i) and
outer (superscript o) components, and that hydrogen atoms are also represented by inner
and outer valence (1s) functions. Among the simplest split-valence basis sets are 
3-21G and 6-31G. Each core atomic orbital in the 3-21G basis set is expanded in terms
of three Gaussians, whereas basis functions representing inner and outer components of
valence atomic orbitals are expanded in terms of two and one Gaussians, respectively.
The 6-31G basis sets are similarly constructed, with core orbitals represented in terms of
six Gaussians and valence orbitals split into three and one Gaussian components.
Expansion coefficients and Gaussian exponents for 3-21G and 6-31G basis sets have
been determined by Hartree–Fock energy minimization on atomic ground states.
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15.7.3 Polarization Basis Sets

The second shortcoming of a minimal (or split-valence) basis set, namely, that the basis
functions are centered on atoms rather than between atoms, can be addressed by providing
d-type functions on main-group elements (where the valence orbitals are of s and p type),
and (optionally) p-type functions on hydrogen (where the valence orbital is of s type). This
allows displacement of electron distributions away from the nuclear positions, as depicted
in Figure 15.16.

The inclusion of polarization functions can be thought about either in terms of hybrid
orbitals, for example, pd and sp hybrids, or alternatively in terms of a Taylor series expan-
sion of a function (d functions are the first derivatives of p functions and p functions are the
first derivatives of s functions). Although the first way of thinking is quite familiar to
chemists (Pauling hybrids), the second offers the advantage of knowing what steps might be
taken next to effect further improvement, that is, adding second and third derivatives.

Among the simplest polarization basis sets is 6-31G*, constructed from 6-31G by
adding a set of d-type polarization functions written in terms of a single Gaussian for each
heavy (non-hydrogen) atom. A set of six second-order Gaussians is added in the case of
6-31G*. Gaussian exponents for polarization functions have been chosen to give the lowest
energies for representative molecules. Polarization of the s orbitals on hydrogen atoms is
necessary for an accurate description of the bonding in many systems (particularly those
in which hydrogen is a bridging atom). The 6-31G** basis set is identical to 6-31G*,
except that it also provides three p-type polarization functions for hydrogen.

15.7.4 Basis Sets Incorporating Diffuse Functions

Calculations involving anions, for example, absolute acidity calculations, and calcula-
tions of molecules in excited states and of UV absorption spectra often pose special
problems. This is because the highest energy electrons for such species may only be
loosely associated with specific atoms (or pairs of atoms). In these situations, basis sets
may need to be supplemented by diffuse functions, such as diffuse s- and p-type func-
tions, on heavy (non-hydrogen) atoms (designated with a plus sign as in and

). It may also be desirable to provide hydrogens with diffuse s-type functions
(designated by two plus signs as in and 

15.8 Selection of a Theoretical Model
By now, it should be apparent to the reader that many different models are available and
useful in describing molecular geometry, reaction energies, and other properties. All of
these models ultimately stem from the electronic Schrödinger equation, and they differ
from each other both in the manner in which they treat electron correlation and in the
nature of the atomic basis set. Each distinct combination (a theoretical model) leads to
a scheme with its own particular characteristics (a theoretical model chemistry).

Hartree–Fock models may be seen as the parent model in that they treat electron
correlation in the simplest possible manner, in effect, replacing instantaneous electron–
electron interactions with average interactions. Despite their simplicity, Hartree–Fock
models have proven to be remarkably successful in a large number of situations and
remain a mainstay of computational chemistry.

As discussed earlier, correlated models can be broadly divided into two categories:
density functional models, which provide an explicit empirical term in the Hamiltonian
to account for electron correlation, and configuration interaction and Møller-Plesset
models, which start from the Hartree–Fock description and then optimally mix together
wave functions corresponding to the ground and various excited states. Each of these
models exhibits its own particular characteristics.

Of course, no single theoretical model is likely to be ideal for all applications. A
great deal of effort has gone into defining the limits of different models and judging the
degree of success and the pitfalls of each. Most simply, success depends on the ability of
a model to consistently reproduce known (experimental) data. This assumes that reliable

6-31+ +G**.6-31+ +G*
6-31 + G**

6-31 + G*

�

�

FIGURE 15.16
Polarization functions shift the center of
the electron distribution to the bonding
region between atoms.
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experimental data are available or, at least, that errors in the data have been quantified.
These include data on the geometries and conformations (shapes) of stable molecules,
the enthalpies of chemical reactions (thermodynamics), and on such properties as vibra-
tional frequencies (infrared spectra) and dipole moments. Quantum mechanical models
may also be applied to high-energy molecules (reactive intermediates) for which reliable
experimental data may be difficult to come by, and to reaction transition states, which
may not even be directly observed, much less characterized. Although no experimental
transition-state structures are available with which to compare the results of the calcula-
tions, experimental kinetic data may be interpreted to provide information about
activation energies. As an alternative, transition-state geometries can instead be com-
pared with the results of high-level quantum chemical calculations.

The success of a quantum chemical model is not an absolute. Different properties and cer-
tainly different problems may require different levels of confidence to actually be of value.
Neither is success sufficient. A model also needs to be practical for the task at hand. The nature
and size of the system needs to be taken into account, as do the available computational
resources and the experience and patience of the practitioner. Practical models usually do share
one feature in common, in that they are not likely to be the best possible treatments to have
been formulated. Compromise is almost always an essential component of model selection.

Oddly enough, the main problem faced by those who wish to apply computation to
investigate chemistry is not the lack of suitable models but rather the excess of models. Quite
simply, there are too many choices. In this spirit, consideration from this point on will be
limited to just four theoretical models: Hartree–Fock models with 3-21G split-valence and
6-31G* polarization basis sets, the B3LYP/6-31G* density functional model, and the
MP2/6-31G* model. Although all of these models can be routinely applied to molecules of
considerable size, they differ by two orders of magnitude in the amount of computer time
they require. Thus, it is quite important to know where the less time-consuming models per-
form satisfactorily and where the more time-consuming models are needed. Note that
although this set of models has been successfully applied to a wide range of chemical prob-
lems, some problems may require more accurate and more time-consuming models.

It is difficult to quantify the overall computation time of a calculation, because it
depends not only on the specific system and task at hand, but also on the sophistication
of the computer program and the experience of the user. For molecules of moderate size
(say, 10 atoms other than H), the HF/6-31G*, B3LYP/6-31G*, and MP2/6-31G* models
would be expected to exhibit overall computation times in a ratio of roughly 1:1.5:10.
The HF/3-21G model will require a third to half of the computation time required by
the corresponding HF/6-31G* model, whereas the computation time of Hartree–Fock,
B3LYP, and MP2 models with basis sets larger than 6-31G* will increase roughly as the
cube (HF and B3LYP) and the fifth power (MP2) of the total number of basis functions.
Geometry optimizations and frequency calculations are typically an order of magnitude
more time-consuming than energy calculations, and the ratio will increase with increas-
ing complexity (number of independent geometrical variables) of the system. Transition-
state geometry optimizations are likely to be even more time-consuming than equilibrium
geometry optimizations, due primarily to a poorer initial guess of the geometry.

Only a few calculated properties are examined in this discussion: equilibrium bond
distances, reaction energies, conformational energy differences, and dipole moments.
Comparisons between the results of the calculations and experimental data are few for
each of these, but sufficient to establish meaningful trends.

15.8.1 Equilibrium Bond Distances

A comparison of calculated and experimentally determined carbon–carbon bond distances
in hydrocarbons is provided in Table 15.9. Whereas errors in measured bond distances are
typically on the order of Å, experimental data for hydrocarbons and other small
molecules presented here are better, and comparisons with the results of calculations to
0.01 Å are meaningful. In terms of mean absolute error, all four models perform admirably.
The B3LYP/6-31G* and MP2/6-31G* models perform better than the two Hartree–
Fock models, due in most part to a sizable systematic error in carbon–carbon double bond
lengths. With one exception, Hartree–Fock double bond lengths are shorter than

;0.02
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experimental distances. This is easily rationalized. Treatment of electron correlation (for
example, in the MP2 model) involves the promotion of electrons from occupied molecular
orbitals (in the Hartree–Fock wave function) to unoccupied molecular orbitals. Because
occupied molecular orbitals are (generally) net bonding in character, and because unoccu-
pied molecular orbitals are (generally) net antibonding in character, any promotions should
result in bond weakening (lengthening) as illustrated in Figure 15.17. This in turn suggests
that bond lengths from limiting Hartree–Fock models are necessarily shorter than exact
values. Apparently, Hartree–Fock models with 3-21G and 6-31G* basis set are close
enough to the limit for this behavior to be seen.

Consistent with such an interpretation, B3LYP/6-31G* and MP2/6-31G* double
bond lengths do not show a systematic trend and are both smaller and larger than exper-
imental values.

Similar comments can be made regarding CN and CO bond distances (Table 15.10).
In terms of mean absolute error, the performance of the B3LYP/6-31G* and MP2/6-31G*
models is similar to that previously noted for CC bonds in hydrocarbons, but the two
Hartree–Fock models do not fare as well. Note that although bond distances from the
HF/6-31G* model are constantly smaller than measured values, in accord with the picture
presented for hydrocarbons, HF/3-21G bond lengths do not show such a trend. It appears
that the 3-21G basis set is not large enough to closely mirror the Hartree–Fock limit in this
instance. Most bond distances obtained from the B3LYP/6-31G* and MP2/6-31G* models
are actually slightly larger than experimental distances. (The CN bond length in formamide
is the only significant exception.) Bond lengthening from the corresponding (6-31G* basis
set) Hartree–Fock model is a direct consequence of treatment of electron correlation.

In summary, all four models provide a plausible account of equilibrium bond lengths.
Similar comments also apply to bond angles and more generally to the structures of
larger molecules.

15.8.2 Finding Equilibrium Geometries

As detailed at the start of this chapter, an equilibrium structure is a point on a multidimen-
sional potential energy surface for which all first energy derivatives with respect to the
individual geometrical coordinates are zero, and for which the diagonal representation of the
matrix of second energy derivatives has all positive elements. In simple terms, an equilib-
rium structure corresponds to the bottom of a well on the overall potential energy surface.

TABLE 15.9 Bond Distances in Hydrocarbons (Å)

Hartree–Fock B3LYP MP2

Bond Hydrocarbon 3-21G 6-31G* 6-31G* 6-31G* Experiment

C¬C But-1-yne-3-ene 1.432 1.439 1.424 1.429 1.431

Propyne 1.466 1.468 1.461 1.463 1.459

1,3-Butadiene 1.479 1.467 1.458 1.458 1.483

Propene 1.510 1.503 1.502 1.499 1.501

Cyclopropane 1.513 1.497 1.509 1.504 1.510

Propane 1.541 1.528 1.532 1.526 1.526

Cyclobutane 1.543 1.548 1.553 1.545 1.548

C“C Cyclopropene 1.282 1.276 1.295 1.303 1.300

Allene 1.292 1.296 1.307 1.313 1.308

Propene 1.316 1.318 1.333 1.338 1.318

Cyclobutene 1.326 1.322 1.341 1.347 1.332

But-1-yne-ene 1.320 1.322 1.341 1.344 1.341

1,3-Butadiene 1.320 1.323 1.340 1.344 1.345

Cyclopentadiene 1.329 1.329 1.349 1.354 1.345

Mean absolute error 0.011 0.011 0.006 0.007 —
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Not all equilibrium structures correspond to (kinetically) stable molecules,
meaning that not all equilibrium structures will correspond to detectable (let alone
characterizable) molecules. Stability also implies that the well is deep enough to
preclude the molecule from being transformed into other molecules. Equilibrium
structures that no doubt exist but cannot be detected easily are commonly referred to as
reactive intermediates.

Geometry optimization does not guarantee that the final geometry will have a lower
energy than any other geometry of the same molecular formula. All that it guarantees is
that the geometry will correspond to a local minimum, that is, a geometry the energy of
which is lower than that of any similar geometry. However, the resulting structure may
still not be the lowest energy structure possible for the molecule. Other local minima
that are actually lower in energy may exist and be accessible via low-energy rotations
about single bonds or puckering of rings (see Figure 15.1). The full collection of local
minima are referred to as conformers. Finding the lowest energy conformer or global
minimum requires repeated geometry optimization starting with different initial geome-
tries as discussed in Section 15.8.6.

Finding an equilibrium structure is not as difficult a chore as it might first appear. For
one, chemists know a great deal about what molecules look like and can usually provide
an excellent starting structure. Also, optimization to a minimum is an important task in
many fields of science and engineering, and very good algorithms exist with which to
accomplish it.

Geometry optimization is an iterative process. The energy and energy gradient
(first derivatives with respect to all geometrical coordinates) are calculated for the
initial geometry, and this information is then used to project a new geometry. This
process needs to continue until the lowest energy or optimized geometry is reached.
Three criteria must be satisfied before a geometry is accepted as optimized. First,
successive geometry changes must not lower the energy by more than a specified
(small) value. Second, the energy gradient must closely approach zero. Third,
successive iterations must not change any geometrical parameter by more than a spec-
ified (small) value.

In principle, geometry optimization carried out in the absence of symmetry must
result in a local energy minimum. On the other hand, the imposition of symmetry
may result in a geometry that is not an energy minimum. The most conservative
tactic is always to optimize geometry in the absence of symmetry. If this is not prac-
tical, and if there is any doubt whatsoever that the symmetrical structure actually
corresponds to an energy minimum, then it is always possible to verify that the
geometry located indeed corresponds to a local minimum by calculating vibrational
frequencies for the final (optimized) geometry. These should all be real numbers.
The presence of an imaginary frequency indicates that the corresponding coordinate
is not an energy minimum. Problems P15.5–P15.12

TABLE 15.10 Bond Distances in Molecules with Heteroatoms (Å)

Hartree–Fock B3LYP MP2

Bond Hydrocarbon 3-21G 6-31G* 6-31G* 6-31G* Experiment

C¬N Formamide 1.351 1.349 1.362 1.362 1.376

Methyl isocyanide 1.432 1.421 1.420 1.426 1.424

Trimethylamine 1.471 1.445 1.456 1.455 1.451

Aziridine 1.490 1.448 1.473 1.474 1.475

Nitromethane 1.497 1.481 1.499 1.488 1.489

C¬O Formic acid 1.350 1.323 1.347 1.352 1.343

Furan 1.377 1.344 1.364 1.367 1.362

Dimethyl ether 1.435 1.392 1.410 1.416 1.410

Oxirane 1.470 1.401 1.430 1.439 1.436

Mean absolute error 0.017 0.018 0.005 0.005 —
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15.8.3 Reaction Energies

Reaction energy comparisons are divided into three parts: bond dissociation energies,
energies of reactions relating structural isomers, and relative proton affinities. Bond dis-
sociation reactions are the most disruptive, because they lead to a change in the number
of electron pairs. Structural isomer comparisons maintain overall electron pair count,
but swap bonds of one kind for those of another. Relative proton affinity comparisons
are least disruptive in that they maintain the numbers of each kind of formal chemical
bond and lead only to subtle changes in the molecular environment.

A comparison of homolytic bond dissociation energies based on calculation and on
experimental thermochemical data is provided in Table 15.11. Hartree–Fock models
with the 3-21G and 6-31G* basis set turn in a very poor performance, paralleling the
poor performance of limiting Hartree–Fock models (see discussion in Section 15.4.1).
Bond energies are far too small, consistent with the fact that the total correlation energy
for the radical products is smaller than that for the reactant due to a decrease in the num-
ber of electron pairs. B3LYP/6-31G* and especially MP2/6-31G* models fare much
better (results for the latter are well inside the experimental error bars).

“Which of several possible structural isomers is most stable?” and “What are the
relative energies of any reasonable alternatives?” are without doubt two of the most
commonly asked questions relating to thermochemistry. The ability to pick out the low-
est energy isomer and at least rank the energies of higher energy isomers is essential to
the success of any model. A few comparisons of this kind are found in Table 15.12.

TABLE 15.11 Homolytic Bond Dissociation Energies (kJ/mol)

Hartree–Fock B3LYP MP2
Bond Dissociation Reaction 3-21G 6-31G* 6-31G* 6-31G* Experiment

CH3 ¬CH3: #CH3 + #CH3 285 293 406 414 406
CH3 ¬NH2: #CH3 + #NH2 247 243 372 385 389

CH3 ¬OH: #CH3 + #OH 222 247 402 410 410

CH3 ¬F: #CH3 + #F 247 289 473 473 477

NH2 ¬NH2: #NH2 + #NH2 155 142 293 305 305

HO¬OH: #OH + #OH 13 0 226 230 230

F¬F: #F + #F -121 -138 176 159 159

Mean absolute error 190 186 9 2 —

TABLE 15.12 Relative Energies Isomer - Reference Compound of Structural 
Isomers (kJ/mol)

Hartree–Fock B3LYP MP2
Reference Compound Isomer 3-21G 6-31G* 6-31G* 6-31G* Experiment

Acetonitrile Methyl isocyanide 88 100 113 121 88
Acetaldehyde Oxirane 142 130 117 113 113

Acetic acid Methyl formate 54 54 50 59 75

Ethanol Dimethyl ether 25 29 21 38 50

Propyne Allene 13 8 -13 21 4

Cyclopropene 167 109 92 96 92

Propene Cyclopropane 59 33 33 17 29

1,3-butadiene 2-Butyne 17 29 33 17 38

Cyclobutane 75 54 50 33 46

Bicyclo [1.1.0] butane 192 126 117 88 109

Mean absolute error 32 13 12 15 —
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In terms of mean absolute error, three of the four models provide similar results.
The model is inferior. None of the models is actually up to the standard that
would make it a useful reliable replacement for experimental data . More
detailed comparisons provide insight. For example, Hartree–Fock models consistently
disfavor small-ring cyclic structures over their unsaturated cyclic isomers whereas 
neither the B3LYP/6-31G* nor the MP2/6-31G* methods show a consistent preference.

The final comparison (Table 15.13) is between proton affinities of a variety of nitro-
gen bases and that of methylamine as a standard, that is,

This type of comparison is important not only because proton affinity (basicity) is an
important property in its own right, but also because it typifies property comparisons
among sets of closely related compounds. The experimental data derive from equilib-
rium measurements in the gas phase and are accurate to . In terms of mean
absolute error, all four models turn in similar and respectable accounts over what is a
considerable range of experimental proton affinities. The HF/3-21G
model is clearly the poorest performer, due primarily to underestimation of the proton
affinities of aniline and pyridine.

15.8.4 Energies, Enthalpies, and Gibbs Energies

Quantum chemical calculations account for reaction thermochemistry by combining the
energies of reactant and product molecules at 0 K. Additionally, the residual energy of
vibration (the so-called zero point energy discussed in Section 7.1) is ignored. On the
other hand, experimental thermochemical comparisons are most commonly based on
enthalpies or Gibbs energies of 1 mol of real (vibrating) molecules at some finite tem-
perature (typically 298.15 K). The connection between the various quantities involves
the mass, equilibrium geometry, and set of vibrational frequencies for each of the
molecules in the reaction. Calculating thermodynamic quantities is straightforward but,
because it requires frequencies, consumes significant computation time, and is per-
formed only where necessary.

We start with two familiar thermodynamic relationships:

(15.55)

(15.56)

where G is the Gibbs energy, H is the enthalpy, S is the entropy, U is the internal
energy, and T, P, and V are the temperature, pressure, and volume, respectively. 

 ¢H = ¢U + ¢1PV2 L ¢U

 ¢G = ¢H - T¢S

17100 kJ>mol2
;4 kJ>mol

BH+ + NH3 ¡ B + NH+
4

165 kJ>mol2HF>3-21G

Problems P15.13–P15.16

TABLE 15.13 Proton Affinities of Nitrogen Bases Relative to the Proton
Affinity of Methylamine (kJ/mol)

Hartree–Fock B3LYP MP2

Base 3-21G 6-31G* 6-31G* 6-31G* Experiment

Ammonia -42 -46 -42 -42 -38

Aniline -38 -17 -21 -13 -10

Methylamine 0 0 0 0 0

Dimethylamine 29 29 25 25 27

Pyridine 17 29 25 13 29

Trimethylamine 46 46 38 38 46

Diazabicyclooctane 67 71 59 54 60

Quinuclidine 79 84 75 71 75

Mean absolute error 8 5 4 6 —
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For most cases, the (PV) term can be ignored, meaning that the at 0 K.
Three steps are required to obtain , the first two to relate the quantum mechani-
cal energy at 0 K to the internal energy at 298 K, and the third to calculate the Gibbs
energy.

1. Correction of the internal energy for finite temperature. The change in internal
energy from 0 K to a finite temperature, T, U(T), is given by

(15.57)

(15.58)

(15.59)

(15.60)

The are vibrational frequencies, NA is Avogadro’s number, and R, k, and h are the
gas constant, the Boltzmann constant, and the Planck constant, respectively.

2. Correction for zero point vibrational energy. The zero point vibrational energy,
Uvib(0), of n moles of a molecule at 0 K is given by

(15.61)

where NA is Avogadro’s number. This calculation also requires knowledge of the
vibrational frequencies.

3. Entropy. The absolute entropy, S, of n moles of a molecule may be written as a sum
of terms:

(15.62)

(15.63)

(15.64)

(15.65)

(15.66)

In these equations, m is the molecular mass, Bi is the rotational constant, is
the symmetry number, , c is the speed of light, and g0 is the degeneracy
of the electronic ground state (normally equal to one).

Note that molecular structure enters into the rotational entropy through B, and the vibra-
tional frequencies enter into the vibrational entropy. The translational entropy cancels
in a (mass) balanced reaction, and the electronic entropy is usually zero because for
most molecules . Note also that the expression provided for the vibrational con-
tribution to the entropy goes to infinity as the vibrational frequency goes to zero. This is
clearly wrong and has its origin in the use of the linear harmonic oscillator approxima-
tion to derive the expression. Unfortunately, low-frequency modes are the major con-
tributors to the vibrational entropy, and caution must be exercised when using the
preceding formulas for the case of frequencies below approximately . In this
case, the molecular partition function must be evaluated term by term rather than
assuming the classical limit.
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15.8.5 Conformational Energy Differences

Rotation around single bonds may give rise to rotational isomers (conformers). Because
bond rotation is almost always a very low energy process, this means that more than one
conformer may be present at equilibrium. For example, n-butane exists as a mixture of
anti and gauche conformers, as shown in Figures 15.1 and 15.18. The same reasoning car-
ries over to molecules incorporating flexible rings, where conformer interconversion may
be viewed in terms of a process involving restricted rotation about the bonds in the ring.

Knowledge of the conformer of lowest energy and, more generally, the distribution of
conformers is important because many molecular properties depend on detailed molecu-
lar shape. For example, whereas gauche n-butane is a polar molecule (albeit very weakly
polar), anti n-butane is nonpolar, and the value of the dipole moment for an actual sample
of n-butane would depend on how much of each species was actually present.

Experimentally, a great deal is known about the conformational preferences of mol-
ecules in the solid state (from X-ray crystallography). Far less is known about the con-
formations of isolated (gas-phase) molecules, although there are sufficient data to allow
gross assessment of practical quantum chemical models. Experimental conformational
energy differences are somewhat more scarce, but accurate data are available for a few
very simple (two-conformer) systems. Comparison of these data with the results of cal-
culations for hydrocarbons is provided in Table 15.14. These are expressed in terms of
the energy of the high-energy conformer relative to that of the low-energy conformer.

All models correctly assign the ground-state conformer in all molecules. In terms of mean
absolute error, the MP2/6-31G* model provides the best description of conformational
energy differences and the HF/6-31G* model the worst description. Hartree–Fock models
consistently overestimate differences (the sole exception is for the trans/gauche energy dif-
ference in 1,3-butadiene from the 3-21G model), in some cases by large amounts (nearly
5 kJ/mol for the equatorial/axial energy difference in tert-butylcyclohexane from the
3-21G model). Correlated models also typically (but not always) overestimate energy
differences, but the magnitudes of the errors are much smaller than those seen for
Hartree–Fock models.

15.8.6 Determining Molecular Shape

Many molecules can (and do) exist in more than one shape, arising from different
arrangements around single bonds and/or flexible rings. The problem of identifying the
lowest energy conformer (or the complete set of conformers) in simple molecules such
as n-butane and cyclohexane is straightforward, but rapidly becomes difficult as the
number of conformational degrees of freedom increases, due simply to the large num-
ber of arrangements that need to be examined. For example, a systematic search on a
molecule with N single bonds and step size of , would need to examine MN360°>M

CH3

CH3

CC
H

H
Anti n-butane Gauche n-butane

H
H CH3

CH3
CC

H
H H

H

FIGURE 15.18
Structures of two n-butane conformers.

Problems P15.18–P15.20

TABLE 15.14 Conformational Energy in Hydrocarbons (kJ/mol)

Hartree–Fock B3LYP MP2

Hydrocarbon Low-Energy/
High-Energy 
Conformer

3-21G 6-31G* 6-31G* 6-31G* Experiment

n-Butane anti/gauche 3.3 4.2 3.3 2.9 2.80

1-Butene skew/cis 3.3 2.9 1.7 2.1 0.92

1,3-Butadiene trans/gauche 11.3 13.0 15.1 10.9 12.1

Cyclohexane chair/twist-boat 27.2 28.5 26.8 27.6 19.7–25.9

Methylcyclohexane equatorial/axial 7.9 9.6 8.8 7.9 7.32

tert-Butylcyclohexane equatorial/axial 27.2 25.5 22.2 23.4 22.6

cis-1,3- equatorial/axial 26.4 27.2 25.1 23.8 23.0

Dimethylcyclohexane

Mean absolute error 1.9 2.3 1.3 0.9 —
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conformers. For a molecule with three single bonds and a step size of ,
this leads to 27 conformers; for a molecule with eight single bonds, more than 
6500 conformers would need to be considered. It is clear that it will not always be pos-
sible to look everywhere, and sampling techniques will need to replace systematic pro-
cedures for complex molecules. The most common of these are so-called Monte Carlo
methods (which randomly sample different conformations) and molecular dynamics
techniques (which follow motion among different conformers in time).

15.8.7 Alternatives to Bond Rotation

Single-bond rotation (including restricted bond rotation in flexible rings) is the most
common mechanism for conformer interconversion, but it is by no means the only mech-
anism. At least two other processes are known: inversion and pseudorotation. Inversion
is normally associated with pyramidal nitrogen or phosphorus and involves a planar (or
nearly planar) transition state, for example, in ammonia, as shown in Figure 15.19.
Note that the starting and ending molecules are mirror images. Were the nitrogen to be
bonded to three different groups and were the nitrogen lone pair to be counted as a fourth
group, inversion would result in a change in chirality at this center. Pseudorotation,
which is depicted in Figure 15.20, is normally associated with trigonal bipyramidal
phosphorus and involves a square-based-pyramidal transition state. Note that pseudo-
rotation interconverts equatorial and axial positions on phosphorus.

Both inversion of pyramidal nitrogen and pseudorotation around trigonal bipyrami-
dal phosphorus are very low energy processes and generally proceed
rapidly at 298 K. On the other hand, inversion of pyramidal phosphorus is more difficult
(100 kJ/mol) and is inhibited at 298 K.

15.8.8 Dipole Moments

Calculated dipole moments for a selection of diatomic and small polyatomic mole-
cules are compared with experimental values in Table 15.15. The experimental data
cover a wide spectrum of molecules, from carbon monoxide, which is close to being

1620-30 kJ>mol2

1M = 32120°
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FIGURE 15.19
Inversion of NH3 leads to its mirror image.
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FIGURE 15.20
Pseudorotation leads to exchange of
equatorial and axial positions at a trigonal
bipyramidal phosphorus center.

Problem P15.21

TABLE 15.15 Dipole Moments in Diatomic and Small Polyatomic 
Molecules (debyes)

Hartree–Fock B3LYP MP2

Molecule 3-21G 6-31G* 6-31G* 6-31G* Experiment

Carbon monoxide 0.4 0.3 0.1 0.2 0.11

Ammonia 1.8 1.9 1.9 2.0 1.47

Hydrogen fluoride 2.2 2.0 1.9 1.9 1.82

Water 2.4 2.2 2.1 2.2 1.85

Methyl fluoride 2.3 2.0 1.7 1.9 1.85

Formaldehyde 2.7 2.7 2.2 2.3 2.34

Hydrogen cyanide 3.0 3.2 2.9 3.0 2.99

Lithium hydride 6.0 6.0 5.6 5.8 5.83

Lithium fluoride 5.8 6.2 5.6 5.9 6.28

Mean absolute error 0.3 0.2 0.2 0.1 —
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nonpolar, to lithium fluoride, which is close to being fully ionic. All models provide a
good overall account of this range. In terms of mean absolute error, the HF/3-21G
model fares worst and the MP2/6-31G* model fares best, but the differences are not
large. Note that dipole moments from the two Hartree–Fock models are consistently
larger than experimental values, the only exception being for lithium fluoride. This is
in accord with the behavior of the limiting Hartree–Fock model (see discussion ear-
lier in Section 15.4.4) and may now easily be rationalized. Recognize that electron
promotion from occupied to unoccupied molecular orbitals (either implicit or explicit
in all electron correlation models) takes electrons from “where they are” (negative
regions) to “where they are not” (positive regions), as illustrated in Figure 15.21. In
formaldehyde, for example, the lowest energy promotion is from a nonbonded lone
pair localized on oxygen into a orbital principally concentrated on carbon. As a
result, electron correlation acts to reduce overall charge separation and to reduce the
dipole moment in comparison with the Hartree–Fock value. This is supported by the
fact that dipole moments from correlated (B3LYP/6-31G* and MP2/6-31G*) calcula-
tions are not consistently larger than experimental values.

15.8.9 Atomic Charges: Real or Make Believe?

Charges are part of the everyday language of chemistry and, aside from geometries and
energies, are certainly the most commonly demanded quantities from quantum chemi-
cal calculations. Charge distributions not only assist chemists in assessing overall
molecular structure and stability, but they also tell them about the chemistry that mole-
cules can undergo. Consider, for example, the two resonance structures that a chemist
would draw for acetate anion, , as shown in Figure 15.22. This figure indicates
that the two CO bonds are equivalent and should be intermediate in length between sin-
gle and double linkages, and that the negative charge is evenly distributed on the two
oxygens. Taken together, these two observations suggest that the acetate ion is delocal-
ized and therefore particularly stable.

Despite their obvious utility, atomic charges are not measurable properties, nor can
they be determined uniquely from calculations. Although the total charge on a molecule
(the total nuclear charge and the sum of the charges on all of the electrons) is well
defined, and although overall charge distribution may be inferred from such observables
as the dipole moment, it is not possible to assign discrete atomic charges. To do this
would require accounting both for the nuclear charge and for the charge of any electrons
uniquely associated with the particular atom. Although it is reasonable to assume that
the nuclear contribution to the total charge on an atom is simply the atomic number, it is
not at all obvious how to partition the total electron distribution by atoms. Consider, for
example, the electron distribution for the heteronuclear diatomic molecule hydrogen
fluoride, shown in Figure 15.23. Here, the surrounding contour is a particular electron
density surface that, for example, corresponds to a van der Waals surface and encloses a
large fraction of the total electron density. In this picture, the surface has been drawn to
suggest that more electrons are associated with fluorine than with hydrogen. This is
entirely reasonable, given the known polarity of the molecule, that is, , as
evidenced experimentally by the direction of its dipole moment. It is, however, not at all
apparent how to divide this surface between the two nuclei. Are any of the divisions
shown in Figure 15.23 better than the others? No! Atomic charges are not molecular
properties, and it is not possible to provide a unique definition (or even a definition that
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FIGURE 15.22
The two Lewis structures of the
acetate ion.
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FIGURE 15.23
Three different ways of partitioning the electrons in hydrogen fluoride between hydrogen and fluorine.
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will satisfy all). We can calculate (and measure using X-ray diffraction) molecular
charge distributions, that is, the number of electrons in a particular volume of space, but
it is not possible to uniquely partition them among the atomic centers.

Despite the obvious problem with their definition, atomic charges are still useful,
and several recipes have been formulated to calculate them. The simplest of these, now
referred to as Mulliken population analysis, was discussed in Section 12.8.

MATHEMATICAL DESCRIPTION OF THE MULLIKEN POPULATION
ANALYSIS
The Mulliken population analysis starts from the definition of the electron density,

in the framework of the Hartree–Fock model:

(15.67)

where is an element of the density matrix [see Equation (15.27)], and the
summations are carried out over all atom-centered basis functions, . Summing
over basis functions and integrating over all space leads to an expression for the
total number of electrons, n:

(15.68)

where are elements of the overlap matrix:

(15.69)

Analogous expressions can be constructed for correlated models. The important
point is that it is possible to equate the total number of electrons in a molecule to
a sum of products of density matrix and overlap matrix elements as follows:

(15.70)

It is reasonable (but not necessarily correct) to assign any electrons associated
with a particular diagonal element, , to that atom on which the basis function

is located. It is also reasonable to assign electrons associated with off-diagonal
elements, , where both and reside on the same atom, to that atom. How-
ever, it is not apparent how to partition electrons from density matrix elements,

, where and reside on different atoms. Mulliken provided a recipe. Give
each atom half of the total, which is very simple but completely arbitrary!
According to Mulliken’s scheme, the gross electron population, , for basis
function is given by:

(15.71)

Atomic electron populations, qA, and atomic charges, QA, follow, where ZA is the
atomic number of atom A:

(15.72)
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An entirely different approach to providing atomic charges is to fit the value of
some property that has been calculated based on the exact wave function with that
obtained from representation of the electronic charge distribution in terms of a collec-
tion of atom-centered charges. One choice of property is the electrostatic potential, .
This represents the energy of interaction of a unit positive charge at some point in space,
p, with the nuclei and the electrons of a molecule:

(15.74)

ZA are atomic numbers, are elements of the density matrix, and RAp and rp
are distances separating the point charges from the nuclei and electrons, respec-
tively. The first summation is over nuclei and the second pair of summations is over
basis functions.

Operationally, electrostatic-fit charges are obtained by first defining a grid of
points surrounding the molecule, then calculating the electrostatic potential at each of
these grid points, and finally providing a best (least-squares) fit of the potential at the
grid points to an approximate electrostatic potential, , based on replacing the
nuclei and electron distribution by a set of atom-centered charges, QA, subject to over-
all charge balance:

(15.75)

The lack of uniqueness of the procedure results from selection of the grid points.

15.8.10 Transition-State Geometries and Activation Energies

Quantum chemical calculations need not be limited to the description of the structures
and properties of stable molecules, that is, molecules that can actually be observed and
characterized experimentally. They may as easily be applied to molecules that are
highly reactive (reactive intermediates) and, even more interesting, to transition states,
which cannot be observed let alone characterized. However, activation energies (the
energy difference between the reactants and the transition state) can be inferred from
experimental kinetic data. The complete absence of experimental data on transition-
state geometries complicates assessment of the performance of different models.
However, it is possible to get around this by assuming that some particular (high-level)
model yields reasonable geometries for the transition state, and then to compare the
results of the other models with this standard. The model has been
selected as the standard.

The most conspicuous difference between the structure data presented in Table 15.16
and previous comparisons involving equilibrium bond distances is the much larger
variation among different models. This should not come as a surprise. Transition states
represent a compromise situation in which some bonds are being broken while others are
being formed, and the potential energy surface around the transition state would be
expected to be flat, meaning that large changes in geometry are expected to lead only to
small changes in the energy. In terms of mean absolute deviations from the standard, the
MP2/6-31G* model fares best and the two Hartree–Fock models fare worst, but all mod-
els give reasonable results. In terms of individual comparisons, the largest deviations
among different models correspond to making and breaking single bonds. In such situa-
tions, the potential energy surface is expected to be quite flat.

As discussed in Section 15.2.4, an experimental activation energy can be obtained
from the temperature dependence of the measured reaction rate by way of the
Arrhenius equation, Equation (15.15). This first requires that a rate law be postulated
[Equation (15.14)]. Association of the activation energy with the difference in ener-
gies between reactants and transition state (as obtained from quantum chemical cal-
culations) requires the further assumption that all reacting molecules pass through the
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FIGURE 15.24
The potential energy surface for a
reaction is typically represented by a one-
dimensional representation of the energy
as a function of the reaction coordinate.

transition state. In effect, this implies that all reactants have the same energy, or that
none of the reactants has energy in excess of that needed to reach the transition state.
This is the essence of transition-state theory.

Absolute activation energies for a small series of organic reactions are provided in
Table 15.17. As with transition-state geometries, results from the practical models are
compared with those of the standard, . Overall, the performance of
Hartree–Fock models is very poor. In most cases, the activation energies are over-
estimated by large amounts. This is not surprising in view of previous comparisons
involving homolytic bond dissociation energies (see Table 15.11), which were too
small. The argument that might be given here is that a transition state is typically
more tightly bound than the reactants, meaning that correlation effects will be greater.
The B3LYP/6-31G* and MP2/6-31G* perform much better, and lead to errors (rela-
tive to the standard) that are comparable to those previously noted for reaction energy
comparisons.

15.8.11 Finding a Transition State

The usual picture of a chemical reaction in terms of a one-dimensional potential energy
(or reaction coordinate) diagram is shown in Figure 15.24. The vertical axis corresponds
to the energy of the system, and the horizontal axis (reaction coordinate) corresponds to
the geometry of the system. The starting point on the diagram (reactants) is an energy
minimum, as is the ending point (products). Motion along the reaction coordinate is
assumed to be continuous and to pass through a single energy maximum called the tran-
sition state. As described in Section 15.2.1, a transition state on a real many-dimensional
potential energy surface corresponds to a point that is actually an energy minimum in all
but one dimension and an energy maximum along the reaction coordinate. The obvious
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TABLE 15.16 Key Bond Distances in Transition States for Organic Reactions (Å)

Hartree–Fock B3LYP MP2

Reaction/Transition State Bond Length 3-21G 6-31G* 6-31G* 6-31G* 6-311+G**

a 1.88 1.92 1.90 1.80 1.80

b 1.29 1.26 1.29 1.31 1.30

c 1.37 1.37 1.38 1.38 1.39

d 2.14 2.27 2.31 2.20 2.22

e 1.38 1.38 1.38 1.39 1.39

f 1.39 1.39 1.40 1.41 1.41

a 1.40 1.40 1.42 1.43 1.43

b 1.37 1.38 1.39 1.39 1.39

c 2.11 2.12 2.11 2.02 2.07

d 1.40 1.40 1.41 1.41 1.41

e 1.45 1.45 1.48 1.55 1.53

f 1.35 1.36 1.32 1.25 1.25

a 1.39 1.38 1.40 1.40 1.40

b 1.37 1.37 1.38 1.38 1.38

c 2.12 2.26 2.18 2.08 2.06

d 1.23 1.22 1.24 1.25 1.24

e 1.88 1.74 1.78 1.83 1.83

f 1.40 1.43 1.42 1.41 1.41

Mean absolute deviation from
MP2>6-311+G**

0.05 0.05 0.03 0.01 —
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analogy is to the crossing of a mountain range, the goal of which is simply to get from
one side of the range to the other side with minimal effort.

Crossing over the top of a “mountain” (pathway A), which corresponds to crossing
through an energy maximum on a (two-dimensional) potential energy surface, accom-
plishes the goal, as shown in Figure 15.25. However, it is not likely to be the chosen
pathway. This is because less effort (energy) will be expended by going through a
“pass” between two “mountains” (pathway B), a maximum in one dimension but a
minimum in the other dimension. This is referred to as a saddle point and corresponds
to a transition state.

A single molecule may have many transition states (some corresponding to real
chemical reactions and others not), and merely finding a transition state does not guar-
antee that it is the transition state, meaning that it is at the top of the lowest energy path-
way that smoothly connects reactants and products. Although it is possible to verify the
smooth connection of reactants and products, it will generally not be possible to know
with complete certainty that what has been identified as the transition state is in fact the
lowest energy structure over which the reaction might proceed, or whether in fact the
actual reaction proceeds over a transition state that is not the lowest energy structure.

O

� CO2O 

�SO2 SO2

CH3NC CH3CN

HCO2CH2CH3 HCO2H � C2H4

O O

�

C2H4�

H

OHCNO � C2H2

N

TABLE 15.17 Absolute Activation Energies for Organic Reactions (kJ/mol)

Hartree–Fock B3LYP MP2

Reaction 3-21G 6-31G* 6-31G* 6-31G* 6-311+G** Experiment

238 192 172 180 172 159

259 293 222 251 234 167, 184

192 238 142 117 109 151

176 205 121 109 105 130

126 167 84 50 38 84

314 356 243 251 230 —

105 146 50 33 38 —

230 247 163 159 142 —

176 197 151 155 142 —

247 251 167 184 172 —

205 205 92 105 92 —

Mean absolute deviation from
MP2>6-311+G**

71 100 17 13 — —
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The fact that transition states, like the reactants and products of a chemical reaction,
correspond to well-defined structures, means that they can be fully characterized from
calculation. However, this is one area where the results of calculation cannot be tested,
except with reference to chemical intuition. For example, it is reasonable to expect that
the transition state for the unimolecular isomerization of methyl isocyanide to aceto-
nitrile takes the form of a three-membered ring,

in accord with the structure actually calculated, which is shown in Figure 15.26.
It is also reasonable to expect that the transition state for pyrolysis of ethyl formate

leading to formic acid and ethylene will take the form of a six-membered ring:

This expectation agrees with the result of the calculation, as shown in Figure 15.27.

15.9 Graphical Models
In addition to numerical quantities (bond lengths and angles, energies, dipole
moments, and so on), quantum chemical calculations furnish a wealth of information
that is best displayed in the form of images. Among the results of calculations that
have proven to be of value are the molecular orbitals themselves, the electron density,
and the electrostatic potential. These can all be expressed as three-dimensional func-
tions of the coordinates. One way to display them on a two-dimensional video screen
(or on a printed page) is to define a surface of constant value, a so-called isovalue sur-
face or, more simply, isosurface:

(15.76)

The value of the constant may be chosen to reflect a particular physical observable of
interest, for example, the “size” of a molecule in the case of display of electron density.

15.9.1 Molecular Orbitals

As detailed in Section 15.3, molecular orbitals, , are written in terms of linear combi-
nations of basis functions, , which are centered on the individual nuclei:

(15.21)

Although it is tempting to associate a molecular orbital with a particular bond, more
often than not this is inappropriate. Molecular orbitals will generally be spread out
(delocalized) over the entire molecule, whereas bonds are normally associated with a
pair of atoms. Also, molecular orbitals, unlike bonds, show the symmetry of the mole-
cule. For example, the equivalence of the two OH bonds in water is revealed by the two
molecular orbitals best describing OH bonding as shown in Figure 15.28.

Molecular orbitals, in particular, the highest energy occupied molecular orbital (the
HOMO) and the lowest energy unoccupied molecular orbital (the LUMO), are often
quite familiar to chemists. The former holds the highest energy (most available) elec-
trons and should be subject to attack by electrophiles, whereas the latter provides the
lowest energy space for additional electrons and should be subject to attack by nucle-
ophiles. For example, the HOMO in formaldehyde is in the heavy-atom plane of the
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FIGURE 15.26
The calculated transition state for the
isomerization of methyl isocyanide 
to acetonitrile is consistent with a 
three-membered ring in the reaction
scheme shown.

FIGURE 15.27
The calculated transition state in the
pyrolysis of ethyl formate is consistent
with a six-membered ring in the reaction
scheme shown.

Problems P15.23–P15.25
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FIGURE 15.25
A reaction in two dimensions is analogous
to crossing a mountain range. Pathway A,
which goes over the top of a mountain,
requires more effort to traverse than
pathway B, which goes through a pass
between two mountains.
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molecule, indicating that attack by an electrophile, for example, a proton, will occur
here, as shown in Figure 15.29, whereas the LUMO is out of plane on the carbonyl car-
bon, consistent with the known nucleophilic chemistry.

15.9.2 Orbital Symmetry Control of Chemical Reactions

Woodward and Hoffmann, building on the earlier ideas of Fukui, first clearly pointed
out how the symmetries of the HOMO and LUMO (together referred to as the frontier
molecular orbitals) could be used to rationalize why some chemical reactions pro-
ceed easily whereas others do not. For example, the fact that the HOMO in cis-1,3-
butadiene is able to interact favorably with the LUMO in ethene suggests that the two
molecules should readily combine in a concerted manner to form cyclohexene in a
process called Diels-Alder cycloaddition. This process is depicted in Figure 15.30. On
the other hand, interaction between the HOMO on one ethene and the LUMO on
another ethene is not favorable, as illustrated in Figure 15.31, and concerted addition
to form cyclobutane would not be expected. Reactions which are allowed or forbidden
because of orbital symmetry have been collected under what is now known as the
“Woodward-Hoffmann” rules. For their work, Hoffmann and Fukui shared the Nobel
Prize in chemistry in 1981.

15.9.3 Electron Density

The electron density, (r), is a function of the coordinates r, defined such that (r)dr is
the number of electrons inside a small volume dr. This is what is measured in an X-ray
diffraction experiment. Electron density (r) is written in terms of a sum of products of
basis functions, :

(15.77)r1r2 = a
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FIGURE 15.29
The HOMO (left) and LUMO (right)
for formaldehyde identify regions where
electrophilic and nucleophilic attack,
respectively, are likely to occur.

Problems P15.26–P15.31

FIGURE 15.28
These molecular orbitals can be identified
with the bonds in water.O¬H
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where are elements of the density matrix [Equation (15.27)]. The electron density
can be portrayed in terms of a surface (an electron density surface) with the size and
shape of the surface being given by the value of the density, for example, in cyclohexa-
none in Figure 15.32.

Depending on the value, isodensity surfaces can either serve to locate atoms (left
image in Figure 15.32), to delineate chemical bonds (center image), or to indicate over-
all molecular size and shape (right image). The regions of highest electron density
surround the heavy (non-hydrogen) atoms in a molecule. This is the basis of X-ray crys-
tallography, which locates atoms by identifying regions of high electron density. Also
interesting are regions of lower electron density. For example, a 0.1 electrons/a3

0 isoden-
sity surface for cyclohexanone conveys essentially the same information as a conven-
tional skeletal structure model; that is, it depicts the locations of bonds. A surface of
0.002 electrons/a3

0 provides a good fit to conventional space-filling models and, hence,
serves to portray overall molecular size and shape. As is the case with the space-filling
model, this definition of molecular size is completely arbitrary (except that it closely

Pmn

�

FIGURE 15.30
The HOMO of butadiene (bottom) is able
to interact with the LUMO of ethene
(top), resulting in cycloaddition, in
agreement with experiment.

�

FIGURE 15.31
The HOMO of ethene (bottom) is not able
to interact with the corresponding LUMO
(top), suggesting that cycloaddition is not
likely to occur, in agreement with
experiment.
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Large density value

Small density value

FIGURE 15.32
Electron density surfaces for cyclo-
hexanone corresponding to three 
different values of the electron density: 
0.4 electron/a3

0 (left), 0.1 electrons/a3
0

(center), and 0.002 electrons/a3
0 (right).

