
BASIC COMPUTER

ENGINEERING

(RGPV 2011)

BE 205

Bachelor of Engineering B.E. (Common to all Disciplines)

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Basic Computer Engineering, (For RGPV), 2e

Copyright © 2011, by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission

of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may

not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited

ISBN-13: 978-0-07-13-2976-7

ISBN-10: 0-07-13-2976-5

Vice President and Managing Director—McGraw-Hill Education, Asia-Pacifi c Region: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager—SEM & Tech. Ed.: Shalini Jha

Asst Sponsoring Editor: Tina Jajoriya

Sr Editorial Researcher: Manish Choudhary

Executive—Editorial Services: Sohini Mukherjee

Sr Production Manager: Satinder S. Baveja

Proof Reader: Yukti Sharma

Sr Product Specialist—SEM & Tech. Ed.: John Mathews

General Manager—Production: Rajender P Ghansela

Asst General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that Tata McGraw-Hill

and its authors are supplying information but are not attempting to render engineering or other professional services.

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at Gopsons, A-2 & 3,

Sector-64, Noida, U.P. 201 301

Cover Printer: Gopsons

RBLBCRAGRCYRC

The McGraw-Hill Companies

Fundamentals of Computers

1

 1.1 Introduction

The term computer is derived from the word

compute. A computer is an electronic device

that takes data and instructions as an input

from the user, processes data, and provides

useful information known as output. This

cycle of operation of a computer is known as

the input–process–output cycle and is shown

in Fig. 1.1. The electronic device is known as

hardware and the set of instructions is known

as software.

Key Concepts

 Computer

 Computer Classification

 Computer Organization

 CPU

 Register

 Bus Architecture

 Instruction Set

 Memory and Storage Systems

 Input Devices

 System Software

 Application Software

PROCESS
INPUT

Data
OUTPUT

Information

Instructions

Fig. 1.1 3 Input–process–output concept

The spurt of innovations and inventions in computer technology during the last few decades

has led to the development of a variety of computers. They are so versatile that they have

become indispensable to engineers, scientists, business executives, managers, administrators,

accountants, teachers and students. They have strengthened man’s powers in numerical

computations and information processing.

1.2 Basic Computer Engineering

Modern computers possess certain characteristics and abilities peculiar to them. They can:

 (i) perform complex and repetitive calculations rapidly and accurately,

 (ii) store large amounts of data and information for subsequent manipulations,

 (iii) hold a program of a model which can be explored in many different ways,

 (iv) compare items and make decisions,

 (v) provide information to the user in many different forms,

 (vi) automatically correct or modify the parameters of a system under control,

 (vii) draw and print graphs,

 (viii) converse with users interactively, and

 (ix) receive and display audio and video signals.

These capabilities of computers have enabled us to use them for a variety of tasks. Application

areas may broadly be classified into the following major categories.

 1. Data processing (commercial use)

 2. Numerical computing (scientific use)

 3. Text (word) processing (office and educational use)

 4. Message communication (e-mail)

 5. Image processing (animation and industrial use)

 6. Voice recognition (multimedia)

Engineers and scientists make use of the high-speed computing capability of computers

to solve complex mathematical models and design problems. Many calculations that were

previously beyond contemplation have now become possible. Many of the technological

achievements such as landing on the moon would not have been possible without computers.

The areas of computer applications are too numerous to mention. Computers have become an

integral part of man’s everyday life. They continue to grow and open new horizons of discovery

and application such as the electronic office, electronic commerce, and the home computer

center.

The microelectronics revolution has placed enormous computational power within the reach

of not only every organisation but also individual professionals and businessmen. However, it

must be remembered that computers are machines created and managed by human beings. A

computer has no brain of its own. Anything it does is the result of human instructions. It is an

obedient slave which carries out the master’s instructions as long as it can understand them,

no matter whether they are right or wrong. A computer has no common sense.

 1.2 Classifi cation of Computers

Computers can be classified into several categories depending on their computing ability and

processing speed. These include

 Microcomputer

 Minicomputer

 Mainframe computers

 Supercomputers

1.3Fundamentals of Computers

1.2.1 Microcomputers

A microcomputer is defined as a computer that has a microprocessor as its CPU. The

microcomputer system can perform the following basic operations:

 Inputting — It is the process of entering data and instructions into the microcomputer

system.