Conventional skeletal and space-filling
models appear underneath the last 
two electron density surfaces.

FIGURE 15.33
An electron density surface for diborane
shows that there is no boron–boron bond.

BBnot
HH H

H HH
BB

HH H

H HH

FIGURE 15.34
Two possible Lewis structures of diborane
differ in that only one has a boron–boron
bond.

matches experimental data on how closely atoms fit together in crystalline solids). A
single parameter, namely, the value of the electron density at the surface, has replaced
the set of atomic radii used for space-filling models. These latter two electron density
surfaces are examined in more detail in the following section.

15.9.4 Where Are the Bonds in a Molecule?

An electron density surface can be employed to reveal the location of bonds in a molecule.
Of course, chemists routinely employ a variety of tactics to depict chemical bonding, rang-
ing from pencil sketches (Lewis structures) to physical models such as Dreiding models.
The most important advantage of electron density surfaces is that they can be applied to elu-
cidate bonding and not only to portray bonding in cases where the location of bonds is
known. For example, the electron density surface for diborane (Figure 15.33) clearly shows
a molecule with very little electron density concentrated between the two borons. This fact
suggests that the appropriate Lewis structure of the two shown in Figure 15.34 is the one that
lacks a boron–boron bond, rather than the one that shows the two borons directly bonded.

Another important application of electron density surfaces is to the description of
the bonding in transition states. An example is the pyrolysis of ethyl formate, leading 
to formic acid and ethylene, which is illustrated in Figure 15.35. The electron density
surface offers clear evidence of a late transition state, meaning that the CO bond is
nearly fully cleaved and the migrating hydrogen is more tightly bound to oxygen (as in
the product) than to carbon (as in the reactant).

15.9.5 How Big Is a Molecule?

The size of a molecule can be defined according to the amount of space that it takes up
in a liquid or solid. The so-called space-filling or CPK model has been formulated to
portray molecular size, based on fitting the experimental data to a set of atomic radii
(one for each atom type). Although this simple model is remarkably satisfactory over-
all, some problematic cases do arise, in particular for atoms that may adopt different 
oxidation states, for example, Fe0 in FeCO5 versus FeII in .FeCl4

2-

Problem P15.32
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Because the electrons—not the underlying nuclei—dictate overall molecular size, the
electron density provides an alternate measure of how much space molecules actually take
up. Unlike space-filling models, electron density surfaces respond to changes in the
chemical environment and allow atoms to adjust their sizes in response to different envi-
ronments. An extreme example concerns the size of hydrogen in main-group hydrides.

As seen in Figure 15.36, electron density surfaces reveal that the hydrogen in lithium
hydride is much larger than that in hydrogen fluoride, consistent with the fact that the
former serves as a base (hydride donor), whereas the latter serves as an acid (proton
donor). Hydrogen sizes in beryllium hydride, borane, methane, ammonia, and water are
intermediate and parallel the ordering of the electronegativities of the heavy atom.

15.9.6 Electrostatic Potential

The electrostatic potential, , is defined as the energy of interaction of a positive
point charge located at p with the nuclei and electrons of a molecule:

(15.78)

Notice that the electrostatic potential represents a balance between repulsion of the
point charge by the nuclei (first summation) and attraction of the point charge by the
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FIGURE 15.35
An electron density structure for the
transition state in the pyrolysis of ethyl
formate shows a six-membered ring
consistent with the conventional Lewis
picture shown in the reaction scheme.

LiH BeH2 BH3 CH4

H2ONH3 HF
FIGURE 15.36
Electron density surfaces are shown for
hydrides of lithium to fluorine.
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electrons (second summation). are elements of the density matrix [seePmn

FIGURE 15.37
Electrostatic potential surfaces for
ammonia (left), water (center), and
hydrogen fluoride (right) are useful in
depicting lone pairs.

H
HH

N F

H
H H

O

FIGURE 15.38
Lewis structures for ammonia, water, and
hydrogen fluoride.

FIGURE 15.39
Electrostatic potential surfaces show that
the lone pair is directed to one side of
pyramidal ammonia, but is equally dis-
tributed on both sides of planar ammonia.

Equation (15.27)] and the are atomic basis functions.

15.9.7 Visualizing Lone Pairs

The octet rule dictates that each main-group atom in a molecule will be surrounded
by eight valence electrons. These electrons can either be tied up in bonds (two
electrons for a single bond, four electrons for a double bond, 6 electrons for a triple
bond), or can remain with the atom as a nonbonded or lone pair of electrons.
Although you cannot actually see bonds, you can see their consequence (the atoms
to which bonds are made). On this basis, lone pairs would seem to be completely
invisible, because there are no telltale atoms. However, the fact that the electrons in
lone pairs should be highly accessible suggests another avenue. Regions of space
around a molecule where the potential is negative suggest an excess of electrons. To
the extent that lone pairs represent electron-rich environments, they should be
revealed by electrostatic potential surfaces. A good example is provided by negative
electrostatic potential surfaces for ammonia, water, and hydrogen fluoride, as shown
in Figure 15.37.

The electron-rich region in ammonia is in the shape of a lobe pointing in the fourth
tetrahedral direction, whereas that in water takes the form of a crescent occupying two
tetrahedral sites. At first glance, the electrostatic potential surface for hydrogen fluoride
is nearly identical to that in ammonia. Closer inspection reveals that rather than point-
ing away from the fluorine (as it points away from ammonia), the surface encloses the
atom. All in all, these three surfaces are entirely consistent with conventional Lewis
structures for the three hydrides shown in Figure 15.38.

A related comparison between electrostatic potential surfaces for ammonia in
both the observed pyramidal and unstable trigonal planar geometries is shown in
Figure 15.39. As previously mentioned, the former depicts a lobe pointing in the
fourth tetrahedral direction, and the electrostatic potential surface for the planar trig-
onal arrangement shows two equal out-of-plane lobes. This is, of course, consistent

f
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“Red” (negative potential)

“Blue” (positive potential)

FIGURE 15.42
An electrostatic potential map of benzene.

with the fact that pyramidal ammonia has a dipole moment (with the negative end
pointing in the direction of the lone pair), whereas planar ammonia does not have a
dipole moment.

15.9.8 Electrostatic Potential Maps

Graphical models need not be restricted to portraying a single quantity. Additional
information can be presented in terms of a property map on top of an isosurface, where
different colors can be used to portray different property values. Most common are maps
on electron density surfaces. Here the surface can be used to designate overall molecular
size and shape, and the colors to represent the value of some property at various locations
on the surface. The most commonly used property map is the electrostatic potential
map, schematically depicted in Figure 15.40. This gives the value of the electrostatic
potential at locations on a particular surface, most commonly a surface of electron
density corresponding to overall molecular size.

To see how an electrostatic potential map (and by implication any property map)
is constructed, first consider both a density surface and a particular (negative)
electrostatic potential surface for benzene, as shown in Figure 15.41. Both of these
surfaces convey structure. The density surface reveals the size and shape of benzene,
and the negative electrostatic potential surface delineates in which regions surround-
ing benzene a particular (negative) electrostatic potential will be felt.

Next, consider making a map of the value of the electrostatic potential on the
density surface (an electrostatic potential map), using colors to designate values of
the potential. This leaves the density surface unchanged (insofar as it represents the
size and shape of benzene), but replaces the gray-scale image (conveying only
structural information) with a color image (conveying the value of the electrostatic
potential in addition to structure). An electrostatic map for benzene is presented in
Figure 15.42. Colors near red represent large negative values of the potential,
whereas colors near blue represent large positive values (orange, yellow, and green
represent intermediate values of the potential). Note that the system is red, consis-
tent with the (negative) potential surface previously shown.

Electrostatic potential maps are used for a myriad of purposes other than rapidly
conveying which regions of a molecule are likely to be electron rich and which are
likely to be electron poor. For example, they can be used to distinguish between
molecules in which charge is localized from those where it is delocalized.

Compare the electrostatic potential maps in Figure 15.43 for the planar (top) and
perpendicular (bottom) structures of the benzyl cation. The latter reveals a heavy
concentration of positive charge (blue color) on the benzylic carbon and perpendicu-
lar to the plane of the ring. This is consistent with the notion that only a single Lewis
structure can be drawn. On the other hand, planar benzyl cation shows no such
buildup of positive charge on the benzylic carbon, but rather delocalization onto

p

Negative electrostatic potential surfaceDensity surface

FIGURE 15.41
An electron density surface and a negative electrostatic potential surface are shown for benzene.

“Electron density”

“Positive charge”
�

FIGURE 15.40
An electrostatic potential map shows the
value of the electrostatic potential at all
locations on a surface of electron density
(corresponding to overall size and shape).

Problem P15.35



15.9 GRAPHICAL MODELS 381

HH
�

�

HH
�

HH

�

HH HH

FIGURE 15.43
An electrostatic potential map for planar
benzyl cation (top) shows delocalization
of positive charge, whereas that for per-
pendicular benzyl cation (bottom) shows
charge localization.

ortho and para ring carbons, consistent with the fact that several Lewis structures
can be drawn.

Electrostatic potential maps can also be employed to characterize transition states in
chemical reactions. A good example is pyrolysis of ethyl formate (leading to formic
acid and ethylene):

Here, the electrostatic potential map shown in Figure 15.44 (based on an electron
density surface appropriate to identify bonds) clearly shows that the hydrogen being
transferred (from carbon to oxygen) is positively charged; that is, it is an electrophile.

O
HH

OOOO OH
�

FIGURE 15.44
An electrostatic potential map is useful in depicting the charge distribution in the transition state
for the pyrolysis of ethyl formate.

Problems P15.36–P15.37



15.10 Conclusion
Quantum chemical calculations are rapidly becoming a viable alternative to experi-
ments as a means to investigate chemistry. Continuing rapid advances in computer
hardware and software technology will only further this trend and lead to even wider
adoption among mainstream chemists. Calculations are already able to properly
account for molecular structure and energetics, among other important quantities.
Perhaps most intriguing is the ability of the calculations to deal with highly reactive
molecules, which may be difficult to synthesize, and with reaction transition states,
which cannot be observed at all. In this regard, calculations open up entirely new
avenues for chemical research.

Quantum chemical calculations do have limitations. Most conspicuous of these is
the trade-off between accuracy and cost. Practical quantum chemical models do not
always yield results that are sufficiently accurate to actually be of value, and models
that are capable of yielding accurate results may not yet be practical for the system of
interest. Second, a number of quantities important to chemists cannot yet be routinely
and reliably obtained from calculations. The most important limitation, however, is
that, for the most part, calculations apply strictly to isolated molecules (gas phase),
whereas much if not most chemistry is carried out in solution. Practical models that
take solvent into account are being developed and tested to determine their accuracy
and limitations.

The prognosis is very bright. Your generation will have at its disposal a whole range
of powerful tools for exploring and understanding chemistry, just like the generations
before you were given technologies such as the laser to exploit. It is all part of the
natural evolution of the science.
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Numerical Problems

P15.1 The assumption that the reaction coordinate in going
from gauche to anti n-butane is a simple torsion is an over-
simplification, because other geometrical changes no doubt
also occur during rotation around the carbon–carbon bond,
for example, changes in bond lengths and angles. Examine
the energy profile for n-butane (“n-butane” on the precalcu-
lated Spartan file) and plot the change in distance of the cen-
tral CC bond and CCC bond angle as a function of the torsion
angle. Are the bond length and bond angle nearly identical or
significantly different ( Å and ) for the two equilib-
rium forms of n-butane? Are the two parameters nearly iden-
tical or significantly different between the anti form and
either or both of the transition states? Explain your results.

P15.2 Ammonia provides a particularly simple example of
the dependence of vibrational frequencies on the atomic
masses and of the use of vibrational frequencies to distinguish
between a stable molecule and a transition state. First
examine the vibrational spectrum of pyramidal ammonia
(“ammonia” on the precalculated Spartan file).

a. How many vibrational frequencies are there? How does
this number relate to the number of atoms? Are all fre-
quencies real numbers or are one or more imaginary num-
bers? Describe the motion associated with each frequency
and characterize each as being primarily bond stretching,
angle bending, or a combination of the two. Is bond
stretching or angle bending easier? Do the stretching
motions each involve a single NH bond or do they involve
combinations of two or three bonds?

b. Next, consider changes to the vibrational frequencies of
ammonia as a result of substituting deuteriums for hydro-
gens (“perdeuteroammonia” on the precalculated Spartan
file). Are the frequencies in ND3 larger, smaller, or
unchanged from those in NH3? Are any changes greater
for motions that are primarily bond stretching or motions
that are primarily angle bending?

c. Finally, examine the vibrational spectrum of an ammonia
molecule that has been constrained to a planar geometry
(“planar ammonia” on the Spartan download). Are all the
frequencies real numbers? If not, describe the motions asso-
ciated with any imaginary frequencies and relate them to the
corresponding motion(s) in the pyramidal equilibrium form.

P15.3 The presence of the carbonyl group in a molecule is
easily confirmed by an intense line in the infrared spectrum
around that corresponds to the stretching
vibration. Locate this line in the calculated infrared spectrum
of acetone (“acetone” on the precalculated Spartan file) and
note its position in the overall spectrum (relative to the posi-
tions of the other lines) and the intensity of the absorption.

a. Speculate why this line is a reliable diagnostic for carbonyl
functionality.

b. Examine the lowest frequency mode for acetone and then
the highest frequency mode. Describe each and relate to
the relative ease of difficulty of the associated motion.

C“O1700 cm-1
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P15.4 Chemists recognize that the cyclohexyl radical is
likely to be more stable than the cyclopentylmethyl radical,
because they know that six-membered rings are more stable
than five-membered rings and, more importantly, that second-
ary radicals are more stable than primary radicals. However,
much important chemistry is not controlled by what is most
stable (thermodynamics) but rather by what forms most readily
(kinetics). For example, loss of bromine from 6-bromohexene
leading initially to hex-5-enyl radical, results primarily in
product from cyclopentylmethyl radical.

Br �

Bu3SnH
AIBN

Rearrangement

81%

17%

2%

•

•

•

The two possible interpretations for the experimental result
are that the reaction is thermochemically controlled but that
our understanding of radical stability is wrong or that the
reaction is kinetically controlled.

a. First, see if you can rule out the first possibility. Examine
structures and total energies for cyclohexyl and cyclo-
pentylmethyl radicals (“cyclohexyl and cyclopentylmethyl
radicals” on the precalculated Spartan file). Which radical,
cyclohexyl or cyclopentylmethyl, is more stable (lower in
energy)? Is the energy difference large enough such that only
the more stable radical is likely to be observed? (Recall that
at room temperature an energy difference of 12 kJ/mol corre-
sponds to a product ratio of .) Do you conclude that
ring closure is under thermodynamic control?

b. The next objective is to establish which ring closure, to
cyclohexyl radical or to cyclopentylmethyl radical, is easier;
that is, which product, cyclohexane or methylcyclopentane,
is the kinetic product? Examine structures and total ener-
gies for the transition states for the two ring closures (“to
cyclohexyl and cyclopentylmethyl radicals” on the Spartan
download). Which radical, cyclohexyl or cyclopentyl-
methyl, is more easily formed?

c. Consider the following relationships between transition-
state energy difference, , and the ratio of major to
minor (kinetic) products, calculated from the Boltzmann
distribution:

¢E
+
+

799:1

(kJ/mol)≤E‡ Major : Minor 
(room temperature)

4 '90 :10
8 '95 :5

12 '99 :1
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What leads you to your conclusion? Is it lower in energy
than the corresponding trigonal pyramidal structure in
accordance with VSEPR theory? What is the energy differ-
ence between the two forms? Is it small enough that both
might actually be observed at room temperature? Is the
trigonal pyramidal structure an energy minimum?

b. Optimize the geometry of XeF6 in an octahedral geometry
(Oh symmetry) using the HF/3-21G model and calculate
vibrational frequencies. Next, optimize XeF6 in a geome-
try that is distorted from octahedral (preferably a geometry
with C1 symmetry) and calculate its vibrational frequen-
cies. Is the octahedral form of XeF6 an energy minimum?
What leads you to your conclusion? Does distortion lead to
a stable structure of lower energy?

P15.6 Each of the carbons in ethane is surrounded by four
atoms in a roughly tetrahedral geometry; each carbon in
ethene is surrounded by three atoms in a trigonal planar
geometry and each carbon in acetylene by two atoms in a lin-
ear geometry. These structures can be rationalized by suggest-
ing that the valence 2s and 2p orbitals of carbon are able to
combine either to produce four equivalent sp3 hybrids directed
toward the four corners of a tetrahedron, or three equivalent
sp2 hybrids directed toward the corners of an equilateral trian-
gle with a p orbital left over, or two equivalent sp hybrids
directed along a line with two p orbitals left over. The 2p
atomic orbitals extend farther from carbon than the 2s orbital.
Therefore, sp3 hybrids will extend farther than sp2 hybrids,
which in turn will extend farther than sp hybrids. As a conse-
quence, bonds made with sp3 hybrids should be longer than
those made with sp2 hybrids, which should in turn be longer
than those made with sp hybrids.

a. Obtain equilibrium geometries for ethane, ethene, and
acetylene using the HF/6-31G* model. Is the ordering 
in CH bond lengths what you expect on the basis of the
hybridization arguments? Using the CH bond length in
ethane as a standard, what is the percent reduction in 
CH bond lengths in ethene? In acetylene?

b. Obtain equilibrium geometries for cyclopropane, cyclobu-
tane, cyclopentane, and cyclohexane using the HF/6-31G*
model. Are the CH bond lengths in each of these mole-
cules consistent with their incorporating sp3-hybridized
carbons? Note any exceptions.

c. Obtain equilibrium geometries for propane, propene, and
propyne using the HF/6-31G* model. Is the ordering of
bond lengths the same as that observed for the CH bond
lengths in ethane, ethene, and acetylene? Are the percent
reductions in bond lengths from the standard (propane)
similar to those seen for ethene and acetylene
(relative to ethane)?

P15.7 The bond angle about oxygen in alcohols and ethers is
typically quite close to tetrahedral , but opens up sig-
nificantly in response to extreme steric crowding, for example,
in going from tert-butyl alcohol to di-tert-butyl ether:
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The second rule, that lone pairs take up more space than
bonds, clarifies the situation. The seesaw geometry in which
the lone pair is to two of the SF bonds and to the
other two bonds is preferable to the trigonal pyramidal geom-
etry in which three bonds are to the lone pair.

Although VSEPR theory is easy to apply, its results are
strictly qualitative and often of limited value. For example,
although the model tells us that sulfur tetrafluoride adopts a
seesaw geometry, it does not reveal whether the trigonal
pyramidal structure (or any other structure) is an energy
minimum, and if it is, what its energy is relative to the seesaw
form. Also it has little to say when more than six electron
pairs are present. For example, VSEPR theory tells us that
xenon hexafluoride is not octahedral, but it does not tell us
what geometry the molecule actually assumes. Hartree–Fock
molecular orbital calculations provide an alternative.

a. Optimize the structure of SF4 in a seesaw geometry 
(C2v symmetry) using the HF/3-21G model and calculate
vibrational frequencies (the infrared spectrum). This
calculation is necessary to verify that the energy is at a
minimum. Next, optimize the geometry of SF4 in a
trigonal pyramidal geometry and calculate its vibrational
frequencies. Is the seesaw structure an energy minimum?

90°
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What is the approximate ratio of products suggested by 
the calculations? How does this compare with what is
observed? Do you conclude that ring closure is under
kinetic control?

P15.5 VSEPR (valence state electron pair repulsion) theory
was formulated to anticipate the local geometry about an
atom in a molecule (see discussion in Section 14.1). All that
is required is the number of electron pairs surrounding the
atom, broken down into bonded pairs and nonbonded (lone)
pairs. For example, the carbon in carbon tetrafluoride is sur-
rounded by four electron pairs, all of them tied up in CF
bonds, whereas the sulfur in sulfur tetrafluoride is surrounded
by five electron pairs, four of which are tied up in SF bonds
with the fifth being a lone pair.

VSEPR theory is based on two simple rules. The first is
that electron pairs (either lone pairs or bonds) will seek to
avoid each other as much as possible. Thus, two electron pairs
will lead to a linear geometry, three pairs to a trigonal planar
geometry, four pairs to a tetrahedral geometry, five pairs to a
trigonal bipyramidal geometry, and six pairs to an octahedral
geometry. Although this knowledge is sufficient to assign a
geometry for a molecule such as carbon tetrafluoride (tetrahe-
dral), it is not sufficient to specify the geometry of a molecule
such as sulfur tetrafluoride. Does the lone pair assume an
equatorial position on the trigonal bipyramid leading to a
seesaw geometry, or an axial position leading to a trigonal
pyramidal geometry?

O

109°

Me3C H
O

130°

Me3C CMe3
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This is entirely consistent with the notion that while lone
pairs take up space, they can be “squeezed” to relieve crowd-
ing. Another way to relieve unfavorable steric interactions
(without changing the position of the lone pairs) is to increase
the CO bond distance.

a. Build tert-butyl alcohol and di-tert-butyl ether and opti-
mize the geometry of each using the HF/6-31G* model.
Are the calculated bond angles involving oxygen in accord
with the values given earlier, in particular with regard to
the observed increase in bond angle? Do you see any
lengthening of the CO bond in the ether over that in the 
alcohol? If not, or if the effect is very small ( Å),
speculate why not.

b. Next, consider the analogous trimethylsilyl compounds
Me3SiOH and Me3SiOSiMe3. Calculate their equilibrium
geometries using the HF/6-31G* model. Point out any sim-
ilarities and any differences between the calculated struc-
tures of these compounds and their tert-butyl analogues. In
particular, do you see any widening of the bond angle
involving oxygen in response to increased steric crowding?
Do you see lengthening of the SiO bond in the ether over
that of the alcohol? If not, rationalize what you do see.

P15.8 Water contains two acidic hydrogens that can act
as hydrogen-bond donors and two lone pairs that can act as
hydrogen-bond acceptors:

60.01

two-atom, two-electron bonds. Typical is ethyl cation, ,
formed from protonation of ethene.

C2H5
+

Given that all are tetrahedrally disposed around oxygen, this
suggests two reasonable structures for the hydrogen-bonded
dimer of water, (H2O)2, one with a single hydrogen bond and
one with two hydrogen bonds:

Is it best represented as an open Lewis structure with a full
positive charge on one of the carbons, or as a hydrogen-
bridged structure in which the charge is dispersed onto several
atoms? Build both open and hydrogen-bridged structures for
the ethyl cation. Optimize the geometry of each using the
B3LYP/6-31G* model and calculate vibrational frequencies.
Which structure is lower in energy, the open or hydrogen-
bridged structure? Is the higher energy structure an energy
minimum? Explain your answer.

P15.10 One of the most powerful attractions of quantum
chemical calculations over experiments is their ability to deal
with any molecular system, stable or unstable, real or imagi-
nary. Take as an example the legendary (but imaginary) kryp-
tonite molecule. Its very name gives us a formula, , and
the fact that this species is isoelectronic with the known linear
molecule, KrF2, suggests that it too should be linear.

a. Build KrF2 as a linear molecule , optimize
its geometry using the HF/6-31G* model, and calculate
vibrational frequencies. Is the calculated KrF bond dis-
tance close to the experimental value (1.89 Å)? Does the
molecule prefer to be linear or does it want to bend?
Explain how you reached this conclusion.

b. Build as a linear molecule (or as a bent molecule if
the preceding analysis has shown that KrF2 is not linear),
optimize its structure using the HF/6-31G* model, and
calculate vibrational frequencies. What is the structure of

P15.11 Discussion of the VSEPR model in Section 14.1
suggested a number of failures, in particular, in CaF2 and
SrCl2, which (according to the VSEPR) should be linear but
which are apparently bent, and in and , which
should not be octahedral but apparently are. Are these really
failures or does the discrepancy lie with the fact that the
experimental structures correspond to the solid rather than the
gas phase (isolated molecules)?
a. Obtain equilibrium geometries for linear CaF2 and SrCl2

and also calculate vibrational frequencies (infrared spec-
tra). Use the HF/3-21G model, which has actually proven
to be quite successful in describing the structures of 
main-group inorganic molecules. Are the linear structures
for CaF2 and SrCl2 actually energy minima? Elaborate. 
If one or both are not, repeat your optimization starting
with a bent geometry.

b. Obtain equilibrium geometries for octahedral and
and also calculate vibrational frequencies. Use the

HF/3-21G model. Are the octahedral structures for 
and actually energy minima? Elaborate. If one or
both are not, repeat your optimization starting with dis-
torted structures (preferably with C1 symmetry).
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Whereas the second seems to make better use of water’s
attributes, in doing so, it imposes geometrical restrictions on
the dimer.

Build the two dimer structures. Take into account that the
hydrogen-bond distance ( ) is typically on the order of
2 Å. Optimize the geometry of each using the HF/6-31G*
model and, following this, calculate vibrational frequencies.

Which structure, singly or doubly hydrogen bonded, is
more stable? Is the other (higher energy) structure also an
energy minimum? Explain how you reached your conclusion.
If the dimer with the single hydrogen bond is more stable,
speculate what this has told you about the geometric require-
ments of hydrogen bonds. Based on your experience with
water dimers, suggest a “structure” for liquid water.

P15.9 For many years, a controversy raged concerning 
the structures of so-called “electron-deficient” molecules, 
that is, molecules with insufficient electrons to make normal
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P15.12 Benzyne has long been implicated as an intermediate
in nucleophilic aromatic substitution, for example,

Although the geometry of benzyne has yet to be conclusively
established, the results of a 13C labeling experiment leave
little doubt that two (adjacent) positions on the ring are
equivalent:

Assigning a value to aromatic stabilization is actually
quite straightforward. Consider a hypothetical reaction in
which a molecule of hydrogen is added to benzene to yield
1,3-cyclohexadiene. Next, consider analogous hydrogenation
reactions of 1,3-cyclohexadiene (leading to cyclohexene) and
of cyclohexene (leading to cyclohexane):

Addition of H2 to benzene trades an bond and a 
bond for two bonds, but in so doing destroys the aro-

maticity, whereas H2 addition to either 1,3-cyclohexadiene or
cyclohexene trades the same bonds but does not result in any
loss of aromaticity (there is nothing to lose). Therefore, the
difference in the heats of hydrogenation (134 kJ/mol refer-
enced to 1,3-cyclohexadiene and 142 kJ/mol referenced to
cyclohexene) is a measure of the aromaticity of benzene.

Reliable quantitative comparisons require accurate experi-
mental data (heats of formation). These will generally be avail-
able only for very simple molecules and will almost never be
available for novel interesting compounds. As a case in point,
consider to what extent, if any, the 10 -electron molecule
1,6-methanocyclodeca-1,3,5,7,9-pentaene (“bridged naphtha-
lene”) is stabilized by aromaticity. Evidence provided by the
X-ray crystal structure suggests a fully delocalized system.
The 10 carbons that make up the base are very nearly coplanar
and all CC bonds are intermediate in length between normal
single and double linkages, just as they are in naphthalene:

p

p

C¬Hp

C¬CH¬H

Calculations provide a viable alternative to experiment for
thermochemical data. Although absolute hydrogenation
energies may be difficult to describe with currently practical
models, hydrogenation energies relative to a closely related
standard compound are much easier to accurately describe. 
In this case, the natural standard is benzene.

a. Optimize the geometries of benzene, 1,3-cyclohexadiene,
naphthalene, and 1,2-dihydronaphthalene using the 
HF/6-31G* model. Evaluate the energy of the following
reaction, relating the energy of hydrogenation of naphtha-
lene to that of benzene (as a standard):

NH2

1 1:

�
KNH2

NH3

Cl
* * *

NH2

*
* � 13C

OH

Benzyne

�H2O
�OH� �OH�

�H2O
�Cl�

Cl

There is a report, albeit controversial, that benzyne has been
trapped in a low-temperature matrix and its infrared spectrum
recorded. Furthermore, a line in the spectrum at 
has been assigned to the stretching mode of the incorporated
triple bond.

Optimize the geometry of benzyne using the HF/6-31G*
model and calculate vibrational frequencies. For reference,
perform the same calculations on 2-butyne. Locate the 
stretching frequency in 2-butyne and determine an appropri-
ate scaling factor to bring it into agreement with the corre-
sponding experimental frequency . Then,
identify the vibration corresponding to the triple-bond stretch
in benzyne and apply the same scaling factor to this frequency.
Finally, plot the calculated infrared spectra of both benzyne
and 2-butyne.

Does your calculated geometry for benzyne incorporate a
fully formed triple bond? Compare with the bond in 2-butyne
as a standard. Locate the vibrational motion in benzyne corre-
sponding to the triple bond stretch. Is the corresponding
(scaled) frequency significantly different from
the frequency assigned in the experimental investigation? If it
is, are you able to locate any frequencies from your calcula-
tion that would fit with the assignment of a benzyne mode at

Elaborate. Does the calculated infrared spectrum
provide further evidence for or against the experimental
observation? (Hint: Look at the intensity of the triple-bond
stretch in 2-butyne.)

P15.13 All chemists know that benzene is unusually stable,
that is, it is aromatic. They are also well aware that many
other similar molecules are stabilized by aromaticity to some
extent and, more often than not, can recognize aromatic mol-
ecules as those with delocalized bonding. What most
chemists are unable to do, however, is to “put a number” on
the aromatic stabilization afforded benzene or to quantify
aromatic stabilization among different molecules. This is not
to say that methods have not been proposed (for a discussion
see Section 13.8), but rather that these methods have rarely
been applied to real molecules.
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Naphthalene1,6-Methanocyclodeca-1,3,5,7,9-pentaene

� �

naphthalene 1,3-cyclohexadiene 1,2-dihydronaphthalene benzene

On the basis of relative hydrogenation energies, would you
say that naphthalene is stabilized (by aromaticity) to about
the same extent as is benzene or to a lesser or greater
extent? Try to explain your result.
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b. Optimize the geometries of 1,6-methanocyclodeca-
1,3,5,7,9-pentaene and its hydrogenation product using the
HF/6-31G* model. Evaluate the energy of hydrogenation
relative to that of naphthalene. On the basis of relative
hydrogenation energies, would you say that the bridged
naphthalene is stabilized to about the same extent as is
naphthalene or to a lesser or greater extent? Try to explain
your result.

P15.14 Singlet and triplet carbenes exhibit different proper-
ties and show markedly different chemistry. For example, a
singlet carbene will add to a cis-disubstituted alkene to pro-
duce only cis-disubstituted cyclopropane products (and to a
trans-disubstituted alkene to produce only trans-disubstituted
cyclopropane products), whereas a triplet carbene will add to
produce a mixture of cis and trans products.

The origin of the difference lies in the fact that triplet car-
benes are biradicals (or diradicals) and exhibit chemistry sim-
ilar to that exhibited by radicals, whereas singlet carbenes
incorporate both a nucleophilic site (a low-energy unfilled
molecular orbital) and an electrophilic site (a high-energy
filled molecular orbital); for example, for singlet and triplet
methylene:

for the singlet–triplet energy separation in methylene.
Optimize singlet and triplet states for cyanomethylene,
methoxymethylene, and cyclopentadienylidene:

It should be possible to take advantage of what we know about
stabilizing radical centers versus stabilizing empty orbitals and
use that knowledge to design carbenes that will either be sin-
glets or triplets. Additionally, it should be possible to say with
confidence that a specific carbene of interest will either be a
singlet or a triplet and, thus, to anticipate its chemistry.

The first step is to pick a model and then to establish the
error in the calculated singlet–triplet energy separation in
methylene where the triplet is known experimentally to be
approximately 42 kJ/mol lower in energy than the singlet.
This can then be applied as a correction for calculated
singlet–triplet separations in other systems.

a. Optimize the structures of both the singlet and triplet states
of methylene using both Hartree–Fock and B3LYP density
functional models with the 6-31G* basis set. Which state
(singlet or triplet) is found to be of lower energy according
to the HF/6-31G* calculations? Is the singlet or the triplet
unduly favored at this level of calculation? Rationalize
your result. (Hint: Triplet methylene contains one fewer
electron pair than singlet methylene.) What energy correc-
tion needs to be applied to calculated singlet–triplet energy
separations? Which state (singlet or triplet) is found to be
of lower energy according to the B3LYP/6-31G* calcula-
tions? What energy correction needs to be applied to cal-
culated energy separations?

b. Proceed with either the HF/6-31G* or B3LYP/6-31G*
model, depending on which leads to better agreement

Apply the correction obtained in the previous step to esti-
mate the singlet–triplet energy separation in each. For each
of the three carbenes, assign the ground state as singlet or
triplet. Relative to hydrogen (in methylene), has the cyano
substituent in cyanomethylene and the methoxy substituent
in methoxymethylene led to favoring of the singlet or the
triplet? Rationalize your result by first characterizing
cyano and methoxy substituents as donors or accep-
tors, and then speculating about how a donor or acceptor
would stabilize or destabilize singlet and triplet methylene.
Has incorporation into a cyclopentadienyl ring led to
increased preference for a singlet or triplet ground state
(relative to the preference in methylene)? Rationalize your
result. (Hint: Count the number of electrons associated
with the rings in both singlet and triplet states.)

P15.15 Electron-donating groups on benzene promote elec-
trophilic aromatic substitution and lead preferentially to
so-called ortho and para products over meta products,
whereas electron-withdrawing groups retard substitution and
lead preferentially to meta products (over ortho and para
products), for example, for electrophilic alkylation:

p

pp

We can expect the first step in the substitution to be addition
of the electrophile, leading to a positively charged adduct:

So-called benzenium ions have been characterized spectro-
scopically and X-ray crystal structures for several are known.
Will the stabilities of benzenium ion intermediates anticipate
product distribution?

a. Optimize the geometries of benzene, aniline, and nitro-
benzene using the HF/3-21G model. You will need their
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energies to ascertain the relative reactivities of the three
substituted benzenes. Also, optimize the geometry of the
benzenium ion using the HF/3-21G model. A good guess is
a planar six-membered ring comprising five sp2 carbons and
an sp3 carbon with bond distances between sp2 carbons
intermediate in length between single and double bonds. It
should have C2v symmetry. In terms of ring bond distances,
how does your calculated structure compare with the experi-
mental X-ray geometry of heptamethylbenzenium ion?

b. Optimize the geometries of methyl cation adducts of 
benzene, aniline (meta and para isomers only), and
nitrobenzene (meta and para isomers only) using the
HF/3-21G model. Use the calculated structure of the 
parent benzenium ion as a template. Which isomer, meta
or para, of the aniline adduct is more stable? Which iso-
mer of the nitrobenzene adduct is more stable?
Considering only the lower energy isomer for each system,
order the binding energies of methyl cation adducts of 
benzene, aniline, and nitrobenzene, that is: E (substituted
benzene methyl cation adduct) – E (substituted benzene) –
E (methyl cation). You will need to calculate the energy of
the methyl cation using the HF/3-21G model. Which 
aromatic compound should be most reactive? Which
should be least reactive? Taken as a whole, do your results
provide support for the involvement of benzenium ion
adducts in electrophilic aromatic substitution? Explain.

P15.16 Aromatic molecules such as benzene typically
undergo substitution when reacted with an electrophile such
as Br2, whereas alkenes such as cyclohexene most commonly
undergo addition:

enthalpy and in free energy for real molecules at 298 K.
Consider both a unimolecular isomerization that does not lead
to a net change in the number of molecules and a thermal
decomposition reaction that leads to an increase in the
number of molecules.

a. Calculate U, H(298), and G(298) for the following
isomerization reaction:

Obtain equilibrium geometries for both methyl isocyanide
and acetonitrile using the B3LYP/6-31G* density func-
tional model. Do the calculated values for and 
(298) differ significantly (by more than 10%)? If so, is the
difference due primarily to the temperature correction or to
the inclusion of zero point energy (or to a combination of
both)? Is the calculated value for (298) significantly
different from that of (298)?

b. Repeat your analysis (again using the B3LYP/6-31G*
model) for the following pyrolysis reaction:

Do these two reactions provide a similar or a different
picture as to the importance of relating experimental ther-
mochemical data to calculated values rather than

values? If different, explain your result.

P15.18 Hydrazine would be expected to adopt a conforma-
tion in which the NH bonds stagger. There are two likely can-
didates, one with the lone pairs on nitrogen anti to each other
and the other with the lone pairs gauche:

¢U
¢G

HCO2CH2CH3 ¡ HCO2H + H2C‚CH2

¢H
¢G

¢H¢U

CH3N‚C ¡ CH3C‚N

¢¢¢

On the basis of the same arguments made in VSEPR 
theory (electron pairs take up more space than bonds) you
might expect that anti hydrazine would be the preferred
structure.

a. Obtain energies for the anti and gauche conformers of
hydrazine using the HF/6-31G* model. Which is the more
stable conformer? Is your result in line with what you
expect from VSEPR theory?

You can rationalize your result by recognizing that when
electron pairs interact they form combinations, one of which
is stabilized (relative to the original electron pairs) and one of
which is destabilized. The extent of destabilization is greater
than that of stabilization, meaning that overall interaction of
two electron pairs is unfavorable energetically:

H3C

H3C

CH3CH3

CH3

CH3

1.37

1.42

1.49

CH3

What is the reason for the change in preferred reaction in
moving from the alkene to the arene? Use the Hartree–Fock 
6-31G* model to obtain equilibrium geometries and ener-
gies for reactants and products of both addition and substi-
tution reactions of both cyclohexene and benzene (four
reactions in total). Assume trans addition products
(1,2-dibromocyclohexane and 5,6-dibromo-1,3-cyclohexadiene).
Is your result consistent with what is actually observed? Are all
four reactions exothermic? If one or more are not exothermic,
provide a rationale as to why.

P15.17 Evaluate the difference between change in energy at 
0 K in the absence of zero point vibration and both change in

Br

Br

BrBr

Br

Br
� Br2

�  HBr
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� Br2
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HH
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whereas the onefold term in 1,2-difluoroethane probably
reflects differences in electrostatic interactions as represented
by bond dipoles:

b. Measure the energy of the highest occupied molecular
orbital (the HOMO) for each of the two hydrazine con-
formers. This corresponds to the higher energy (destabi-
lized) combination of electron pairs. Which hydrazine
conformer (anti or gauche) has the higher HOMO energy?
Is this also the higher energy conformer? If so, is the dif-
ference in HOMO energies comparable to the difference in
total energies between the conformers?

P15.19 Diels-Alder cycloaddition of 1,3-butadiene with
acrylonitrile requires that the diene be in a cis (or cis-like)
conformation:

In fact, 1,3-butadiene exists primarily in a trans conforma-
tion, the cis conformer being approximately 9 kJ/mol less sta-
ble and separated from the trans conformer by a low-energy
barrier. At room temperature, only about 5% of butadiene mol-
ecules will be in a cis conformation. Clearly, rotation into a cis
conformation is required before reaction can proceed.

Conduct a search for a substituted 1,3-butadiene that
actually prefers to exist in a cis (or cis-like) conformation as
opposed to a trans conformation. The only restriction you
need to be aware of is that the diene needs to be electron rich
in order to be reactive. Restrict your search to alkyl and
alkoxy substituents as well as halogen. Use the HF/3-21G
model. Report your successes and provide rationales.

P15.20 The energy of rotation about a single bond is a peri-
odic function of the torsion angle, , and is, therefore, appro-
priately described in terms of a truncated Fourier series, the
simplest acceptable form of which is given by

Here, V1 is the onefold component (periodic in ), V2 is
the twofold component (periodic in ), and V3 is the three-
fold component (periodic in ).

A Fourier series is an example of an orthogonal polyno-
mial, meaning that the individual terms which it comprises
are independent of each other. It should be possible, therefore,
to dissect a complex rotational energy profile into a series of
N-fold components and to interpret each of these components
independent of all others. The one-fold component is quite
easy to rationalize. For example, the onefold term for rotation
about the central bond in n-butane no doubt reflects the
crowding of methyl groups,

120°
180°

360°

 = V11f2 + V21f2 + V31f2
+

1

2
V311 - cos 3f2

 V1f2 =
1

2
V111 - cos f2 +

1

2
V211 - cos 2f2

f

The threefold component represents the difference in energy
between eclipsed and staggered arrangements about a single
bond. However, the twofold component is perhaps the most
interesting of the three and is what concerns us here. It relates
to the difference in energy between planar and perpendicular
arrangements.

Optimize the geometry of dimethyl peroxide (CH3OOCH3)
subject to the COOC dihedral angle being held at , , ,

, (10 optimizations in total). Use the B3LYP/6-31G*
density functional model. Construct a plot of energy versus
dihedral angle and fit this to a three-term Fourier series. Does
the Fourier series provide a good fit to your data? If so, what is
the dominant term? Rationalize it. What is the second most
important term? Rationalize your result.

P15.21 Pyramidal inversion in the cyclic amine aziridine
is significantly more difficult than inversion in an acyclic
amine, for example, requiring 80 kJ/mol versus 23 kJ/mol in
dimethylamine according to HF/6-31G* calculations. One
plausible explanation is that the transition state for inversion
needs to incorporate a planar trigonal nitrogen center, which
is obviously more difficult to achieve in aziridine, where one
bond angle is constrained to a value of around , than it is
in dimethylamine. Such an interpretation suggests that the
barriers to inversion in the corresponding four- and five-
membered ring amines (azetidine and pyrrolidine) should 
also be larger than normal and that the inversion barrier in the
six-membered ring amine (piperidine) should be quite close
to that for the acyclic.

60°

180°Á
40°20°0°

Optimize the geometries of aziridine, azetidine, pyrroli-
dine, and piperidine using the HF/6-31G* model. Starting
from these optimized structures, provide guesses at the
respective inversion transition states by replacing the tetra-
hedral nitrogen center with a trigonal center. Obtain transi-
tion states using the same Hartree–Fock model and
calculate inversion barriers. Calculate vibrational frequen-
cies to verify that you have actually located the appropriate
inversion transition states.

Do the calculated inversion barriers follow the order sug-
gested in the preceding figure? If not, which molecule(s)
appear to be anomalous? Rationalize your observations by
considering other changes in geometry from the amine to the
transition state.

CN CN
�

CH3 CH3 CH3

CH3
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vs.

F F F
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P15.22 Molecules such as dimethylsulfoxide and dimethyl-
sulfone can either be represented as hypervalent, that is, with
more than the normal complement of eight valence electrons
around sulfur, or as zwitterions, in which sulfur bears a positive
charge:

Atomic charges obtained from quantum chemical calculations
can help to decide which representation is more appropriate.

a. Obtain equilibrium geometries for dimethylsulfide,
(CH3)2S, and dimethylsulfoxide using the HF/3-21G model
and obtain charges at sulfur based on fits to the electrostatic
potential. Is the charge on sulfur in dimethylsulfoxide about
the same as that on sulfur in dimethylsulfide (normal sulfur),
or has it increased by one unit, or is it somewhere between?
Would you conclude that dimethylsulfoxide is best repre-
sented as a hypervalent molecule, as a zwitterion, or some-
thing between? See if you can support your conclusion with
other evidence (geometries, dipole moments, and so on).

b. Repeat your analysis for dimethylsulfone. Compare your
results for the charge at sulfur to those for dimethylsulfide
and dimethylsulfoxide.

P15.23 Hydroxymethylene has never actually been
observed, although it is believed to be an intermediate both in
the photofragmentation of formaldehyde to hydrogen and
carbon monoxide,

and in the photodimerization of formaldehyde in an argon
matrix:

Does hydroxymethylene actually exist? To have a chance 
“at life,” it must be separated from both its rearrangement
product (formaldehyde) and from its dissociation product
(hydrogen and carbon monoxide) by a sizable energy barrier

. Of course, it must also actually be a minimum
on the potential energy surface.

a. First calculate the energy difference between formalde-
hyde and hydroxymethylene and compare your result to
the indirect experimental estimate of 230 kJ/mol. Try
two different models, B3LYP/6-31G* and MP2/6-31G*.
Following calculation of the equilibrium geometry for
hydroxymethylene, obtain vibrational frequencies. Is
hydroxymethylene an energy minimum? How do you
know? Is the energy difference inferred from experiment
reasonably well reproduced with one or both of the two
models?

b. Proceed with the model that gives the better energy
difference and try to locate transition states both for
isomerization of hydroxymethylene to formaldehyde and
for dissociation to hydrogen and carbon monoxide. Be
certain to calculate vibrational frequencies for the two

1780 kJ>mol2

H2CO ¡hn [HC
$
OH] ¡H2CO

HOCH2CHO

H2CO ¡hn [HC
$
OH] ¡ H2 + CO

transition states. On the basis of transition states you have
located, would you expect that both isomerization and
dissociation reactions are available to hydroxymethylene?
Explain. Do both suggest that hydroxymethylene is in a
deep enough energy well to actually be observed?

P15.24 The three vibrational frequencies in
are all much larger 

than the corresponding frequencies in D2O (1178, 1571, 
and ). This follows from the fact that vibrational
frequency is given by the square root of a (mass-independent)
quantity, which relates to the curvature of the energy surface
at the minima, divided by a quantity that depends on the
masses of the atoms involved in the motion.

As discussed in Section 15.8.4, vibrational frequencies
enter into both terms required to relate the energy obtained
from a quantum chemical calculation (stationary nuclei at
0 K) to the enthalpy obtained experimentally (vibrating nuclei
at finite temperature), as well as the entropy required to relate
enthalpies to free energies. For the present purpose, focus is
entirely on the so-called zero point energy term, that is, the
energy required to account for the latent vibrational energy of
a molecule at 0 K.

The zero point energy is given simply as the sum over
individual vibrational energies (frequencies). Thus, the zero
point energy for a molecule in which isotopic substitution has
resulted in an increase in mass will be reduced from that in
the unsubstituted molecule:

2788 cm-1

H2O 11595, 3657, and 3756 cm-12

A direct consequence of this is that enthalpies of bond disso-
ciation for isotopically substituted molecules (light to heavy)
are larger than those for unsubstituted molecules.

a. Perform B3LYP/6-31G* calculations on HCl and on its
dissociation products, chlorine atom and hydrogen atom.
Following geometry optimization on HCl, calculate the
vibrational frequency for both HCl and DCl and evaluate
the zero point energy for each. In terms of a percentage of
the total bond dissociation energy, what is the change
noted in going from HCl to DCl?

d1-Methylene chloride can react with chlorine atoms in
either of two ways: by hydrogen abstraction (producing
HCl) or by deuterium abstraction (producing DCl):

vs. vs.
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Which pathway is favored on the basis of thermodynamics
and which is favored on the basis of kinetics?

b. Obtain the equilibrium geometry for dichloromethyl
radical using the B3LYP/6-31G* model. Also obtain
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vibrational frequencies for both the unsubstituted and
the deuterium-substituted radical and calculate zero
point energies for the two abstraction pathways (you
already have zero point energies for HCl and DCl).
Which pathway is favored on the basis of thermodynam-
ics? What would you expect the (thermodynamic) prod-
uct ratio to be at room temperature?

c. Obtain the transition state for hydrogen abstraction from
methylene chloride using the B3LYP/6-31G* model.
A reasonable guess is shown here:

Calculate vibrational frequencies for the two possible
structures with one deuterium and evaluate the zero
point energies for these two structures. (For the purpose
of zero point energy calculation, ignore the imaginary
frequency corresponding to the reaction coordinate.)
Which pathway is favored on the basis of kinetics? Is it
the same or different from the thermodynamic pathway?
What would you expect the (kinetic) product ratio to be
at room temperature?

P15.25 Diels-Alder reactions commonly involve electron-
rich dienes and electron-deficient dienophiles:

The rate of these reactions generally increases with the 
-donor ability of the diene substituent, Y, and with the 
-acceptor ability of the dienophile substituent, X.

The usual interpretation is that electron donors will push
up the energy of the HOMO on the diene and that electron
acceptors will push down the energy of the LUMO on
the dienophile:

p

p

The resulting decrease in the HOMO–LUMO gap leads to 
a stronger interaction between diene and dienophile and 
to a decrease in the activation barrier.

a. Obtain equilibrium geometries for acrylonitrile,
1,1 dicyanoethylene, cis- and trans-1,2-dicyanoethylene,
tricyanoethylene, and tetracyanoethylene using the
HF/3-21G model.

The important difference between the two molecules is that
diborane has two fewer electrons than ethane and is not able
to make the same number of bonds. In fact, it is ethene which

Plot the LUMO energy for each dienophile versus the log
of the observed relative rate for its addition to cyclopenta-
diene (listed below the structures in the preceding figure).
Is there a reasonable correlation between LUMO energy
and relative rate?

b. Obtain transition-state geometries for Diels-Alder cyclo-
additions of acrylonitrile and cyclopentadiene and tetra-
cyanoethylene and cyclopentadiene using the HF/3-21G
model. Also obtain a geometry for cyclopentadiene.
Calculate activation energies for the two reactions.

How does the calculated difference in activation ener-
gies compare with the experimental difference (based on a
value of 7.61 for the difference in the log of the rates and
assuming 298 K)?

P15.26 It is well known that cyanide acts as a “carbon” and
not a “nitrogen” nucleophile in SN2 reactions, for example,

How can this behavior be rationalized with the notion that
nitrogen is in fact more electronegative than carbon and,
therefore, would be expected to hold any excess electrons?

a. Optimize the geometry of cyanide using the HF/3-21G model
and examine the HOMO. Describe the shape of the HOMO
of cyanide. Is it more concentrated on carbon or nitrogen?
Does it support the picture of cyanide acting as a carbon
nucleophile? If so, explain why your result is not at odds with
the relative electronegativities of carbon and nitrogen.

Why does iodide leave following nucleophilic attack by
cyanide on methyl iodide?

b. Optimize the geometry of methyl iodide using the 
HF/3-21G model and examine the LUMO. Describe the
shape of the LUMO of methyl iodide. Does it anticipate
the loss of iodide following attack by cyanide? Explain.

P15.27 At first glance, the structure of diborane would
seem unusual. Why shouldn’t the molecule assume the same
geometry as ethane, which after all has the same number of
heavy atoms and the same number of hydrogens?
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has the same number of electrons, to which diborane is struc-
turally related.

Obtain equilibrium geometries for both diborane and ethene
using the HF/6-31G* model and display the six valence molecu-
lar orbitals for each. Associate each valence orbital in ethene
with its counterpart in diborane. Focus on similarities in the
structure of the orbitals and not on their position in the lists of
orbitals. To which orbital in diborane does the orbital in ethene
(the HOMO) best relate? How would you describe this orbital in
diborane? Is it bonding, bonding, or both?

P15.28 Molecular orbitals are most commonly delocalized
throughout the molecule and exhibit distinct bonding or anti-
bonding character. Loss of an electron from a specific molec-
ular orbital from excitation by light or by ionization would,
therefore, be expected to lead to distinct changes in bonding
and changes in molecular geometry.

a. Obtain equilibrium geometries for ethene, formaldimine,
and formaldehyde using the HF/6-31G* model and display
the highest occupied and lowest unoccupied molecular
orbitals (HOMO and LUMO, respectively) for each. What
would happen to the geometry around carbon (remain pla-
nar versus pyramidalize), to the bond length, and
(for formaldimine) to the bond angle if an elec-
tron were to be removed from the HOMO of ethene,
formaldimine, and formaldehyde?

b. Obtain equilibrium geometries for radical cations of ethene,
formaldimine, and formaldehyde using the HF/6-31G*
model. Are the calculated geometries of these species, in
which an electron has been removed from the correspon-
ding neutral molecule, in line with your predictions based
on the shape and nodal structure of the HOMO?

c. Unoccupied molecular orbitals are also delocalized and
also show distinct bonding or antibonding character.
Normally, this is of no consequence. However, were these
orbitals to become occupied (from excitation or from cap-
ture of an electron), then changes in molecular geometry
would also be expected. What would happen to the geom-
etry around carbon, to the bond length, and (for
formaldimine) to the bond angle, if an electron
were to be added to the LUMO of ethene, formaldimine,
and formaldehyde?

d. Obtain equilibrium geometries for the radical anions
of ethene, formaldimine, and formaldehyde using the
HF/6-31G* model. Are the calculated geometries of these
species, in which an electron has been added to the corre-
sponding neutral molecule, in line with your predictions
based on the shape and nodal structure of the LUMO?

The first excited state of formaldehyde (the so-called
state) can be thought of as arising from the pro-

motion of one electron from the HOMO (in the ground
state of formaldehyde) to the LUMO. The experimental
equilibrium geometry of the molecule shows lengthening
of the CO bond and a pyramidal carbon (ground-state
values are shown in parentheses):

n: p*

C“NH
C“X

C“NH
C“X

B¬HB¬B

p

e. Rationalize this experimental result on the basis of what
you know about the HOMO and LUMO in formaldehyde
and your experience with calculations on the radical cation
and radical anion of formaldehyde.

P15.29 BeH2 is linear, whereas CH2 with two additional
electrons and H2O with four additional electrons are both bent
to a similar degree. Could these changes in geometry have
been anticipated by examining the shapes of the bonding
molecular orbitals?

a. Perform a series of geometry optimizations on BeH2 with
the bond angle constrained at , , , . . . , 
(10 optimizations in total). Use the HF/6-31G* model.
Plot the total energy, along with the HOMO and LUMO ener-
gies versus bond angle. Also, display the HOMO and LUMO
for one of your structures of intermediate bond angle.

Does the energy of the HOMO of BeH2 increase (more
positive) or decrease in going from a bent to a linear struc-
ture, or does it remain constant, or is the energy at a mini-
mum or maximum somewhere between? Would this result
have been anticipated by examining the shape and nodal
structure of the HOMO?

Does the energy of the LUMO of BeH2 increase or
decrease with increase in bond angle, or does it remain
constant, or is the energy at a minimum or maximum
somewhere between? Rationalize your result by reference
to the shape and nodal structure of the LUMO. What 
do you anticipate would happen to the geometry of 
BeH2 as electrons are added to the LUMO? Take a guess 
at the structure of (one electron added to the LUMO)
and singlet CH2 (two electrons added to the LUMO).

b. Optimize the geometries of (singlet) and singlet CH2
using the HF/6-31G* model. Are the results of the quantum
chemical calculations in line with your qualitative arguments?

c. Perform a series of geometry optimizations on singlet CH2
with the bond angle constrained to , , , ,

. Plot the total energy as a function of the angle as
well as the HOMO and LUMO energies.

Display the LUMO for some intermediate structure.
Does the plot of HOMO energy versus angle in CH2 mirror
the plot of LUMO energy versus angle in BeH2? Rationalize
your answer. Does the energy of the LUMO in CH2 increase,
decrease, or remain constant with increase in bond angle (or
is it at a minimum or maximum somewhere between)? Is the
change in LUMO energy smaller, larger, or about the same
as the change in the energy of the HOMO over the same
range of bond angles? Rationalize these two observations by
reference to the shape and nodal structure of the LUMO.
What do you anticipate would happen to the geometry of
CH2 as electrons are added to the LUMO? Take a guess at
the structure of (one electron added to the LUMO) and
H2O (two electrons added to the LUMO).

d. Optimize the geometries of and H2O using the 
HF/6-31G* model. Are the results of the quantum chemical
calculations in line with your qualitative arguments?

P15.30 Olefins assume planar (or nearly planar) geome-
tries wherever possible. This ensures maximum overlap

NH•
2

NH•
2

180°
Á110°100°90°

BH•
2

BH•
2

180°110°100°90°

1.32Å (1.21Å)

154� (180�)
OCH

H



NUMERICAL PROBLEMS 393

between p orbitals and maximum -bond strength. Any dis-
tortion away from planarity should reduce orbital overlap
and bond strength. In principle, -bond strength can be
determined experimentally, by measuring the activation
energy required for cis-trans isomerization, for example, 
in cis-1,2-dideuteroethylene:

p

p

Another measure of -bond strength, at least -bond strength
relative to a standard, is the energy required to remove an elec-
tron from the orbital, or the ionization energy:p

pp

This implies that the two bonds are formed more or less
simultaneously, without the intervention of an intermediate
that would allow cis-trans isomerization.

Locate the transition state for addition of singlet difluoro-
carbene and ethene using the HF/3-21G model and, following
this, calculate vibrational frequencies. When completed,
verify that you have in fact found a transition state and that it
appears to be on the way to the correct product.

What is the orientation of the carbene relative to ethene
in your transition state? Is it the same orientation as adopted
in the product (1,1-difluorocyclopropane)? If not, what is the
reason for the difference? (Hint: Consider that the elec-
trons on ethylene need to go into a low-lying unoccupied
molecular orbital on the carbene. Build difluorocarbene and
optimize its geometry using the HF/3-21G model and display
the LUMO.)

P15.32 Further information about the mechanism of the
ethyl formate pyrolysis reaction can be obtained by replacing
the static picture with a movie, that is, an animation along the
reaction coordinate. Bring up “ethyl formate pyrolysis” (on
the Spartan download) and examine the change in electron
density as the reaction proceeds. Do hydrogen migration and
CO bond cleavage appear to occur in concert or is one leading
the other?

P15.33 Do related molecules with the same number of
electrons occupy the same amount of space, or are other
factors (beyond electron count) of importance when dictating
overall size requirements? Obtain equilibrium geometries
for methyl anion, ammonia, and hydronium cation using
the HF/6-31G* model and compare electron density surfaces
corresponding to enclosure of 99% of the total electron
density. Do the three molecules take up the same amount
of space? If not, why not?

P15.34 Lithium provides a very simple example of the
effect of oxidation state on overall size. Perform HF/6-31G*
calculations on lithium cation, lithium atom, and lithium
anion, and compare the three electron density surfaces
corresponding to enclosure of 99% of the total electron
density. Which is smallest? Which is largest? How does the
size of lithium relate to the number of electrons? Which
surface most closely resembles a conventional space-filling
model? What, if anything does this tell you about the kinds
of molecules that were used to establish the space-filling
radius for lithium?

P15.35 A surface for which the electrostatic potential is
negative delineates regions in a molecule that are subject to
electrophilic attack. It can help you to rationalize the widely
different chemistry of molecules that are structurally similar.

Optimize the geometries of benzene and pyridine using
the HF/3-21G model and examine electrostatic potential
surfaces corresponding to 100 kJ/mol. Describe the
potential surface for each molecule. Use it to rationalize
the following experimental observations: (1) Benzene and
its derivatives undergo electrophilic aromatic substitution
far more readily than do pyridine and its derivatives; 

-

p

s

Non-planar olefins might be expected to result from incor-
poration to a trans double bond into a small ring. Small-ring
cycloalkenes prefer cis double bonds, and the smallest trans
cycloalkene to actually have been isolated is cyclooctene. It is
known experimentally to be approximately 39 kJ/mol less
stable than cis-cyclooctene. Is this a measure of reduction in

bond strength?

Optimize the geometries of both cis- and trans-cyclooctene
using the HF/3-21G model. (You should first examine the pos-
sible conformers available to each of the molecules.) Finally,
calculate and display the HOMO for each molecule.

Is the double bond in trans-cyclooctene significantly
distorted from its ideal planar geometry? If so, would you
characterize the distortion as puckering of the double bond
carbons or as twisting around the bond, or both? Does the
HOMO in trans-cyclooctene show evidence of distortion?
Elaborate. Is the energy of the HOMO in trans-cyclooctene
significantly higher (less negative) than that in cis-
cyclooctene? How does the energy difference compare to
the experimentally measured difference in ionization poten-
tials between the two isomers (0.29 eV)? How does the dif-
ference in HOMO energies (ionization potentials) relate to
the calculated (measured) difference in isomer energies?

P15.31 Singlet carbenes add to alkenes to yield cyclo-
propanes. Stereochemistry is maintained, meaning that cis-
and trans-substituted alkenes give cis- and trans-substituted
cyclopropanes, respectively; for example:

p
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Optimize the geometry of azulene using the HF/6-31G* model
and calculate an electrostatic potential map. For reference, per-
form the same calculations on naphthalene, a nonpolar isomer
of azulene. Display the two electrostatic potential maps side
by side and on the same (color) scale. According to its electro-
static potential map, is one ring in azulene more negative (rela-
tive to naphthalene as a standard) and one ring more positive?
If so, which is which? Is this result consistent with the direc-
tion of the dipole moment in azulene? Rationalize your result.
(Hint: Count the number of electrons.)p

(2) protonation of perdeuterobenzene (C6D6) leads to loss
of deuterium, whereas protonation of perdeuteropyridine
(C5D5N) does not lead to loss of deuterium; and (3)
benzene typically forms -type complexes with
transition models, whereas pyridine typically forms 

-type complexes.

P15.36 Hydrocarbons are generally considered to be
nonpolar or weakly polar at best, characterized by dipole
moments that are typically only a few tenths of a debye. For
comparison, dipole moments for molecules of comparable
size with heteroatoms are commonly several debyes. 
One recognizable exception is azulene, which has a dipole
moment of 0.8 debye:

s

p

As written, this is a highly endothermic process, because not
only is a bond broken but two charged molecules are created
from the neutral acid. It occurs readily in solution only
because the solvent acts to disperse charge.

Acid strength can be calculated simply as the difference in
energy between the acid and its conjugate base (the energy of
the proton is 0). In fact, acid strength comparisons among
closely related systems, for example, carboxylic acids, are
quite well described with practical quantum chemical models.
This is consistent with the ability of the same models to cor-
rectly account for relative base strengths (see discussion in
Section 15.8.3).

Another possible measure of acid strength is the degree of
positive charge on the acidic hydrogen as measured by the
electrostatic potential. It is reasonable to expect that the more
positive the potential in the vicinity of the hydrogen, the more
easily it will dissociate and the stronger the acid. This kind of
measure, were it to prove successful, offers an advantage over
the calculation of reaction energy, in that only the acid (and
not the conjugate base) needs to be considered.

a. Obtain equilibrium geometries for nitric acid, sulfuric acid,
acetic acid, and ethanol using the HF/3-21G model, and
compare electrostatic potential maps. Be certain to choose
the same (color) scale for the four acids. For which acid is
the electrostatic potential in the vicinity of (the acidic)
hydrogen most positive? For which is it least positive? Do
electrostatic potential maps provide a qualitatively correct
account of the relative acid strength of these four
compounds?

Azulene Naphthalene

Acid pKa Acid pKa

Cl3CCO2H 0.7 HCO2H 3.75
HO2CCO2H 1.23 trans-ClCH“CHCO2H 3.79
Cl2CHCO2H 1.48 C6H5CO2H 4.19
NCCH2CO2H 2.45 p-ClC6H4CH“CHCO2H 4.41
ClCH2CO2H 2.85 trans-CH3CH“CHCO2H 4.70
trans-HO2CCH“CHCO2H 3.10 CH3CO2H 4.75
p-HO2CC6H4CO2H 3.51 (CH3)3CCO2H 5.03

P15.37 Chemists know that nitric and sulfuric acids are
strong acids and that acetic acid is a weak acid. They would
also agree that ethanol is at best a very weak acid. Acid
strength is given directly by the energetics of deprotonation
(heterolytic bond dissociation); for example, for acetic acid:

CH3CO2H ¡ CH3CO-
2 + H+

b. Obtain equilibrium geometries for several of the car-
boxylic acids found in the following table using the
HF/3-21G model and display an electrostatic potential
map for each.

“Measure” the most positive value of the electrostatic
potential associated with the acidic hydrogen in each of
these compounds and plot this against experimental pKa
(given in the preceding table). Is there a reasonable corre-
lation between acid strengths and electrostatic potential at
hydrogen in this closely related series of acids?



16
Molecular Symmetry

The combination of group theory and quantum mechanics provides a

powerful tool for understanding the consequences of molecular symme-

try. In this chapter, after a brief description of the most important aspects

of group theory, several applications are discussed. They include using

molecular symmetry to decide which atomic orbitals contribute to molecular

orbitals, understanding the origin of spectroscopic selection rules, identify-

ing the normal modes of vibration for a molecule, and determining if a par-

ticular molecular vibration is infrared active and/or Raman active.

16.1 Symmetry Elements, Symmetry
Operations, and Point Groups

An individual molecule has an inherent symmetry based on the spatial arrangement of
its atoms. For example, after a rotation of benzene by 60° about an axis that is perpen-
dicular to the plane of the molecule and that passes through the center of the molecule,
the molecule cannot be distinguished from the original configuration. Solid benzene in
a crystalline form has additional symmetries that arise from the way in which individual
benzene molecules are arranged in the crystal structure. These symmetry elements are
essential in discussing diffraction of X rays. However, in this chapter, the focus is on the
symmetry of an individual molecule.

Why is molecular symmetry useful to chemists? The symmetry of a molecule deter-
mines a number of its important properties. For example, CF4 has no dipole moment,
but H2O has a dipole moment because of the symmetry of these molecules. All mole-
cules have vibrational modes. However, the number of vibrational modes that are
infrared and Raman active and the degeneracy of a given vibrational frequency depend
on the molecular symmetry. Symmetry also determines the selection rules for transi-
tions between states of the molecule in all forms of spectroscopy, and symmetry
determines which atomic orbitals contribute to a given molecular orbital.

The focus in this chapter is on applying the predictive power of group theory to
problems of interest in quantum chemistry, rather than on formally developing the
mathematical framework. Therefore, results from group theory that are needed for
specific applications are introduced without their derivations. These results are high-
lighted in shaded text boxes. Readers who wish to see these results derived or dis-
cussed in more detail are referred to standard texts such as Symmetry and Structure by
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FIGURE 16.1
The symmetry elements of allene
(CH2CCH2) are shown in (a) and those
for PCl5 are shown in (b). Only one of the
three planes for PCl5 is shown.sv
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S. F. A. Kettle, Molecular Symmetry and Group Theory by R. L. Carter, and Chemical
Applications of Group Theory, by F. A. Cotton. In Sections 16.1 through 16.5, the
essentials of group theory that are needed to address problems of chemical interest
are discussed. With a working knowledge of reducible and irreducible representations
and character tables, several applications of group theory to chemistry are presented
in the rest of the chapter. In Section 16.6, group theory is used to construct molecular
orbitals (MOs) that incorporate the symmetry of the molecule under consideration
from atomic orbitals (AOs). In Section 16.7, we discuss the normal modes for the
vibration of molecules, and in Section 16.8, we show that symmetry determines
whether a given vibrational mode of a molecule is infrared or Raman active. We will
also show that symmetry determines the number of normal modes that have the same
vibrational frequency.

We begin our discussion of molecular symmetry by discussing symmetry ele-
ments and symmetry operations. Symmetry elements are geometric entities such
as axes, planes, or points with respect to which operations can be carried out.
Symmetry operations are actions with respect to the symmetry elements that leave
the molecule in a configuration that cannot be distinguished from the original con-
figuration. There are only five different types of symmetry elements for an isolated
molecule, although a molecule may require several elements of each type—n-fold
rotation axes, n-fold rotation-reflection axes, or mirror planes—to fully define
its symmetry. These elements and operations are listed in Table 16.1. Operators are
indicated by a caret above the symbol.

Whereas other symmetry elements generate a single operation, Cn and Sn axes gener-
ate n operations. We choose the direction of rotation to be counterclockwise. However, if
carried through consistently, either direction can be used. Examples of these symmetry
elements are illustrated in Figure 16.1 for allene and PCl5. Consider first the following
symmetry elements for allene:

• A rotation of about the C2 rotation axes passing through the car-
bon atoms leaves the molecule in a position that is indistinguishable from its
initial position.

• A rotation of about the twofold axis discussed in the previous point,
followed by a reflection through a plane perpendicular to the axis that passes
through the central carbon atom also leaves the allene molecule unchanged. The
combined operation is called an S4 fourfold rotation-reflection axis. This axis and
the C2 rotation axis of the previous bullet are collinear.

• Two further C2 rotation axes exist in this molecule. Both pass through the central
carbon atom (C2). Consider the two planes shown in Figure 16.1a. One contains H1
and H2, and the other contains H3 and H4. The two C2 axes bisect the angle
between the two planes and, therefore, are perpendicular to one another.

• The molecule contains two mirror planes, as shown. Because they contain the
main twofold axis, which is referred to as the vertical axis, they are designated
with .

These symmetry elements for allene are shown in Figure 16.1. Consider next the PCl5
molecule, which has the following symmetry elements:

• A threefold rotation axis C3 that passes through Cl1, Cl2, and the central P atom.

sv

360°>4 = 90°

360°>2 = 180°

TABLE 16.1 Symmetry Elements and Their Corresponding Operations

Symmetry Elements Symmetry Operations

E Identity leave molecule unchangedEN

Cn n-Fold rotation axis rotate about axis by 360° n 1, 2, ..., n times (indicated by superscript)>CN n, CN2
n, Á , CN n

n

s Mirror plane reflect through the mirror planesN

i Inversion center (x, y, z): (-x, -y, -z) iN

Sn n-Fold rotation-reflection axis rotate about axis by 360° n, and reflect through a plane perpendicular to the axis.>SNn
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• A mirror plane, , that passes through the centers of the three equatorial Cl
atoms. Reflection through this plane leaves the equatorial Cl atoms in their original
location and exchanges the axial Cl atoms.

• Three C2 axes that pass through the central P atom and one of the equatorial 
Cl atoms.

• Three mirror planes, , that contain Cl1, Cl2, and P as well as one of Cl3, Cl4,
or Cl5.

One of these planes is shown in Figure 16.1b. As we will see in Section 16.2,
allene and PCl5 can each be assigned to a group on the basis of symmetry elements of
the molecule.

What is the relationship between symmetry elements, the symmetry operators, and
the group? A set of symmetry elements forms a group if the following statements are
true about their corresponding operators:

• The successive application of two operators is equivalent to one of the operations of
the group. This guarantees that the group is closed.

• An identity operator, , exists that commutes with any other operator and leaves
the molecule unchanged. Although this operator seems trivial, it plays an important

EN

sv

sh

inverse operator of , then . If , then . In
addition,

• The operators are associative, meaning that .

The groups of interest in this chapter are called point groups because the set of
symmetry elements intersects in a point or set of points. To utilize the power of group
theory in chemistry, molecules are assigned to point groups on the basis of the symme-
try elements characteristic of the particular molecule. Each point group has its own set
of symmetry elements and corresponding operations. We work with several of these
groups in more detail in the following sections.

16.2 Assigning Molecules to Point 
Groups

How is the point group to which a molecule belongs determined? The assignment is
made using the logic diagram of Figure 16.2. To illustrate the use of this logic diagram,
we assign NF3, CO2, and to specific point groups. In doing so, it is useful
to first identify the major symmetry elements. After a tentative assignment of a point
group is made based on these symmetry elements, it is necessary to verify that the other
symmetry elements of that group are also present in the molecule. We start at the top of
the diagram and follow the branching points.

NF3 is a pyramidal molecule that has a threefold axis (C3) passing through the N
atom and a point in the plane of the F atoms that is equidistant from all three F atoms.
NF3 has no other rotation axes. The molecule has three mirror planes in which the C3
axis, the N atom, and one F atom lie. These planes are perpendicular to the line connect-
ing the other two fluorine atoms. Because the C3 axis lies in the mirror plane, we con-
clude that NF3 belongs to the C3v group. The pathway through the logic diagram of
Figure 16.2 is shown as a red line.

Carbon dioxide is a linear molecule with an inversion center. These symmetry
characteristics uniquely specify CO2 as belonging to the group. The appears
rather than the subscript n because any rotation about the molecular axis leaves the mol-
ecule unchanged.

is a square planar complex with a C4 axis. It has C2 axes perpendicular to
the C4 axis, but no other Cn axis with . It has mirror planes, one of which is per-
pendicular to the C4 axis. Therefore, this complex belongs to the D4h group. Trace the

n 7 2
Au(Cl4)-

qDqh

Au(Cl4)-

AN(BNCN) = (ANBN)CN
EN = EN -1.

AN-1 = BNAN = BN-1BNBN-1 = BN-1BN = ENBN

role as we will see later. The identity operator has the property that 
where is an arbitrary element of the group.AN

ANEN = ENAN = AN

• The group contains an inverse operator for each element in the group. If is theBN-1
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Linear?

Yes No

Yes NoNo Yes

Yes No

Inversion
center?

Inversion center?Mirror plane
perpendicular
to Cn axis of
largest n?

Yes No

Yes No

Yes No

Yes No

Yes No Yes No

Yes No

Yes No

Yes No Yes No

Yes No

YesNo

YesNo

Inversion
center?

Mirror plane?

Mirror plane?

Mirror plane?

Mirror plane?

More than one rotation axis?

More than one Cn axis, n>2?

D∞h

Cs

C5 axis? Cn axis in mirror plane?

Sn axis?

C4 axis?

C1 Ci

C∞v

Dnh Dnd

Oh OTh Yes No

Cnv Cnh

S2n Cn

TTd

Dn

lh l

Cn axis?

FIGURE 16.2
Logic diagram indicating how molecules are assigned to point groups. The red line indicates
how NF3 is assigned to the C3v point group.

paths through the logic diagram for these molecules to see if you would have made the
same assignments.

These examples illustrate how a given molecule can be assigned to a point group,
but have only utilized a few of the symmetry operations of a given group. A number of
point groups applicable to small molecules are listed in Table 16.2. All symmetry ele-
ments of the group are listed. Note that several groups have different categories or
classes of symmetry elements such as Cn and , which are indicated by single and
double primes. Classes are defined in Section 16.3.

The preceding discussion of the symmetry elements of a group has been of a gener-
al nature. In the following section, we discuss the symmetry elements of the C2v group,
to which water belongs, in greater detail.

s
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16.3 The H2O Molecule and the C2v
Point Group

To gain practice in working with the concepts introduced in the preceding section, we
next consider a specific molecule, express the symmetry operators mathematically, and
show that the symmetry elements form a group. We do so by representing the operators
as matrices and showing the requirements that the elements of any group must meet for
this particular group.

Figure 16.3 shows all the symmetry elements for the water molecule. By conven-
tion, the rotation axis of highest symmetry (principal rotation axis), C2, is oriented

x
y

z

C2 axis

   v mirror
plane

   v� mirror
plane

FIGURE 16.3
The water molecule is shown together
with its symmetry elements. Convince
yourself that the two mirror planes are 
in different classes.

TABLE 16.2 Selected Point Groups and Their Elements

Point Group Symmetry Elements Example Molecule

Cs E, s BFClBr (planar)

C2 E, C2 H2O2

C2v E, C2, , s¿s H2O

C3v E, C3, , 3sC2
3 NF3

Cqv E, , sqCq HCl

C2h E, C2, , is trans-C2H2F2

D2h E, , , is, s¿, s–C2, C¿2, C–2 C2F4

D3h E, C3, , 3C2, S3, , s, 3s¿S2
3C2

3 SO3

D4h E, C4, , , i, S4, , s, 2s¿, 2s–S3
4C2, 2C¿2, 2C–2C3

4 XeF4

D6h E, , , , i, ,
, s, 3s¿, 3s–S6, S5

6

S3, S
2
3C2, 3C¿2, 3C–2C3, C

2
3C6, C5

6 C6H6 (benzene)

hDq E, , , , , , is¿qsqC2SqCq H2, CO2

Td E, 4C3, , 3C2, 3S4, , 6s3S3
44C2

3 CH4

Oh E, 4C3, , 6C2, 3C4, 3C2, i, 3S4, ,
, , 6s¿3s4S6, 4S5

6

3S3
44C2

3 SF6
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along the z axis. The C2 axis passes through the O atom. The molecule has two mirror
planes oriented at 90° to one another, and their line of intersection is the C2 axis.
Because the mirror planes contain the principal rotation axis, the symmetry planes are
referred to as vertical planes and designated by the subscript v. Mirror planes perpendi-
cular to the principal rotation axis are referred to as horizontal and are designated by the
subscript h. The molecule lies in the plane designated , and the second mirror plane,
designated , bisects the bond angle. As shown in Example Problem 16.1,
these two mirror planes belong to different classes and, therefore, have different symbols.

H¬O¬Hsv

s¿v

C3

C3

v(3)

v(1)

v(2)

C3
�1

Elements that belong to the same class can be transformed into one another 
by other symmetry operations of the group. For example, the operators

belong to the same class.CNn, CN 2
n, Á , CN n

n,

EXAMPLE PROBLEM 16.1

a. Are the three mirror planes for the NF3 molecule in the same or in different
classes?

b. Are the two mirror planes for H2O in the same or in different classes?

Solution

a. NF3 belongs to the C3v group, which contains the rotation operators

We see that converts , and converts
. Therefore, all three mirror planes belong to the same class.

b. Figure 16.3 shows that neither the nor the operation converts 
Therefore, these two mirror planes are in different classes.

Using the logic diagram of Figure 16.2, we conclude that H2O belongs to the C2v
group. This point group is given the shorthand notation C2v because it has a C2 axis and
vertical mirror planes. The C2v group has four symmetry elements: the identity element,
a C2 rotation axis, and two mutually perpendicular mirror planes. The corresponding
operators are the identity operator .EN  and the operators CN 2, sN , and s¿N

sv to s¿v.ENCN 2

sv112 to sv122
CN 2

3 = 1CN 32-1sv112 to sv132CN 3

and the vertical mirror planes ,
. These operations and elements are illustrated by this figure:sN v122, and sN v132

sN v112CN 3, CN
2
3 = 1CN32-1, and CN 3

3 = EN



16.3 THE H2O MOLECULE AND THE C2v POINT GROUP 401

To understand how these operators act, we must introduce mathematical representa-
tions of the operators and then carry out the operations. To do so, the operators of the C2v
group are represented by matrices, which act on a vector in three-dimensional space.
See the Math Supplement (Appendix A) for an introduction to working with matrices.

Consider the effect of the symmetry operators on an arbitrary vector ,
originating at the intersection of the mirror planes and the C2 axis. The vector is converted
to the vector through the particular symmetry operation. We begin with a
counterclockwise rotation by the angle about the z axis. As Example Problem 16.2 shows,
the transformation of the components of the vector is described by Equation (16.1):

(16.1)

EXAMPLE PROBLEM 16.2

Show that a rotation about the z axis can be represented by the matrix

Show that for a rotation of 180° this matrix takes the form

Solution

The z coordinate is unchanged in a rotation about the z axis, so we need only consider
the vectors in the plane. These equations can be
derived from the figure that follows:

xyr1 = 1x1, y12 and r2 = 1x2, y22

£
-1 0 0

0 -1 0

0 0 1

≥

£
cosu -sinu 0

sinu    cosu 0

0 0 1

≥

£
x2

y2

z2

≥ = £
cosu -sinu 0

sinu    cosu  0 

0 0 1

≥ £
x1

y1

z1

≥

u

1x2, y2, z22
r

r = 1x1, y1, z12
3 * 3

(x2, y2)

(x1, y1)

y

x

Using the identities and 
, x2 and y2 can be expressed in terms of and .

= x1 cos u - y1 sin u

= r cos1-u - a2 = r cos1u + a2 = r cos u cos a - r sin u sin a

= r sin 180° sin1-u - a2 - r cos 180° cos1-u - a2
x2 = -r cos b = -r cos1180°-a - u2

ausinfcos d ; cosf sin d
sin1f ; d2 =cos1f ; d2 = cosfcos d < sinf sind

x2 = -r cos b, y2 = r sin b

x1 = r cos a, y1 = r sin a

u = 180° - a - b
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Using the same procedure, it can be shown that .
The coordinate z is unchanged in the rotation, so that . The three equations

can be expressed in the matrix form

Because , the matrix for 180° rotation around the
z axis takes the form

The effect of the four operators, , , , and on can also be deduced from
Figure 16.4. Convince yourself, using Example Problem 16.1 and Figure 16.4, that the
symmetry operators of the C2v group have the following effect on the vector :

(16.2)

Given these results, the operators , , , and can be described by the following
matrices:

(16.3)

Equation (16.3) gives a formulation of the symmetry operators as matrices. Do
these operators satisfy the requirements listed in Section 16.1 for the corresponding
elements to form a group? We begin answering this question by showing in Example
Problem 16.3 that the successive application of two operators is equivalent to applying
one of the four operators.

EXAMPLE PROBLEM 16.3

Evaluate and . What operation is equivalent to the two sequential 
operations?

Solution

We see that the product of the two operators is another operator of the group.

CN 2CN 2 = £
-1 0 0

0 -1 0

0 0 1

≥ £
-1 0 0

0 -1 0

0 0 1

≥ = £
1 0 0

0 1 0

0 0 1

≥ = EN

CN 2sN v = £
-1 0 0

0 -1 0

0 0 1

≥ £
1 0 0

0 -1 0

0 0 1

≥ = £
-1 0 0

0 1 0

0 0 1

≥ = sN ¿v

CN 2CN 2sN vCN 2

3 * 3

EN : £
1 0 0

0 1 0

0 0 1

≥ CN2: £
-1 0 0

0 -1 0

0 0 1

≥ sN v: £
1 0 0

0 -1 0

0 0 1

≥ sN ¿v: £
-1 0 0

0 1 0

0 0 1

≥

3 * 3
sN ¿

vsN vCN 2EN

EN £
x

y

z

≥ Q £
x

y

z

≥ ,  CN 2£
x

y

z

≥ Q £
-x

-y

z

≥ ,  sN v£
x

y

z

≥ Q £
x

-y

z

≥ ,  sN ¿v£
x

y

z

≥ Q £
-x

y

z

≥

1x, y, z2
rsN ¿

vsN vCN 2EN

£
-1 0 0

0 -1 0

0 0 1

≥

cos1180°2 = -1 and sin1180°2 = 0

£
x2

y2

z2

≥ = £
cos u -sin u 0

sin u cos u 0

0 0 1

≥ £
x1

y1

z1

≥

z2 = z1

y2 = x1 sin u + y1 cos u and

x2 = x1 cos u - y1 sin u

z2 = z1

y2 = x1 sin u + y1 cos u
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By repeating the procedure from Example Problem 16.3 with all possible combina-
tions of operators, Table 16.3 can be generated. This table shows that, as required, the
result of any two successive operations is another of these four symmetry operations.

y

x

y

x

x

E

v

�v

C2

(x, y, z)               (x, y, z) (x, y, z)               (�x, �y, z)

x

y

z

C2 axis

v� mirror plane

   v mirror
plane

v

�v

y y

x
v

�v

(x, y, z)               (�x, y, z) (x, y, z)               (x, �y, z)

v

�v

��v �v

FIGURE 16.4
Schematic of the effect of the four symmetry operations of the C2v group on an arbitrary vector
(x, y, z). The symmetry elements are shown on the left. Because z is unchanged through any of
the operations, it is sufficient to determine the changes in the coordinates through the sym-
metry operations. This is shown on the right side of the figure viewed along the C2 axis. The
wide lines along the x and y axis represent the and mirror planes, respectively. The red
vector is transformed into the green vector in each case.

s¿vsv

xy

TABLE 16.3 Multiplication
Table for Operators of the
C2v Group

Second First Operation

Operation EN CN2 sN v sN ¿v

EN EN CN2 sN v sN ¿v
CN2 CN 2 EN sN ¿v sN v

sN v sN v sN ¿v EN CN 2

sN ¿v sN ¿v sN v CN 2 EN

The table also shows that . Each operator has an inverse
operator in the group, and in this particular case, each operator is its own inverse opera-
tor. The operations are also associative, which can be shown by evaluating an arbitrary
combination of three operators such as . If the operators are
associative, this expression will equal zero. Using the multiplication table to evaluate
the products in parentheses in the following equation, the result is

(16.4)

You can convince yourself that any other combination of three operators will give the
same result. We have now shown that the four symmetry elements characteristic of the
water molecule satisfy the requirements of a group.

In this section, it was useful to express the operators of the C2v group as 
matrices in order to generate the group multiplication table. It turns out that these oper-
ators can be expressed in many different ways. This important topic is discussed in the
following section.

3 * 3

sN v1CN 2sN ¿v2 - 1sN vCN22sN ¿v = sN vsN v - sN ¿vsN ¿v = EN - EN = 0

sN v1CN 2sN ¿v2 - 1sN vCN 22sN ¿v

CN 2CN2 = sN vsN v = sN ¿vsN ¿v = EN
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16.4
Representations of Symmetry
Operators, Bases for Representations,
and the Character Table

The matrices derived in the previous section are called representations of that group,
meaning that the multiplication table of the group can be reproduced with the matrices.
For this group the symmetry operators can be represented by numbers, and these num-
bers obey the multiplication table of a group. How can the operators of the C2v group be
represented by numbers? Surprisingly, each operation can be represented by either the
number or and the multiplication table is still satisfied. As shown later, this is far
from a trivial result. You will show in the end-of-chapter problems that the following
four sets of and , denoted , each satisfy the C2v multiplication table
and, therefore, are individual representations of the C2v group:

≠1 through ≠4-1+1

-1+1

A group has as many irreducible representations as it has classes of symmetry
elements.

Representation E C2 sv sv¿
≠1 1 1 1 1

≠2 1 1 -1 -1

≠3 1 -1 1 -1

≠4 1 -1 -1 1

Other than the trivial set in which the value zero is assigned to all operators, no other set
of numbers satisfies the multiplication table. The fact that a representation of the group
can be constructed using only the numbers and means that matrices are
sufficient to describe all operations of the C2v group. This conclusion can also be
reached by noting that all four matrices derived in the previous section are diag-
onal, meaning that x, y, and z transform independently in Equation (16.2).

It is useful to regard the set of numbers for an individual representation as a row
vector, which we designate for the C2v group. Each group has an infinite
number of different representations. For example, had we considered a Cartesian coor-
dinate system at the position of each atom in water, we could have used matrices
to describe the operators. However, a much smaller number of representations, called
irreducible representations, play a fundamental role in group theory. The irreducible
representations are the matrices of smallest dimension that obey the multiplication table
of the group. We cite the following theorem from group theory:

9 * 9

≠1 through ≠4

3 * 3

1 * 1-1+1

Irreducible representations play a central role in discussing molecular symmetry. We
explore irreducible representations in greater depth in the next section.

Because the C2v group has four classes of symmetry elements, only four different
irreducible representations of this group are possible. This is an important result that we
will return to in Section 16.5. The usefulness of these representations in quantum chemistry
can be seen by considering the effect of symmetry operations on the oxygen AOs in H2O.
Consider the three different 2p atomic orbitals on the oxygen atom shown in Figure 16.5.

How are the three oxygen 2p orbitals transformed under the symmetry operations of
the C2v group? Numbers are assigned to the transformation of the 2p orbitals in the fol-
lowing way. If the sign of each lobe is unchanged by the operation, is assigned to
the transformation. If the sign of each lobe is changed, is assigned to the transfor-
mation. These are the only possible outcomes for the symmetry operations of the C2v
group. We consider the 2pz AO first. Figure 16.5 shows that the sign of each lobe
remains the same after each operation. Therefore, we assign to each operation. For
the 2px AO, the rotation and the reflection change the sign of each lobe, but thesN ¿

vCN 2

+1

-1
+1

sign of each lobe is unchanged after the and operations. Therefore, we assign +1sN vEN

to the and operators and to the and operators. Similarly, for the 2py AO,sN ¿
vCN 2-1sN vEN

we assign to the and operators and to the and operators. Note that ifsN vCN 2-1sN ¿
vEN+1
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FIGURE 16.5
The three p orbitals on the oxygen atom transform differently under the symmetry operations of
the C2v group.

you arrange the numbers and obtained separately for the 2pz, 2px, and 2py
orbitals in the order , , , and , the sequences that we have just derived are iden-
tical to the first, third, and fourth representations for the C2v group.

Because each of the 2pz, 2px, and 2py AOs can be associated with a different represen-
tation, each of these AOs forms a basis for one of the representations. Had we considered
an unoccupied 3dxy AO on the oxygen, we would have found that it forms a basis for the
second representation. In the nomenclature used in group theory, one says that an AO, or
any other function, belongs to a particular representation if it forms a basis for that rep-
resentation. To this point, we have shown that matrices, an appropriate set of the
numbers and , and the AOs of oxygen all form a basis for the C2v point group.

The information on the possible representations discussed can be assembled in a
form known as a character table. Each point group has its unique character table. The
character table for the C2v group is as follows:

-1+1
3 * 3

sN ¿
vsN vCN 2EN
-1+1

E C2 sv sv¿
A1 1 1 1 1 z x2, y2, z2 2pz(O)

A2 1 1 -1 -1 Rz xy 3dxy(O)

B1 1 -1 1 -1 x, Ry xz 2px(O)

B2 1 -1 -1 1 y, Rx yz 2py(O)

Much of the information in this character table was derived in order to make the origin
of the individual entries clear. However, this task is not necessary, because character
tables for point groups in this standard format are widely accessible and are listed in
Appendix C.

The character table is the single most important result of group theory for
chemists. Therefore, the structure and individual entries in the character table are now
discussed in detail. The leftmost column in a character table shows the symbol for each
irreducible representation. By convention, a representation that is symmetric 
with respect to rotation about the principal axis, C2 in this case, is given the symbol A.
A representation that is antisymmetric with respect to rotation about the princi-
pal axis is given the symbol B. The subscript 1 (2) is used for representations that are
symmetric (antisymmetric) with respect to a C2 axis perpendicular to the principal
axis. If such an axis is not an element of the group, the symmetry with respect to a ver-
tical mirror plane, in this case, is used. The representation in which all entries are

is called the totally symmetric representation. Every group has a totally symmet-
ric representation.
+1

sN v

1-12
1+12
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The next section of the table (columns 2 through 5) has an entry for each operation
of the group in each representation. These entries are called characters. The right sec-
tion of the table (columns 6 through 8) shows several of the many possible bases for
each representation. Column 6 shows bases in terms of the three Cartesian coordinates
and rotations about the three axes. Column 8 shows the AOs on the oxygen atom that can
be used as bases for the different representations; note that this column is not usually
shown in character tables. It is shown here because we will work further with this set of
basis functions. The information in this column can be inferred from the previous two
columns as the px, py, and pz AOs transform as x, y, and z, respectively. Similarly, the

AOs transform as their subscript indices. The s AOs are a
basis for A1 because of their spherical symmetry. Next consider columns 6 and 7 in this
section, which have entries based on the x, y, and z coordinates and rotations about the
axes designated Rx, Ry, and Rz. We show later that the Rz rotation and the different coor-
dinate combinations are bases for the indicated representations.

How can it be shown that the indicated functions are bases for the four irreducible
representations? Equation (16.2) shows that the effect of any of the C2v operators on the
components x, y, and z of an arbitrary three-dimensional vector are 
and . Because z does not change sign under any of the operators, all characters for
the representation have the value . Therefore, z is a basis for the A1 representation.
Similarly, because x2, y2, and z2 do not change under any of the operations, these func-
tions are also bases for the A1 representation. Equation (16.2) shows that the product

for and and for and . Therefore, the product xy is a
basis for the A2 representation. Because z does not change sign under any operation, xz
and yz transform as x and y. Therefore, Equation (16.2) shows that the functions x and
xz are bases for the B1 representation, and y and yz are bases for the B2 representation.

Example Problem 16.1 demonstrated that in the operation Rz (C2 in this case),
. Therefore, the product xy is unchanged because 

. This shows that both Rz and xy are bases for the A2 representation.
We will not prove that Rx and Ry are bases for the B1 and B2 representations, but the pro-
cedure to do so is the same as for the other representations. As we saw in Section 16.3,
the rotation operators are three-dimensional matrices. Therefore, in contrast to the coor-
dinate bases, the rotation operators are bases for reducible representations, because
their dimension is greater than one.

As shown earlier, all irreducible representations of the C2v group are one dimen-
sional. However, it is useful to consider reducible representations for this group such as
Rx, Ry, and Rz, all of which are three dimensional, to visualize how individual operators
act on an arbitrary vector. Some of the groups discussed in this chapter also have irre-
ducible representations whose dimensionality is two or three. Therefore, before we
begin to work on problems of chemical interest using character tables, it is necessary to
discuss the dimensionality of irreducible representations.

16.5 The Dimension of a Representation
The bases for the different representations of the C2v group include either x or y or z, but
not a linear combination of two coordinates such as . This is the case because
under any transformation , is only a function of x as opposed
to being a function of x and y or x and z or x, y, and z. Similar statements can be made
for and . As a consequence, all of the matrices that describe the operators for the
C2v group have a diagonal form, as shown in Equation (16.3).

The matrix generated by two successive operations of diagonal matrices, which is
denoted by , is also a diagonal matrix whose elements are given by

(16.5)

The dimension of a representation is defined as the size of the matrix used to represent
the symmetry operations. As discussed earlier, the matrices of Equation (16.5) form a
three-dimensional representation of the C2v group. However, because all of the matrices are

RN ‡
ii = RN ¿

iiRN
–
ii

RN ‡ = RN ¿RN –

z¿y¿

x¿1x, y, z2: 1x¿, y¿, z¿2 x + y

1-x21-y2 = xy
xy:x: -x, y: -y, and z: z

s¿N

v
sN vxy: -xyCN 2ENxy: xy

+1
z: z

x: ;x, y: ;y,

dz2 , dxy , dyz , dx2-y2 , and dxy
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diagonal, the matrix operations can be reduced to three matrix operations,
which consist of the numbers and . Therefore, the three-dimensional reducible rep-
resentation of Equation (16.5) can be reduced to three one-dimensional representations.