 Storing — It is the process of saving data and instructions in the memory of the

microcomputer system, so that they can be used whenever required.

 Processing — It is the process of performing arithmetic or logical operations on data,

where data can be converted into useful information. Various arithmetic operations include

addition, subtraction, multiplication and division. Among logical operations, operations of

comparisons like equal to, less than, greater than, etc., are prominent in use.

 Outputting — It provides the results to the user, which could be in the form of visual

display and/or printed reports.

 Controlling — It helps in directing the sequence and manner in which all the above

operations are performed.

1.2.2 Minicomputers

A minicomputer is a medium-sized computer that is more powerful than a microcomputer. An

important distinction between a microcomputer and a minicomputer is that a minicomputer is

usually designed to serve multiple users simultaneously. A system that supports multiple users is

called a multiterminal, time-sharing system. Minicomputers are the popular computing systems

among research and business organizations today. They are more expensive than microcomputers.

1.2.3 Mainframe Computers

Mainframe computers are those computers, which help in handling the information processing

of various organizations like banks, insurance companies, hospitals and railways. Mainframe

computers are placed on a central location and are connected to several user terminals, which can

act as access stations and may be located in the same building. Mainframe computers are larger

and expensive in comparison to the workstations.

1.2.4 Supercomputers

Supercomputers are the most powerful and expensive computers available at present. They are

also the fastest computers available. Supercomputers are primarily used for complex scientific

applications, which need a higher level of processing. Some of these applications include

weather forecasting, climate research, molecular modeling used for chemical compounds,

aeroplane simulations and nuclear fusion research.

In supercomputers, multiprocessing and parallel processing technologies are used to

promptly solve complex problems. Here, the multiprocessor can enable the user to divide a

complex problem into smaller problems. A supercomputer also supports multiprogramming

where multiple users can access the computer simultaneously. Presently, some of the popular

manufacturers of supercomputers are IBM, Silicon Graphics, Fujitsu, and Intel.

1.4 Basic Computer Engineering

 1.3 Computing Concepts

We can understand how a computer functions by analysing the fundamental computing

concepts. The most elementary computing concepts include receiving input—known as data—

from the user, manipulating the input according to the given set of instructions and delivering

the output—known as information—to the user. Figure 1.2 shows the functioning of a computer

based on these concepts.

Fig. 1.2 3 The Input-Process-Output Cycle of a computer

The various functions performed by the computer are briefly described below:

Accepting the raw data The fi rst task to be performed by a computer is to accept the data from the

user, with the help of an input device, such as mouse and keyboard. Mouse is used to enter the data through

point-and-click operation while keyboard is used to enter the character data by typing the various keys. We

need to enter the data into the computer so as to obtain the required result as output.

Processing the data The data is processed with the help of specifi c instructions known as programs

after taking the input from the user. The manipulation of data is handled by the CPU of the computer. CPU is

considered as the brain of the computer because it controls the execution of various instructions. The raw data

entered by the user through input devices is processed by the CPU to generate meaningful information.

Storing the data The data is stored in the main memory of a computer in its processed form. The

various external storage devices—such as hard disk and magnetic disk—can also be used for storing the

processed data so that it can again be fetched later.

Delivering the output The processed data is delivered as useful information to the user with the help

of output devices, such as printer and monitor.

 1.4 Central Processing Unit

The function of any computer system revolves around a central component known as central

processing unit (CPU). The CPU, which is popularly referred to as the “brain” of the computer,

is responsible for processing the data inside the computer system. It is also responsible for

controlling all other components of the system. Figure 1.3 shows a typical block diagram of the

computer system, illustrating the arrangement of CPU with the input and output units as well

as the memory of the computer system.

1.5Fundamentals of Computers

Fig. 1.3 3 The block diagram of a computer system

The main operations of the CPU include four phases:

Fetching instructions from the memory.

Decoding the instructions to decide what operations to be preformed.

Executing the instructions.

Storing the results back in the memory.

This four-phase process is known as the CPU cycle, which is illustrated in Fig. 1.4.