Point groups can also have two-dimensional and three-dimensional irreducible
representations. If for a representation, then the basis will be
(x, y) and the dimension of that irreducible representation is two. At least one of the
matrices representing the operators will have the form

in which entries a through e are in general nonzero. If 
the dimension of the representation is three and at least one of the operators

will have the form

in which entries a through j are in general nonzero.
How does one know how many irreducible representations a group has and what

their dimension is? The following result of group theory is used to answer this question:

£
a b c

d e f

g h j

≥

f1x, y, z2 x¿ and>or y¿ and>or z¿ =

£
a b 0

c d 0

0 0 e

≥

x¿ and>or y¿ = f1x, y2

-1+1
1 * 13 * 3

Because every point group contains the one-dimensional totally symmetric represen-
tation, at least one of the . We apply this formula to the C2v representations. This
group has four elements, and all belong to different classes. Therefore, there are four
different representations. The only set of nonzero integers that satisfies the equation

(16.7)

is . We conclude that all of the irreducible representations of
the C2v group are one dimensional. Because a matrix cannot be reduced to one of
lower dimensionality, all one-dimensional representations are irreducible.

For the C2v group, the number of irreducible representations is equal to the number
of elements and classes. More generally, the number of irreducible representations is
equal to the number of classes for any group. Recall that all operators generated from a
single symmetry element and successive applications of other operators of the group
belong to the same class. For example, consider NF3, which belongs to the C3v group.
As shown in Example Problem 16.1, the rotations of the C3v group belong to
the same class. The three mirror planes also belong to the same class because thesv

C3 and C2
3

1 * 1
d1 = d2 = d3 = d4 = 1

d2
1 + d2

2 + d2
3 + d2

4 = 4

dj = 1

The dimension of the different irreducible representations, dj, and the order of the
group, h, defined as the number of symmetry elements in the group, are related by
the equation

(16.6)

This sum is over the irreducible representations of the group.

a
N

j=1
d2

j = h

second and third planes are generated from the first by applying . Therefore,
the C3v group has six elements, but only three classes.

We next show that the C3v point group has one representation that is not one dimension-
al. Using the result from Example Problem 16.2, the matrix that describes a 120° rotation is

(16.8)

The other operators in this group have a diagonal form. The operator does not have aCN 3

CN 3 = £
cos u -sin u 0

sin u cos u 0

0 0 1

≥ = £
-1>2 -13>2 0

13>2     -1>2 0

0 0 1

≥

CN 3 and CN 2
3

diagonal form, and acting on the vector mixes x and y. However, dependsz¿1x, y, z2CN 3
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Schematic depiction of the transformation
of coordinates effected by reflection
through a mirror plane, , containing the
z axis. (a) The coordinate system for
which the y axis is rotated by u relative to
the mirror plane is reflected through the
mirror plane (purple line). This operation
generates the coordinate system.
(b) The geometry used to derive 
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only on z and not on x or y. Therefore, it is possible to reduce the matrix operator
for into separate irreducible and matrix operators. We conclude that
the C3v point group contains a two-dimensional irreducible representation. Example
Problem 16.4 shows how to determine the number and dimension of the remaining irre-
ducible representations for the C3v group.

EXAMPLE PROBLEM 16.4

The C3v group has the elements , and three mirror planes. How many
different irreducible representations does this group have, and what is the dimensional-
ity of each irreducible representation?

Solution

The order of the group is the number of elements, so . The number of
representations is the number of classes. As discussed earlier, belong 
to one class, and the same is true of the three reflections. Although the group 
has six elements, it has only three classes. Therefore, the group has three irreducible
representations. The equation is solved to find the dimension of 
the representations, and one of the values must be 1. The only possible solution is

. We see that the C3v group contains one two-dimensional
representation and two one-dimensional representations.

To gain practice in working with irreducible representations of more than one
dimension, the matrices for the individual operations that describe the two-dimensional
representation in the C3v group are derived next. Example Problem 16.2 shows how to
set up the matrices for rotation operators. Figure 16.6 shows how the coordinate
system is transformed by a mirror plane, .

The values and are related to x and y by

(16.9)

Equation (16.9) is used to evaluate the matrices for the mirror planes 
at , and Equation (16.1) is used to evaluate the matrices for2 * 20, p>3, and 2p>3 sN , sN ¿, and s–N2 * 2

 y¿ = -x sin 2u + y cos 2u

 x¿ = -x cos 2u - y sin 2u

y¿x¿
s

x–y

l1 = l2 = 1 and l3 = 2

l2
1 + l2

2 + l2
3 = 6

sv

CN 3 and CN 2
3

h = 6

svCN 3, and CN 2
3EN

1 * 12 * 2CN 3

3 * 3

. The resulting operators for the two-dimensional representation of the C3v
group are shown in Equation (16.10). Remember that all belong to the
one class, as do .

(16.10)

How is the character table for the C3v group constructed? In particular, how are charac-
ters assigned to the two-dimensional representation, which is generally called E? (Do not

 CN 2
3 = ¢ cos14p>32 -sin14p>32

sin14p>32 cos14p>32≤ = ¢     -1>2 13>2
-13>2 -1>2 ≤

 CN3 = ¢ cos12p>32 -sin12p>32
sin12p>32 cos12p>32≤ = ¢ -1>2 -13>2

13>2     -1>2≤

 sN – = ¢ -cos14p>32 -sin14p>32
-sin14p>32 cos14p>32≤ = ¢        1>2 -13>2

-13>2     -1>2≤

 sN ¿ = ¢ -cos12p>32 -sin12p>32
-sin12p>32 cos12p>32≤ = ¢     1>2 13>2

13>2 -1>2 ≤

 sN = ¢ -cos 0 -sin 0

-sin 0 cos 0
≤ = ¢ -1 0

0 1
≤

 EN = ¢1 0

0 1
≤

CN 3 and CN 2
3

sN , sN ¿, and sN –
CN 3 and CN 2

3
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? a b c
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confuse this symbol for a two-dimensional representation with the operator .) The
following theorem of group theory is used:

EN

Using this rule, we see that the character of is 0, and the character ofsN , sN ¿, and sN –

How can the values for the characters a, b, and c be obtained? We use another result
from group theory:

EXAMPLE PROBLEM 16.5

Determine the unknown coefficients a, b, and c for the preceding partially completed
character table and assign the appropriate symbol to the irreducible representation.

Solution

From Example Problem 16.4, we know that the unknown representation is one dimen-
sional. From Equation (16.11), we know that the for different values of the
index i are orthogonal. Therefore,

We could also have taken the sum over classes and multiplied each term by the num-
ber of elements in the class, because all elements in a class have the same character.
We also know that because it is the character of the identity operator. Solving
the equations gives the results of and . Because the character of C3 is

, and the character of is , the unknown representation is designated A2.
Table 16.4 shows the completed C3v character table.

Note that the two-dimensional basis functions occur in pairs. You will be asked to
verify that z and Rz are bases for the A1 and A2 representations, respectively, in the 
end-of-chapter problems.

-1sv+1
c = -1b = 1

a = 1

 X? # XE = 2a - b - b = 2a - 2b = 0

 X? # XA1
= a + b + b + c + c + c = a + 2b + 3c = 0

xi1RN j2

The character for an operator in a representation of dimension higher than one is
given by the sum of the diagonal elements of the matrix.

If the set of characters associated with a representation of the group is viewed as
a vector, , with one component for each element of the group, the
following condition holds:

(16.11)

or, equivalently, . The sum is over all elements
of the group.

≠i≠k = Xi1RN j2 # Xk1RN j2 = hdik

≠i≠k = a
h

j=1
xi1RN j2xk1RN j2 = hdik , where dik = 0 if i Z k and 1 if i = k

≠i = xi1RN j2

is . As expected, the character of all elements in a class is the same. Recall
also that every group has a totally symmetric representation in which all characters are 

Because the C3v group contains three classes, it must have three irreducible repre-
sentations. We enter the information that we obtained earlier for A1 and E in the follow-
ing partially completed character table. All of the symmetry operators of a class are
grouped together in a character table. For example, in the following listing, the elements

are listed as 2C3 to make the notation compact.C3 and C2
3

+1.
-1CN 3 and CN 2

3
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16.6
Using the C2v Representations
to Construct Molecular Orbitals 
for H2O

A number of aspects of group theory have been discussed in the preceding sections. In
particular, the structure of character tables, which are the most important result of group
theory for chemists, has been explained. We now illustrate the usefulness of character
tables to solve a problem of chemical interest, namely, the construction of MOs that
incorporate the symmetry of a molecule. Why is this necessary?

To answer this question, consider the relationship among the total energy operator,
the molecular wave functions , and the symmetry of the molecule. A molecule thatcj

C2 C2

C2 C2

2s 2px

2pz2py

FIGURE 16.7
Depiction of the oxygen atomic orbitals
that will be considered as contributors to
the MO formed using 

.fH1sB

f+ = fH1sA +

TABLE 16.4 The C3v Character Table

E 2C3 3sv

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x, y), (Rx, Ry) 1x2 - y2, xy2, 1xz, yz2

has undergone one of its symmetry operations, , is indistinguishable from the originalAN

molecule. Therefore, must also be unchanged under this and any other symmetry
operation of the group, because the total energy of the molecule is the same in any of
its equivalent positions. If this is the case, then belongs to the totally symmetric
representation.

Because the order of applying and to the molecule is immaterial, it follows thatANHN

HN

HN

and commute. Therefore, as discussed in Chapter 6, eigenfunctions of can beHNANHN

found that are simultaneously eigenfunctions of and of all other operators of the group.
These symmetry-adapted MOs are of central importance in quantum chemistry. In this
section, we illustrate how to generate symmetry-adapted MOs from AOs. Not all AOs
contribute to a particular symmetry-adapted MO. Invoking the symmetry of a molecule
results in a set of MOs consisting of fewer AOs than would have been obtained had the
molecular symmetry been neglected.

Consider a specific example. Which of the AOs on oxygen contribute to the symmetry-
adapted MOs on water? We begin by asking which of the four oxygen valence AOs can
be combined with the hydrogen AOs to form symmetry-adapted MOs. All possible
combinations are shown in Figure 16.7. In order to take the symmetry of the water mol-
ecule into account, the hydrogen AOs will appear as in-phase or out of phase combina-
tions. Consider first the in-phase combination, .

The overlap integral between the orbital is defined by

(16.12)

Only the oxygen AOs that have a nonzero overlap with the hydrogen AOs are useful in
forming chemical bonds. Because is just a number, it cannot change upon applying
any of the operators of the C2v group to the integral. In other words, belongs to the
A1 representation. The same must be true of the integrand and, therefore, the integrand
must also belong to the A1 representation. If belongs to one representation and fjf+

S+j

S+j

S+j = Lf
*
+fj dt

f+ and an oxygen AO fjS+j

f+ = fH1sA + fH1sB

AN

belongs to another, what can be said about the symmetry of the direct product ?
A result of group theory is used to answer this question:

f+ #  fj

The character for an operator ( , , , or for the C2v group) of the direct
product of two representations is given by

(16.13)xproduct1RN 2 = xi1RN 2xj1RN 2
sN ¿vsN vCN 2ENRN
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For example, if belongs to A2, and belongs to B2, product can be calculated from
the terms as follows:

(16.14)

Looking at the C2v character table, we can see that the direct product A2 B2
belongs to B1.

How is this result useful in deciding which of the oxygen AOs contribute to the
symmetry-adapted water MOs? Because the integrand must belong to the A1
representation, each character of the representation of must be equal to one. We
conclude that

(16.15)a
h

k=1

x+1RNk2xj1RNk2 = h

f*
+fj

#
 = 11 -1 1 -12

 ≠product = XA2
# XB2

= [1 * 1 1 * 1-12 1-12 * 1-12 1-12 * 1]

xproduct

≠fjf+

However, according to Equation (16.11), this equation is never satisfied if the two repre-
sentations to which the orbitals belong denoted and j are different. We conclude that the
overlap integral between two combinations of AOs is nonzero only if the combinations 
belong to the same representation.

Using this result, which of the oxygen AOs in Figure 16.7 form symmetry-adapted
MOs with the combination ? The orbital is unchanged by any
of the symmetry operators, so it must belong to the A1 representation. The 2s AO on oxy-
gen is spherically symmetrical, so that it transforms as . As the C2v charac-
ter table shows, the 2s AO belongs to the A1 representation, as does the 2pz orbital.
By contrast, the 2px and 2py AOs on oxygen belong to the B1 and B2 representations,
respectively. Therefore, only the oxygen 2s and 2pz AOs belong to the same irreducible 
representation as , and only these AOs will contribute to MOs involving . The combi-
nations of the 2s AO and 2pz oxygen AO with result in the 1a1, the
2a1, and the 3a1, MOs for water shown in Figure 16.8. We now have an explanation for the
nomenclature introduced in Figure 16.7 for the symmetry-adapted water MOs. The a1
refers to the particular irreducible representation of the C2v group, and the integer 1, 2, ...,
refers to the lowest, next lowest, ..., energy MO belonging to the A1 representation.

EXAMPLE PROBLEM 16.6

Which of the oxygen AOs shown in Figure 16.7 will participate in forming symmetry-
adapted water MOs with the antisymmetric combination of hydrogen AOs defined by

?

Solution

The antisymmetric combination of the H AOs is given by 
shown in the margin. By considering the C2v operations shown in Figure 16.4, convince
yourself that the characters for the different operations are and

: . Therefore, belongs to the B2 representation. Of the valence oxygen AOs,
only the 2py orbital belongs to the B2 representation. Therefore, the only symmetry
adapted MOs formed from and the 2s and 2p orbitals that have a nonzero overlap
among the AOs are the MOs denoted 1b2 and 2b2, which are shown in Figure 16.8. 
This nomenclature indicates that they are the lowest and next lowest energy MOs of B2
symmetry.

We now make an important generalization of the result just obtained. The same
symmetry considerations used for the overlap integral apply in evaluating integrals of the
type . As shown in Chapters 12 and 13, such integrals appear when-Hab = 1c*

aHN cb dt

f-

f-+1s¿N v

CN 2:-1, sN v:-1,EN :+1,

f- = fH1sA - fH1sB,

f- = fH1sA - fH1sB

f+ = fH1sA + fH1sB

f+f+

x2 + y2 + z2

f+f+ = fH1sA + fH1sB

+

�

� �

1a1

�

�

��

�

��

�

2a1

3a1

��

��   H1sA �   H1sB

1b2

� �

� �

2b2

� �

��

ever the total energy is calculated. The value of Hab is zero unless belongs toc*
aHN cb

the A1 representation. Because belongs to the A1 representation, will be zero un-
less and belong to the same representation (not necessarily the A1 representation).cbca

HabHN

Only then will the integrand contain the A1 representation. This important resultc*
aHN cb

FIGURE 16.8
Water molecular orbitals formed from the
symmetric and anti-symmetric combina-
tions of the hydrogen AOs are shown.
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is of great help in evaluating entries in a secular determinant such as those encountered
in Chapter 12.

In the preceding discussion, symmetry-adapted MOs for H2O were generated from
AOs that belong to the different irreducible representations of the C2v group in an ad
hoc manner. In Supplemental Section 16.9, we discuss a powerful method, called the
projection operator method, that allows the symmetry-adapted MOs to be constructed
for arbitrary molecules.

16.7 The Symmetries of the Normal Modes
of Vibration of Molecules

The vibrational motions of individual atoms in a molecule might appear to be chaotic
and independent of one another. However, the selection rules for infrared vibrational
and Raman spectroscopy are characteristic of the normal modes of a molecule, which
can be described in the following way. In a normal mode vibration, each atom is dis-
placed from its equilibrium position by a vector that can but need not lie along the bond
direction (for example in a bending mode). The directions and magnitudes of the dis-
placements are not the same for all atoms. The following can be said of the motion of
the atoms in the normal modes:

• During a vibrational period, the center of mass of the molecule remains fixed and
all atoms in the molecule undergo in-phase periodic motion about their equilibrium
positions.

• All atoms in a molecule reach their minimum and maximum amplitudes at the
same time.

• These collective motions are called normal modes, and the frequencies are called
the normal mode frequencies.

• The frequencies measured in vibrational spectroscopy are the normal mode
frequencies.

• All normal modes are independent in the harmonic approximation, meaning that
excitation of one normal mode does not transfer vibrational energy into another
normal mode.

• Any seemingly random motion of the atoms in a molecule can be expressed as a
linear combination of the normal modes of that molecule.

How many normal modes does a molecule have? An isolated atom has three transla-
tional degrees of freedom; therefore, a molecule consisting of n atoms has 3n degrees of
freedom. Three of these are translations of the molecule and are not of interest here. A non-
linear molecule with n atoms has three degrees of rotational freedom, and the remaining

internal degrees of freedom correspond to normal modes of vibration. Because a
linear molecule has only two degrees of rotational freedom, it has normal modes of
vibration. For a diatomic molecule, there is only one vibrational mode, and the motion of
the atoms is directed along the bond. In the harmonic approximation,

where x is the displacement from the equilibrium position in the center of mass coordi-
nates. For a molecule with N vibrational degrees of freedom, the potential energy is
given by

(16.16)

where the qi designates the individual normal mode displacements. Classical mechanics
allows us to find a new set of vibrational coordinates that simplify
Equation (16.16) to the form

(16.17)V1Q1, Q2, Á , QN2 =
1

2
 a

N

i=1
¢ 02V

0Qi
2 ≤Qi

2

Qj1q1, q2, Á , qN2

V1q1, q2, Á , qN2 =
1

2
 a

N

i=1
 a

N

j=1
 
02V

0qi0qj
 qiqj

V1x2 =
1

2
kx2 =

1

2
 ¢d2V

dx2 ≤x2

3n - 5
3n - 6
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The are known as the normal coordinates of the molecule. This
transformation has significant advantages in describing vibrational motion. Because
there are no cross terms of the type in the potential energy, the vibrational modes
are independent in the harmonic approximation, meaning that

(16.18)

Because of the transformation to normal coordinates, each of the normal modes
contributes independently to the energy, and the vibrational motions of different
normal modes are not coupled, consistent with the properties in the first paragraph
of this section. Finding the normal modes is a nontrivial but straightforward exer-
cise that can be done most easily using numerical methods. The calculated normal
modes of H2O are shown in Figure 16.9. The arrows show the displacement of each
atom at a given time. After half the vibrational period, each arrow has the same
magnitude, but the direction is opposite to that shown in the figure. We do not carry
out a normal mode calculation, but focus instead on the symmetry properties of the
normal modes.

Just as the 2p atomic orbitals on the oxygen atom belong to individual representa-
tions of the C2v group, the normal modes of a molecule belong to individual representa-
tions. The next task is to identify the symmetry of the three different normal modes of
H2O. To do so, a coordinate system is set up at each atom and a matrix representation
formed that is based on the nine x, y, and z coordinates of the atoms in the molecule.
Figure 16.10 illustrates the geometry under consideration.

Consider the C2 operation. By visualizing the motion of the coordinate systems on
the three atoms, convince yourself that the individual coordinates are transformed as
follows under this operation:

(16.19)©

x1

y1

z1

x2

y2

z2

x3

y3

z3

π Q ©

-x3

-y3
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-y1
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π

 Evibrational = a
N

i=1
anj +

1

2
bhnj

 cvibrational1Q1, Q2, Á , QN2 = c11Q12c21Q22Á cN1QN2 and

QiQj

Qj1q1, q2, Á , qN2

1595 cm�1 3657 cm�1 3756 cm�1

FIGURE 16.9
The normal modes of H2O are depicted, with the vectors indicating atomic displacements
(not to scale). From left to right, the modes correspond to a bond bending, an 
symmetric stretch, and an asymmetric stretch. The experimentally observed 
frequencies are indicated.

O¬H
O¬H

FIGURE 16.10
Transformations of coordinate systems
on the atom in water. Each is consid-
ered to be a separate entity under sym-
metry operations of the C2v group.
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You can also convince yourself that the matrix that describes this transformation is

(16.20)

Note that this matrix has a simple structure. It consists of identical subunits
shown in boxes. More importantly, the diagonal elements of the subunits lie along the
diagonal of the matrix only if the atom is not shifted to another position through
the transformation. Because H atoms 1 and 3 exchange places under the C2 operation,
they do not contribute to the character of the operator, which is the sum of the diagonal
elements of the matrix. This result leads to the following guidelines for calculating the
character of each element of the group in the matrix representation:

• If the atom remains in the same position under the transformation, and the sign of x,
y, or z is not changed, the value is associated with each unchanged coordinate.

• If the sign of x, y, or z is changed, the value is associated with each changed
coordinate.

• If the coordinate system is exchanged with the position of another coordinate sys-
tem, the value zero is associated with each of the three coordinates.

• Recall that only the diagonal elements contribute to the character. Therefore, only
atoms that are not shifted by an operation contribute to the character.

This procedure is applied to the water molecule. Because nothing changes under the E
operation, the character of is 9. Under the rotation of 180°, the two H atoms are inter-EN

-1

+1

9 * 9

9 * 9

3 * 3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-1 0 0

0 -1 0

0 0 1

0 0 0

0 0 0

0 0 0

-1 0 0

0 -1 0

0 0 1

0 0 0

0 0 0

0 0 0

CN 2 =

-1 0 0

0 -1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

9 * 9

© π

changed, so that none of the six coordinates contributes to the character of the operator.CN 2

On the oxygen atom, . Therefore, the character of is .
For the operation, the H atoms are again interchanged so that they do not contribute to
the character of . On the oxygen atom, . Therefore, the char-x: x, y: -y, and z: zsN v

sN v

-1CN 2x: -x, y: -y, and z: z

acter of is . For the operation, on the H atoms, , sox: -x, y: y, and z: zsN ¿
v+1sN v

that the two H atoms contribute 2 to the character. On the oxygen atom,
so that the O atom contributes to the character. There-

fore, the total character of is . These considerations show that the reducible represen-
tation formed using the coordinate systems on the three atoms as a basis is

(16.21)

This is a reducible representation because it is a nine-dimensional representation,
whereas all irreducible representations of the C2v group are one dimensional. To use
this result to characterize the symmetry of the normal modes of water, it is necessary to
decompose this reducible representation into the irreducible representations that it
contains, as follows:

 9  -1  1  3

 E  C2  sv  s¿v

+3sN ¿v
sN ¿v+1x: -x, y: y, and z: z

sN ¿
v

The general method for decomposing a reducible representation into its irre-
ducible representations utilizes the vector properties of the representations intro-
duced in Section 16.3. Take the scalar product between the reducible representation

and each of the irreducible representations in turn, and divide
by the order of the group. The result of this procedure is a positive integer ni that

≠i1RN j2≠reducible1RN j2
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We calculate the contribution of the individual irreducible representations to this
reducible presentation using Equation (16.22):

 nA1
=

1

h a
h

j=1

xA11RN j2xreducible1RN j2 = 1 * 9 + 1 * 1-12 + 1 * 1 + 1 * 3

4
= 3

is the number of times each representation appears in the irreducible representation.
This statement is expressed by the equation

(16.22) for i = 1, 2, Á , N

 ni =
1

h
≠i≠reducible =

1

h
Xi1RN j2 # Xreducible1RN j2 =

1

h a
h

j=1

xi1RN j2xreducible1RNj2,

 nB2
=

1

h a
h

j=1

xB21RN j2xreducible1RN j2 = 1 * 9 + 1-12 * 1-12 + 1-12 * 1 + 1 * 3

4
= 3

 nB1
=

1

h a
h

j=1

xB11RN j2xreducible1RN j2 =
1 * 9 + 1-12 * 1-12 + 1 * 1 + 1-12 * 3

4
= 2

 nA2
=

1

h a
h

j=1

xA21RN j2xreducible1RN j2 = 1 * 9 + 1 * 1-12 + 1-12 * 1 + 1-12 * 3

4
= 1

(16.23)

This calculation shows that . However, not all of
these representations describe vibrational normal modes. The translation of the mole-
cules along the x, y, and z axes as well as their rotation about the same axes must be sep-
arated out to obtain the representations of the vibrational normal modes. This can be
done by subtracting the representations belonging to x, y, and z as well as to Rx, Ry, and
Rz. Representations for these degrees of freedom can be determined from the C2v char-
acter table. Eliminating them gives the representations of the three vibrational modes as

(16.24)

This calculation has shown that the symmetry of the H2O molecule dictates the symme-
try of the normal modes. Of the three normal modes, one belongs to B2 and two belong
to A1. The normal mode calculations outlined here give the modes shown in Figure 16.9.

How can these modes be assigned to different irreducible representations of the C2v
group? The arrows on each atom in Figure 16.9 show the direction and magnitude of the
displacement at a given time. All displacement vectors are reversed after half a period.
If the set of displacement vectors is to be a basis for a representation, they must trans-
form as the characters of the particular representation. Consider first the nor-
mal mode. The direction and magnitude of each vector is unaffected by each of the
operations E, C2, , and . Therefore, this mode must belong to the A1 representa-
tion. The same is true of the normal mode. By contrast, the displacement
vector on the O atom is reversed upon carrying out the C2 operation for the 
normal mode. Because the H atoms are interchanged, their displacement vectors do not
contribute to the character of the C2 operation, which is . Therefore, this mode must
belong to either the B1 or B2 representations. Which of these is appropriate can be
decided by examining the effect of the operation on the individual displacement
vectors. Because the vectors lie in the mirror plane, they are unchanged in the reflec-
tion, corresponding to a character of . Therefore, the normal mode belongs to
the B2 representation.

The water molecule is small enough that the procedure described can be carried out
without a great deal of effort. For larger molecules, the effort is significantly greater, but
the normal modes and the irreducible representations to which they belong can be cal-
culated using widely available quantum chemistry software. Many of these programs
allow an animation of the vibration to be displayed, which is helpful in assigning the

3756-cm-1+1

s¿v

-1

3756-cm-1
3657-cm-1

s¿vsv

1595-cm-1

 = 2A1 + B2

 ≠reducible = 3A1 + A2 + 2B1 + 3B2 - 1B1 + B2 + A12 - 1B2 + B1 + A22

≠reducible = 3A1 + A2 + 2B1 + 3B2
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dominant motion to a stretch or a bend. Normal mode animations for several molecules
are explored in the Web-based problems of Chapter 8 and in the computational prob-
lems for Chapter 13.

16.8 Selection Rules and Infrared
versus Raman Activity

We next show that the selection rule for infrared absorption spectroscopy, 
can be derived using group theory. More importantly, we show that for allowed transi-
tions, as calculated in the previous section must contain the A1 representation.
As discussed in Section 8.3, for most molecules, only the vibrational state is
populated to a significant extent at 300 K. The molecule can be excited to a state with

through the absorption of infrared energy if the dipole matrix element satisfies
the condition given by

(16.25)

We have modified Equation (8.6), which is applicable to a diatomic molecule, to the
more general case of a polyatomic molecule and expressed the position variable in
terms of the normal coordinate. To simplify the mathematics, the electric field is orient-
ed along the normal coordinate. From Chapter 7, are given by

(16.26)

and the dipole moment operator is given by

where is the static dipole moment. Higher terms are neglected in the harmonic
approximation.

For what final states will Equation (16.25) for the transition dipole moment be
satisfied? Section 16.6 demonstrated that for the integral to be nonzero, the integrand

must belong to the A1 representation. The C2v character tablec*
m1Qj2m1Qj2c01Qj2

cf

me

mN 1Qj2 = me + B a 0m
0Qj
bQj + Á R

 c21Qj2 = ¢ aj

4p
≤1>412aj Q2

j - 12e-(aj Qj
2)/2

 c11Qj2 = ¢4a3
j

p
≤1>4

Qj e-(aj Qj
2)/2

 c01Qj2 = ¢aj

p
≤1>4

e-(ajQj
2)/2

c0, c1, and c2

 where j = one of 1, 2, Á , 3N - 6

 mm;0
Qj

= a 0m
0Qj
bLc

*
m1Qj2mN 1Qj2c01Qj2dQj Z 0,

nj 7 0

n = 0
≠reducible

¢n = +1,

shows that is a basis for this representation, so the integrand must be a function of Q2
jQ2

j
only. We know that is an even function of Qj, , and that is anmc01Qj2 = c01-Qj2c0

odd function of Qj, . Under what condition will the integrand be anm1Qj2 = -m1-Qj2
even function of ? It will be an even function only if is an odd function of Qj,c*

mQj

. Because of this restriction, is an allowed transition,
but is not allowed in the dipole approximation. This is the same con-
clusion that was reached in Section 8.4, using a different line of reasoning.

The preceding discussion addressed the selection rule, but did not address the
symmetry requirements for the normal modes that satisfy Equation (16.25). Because

n = 0 :  n = 2
n = 0: n = 1c*

m1Qj2 = f1Qj2

and transforms as x, y, or z and transform as x2,
y2, or z2, must transform as x, y, or z, in order for to trans-
form as x2, y2, or z2. This gives us the requirement that a normal mode is infrared active;
it must have x, y, or z as a basis. For H2O, this means that the normal modes must belong
to A1, B1, or B2. Because, as shown in Equation (16.24), the three normal modes belong

c*
m1Qj2m1Qj2c01Qj2cm1Qj2

c01Qj2 = f1Q2
j2mN 1Qj2 = f1Qj2



Therefore, each of the T2 representations has three degenerate vibrational frequencies.
For this reason, only two vibrational frequencies are observed in the infrared absorption
spectrum of CH4 shown in Figure 8.10. However, each frequency corresponds to three
distinct but degenerate normal modes.

S U P P L E M E N T A L

16.9
Using the Projection Operator Method
to Generate MOs That Are Bases for
Irreducible Representations

In Section 16.6, symmetry-adapted MOs for H2O were generated from AOs that belong
to the different irreducible representations of the C2v group in an ad hoc manner. We
next discuss a powerful method, called the projection operator method, that allows
the same end to be achieved for arbitrary molecules. The method is applied to ethene,
which belongs to the D2h point group.

The symmetry elements for ethene and the D2h character table are shown in
Table 16.5 and Figure 16.11. Aside from the identity element, the group contains three
C2 axes and three mirror planes, all of which form separate classes, as well as an inver-
sion center. Irreducible representations in groups with an inversion center have the
subscript g or u denoting that they are symmetric or antisymmetric with
respect to the inversion center.

1-121+12
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to A1 and B2, we conclude that all are infrared active. As discussed in more advanced
texts, normal modes of a molecule are Raman active if the bases of the representation
to which the normal mode belongs are the x2, y2, z2, xy, yz, or xz functions. By looking at
the C2v character table, we can see that all three normal modes of water are Raman
active. It is not generally the case that all normal modes are both infrared and Raman
active for a molecule.

Based on this discussion, recall the infrared absorption spectrum for CH4 shown in
Figure 8.10. Although normal modes, only two peaks are
observed. Methane belongs to the Td point group, and an analysis equivalent to that
which led to Equation (16.24) shows that

(16.27)

The dimensions of the representations are one for A1, two for E, and three for T2. There-
fore, all nine normal modes are accounted for. An examination of the character table for
the Td group shows that only the T2 representations have x, y, or z as a basis. Therefore,
only six of the nine normal modes of methane are infrared active. Why are only two
peaks observed in the spectrum? The following result of group theory is used:

≠reducible = A1 + E + 2T2

CH4 has 3n - 6 = 9

All normal modes that belong to a particular representation have the same frequency.

TABLE 16.5 The Character Table for the D2h Point Group

E C21z2 C21y2 C21x2 i s1xy2 s1xz2 s1yz2
Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy

B2g 1 -1 1 -1 1 -1 1 -1 Ry xz

B3g 1 -1 -1 1 1 -1 -1 1 Rx yz

Au 1 1 1 1 -1 -1 -1 -1

B1u 1 1 -1 -1 -1 -1 1 1 z

B2u 1 -1 1 -1 -1 1 -1 1 y

B3u 1 -1 -1 1 -1 1 1 -1 x
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Next consider how the individual H atoms are affected by the symmetry operations
of the group. Convince yourself that the result of applying a symmetry operation to the
molecule shifts the atom HA as listed here:

(16.28)

Next consider the atom and follow the same procedure used earlier for the 2s, 2px,
2py, and 2pz AOs. Convince yourself that the results shown in Table 16.6 are correct.
These results are used to generate symmetry-adapted MOs for ethene using the method
described here:

Ca

EN CN 21z2 CN 21y2 CN 21x2
HA: HA HA: HD HA: HB HA: HC

iN sN 1xy2 sN 1xz2 sN 1yz2
HA: HC HA: HB HA: HD HA: HA

The use of the projection operator method is illustrated in the following two
example problems.

C2(x )

C2(y)

C2(z )

HD HC

HA

C C

xy

yz

xz

i

HB

FIGURE 16.11
The symmetry elements of the D2h group
are shown using ethene as an example.
The symbol at the intersection of the C2
axes indicates the inversion center. The
molecule lies in the plane.yz

The following procedure, based on the projection operator method, can be used
to generate a symmetry-adapted MO from AOs that forms a basis for a given
representation. The recipe consists of the following steps:

• Choose an AO on an atom and determine into which AO it is transformed by
each symmetry operator of the group.

• Multiply the AO of the transformed species by the character of the operator in
the representation of interest for each symmetry operator.

• The resulting linear combination of these AOs forms a MO that is a basis for that
representation.

TABLE 16.6 Effect of the Symmetry Operations on the Carbon Atom Orbitals

EN CN 21z2 CN 21y2 CN 21x2 iN SN 1xy2 SN 1xz2 SN 1yz2
2s Ca: Ca Ca: Ca Ca: Cb Ca: Cb Ca: Cb Ca: Cb Ca: Ca Ca: Ca

2px Ca: Ca Ca: -Ca Ca: -Cb Ca: Cb Ca: -Cb Ca: Cb Ca: Ca Ca: -Ca
2py Ca: Ca Ca: -Ca Ca: Cb Ca: -Cb Ca: -Cb Ca: Cb Ca: -Ca Ca: Ca

2pz Ca: Ca Ca: Ca Ca: -Cb Ca: -Cb Ca: -Cb Ca: -Cb Ca: Ca Ca: Ca
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EXAMPLE PROBLEM 16.7

Form a linear combination of the H atomic orbitals in ethene that is a basis for the B1u
representation. Show that there is no combination of the H atomic orbitals in ethene
that is a basis for the B3u representation.

Solution

We take as the initial orbital, and multiply the AO into which is transformed
by the character of the B1u representation for each operator and sum these terms. The
result is

This molecular wave function has not yet been normalized. Pictorially, this combina-
tion looks like this:

 = 21fHA
- fHB

- fHC
+ fHD

2
 = fHA

+ fHD
- fHB

- fHC
- fHC

- fHB
+ fHD

+ fHA

 - 1 * fHB
+ 1 * fHD

+ 1 * fHA

 cH
B1u

= 1 * fHA
+ 1 * fHD

- 1 * fHB
- 1 * fHC

- 1 * fHC

fHA
fHA

� �

� �

Follow the same procedure to generate the linear combination for the B3u
representation:

This result shows that there is no linear combination of the H AOs that is a basis for B3u.

EXAMPLE PROBLEM 16.8

Use the same procedure as in Example Problem 16.7 to form a linear combination of
the C atomic orbitals in ethene that is a basis for the B1u representation.

Solution

Follow the same procedure outlined in Example Problem 16.7 and apply it to each of
the carbon valence AOs:

This result shows that the appropriate linear combination of carbon AOs to construct
the symmetry-adapted MO that is a basis for the B1u representation is

cC
B1u

= c11fC2sa
- fC2sb

2 + c21fC2pza
+ fC2pzb

2

 + 1 * fCa + 1 * fCa = 4fCa + 4fCb

 2pz:  1 * fCa + 1 * fCa + 1 * fCb + 1 * fCb + 1 * fCb + 1 * fCb

 - 1 * fCa + 1 * fCa = 0

 2py:  1 * fCa - 1 * fCa - 1 * fCb + 1 * fCb + 1 * fCb - 1 * fCb

 + 1 * fCa - 1 * fCa = 0

 2px: 1 * fCa - 1 * fCa + 1 * fCb - 1 * fCb + 1 * fCb - 1 * fCb

 + 1 * fCa + 1 * fCa = 4fCa - 4fCb

 2s:  1 * fCa + 1 * fCa - 1 * fCb - 1 * fCb - 1 * fCb - 1 * fCb

cH
B3u

= fHA
- fHD

- fHB
+ fHC

- fHC
+ fHB

+ fHD
- fHA

= 0
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Combining the results of the last two example problems, we find that the symmetry-
adapted MO that includes AOs on all atoms and is also a representation of the B1u
representation is

An image of this molecular orbital is shown in Figure 16.12.
The values of the AO coefficients in the MOs cannot be obtained from symmetry

considerations, but we can determine which coefficients are zero, equal in magnitude,
and equal or opposite in sign. For the case of interest, c1 through c3 must be determined
in a variational calculation in which the total energy of the molecule is minimized. Note
that without taking symmetry into consideration, 12 coefficients would have been
required to specify the wave function (one AO on each H, and four AOs on each C). We
see that forming the symmetry-adapted MO significantly reduces the number of coeffi-
cients required in the calculation from 12 to just 3. This example shows the simplifica-
tion of the molecular wave function that is obtained by forming symmetry-adapted MOs.

cB1u = c11fC2sa
- fC2sb

2 + c21fC2pza
+ fC2pzb

2 + c31fHA
- fHB

- fHC
+ fHD

2

FIGURE 16.12
The ethene MO that is a basis of the B1u
representation.
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basis function

belongs to a particular representation

character

character table

class

dimension of a representation
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Conceptual Problems

Q16.1 Can a molecule with an inversion center have a
dipole moment? Give an example of a molecule with this
symmetry element and explain your reasoning.

Q16.2 Which of the three normal modes of H2O in
Figure 16.9 is best described as a bending mode? Does the
bond angle remain unchanged in any of the modes? Which
requires less energy, bond bending or bond stretching?

Q16.3 Why does the list of elements for the D6h group in
Table 16.2 not list the elements ?

Q16.4 Why does the list of elements for the D6h group in
Table 16.2 not list the elements ?

Q16.5 How are quantum mechanical calculations in the
LCAO-MO model simplified through the construction of
symmetry-adapted MOs?

Q16.6 Some symmetry operations can be carried out physi-
cally using a ball-and-stick model of a molecule without 
disassembly and reassembly and others can only be imagined.
Give two examples of each category.

S2
6, S3

6, and S4
6

C2
6, C3

6, and C4
6

Q16.7 Why does the C3v group have a two-dimensional
irreducible representation? Answer this question by referring
to the form of the matrices that represent the operations of 
the group.

Q16.8 Can NH3 have molecular orbitals that are triply
degenerate in energy?

Q16.9 Can a molecule with an inversion center be chiral?
Give an example of a molecule with this symmetry element
and explain your reasoning.

Q16.10 Why are all one-dimensional representations
irreducible?

Q16.11 What is the difference between a symmetry element
and a symmetry operation?

Q16.12 Can a molecule with D2h symmetry have a dipole
moment? Give an example of a molecule with this symmetry
and explain your reasoning.
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Q16.13 Can a molecule with C3h symmetry have a dipole
moment? Give an example of a molecule with this symmetry
and explain your reasoning.

Q16.14 Explain why only two peaks are observed in the
infrared spectrum of methane although six of the nine normal
modes are infrared active.

Q16.15 Explain why the overlap integral between two com-
binations of AOs is nonzero only if the combinations belong
to the same representation.

Numerical Problems

Problem numbers in red indicate that the solution to the
problem is given in the Student’s Solutions Manual.

P16.1 Show that a molecule with an inversion center
implies the presence of an S2 element.

P16.2 Use the matrices for the C2v group in Equation
(16.3) to verify the group multiplication table for the follow-
ing successive operations:

a. b. c.

P16.3 Use the logic diagram of Figure 16.2 to determine the
point group for the planar molecule trans .
Indicate your decision-making process as was done in the 
text for NH3.

P16.4 The D3 group has the following classes: , 2 , and
3 . How many irreducible representations does this group
have and what is the dimensionality of each?

P16.5 Benzene, C6H6, belongs to the D6h group. The
reducible representation for the vibrational modes is

a. How many vibrational modes does benzene have?
b. How many of these modes are infrared active and to which

representation do they belong?
c. Which of the infrared active modes are degenerate in

energy and what is the degeneracy for each?
d. How many of these modes are Raman active and to which

representation do they belong?
e. Which of the Raman active modes are degenerate in

energy and what is the degeneracy for each?
f. Which of the infrared modes are also Raman active?

P16.6 NH3 belongs to the C3v group. The reducible repre-
sentation for the vibrational modes is 
a. How many vibrational modes does NH3 have?
b. How many of these modes are infrared active and to which

representation do they belong?

c. Are any of the infrared active modes degenerate in energy?
d. How many of these modes are Raman active and to which

representation do they belong?
e. Are any of the Raman active modes degenerate in energy?
f. How many modes are both infrared and Raman active?

P16.7 XeF4 belongs to the D4h point group with the fol-
lowing symmetry elements: E, C4, , , i, S4, , S2

4C2, C¿2, C–2C2
4

≠reducible = 2A1 + 2E

 + 2B2u + E1g + 3E1u + 4E2g + 2E2u

 ≠reducible = 2A1g + A2g + A2u + 2B1u + 2B2g

C2

C3E

-HBrC“CBrH

CN 2CN 2sN vCN 2sN vsN ¿v

3 * 3

Make a drawing similar to Figure 16.1
showing these elements.

P16.8 Methane belongs to the Td group. The reducible
representation for the vibrational modes is 

.

a. Show that the A1 and T2 representations are orthogonal to
each other and to the other representations in the table.

b. What is the symmetry of each of the vibrational modes
that gives rise to Raman activity? Are any of the Raman
active modes degenerate in energy?

P16.9 Use the matrices for the C2v group in Equation
(16.2) to verify the associative property for the following
successive operations:

a.
b.

P16.10 Use the logic diagram of Figure 16.2 to determine
the point group for allene. Indicate your decision-making
process as was done in the text for NH3.

P16.11 To determine the symmetry of the normal modes of
methane, an analysis of the transformation of individual coor-
dinate systems on the five atoms is carried out, as shown in
Figure 16.10 for H2O. After the rotational and translational
representations are removed, the following reducible repre-
sentation is obtained for the vibrational modes:xreducible

1sN v EN2CN 2 = sN v1ENCN 22
sN v1sN ¿

v CN 22 = 1sN v sN ¿
v2CN 2

3 * 3

A1 + E + 2T2

≠reducible =

s, 2s¿, and 2s¿¿.

EN 8CN 3 3CN 2 6CN 4 6sdN

9 0 1 -1 3

Using the character table for the Td group, verify that
.

P16.12 Use the logic diagram of Figure 16.2 to determine
the point group for the planar molecule cis– .
Indicate your decision-making process as was done in the text
for NH3.

P16.13 Decompose the following reducible representation
into irreducible representations of the C2v group:

HBrC“CCIH

≠reducible = A1 + E + 2T2

P16.14 Show that z is a basis for the A1 representation and
that Rz is a basis for the A2 representation of the C3v group.

P16.15 Use the logic diagram of Figure 16.2 to determine
the point group for PCl5. Indicate your decision-making
process as was done in the text for NH3.

EN CN 2 sN v sN ¿v
4 0 0 0



P16.16 Use the method illustrated in Example Problem 16.2
to generate a matrix for the following:
a. operator
b. operator

c. operator

P16.17 Consider the function integrated
over a square region in the plane centered at the origin.
a. Draw contours of constant f values (positive and negative)

in the plane and decide whether the integral can have a
nonzero value.

b. Use the information that the square has D4h symmetry
and determine which representation the integrand belongs
to. Decide whether the integral can have a nonzero value
from this information.

P16.18 Use the logic diagram of Figure 16.2 to determine
the point group for CH3Cl. Indicate your decision-making
process as was done in the text for NH3.

P16.19 CH4 belongs to the Td point group with the following
symmetry elements: E, 4C3, , 3C2, 3S4, , and 6 . Make
drawings similar to Figure 16.1 showing these elements.

P16.20 Show that the presence of a C2 axis and a mirror
plane perpendicular to the rotation axis imply the presence of
a center of inversion.

s3S3
44C2

3

xy
f1x, y2 = xy

iN
SN4

CN 6

3 * 3
P16.21 Decompose the following reducible representation
into irreducible representations of the C3v group:

P16.22 Assume that a central atom in a molecule has lig-
ands with C4v symmetry. Decide by evaluating the appropri-
ate transition dipole element if the transition px pz is
allowed with the electric field in the z direction.

P16.23 Show that a molecule with a Cn axis cannot have a
dipole moment perpendicular to the axis.

P16.24 The C4v group has the following classes: , 2 ,
, 2 and 2 . How many irreducible representations

does this group have and what is the dimensionality of 
each? refers to a dihedral mirror plane. For example in
the molecule BrF5, the mirror planes each contain two of
the equatorial F atoms, whereas the dihedral mirror planes
do not contain the equatorial F atoms.

P16.25 Use the matrices of Equation (16.10) to
derive the multiplication table for the C3v group.

2 * 2

sv

sd

sdsvC2

C4E

:

422 CHAPTER 16 Molecular Symmetry

EN 2CN 3 3sN v

5 2 -1



17.1 Intrinsic Nuclear Angular
Momentum and Magnetic
Moment

17.2 The Energy of Nuclei of
Nonzero Nuclear Spin in
a Magnetic Field

17.3 The Chemical Shift for an
Isolated Atom

17.4 The Chemical Shift for an
Atom Embedded in a
Molecule

17.5 Electronegativity of
Neighboring Groups and
Chemical Shifts

17.6 Magnetic Fields of
Neighboring Groups and
Chemical Shifts

17.7 Multiplet Splitting of NMR
Peaks Arises through
Spin–Spin Coupling

17.8 Multiplet Splitting When
More Than Two Spins
Interact

17.9 Peak Widths in NMR
Spectroscopy
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17.14 (Supplemental) Two-
Dimensional NMR

Nuclear Magnetic
Resonance

Spectroscopy

Although the nuclear magnetic moment interacts only weakly with an

external magnetic field, this interaction provides a very sensitive probe of

the local electron distribution in a molecule. A nuclear magnetic resonance

(NMR) spectrum can distinguish between inequivalent nuclei such as 1H at

different sites in a molecule. Individual spins, such as nearby 1H nuclei, can

couple to generate a multiplet splitting of NMR peaks. This splitting can be

used to determine the structure of small organic molecules. NMR can also

be used as a nondestructive imaging technique that is widely used in med-

icine and in the study of materials. Pulsed NMR and 2D Fourier transform

techniques provide a powerful combination to determine the structure of

large molecules of biological interest.

17.1 Intrinsic Nuclear Angular Momentum
and Magnetic Moment

Recall that the electron has an intrinsic magnetic moment. Some, but not all, nuclei
also have an intrinsic magnetic moment. Because the nuclear magnetic moment of
the proton is about 2000 times weaker than that of the electron magnetic moment, it
has an insignificant effect on the one-electron energy levels in the hydrogen atom. The
nuclear magnetic moment does not generate chemical effects in that the reactivity of a
molecule containing 12C with zero nuclear spin is no different than the reactivity of a
molecule containing 13C with nuclear spin . However, the nuclear magnetic
moment gives rise to an important spectroscopy. As shown later, a nucleus with a
nonzero nuclear spin is an extremely sensitive probe of the local electron distribution
within a molecule. Because of this sensitivity, nuclear magnetic resonance spec-
troscopy is arguably the single most important spectroscopic technique used by
chemists today. NMR spectroscopy can be used to determine the structure of complex
biomolecules, to map out the electron distribution in molecules, to study the kinetics

1>2
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424 CHAPTER 17 Nuclear Magnetic Resonance Spectroscopy

of chemical transformations, and to nondestructively image internal organs in the
human body. What is the basis for this spectroscopy?

Whereas electrons only have the spin quantum number , nuclear spins can take
on integral multiples of . For example, 12C and 16O have spin 0, 1H and 19F have
spin , and 2H and 14N have spin 1. The nuclear magnetic moment and the nuclear
angular momentum I are proportional to one another according to

(17.1)

In the SI system of units, has the units of ampere , and
I has the units of joule second. In these equations, the quantity ,bN = eU>2mproton

1meter22 = joule 1tesla2-1M

M = gN
eU

2mproton
I = gNbNI = gUI

M1>2 1>2 1>2

TABLE 17.1 Parameters for Spin-Active Nuclei

Nucleus Isotopic
Abundance (%)

Spin Nuclear
g Factor gN

Magnetogyric Ratio
G/107 (rad T�1 s�1)

1H 99.985 1>2 5.5854 26.75

13C 1.108 1>2 1.4042 6.73

31P 100 1>2 2.2610 10.84

2H 0.015 1 0.8574 4.11

14N 99.63 1 0.4036 1.93

Because mproton is greater than me by about a factor of 2000, the nuclear magnetic
moment is much smaller than the electron magnetic moment for the same value of I.
The nuclear g factor gN, which is a dimensionless number, is characteristic of a
particular nucleus. Values of these quantities for the nuclei most commonly used in
NMR spectroscopy are shown in Table 17.1. Because the abundantly occurring
nuclei 12C and 16O have no nuclear magnetic moment, they do not have a signature
in an NMR experiment. In the rest of this chapter, we focus our attention on 1H.
However, this formalism can be applied to other spin-active nuclei in a straightfor-
ward manner.

As we learned when considering the electron spin, the quantum mechanical opera-
tors for orbital and spin angular momentum have the same commutation relations. The
same relations also apply to nuclear spin. Therefore, we can immediately conclude that
we can only know the magnitude of the nuclear angular momentum and one of its com-
ponents simultaneously. The other two components remain unknown. As for electron
spin, the nuclear angular momentum is quantized in units of . For 1H, which has the
spin quantum number , the operator has two eigenfunctions that are usually
called and . They correspond to , respectively.
These functions and satisfy the relations

(17.2)

Note that by convention the same nomenclature is used for the electron spin and nuclear
spin eigenfunctions. Although this presents a possibility for confusion, it emphasizes
the fact that both sets of eigenfunctions have the same relationship to their angular
momentum operators.

IN2b =
1

2
a1

2
+ 1bU2b; INzb = -

1

2
Ub

IN2a =
1

2
a1

2
+ 1bU2a; INza = +

1

2
Ua

ba

Iz = +11>22U and Iz = -11>22Uba

IN21>2 U>2

which has the value is called the nuclear magneton and
is called the magnetogyric ratio. Just as for the orbital angular

momentum (see Chapter 7), the z component of the intrinsic nuclear angular momen-
tum can take on the values with , where .ƒ I ƒ = U1I1I + 12-I … mz … ImzU

g = gNbN>U
J T-1,5.0507866 * 10-27
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FIGURE 17.2
(a) Precession of an individual nuclear
spin about the magnetic field direction for
an spin. (b) The magnetization vector

resulting from summing the individual
spin magnetic moments (yellow cones) is
oriented parallel to the magnetic field. It
has no transverse component.
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FIGURE 17.1
Energy of a nuclear spin of quantum
number as a function of the 
magnetic field.
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17.2 The Energy of Nuclei of Nonzero
Nuclear Spin in a Magnetic Field

Classically, a magnetic moment or dipole can have any orientation in a magnetic field
, and its energy in a particular orientation relative to the field (which we choose to lie

along the z direction) is given by

(17.3)

However, we know that Iz for an atom of nuclear spin like 1H can only have two val-
ues. Additionally, the magnetic moment of a single spin cannot be oriented parallel to
the quantization axis because the components of the angular momentum operator do not
commute (see Section 17.4). Therefore, the only allowed energy values for spin are

(17.4)

Although only two discrete energy levels are possible, the energy of these levels is a
continuous function of the magnetic field, as shown in Figure 17.1.

Equation (17.4) shows that the two orientations of the magnetic moment have different
potential energies. Additionally, a magnetic moment that is not parallel to the magnetic
field experiences a force. For a classical magnetic moment, the torque is given by

(17.5)

The torque is perpendicular to the plane containing and and, therefore, leads to a
movement of on the surface of a cone about the magnetic field direction. This motion
is called precession and is analogous to the motion of a spinning top in a gravitational
field. The precession of individual spins is shown in Figure 17.2. In NMR spectroscopy,
one deals with a finite volume that contains many individual spins. Therefore, it is use-
ful to define the macroscopic magnetic moment , which is the vector sum of the
individual magnetic moments . Whereas classical mechanics is not appro-
priate for describing individual nuclear magnetic moments, it is useful for describing
the behavior of . In Figure 17.2, all the individual yellow cones have the same
magnitude for the z component, but their transverse components are randomly oriented
in the plane. Therefore, in a macroscopic sample containing on the order of
Avogadro’s number of nuclear spins, the transverse component of is zero. We con-
clude that lies on the z axis, which corresponds to the field direction.M

M
xy

MiM

M = g iMi

M

M

MB0

Ω = M * B0

E = - a ; 1

2
bgNbNB0 = - a ; 1

2
bgB0

1>2

1>2
E = -M # B0 = -gB0mzU
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The frequency with which an individual magnetic moment precesses about the
magnetic field direction is given by

(17.6)

and is called the Larmor frequency. The Larmor frequency increases linearly with the
magnetic field and has characteristic values for different nuclei. For instance, 1H has a
resonance frequency of 500 MHz at a field of approximately 12 T.

In NMR spectroscopy, as in any spectroscopy, a transition must be induced between
two different energy levels so that the absorption or emission of the electromagnetic energy
that occurs can be detected. As we saw earlier, a spin system has only two levels, and
their separation increases linearly with B0. As shown in Example Problem 17.1, the energy
separation of these two levels is very small compared to kT. This makes the energy absorp-
tion difficult to detect, because the levels are nearly equally populated. Therefore, a major
focus within the technology supporting NMR spectroscopy has been the development of
very high magnetic fields to increase the energy separation of these two levels. Currently,
by means of superconducting magnets, fields of up to approximately 21.1 T can be gener-
ated. This is a factor of nearly 106 higher than the Earth’s magnetic field.

EXAMPLE PROBLEM 17.1

a. Calculate the two possible energies of the 1H nuclear spin in a uniform magnetic
field of 5.50 T.

b. Calculate the energy absorbed in making a transition from the to the 
state. If a transition is made between these levels by the absorption of electro-
magnetic radiation, what region of the spectrum is used?

c. Calculate the relative populations of these two states in equilibrium at 300. K.

Solution

a. The two energies are given by

b. The energy difference is given by

This is in the range of frequencies called radio frequencies.

c. The relative populations of the two states are given by

From this result, we see that the populations of the two states are the same to within a
few parts per million. Note that observing the appropriate rules for significant figures,
we would obtain a ratio of 1.00.

na - nb
1

2
1nb + na2

L
11 - 0.9999632 na

na
= 3.7 * 10-5

 
nb
na

= exp¢ - Eb - Ea
kBT

≤ = exp¢ -2 * 7.76 * 10-26 J

1.381 * 10-23 J K-1 * 300. K
≤ = 0.999963

 n =
¢ E

h
=

1.55 * 10-25

6.626 * 10-34 = 2.34 * 108 s-1

 = 1.55 * 10-25 J

 ¢ E = 217.76 * 10-26 J2

= ;7.76 * 10-26 J

= ;
1

2
* 5.5854 * 5.051 * 10-27 J>T * 5.50 T

E = ;
1

2
gNbNB0

ba¢E

1>2

n =
1

2p
gB0 or v = 2pn = gB0
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The solution to part (c) of Example Problem 17.1 shows that because
. This result has important consequences for implementing

NMR spectroscopy. As we learned in Chapter 8, if a system with only two energy lev-
els is exposed to radiation of frequency , and if , the rate of
upward transitions is nearly equal to the rate of downward transitions. Therefore, only a
very small fraction of the nuclear spins contributes to the NMR signal. More generally,
the energy absorbed is proportional to the product of and . Both of
these quantities increase as the magnetic field B0 increases, and this is a major reason
for carrying out NMR experiments at high magnetic fields.

The energy level diagram of Figure 17.1 indicates that under the condition

(17.7)

energy can be absorbed by a sample containing atoms with a nonzero nuclear spin.
How can transitions be induced? As Figure 17.2 shows, the net magnetization

induced by the static field is parallel to the field. Inducing transitions is equivalent to
rotating away from the direction of . The torque acting on is ,
where is the radiofrequency field inducing the transitions. To obtain the maximum
effect, the time-dependent electromagnetic field should lie in a plane perpendicular
to the static field . Equation (17.7) can be satisfied either by tuning the monochro-
matic radiofrequency input to the resonance value at a constant magnetic field, or vice
versa. As we discuss in Supplemental Sections 17.12 through 17.14, modern NMR
spectroscopy uses neither of these methods; instead it utilizes radiofrequency pulse
techniques.

If no more information than that outlined in the preceding paragraphs could be
obtained with this technique, NMR spectroscopy would simply be an expensive tool for
quantitatively analyzing the elemental composition of compounds. However, two impor-
tant aspects of this technique make it very useful for obtaining additional chemical
information at the molecular level. The first of these is that the magnetic field in
Equation (17.7) is not the applied external field, but rather the local field. As we will see,
the local field is influenced by the electron distribution on the atom of interest as well as
by the electron distribution on nearby atoms. This difference between the external and
induced magnetic fields is the origin of the chemical shift. The H atoms in methane and
chloroform have a different Larmor frequency because of this chemical shift. The origin
of the chemical shift is discussed in Sections 17.3 through 17.6. The second important
aspect is that individual magnetic dipoles interact with one another. This leads to a split-
ting of the energy levels of a two-spin system and the appearance of multiplet spectra in
NMR. As discussed in Sections 17.7 and 17.8, the multiplet structure of a NMR reso-
nance absorption gives direct structural information about the molecule.

17.3 The Chemical Shift for an 
Isolated Atom

When an atom is placed in a magnetic field, a circulation current is induced in the elec-
tron charge around the nucleus that generates a secondary magnetic field. The direction
of the induced magnetic field at the position of the nucleus of interest opposes the exter-
nal field; this phenomenon is referred to as a diamagnetic response. The origin of this
response is shown in Figure 17.3. At distances from the center of the distribution that
are large compared to an atomic diameter, the field is the same as that of a magnetic
dipole. The z component of the induced magnetic field is given by

(17.8)

In Equation (17.8), is the vacuum permeability, is the induced magnetic moment,
and and r define the coordinates of the observation point relative to the center of 
the charge distribution. Note that the induced field falls off rapidly with distance.
u

Mm0

Bz =
m0

4p

ƒM ƒ
r3 13 cos2u - 12

B0

Brf

Brf

Ω = M * BrfMB0M
B0

n0 =
Eb - Ea

h
=

gNbNB0

2p
=
gB0

2p
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Depending on whether , Bz will add to or subtract from, the
external applied magnetic field at the point . As we will see later, the angular
dependence of Bz is important in averaging out the induced magnetic field of freely
tumbling molecules in a solution.

For a diamagnetic response, the induced field at the nucleus of interest is opposite in
direction and is linearly proportional to the external field in magnitude. Therefore, we
can write , which defines the shielding constant . The total field at
the nucleus is given by the sum of the external and induced fields,

(17.9)

and the resonance frequency taking the shielding into account is given by

(17.10)

Because for a diamagnetic response, the resonance frequency of a nucleus in an
atom is lower than would be expected for the bare nucleus. The frequency shift is given by

(17.11)

which shows that the electron density around the nucleus reduces the resonance fre-
quency of the nuclear spin. This effect is the basis for the chemical shift in NMR. The
shielding constant increases with the electron density around the nucleus and, there-
fore, with the atomic number. Although 1H is the most utilized nuclear probe in NMR,
it has the smallest shielding constant of all atoms because it has only one electron orbit-
ing around the nucleus. By comparison, for 13C and 31P are a factor of 15 and
54 greater, respectively.

17.4 The Chemical Shift for an Atom
Embedded in a Molecule

We now consider the effect of neighboring atoms in a molecule on the chemical shift of
a 1H atom. As we have seen, the frequency shift for an atom depends linearly on the
shielding constant . Because depends on the electron density around the nuclear
spin of interest, it will change as neighboring atoms or groups either withdraw or
increase electron density from the hydrogen atom of interest. This leads to a shift in
frequency that makes NMR a sensitive probe of the chemical environment around a
nucleus with nonzero nuclear spin. For 1H, is typically in the range of to ,10-610-5s
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2p
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FIGURE 17.3
The shaded spherical volume represents a
negatively charged classical continuous
charge distribution. When placed in a
magnetic field, the distribution will circu-
late as indicated by the horizontal orbit,
viewed from the perspective of classical
electromagnetic theory. The motion will
induce a magnetic field at the center of
the distribution that opposes the external
field. This classical picture is not strictly
applicable at the atomic level, but the out-
come is the same as a rigorous quantum
mechanical treatment.
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so that the change in the resonance frequency due to the chemical shift is quite small. It
is convenient to define a dimensionless quantity to characterize this frequency shift,
with defined relative to a reference compound by

(17.12)

For 1H NMR, tetramethylsilane, (CH3)4Si, is usually used as a reference compound.
Defining the chemical shift in this way has the advantage that is independent of the
frequency, so that all measurements using spectrometers with different magnetic fields
will give the same value of .

Figure 17.4 illustrates the observed ranges of for hydrogen atoms in different
types of chemical compounds. The figure shows that the chemical shift for the OH
group in alcohols is quite different than the chemical shift for H atoms in a methyl
group. It also shows that the range in observed chemical shifts for a class of compounds
can be quite large, as is seen for the aromatic alcohols. How can these chemical shifts be
understood?

Although a quantitative understanding of these shifts requires the consideration of
many factors, two factors are responsible for the major part of the chemical shift: the
electronegativity of the neighboring group and the induced magnetic field of the neigh-
boring group at the position of the nucleus of interest. We discuss each of these effects
in the next two sections.

17.5 Electronegativity of Neighboring
Groups and Chemical Shifts

Rather than consider individual atoms near the nuclear spin of interest, we consider
groups of atoms such as or . If a neighboring group is more elec-
tronegative than hydrogen, it will withdraw electron density from the region around the
1H nucleus. Therefore, the nucleus is less shielded, and the NMR resonance frequency
appears at a larger value of . For example, the chemical shift for 1H in the methyl
halides follows the sequence . The range of this
effect is limited to about three or four bond lengths as can be shown by considering the
chemical shifts in 1-chlorobutane. In this molecule, for the 1H on the CH2 group
closest to the Cl is almost 3 ppm larger than the 1H on the terminal CH3 group, which
has nearly the same as in propane.

As Figure 17.4 shows, the chemical shifts for different classes of molecules are
strongly correlated with their electron-withdrawing ability. Carboxyl groups are very
effective in withdrawing charge from around the 1H nucleus; therefore, the chemical

d

d
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shift is large and positive. Aldehydes, alcohols, and amines are somewhat less effective
in withdrawing electron charge. Aromatic rings are somewhat more effective than dou-
ble and triple bonds in withdrawing charge. A methyl group attached to an electron-rich
atom such as Li or Al will have a negative chemical shift, indicating that the 1H nucleus
is more shielded than in (CH3)4Si. However, the spread in chemical shifts for any of
these classes of compounds can be quite large, and the ranges for different classes over-
lap. The spread and overlap arise because of the induced magnetic field of neighboring
groups. This topic is discussed in the next section.

17.6Magnetic Fields of Neighboring
Groups and Chemical Shifts

The magnetic field at a 1H nucleus is a superposition of the external field, the local field in-
duced by the diamagnetic response of the electrons around the 1H nucleus, and the local in-
duced magnetic fields from neighboring atoms or groups. The value of is small for the H
atom because an isolated H atom has only one electron; therefore, the magnetic field at a
1H nucleus in a molecules is often dominated by the local induced magnetic fields from
neighboring atoms or groups. We focus on neighboring groups rather than on individual
neighboring atoms, because groups can have a high diamagnetic or paramagnetic response.
The stronger the magnetic field induced by a diamagnetic or paramagnetic response in a
group, the greater the effect it will have at the neighboring 1H nucleus under consideration.
It is helpful to think of the neighboring group as a magnetic dipole whose strength and
direction are determined by the magnitude and sign of its shielding constant . Groups
containing delocalized electrons such as aromatic groups, carbonyl, and other groups con-
taining multiple bonds give rise to large values of . Aromatic rings generate a large 
value because the delocalized electrons can give rise to a ring current, as illustrated in
Figure 17.5a, just as a current is induced in a macroscopic wire loop by a time-dependent
magnetic field. This model of the ring current predicts that the chemical shift of the interi-
or and exterior1H atoms attached to an aromatic system should be in the opposite direction.
In fact, for an exterior 1H of 18-annulene is and that for an interior 1H is .

An aromatic ring has a strong magnetic anisotropy. A sizable ring current is
induced when the magnetic field is perpendicular to the plane of the ring, but the current
is negligible when the magnetic field lies in the plane of the ring. This is true of many
neighboring groups; the magnitude of depends on the orientation of the group rela-
tive to the field.

Although we have considered individual molecules, the NMR signal of a solution
sample is generated by the large number of molecules contained in the sampling vol-
ume. Therefore, the observed is an average over all possible orientations of the mole-
cule, , where applies to a particular orientation. In a
gas or a solution, the molecules in the sample have all possible orientations with respect
to the magnetic field. To determine how this random orientation affects the spectrum,
we must ask if the shielding or deshielding of a 1H by a neighboring group depends on
the orientation of the molecule relative to the field.

Consider the induced magnetic field of a neighboring group at the 1H of interest.
Because the direction of the induced magnetic field is linked to the external field, rather
than to the molecular axis, it retains its orientation relative to the field as the molecule
tumbles in a gas or a solution. For the case of an isotropic neighboring group, is
obtained by averaging the induced magnetic field given by Equation (17.8) over all pos-
sible angles. Because the induced magnetic field for an isotropic neighboring group is
independent of , can be taken out of the integral, leading to

(17.13)

Equation (17.13) shows that as a result of the tumbling, unless the neighbor-
ing group has a magnetic anisotropy. In this case, depends on and , and 
must remain inside the integral.
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FIGURE 17.5
(a) The induced magnetic field generated
by a circulating ring current in benzene.
Note that in the plane of the molecule, the
induced field is in the same direction as
the external field outside the ring, and in
the opposite direction inside the ring. 
(b) 18-Annulene provides a confirmation
of this model, because has the opposite
sign for interior and exterior 1H.
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Frequency

FIGURE 17.6
Simulated NMR spectrum showing the intensity (vertical axis) as a function of frequency for
ethanol. The top panel shows the multiplet structure at room temperature. The lower panel
shows the multiplet structure observed at lower temperature in acid-free water. The different
portions of the spectrum are not to scale, but have the relative areas discussed in the text.
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If the neighboring groups are magnetically isotropic and the molecule is tumbling freely,
the NMR spectrum of a sample in solution is greatly simplified because . For a
solid in which tumbling cannot occur, there is another way to eliminate dipolar interactions
from neighboring groups. This is done by orienting the sample in the static magnetic field,
choosing the angle at which goes to zero. Solid-state NMR spectra and the
technique of magic angle spinning are discussed in Section 17.10.

This and the previous section have provided a brief introduction to the origin of the
chemical shift in NMR spectroscopy. For 1H, the range of observed values for among
different chemical compounds is about 10 ppm. For nuclei in atoms that can exhibit
both paramagnetic and diamagnetic behavior, can vary over a much wider range. For
example, for 19F can vary by 1000 ppm for different chemical compounds. Vast
libraries of 1H NMR spectra for different compounds have been assembled and provide
chemists with a valuable tool for identifying chemical compounds on the basis of chem-
ical shifts in their NMR spectra.

17.7Multiplet Splitting of NMR Peaks
Arises through Spin–Spin Coupling

What might one expect the spectrum of a molecule of ethanol, with three different types
of hydrogens, to look like? A good guess is that each group of chemically equivalent
protons resonates in a separate frequency range, one corresponding to the methyl group,
another to the methylene group, and the third to the OH group. The OH proton is most
strongly deshielded (largest ) because it is directly bound to the electronegative
oxygen atom. It is found near 5 ppm. Because the methylene group is closer to the elec-
tronegative OH group, the protons are more deshielded and appear at larger values of 
(near 3.5 ppm) than the methyl protons, which are found near 1 ppm. Furthermore, we
expect that the areas of the peaks have the ratio because the
NMR signal is proportional to the number of spins. A simulated NMR spectrum for
ethanol is shown in Figure 17.6.

CH3:CH2:OH = 3 :2 :1

d

d

d

d

d

8Bz9u = 54.74°

saverage = 0
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A very important feature that has not been discussed yet is shown in Figure 17.6: the
individual peaks are split into multiplets. At low temperature and in the absence of
acidic protons, the OH proton resonance is a triplet, whereas the CH3 proton resonance
is a triplet and the CH2 resonance is an octet. At higher temperature, a change in the
NMR spectrum is observed. The OH proton resonance is a singlet, the CH3 proton res-
onance is a triplet, and the CH2 resonance is a quartet. How can this splitting be under-
stood? The higher temperature spectrum is the result of rapid transfer of the OH proton
between ethanol and water, as discussed later in Section 17.9. For now, we turn our 
attention to the origin of multiplet splitting.

Multiplets arise as a result of spin–spin interactions among different nuclei. We
first consider the case of two distinguishable noninteracting spins such as the 1H nuclei
of the CH3 and CH2 groups in ethanol. We give these spins the labels 1 and 2 and sub-
sequently introduce the interaction. The spin energy operator for the noninteracting
spins is

(17.14)

and the eigenfunctions of this operator are products of the eigenfunctions of the individ-
ual operators :

(17.15)

We solve the Schrödinger equation for the corresponding eigenvalues, which are as fol-
lows (see Example Problem 17.2):

(17.16)

We have assumed that .

EXAMPLE PROBLEM 17.2

Show that the total nuclear energy eigenvalue for the wave function is
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FIGURE 17.7
The energy levels for two noninteracting spins and the allowed transitions between these levels
are shown on the left. The same information is shown on the right for interacting spins. The
splitting between levels 2 and 3 and the energy shifts of all four levels for interacting spins are
greatly magnified to emphasize the spin–spin interactions.
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You will calculate the energy eigenvalues for the other eigenfunctions in 
Equation (17.15) in the end-of-chapter problems. All four energy eigenvalues are
plotted in the energy diagram of Figure 17.7. We initially focus on the left half of
this figure, which shows the energy levels for noninteracting spins. The selection
rule for NMR spectroscopy is that only one of the spins can change in a transition.
The four allowed transitions are indicated in the figure. For the noninteracting spin
case, and . Therefore, the NMR spectrum
contains only two peaks corresponding to the frequencies

(17.17)

You will calculate the allowed frequencies in the end-of-chapter problems. This result
shows that the splitting of a single peak into multiplets is not observed for noninteract-
ing spins.

We next consider the case of interacting spins. Because each of the nuclear spins
acts like a small bar magnet, they interact with one another through spin–spin
coupling. There are two different types of spin–spin coupling: through-space vectorial
dipole–dipole coupling, which is important in the NMR of solids (see Section 17.10),
and through-bond, or scalar, dipole–dipole coupling, which is considered next.

The spin energy operator that takes scalar dipole–dipole coupling into account is

(17.18)

In this equation, J12, is called the coupling constant and is a measure of the strength of
the interaction between the individual magnetic moments. The factor in the last
term of Equation (17.18) is included to make the units of J12 be . What is the origin
of this through-bond coupling interaction? Two possibilities are considered: vectorial
dipole–dipole coupling and the interaction between nuclear and electron spins.

s-1
h>U2

HN = -gB011 - s12INz1
- gB011 - s22INz2

+
hJ12

U2 IN1 # IN2

 n13 = n24 =
E4 - E2

h
=
gB011 - s22

2p

 n12 = n34 =
E2 - E1

h
=
gB011 - s12

2p

E3 - E1 = E4 - E2E2 - E1 = E4 - E3



434 CHAPTER 17 Nuclear Magnetic Resonance Spectroscopy

Because the directions of the induced magnetic moments and are linked to the
external field, they retain their orientation parallel to the field as the molecule tumbles in
a gas or a solution. (Again, we are using a classical picture, and a more rigorous—
although less transparent—discussion would refer to the macroscopic magnetization
vector , rather than to the individual magnetic moments.) An individual nucleus such
as 1H is magnetically isotropic. Therefore, the vectorial dipole–dipole interaction between
spins is averaged to zero in a macroscopic sample by molecular tumbling, as shown in
Equation (17.13) and does not contribute to the through-bond coupling interaction. There-
fore, the spin–spin coupling must be transmitted between nuclei through an interaction
between the nuclear and electron spins as shown in Figure 17.8.

An antiparallel orientation of the nuclear and electron spins is favored energetically
over a parallel orientation. Therefore, the electrons around a nucleus with spin are
more likely to be of than spin. In a molecular orbital connecting two nuclei of non-
zero spin, the electrons around atom Ha are pushed toward atom Hb because of the
electron sharing resulting from the chemical bond. Nucleus Hb is slightly lower in 
energy if it has rather than spin, because this generates an antiparallel arrangement
of nuclear and electron spins on the atom. This effect is referred to as spin polarization.
A well-shielded nuclear spin senses the spin orientation of its neighbors through the 
interaction between the nuclear spin and the electrons. Because this is a very weak inter-
action and other factors favor molecular orbitals without spin polarization, the degree 
of spin polarization is very small. However, this very weak interaction is sufficient to 
account for the parts per million changes in the frequency of NMR transitions.

At this point, we discuss the spin energy operator for interacting spins and use an
approximation method to determine the spin energy eigenvalues of this operator. The
eigenfunctions are linear combinations of the eigenfunctions for noninteracting spins
and need not concern us further. The approximation method is called first-order pertur-
bation theory. It is applicable when we know how to solve the Schrödinger equation for
a problem that is very similar to the one of interest. In this case, the problem we know
how to solve is for noninteracting spins. If the change in the energy levels brought about
by an additional interaction term in the spin energy operator, , is small, then
we state without proof that the first-order correction to the energy for the case of two 
interacting spins is given by

(17.19)

In this equation, the wave functions are those for the problem in the absence of
, and the integration is over the two spin variables.

To evaluate this integral, we write and must solve
equations of the type
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FIGURE 17.8
Schematic illustration of how spin polar-
ized orbitals couple nuclear spins even
though they are highly shielded from one
another through the electron density. The
upper and lower arrows in the lower part
of the figure indicate the electron and 
nuclear spin, respectively.

. The following relations, which are not proved, are used to solve the necessary
integrals as shown in Example Problem 17.3:

(17.20)

EXAMPLE PROBLEM 17.3

Show that the energy correction to is ¢E2 = -1hJ12>42c2 = a112b122
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Solution

We evaluate

Because of the orthogonality of the spin functions, the first two integrals are zero and

Note that because J12 has the units of , hJ has the unit joule.

You will use the procedure of Example Problem 17.3 in the end-of-chapter prob-
lems to show that the spin energy eigenvalue for a given state is changed relative to the
case of noninteracting spins by the amount

(17.21)

A given energy level is shifted to a higher energy if both spins are of the same orien-
tation, and to a lower energy if the orientations are different. As you will see in the
end-of-chapter problems, the frequencies of the allowed transitions including the
spin–spin coupling are

(17.22)

The energy levels and transitions corresponding to these frequencies are shown on the
right side of Figure 17.7. This calculation shows that spin–spin interactions result in the
appearance of multiplet splitting in NMR spectra. Each of the two peaks that appeared
in the spectrum in the absence of spin–spin interactions is now split into a doublet in
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which the two components are separated by J12 (Figure 17.9). Note that, whereas the
separation in frequency of the doublets increases with the magnetic field strength, the
splitting within each doublet is unaffected by the magnetic field.

Not all NMR peaks are split into multiplets. To understand this result, it is important
to distinguish between chemically as opposed to magnetically equivalent nuclei.
Consider the two molecules shown in Figure 17.10. In both cases, the two H atoms and
the two F atoms are chemically equivalent. The nuclei of chemically equivalent atoms
are also magnetically equivalent only if the interactions that they experience with other
nuclei of nonzero spin are identical. Because the two F nuclei in CH2F2 are equidistant
from each H atom, the two couplings are identical and the 1H are magnetically
equivalent. However, the two couplings in CH2CF2 are different because the
spacing between the H and F nuclei is different. Therefore, the 1H nuclei in this mole-
cule are magnetically inequivalent. Multiplet splitting only arises through the interac-
tion of magnetically inequivalent nuclei and is observed in CH2CF2, but not in CH2F2
or the reference compound (CH3)4Si. Because the derivation of this result is somewhat
lengthy, it is omitted in this chapter.

17.8Multiplet Splitting When More 
Than Two Spins Interact

For simplicity, we have considered only the case of two coupled spins in the previous
sections. However, many organic molecules have more than two inequivalent protons
that are close enough to one another to generate multiplet splittings. In this section, sev-
eral different coupling schemes are considered. The frequencies for transitions in such a
system involving the nuclear spin A can be written as

(17.23)

where the summation is over all other spin-active nuclei. The strength of the interaction
that leads to peak splitting is weak because JAX falls off rapidly with distance. There-
fore, the neighboring spins must be rather close in order to generate peak splitting.
Experiments have shown that generally only those atoms within three or four bond
lengths of the nucleus of interest have a sufficiently strong interaction to generate peak
splitting. In strongly coupled systems such as those with conjugated bonds, the coupling
can still be strong when the spins are farther apart.
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FIGURE 17.9
Splitting of a system of two interacting spins into doublets for two values of B0. The spacing
within the doublet is independent of the magnetic field strength, but the spacing of the doublets
increases linearly with B0.

CH2F2

CH2CF2

FIGURE 17.10
The H atoms in CH2CF2 are chemically
equivalent, but magnetically inequivalent.
The H atoms in CH2F2 are chemically and
magnetically equivalent.
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JAX � JAM � 0

JAX � 0 ; JAM � 0 JAM

JAX JAXJAX , JAM � 0

Frequency

FIGURE 17.11
Coupling scheme and expected NMR spectrum for spin A coupled to spins M and X with differ-
ent coupling constants JAX and JAM. The vertical axis shows the spectrum intensity.

JAX � 0

JAX � 0

JAX � 0 JAX JAX

JAX

Frequency

FIGURE 17.12
Coupling scheme and expected NMR
spectrum for spin A coupled to two spins
X. In this case, there is only one coupling
constant JAX. The closely spaced pair of
lines in the lower part of the left figure
actually coincide. They have been shown
separated to make their origin clear. The
vertical axis shows the spectrum intensity.

To illustrate the effect of spin–spin interaction in generating multiplet splittings, we
consider the coupling of three distinct spin nuclei that we label A, M, and X. The
two coupling constants are JAM and JAX with . The effect of these couplings
can be determined by turning on the couplings individually as indicated in Figure 17.11.
The result is that each of the lines in the doublet that arises from turning on the interac-
tion JAM is again split into a second doublet when the interaction JAX is turned on as
shown in Figure 17.11.

A special case occurs when A and M are identical so that . The middle
two lines for the AMX case now lie at the same frequency, giving rise to the AX2 pattern
shown in Figure 17.12. Because the two lines lie at the same frequency, the resulting
spectrum is a triplet with the intensity ratio 1:2:1. Such a spectrum is observed for the
methylene protons in the molecule .CHCl2 ¬CH2 ¬CHCl2

 JAM = JAX

JAM 7 JAX

1>2

EXAMPLE PROBLEM 17.4

Using the same reasoning as that applied to the AX2 case, predict the NMR spectrum
for an AX3 spin system. Such a spectrum is observed for the methylene protons in the
molecule where the coupling is to the methyl group hydrogens.CH3 ¬CH2 ¬CCl3
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Solution

Turning on each of the interactions in sequence results in the following diagram:

JAX JAX

JAX

JAX JAXJAX

Frequency

The end result is a quartet with the intensity ratios 1:3:3:1. These results can be
generalized to the rule that if a 1H nucleus has n equivalent 1H neighbors, its NMR
spectral line will be split into n peaks. The relative intensity of these peaks is 
given by the coefficients in the expansion of the binomial expression. The
closely spaced pair of lines in the left figure actually coincide. They have been shown
separated to make their origin clear.

Given the results of the last two sections, we are (almost) at the point of being able
to understand the fine structure in the NMR spectrum of ethanol shown in Figure 17.6.
As discussed in Section 17.7, the resonance near 5 ppm can be attributed to the OH pro-
ton, the resonance near 3.5 ppm can be attributed to the CH2 protons, and the resonance
near 1 ppm can be attributed to the CH3 protons. This is consistent with the integrated
intensities of the peaks, which from high to low are in the ratio 1:2:3. We now con-
sider the multiplet splitting. Invoking the guideline that spins located more than three
bonds away do not generate a peak splitting, we conclude that the CH3 resonance is a
triplet because it is split by the two CH2 protons. The OH proton is too distant to gener-
ate a further splitting of the CH3 group. We conclude that the CH2 resonance is an octet
(two pairs of quartets) because it is split by the three equivalent CH3 protons and the
OH proton. We predict that the OH resonance is a triplet because it is split by the two
equivalent CH2 protons. In fact, this is exactly what is observed for the NMR spectrum
of ethanol at low temperatures. This example shows the power of NMR spectroscopy in
obtaining structural information at the molecular level.

For ethanol at room temperature, these predictions are correct for the CH3 group,
but not for the other groups. The CH2 hydrogen resonance is a quartet and the OH pro-
ton resonance is a singlet. This tells us that there is something that we have overlooked
regarding the OH group. What has been overlooked is the rapid exchange of the OH
proton with water, a topic that is discussed in the next section.

17.9 Peak Widths in NMR Spectroscopy
The ability of any spectroscopic technique to deliver useful information is limited by the
width of the peaks in frequency. If two different NMR active nuclei in a sample have
characteristic frequencies that are significantly closer than the width of the peaks, it is
difficult to distinguish them. For samples in solutions, NMR spectra can exhibit peak
widths of as little as 0.1 Hz, whereas for solid samples, peak widths of 10 kHz are not
atypical. What are the reasons for such a large variation of peak widths in NMR spectra?

d

11 + x2n,
+1
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To answer this question, the change in the magnetization vector with time mustM
be considered. The vector M has two components: Mz or , which is parallel to the stat-M7
ic field B0, and Mxy or which is perpendicular to the field. Assume that the system
has been perturbed so that is not parallel to . How does the system of spins return
to equilibrium? Note first that Mz decays at a different rate than Mx-y. It is not surprising
that these two processes have different rates. To relax Mz, energy must be transferred to
the surroundings, which is usually referred to as the lattice. The characteristic time
associated with this process is called the longitudinal or spin-lattice relaxation time T1.
The relaxation of Mx-y occurs through a randomization or dephasing of the spins and
does not involve energy transfer to the surroundings because this component of the mag-
netization vector is perpendicular to . The characteristic time associated with this
process is called the transverse or spin–spin relaxation time T2. Because Mz will return
to its initial value only after , we conclude that .

The relaxation time T1 determines the rate at which the energy absorbed from the
radiofrequency field is dissipated to the surroundings. If T1 is not sufficiently small,
energy is not lost quickly enough to the surroundings, and the population of the excited
state becomes as large as that of the ground state. If the populations of the ground and
excited states are equal, the net absorption at the transition frequency is zero, and we
say that the transition is a saturated transition. In obtaining NMR spectra, the radio-
frequency power is kept low in order to avoid saturation.

How is the rate of relaxation of related to the NMR linewidth? In discussing this
issue, it is useful to view the experiment from two vantage points, time and frequency. As
shown later in Section 17.12, the NMR signal is proportional to Mx-y, which decreases
with increasing time with the functional form in the time domain. In a measurement
of the peak width as a function of the frequency, we look at the same process in the fre-
quency domain because the signal in the frequency domain is the Fourier transform of the
time-domain signal. Because of this relationship between the two domains, T2 determines
the spectral linewidth. The linewidth can be estimated with the Heisenberg uncertainty
principle. The lifetime of the excited state, , and the width in frequency of the spectral
line corresponding to the transition to the ground state, , are inversely related by

(17.24)

In the NMR experiment, T2 is equivalent to t and, therefore, it determines the width of
the spectral line, . For this reason, narrow spectral features correspond to large values
of T2. In solution, T2 can be orders of magnitude greater than for an ordered or disordered
solid of the same substance. Therefore, NMR spectra in solution, in which through-space
vectorial dipole–dipole coupling is averaged to zero through the tumbling of molecules
resulting in large T2 values, consist of narrow lines. By contrast, solid-state spectra exhibit
broad lines because T2 is small. The vectorial dipole–dipole coupling is not averaged to
zero in this case because the molecules are fixed at their lattice sites.

The lifetime of the excited state in NMR spectroscopy can be significantly changed
relative to the preceding discussion if the spins are strongly coupled to their surround-
ings. For example, this occurs if a proton on a tumbling molecule in solution undergoes
a chemical exchange between two different sites. Consider the proton exchange reaction
for ethanol:

(17.25)

The exchange decreases the lifetime of the excited state, or T2, leading to a broadening
of the NMR peak. It turns out that the peaks become significantly broader only if the
site exchange time is in the range of to 10 s. This effect is referred to as motional
broadening.

For a significantly faster exchange, only a single sharp peak is observed, and this
effect is referred to as motional narrowing. Because the exchange occurs in times
faster than s, motional narrowing is observed for ethanol at room temperature. For
this reason, the portion of the ethanol NMR spectrum shown in Figure 17.6 correspon-
ding to the OH proton is a singlet rather than a triplet. However, at low temperatures and
under acid-free conditions, the exchange rate can be sufficiently reduced so that the
exchange can be ignored. In this case, the OH 1H signal is a triplet. We now understand
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Magnetic field

Sample

FIGURE 17.13
In magic angle spinning, the sample is
rapidly spun about its axis, which is 
tilted 54.74° with respect to the static
magnetic field.

kHz
12 �12
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8 �84 0 �4

FIGURE 17.14
The 13C NMR spectrum of a powder in
which the unit cell contains a molecule
with two inequivalent groups.
The green spectrum shows the broad and
nearly featureless solid-state spectrum.
The 15-kHz spectrum (red) shows only
two sharp peaks that can be attributed 
to the two chemically inequivalent

groups. The other spectra are
taken for different spinning frequencies.
The spinning sidebands seen at 2 and 
4 kHz are experimental artifacts that 
arise if the spinning frequency is not 
sufficiently high.
Source: Published by permission of Gary 
Drobny, University of Washington.
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why the 300 K CH2 hydrogen resonance in ethanol is a quartet rather than an octet and
why the OH hydrogen resonance is a singlet rather than a triplet.

17.10 Solid-State NMR
Whereas NMR spectra with well-separated narrow peaks are generally observed in solu-
tion, this is not the case for solids because direct dipole–dipole coupling between spins is
not averaged to zero in solids as it is through molecular tumbling in solution. As we saw
in Section 17.3, the magnetic field of a neighboring dipole can increase or decrease the
external field B0 at the position of a spin, leading to a shift in the resonance frequency. The
frequency shift resulting from direct coupling between two dipoles i and j is

(17.26)

In this equation, is the distance between the dipoles and is the angle between the
magnetic field direction and the vector connecting the dipoles. Why did we not consider
direct dipole–dipole coupling in discussing NMR spectra of solutions? Because mole-
cules in a solution are rapidly tumbling, the time-averaged value of , rather than
the instantaneous value, determines . As shown in Section 17.6, 
and, therefore, for rapidly tumbling molecules in solution. By contrast, in
solids the relative orientation of all the spin-active nuclei is frozen because of the crystal
structure. For this reason, can be as large as several hundred kilohertz. This leads
to very broad spectral features in the NMR spectra of solids. Given this situation, why
carry out NMR experiments on solids?

This question can be answered in several ways. First, many materials are only avail-
able as solids, so that the option of obtaining solution spectra is not available. Second,
useful information about the molecular anisotropy of the chemical shift can be obtained
from solid-state NMR spectra. Finally, the technique of magic angle spinning can be
used to transform broad solid-state spectra into spectra with linewidths comparable to
those obtained in solution, as discussed next.

In general, a sample used in solid-state NMR experiments consists of many indi-
vidual solid particles that are randomly oriented with respect to one another rather
than a single crystal. Now imagine that a molecule in the unit cell is rotating about an
axis rather than tumbling freely. Although not derived here, the time average of

in this case is given by

(17.27)

In this equation, is the angle that the sample rotation axis makes with B0, and is
the angle between the vector that connects the magnetic dipoles i and j and the rota-
tion axis. If the whole solid sample is rotated rapidly, then all pairs of coupled dipoles
in the entire sample have the same value of even though they have different values of

. If we choose to make , then , , and the
broadening introduced by direct dipole coupling vanishes. Because this choice of has
such a dramatic effect, it is referred to as the magic angle, and the associated technique
is referred to as magic angle spinning (Figure 17.13). An example of how a broad
solid-state NMR spectrum can be transformed into a sharp spectrum through magic
angle spinning is shown in Figure 17.14.

17.11 NMR Imaging
One of the most important applications of NMR spectroscopy is its use in imaging the
interior of solids. In the health sciences, NMR imaging has proved to be the most
powerful and least invasive technique for obtaining information on soft tissue such as
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internal organs in humans. How is the spatial resolution needed for imaging obtained
using NMR? For imaging, a magnetic field gradient is superimposed onto the constant
magnetic field normally used in NMR. In this way, the resonance frequency of a given
spin depends not only on the identity of the spin (that is, 1H or 13C), but also on the local
magnetic field, which is determined by the location of the spin relative to the poles of
the magnet. Figure 17.15 illustrates how the addition of a field gradient to the constant
magnetic field allows the spatial mapping of spins to be carried out. Imagine a sphere
and a cube containing 1H2O immersed in a background that contains no spin-active
nuclei. In the absence of the field gradient, all spins in the structures resonate at the
same frequency, giving rise to a single NMR peak. However, with the field gradient
present, each volume element of the structure along the gradient has a different reso-
nance frequency. The intensity of the NMR peak at each frequency is proportional to
the total number of spins in the volume. A plot of the NMR peak intensity versus field
strength gives a projection of the volume of the structures along the gradient direction.
If a number of scans corresponding to different directions of the gradient are obtained,
the three-dimensional structure of the specimen can be reconstructed, provided that the
scans cover a range of at least 180°.

The particular usefulness of NMR for imaging biological samples relies on the
different properties that can be used to create contrast in an image. In X-ray radiogra-
phy, the image contrast is determined by the differences in electron density in various
parts of the structure. Because carbon has a lower atomic number than oxygen, it does
not scatter X rays as strongly as oxygen. Therefore, fatty tissue appears lighter in a
transmission image than tissues with a high density of water. However, this difference
in scattering power is small and often gives insufficient contrast. To obtain a higher con-
trast, material that strongly scatters X rays is injected or ingested. For NMR spec-
troscopy, several different properties can be utilized to provide image contrast without
adding foreign substances.

The properties include the relaxation times T1 and T2, as well as chemical shifts and
flow rates. The relaxation time offers the most useful contrast mechanism. The relax-
ation times T1 and T2 for water can vary in biological tissues from 0.1 s to several sec-
onds. The more strongly bound the water is to a biological membrane, the greater the
change in its relaxation time relative to freely tumbling water molecules. For example,
the brain can be imaged with high contrast because the relaxation times of 1H in gray
matter, white matter, and spinal fluid are quite different. Data acquisition methods have
been developed to enhance the signal amplitude for a particular range of relaxation
times, enabling the contrast to be optimized for the problem of interest. Figure 17.16
shows an NMR image of a human brain.
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FIGURE 17.15
(a) Two structures are shown along with
the three gradient directions indicated
along which NMR spectra will be taken.
In each case, spins within a thin volume
element slice along the gradient resonate
at the same frequency. This leads to a
spectrum that is a projection of the vol-
ume onto the gradient axis. Image recon-
struction techniques originally developed
for X rays can be used to determine the
three-dimensional structure.

NMR spectra that would be 
observed along the B1, B2, and B3
directions indicated in part (a).

(b–d)

FIGURE 17.16
NMR image of a human
brain. The section shown is
from a noninvasive scan of
the patient’s head. The con-
trast has its origin in the 
dependence of the relax-
ation time on the strength 
of binding of the water 
molecule to different 
biological tissues.
[© M. Kulyk/Photo
Researchers, Inc.]
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Chemical shift imaging can be used to localize metabolic processes and to follow
signal transmission in the brain through chemical changes that occur at nerve synapses.
One variation of flow imaging is based on the fact that it takes times that are several
multiples of T1 for the local magnetization to achieve its equilibrium value. If, for
instance, blood flows into the region under investigation on shorter timescales, it will
not have the full magnetization of the spins that have been exposed to the field for much
longer times. In such a case, the 1H2O in the blood resonates at a different frequency
than the surrounding 1H spins.

NMR imaging also has many applications in materials science, for example, in the
measurement of the chemical cross-link density in polymers, the appearance of hetero-
geneities in elastomers such as rubber through vulcanization or aging, and the diffusion
of solvents into polymers. Voids and defects in ceramics and the porosity of ceramics
can be detected by nondestructive NMR imaging.

S U P P L E M E N T A L

17.12 The NMR Experiment in the
Laboratory and Rotating Frames

As discussed at the beginning of this chapter, NMR peaks can be observed by varying
either the magnetic field strength or the frequency of the applied ac field. However,
modern NMR spectrometers utilize Fourier transform techniques because they greatly
enhance the rate at which information can be acquired. In this and the next section, we
describe the principles underlying Fourier transform NMR experiments.

A schematic diagram of the main components of an NMR experiment is shown in
Figure 17.17. A sample is placed in a strong static magnetic field B0 that is directed along
the z axis. A coil wound around the sample generates a much weaker oscillating radio-
frequency (rf) magnetic field B1 of frequency that is directed along the y axis. A third
detector coil used to detect the signal (not shown) is also wound around the sample. The
sample under consideration has a single characteristic frequency, . Additional
frequencies that arise from chemical shifts are considered later. Why are two separate
magnetic fields needed for the experiment? The static magnetic field B0 gives rise to the
two energy levels shown as a function of the magnetic field strength in Figure 17.1. It
does not induce transitions between the two states. However, the rf field B1 induces tran-
sitions between the two levels if the resonance condition is met.