Fig. 1.4 3 The CPU cycle

1.6 Basic Computer Engineering

As shown in the Fig. 1.3, the central processing unit consists of the following subsystems: Arithmetic Unit (AU) Logic Unit (LU) Control Unit (CU)

The CPU makes use of the following memory subsystems for carrying out its processing

operations: Main Memory Unit Cache Memory Registers

1.4.1 Arithmetic Unit

 Arithmetic Unit (AU) is a part of the CPU that performs arithmetic operations on the data. The

arithmetic operations can be addition, subtraction, multiplication or division. The multiplication

and division operations are usually implemented by the AU as the repetitive process of addition

and subtraction operations respectively. Some CPUs contain separate AUs for integer or fixed-

point operations (integers) and real or floating-point operations (real/decimal). AU takes the

input in the form of an instruction that contains an opcode, operands and the format code. The

opcode specifies the operation to be performed and the operands specify the data on which

operation is to be performed. The format code suggests the format of the operands, such as fixed-

point or floating-point. The output of AU contains the result of the operation and the status of

the result, whether it is final or not. The output is stored in a storage register by the AU. Register

is a small storage area inside the CPU from where data is retrieved faster than any other

storage area.

1.4.2 Logic Unit

 Logic Unit (LU) is a part of the CPU that performs logical operations on the data. It performs

16 different types of logical operations. The various logical operations include greater than

(>), less than (<), equal to (=), not equal to (), shift left, shift right, etc. LU makes use of

various logic gates, such as AND, OR, NOR, etc. for performing the logical operations on the

data.

1.4.3 Control Unit

Control Unit (CU) is an important component of CPU that controls the flow of data and

information. It maintains the sequence of operations being performed by the CPU. It fetches

an instruction from the storage area, decodes the instruction and transmits the corresponding

signals to the AU or LU and the storage registers. CU guides the AU and LU about the

operations that are to be performed and also suggests the I/O devices to which the data is

to be communicated. CU uses a program counter register for retrieving the next instruction

that is to be executed. It also uses a status register for handling conditions such as overflow of

data.

1.7Fundamentals of Computers

1.4.4 Main Memory Unit

The main memory is referred to as the internal memory or primary memory of the computer. It

is also known as Random Access Memory (RAM). It is a temporary storage medium that holds

the data only for a short period of time. Once the computer is switched off, the data stored

in the RAM gets erased. The memory space of RAM is limited and therefore all the files and

instructions cannot be stored in it. These files and instructions are normally stored in a different

location known as secondary storage and are copied from there to the RAM before execution.

This technique is referred as swapping. The memory space available in RAM also affects the

speed of a computer system. If the memory space is more, more number of instructions can

be copied and executed at the same time. As a result, the computer system need not read the

data from the secondary storage again and again, thus making the processing faster. The main

memory is also responsible for holding intermediate data transferred between CPU and the

I/O devices.

1.4.5 Cache Memory

Cache memory is a small, fast and expensive memory that

stores the copies of data that needs to be accessed frequently

from the main memory. The processor, before reading data

from or writing data to the main memory, checks for the same

data in the cache memory. If it finds the data in the cache

memory the processor reads the data from or writes the data

to the cache itself because its access time is much faster than

the main memory. The cache memory is always placed between

CPU and the main memory of the computer system, as shown

in Fig. 1.5.

Figure 1.5 shows that the transfer of data between the

processor and the cache memory is bidirectional. The availability

of data in the cache is known as cache hit. The capability of a

cache memory is measured on the basis of cache hit.

There are usually two types of cache memory found in the computer system:

Primary cache It is also known as Level 1 (L1) cache or internal cache. The primary

cache is located inside the CPU. It is smaller but fastest type of cache that provides a

quick access to the frequently accessed data by the microprocessor.

Secondary cache It is also known as Level 2 (L2) cache or external cache. The secondary

cache is located outside the CPU. It is normally positioned on the motherboard of a

computer. The secondary cache is larger but slower than the primary cache.

1.4.6 Registers

Central processing unit contains a few special purpose, temporary storage units known as

registers. They are high-speed memory locations used for holding instructions, data and

Fig. 1.5 3 The cache memory

1.8 Basic Computer Engineering

intermediate results that are currently being processed. A processor can have different types

of registers to hold different types of information. They include, among others:

Program Counter (PC) to keep track of the next instruction to be executed.

Instruction Register (IR) to hold instructions to be decoded by the control unit.