To see how B1 induces a transition, we consider an alternative way of representing
this rf field. The linearly polarized field B1 is mathematically equivalent to the superpo-
sition of two circularly polarized fields rotating in opposite directions. This can be seen
by writing the two circularly polarized fields as

(17.28)

In these equations, x and y are unit vectors along the x and y directions, and the
superscripts c and cc refer to clockwise and counterclockwise rotation, respectively, as
shown in Figure 17.18. The sum of these fields has zero amplitude in the y direction
and an oscillatory amplitude in the x direction. This is analogous to the superposition

Bc
1 = B11x cos vt - y sin vt2

Bcc
1 = B11x cos vt + y sin vt2

v = v0

v = v0

v

Magnet coil

Sample Radio-frequency coil

Magnet coil

B1

B0

B
1

Time

z

y

x
FIGURE 17.17
Schematic of the NMR experiment showing
the static field and the rf field coil.
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FIGURE 17.18
The superposition of two circularly polar-
ized magnetic fields rotating in opposite
directions leads to a linearly polarized
magnetic field.

of two traveling waves to create a standing wave, a topic that was considered in
Section 2.2. Of the two rotating components, only the counterclockwise component
that is rotating in the same direction as the magnetic dipole will induce transitions;
therefore, a linearly polarized magnetic field B1 has the same effect as a circularly
polarized field that is rotating counterclockwise in the plane. For this reason, we can
associate the part of the linearly polarized field that is effective for NMR spectroscopy
with .

At this point, we discuss the precession of about the total magnetic field. We con-
sider the precession in the frame of reference rotating about the external magnetic field
axis at the frequency of the rf field. The resultant magnetic field that is experienced
by the nuclear spins is the vector sum of B0 and B1 and is depicted in Figure 17.19.

An observer in the laboratory frame sees a static field in the z direction, a circularly
polarized field rotating at the frequency in the plane, and a resultant field that pre-
cesses around the z axis at the frequency . The resultant field is the vector sum of the
static and rf fields. The total nuclear magnetic moment precesses around the resultant
field, and this precession about a vector, which is itself precessing about the z axis, is
difficult to visualize. The geometry becomes simpler if we view the motion of the magnetic
moment from a frame of reference that is rotating about the z axis at the frequency . We
choose the zero of time such that lies along the x axis. According to classical
mechanics, in the rotating frame, the rf field and the static field are stationary, and the
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FIGURE 17.19
The NMR experiment as viewed from
the laboratory and the rotating frame of
reference.
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magnetic moment precesses about the resultant field , where , with a
frequency . What can we say about the magnitude of the static field along
the z axis in the rotating frame? We know that the torque acting on the magnetization
vector is given by and that the magnetic moment has not changed. In order
for the precession frequency to decrease from to , the apparent static field in
the rotating frame must be

(17.29)

As approaches the resonance condition , approaches zero and
. In the rotating frame at resonance, the half-angle of the precession cone

increases to 90°, and now precesses in the plane at the resonance frequency . The
usefulness of viewing the NMR experiment in the rotating frame is that it allows the NMR
pulse sequences described in the next section to be visualized easily.

S U P P L E M E N T A L

17.13 Fourier Transform NMR
Spectroscopy

NMR spectra can be obtained by scanning the static magnetic field or the frequency of the
rf magnetic field. In these methods, data are only obtained at one particular frequency at
any one instant of time. Because a sample typically contains different molecules with
multiple resonance frequencies , obtaining data in this way is slow. If instead the rf
signal is applied in the form of short pulses in a controlled sequence, information about a
wide spectrum of resonance frequencies can be obtained simultaneously. In the following,
we illustrate how this method, called Fourier transform NMR spectroscopy, is
implemented. The procedure is depicted in Figure 17.20.
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FIGURE 17.20
RF pulse timing and the effect on as viewed from the rotating frame. At time a, points
along the z axis. As the pulse is applied (time b), M precesses in the yz plane and rotates into
the xy plane. At the end of the pulse (time c) M points along the y axis and precesses in the

plane. During the evolution time (d, e) after the pulse is turned off, relaxes to its initial ori-
entation along the z axis. The z component increases with the relaxation time T1. Simultaneously,
the component of decays with the relaxation time T2 as the individual spins dephase.Mx–y
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At resonance in the rotating frame, the magnetic moment is stationary and is
aligned along the z axis before the rf pulse is applied. As soon as the pulse is applied, 
begins to precess in the plane. The angle through which precesses is given by

(17.30)

in which tp is the length of time that the rf field B1 is on. The pulse length can be chosen
so that rotates 90°, after which time it lies in the plane. This is called a pulse.
In the plane, the individual spins precess at slightly different frequencies because of
their differing local fields which may be caused by different chemical shifts or field inho-
mogeneities. Immediately after the pulse, the spins are bunched together in the 
plane and is aligned along the y axis. However, this is not the lowest energy configura-
tion of the system because is perpendicular rather than parallel to the static field. With
increasing time, the magnetic moment returns to its equilibrium orientation parallel to the
z axis by undergoing spin-lattice relaxation with the characteristic relaxation time T1.

What happens to the component of in the plane? The vector sum of the indi-
vidual spin magnetic moments in the plane is the transverse magnetic moment com-
ponent. Because the individual spins precess at different frequencies in the plane,
they will fan out, leading to a dephasing of the spins. This process occurs with the
spin–spin relaxation time T2. As the spins dephase, the magnitude of the transverse
component decays to its equilibrium value of zero, as shown in Figure 17.21. Three
major mechanisms lead to dephasing: unavoidable inhomogeneities in B0, chemical
shifts, and transverse relaxation due to spin–spin interactions.

How is the NMR spectrum generated using the Fourier transform technique? This
process is indicated in Figure 17.21. The variation of with time traces a spiral inM
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FIGURE 17.21
Evolution of the magnetization vector M
in three dimensions and Mxy as a function
of time. The variation of Mxy with time
leads to exponentially decaying induced 
rf voltage in the detector coil.

which Mz increases and the transverse magnetization Mxy decreases with time. 
Because the detector coil has its axis along the y axis, it is not sensitive to changes in
Mz. However, changes in Mxy induce a time-dependent voltage in the coil and, for that
reason, the evolution of Mxy with time is shown separately in Figure 17.21. Because Mxy
is a periodic function with the angular frequency v, the induced voltage in the 
detector coil is alternately positive and negative. Because of the damping from spin–spin
relaxation, its amplitude decays with time as . The process by which Mxy decays to
its equilibrium value after the rf pulse is turned off is called free induction decay. This
experiment provides a way to measure T2.

e-t>T2
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Recall that because of the chemical shifts and unavoidable heterogeneities in the
static magnetic field, not all spins have the same resonance frequency. Each group of
spins with the same chemical shift gives rise to a different magnetization vector that
induces an ac voltage in the detector coil with a frequency equal to its characteristic pre-
cession frequency. Because all of these frequencies are contained in the signal, it con-
tains the spectral information in a form that is not easily interpreted. However, by taking
the Fourier transform of the detector coil signal,

(17.31)

which is readily accomplished on a laboratory computer, the spectrum can be obtained
as a function of frequency rather than time. Examples of the relationship between the
free induction decay curves and the spectrum obtained through Fourier transformation
are shown in Figure 17.22 for one, two, and three different frequencies.

What is the advantage of the Fourier transform technique over scanning either the
magnetic field strength or the rf field strength to obtain an NMR spectrum? By using the
Fourier transform technique, the whole spectral range is accessed at all times in which
the data are collected. By contrast, in the scanning techniques, the individual frequencies
are accessed serially. In any experiment as insensitive as NMR spectroscopy, it is diffi-
cult to extract useful signal from a background of noise. Therefore, any method in which
more data are collected in a given time is to be preferred. Two arguments may be useful
in gaining an understanding of how the method works. The first of these is an analogy
with a mechanical resonator. If a bell is struck with a hammer, it will ring with its char-
acteristic frequencies no matter what kind of hammer is used and how it is hit. Similarly,
a solution containing precessing spins also has its collection of resonant frequencies and
the “right hammer,” in this case an rf pulse, excites the spins at their resonant frequencies
regardless of which additional frequencies are contained in the pulse. The second argu-
ment is mathematical in nature. In analogy to the discussion in Section 2.7, many fre-
quency components are required to describe a time-dependent function that changes
rapidly over a small time interval. To write the pulse of Figure 17.20 as a sum of sine
and cosine terms, requires many terms.
In this sense, the rf pulse consists of many individual frequencies. Therefore, the pulse

f1t2 = d0 + gm
n=11cn sin nvt + dn cos nvt2p>2
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FIGURE 17.22
Free induction decay curves on the left for
one, two, and three equal amplitude fre-
quency components. The NMR spectrum
on the right is the Fourier transform of the
free induction decay curves.
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Schematic representation of the spin–echo
experiment. The pulse applied alongp>2

experiment is equivalent to carrying out many parallel experiments with rf magnetic
fields of different frequency.

Fourier transform NMR provides the opportunity to manipulate the evolution of by
the application of successive rf pulses with varying length, intensity, frequency, and phase.
Such a succession of pulses is called a pulse sequence. Pulse sequences are designed to
manipulate the evolution of spins and reveal interactions between them or to selectively
detect certain relaxation pathways. Pulse sequences are the foundation of modern NMR
and constitute the basis of multidimensional NMR. The usefulness of these techniques
can be understood by describing the spin–echo experiment.

To obtain the frequency spectrum from the free induction decay curve, T2 must be
known. The spin–echo technique uses a pulse sequence of particular importance to
measure the transverse relaxation time T2. The experiment is schematically outlined in
Figure 17.23. After an initial pulse from a coil along the x axis, the spins begin to
fan out in the plane as a result of unavoidable inhomogeneities in B0 and because of
the presence of chemical shifts. The decay of the signal that results from that part of the
dephasing which originates from chemical shifts and field inhomogeneities can be
eliminated in the following way. Rather than considering the resultant transverse
magnetization component Mxy, we consider two populations of spins A and B. Spins A
and B correspond to a Larmor frequency slightly higher and slightly lower than the fre-
quency of the rf field, respectively. There is no coupling between the spins in this exam-
ple; the spin–echo experiment for coupled spins is discussed in the next section. In a
frame that is rotating at the average Larmor frequency, one of these spins will move
clockwise and the other counterclockwise, as shown in Figure 17.23.
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After an evolution time in which free
induction decay occurs, a pulse is
applied along the x axis. The effect of the
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FIGURE 17.24
One-dimensional 1H NMR spectrum
of a small protein (molecular weight: 

kDa) in aqueous solution. The large
number of overlapping broad peaks pre-
cludes a structural determination on the
basis of the spectrum.
Source: Published by permission of Rachel
Klevit, University of Washington.
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After a time , a pulse is applied, again along the x axis. This pulse causes the
transformation . As a result, the spins are flipped with 
respect to the x axis. The direction of precession of spins A and B is unchanged, but
after the pulse the angle between spins A and B now decreases with time. Therefore,
the trend toward dephasing is reversed, and the spins will be in phase again after a 
second time interval equal to the initial evolution time. An echo of the original free
induction decay signal is observed at . The amplitude of the echo is smaller than the
original signal by the factor because of the dephasing resulting from transverse
relaxation. Therefore, by measuring the amplitude of the echo, T2 can be determined.
Note that only the dephasing that occurs because of the field homogeneities and chem-
ical shifts can be reversed using this technique. The spin–echo experiment is the most
accurate method of determining the transverse relaxation time T2.

S U P P L E M E N T A L

17.14 Two-Dimensional NMR
A 1H NMR spectrum for a given molecule in solution contains a wealth of information. For
large molecules, the density of spectral peaks can be very high as shown in Figure 17.24.
Because of the high density, it is difficult to assign individual peaks to a particular 1H in the
molecule. One of the major uses of NMR is to determine the structure of molecules in their
natural state in solution. To identify the molecule, it is necessary to know which peaks
belong to equivalent 1H that are split into a multiplet through coupling to other spins. Sim-
ilarly, it would be useful to identify those peaks corresponding to 1H that are coupled by
through-bond interactions as opposed to through-space interactions. This type of informa-
tion can be used to identify the structure of the molecule because through-bond interactions
only occur over a distance of three to four bond lengths, whereas through-space interac-
tions can identify spins that are more than three to four bond lengths apart, but are close 
to one another by virtue of a secondary structure, such as a folding of the molecule. 
Two-dimensional NMR (2D-NMR) allows such experiments to be carried out by separat-
ing the overlapped spectra of chemically inequivalent spins in multiple dimensions.

What is meant by 2D-NMR? We answer this question by describing how 2D-NMR 
is used to extract information from the five-peak one-dimensional spectrum shown in 
Figure 17.25. On the basis of the information contained in this NMR spectrum alone, there
is no way to distinguish between peaks that arise from a chemical shift alone and peaks that
arise from a chemical shift plus spin–spin coupling. The goal of the following 2D example
is to outline how such a separation among the five peaks can be accomplished. For pedagog-
ical reasons, we apply the analysis to a case for which the origin of each peak is known. This
spectrum results from two nonequivalent 1H, separated by a chemical shift , in which one
peak is split into a doublet and the second is split into a triplet through spin–spin coupling.

The key to the separation between peaks corresponding to coupled and uncoupled 1H
is the use of an appropriate pulse sequence, which for this case is shown in Figure 17.26.
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We recognize this pulse sequence as that used in the spin–echo experiment, and the
effect of this pulse sequence on uncoupled chemically shifted 1H nuclei was discussed in
the previous section. In that case, we learned that the spins are refocused into an echo if
the first and second time intervals are of equal length. However, we now consider the
case of coupled spins. What is changed in the outcome of this experiment through the
coupling? This question is answered in Figure 17.27.

As for the spin–echo experiment without coupling, we consider two spins, one higher
and one lower in frequency than . In this case, the frequency difference between the
spins is a result of the coupling, as opposed to a chemical shift. From Equation (17.21),
the two frequencies are given by

(17.32)nB = n0 -
J

2
  and  nA = n0 +

J

2

N0

Frequency

J1

2J2

FIGURE 17.25
Illustration of a conventional one-
dimensional NMR spectrum consisting 
of a doublet and a triplet separated by a
chemical shift .d

t1 t1

t2Time

  /2

FIGURE 17.26
An initial pulse is applied along the x axis to initiate the experiment. After time 
t1, a pulse is applied, again along the x axis. After a second time interval t1, the detector
is turned on at the time indicated by the dashed line, and the signal is measured by the
detector coil along the y axis as a function of the time t2.
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where originates from the 1H spin of interest being coupled to a spin, and 
originates from the 1H spin of interest being coupled to an spin. The crucial difference
between the effect of the pulse sequence on uncoupled and coupled spins occurs as a
result of the pulse.

The effect of the pulse on coupled spins can be understood by breaking it down into
two steps. Initially, the pulse causes the transformation , which
would make the spins rotate toward each other as in the spin–echo experiment for uncoupled
spins (see Figure 17.23). However, because both the 1H under study and the 1H to which it
is coupled make the transitions and in response to the pulse,

. The total effect of the pulse on coupled spins is that spins A and
B rotate away rather than toward one another. Therefore, after the second time interval t1, the
coupled spins are not refocused on the negative y axis as they are for uncoupled spins. 
Instead, they are refocused at a later time that depends linearly on the coupling constant J12.
This time is determined by the phase difference between the spins, which is linearly propor-
tional to the coupling constant J12 as shown in the following equation:

(17.33)

What is the effect of this pulse sequence on the uncoupled spins in the sample? All
uncoupled chemically shifted 1H will give a pronounced echo after the second time inter-
val t1 shown in Figure 17.23, regardless of the value of . Therefore, coupled and uncou-
pled spins behave quite differently in response to the pulse sequence of Figure 17.26.

How can the values for J12 and contained in the spectrum of Figure 17.25 be 
separately determined? First, a series of experiments is carried out for different values of
t1. The evolution of Mx-y in this time interval depends on both J and . The free induction
decay curves A(t1, t2) are obtained as a function of t2 for each value of t1. Note that the
chemically shifted spins are refocused through the spin echo at the zero of t2. Therefore,
the value of depends only on J, and not on . For all times , the 
evolution of Mx-y once again depends on both J and . The set of A(t1, t2) are shown in
Figure 17.28 in the time interval denoted t2. Next, each of these signals A(t1, t2) is Fourier
transformed with respect to t2 to give C(t1, v2). The sign of C(t1, v2) is determined by

, and can be either positive or negative. Each of the C(t1, v2) for given valuesA1t1, t2 = 02
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FIGURE 17.28
A series of NMR experiments correspon-
ding to the pulse sequence of Figure 17.26
is shown for different values of t1 for two
coupled spins with a single coupling con-
stant J. The Fourier transformed signal
C(t1, 2) obtained from a Fourier transfor-
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of t1 corresponds to the doublet shown in the rightmost column of Figure 17.28. Although
C(t1, 2), in general, exhibits a number of peaks, only two are shown for illustrative pur-
poses. The dependence of C(t1, 2) on t1 is shown in Figure 17.29.

A periodic variation of C(t1, 2) is observed, with the period T given by as
shown in Figure 17.29. We conclude that C(t1, 2) is an amplitude-modulated periodic
function whose period is determined by the coupling constant J. The periodicity in time
can be converted to a frequency by a further Fourier transformation of C(t1, 2), this time
with respect to the time t1, to give the function G( 1, 2). Because the experiment has
two characteristic frequencies, they can be used to define the two dimensions of the 2D
technique. Function G( 1, 2) is closely related to the desired 2D-NMR spectrum. As
shown earlier, Fourier transformation with respect to the frequency allows us to extract
information from the data set on both and J12, whereas the frequency depends only
on . Therefore, the information on and J12 can be independently obtained.

The J12 dependence can be separated from C(t1, 2) to obtain a function F( 1, 2) in
which 2 depends only on and depends only on J12. Function F( 1, 2) is referred to 
as the 2D J- spectrum and is shown as a contour plot in Figure 17.30. This function has 
two maxima along the 2 axis corresponding to the two multiplets of the 1D spectrum in
Figure 17.25 that are separated by . At each of the values, further peaks will be observed
along the axis, with one peak for each member of the multiplet. The measured separation 
allows the value of J12 to be determined. As can be seen from the figure, the pulse sequence
of Figure 17.26 allows a clear separation to be made between peaks in the 1D spectrum 
arising from a chemical shift and those arising from spin–spin coupling. It is clear that the
information content of a 2D-NMR spectrum is much higher than that of a 1D spectrum.

The power of 2D-NMR is further illustrated for structural studies with another
example. For this example, a pulse sequence is used that reveals the through-bond cou-
pling of two 1H. This particular 2D technique is called COSY (an acronym for
COrrelated SpectroscopY). We illustrate the information that can be obtained from a
COSY experiment for the molecule 1-bromobutane. The 1D-NMR spectrum of this
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The function C(t1, 2) is shown for
different values of t1. The periodicity 
in time evident in the figure can be
expressed as a frequency by carrying out a
Fourier transformation with respect to t1.
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FIGURE 17.30
The two-dimensional function F( 1, 2),
corrected mathematically to separate 
and J on the 2 axis, is displayed as a
contour plot. The horizontal scan above
the contour plot shows the contribution
to the 1D-NMR curve, and the two verti-
cal plots on either side of the contour plot
show the spin–spin coupling contribution
to the 1D-NMR curve of Figure 17.25.
Source: Published by permission of Tom 
Pratum, Western Washington University.
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FIGURE 17.31
1D-NMR spectrum of 1-bromobutane.
The multiplet splitting is not clearly seen
because of the large range of used in the
plot. The assignment of the individual
peaks to equivalent 1H spins in the mole-
cule is indicated.
Source: Published by permission of Tom 
Pratum, Western Washington University.
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FIGURE 17.32
2D-NMR data for 1-bromobutane in the
form of a contour plot. Dashed lines indi-
cate coupling of a set of spins to two other
groups. Solid lines indicate coupling of a
set of spins to only one other group.
Source: Published by permission of Tom 
Pratum, Western Washington University.

molecule is shown in Figure 17.31. It consists of four peaks with multiplet splittings.
On the basis of the discussion in Section 17.5, the peak assignments can be made read-
ily by considering the effect of the electronegative Br atom on the different carbon
atoms. The 1H in the CH2 group attached to the Br (d) generate a triplet, those in the
adjacent CH2 group (c) generate a five-peak multiplet, those in the CH2 group (b) gen-
erate a six-peak multiplet, and those in the terminal CH3 group generate a triplet. The
integrated peak areas are in the ratio . These are the results
expected on the basis of the discussion in Sections 17.7 and 17.8.

We now show that 2D-NMR can be used to find out which of the 1H spins are cou-
pled to one another. By applying the COSY pulse sequence, the 2D-NMR spectrum can
be obtained as a function of 1 and 2. The results are shown in Figure 17.32 in the
form of a contour plot. The 1D spectrum shown in this figure corresponds to the diago-
nal in the 2D spectrum representation. Four peaks are seen corresponding to different

vv

a :b :c :d = 3 :2 :2 :2
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values. We also see off-diagonal peaks at positions that are symmetrical with respect
to the diagonal. These peaks identify spins that are coupled. The strength of the cou-
pling can be determined from the intensity of each peak. We can determine which spins
are coupled by moving vertically and horizontally from the off-diagonal peaks until the
diagonal is reached. It is seen that spins (d) couple only with spins (c), spins (c) couple
with both spins (d) and (b), spins (b) couple with both spins (c) and (a), and spins (a)
couple only with spins (b). Therefore, the 2D COSY experiment allows us to determine
which spins couple with one another. Note that these results are exactly what we would
expect for the structural model shown in Figure 17.31 if coupling is ineffective for spins
that are separated by more than three bond lengths.

Again, for pedagogical purposes we have chosen to analyze a simple spin system.
This particular 2D-NMR experiment actually gives no more information than could have
been deduced from the observed multiplet splitting. However, for large molecules with a
molecular weight of several thousand Daltons and many inequivalent 1H, COSY spectra
give detailed information on the through-bond coupling of chemically inequivalent 1H.

A classically based discussion of the effect of a pulse sequence on a sample containing
spin-active nuclei analogous to the spin–echo experiment is not adequate to describe the
COSY experiment. The higher level quantum mechanical description of this experiment is
discussed in advanced texts. An analogous technique, called NOESY, gives information on
the through-space coupling of inequivalent 1H. These two techniques are just a small sub-
set of the many powerful techniques available to NMR spectroscopists. Because of this
diversity of experiments achievable through different pulse sequences, 2D-NMR is a
powerful technique for the structural determination of biomolecules.

d

chemical shift
chemical shift imaging
chemically equivalent nuclei
coupling constant
dephasing
diamagnetic response
Fourier transform
Fourier transform NMR spectroscopy
free induction decay
Larmor frequency
macroscopic magnetic moment
magic angle
magic angle spinning
magnetic anisotropy

magnetic field gradient
magnetically equivalent nuclei
magnetization vector
magnetogyric ratio
motional broadening
motional narrowing
multiplet
multiplet splitting
nuclear g factor
nuclear magnetic moment
nuclear magneton
NMR imaging

pulse

precession

p>2

pulse sequence
rotating frame
saturated transition
shielding constant
spin–echo technique
spin-lattice relaxation time T1

spin polarization
spin–spin coupling
spin–spin relaxation time T2

transverse magnetization
transverse relaxation
two-dimensional NMR (2D-NMR)

Conceptual Problems
Q17.1 Why can the signal loss resulting from spin dephas-
ing caused by magnetic field inhomogeneities and chemical
shift be recovered in the spin–echo experiment?

Q17.2 Why do neighboring groups lead to a net induced
magnetic field at a given spin in a molecule in the solid state,
but not for the same molecule in solution?

Q17.3 Why is it useful to define the chemical shift relative
to a reference compound as follows?

Q17.4 What is the advantage of a 2D-NMR experiment
over a 1D-NMR experiment?

d = 106
1n - nref2
nref

Q17.5 Why do magnetic field inhomogeneities of only a
few parts per million pose difficulties in NMR experiments?

Q17.6 Why does NMR lead to a higher contrast in the
medical imaging of soft tissues than X ray techniques?

Q17.7 Why is the multiplet splitting for coupled spins
independent of the static magnetic field?

Q17.8 Why does the H atom on the OH group not lead to a
multiplet splitting of the methyl hydrogens of ethanol?

Q17.9 Why are the multiplet splittings in Figure 17.9 not
dependent on the static magnetic field?

Q17.10 Redraw Figure 17.2 for spins. What is the
direction of precession for the spins and for the macroscopic
magnetic moment?

b
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Numerical Problems
P17.1 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for diethyl ether. Justify your answer.

P17.2 Using your results from the previous problems, show
that there are four possible transitions between the energy levels
of two interacting spins and that the frequencies are given by

P17.3 For a fixed frequency of the radiofrequency field, 
1H, 13C, and 31P will be in resonance at different values of
the static magnetic field. Calculate the value of B0 for these
nuclei to be in resonance if the radiofrequency field has a
frequency of 250. MHz.

P17.4 Using the matrix representation of the operators and
spin eigenfunctions of Problem P17.7, show that the relation-
ships listed in Equation (17.20) are obeyed.

P17.5 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for bromoethane. Justify your answer.

P17.6 A 250. MHz 1H spectrum of a compound shows two
peaks. The frequency of one peak is 510. Hz higher than that
of the reference compound (tetramethylsilane) and the second
peak is at a frequency 170. Hz lower than that of the reference
compound. What chemical shift should be assigned to these
two peaks?

P17.7 The nuclear spin operators can be represented as
matrices in the form and and can be represented as

column vectors in the form

Given that the matrices have the form

INx =
U
2
a0 1

1 0
b , INy =

U
2
a0 - i

i 0
b , INz =

U
2
a1 0

0 - 1
b

2 * 2

a = a1

0
b  and b = a0

1
b

ba2 * 2

 n24 =
gB11 - s22

2p
+

J12

2

 n13 =
gB11 - s22

2p
-

J12

2

 n34 =
gB11 - s12

2p
+

J12

2

 n12 =
gB11 - s12

2p
-

J12

2

and

show that

P17.8 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for 1,1,1,2-tetrachloroethane. Justify your answer.

P17.9 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for 1,1,2,2-tetrachloroethane assuming that there is
no rotation of the two substituted methyl groups around the
C—C bond. Justify your answer.

P17.10 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for nitroethane. Justify your answer.

P17.11 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for nitromethane. Justify your answer.

P17.12 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for 1,1,2-trichloroethane. Justify your answer.

and INzb = -
1

2
Ub

IN2a =
1

2
a 1

2
+ 1b U2a, INza = +

1

2
Ua, IN2b =

1

2
a 1

2
+ 1b U2b,

IN2 = a U
2
b2a3 0

0 3
b

Q17.11 Why is the measurement time in NMR experiments
reduced by using Fourier transform techniques?

Q17.12 Order the molecules CH3I, CH3Br, CH3Cl, and
CH3F in terms of increasing chemical shift for 1H. Explain
your answer.

Q17.13 Explain why .T1 Ú T2

Q17.14 Explain why two magnetic fields, a static field and
a radiofrequency field, are needed to carry out NMR experi-
ments. Why must the two field directions be perpendicular?

Q17.15 Explain the difference in the mechanism that 
gives rise to through-space dipole–dipole coupling and
through-bond coupling.

P17.13 Calculate the spin energy eigenvalues for the
wave functions and c3 = a112b122,c1 = a112a122,

[Equation (17.15)] for noninteracting spins.

P17.14 Predict the number of chemically shifted 1H peaks
and the multiplet splitting of each peak that you would
observe for 1-chloropropane. Justify your answer.

P17.15 Consider the first-order correction to the energy of
interacting spins illustrated in Example Problem 17.3 for .
Calculate the energy correction to the wave functions

.

Show that your results are consistent with 
with m1 and m2 = +1>2 for a and - 1>2 for b.

¢E = m1m2hJ12 

c1 = a112a122, c2 = b112a122, and c4 = b112b122
c2

c4 = b112b122
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A.1Working with Complex Numbers
and Complex Functions

Imaginary numbers can be written in the form

(A.1)

where a and b are real numbers and . It is useful to represent complex num-
bers in the complex plane shown in Figure A.1. The vertical and horizontal axes corre-
spond to the imaginary and real parts of z, respectively.

In the representation shown in Figure A.1, a complex number corresponds to a point
in the complex plane. Note the similarity to the polar coordinate system. Because of this
analogy, a complex number can be represented either as the pair (a, b), or by the radius
vector r and the angle . From Figure A.1, it can be seen that

(A.2)

Using the relations between a, b, and r as well as the Euler relation ,
a complex number can be represented in either of two equivalent ways:

(A.3)

If a complex number is represented in one way, it can easily be converted to the
other way. For example, we express the complex number 6 7i in the form .

The magnitude of the radius vector r is given by . The phase is
given by . Therefore, we can write 6 7i as

.

In a second example, we convert the complex number , which is in the 
notation, to the notation. Using the relation ,
we can write as

The complex conjugate of a complex number z is designated by z* and is obtained
by changing the sign of i, wherever it appears in the complex number. For example, if

2acos
p

2
+ i sin

p

2
b = 210 + i2 = 2i

2eip>2 eia = exp1ia2 = cos a + i sin aa +  ib
reiu2eip>2

285 exp[i tan -11-7>62]
- tan u = 1-7>62 or u = tan -11-7>62 262 + 72 = 285

reiu-

a + ib = r cos u + r sin u = reiu = 2a2 + b2 exp[i tan -11b>a2]
eiu = cos u + i sin u

r = 2a2 + b2 and u = cos-1 a

r
= sin-1 b

r
= tan-1 b

a

u

i = 1-1

z = a + ib

. The magnitude of a complex
number is defined by and is always a real number. This is the case for the previ-
ous example:

(A.4)

Note also that .
Complex numbers can be added, multiplied, and divided just like real numbers. A few

examples follow:

=
3 + 313i + 12i + 16i2

4

13 + 12i2
11 - 13i2 =

13 + 12i2
11 - 13i2

11 + 13i2
11 + 13i2

= 13 + 162 + 112 - 3132i
13 + 12i211 - 13i2 = 3 - 313i + 12i - 16i2

13 + 12i2 + 11 - 13i2 = [4 + 112 - 132i]

zz* = a2 + b2

 = 13 - 25i213 + 25i2ei22f- i22f = 14

 zz* = 13 - 25i2ei22f13 + 25i2e-i22f

1zz*
z = 13 - 15i2ei22f, then z* = 13 + 15i2e-i22f
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Functions can depend on a complex variable. It is convenient to represent a plane trav-
eling wave usually written in the form

(A.5)

in the complex form

(A.6)

Note that

(A.7)

The reason for working with the complex form rather than the real form of a function is
that calculations such as differentiation and integration can be carried out more easily.
Waves in classical physics have real amplitudes, because their amplitudes are linked
directly to observables. For example, the amplitude of a sound wave is the local pressure
that arises from the expansion or compression of the medium through which the wave
passes. However, in quantum mechanics, observables are related to rather than

. Because is always real, can be complex, and the observables
associated with the wave function are still real.

For the complex function 

so that the magnitude of the function is a constant and 

does not depend on t or x. As Figure A.2 shows, the real and imaginary parts of 
depend differently on the variables x and t; they are phase shifted by . The figure
shows the amplitudes of the real and imaginary parts as a function of for .

A.2 Differential Calculus

A.2.1 THE FIRST DERIVATIVE OF A FUNCTION

The derivative of a function has as its physical interpretation the slope of the function
evaluated at the position of interest. For example, the slope of the function at the
point is indicated by the line tangent to the curve shown in Figure A.3.

Mathematically, the first derivative of a function f(x) is denoted .
It is defined by

(A.8)
df1x2

dx
= lim

h:0

f1x + h2 - f1x2
h

f¿1x2 or df1x2>dx
x = 1.5

y = x2

x =  0vt
p>2 Aei1kx - vt2

Aei1kx - vt2A*e-i1kx - vt2 = AA*,

f1x, t2 =  Ae i1kx - vt2, zz* = c1x, t2c*1x, t2 =
c1x, t2ƒc1x, t2 ƒ 2c1x, t2

ƒc1x, t2 ƒ 2

c1x, t2 = -ImAei1kx - vt2

Aei1kx - vt2 = A cos1kx - vt2 - iA sin1kx - vt2

c1x, t2 = A sin1kx - vt2

=
13 - 162 + 1313 + 222i

4
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For the function of interest,

(A.9)

In order for to be defined over an interval in x, f(x) must be continuous over
the interval.

Based on this example, can be calculated if f(x) is known. Several useful
rules for differentiating commonly encountered functions are listed next:

(A.10)

For example, 

(A.11)

For example, 

(A.12)

Two useful rules in evaluating the derivative of a function that is itself the sum or prod-
uct of two functions are as follows:

(A.13)

For example,

(A.14)

For example,

A.2.2 THE RECIPROCAL RULE AND THE QUOTIENT RULE

How is the first derivative calculated if the function to be differentiated does not have a
simple form such as those listed in the preceding section? In many cases, the derivative
can be found by using the product and quotient rules stated here:

(A.15)

da 1

f1x2 b
dx

= -
1

[f1x2]2

df1x2
dx

 = cos 2x - sin 2x

 
d[sin1x2 cos1x2]

dx
= cos1x2 d sin1x2

dx
+ sin1x2 d cos1x2

dx

 
d[f1x2g1x2]

dx
= g1x2 df1x2

dx
+ f1x2 dg1x2

dx

 
d1x3 + sin x2

dx
=

dx3

dx
+

d sin x

dx
= 3x2 + cos x

d[f1x2 + g1x2]
dx

=
df1x2

dx
+

dg1x2
dx

 
d1a cos x2

dx
= -a sin x, where a is a constant

 
d1a sin x2

dx
= a cos x, where a is a constant

 
d1aebx2

dx
= abebx, where a and b are constants

d15e312x2>dx = 1512e312x

d1aebx2
dx

= abebx, where a and b are constants

d113x4>32>dx = 14>3213x1>3

d1axn2
dx

= anxn-1, where a is a constant and n 7 0

df1x2>dx

df1x2>dx

 = lim
h:0

2hx + h2

h
= lim

h:0 
2x + h = 2x

 
df1x2

dx
= lim

h:0

1x + h22 - 1x22
h
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For example,

(A.16)

For example,

A.2.3 THE CHAIN RULE

In this section, we deal with the differentiation of more complicated functions. Suppose
that . From the previous section, we know how to calculate

. How do we calculate ? The answer to this question is stated as the
chain rule:

(A.17)

Several examples illustrating the chain rule follow:

A.2.4 HIGHER ORDER DERIVATIVES: MAXIMA, MINIMA, 
AND INFLECTION POINTS

A function f (x) can have higher order derivatives in addition to the first derivative. The
second derivative of a function is the slope of a graph of the slope of the function versus
the variable. Mathematically,

(A.18)

For example,

The second derivative is useful in identifying where a function has its minimum or
maximum value within a range of the variable, as shown next.

 = 2aexp1ax22 + 4a2x2 exp1ax22, where a is a constant

 
d2 exp1ax22

dx2 =
d

dx
c dexp1ax22

dx
d =

d[2axexp1ax22]
dx

d2f1x2
dx2 =

d

dx
a df1x2

dx
b

dexp1ax22
dx

=
dexp1ax22

d1ax22
d1ax22

dx
= 2axexp1ax22, where a is a constant

dax +
1

x
b-4

dx
=

dax +
1

x
b-4

dax +
1

x
b

dax +
1

x
b

dx
= -4ax +

1

x
b-5a1 -

1

x2 b

 
d ln 1x22

dx
=

d ln 1x22
d1x22

d1x22
dx

=
2x

x2 =
2

x

 
d sin 13x2

dx
=

d sin 13x2
d13x2

d13x2
dx

= 3 cos 13x2

df1u2
dx

=
df1u2

du

du

dx

df1u2>dxdf1u2>du
y = f1u2 and u = g1x2

d¢ x2

sin x
≤

dx
=

2x sin x - x2 cos x

sin 2x

d c f1x2
g1x2 d
dx

=
g1x2 df1x2

dx
- f1x2 dg1x2

dx

[g1x2]2

 

da 1

sin x
b

dx
= -

1

sin 2x

d sin x

dx
=

-cos x

sin 2x
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Because the first derivative is zero at a local maximum or minimum, 
at the values . Consider the function shown in Figure A.4
over the range .

By taking the derivative of this function and setting it equal to zero, we find the
minima and maxima of this function in the range

The maxima and minima can also be determined by graphing the derivative and finding
the zero crossings as shown in Figure A.5.

Graphing the function clearly shows that the function has one maximum and one
minimum in the range specified. What criterion can be used to distinguish between these
extrema if the function is not graphed? The sign of the second derivative, evaluated at
the point for which the first derivative is zero, can be used to distinguish between a
maximum and a minimum:

(A.19)

We return to the function graphed earlier and calculate the second derivative:

By evaluating

we see that corresponds to the minimum, and corresponds to
the maximum.

If a function has an inflection point in the interval of interest, then

(A.20)

An example for an inflection point is for . A graph of this function in
the interval is shown in Figure A.6. As you can verify,

A.2.5 MAXIMIZING A FUNCTION SUBJECT TO A CONSTRAINT

A frequently encountered problem is that of maximizing a function relative to a con-
straint. We first outline how to carry out a constrained maximization, and subsequently
apply the method to maximizing the volume of a cylinder while minimizing its area. The
theoretical framework for solving this problem originated with the French mathe-
matician Lagrange, and the method is known as Lagrange’s method of undetermined
multipliers. We wish to maximize the function f (x, y) subject to the constraint that

where C is a constant. For example, you may want to maximize
the area A of a rectangle while minimizing its circumference C. In this case,

where x and y are
the length and width of the rectangle. The total differentials of these functions are given
by Equation (A.21):

(A.21)

df = a 0f

0x
b

y
 dx + a 0f

0y
b

x
 dy = 0 and df = a 0f

0x
b

y
 dx + a 0f

0y
b

x
 dy = 0

and f1x, y2 = C1x, y2 = 2 1x + y2,f1x, y2 = A1x, y2 = xy

f1x, y2 - C = 0,

dx3

dx
= 3x2 = 0 at x = 0  and d21x32

dx2 = 6x = 0 at x = 0

-2 … x … 2
f1x2 = x3x =  0

df1x2
dx

= 0 and d2f1x2
dx2 = 0

x = -1.291x =  1.291

d2f1x2
dx2  at x = ;A

5

3
= ;1.291

d21x3 - 5x2
dx2 =

d

dx
c d1x

3 - 5x2
dx

d =
d13x2 - 52

dx
= 6x

 
d2f1x2

dx2 =
d

dx
c df1x2

dx
d 7 0 for a minimum

 
d2f1x2

dx2 =
d

dx
c df1x2

dx
d 6 0 for a maximum

d1x3 - 5x2
dx

= 3x2 - 5 = 0, which has the solutions x = ;A
5

3
= 1.291
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If x and y were independent variables (there is no constraining relationship), the maxi-
mization problem would be identical to those dealt with earlier. However, because

also needs to be satisfied, x and y are not independent variables. In this case,
Lagrange found that the appropriate function to minimize is , where is an 
undetermined multiplier. He showed that each of the expressions in the square brackets
in the differential given by Equation (A.22) can be maximized independently. A sepa-
rate multiplier is required for each constraint:

(A.22)

We next use this method to maximize the volume V of a cylindrical can subject to the
constraint that its exterior area A be minimized. The functions f and are given by

(A.23)

Calculating the partial derivatives and using Equation (A.22), we have

(A.24)

Eliminating from these two equations gives

(A.25)

Solving for h in terms of r gives the result . Note that there is no need to
determine the value of multiplier . Perhaps you have noticed that beverage cans do not
follow this relationship between r and h. Can you think of factors other than minimizing
the amount of metal used in the can that might be important in this case?

A.3 Series Expansions of Functions
A.3.1 CONVERGENT INFINITE SERIES

Physical chemists often express functions of interest in the form of an infinite series. For
this application, the series must converge. Consider the series

(A.26)

How can we determine if such a series converges? A useful convergence criterion is the 
ratio test. If the absolute ratio of successive terms (designated and ) is less than 1 as
n , the series converges. We consider the series of Equation (A.26) with 
and , and apply the ratio test as shown in Equations (A.27a and b).

(A.27a)

(A.27b)

We see that the infinite series converges if but diverges if 
The power series is a particularly important form of a series that is frequently used to

fit experimental data to a functional form. It has the form

(A.28)

Fitting a data set to a series with a large number of terms is impractical, and to be use-
ful, the series should contain as few terms as possible to satisfy the desired accuracy. For
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example, the function sin x can be fit to a power series over the interval by
the following truncated power series

(A.29)

The coefficients in Equation (A.29) have been determined using a least squares fitting
routine. The first series includes terms in x up to x3, and is accurate to within 2% over
the interval. The second series includes terms up to x4, and is accurate to within 0.1%
over the interval. Including more terms will increase the accuracy further.

A special case of a power series is the geometric series, in which successive terms are
related by a constant factor. An example of a geometric series and its sum is given in
Equation (A.30). Using the ratio criterion of Equation (A.27), convince yourself that this
series converges for 

(A.30)

A.3.2 REPRESENTING FUNCTIONS IN THE FORM OF INFINITE SERIES

Assume that you have a function in the form f (x) and wish to express it as a power 
series in x of the form

(A.31)

To do so, we need a way to find the set of coefficients . How can this
be done?

If the functional form f(x) is known, the function can be expanded about a point of
interest using the Taylor-Maclaurin expansion. In the vicinity of , the function can
be expanded in the series

(A.32)

For example, consider the expansion of about . Because 

for all values of n, the Taylor-Maclaurin expansion for ex about
is

(A.33)

Similarly, the Taylor-Maclaurin expansion for is found by evaluating the
derivatives in turn:

Each of these derivatives must be evaluated at .
Using these results, the Taylor-Maclaurin expansion for about is
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The number of terms that must be included to adequately represent the function depends
on the value of x. For the series converges rapidly and, to a very good
approximation, we can truncate the Taylor-Maclaurin series after the first one or two
terms involving the variable. For the two functions just considered, it is reasonable to
write if 

A second widely used series is the Fourier sine and cosine series. This series can be
used to expand functions that are periodic over an interval by the series

(A.35)

A Fourier series is an infinite series, and the coefficients an and bn can be calculated
using the equations

(A.36)

The usefulness of the Fourier series is that a function can often be approximated by a
few terms, depending on the accuracy desired.

For functions that are either even or odd with respect to the variable x, only either the sine
or the cosine terms will appear in the series. For even functions, , and for odd
functions, . Because and ,
all coefficients an are zero for an even function, and all coefficients bn are zero for an odd
function. Note that Equation (A.29) is not an odd function of x because the function was only
fit over the interval .

Whereas the coefficients for the Taylor-Maclaurin series can be readily calculated,
those for the Fourier series require more effort. To avoid mathematical detail here, 
the Fourier coefficients an and bn are not explicitly calculated for a model function. The
coefficients can be easily calculated using a program such as Mathematica. Our focus
here is to show that periodic functions can be approximated to a reasonable degree by us-
ing the first few terms in a Fourier series, rather than to carry out the calculations.

To demonstrate the usefulness of expanding a function in a Fourier series, consider
the function

(A.37)

which is periodic in the interval , in a Fourier series. This function is a
demanding function to expand in a Fourier series because the function is discontinuous
at and the slope is discontinuous at and . The function and the
approximate functions obtained by truncating the series at and 
are shown in Figure A.7. The agreement between the truncated series and the function
is reasonably good for . The oscillations seen near are due to the 
discontinuity in the function. More terms in the series are required to obtain a good fit
if the function changes rapidly in a small interval.

A.4 Integral Calculus
A.4.1 DEFINITE AND INDEFINITE INTEGRALS

In many areas of physical chemistry, the property of interest is the integral of a function over
an interval in the variable of interest. For example, the total probability of finding a particle
within an interval is the integral of the probability density P(x) over the interval

(A.38)

Geometrically, the integral of a function over an integral is the area under the curve

describing the function. For example, the integral is the sum of the1  
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areas of the individual rectangles in Figure A.8 in the limit within which the width of the
rectangles approaches zero. If the rectangles lie below the zero line, the incremental area
is negative; if the rectangles lie above the zero line, the incremental area is positive. In
this case the total area is zero because the total negative area equals the total positive area.
This is the case because f(x) is an odd function of x.

The integral can also be understood as an antiderivative. From this point of view, the
integral symbol is defined by the relation

(A.39)

and the function that appears under the integral sign is called the integrand. Interpreting
the integral in terms of area, we evaluate a definite integral, and the interval over which
the integration occurs is specified. The interval is not specified for an indefinite integral.

The geometrical interpretation is often useful in obtaining an integral from experimental
data when the functional form of the integrand is not known. For our purposes, the interpre-
tation of the integral as an antiderivative is more useful. The value of the indefinite integral

is that function which, when differentiated, gives the integrand. Using the
rules for differentiation discussed earlier, you can verify that

(A.40)

Note the constant that appears in the evaluation of every indefinite integral. By differen-
tiating the function obtained upon integration, you should convince yourself that any con-
stant will lead to the same integrand. In contrast, a definite integral has no constant of
integration. If we evaluate the definite integral

(A.41)

we see that the constant of integration cancels. Because the function obtained upon
integration is an even function of x, just as we saw in the geo-
metric interpretation of the integral.

It is useful for the student of physical chemistry to commit the integrals listed next to
memory, because they are encountered frequently. These integrals are directly related to
the derivatives discussed in Section A.2:

However, the primary tool for the physical chemist in evaluating integrals is a good set
of integral tables. The integrals that are most frequently used in elementary quantum
mechanics are listed here; the first group lists indefinite integrals:
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The following group lists definite integrals.
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A.4.2 MULTIPLE INTEGRALS AND SPHERICAL COORDINATES

In the previous section, integration with respect to a single variable was discussed.
Often, however, integration occurs over two or three variables. For example, the wave
functions for the particle in a two-dimensional box are given by

(A.42)

In normalizing a wave function, the integral of is required to equal 1 over 
the range . This requires solving the double integral

(A.43)

to determine the normalization constant N. We sequentially integrate over the variables
x and y or vice versa using the list of indefinite integrals from the previous section.

Convince yourself that the normalization constant for the wave functions of the three-
dimensional particle in the box

(A.44)

has the value .
Up to this point, we have considered functions of a single variable. This restricts us

to dealing with a single spatial dimension. The extension to three independent variables
becomes important in describing three-dimensional systems. The three-dimensional sys-
tem of most importance to us is the atom. Closed-shell atoms are spherically symmetric,
so we might expect atomic wave functions to be best described by spherical coordinates.
Therefore, you should become familiar with integrations in this coordinate system. In
transforming from spherical coordinates to Cartesian coordinates x, y, and z,
the following relationships are used:

(A.45)

These relationships are depicted in Figure A.9. For small increments in the variables
, the volume element depicted in this figure is a rectangular solid of volume

(A.46)

Note in particular that the volume element in spherical coordinates is not in
analogy with the volume element dxdydz in Cartesian coordinates.
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In transforming from Cartesian coordinates x, y, and z to the spherical coordinates
, these relationships are used:

(A.47)

What is the appropriate range of variables to integrate over all space in spherical
coordinates? If we imagine the radius vector scanning over the range 

, the whole angular space is scanned. If we combine this range of 
with , all of the three-dimensional space is scanned. Note that

is always positive.
To illustrate the process of integration in spherical coordinates, we normalize the

function over the interval :
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A.5 Vectors
The use of vectors occur frequently in physical chemistry. Consider circular motion of a
particle at constant speed in two dimensions, as depicted in Figure A.10. The particle is
moving in a counterclockwise direction on the ring-like orbit. At any instant in time, its
position, velocity, and acceleration can be measured. The two aspects to these measure-
ments are the magnitude and the direction of each of these observables. Whereas a scalar
quantity such as speed has only a magnitude, a vector has both a magnitude and a direction.

For the particular case under consideration, the position vectors extend out-
ward from the origin and terminate at the position of the particle. The velocities 
are related to the position vector as . Therefore, the v = lim
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[r1t + ¢t2 - r1t2]>¢t
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velocity vector is perpendicular to the position vector. The acceleration vector is
defined by . As we see in part (b) of Figure A.10, is aa = lim

¢t:0
[v1t + ¢t2 - v1t2]>¢t

perpendicular to , and is antiparallel to . As this example of a relatively simple motion
shows, vectors are needed to describe the situation properly by keeping track of both
the magnitude and direction of each of the observables of interest. For this reason, it is
important to be able to work with vectors.

In three-dimensional Cartesian coordinates, any vector can be written in the form

(A.48)

where are the mutually perpendicular vectors of unit length along the x, y, andi, j, and k

r = x1i + y1j + z1k

rv

(A.50)u = cos-1 z1

2x2
1 + y2

1 + z2
1

 and f = tan-1 y1

x1

We next consider the addition and subtraction of two vectors. Two vectors
can be added or subtracted according to

the equations

(A.51)

The addition and subtraction of vectors can also be depicted graphically, as done in
Figure A.12.

The multiplication of two vectors can occur in either of two forms. Scalar multiplica-
tion of , also called the dot product of , is defined by

(A.52)

where is the angle between the vectors. For 
, the vectors in the previous equation can be expanded in terms of

their unit vectors:

However, because i, j, and k are mutually perpendicular vectors of unit 
length, . Therefore, 
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z axes, respectively, and x1, y1, and z1 are numbers. The length of a vector is defined by
the equation

(A.49)

This vector is depicted in the three-dimensional coordinate system shown in Figure A.11.
By definition, the angle is measured from the z axis, and the angle is measured in

the plane from the x axis. The angles and are related to x1, y1, and z1 byfuxy
fu

ƒ r ƒ = 2x2
1 + y2
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The other form in which vectors are multiplied is the vector product, also called the
cross product. The vector multiplication of two vectors results in a vector, whereas the
scalar multiplication of two vectors results in a scalar. The cross product is defined by
the equation

(A.53)

Note that as shown in Figure A.13. By contrast, .
In Equation (A.53), is a vector of unit length that is perpendicular to the plane

containing and has a positive direction found by using the right-hand rule (see
Chapter 7) and is the angle between .

The cross product between two three-dimensional vectors is given by

(A.54)

However, using the definition of the cross product in Equation (A.53),

Therefore, Equation (A.54) simplifies to

(A.55)

As we will see in Section A.7, there is a simple way to calculate cross products using
determinants.

The angular momentum is of particular interest in quantum chemistry,
because s, p, and d electrons are distinguished by their orbital angular momentum. For
the example of the particle rotating on a ring depicted at the beginning of this section, the
angular momentum vector is pointing upward in a direction perpendicular to the plane of
the page. In analogy to Equation (A.55),

A.6 Partial Derivatives
In this section, we discuss the differential calculus of functions that depend on several 
independent variables. Consider the volume of a cylinder of radius r and height h, for which

(A.56)

where V can be written as a function of the two variables r and h. The change in V with
a change in r or h is given by the partial derivatives

(A.57)

The subscript h in reminds us that h is being held constant in the differentia-
tion. The partial derivatives in Equation (A.57) allow us to determine how a function
changes when one of the variables changes. How does V change if the values of both
variables change? In this case, V changes to where
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These partial derivatives are useful in calculating the error in the function that results
from errors in measurements of the individual variables. For example, the relative error
in the volume of the cylinder is given by

This equation shows that a given relative error in r generates twice the relative error in
V as a relative error in h of the same size.

We can also take second or higher derivatives with respect to either variable. The
mixed second partial derivatives are of particular interest. The mixed partial derivatives
of V are given by

(A.59)

For the specific case of V, the order in which the function is differentiated does not
affect the outcome. Such a function is called a state function. Therefore, for any state
function f of the variables x and y,

(A.60)

Because Equation (A.60) is satisfied by all state functions f it can be used to determine
if a function f is a state function.

We demonstrate how to calculate the partial derivatives

for the function , where a is a real constant:

Because we have shown that

f(x,y) is a state function of the variables x and y.
Whereas the partial derivatives tell us how the function changes if the value of one of

the variables is changed, the total differential tells us how the function changes when all
of the variables are changed simultaneously. The total differential of the function f (x,y)
is defined by
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The total differential of the function used earlier is calculated as follows:

Two other important results from multivariate differential calculus are used frequently. For
a function , which can be rearranged to or ,

(A.62)

The other important result that is used frequently is the cyclic rule:

(A.63)

Consider an additional example of calculating partial derivatives for a function encoun-
tered in quantum mechanics. The Schrödinger equation for the hydrogen atom takes the form

Note that each of the first three terms on the left side of the equation involves partial dif-
ferentiation with respect to one of the variables r, , and in turn. Two of the solutions 
to this differential equation are . Each of these terms is evaluated sep-
arately to demonstrate how partial derivatives are taken in quantum mechanics. Although
this is a more complex exercise than those presented earlier, it provides good practice in par-
tial differentiation. For the first term, the partial derivative is taken with respect to r:

Partial differentiation with respect to is easier, because the terms that depend on r and
are constant:
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Partial differentiation with respect to is also not difficult, because the terms that depend
on r and are constant:

A.7Working with Determinants
A determinant of nth order is a square array of numbers symbolically enclosed by
vertical lines. A fifth-order determinant is shown here with the conventional indexing of
the elements of the array:

(A.64)

A determinant has a value that is defined in Equation (A.65). It is obtained by mul-
tiplying the elements in the diagonal connected by a line with a negative slope and sub-
tracting from this the product of the elements in the diagonal connected by a line with a
positive slope.

(A.65)

The value of a higher order determinant is obtained by expanding the determinant in
terms of determinants of lower order. This is done using the method of cofactors. We
illustrate the use of method of cofactors by reducing a determinant to a sum of

determinants. Any row or column can be used in the reduction process. We use the
first row of the determinant in the reduction. The recipe is spelled out in this equation:

(A.66)

Each term in the sum results from the product of one of the three elements of the first row,
, where m and n are the indices of the row and column designating the element,
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determinant are called the cofactor of the element used in the reduction. For example, the
value of the following determinant is found using the cofactors of the second row:

If the initial determinant is of a higher order than 3, multiple sequential reductions as out-
lined earlier will reduce it in order by one in each step until a sum of determinants
is obtained.

The main usefulness for determinants is in solving a system of linear equations. Such
a system of equations is obtained in evaluating the energies of a set of molecular orbitals
obtained by combining a set of atomic orbitals. Before illustrating this method, we list
some important properties of determinants that we will need in solving a set of simulta-
neous equations.

Property I The value of a determinant is not altered if each row in turn is made into
a column or vice versa as long as the original order is kept. By this we mean that the
nth row becomes the nth column. This property can be illustrated using and

determinants:

Property II If any two rows or columns are interchanged, the sign of the value of
the determinant is changed. For example,

Property III If two rows or columns of a determinant are identical, the value of the
determinant is zero. For example,

Property IV If each element of a row or column is multiplied by a constant, the
value of the determinant is multiplied by that constant. For example,
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Property V The value of a determinant is unchanged if a row or column multiplied
by an arbitrary number is added to another row or column. For example,

How are determinants useful? This question can be answered by illustrating how determi-
nants can be used to solve a set of linear equations:

(A.67)

This set of equations is solved by first constructing the determinant that is the array
of the coefficients of x, y, and z:

(A.68)

Now imagine that we multiply the first column by x. This changes the value of the deter-
minant as stated in Property IV:

(A.69)

We next add to the first column of xDcoefficients the second column of Dcoefficients multi-
plied by y, and the third column multiplied by z. According to Properties IV and V, the
value of the determinant is unchanged. Therefore,

(A.70)

To obtain the third determinant in the previous equation, the individual equations in
Equation (A.67) are used to substitute the constants for the algebraic expression in the
preceding determinants. From the previous equation, we conclude that

To determine y and z, the exact same procedure can be followed, but we substitute instead
in columns 2 and 3, respectively. The first step in each case is to multiply all elements of
the second (third) row by y(z). If we do so, we obtain the determinants Dc2 and Dc3:
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and we conclude that

This method of solving a set of simultaneous linear equations is known as Cramer’s
method.

If the constants in the set of equations are all zero, as in Equations A.71a and A.71b,

(A.71a)

(A.71b)

the determinants Dc1, Dc2, and Dc3 all have the value zero. An obvious set of solutions is
. For most problems in physics and chemistry, this set of solu-

tions is not physically meaningful and is referred to as the set of trivial solutions. A set of
nontrivial solutions only exists if the equation is satisfied. There is no non-
trivial solution to the set of Equation (A.71a) because . There is a set of
nontrivial solutions to the set of Equations (A.71b), because in this case.

Determinants offer a convenient way to calculate the cross product of two vectors, as
discussed in Section A.5. The following recipe is used:

(A.72)

Note that by referring to Property II, you can show that .

A.8Working with Matrices
Physical chemists find widespread use for matrices. Matrices can be used to represent
symmetry operations in the application of group theory to problems concerning molecu-
lar symmetry. They can also be used to obtain the energies of molecular orbitals formed
through the linear combination of atomic orbitals. We next illustrate the use of matrices
for representing the rotation operation that is frequently encountered in molecular sym-
metry considerations.

Consider the rotation of a three-dimensional vector about the z axis. Because the z
component of the vector is unaffected by this operation, we need only consider the effect
of the rotation operation on the two-dimensional vector formed by the projection of the
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three-dimensional vector on the plane. The transformation can be represented by 
(x1, y1, z1) (x2, y2, z1). The effect of the operation on the x and y components of the
vector is shown in Figure A.14.

Next, relationships are derived among (x1, y1, z1), (x2, y2, z1), the magnitude of the
radius vector r, and the angles and , based on the preceding figure. The magnitude of
the radius vector r is

(A.73)

Although the values of x and y change in the rotation, r is unaffected by this operation.
The relationships between x, y, r, , and are given by

(A.74)

In the following discussion, these identities are used:

(A.75)

From Figure A.14, the following relationship between x2 and x1 and y1 can be derived
using the identities of Equation (A.75):

(A.76)

Using the same procedure, the following relationship between y2 and x1 and y1 can be
derived:

(A.77)

Next, these results are combined to write the following equations relating x2, y2, and z2 to
x1, y1, and z1:

(A.78)

At this point, the concept of a matrix can be introduced. An matrix is an array of
numbers, functions, or operators that can undergo mathematical operations such as addi-
tion and multiplication with one another. The operation of interest to us in considering
rotation about the z axis is matrix multiplication. We illustrate how matrices, which are
designated in bold script, such as A, are multiplied using matrices as an example.

(A.79)

Using numerical examples,

Now consider the initial and final coordinates (x1, y1, z1) and (x2, y2, z1) as ma-
trices . In that case, the set of simultaneous equations of
Equation (A.78) can be written as
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We see that we can represent the operator for rotation about the z axis, Rz, as the follow-
ing matrix:

(A.81)

The rotation operator for 180° and 120° rotation can be obtained by evaluating the sine
and cosine functions at the appropriate values of . These rotation operators have the form

(A.82)

One special matrix, the identity matrix designated I, deserves additional mention. The
identity matrix corresponds to an operation in which nothing is changed. The matrix that
corresponds to the transformation (x1, y1, z1) (x2, y2, z2) expressed in equation form as

(A.83)

is the identity matrix

The identity matrix is an example of a diagonal matrix. It has this name because only the
diagonal elements are nonzero. In the identity matrix of order all diagonal elements
have the value one.

The operation that results from the sequential operation of two individual operations
represented by matrices A and B is the products of the matrices: An interest-
ing case illustrating this relationship is counterclockwise rotation through an angle 
followed by clockwise rotation through the same angle, which corresponds to rotation by

. Because the rotation matrix for must be

(A.84)

Because the sequential operations leave the vector unchanged, it must be the case that
. We verify here that the first of these relations is obeyed:

(A.85)

Any matrix B that satisfies the relationship is called the inverse matrix of
A and is designated . Inverse matrices play an important role in finding the energies
of a set of molecular orbitals that is a linear combination of atomic orbitals.
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B.2 The Cn Groups
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B.1 The Nonaxial Groups

Cs E hs

A¿ 1 1 x, y, Rz x2, y2, z2, xy

A– 1 -1 z, Rx, Ry yz, xz

Ci E i

Ag 1 1 Rx, Ry, Rz x2, y2, z2, xy, xz, yz

Au 1 -1 x, y, z

C1 E

A 1

C4 E C4 C2 C3
4

A 1 1 1 1 z, Rz x2 + y2, z2

B 1 -1 1 -1 x2 - y2, xy

E b 1

1

i -1 - i

   i
r

- i -1 (x, y), (Rx, Ry) (yz, xz)

C2 E C2

A 1 1 z, Rz x2, y2, z2, xy

B 1 -1 x, y, Rx, Ry yz, xz

B.3 The Dn Groups

D2 E C2(z) C2(y) C2(x)

A 1 1 1 1 x2, y2, z2

B1 1 1 -1 -1 z, Rz xy

B2 1 -1 1 -1 y, Ry xz

B3 1 -1 -1 1 x, Rx yz
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B.4 The Cnv Groups

D6 E 2C6 2C3 C2 3C2
œ 3C2

fl

A1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 -1 -1 z, Rz

B1 1 -1 1 -1 1 -1

B2 1 -1 1 -1 -1 1

E1 2 1 -1 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

E2 2 -1 -1 2 0 0 ( )x2 - y2, xy

D5 E 2C5 2C2
5 5C2

A1 1 1 1 1 x2 + y2, z2

A2 1 1 1 -1 z, Rz

E1 2 2 cos 72° 2 cos 144° 0 (x, y), (Rx, Ry) (xz, yz)

E2 2 2 cos 144° 2 cos 72° 0 ( )x2 - y2, xy

D3 E 2C3 3C2

A1 1 1 1 x2 + y2, z2

A2 1 1 -1 z, Rz

E 2 -1 0 (x, y), (Rx, Ry) ( ), (xz, yz)x2 - y2, xy

D4 E 2C4 C21=  C2
42 2C2

œ 2C2
fl

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 -1 -1 z, Rz

B1 1 -1 1 1 -1 x2 - y2

B2 1 -1 1 -1 1 xy

E 2 0 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

C3v E 2C3 3sv

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x, y), (Rx, Ry) ( ), (xz, yz)x2 - y2, xy

C2v E C2 (xz)sv (yz)sv
œ

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy

B1 1 -1 1 -1 x, Ry xz

B2 1 -1 -1 1 y, Rx yz
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C4v E 2C4 C2 2sv 2sd

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 -1 -1 Rz

B1 1 -1 1 1 -1 x2 - y2

B2 1 -1 1 -1 1 xy

E 2 0 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

C5v E 2C5 2C2
5 5sv

A1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 -1 Rz

E1 2 2 cos 72° 2 cos 144° 0 (x, y), (Rx, Ry) (xz, yz)

E2 2 2 cos 144° 2 cos 72° 0 ( )x2 - y2, xy

C6v E 2C6 2C3 C2 3sv 3sd

A1 1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 1 -1 -1 Rz

B1 1 -1 1 -1 1 -1

B2 1 -1 1 -1 -1 1

E1 2 1 -1 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

E2 2 -1 -1 2 0 0 ( )x2 - y2, xy

B.5 The Cnh Groups

C2h E C2 i sh

Ag 1 1 1 1 Rz x2, y2, z2, xy

Bg 1 -1 1 -1 Rx, Ry xz, yz

Au 1 1 -1 -1 z

Bu 1 -1 -1 1 x, y

C4h E C4 C2 C3
4 i S3

4 sh S4

Ag 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 -1 1 -1 1 -1 1 -1 x2 - y2, xy

Eg b 1

1

i -1 - i 1 i -1 - i

i
r

(Rx, Ry) (xz, yz)- i -1 i 1 - i -1

Au 1 1 1 1 -1 -1 -1 -1 z

Bu 1 -1 1 -1 -1 1 -1 1

Eu b 1

1

i -1 - i -1 - i 1 - i

i
r (x, y)

- i -1 i -1 i 1



480 APPENDIX B Point Group Character Tables

B.6 The Dnh Groups

D3h E 2C3 3C2 sh 2S3 3sv

A1
œ 1 1 1 1 1 1 x2 + y2, z2

A2
œ 1 1 -1 1 1 -1 Rz

E¿ 2 -1 0 2 -1 0 (x, y) ( )x2 - y2, xy

A1
fl 1 1 1 -1 -1 -1

A2
fl 1 1 -1 -1 -1 1 z

E– 2 -1 0 -2 1 0 (Rx, Ry) (xz, yz)

D2h E C2(z) C2(y) C2(x) i s1xy2 s1xz2 s1yz2
Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy

B2g 1 -1 1 -1 1 -1 1 -1 Ry xz

B3g 1 -1 -1 1 1 -1 -1 1 Rx yz

Au 1 1 1 1 -1 -1 -1 -1

B1u 1 1 -1 -1 -1 -1 1 1 z

B2u 1 -1 1 -1 -1 1 -1 1 y

B3u 1 -1 -1 1 -1 1 1 -1 x

D4h E 2C4 C2 2C2
œ 2C2

fl i 2S4 sh 2sv 2sd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz

B1g 1 -1 1 1 -1 1 -1 1 1 -1 x2 - y2

B2g 1 -1 1 -1 1 1 -1 1 -1 1 xy

Eg 2 0 -2 0 0 2 0 -2 0 0 (Rx, Ry) (xz, yz)

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z

B1u 1 -1 1 1 -1 -1 1 -1 -1 1

B2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eu 2 0 -2 0 0 -2 0 2 0 0 (x, y)
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D6h E 2C6 2C3 C2 3C2
œ 3C2

fl i 2S3 2S6 sh 3sd 3sv

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz

B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx, Ry) (xz, yz)

E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0 ( )x2 - y2, xy

A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z

B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x, y)

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

D8h E 2C3
8 2C8 2C4 C2 4C2

œ 4C2
fl i 2S3

8 2S8 2S4 sh 4sd 4sv

A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 1 -1 -1 1 1 1 1 1 -1 -1 Rz

B1g 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 1 -1

B2g 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1

E1g 2 22 -22 0 -2 0 0 2 22 -22 0 -2 0 0 (Rx, Ry) (xz, yz)

E2g 2 0 0 -2 2 0 0 2 0 0 -2 2 0 0 ( )x2 - y2, xy

E3g 2 -22 22 0 -2 0 0 2 -22 22 0 -2 0 0

A1u 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 z

B1u 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 1

B2u 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1

E1u 2 22 -22 0 -2 0 0 -2 -22 22 0 2 0 0 (x, y)

E2u 2 0 0 -2 2 0 0 -2 0 0 2 -2 0 0

E3u 2 -22 22 0 -2 0 0 -2 22 -22 0 2 0 0
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D6d E 2S12 2C6 2S4 2C3 2S5
12 C2 6C2

œ 6sd

A1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 1 1 -1 -1 Rz

B1 1 -1 1 -1 1 -1 1 1 -1

B2 1 -1 1 -1 1 -1 1 -1 1 z

E1 2 23 1 0 -1 -23 -2 0 0 (x, y)

E2 2 1 -1 -2 -1 1 2 0 0 ( )x2 - y2, xy

E3 2 0 -2 0 2 0 -2 0 0

E4 2 -1 -1 2 -1 -1 2 0 0

E5 2 -23 1 0 -1 23 -2 0 0 (Rx, Ry) (xz, yz)

D4d E 2S8 2C4 2S3
8 C2 4C2

œ 4sd

A1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 -1 -1 Rz

B1 1 -1 1 -1 1 1 -1

B2 1 -1 1 -1 1 -1 1 z

E1 2 22 0 -22 -2 0 0 (x, y)

E2 2 0 -2 0 2 0 0 ( )x2 - y2, xy

E3 2 -22 0 22 -2 0 0 (Rx, Ry) (xz, yz)

D3d E 2C3 3C2 i 2S6 3sd

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 -1 1 1 -1 Rz

Eg 2 -1 0 2 -1 0 (Rx, Ry) ( ), (xz, yz)x2 - y2, xy

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2 1 0 (x, y)

B.7 The Dnd Groups

D2d E 2S4 C2 2C2
œ 2sd

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 -1 -1 Rz

B1 1 -1 1 1 -1 x2 - y2

B2 1 -1 1 -1 1 z xy

E 2 0 -2 0 0 (x, y), (Rx, Ry) (xz, yz)
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B.8 The Cubic Groups

Td E 8C3 3C2 6S4 6sd

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 -1 -1

E 2 -1 2 0 0 12z2 - x2 - y2, x2 - y22
T1 3 0 -1 1 -1 (Rx, Ry, Rz)

T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)

O E 8C3 3C21=  C2
42 6C4 6C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 -1 -1

E 2 -1 2 0 0 12z2 - x2 - y2, x2 - y22
T1 3 0 -1 1 -1 (Rx, Ry, Rz), (x, y, z)

T2 3 0 -1 -1 1 (xy, xz, yz)

Oh E 8C3 6C2 6C4 3C21=  C2
42 i 6S4 8S6 3sh 6sd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 -1 -1 1 1 -1 1 1 -1

Eg 2 -1 0 0 2 2 0 -1 2 0 12z2- x2 - y2, x2 - y22
T1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx, Ry, Rz)

T2g 3 0 1 -1 -1 3 -1 0 -1 1 (xz, yz, xy)

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 -1 -1 1 -1 1 -1 -1 1

Eu 2 -1 0 0 2 -2 0 1 -2 0

T1u 3 0 -1 1 -1 -3 -1 0 1 1 (x, y, z)

T2u 3 0 1 -1 -1 -3 1 0 1 -1
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B.9 The Groups C v and D h for Linear
Molecules

ˆˆ

Cqv E 2C£q ... qsv

A11©+2 1 1 1 z x2 + y2, z2

A21©-2 1 1 ... -1 Rz

E11ß2 2 2 cos Φ ... 0 (x, y), (Rx, Ry) (xz, yz)

E21¢2 2 2 cos 2Φ ... 0 ( )x2 - y2, xy

E31£2 2 2 cos 3Φ ... 0

... ... ... ... ...

Dqh E 2C£q ... qsv i 2S£q ... qC2

©g
+ 1 1 ... 1 1 1 ... 1 x2 + y2, z2

©-
g 1 1 ... -1 1 1 ... -1 Rz

ßg 2 2 cos Φ ... 0 2 -2 cos £ ... 0 (Rx, Ry) (xy, yz)

¢g 2 2 cos 2Φ ... 0 2 2 cos 2Φ ... 0 ( )x2 - y2, xy

... ... ... ... ... ... ... ... ...

©+
u 1 1 ... 1 -1 -1 ... -1 z

©-
u 1 1 ... -1 -1 -1 ... 1

ßu 2 2 cos Φ ... 0 -2 2 cos Φ ... 0 (x, y)

¢u 2 2 cos 2Φ ... 0 -2 -2 cos 2£ ... 0

... ... ... ... ... ... ... ... ...
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Answers to Selected End-of-Chapter Problems
APPENDIX C

Chapter 1
P1.1

P1.2 for 1000. K. The corresponding

values for 600. K and 200. K are -0.0368 and -0.116.

P1.3 and
Emax = 2.17871 10-18 J, 5.44676 10-19 J, and
2.42078 10-19 J for the Lyman, Balmer, and 
Paschen series.

P1.4 7.93 * 102 m s-1, 3.55 103 m s-1, 7.93 103 m s-1, and
2.51 105 m s-1 for 104 nm, 500. nm, 100. nm and 
0.100 nm; 959 K, 1.92 104 K, 9.59 104 K, and
9.59 107 K for 104 nm, 500. nm, 100. nm and 0.100 nm.

P1.5 2.17871 * 10-18 J

P1.6 electrons,

P1.7 at 1100. K, , at 6000. K, 

P1.8

P1.9

P1.10 , -0.130, and -0.933 at 5000. K,

1500. K, and 300. K.

P1.11 26 K for He and 2.6 K for Ar

P1.12

P1.13 1.26 10-10 m for H2 at 200. K and 5.93 10-11 m for
H2 at 900. K. For Ar, 2.83 10-11 m and 1.33 10-11 m
at 200. K and 900. K, respectively.

P1.14 4.26 10-6 m, 2.50 10-6 m and 4.64 10-7 m for
675 K, 1150. K and 6200. K

P1.15

P1.16 16.7 V

P1.17 6.5647 10-5 m; 3.6471 10-5 m

P1.18 ,

P1.19 h 7.0 * 10-34 J s, 4.0 * 10-19 J or 2.5 eV

P1.20

P1.21 ,

P1.22

P1.23 1.21569 10-5 m, 9.11768 10-6 m

P1.24

P1.25 ,

P1.27 a. , b. 7.71 * 10173.50 * 107  J s-1

0.0475 m1.30 * 105 J s-1

6.23 * 1018 s-1

**
5.08 * 1020

v = 5.87 * 105 m s-1n Ú 1.26 * 1015s-1

3.95 * 1026 W

w LL
n = 2.18 * 1014s-1l = 0.992 nm

**

4.31 cm

***

**
**

5.82 * 106 m s-1,1.54 * 10-17 J

E - Eapprox

E
= -0.0369

0.152 m s-1

0.0467 m s-1

0.9815 J m-31.108 * 10-3J m-3

v = 7.06 * 105 m s-1
E = 2.27 * 10-19 J8.18 * 1015

*
**

*
**

*
**

= 109,677 cm-1, 27419.3 cm-1, and 12186.3 cm-1n~

Eosc - kBT

Eosc
= -0.0219

¢vH2
= 1.131 m s-1, 

¢v

v
= 4.55 * 10-4

Chapter 2
P2.2

P2.6 a. , ; 

b. x = , y = ,

P2.9 a. ; b. 

c. ,  d. 

e.

P2.12 a. no; b. yes, ; c. yes, -4;
d. yes ; e. no

P2.14 a. yes, -2; b. yes, -4i; c. yes, -6

P2.16 ,

P2.18

P2.26

P2.35 a. , b. , c. -1, d. 

Chapter 4
P4.1 a. , b. 

c.

P4.5 c. 3/16, 3/8, and 7/16, d. 

P4.9 ,  ,  

P4.10

P4.12 a. 7.07, b. 24.5, c. 0.223

P4.15 6.34 * 10-6 m

P4.16 1.01 * 1036

P4.20 a. 8.25 * 10-38 J, b. 1.99 * 10-12

P4.22

P4.25 a. 2, b. 3

P4.29 3.0 * 10-9 m

P4.34 a. 0.045, b. 0.00041

5.84 * 10-22, 0.141

l = 6.67 * 10-11 m

v = 5.14 * 1017 s-1

2b2

7

b

2A
30

b

8E9 = 43E1>16

3.85 * 10-11

1.58 * 10-31 Ja = 7.79 * 1010

A
5

2
 (1 + i)

1 + 22
(2 + 2i)26- 2i

for n2>n1 = 0.750: T = 316K
for n2>n1 = 0.175: T = 127K

n8

n1
(125 K) = 0.0135, n8

n1
(750. K) = 2.76

n4

n1
(125 K) = 0.874, n4

n1
(750. K) = 3.10

t0 = -5.50 * 10-4 sx =  0 .796 m

-(a2>p2)
-(4 p2)>a2

A
5

2
 exp (-1.249i)

226

5
 exp (1.125i)4 exp (-0i)

2 exp (i p>2)261 exp (0.876i)

z = 5>22
5

2
-

5

2

w = 0.322 radiansu = 1.26 radiansr = 211

N = A
1

d

Numerical answers to problems are included here. Complete solutions to selected 
problems can be found in the Student’s Solutions Manual.



Chapter 5
P5.1 e. = 0.1 for E = 1.5 10-19 J and 0.02 for

E = 1.1 10-19 J, f. 0.2

P5.2 ,

P5.3 b. , c. , d. 7.6

P5.4

P5.5

P5.6 ,

P5.7 b. 4.76 10-20 J, 1.86 10-19 J, and 3.95 10-19 J

P5.8 reflection 0.016, transmission 0.98

Chapter 6
P6.5 c. for 1.0 10-9 s

for 1.0 10–11 s, 8.0 109 s–1 and 0.265 cm–1

P6.10

P6.12 E = 0.953 eV

P6.18 c.

P6.23

Chapter 7
P7.1 a. 0 b. 

P7.3 1, 7.04, 4.09, 

P7.4 0.420, 0.752, 0.991, 1.20, 1.39, and 1.57 radians as well as
minus these values

P7.5 vibrational: , rotational: 

P7.8 ,

P7.9 0, 1.23, 4.50, 17.2

P7.13 E0 = , E0 kBT =

P7.14 3.15 * 1013 s-1, 9.52 * 10-6 m

P7.16 324 kg s-2;

P7.18 a. 18.5 N m-1

b. 2.48 * 10-33 J

c. 4.85 * 10-5 J

d. 9.76 * 1028

P7.19 a. 4.618 pm from F

b. 24.73 pm from D

P7.22 , , 

P7.23 a. , b. 

P7.24 For I2: 0.357, 0.127, 891 K

For H2: 6.78 * 10-10, 4.60 * 10-19, 1.83 * 104 K,

P7.25 a. 0 b. 4 .16 * 10-22 J

6.92 * 1013 s-12.29 * 10-20 J

ƒ v ƒ > ƒ vrms ƒ = 0.946 309 m s-15.56 * 10-21J

0.742 kg

2.92 * 10-15 m s-1
6.75 * 10-12>2.78 * 10-32 J

2.55 * 10-2 m575Nm-1

1.25 * 1012 s-11.24 * 1014 s-1

p

7.95 * 10-2

2.59 * 10-22 J

¢x = 8.5 * 10-34 m

z = ; 9.42 *  10-3 m

l

b
= 0.00314p = 2.11 * 10-23 kgm s-1, 

**
¢n = 8.0 * 107 s-1, 0.00265 cm-1*

***
STM: 1.3 * 109A>m2Cu: 2.8 * 106A>m2

l = 368 nm

l = 239 nm

¢Pn=11(x)

8¢Ptotal(x)9 = 0.18
¢Ptotal(x)

8Ptotal(x)9 = 0.15

TC = 4.4 * 103 KTSi = 900 K

*

*` F
A
` 2

P7.31 for n = 0, 1, and 2: , 0.103, and 0.133

P7.34 a. , 3.66, 

, 7.17

b. , ,

P7.35 a. 0, 9.70 * 10-24 J, 2.91 * 10-23 J, 5.82 * 10-23 J,
9.70 * 10-23 J

b. 0, 4.85 * 10-24 J, 1.94 * 10-23 J, 4.36 * 10-23 J,
7.76 * 10-23 J

P7.37 8.37 * 10-28 kg, 4.60 * 10-48 kg m2, 1.49 * 10-34 J s; 
2.42 * 10-21 J

Chapter 8
P8.1

P8.2 250. N m-1, 3.66 * 10-14 s

P8.3 2.3 cm, 0.54 cm

P8.5 C-O 116.227 pm, O-S 156.014 pm

P8.7

P8.9

P8.14 7.5229 cm-1, 4.5108 * 1011 s-1

P8.16

P8.17 ,

P8.18 ,

P8.20

P8.23 ;

P8.25 0.913

P8.28 1.06 * 1013 s-1, 3.52 * 10-21 J

P8.30 ,

P8.31 123.0 pm

P8.33 , , 

7.943 * 10-23 J

4.718 * 10-34 J s1.401 * 10-46  kg m2

1.29 * 10-20J , 0 .0805 eV

2.57 * 10-14s3.89 * 1013 s-1

D2: 7.368 * 10-19 JH2: 7.240 * 10-19 J

1.56660 * 10-10 m

3.7 * 102 cm8.5 * 105 cm

1.4880 * 10-10m1.4243 * 10-10m

n2>n0 = 0.127 and 0.539For I2 at 300. K and 1000. K, 

n1>n0 = 0.357 and 0.734For I2 at 300. K and 1000. K, 

n2>n0 = 1.52 * 10-4 and 0.0715

For F2 at 300. K and 1000. K, 

n1>n0 = 0.0123 and 0.267

For F2 at 300. and 1000. K, 

EHF
0 - EDF

0

kBT
= 2.75

EDF
0 = 2.98 * 10-20J

EHF
0 = 4.11 * 10-20J

1.09769 * 10-10m

Error1n0:22,1n0:32 = -2.1%,-4.4%

n0:3 = 2.48 * 1014 s-1

n0:1 = 8.61 * 1013 s-1, n0:2 = 1.69 * 1014 s-1

E2 = 1.41 * 10-19 J, E3 = 1.93 * 10-19 J

E0 = 2.94 * 10-20J, E1 = 8.65 * 10-20 J

Trot

Tvib
= 16.6

Tvib = 1.11 * 10-14 sTrot =  1 .85 * 10-13 s

Evib = 2.97 * 10-20 J

Erot = 1.51 * 10-20 J

0.0595
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P8.35 , or 
1.034 103 kJ mol-1

P8.36 11

P8.39 8.6%

P8.40 267.3 pm

P8.41

P8.42 267.3 pm

Chapter 9
P9.1 most energetic: , 

least energetic: , ,

P9.3 0.3849

P9.4

P9.5 0.439

P9.6

P9.7

P9.9 H: 2.179 * 10-18 J

He+: 8.717 * 10-18 J

Li2+:19.61 * 10-18 J

Be3+: 34.87 * 10-18 J

P9.10

P9.11 19, 0.03767 eV

P9.12 1.4 10-2, 0.83, 0.999

P9.13 2.65 a0

P9.14 145 kg m-3; 4.00 * 1017 kg m-3; 0.0789 kg m-3;

P9.15

P9.16 0,

P9.17

P9.19

P9.20

P9.21

P9.27 1.26

P9.29

P9.33 0.81, 0.12, 6.2 10-3

Chapter 10
P10.2

P10.6 ,

P10.7 , 0

P10.8 aoptimal =
mee

2

4pe0U2

2U2

2U22U2

54.7 �and 125.3 �

*
13>22a0,a0

5a0

ILi2 + = 122.4 eV, IBe3 + = 217.7 eV
IH = 13.61 eV, IHe + = 54.42 eV, 
30 ma2

0

8F92pz = -  
e2

48pe0a2
0

8F91s = -  
e2

2pe0a2
0

a2
0

13>421a022

*

8r9Li2 + = 11>22a0, 8r9Be3 + = 13>82a0

8r9H = 13>22a0, 8r9He + = 13>42a0,

1.5a0

r = 4a0

-4.358 * 10-18J

5331.57 cm-1
152233.1 cm-182258.5 cm-1

12186.4 cm-127419.5 cm-1109,678 cm-1

5.775 * 10-34 J s

*
1.717 * 10-18 J/molecule1.738 * 10-18 J Chapter 11

P11.7

P11.8

P11.10 b) 3.86 * 10-8, 8.67 * 10-5, 4.65 * 10-5

P11.11 364

P11.12 Lyman

Balmer

Paschen

P11.13

P11.14 39 eV

P11.15 b. 

P11.18

P11.23

P11.28 4, 3, 2, and 1

P11.30 3.4 eV

P11.31

P11.33 a. 0, 3/2, b. 4, 3/2

c. 1, 1, d. 2, 1/2

P11.35 3.65, 4.70

E A5s2S B = 6.597 * 10-19 J = 4.117 eV

E A4p2P B = 6.015 * 10-19 J = 3.754 eV

E A4d2D3>2 B = 6.869 * 10-19 J = 4.287 eV

E A3d2D3>2 B = 5.797 * 10-19 J = 3.618 eV

E A5s2S1>2 B = 6.597 * 10-19 J = 4.118 eV

E A4s2S1>2 B = 5.048 * 10-19 J = 3.150 eV

E A3p2P3>2 B = 3.373 * 10-19 J = 2.105 eV

E A3p2P1>2 B = 3.369 * 10-19 J = 2.102 eV

3.08255 * 1015 s-1, 3 .08367 * 1015 s-1

44°

lmin = 121.6nm

nmin = 2.466 * 1015s-1 = 82258 cm-1

Emin = 1.634 * 10-18J

lmax = 91.18nm
nmax = 3.288 * 1015s-1 = 109678 cm-1

Emax = 2.178 * 10-18J

12186.4 cm-1 l = 820.6 nm

9139.8 cm-1 l = 1094 nm

7799.3 cm-1 l = 1282 nm

5331.5 cm-1 l = 1876 nm

27419 cm-1 l = 364.7 nm

23032 cm-1 l = 434.2 nm

20565 cm-1 l = 486.3 nm

15233 cm-1 l = 656.5 nm

109678 cm-1 l = 91.18 nm

97491 cm-1 l = 102.6 nm

82258 cm-1 l = 121.6 nm

-  
12822 e

243
a0

¢n
n

= 3.33 * 10-6

¢n = 1.70 * 109 s-1
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Chapter 12
P12.1 b. 0.577, 0.875, 0.970

P12.9

P12.10 bonding MO: 0.72 on F, 0.28 on H

antibonding MO: 0.28 on F, 0.72 on H

P12.15

P12.16 S = 0.15: -11.8, -14.9

S = 0.30: -9.23, -16.0

S = 0.45: -5.25, -16.8

P12.21 S = 0.075: -13.4, -18.7

S = 0.18: -12.4, -19.1,

S = 0.40: -7.65, -20.1

P12.22 S = 0.075: 0.97

S = 0.18: 0.89,

S = 0.40: 0.74

Chapter 13
P13.11 a. , b. 

Chapter 14
P14.2 1.263 μm, 757.86 nm

P14.3 1.14, 0.456

P14.5 a. 0, 0.981; 1, 0.0196; 2, 1.96 * 10-4; 3, 1.31 * 10-6;
4, 6.54 * 10-9; 5, 2.61 * 10-11

b. 0, 0.135; 1, 0.271; 2, 0.271; 3, 0.180; 4,0.902; 5, 0.361

P14.6 n = 152

0.213.34 * 10-19

8.67 * 10-30 C m = 2.6 D

For e1 = -20.3 eV, c1F = 0.76, c1H = 0.39

For e2 = -5.93 eV, c2F = -0.82, c2H = 1.1

P14.7 a. n = 17, b. 7.34 * 10-19 J, c. n = 16, 7.21 * 10-19 J

P14.8 a. n = 15, b. 325 cm-1

P14.9 a. 4.72 nm, b. 3.61 nm

P14.10 0.5 nm, 5.5 * 1012 s-1; 1.0 nm, 8.6 * 1010 s-1;
2.0 nm, 1.3 * 109 s-1; 3.0 nm, 1.2 * 108 s-1;
5.0 nm, 5.5 * 106 s-1

P14.11 2.0 nm, 9.45 * 1010 s-1; 7.0 nm, 5.1 * 107 s-1;
12.0 nm, 2.0 * 106 s-1

Chapter 16
P16.3 C2h

P16.4 3 representations, one 2-D and two 1-D

P16.5 a. 30, b. 7, A2u, E1u, c. A1u singly degenerate, each E1u two
fold degenerate, d. 12, A1g, E1g, E2g, e. E1g and E2g are
doubly degenerate, f. none

P16.6 a. 6, b. 6, 2A1, 2E, c. each A1 singly degenerate, each E two
fold degenerate, d. 62, A1, 2E, f. all

P16.10 D2d

P16.12 Cs

P16.13 red = A1 + A2 + B1 + B2

P16.15 D3h

P16.18 C3v

P16.21 red = A1 + 2A2 + E

P16.24 5 representations, four 1-D and one 2-D

≠

≠
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Chapter 17
P17.3 5.87 T, 23.3 and 14.5 T

P17.6 -2.04 and 0.680 ppm
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Note: Page numbers in italic type refer to tables and those in boldface type refer to figures; those followed by n indicate footnotes.

A
Absorption, 141–143, 142

dependence of transition rate between states on frequency

and, 161–164, 164, 165

Acceleration

angular, 118, 118

centripetal, 118

Acceptor molecule, FRET and, 327

Acetate anion, resonance structures for, 369

Acetylene, bond distance in, 349

Activation energy, 82, 344, 371–372, 372, 373

AES. See Auger electron spectroscopy (AES)

AFM. See Atomic force microscope (AFM)

Allene

bond distance in, 362

reaction energy of, 348, 364

Ammonia

bond distances and bond angles in, 349

dipole moment for, 350, 350, 368

electrostatic potential surface for, 379, 379

planar, 380

proton affinity of, 348, 365

pyramidal, 380

symmetric stretching frequency in, 350, 350

Angular acceleration, 118, 118

Angular frequency, 22

Angular momentum

quantization of, 129–131

total, 224

vector model of, 134, 135

Angular motion, classical rigid rotor and, 117–119, 117–119

Angular velocity, 118

Anharmonic potential, 144

Aniline, proton affinity of, 348, 365

Antiaromatic molecules, 299, 299

Antibonding molecular orbitals, 253

Anti-Stokes frequency, 160

Anti structures, 340, 340, 341, 341

Antisymmetric combinations, 325

AOs. See Atomic orbitals (AOs)

Aromatic molecules, Hückel model and, 295–296, 296

Associativity, of operators, 397

Asymmetric wave functions, 194–195

Atmosphere, sunlight interaction with molecules in, 238–239

Atom(s)

embedded in a molecule, chemical shift for, 428–429, 429

shell model of, 173, 187, 187–188, 188

Atomic absorption spectroscopy. See Atomic spectroscopy

Atomic charges, 369, 369–371

Atomic force microscope (AFM), 77, 80–82, 81

Atomic orbitals (AOs), 247

as basis for representation, 405

coefficients of, in heteronuclear diatomic molecules,

265–268, 266, 267

delocalized bonding model of chemical bonds and, 286,
286–287, 287

Gaussian functions and, 357, 357–358

linear combination of atomic orbitals approximation and,

345–346

in many-electron molecules, 261, 262, 263

molecular symmetry and, 396

on oxygen, 410, 410–411, 411

variational parameter in, 250

Atomic spectroscopy, 225–230

analytical techniques based on, 227, 227–230, 229

essentials of, 225–227, 227

Aufbau principle, 205

Auger electron spectroscopy (AES), 236, 237, 237

Aziridine, bond distance in, 363
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B
Band gaps, 73, 300

Barrier width, 76, 77

Basis functions, 200, 406

for molecular orbitals, 247

Beer-Lambert law, 148

Beer’s law, 319

Bent, Henry, 281

Bent’s Rule, 281–282, 285

Benzene, energy levels and molecular orbitals for, 297–298, 298

Beryllium hydride

hybridization model and, 284

molecular orbital model and, 289

Binnig, Gerd, 77, 80

Biomolecules

conformation of, 326, 326

FRET determination of conformation of, 327–328, 329

Bits, 107

Blackbody radiation, 3, 3–4

“Blue shift,” 230

B3LYP/6-31G* density functional model. See also

Theoretical model(s)

activation energy and, 372, 373

bond distances and, 361–362, 362

conformational energy and, 367, 367

dipole moments and, 369

reaction energy and, 364, 364–365, 365

transition-state geometry and, 372, 372

Bohr, Niels, 11–13, 45, 95, 104

Bohr model of hydrogen atom, 11–14, 12, 13

Boltzmann distribution, 19

Bond angles, 275

Bond distances

equilibrium, 361–362, 362, 362, 363

in one-heavy-atom hydrides, 349, 349

in two-heavy-atom hydrides, 349, 349–350

Bond energy, 144, 145, 245

bond order and, 263–265, 264

Bonding molecular orbitals, 253

Bond length

bond order and, 263–265, 264

motion and, 119, 120

Bond location, graphical models and, 377, 377, 378

Bond order, 263–265, 264

Bond rotation

alternatives to, 368, 368

conformer interconversion by, 368

Born-Oppenheimer approximation, 246, 314, 344–345

Boron

diatomic, molecular configuration and ground-state term

for, 312

as dopant, 302

Boundary conditions, particle in a box and, 53

Bromine, diatomic, molecular constants for, 146

1,3-Butadiene

bond distance in, 362

conformational energy in, 367

energy levels and molecular orbitals for, 295–296, 296

n-Butane

central carbon-carbon bond in, 340, 340, 341, 341

conformational energy in, 367

1-Butene, conformational energy in, 367

tert-Butylcyclohexane, conformational energy in, 367

2-Butyne, reaction energy of, 348, 364

But-1-yne-ene, bond distance in, 362

But-1-yne-3-ene, bond distance in, 362

C
Calcium, electron configuration of, 205

Carbon

diatomic, molecular configuration and ground-state term

for, 312

nuclear parameters for, 424

Carbon—carbon bond types, 281, 281

Carbon dioxide, assignment to point group, 397

Carbon monoxide

diatomic, molecular constants for, 146

dipole moment for, 368
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gas-phase, vibration spectra for, 150, 150

symmetric stretching frequency in, 350, 350

Carbon tetrachloride, bond distances and bond angles in, 349

Center of mass coordinates, 114

Centripedal potential, 174

Centripetal acceleration, 118

Character(s), 406

Character tables, 405–406, 409, 410

Chemical bonds. See also entries beginning with term Bond

delocalized bonding model of, 286–288, 286–288,
289–292, 290–292

in diatomic molecules. See Chemical bonds in diatomic

molecules

equivalent, 325

hybridization to describe, 284, 284–285, 285

localized, describing using hybridization, 278–281, 279, 281

localized bonding models of, 276, 276, 289–292,

290–292, 325

Chemical bonds in diatomic molecules, 245–269

bond order, bond energy, and bond length and, 263–265, 264

electronic structure of many-electron molecules and,

260–263, 261–263

heteronuclear, 265–268, 266, 267, 268

homonuclear, 256–260, 257, 258, 259, 260

hydrogen, 249, 249–256, 250, 252–256

molecular and atomic orbitals and, 245–249, 247, 248

molecular electrostatic potential and, 268–269, 269

Chemical reactions. See also Reaction energies

activation energies for, 372

bond distances in transition states for, 371

diffusion-controlled, 344

exothermic, 343, 343

kinetically controlled, 344, 344

orbital symmetry control of, 375, 376

thermodynamically controlled, 343, 344

tunneling in, 82, 82

Chemical shift, 236, 427

for an atom embedded in a molecule, 428–429, 429

for an isolated atom, 427–428, 428

electronegativity of neighboring groups and, 429–430

magnetic fields of neighboring groups and, 430,
430–431

Chemical shift imaging, 442

Chemically equivalent nuclei, 436, 437

Chlorine, diatomic, molecular constants for, 146

Chromium, electron configuration of, 205, 206

Chromophores, 317

parameters for, 320, 320

CID method, 353

Circular dichroism spectroscopy, 332–333, 333

CISD methods, 353–354, 354

CIS method, 353

Classical limit, 55

Classical nondispersive wave equation, 24–25

Classical waves, 21–25, 22–24

Classically forbidden area, 70, 70

Clebsch-Gordon series, 220

Coherent photon source, 231

Coherent radiation sources, 143

Commutation relations, 91–93

Commutators, of operators, 92

Completeness, 32

Complex conjugate, 25

Computational chemistry, 339–382

Gaussian basis sets and. See Gaussian basis sets

graphical models and. See Graphical models

Hartree-Fock theory and. See Hartree-Fock theory

improvements to Hartree-Fock theory and, 352–357

potential energy surfaces and. See Potential energy

surfaces

Conduction bands, 73, 83

Configuration(s). See Electron configurations

Configuration integration models, 353, 353–354, 354

Conformational energy differences, theoretical models and,

367, 367, 367

Conformers, 363

Conjugated molecules, Hückel model and, 294

Constructive interference, 23

Continuous energy spectrum, 18, 116, 316

Continuous wave functions, 40, 40–41
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Contracted functions, 358, 358–359

Copenhagen school, 104

Copper, electron configuration of, 205, 206

Core electrons, 70–71, 71

Correlated models, 360

Correlation energy, 206, 347

Correspondence principle, 56

Coulomb integral, 240

Coulomb potential, 173

Coupling constant, 433

CPK model, 377

C2 rotation axes, 396

Cyclobutane

bond distance in, 362

reaction energy of, 364

Cyclobutene

bond distance in, 362

reaction energy of, 348

Cyclohexane, conformational energy in, 367

Cyclopentadiene, bond distance in, 362

Cyclopropane

bond distance in, 362

reaction energy of, 348, 364

Cyclopropene

bond distance in, 362

reaction energy of, 348, 364

Cylindrical waves, 22

D
Davisson-Germer experiment, 7

de Broglie, Louis, 6

de Broglie relation, 6

Decay length, 76

Degeneracy, 178

of energy levels, 19, 58

of a term, 219

Degenerate energy level, 58

Delocalization, 71

Delocalized bonding model, 286–288, 286–288

localized bonding model versus, 289–292, 290–292

Delocalized electrons, 246

Density functional models, 355–357

Density functional theory, 355

Dephasing of spins, 439

Destructive interference, 23

Deterministic outcomes, 45

Deuterium, diatomic, molecular constants for, 146

Diamagnetic response, 427

Diamond, as insulator, 73

Diatomic molecules

assigning signs to terms of, 333, 333–334, 334

chemical bonds in. See Chemical bonds in diatomic

molecules

dipole moment for, 368, 368

electronic transitions in, 313, 313–314

molecular configuration and ground-state term for, 312, 312

molecular constants for, 146

symmetric stretching frequencies in, 350, 350

vibrational fine structure of electronic transitions in,

314–316, 315

vibrational state population for, 143, 143

Diazabicyclooctane, proton affinity of, 348, 365

Diels-Alder cycloaddition, 375

Diffraction, 7

of particles by a double slit, 8–10, 8–11

Diffuse functions, Gaussian basis sets incorporating, 360

Diffusion-controlled reactions, 344

Diimide, bond distance in, 349

Dimension of a representation, 406–409, 408, 410

Dimethylamine, proton affinity of, 365

cis-1,3-Dimethylcyclohexane, conformational energy 

in, 367

Dimethyl ether

bond distance in, 363

reaction energy of, 348, 364

1,4-Diphenyl-1,3-butadiene, -bonded network in, 71,
71–72, 72

1,6-Diphenyl-1,3,5-hexatriene, -bonded network in, 71,
71–72, 72

1,8-Diphenyl-1,3,5,7-octatetraene, -bonded network in, 71,
71–72, 72

p

p

p
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Dipole approximation, 161, 225

Dipole moments, 368, 368–369, 369

limiting Hartree-Fock models and, 350, 350–351

permanent and dynamic, 141

transition, 147, 331

Dirac, P. A. M., 344

Discrete energy spectrum, 18

Donor molecule, FRET and, 327

Doping, 302

Doppler broadening, 230

Doppler effect, 230, 230

Double-electron promotions, 353

Dynamic dipole moments, 141

E
Effective nuclear charge, 192

Effective potential, 174, 174–175

Eigenfunctions, 29, 42

of hydrogen atom, 177

orthogonal, 30–32, 31

particle in a box and, 54, 54, 58–63

of quantum mechanical operators, complete set formed by,

32–34, 33

Eigenvalues, 29, 42

particle in a box and, 58–63

for total energy, 175, 175–180, 179

Einstein, Albert, 5, 45, 104, 105

Electrical conductors, 72, 72–73, 73

Electromagnetic spectrum, 140, 140

Electron(s)

bond order and, 263–265, 264

configuration and. See Electron configurations

core, 70–71, 71

delocalized, 246

indistinguishability of, 194–198

lone pairs of, visualizing, 379, 379–380

paired, 218

unpaired, 218

valence, 70–71, 71

Electron affinity, 204–205

Electron configurations, 196–198, 217

energy of, orbital and spin angular momentum and,

217–224, 218–220, 221, 222

with paired and unpaired electron spins, 239–241

Electron correlation, 192

Electron density, graphical models and, 375–377, 377

Electron density surface, 376, 377

Electronegativity, 207, 207–208

Electron-electron repulsion, 192

Electronic charge, localization and delocalization, molecular

wave functions and, 255

Electronic Schrödinger equation, 345

Electronic spectroscopy, 309–334

energy of electronic transitions and, 309–310

fluorescence resonance energy transfer and, 327–330,

328–330

fluorescence spectroscopy and analytical chemistry and,

322–323

intersystem crossing and phosphorescence and, 321,
321–322

linear and circular dichroism and, 331–333, 331–333

molecular term symbols and, 310–312, 312

photoelectron, ultraviolet, 323–325, 324

sign of diatomic molecule terms and, 333, 333–334, 334

single molecule, 325–327, 326

singlet-singlet transitions and, 319–321, 320, 321

spectral range of, 140

transitions among ground and excited states and, 

318–319, 319

transitions between electronic states of diatomic molecules

and, 313, 313–314

UV-visible light absorption in polyatomic molecules and,

316–318, 316–318

vibrational fine structure of electronic transitions in

diatomic molecules and, 314–316, 315

Electron spin, 94, 193–194

Electrostatic potential

graphical models and, 378–379

molecular, 268–269, 269

Electrostatic potential maps, graphical models and, 380,
380–381, 381

Emission, spontaneous and stimulated, 231
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Energy

activation, 344, 371–372, 372, 373

bond. See Bond energy

bond dissociation, homolytic, 347, 347–348

conformational differences in, theoretical models and, 367,

367, 367

correlation, 206, 347

corresponding to hydrogen molecular wave functions,

251–253, 252, 253

distribution associated with dominant configuration. See

Boltzmann distribution

of electron configurations, orbital and spin angular

momentum and, 217–224, 218–220, 221, 222

electron configurations with paired and unpaired electron

spins and, 239–241

of electronic transitions, 309–310

Gibbs. See Gibbs energy

Hartree-Fock, 346

of light, 5

of nuclei of nonzero nuclear spin in a magnetic field, 425,
425–427

orbital, 192

reaction, 347, 347–349, 348

theoretical models and, energies, enthalpies, and Gibbs

energies and, 365–366

total. See Total energy

zero point, 54, 121

Energy band, 73

Energy barriers

potential, 74, 74–75, 75

tunneling through, 75–76, 76, 77

Energy levels, 20–21, 21

degeneracy of, 19, 58, 126, 129

degenerate, 58

Hückel model and, 295–296, 296

Energy spectra

continuous, 18, 116

discrete, 18

Entangled states, 104–107, 105, 106

Enthalpy, theoretical models and, energies, enthalpies, and

Gibbs energies and, 365–366

Equilibrium bond distances, 361–362, 362, 362, 363

Equilibrium geometries

finding, 362–363

limiting Hartree-Fock models and, 349, 349–350

Equivalent bonds, 325

Ethane, bond distance in, 349

Ethanol, ball-and-stick model of, 276, 276

Ethylene, bond distance in, 349

Euler formula, 115

Exchange integral, 240

Excited states, transitions among, 318–319, 319

Exothermic reactions, 343, 343

Expansion coefficients, 43

Expectation values, 42–45, 44

F
Finite depth box, particle in, 69–70, 70

Fluorescence, 320–321, 321

Fluorescence spectroscopy, 322–323

Fluorescent resonance energy transfer (FRET), 327–330,

328–330

Fluorine

bond distance in, 349

diatomic, molecular configuration and ground-state term

for, 312

diatomic, molecular constants for, 146

symmetric stretching frequency in, 350, 350

Force constant, 114

Formaldehyde

bond distance in, 349

dipole moment for, 368

ground-state configuration of, 317, 317

highest energy occupied molecular orbital in, 374–375, 375

symmetry adapted molecular orbitals for, 293, 293–294, 294

Formaldimine, bond distance in, 349

Formamide, bond distance in, 363

Formic acid, bond distance in, 363

Fourier sine and cosine series, 32–33

Fourier transform, of detector coil signal, 446

Fourier transform infrared (FTIR) spectroscopy, 157,
157–159, 158

Fourier transform NMR spectroscopy, 444–447, 444–448
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Franck-Condon factor, 315

Franck-Condon principle, 315, 315

Free induction decay, 445

Frequency

dependence of transition rate between states on, in

spectroscopy, 161–164, 164, 165

of oscillation, 121

of waves, 22

FRET. See Fluorescent resonance energy transfer (FRET)

Frontier molecular orbitals, 374–375, 375

orbital symmetry control of, 375, 376

Frozen core approximation, 353

Frozen orbital approximation, 324

FTIR spectroscopy. See Fourier transform infrared (FTIR)

spectroscopy

Full configuration interaction, 353

Furan, bond distance in, 363

G
Gallium arsenide, 83

Gauche structures, 340, 340, 341, 341

Gaussian basis sets, 357, 357–360, 358

incorporating diffuse functions, 360

minimal, 358, 358–359

polarization, 360, 360

split-valence, 359, 359

Gaussian functions, 357, 357–358

Geometry

equilibrium. See Equilibrium geometries

potential energy surfaces and, 341, 341–342

Gibbs energy, theoretical models and, 365–366

Good quantum numbers, 216

Graphical models, 374–381

bond location and, 377, 377, 378

electron density and, 375–377, 377

electrostatic potential and, 378–379

electrostatic potential maps and, 380, 380–381, 381

molecular orbitals and, 374–375, 375

molecule size and, 377–378, 378

orbital symmetry control of chemical reactions and, 375, 376

visualizing lone pairs and, 379, 379–380

Grotrian diagrams, 226, 228

Ground states, 71–72

transitions among, 318–319, 319

Group(s), of symmetry operators, 397

Group frequencies, 143, 149, 149

g symmetry, 250, 256, 257

H
Hamiltonians, 42

Harmonic frequencies, 350

Harmonic functions, spherical, 131–133, 132–134

Harmonic oscillator, classical, 113–117, 114, 115, 141

Harmonic potential, 144

Hartree-Fock approximation, 345

Hartree-Fock energy, 346

Hartree-Fock equations, 345

Hartree-Fock models, 261, 346. See also Theoretical model(s)

activation energy and, 372, 373

bond distances and, 361–362, 362

conformational energy and, 367, 367

dipole moments and, 369

limiting. See Limiting Hartree-Fock models

reaction energy and, 364, 364–365, 365

transition-state geometry and, 371, 372

Hartree-Fock self-consistent field method

periodic table trends and, 207–209, 207–209

for solving Schrödinger equation, 198, 199–206, 200, 201,

202–203, 204, 205, 205

Hartree-Fock theory, 344–351

Hartree-Fock approximation and, 345

Hartree-Fock energy and, 346

Hartree-Fock equations and, 345–346

limiting Hartree-Fock models and. See Limiting Hartree-

Fock models

Heisenberg, Werner, 14

Heisenberg uncertainty principle, 96–102, 97

expressed in terms of standard deviations, 100–102, 102

Helium

diatomic, molecular configuration and ground-state term

for, 312

Schrödinger equation for, 191–193, 192
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Helium-neon laser, 231–234, 231–234

Hermite polynomials, 120

Hermitian operators, 41, 41–42

Heteronuclear diatomic molecules, chemical bonds in,

265–268, 266, 267, 268

Heterostructures, 83

Highest energy occupied molecular orbital (HOMO),

374–375, 375

HOMO. See Highest energy occupied molecular orbital

(HOMO)

Homolytic bond dissociation energies, 347, 347–348

Homonuclear diatomic molecules, chemical bonds in,

256–260, 257, 258, 259, 260

Hückel model, 295–296, 296

solids and, 300, 300–301, 301

Hückel rules, 298

Human genome, sequencing of, 322–323

Hund’s rules, 223

Hybridization

describing chemical bonding using, 284, 284–285, 285

describing localized bonds using, 278–281, 279, 281

Hybrid orbitals, 278–281, 279, 281

for nonequivalent ligands, 281–284, 282, 284

Hydrazine, bond distance in, 349

Hydrides

one-heavy-atom, structures of, 349, 349

two-heavy-atom, structures of, 349, 349–350

Hydrogen

bond distances and bond angles in, 349

diatomic, chemical bonds in, 249, 249–256, 250, 252–256

diatomic, molecular configuration and ground-state term

for, 312

diatomic, molecular constants for, 146

molecular orbital energy diagram and, 250

nuclear parameters for, 424

symmetric stretching frequency in, 350, 350

Hydrogen atom

Bohr model of, 11–14, 12, 13

eigenfunctions of, 177

orbitals of, 177, 181–183, 181–183

solving Schrödinger equation for, 174, 174–175

Hydrogen bromide, diatomic, molecular constants for, 146

Hydrogen chloride, diatomic, molecular constants for, 146

Hydrogen cyanide

bond distance in, 349

dipole moment for, 368

Hydrogen fluoride

bond distances and bond angles in, 349

diatomic, molecular constants for, 146

dipole moment for, 350, 350, 368

electrostatic potential surface for, 379, 379

symmetric stretching frequency in, 350, 350

Hydrogen iodide, diatomic, molecular constants for, 146

Hydrogen peroxide, bond distance in, 349

I
Ideal blackbody, 3, 3

Identity operators, 397

Incoherent photon sources, 143, 231

Individual measurement, 43

Inelastic mean free path, 235

Inertia, moment of, 118–119, 154

Infrared absorption spectroscopy, 148–151, 149, 149–151

selection rules for, 416–417

Infrared radiation, spectral range of, 140

Infrared spectroscopy, Fourier transform, 157, 157–159, 158

Inhomogeneous broadening, 165, 165

Insulators, 73

Integral absorption coefficient, 320

Interference, between waves, 23

Interferograms, 157, 157

Internal conversion, 319, 319

Intersystem crossing, 319, 319

phosphorescence and, 321, 321–322

Inverse operators, 397

Inversion, conformer interconversion by, 368, 368

Iodine, diatomic, molecular constants for, 146

Ionization energy, 204, 205

Iron, electron configuration of, 205

Irreducible representations of symmetry operators, 404

generating molecular orbitals that are bases for, 417,

417–420, 418, 418, 420

498 INDEX



three-dimensional, 407

two-dimensional, 407

Isotopes, separation of, by lasers, 234–235, 235

K
Kinetic product, 344, 344

Kinetics, potential energy surfaces and, 343, 343–344, 344

Kohn, Walter, 355

Koopmans’ theorem, 204, 324

L
Lapsing transition, 234

Larmor frequency, 426

Lasers, 231

helium-neon, 231–234, 231–234

isotope separation using, 234–235, 235

Late transition state, 377, 378

LCAO approximation. See Linear combination of atomic

orbitals (LCAO) approximation

LCAO-MO model, 247

Level, of quantum states, 224

Lewis structures, 276

computational chemistry and, 292, 292–293

Light

absorption in polyatomic molecules, 316–318, 316–318

electric and magnetic fields associated with traveling wave

of, 141, 141

energy of, 5

linearly polarized, 331

spectral range of, 140

from sun, interaction with molecules in atmosphere, 238–239

Limiting Hartree-Fock models, 346–351

dipole moments and, 350, 350–351

equilibrium geometries and, 349, 349–350

reaction energies and, 347, 347–349, 348

vibrational frequencies and, 350, 350

Linear combination of atomic orbitals (LCAO)

approximation, 345–346

Linear dichroism spectroscopy, 331, 332

Linearly polarized light, 331

Lithium, diatomic, molecular configuration and ground-state

term for, 312

Lithium fluoride

dipole moment for, 368

symmetric stretching frequency in, 350, 350

Lithium hydride

bond distances and bond angles in, 349

dipole moment for, 368

symmetric stretching frequency in, 350, 350

Localized bonding model, delocalized bonding model versus,

289–292, 290–292

Localized bonding models, 276, 276

Local realism, 105

Lowest energy unoccupied molecular orbital (LUMO), 374, 375

M
Macroscopic magnetic moment, 425

Magic angle, 440, 440

Magic angle spinning, 440, 440

Magnesium, Hückle model and, 301

Magnetically equivalent nuclei, 436, 437

Magnetic anisotropy, 430

Magnetic field gradient, 441

Magnetization vector, 439

Magnetogyric ratio, 424

Manganese, electron configuration of, 205

Measurement process, 45

Methane

gas-phase, vibration spectra for, 150, 150

infrared absorption spectrum for, 417

symmetric stretching frequency in, 350, 350

Methanol

bond distance in, 349

dipole moment for, 350, 350

Methylamine

bond distance in, 349

dipole moment for, 350, 350

proton affinity of, 348, 365

Methyl fluoride

bond distance in, 349

dipole moment for, 350, 350, 368

Methyl formate, reaction energy of, 348, 364
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Methyl isocyanide

bond distance in, 363

reaction energy of, 348, 364

Methylcyclohexane, conformational energy in, 367

Michelson interferometer, 157, 157

Microwaves, spectral range of, 140

Minimal basis sets, 358, 358–359

Mirror planes, 397

MO(s). See Molecular orbital(s) (MOs)

Molar absorption coefficient, 148

Molar extinction coefficient, 319

Molecular beam epitaxy, 83

Molecular configuration, 261, 312, 312

Molecular electrostatic potential, 268–269, 269

Molecular orbital(s) (MOs), 246

basis functions for, 247

bonding and antibonding, 253

delocalized bonding model of chemical bonds and,

286–288, 286–288

frontier. See Frontier molecular orbitals

graphical models and, 374–375, 375

highest energy occupied, 374–375, 375

in homonuclear diatomic molecules, 258, 258–259, 259, 260

Hückel model and, 294–300, 296, 298, 299

lowest energy unoccupied, 374, 375

in many-electron molecules, 260–263, 261–263

molecular symmetry and, 396

symmetry-adapted, 410

for water, constructing using C2v representations, 410,
410–412, 411

Molecular orbital energy diagram, 250

Molecular orbital theory, Hartree-Fock. See Hartree-Fock

theory; Limiting Hartree-Fock models

Molecular shape, determining, 367–368

Molecular symmetry, 395–420

of normal modes of vibration of molecules, 412–416, 413

point groups and. See Point groups

representations and. See Irreducible representations of

symmetry operators; 

Representations of symmetry operators

selection rules and infrared versus Raman activity and,

416–417

symmetry elements and. See Symmetry elements

symmetry operations and, 396, 396, 396–397. See also

Representations of symmetry operators

Molecular term symbols, 310–312, 312

Molecular wave functions, 246

energy corresponding to, in hydrogen, 251–253, 252, 253

Molecules

aromatic, Hückel model and, 295–296, 296

bond location in, 377, 377, 378

conjugated, Hückel model and, 294

determining shape of, 367–368

diatomic. See Chemical bonds in diatomic molecules;

Diatomic molecules

many-electron, electronic structure of, 260–263, 261–263

motion undergone by, 119, 120

normal coordinates of, 413, 413

normal modes of vibration of, symmetries of, 412–416, 413

polyatomic. See Polyatomic molecules

size of, graphical models and, 377–378, 378

Møller-Plesset Models, 354–355

Moment of inertia, 118–119, 154

Momentum, angular

quantization of, 129–131

total, 224

Monochromators, 149, 149

Morse potential, 144, 145, 145

Motion. See also Rotation; Vibration

angular, classical rigid rotor and, 117–119, 117–119

translational, 119

Motional broadening, 439

Motional narrowing, 439

MP2/6-31G* model. See also Theoretical model(s)

activation energy and, 372, 373

bond distances and, 361–362, 362

conformational energy and, 367, 367

dipole moments and, 369

reaction energy and, 364, 364–365, 365

transition-state geometry and, 371, 372

Mulliken, Robert, 267

Mulliken population analysis, 370
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Multiplet splitting, 432

through spin-spin coupling, 431, 431–436, 433, 434, 436

when more than two spins interact, 436–437, 437

Multiplex advantage, in FTIR, 157

Multiplicity, 219

Murphy, M. C., 329

N
Nickel, electron configuration of, 205

Nitrogen

bond distance in, 349

diatomic, molecular configuration and ground-state term

for, 312

diatomic, molecular constants for, 146

nuclear parameters for, 424

symmetric stretching frequency in, 350, 350

Nitrogen bases, proton affinities of, 347–348, 348

Nitrogen trifluoride, assignment to point group, 397, 398

Nitromethane, bond distance in, 363

NMR imaging, 440–442, 441

NMR spectroscopy. See Nuclear magnetic resonance (NMR)

spectroscopy

Nodal surfaces, 182

Nodes, of standing waves, 55

Nonradiative transitions, 318–319, 319

Normal coordinates, 342

of molecules, 413, 413

Normal mode frequencies, 412

Normal modes of vibration, of molecules, symmetries of,

412–416, 413

Normalization, 40

Normalized functions, 30

transition, 317

Nuclear charge, effective, 192

Nuclear g factor, 424

Nuclear magnetic moment, 423

Nuclear magnetic resonance (NMR) spectroscopy, 140,

423–453

n: p*

electronegativity of neighboring groups and chemical shifts

and, 429–430

energy of nuclei of nonzero spin in a magnetic field and,

425, 425–427

Fourier transform, 444–447, 444–448

Fourier transform experiments in laboratory and rotating

frames and, 442, 442–444, 443

imaging using, 440–442, 441

magnetic fields of neighboring groups and chemical shifts

and, 430, 430–431

multiplet splitting through spin-spin coupling and, 431,
431–436, 433, 434, 436

multiplet splitting when more than two spins interact and,

436–437, 437

nuclear angular momentum and magnetic moment and,

423–424, 424

peak widths in, 438–440

solid-state, 440, 440

spectral range of, 140

two-dimensional, 448–452, 448–453

Nuclear magneton, 424

Nuclei

chemically equivalent, 436, 437

magnetically equivalent, 436, 437

O
Observables, 39

operators associated with, 28, 41, 41–42

Operators

commutation of, 92–93

observable quantities and, 28, 41, 41–42

Optical resonators, 231, 232

Orbital(s), 129

atomic. See Atomic orbitals (AOs)

electrons and, 196–198

energy of a configuration and, 217–224, 218–220, 221, 222

hybrid. See Hybrid orbitals

of hydrogen atom, 177, 181–183, 181–183

molecular. See Molecular orbital(s) (MOs)

shells and, 198

subshells and, 198
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chemical shift for an atom embedded in a molecule and,

428–429, 429

chemical shift for an isolated atom and, 427–428, 428



Orbital approximation, 192

Orbital energy, 192

Orbital symmetry, control of chemical reactions and, 375, 376

Orthogonality, 30–32, 31

Orthonormal sets, 30, 43

Oscillation, frequency of, 121

Oscillatory behavior, 114

Overlap integral, 247, 247

Overtone transitions, 144

Oxirane

bond distance in, 363

reaction energy of, 348, 364

Oxygen

atomic orbitals on, 410, 410–411, 411

bond distance in, 349

diatomic, molecular configuration and ground-state term

for, 312

diatomic, molecular constants for, 146

P
Paired electrons, 218

Particle(s), entangled, 104–107, 105, 106

Particle in a box, 69–86

boundary conditions and, 53

conductors and insulators and, 72–73, 73

core and valence electrons and, 70–71, 71

eigenfunctions for, 54, 54

finite depth box and, 69–70, 70

one-dimensional box and, 53–56, 53–57

pi electrons and, 71, 71–72, 72

postulates and, 58–63

quantum wells and quantum dots and, 83–86, 83–86

scanning tunneling microscope and atomic force

microscope and, 77–81, 77–82

thought experiment using particle in a three-dimensional

box and, 102–104, 103

traveling waves and potential energy barriers and, 73–75,

74, 75

tunneling in chemical reactions and, 82, 82

tunneling through a barrier and, 75–76, 76, 77

two- and three-dimensional boxes and, 57–58

Pauli, Wolfgang, 195

Pauli exclusion principle, 195

Pauling hybrids, 360

P branch, 155

Peak widths, in NMR spectroscopy, 438–440

Period, of waves, 22

Periodic table, trends in, understanding from Hartree-Fock

calculations, 207–209, 207–209

Permanent dipole moments, 141

Persistence length, 329

Phase, of wave function, 22

Phosphorescence, intersystem crossing and, 321, 321–322

Phosphorus, nuclear parameters for, 424

Photodissociation, 314

Photoelectric effect, 4–6, 5

Photoelectron spectroscopy

ultraviolet, 323–325, 324

x-ray, 236–237, 237, 238

Photoionization, 323

Photons, 6

Photon sources, incoherent, 143

-bonded networks, 71

electrons, 71, 71–72, 72

pulses, 445

transition, 317

symmetry, 256

Planck, Max, 3–4

Planck’s constant, 4

Plane waves, 22, 22

Point groups, 397–403

assigning molecules to, 397–398, 398, 399

C2v, water molecule and, 399–403, 403, 403

Polarizability, 159

Polarization basis sets, 360, 360

Polarization functions, 360

Polyatomic molecules, 275–302

describing chemical bonding using hybridization and, 284,
284–285, 285

dipole moment for, 368, 368

Hückel model and, 294–301, 296, 298–301

p

p: p*

p>2
p

p
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hybrid orbital construction for nonequivalent ligands and,

281–284, 282, 284

Lewis structures and, 276

localized bonds and hybridization in, 278–281, 279, 281

localized versus delocalized bonding models for, 289–292,

290–292

molecular structure and energy levels from computational

chemistry and, 292–294, 292–294

predicting molecular structure using qualitative molecular

orbital theory and, 286–288, 286–288

semiconductors at room temperature and, 301–302

symmetric stretching frequencies in, 350, 350

UV-visible light absorption in, 316–318, 316–318

VSEPR model and, 276–278, 277

Pople, John, 351

Population inversion, 231

Potassium, electron configuration of, 205

Potential energy, bond length and, 119, 120

Potential energy barriers, 74, 74–75, 75

Potential energy surfaces, 340, 340–344

geometry and, 341, 341–342

kinetics and, 343, 343–344, 344

thermodynamics and, 343, 343, 343

vibrational spectra and, 342–343

Precession, 425

Preexponential factor, 344

Primary structure, of biomolecules, 326, 326

Probabilistic outcomes, 44–45

Probability

associated with wave functions, 40, 40–41, 59–60

free particle and, 52

Probability density, 55, 55–56, 56

Products, thermodynamic, 343

Projection operator method, generating molecular orbitals

that are bases for irreducible representations using, 417,

417–420, 418, 418, 420

Propane, bond distance in, 362

Propene, bond distance in, 362

Propyne, bond distance in, 362

Pseudorotation, conformer interconversion by, 368, 368

Pulse sequence, 447

Pumping transition, 234

Pyridine, proton affinity of, 348, 365

Q
Quantization, 2, 54

Quantum chemistry, models in, overview of, 357, 357

Quantum computer, 107–109, 108

Quantum dots, 84, 84

Quantum mechanics, 1–14, 17–34

angular momentum and, 129–231

atomic spectra and Bohr model and, 11–13, 11–14

blackbody radiation and, 3, 3–4

classical waves and, 21–25, 22–24

eigenfunctions and, 30–34, 31, 33. See also Eigenfunctions

eigenvalues and, 42. See also Eigenvalues

expectation values and, 42–45, 44

free particle and, 51–53

need for, 17–21, 21

operators and, 41, 41–42

particle diffraction by a double slit and, 8–10, 8–11

particle in a box and. See Particle in a box

photoelectric effect and, 4–6, 5

rise of, 2

rotation in three dimensions and, 127–129

rotation in two dimensions and, 124–127, 125, 126

Schrödinger equation and, 26–29

spatial quantization and, 133–135, 134, 135

spherical harmonic functions and, 131–133, 132–134

time-dependent Schrödinger equation and, 46

uses of, 1–2

wave function and, See Wave functions

wave-like behavior of particles and, 6–7, 7

wave representation as complex functions and, 25–26

Quantum mechanics postulates, 39–47

particle in a box and, 58–63

Quantum numbers, 54

Quantum states, level of, 224

Quantum well structure, 83–86, 83–86

Qubits, 107

Quinuclidine, proton affinity of, 348, 365
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R
Radial probability distribution function, 183–187, 184

Radians, 118

Radiation, coherent and incoherent sources of, 143

Radiative transitions, 318–319, 319

Radio waves, spectral range of, 140

Raman active modes, 417

Raman effect, 159

Raman spectroscopy, 159–161, 160

Random phase angle, 9

Rate constants, 343

Rayleigh frequency, 160

R branch, 155

Reaction coordinate, 341

Reaction coordinate diagrams, 341

Reaction energies, 347, 347–349, 348, 364, 364–365, 365

limiting Hartree-Fock models and, 347, 347–349, 348

Reactive intermediaries, 363

“Red shift,” 230

Reducible representations, 406

Representations of symmetry operators, 404–412

bases for, character table and, 404–406, 405

C2v, constructing molecular orbitals for water using, 410,
410–412, 411

dimension of, 406–409, 408, 410

irreducible. See Irreducible representations of symmetry

operators

reducible, 406

of symmetry operators, 404–406, 405

totally symmetric, 405

Resonance energy transfer, 327, 328

Resonance stabilization energy, 299, 299–300

Resonator modes, 231–232, 232

Rigid rotor, angular motion and, 117–119, 117–119

Rohrer, Heinrich, 77

Roothaan-Hall equations, 346, 352

Rotating frame, NMR experiment in, 443–444

Rotation, 119

in three dimensions, 127–129

in two dimensions, 124–127, 125, 126

Rotational constants, 152–153

Rotational spectroscopy, 151–156, 152–156, 154

spectral range of, 140

Rotation-reflection axis, 396

Rutherford, Ernest, 11, 173

Rydberg constant, 11, 179

S
Saturated transition, 439

Scandium, electron configuration of, 205

Scanning tunneling microscope (STM), 77–80, 77–80

SCF procedure. See Self-consistent-field (SCF) procedure

Schrödinger, Erwin, 7, 17, 104

Schrödinger equation, 26–29

electronic, 345

electron spin and, 193–194

formulating, 173–174

free particle and, 52

Hartree-Fock self-consistent field method for solving, 198,

199–206, 200, 201, 202–203, 204, 205, 205

for helium atom, 191–193, 192

solving, 28–29, 292

solving for the hydrogen atom, 174, 174–175

time-dependent, 27

time-independent, 27, 42, 46

variational method for solving, 198–199, 199

Secondary structure, of biomolecules, 326, 326

Secular determinants, 248, 295

Secular equations, 248

Selection rules, 141, 225

for infrared absorption spectroscopy, 416–417

origin of, 146–148, 147, 148

Self-consistent-field (SCF) procedure, 345–346

Semiclassical spatial quantization description, 133

Semiconductors, 73

conductivity at room temperature, 301–302

Semiempirical theory, 295

Separation of variables, 58, 124

Shell(s), 198

Shell model, 173

validity of, 187, 187–188, 188
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Shielding, 204

Shielding constant, 428

symmetry, 256

transitions, 318

Silicon, conductivity at room temperature, 301–302

Silicon band structure, 302

Single-electron promotions, 353

Single molecule spectroscopy, 325–327, 326

Singlets, 218

Singlet-singlet transitions, 319–321, 320, 321

Singlet states, 311

Single-valued wave functions, 40, 40

Size consistent models, 352

Slater determinants, 195, 345

Slater-type orbitals, 357–358

Sodium, as conductor, 72, 72–73, 73

Sodium chloride, ionic species of, 207

Solid(s), Hückel model and, 300, 300–301, 301

Solid-state nuclear resonance spectroscopy, 440, 440

sp3, sp2, and sp hybridizations, 278

Space-filling model, 377

Spatial quantization, 133–135, 134, 135

Spectral density, 3, 3

Spectroscopic rulers, 328

Spectroscopy, 139–165

absorption, spontaneous emission, and stimulated emission

and, 141–143, 142

atomic. See Atomic spectroscopy

circular dichroism, 332–333, 333

dependence of transition rate between states on frequency

and, 161–164, 164, 165

electromagnetic spectrum and, 140, 140

electron, auger, 236, 237, 237

electronic. See Electronic spectroscopy

fluorescence, 322–323

infrared absorption, 148–151, 149, 149–151

linear dichroism, 331, 332

nuclear resonance. See Nuclear magnetic resonance (NMR)

spectroscopy

photoelectron. See Photoelectron spectroscopy

Raman, 159–161, 160

s: s*

s

rotational. See Rotational spectroscopy

selection rules and, 141, 146–148, 147, 148

single molecule, 325–327, 326

spectral ranges of, 140, 140

vibrational. See Vibrational spectroscopy

Spherical harmonic functions, 127, 131–133, 132–134

Spherical waves, 22, 22

Spin angular momentum, energy of a configuration and,

217–224, 218–220, 221, 222

Spin-echo technique, 447

Spin-lattice relaxation time, 439

Spin-orbit coupling, 224, 224–225

Spin polarization, 434

Spin-spin coupling, 431, 431–436, 433, 434, 436

Spin-spin relaxation time, 439

Spin wave functions, 193–194

Split-valence basis sets, 359, 359

s–p mixing, 258

Spontaneous emission, 231

dependence of transition rate between states on frequency

and, 161–164, 164, 165

Stabilization energy, resonance, 299, 299–300

Standard deviations, Heisenberg uncertainty principle

expressed in terms of, 100–102, 102

Standing waves, 24, 54–55

Stationary states, 24

Stern-Gerlach experiment, 93–95, 93–96

Stimulated emission, 141–143, 142, 231

dependence of transition rate between states on frequency

and, 161–164, 164, 165

STM. See Scanning tunneling microscope (STM)

STO-3G basis set, 358–359

Stokes frequency, 160

Subshells, 198

Sunlight, interaction with molecules in atmosphere, 

238–239

Superposition state, 44

Superposition wave functions, 46, 46–47

Surface tension, 6

Symmetric combinations, 325

Symmetric wave functions, 194
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Symmetry elements, 396, 397

assigning molecules to point groups and, 397–398, 399

classes of, 398

Symmetry operations, 256, 396, 396, 396–397

Symmetry operators, representations of. See Representations

of symmetry operators

-Synuclein, circular dichroism spectroscopy and, 332–333

T
Teleportation, 106

Term(s), 217

degeneracy of, 219

Term symbol, 219

Tertiary structure, of biomolecules, 326

Tetrachloroaurate, assignment to point group, 397–398

Tetramethylsilane, 429

Theoretical model(s), 351, 351–352, 360–374. See also

Hartree-Fock models

alternatives to bond rotation and, 368, 368

atomic charges and, 369, 369–371

configuration integration, 353, 353–354, 354

conformational energy differences and, 367, 367, 367

correlated, 360

density functional, 355–357

determining molecular shape and, 367–368

dipole moments and, 368, 368–369, 369

energies, enthalpies, and Gibbs energies and, 365–366

equilibrium bond distances and, 361–362, 362, 362, 363

finding equilibrium geometries and, 362–363

finding transition states and, 372, 372–374, 374

Møller-Plesset, 354–355

quantum chemical, overview of, 357, 357

reaction energies and, 364, 364–365, 365

size consistent, 352

transition-state geometries and activation energies and,

371–372, 372, 373

variational, 352

Theoretical model chemistry, 351

Thermodynamic products, 343

Thermodynamics, potential energy surfaces and, 343, 343, 343

Thermodynamically controlled reactions, 343, 344

a

Three-dimensional irreducible representations, 407

Titanium, electron configuration of, 205

Total angular momentum, 224

Total energy, eigenvalues and eigenfunctions for, 175,
175–180, 179

Totally symmetric representations, 405

Transition dipole moment, 147, 331

Transition state(s)

finding, 372, 372–374, 374

late, 377, 378

Transition-state geometries, 371–372, 372, 373

Translational motion, 119

Transverse magnetization, 445

Transverse relaxation, 445

Traveling waves, 24

Trial wave function, 198

Trimethylamine

bond distance in, 363

proton affinity of, 348, 365

Triplets, 218

Triplet states, 311

Tunneling, 75–76, 76, 77

atomic force microscope and, 77, 80–82, 81

in chemical reactions, 82, 82

scanning tunneling microscope and, 77–80, 77–80

Two-dimensional irreducible representations, 407

Two-dimensional NMR (2D-NMR), 448–452, 448–453

U
Ultraviolet light

absorption in polyatomic molecules, 316–318, 316–318

spectral range of, 140

Ultraviolet photoelectron spectroscopy, 323–325, 324

Unpaired electrons, 218

u symmetry, 250, 256, 257

V
Valence band, 73

Valence bond (VB) theory, 278

Valence electrons, 70–71, 71
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Valence shell electron pair repulsion (VSEPR) model,

276–278, 277

Vanadium, electron configuration of, 205

Variables, separation of, 58, 124, 174

Variational method, for solving Schrödinger equation,

198–199, 199

Variational models, 352

Variational parameter, in atomic orbitals, 250

Variational theorem, 198

VB theory. See Valence bond (VB) theory

Vector(s), addition of, 216, 216

Vector model of angular momentum, 134, 135

Velocity, angular, 118

Vibration, 119

normal modes of, of molecules, symmetries of, 412–416, 413

Vibrational frequencies, limiting Hartree-Fock models and,

350, 350

Vibrational spectra, potential energy surfaces and, 342–343

Vibrational spectroscopy, 143, 143–146, 145, 146

spectral range of, 140

Virial theorem, 180, 255

Visible light

absorption in polyatomic molecules, 316–318, 316–318

spectral range of, 140

VSEPR model. See Valence shell electron pair repulsion

(VSEPR) model

W
Walsh correlation diagrams, 287, 288

Walsh’s Rules, 275

Water

bond distances and bond angles in, 349

constructing molecular orbitals for, 410, 410–412, 411

C2v point group and, 399, 399–403, 403, 403

dipole moment for, 350, 350, 368

electrostatic potential surface for, 379, 379

symmetric stretching frequency in, 350, 350

Wave(s)

classical, 21–25, 22–24

cylindrical, 22

plane, 22, 22

representation as complex functions, 25–26

spherical, 22, 22

standing, 24, 54–55

traveling, 24, 74, 74–75, 75

Wave fronts, 22

Wave functions, 22–24, 23, 24, 40–41

asymmetric, 194–195

continuous, 40, 40–41

expansion coefficients of, 43

expectation values and, 42–45, 44

indistinguishability of electrons and, 194–198

overlap between core and valence electrons and, 70–71, 71

overlap of, 73

for particles in ground state, 61

probability associated with, 40, 40–41, 59–60

probability density of, 55, 55–56, 56

single-valued, 40, 40

spin, 193–194

standing waves and, 54–55

superposition, 46, 46–47

symmetric, 194

trial, 198

Wavelength, 22

Wavenumbers, 140

Wave packets, 98

Wave-particle duality, 2

Wave vector, 22

Weighted average, 43

“Woodward-Hoffmann” rules, 375

Work function, 5, 77

Worm-like chain model, 328–329

X
X-ray photoelectron spectroscopy (XPS), 236–237, 237, 238

Z
Zero point energy, 54, 121

Zinc, electron configuration of, 205
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Fraction Prefix Symbol Fraction Prefix Symbol

10–1 deci d 10 deca da
10–2 centi c 102 hecto h
10–3 milli m 103 kilo k
10–6 micro m 106 mega M
10–9 nano n 109 giga G
10–12 pico p 1012 tera T
10–15 femto f 1015 peta P
10–18 atto a 1018 exa E

SI Prefixes

Values of Selected Physical Constants

∞

Constant Symbol Value

Atomic mass constant amu 1.660 538921 � 10–27 kg
Avogadro’s constant NA 6.022 14129 � 1023 mol–1

Bohr magneton mB � e� 2me 9.274 00968 � 10–24 J T–1

Bohr radius a0 � 4pe0�
2 mee

2 5.291 772 1092 � 10–11 m
Boltzmann constant kB 1.380 6488 � 10–23 J K–1

0.695 03476 cm–1

Electron rest mass me 9.109 38291 � 10–31kg
Faraday constant F 9.64853365 � 104 C mol–1

Gravitational constant G 6.67384 � 10–11 m3 kg–1 s–2

Standard acceleration of 
gravity G

n
9.80665 m s–2

Molar gas constant R 8.3144621 J K–1 mol–1

0.083 144621 dm3 bar K–1 mol–1

0.082 0578 dm3 atm K–1mol–1

Molar volume, ideal gas
(1 bar, 0°C) 22.710953 L mol–1

(1 atm, 0°C) 22.413968 L mol–1

Nuclear magneton mN � e� 2mp 5.050 78353 � 10–27 J T–1

Permittivity of vacuum e0 8.854 187 817 � 10–12 C2 J–1 m–1

Planck constant h 6.626 069 57 � 10–34 J s
� 1.054 571726 � 10–34 J s

Proton charge e 1.602 176 565 � 10–19 C
Proton magnetogyric 

ratio g
p 2.675 221 28 � 108 s–1T–1

Proton rest mass mp 1.672 621 777 � 10–27 kg
Rydberg constant R � m

ee
4 8e0

2h2 2.179 8736 � 10–18 J
for infinite nuclear mass 109 73731.568 539 m–1

Rydberg constant for H RH 109677.581 cm–1

Speed of light in vacuum c 2.99 792 458 � 108 m s–1

Stefan-Boltzmann 
constant s � 2p5k4

B
15h3c2 5.670 373 � 10–8 J m–2 K–4 s–1>

>

>

>
>



Length

meter (SI unit) m
centimeter cm � 10–2 m
ångström Å � 10–10 m
micron m � 10–6 m

Volume

cubic meter (SI unit) m3

liter L � dm3 � 10–3 m3

Mass

kilogram (SI unit) kg
gram g � 10–3 kg
metric ton t � 1000 kg

Energy

joule (SI unit) J
erg erg � 10–7 J
rydberg Ry � 2.179 87 � 10–18 J
electron volt eV � 1.602 176 565 � 10–19 J
inverse centimeter cm–1 � 1.986 455 684 � 10–23 J
calorie (thermochemical) Cal � 4.184 J
liter atmosphere l atm � 101.325 J

Pressure

pascal (SI unit) Pa
atmosphere atm � 101325 Pa
bar bar � 105 Pa
torr Torr � 133.322 Pa
pounds per square inch psi � 6.894 757 � 103 Pa

Power

watt (SI unit) W
horsepower hp � 745.7 W

Angle

radian (SI unit) rad

degree °

Electrical dipole moment

C m (SI unit)
debye D � 3.335 64 � 10–30 C m

� �
⎛
⎝⎜

⎞
⎠⎟

2
360

1
57.295 78

rad rad

Alpha A a Iota I i Rho P r

Beta � b Kappa K k Sigma � s

Gamma � g Lambda � l Tau T t

Delta d Mu M m Upsilon � y

Epsilon 	 e Nu N n Phi 
 f

Zeta Z z Xi � j Chi X x

Eta H h Omicron O o Psi � c

Theta  u Pi � p Omega � v

Greek Alphabet

Conversion Table for Units

¢



Nuclide Symbol Mass (amu) Percent Abundance

H 1H 1.0078 99.985
2H 2.0140 0.015

He 3He 3.0160 0.00013
4He 4.0026 100

Li 6Li 6.0151 7.42
7Li 7.0160 92.58

B 10B 10.0129 19.78
11B 11.0093 80.22

C 12C 12 (exact) 98.89
13C 13.0034 1.11

N 14N 14.0031 99.63
15N 15.0001 0.37

O 16O 15.9949 99.76
17O 16.9991 0.037
18O 17.9992 0.204

F 19F 18.9984 100
P 31P 30.9738 100
S 32S 31.9721 95.0

33S 32.9715 0.76
34S 33.9679 4.22

Cl 35Cl 34.9688 75.53
37Cl 36.9651 24.4

Br 79Br 79.9183 50.54
81Br 80.9163 49.46

I 127I 126.9045 100 

Masses and Natural Abundances for Selected Isotopes
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13 14 15 16 17

11 12103 4 5 6 7 8 9

7

3

4

5

6

1

2

7

6

Main groups

1

2

Main groups

Transition metals

Lanthanides

Actinides

Fr Ra Rf Db Sg Bh Hs Mt Ds Rg

La

Ac

Na Mg Al

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga

Rb Sr Y Zr Nb Tc Ru Rh Pd Ag Cd In SnMo

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po

H

Li Be

Si

Ge As

Sb Te I

At

B

P S Cl Ar

Se Br Kr

Xe

Rn

He

C N O F Ne

Cn UuqUut Uup

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

1

1.0079

2

10

11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

87 88 104 105 106 107 108 109 110 111

57

89

3 4 5 6 7 8 9

112 114113 115

Uuh
116

Uuo
118

58 59 60 61 62 63 64 65 66 67 68 69 70 71

90 91 92 93 94 95 96 97 98 99 100 101 102 103

4.003

20.18

22.99 24.31

40.08

26.98 28.09 30.97 32.07 35.45 39.95

39.10 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.68 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80

85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29

132.91 137.33 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222)

(223) (226) (261) (262) (263) (262) (265) (266) (271) (272) (285) (284) (289) (288) (293) (294)

138.91

(227)

6.941 9.012 10.81 12.01 14.01 16.00 19.00

140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97

232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262)

H

1

1

1.0079

1 symbol

atomic number

group

period

atomic mass

Metals

Semi-Metals

Non-Metals

one kind of positively charged ion

multiple kinds of positively charged ions

Alkali Metals

Alkaline Earths 

Halogens

Noble Gases
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