Memory Address Register (MAR) to hold the address of the next location in the memory

to be accessed.

Memory Buffer Register (MBR) for storing data received from or sent to CPU.

Memory Data Register (MDR) for storing operands and data.

Accumulator (ACC) for storing the results produced by arithmetic and logic units.

Many computers employ additional registers for implementing various other requirements.

The number and sizes of registers therefore vary from processor to processor. An effective

implementation of registers can increase considerably the speed of the processor.

 1.5 Internal Communications

CPU of the computer system communicates with the memory and the I/O devices in order to

transfer data between them. However, the method of communication of the CPU with memory

and I/O devices is different. The CPU may communicate with the memory either directly or

through the cache memory. However, the communication between the CPU and I/O devices is

usually implemented with the help of interfaces. Therefore, the internal communication of a

processor in the computer system can be divided into two major categories:

Processor to memory communication

Processor to I/O devices communication

1.5.1 Processor to Memory Communication

The direct communication between the processor and memory of the computer system is

implemented with the help of two registers, Memory Address Register (MAR) and Memory

Buffer Register (MBR). Figure 1.6 shows the communication between the processor and the

memory of the computer system.

Fig. 1.6 3 Processor to memory communication

1.9Fundamentals of Computers

The processor can interact with the memory of the computer system for reading data from

the memory as well as for writing data on to the memory. The MAR and MBR registers play

a very important role in implementing this type of communication. These registers are the

special-purpose registers of the processor. MAR is used by the processor to keep track of the

memory location where it needs to perform the reading or writing operation. This register

actually holds the address of the memory location. On the other hand, the Memory Data

Register (MDR) is used by the processor to store the data that needs to be transferred from/

to the memory of the computer system. The reading and writing operations performed by the

processor are called memory read and memory write operations.

Figure 1.7 illustrates the memory read operation performed by the processor of the computer

system. The processor performs the following steps to read the data from the desired memory

location:

Fig. 1.7 3 Illustrating the memory read operation

 1. First, the processor loads the address of the memory location from where data is to be

read into the MAR register, using the address bus.

 2. After loading the address of the memory location, the processor issues the READ control

signal through the control bus. The control bus is used to carry the commands issued by

the processor, and the status signals are generated by the various devices in response to

these commands.

 3. After receiving the READ control signal, the memory loads the data into the MDR

register from the location specified in the MAR register, using the data bus.

 4. Finally, the data is transferred to the processor.

The memory write operation helps the processor to write the data at the desired memory

location. Figure 1.8 illustrates the memory write operation performed by the processor of the

computer system.

The processor performs the following steps for writing the data at the desired memory

location in the computer system:

 1. First, the processor loads the address of the memory location where data is to be written

in the MAR register, using the address bus.

 2. After loading the address of the memory location, the processor loads the desired data

in the MDR register, using the data bus.

 3. After this, the processor issues the WRITE control signal to the memory, using the control

bus.

1.10 Basic Computer Engineering

 4. Finally, the memory stores the data loaded in the MDR register at the desired memory

location.

1.5.2 Processor to I/O Devices Communication

The communication between I/O devices and processor of the computer system is implemented

using an interface unit. In a computer system, data is transferred from an input device to the

processor and from the processor to an output device. Each input and output device in the

computer system is provided with a controller, called device controller. The device controller is

used to manage the working of various peripheral devices. The processor actually communicates

with the device controllers of the various I/O devices for performing the I/O operations.

Figure 1.9 illustrates how the communication between the processor and the I/O devices

of the computer system is implemented. The interface unit acts as an intermediary between

the processor and the device controllers of various peripheral devices in the computer system.

The basic function of the interface unit is to accept the control commands from the processor

and interpret the commands so that they can be easily understood by the device controllers for

carrying out necessary operations. Therefore, we can say that the interface unit is responsible

for controlling the input and output operations between the processor and the I/O devices. The

interface unit contains data register and status register. The data register is used to store the

data to be transferred, either to the processor or to an output device. The status register is

Fig. 1.8 3 Illustrating memory write operation

Fig. 1.9 3 Illustrating the communication process between the processor and I/O devices

1.11Fundamentals of Computers

used to indicate the status of the data register, i.e., whether it is currently holding the data or

not. If the data register is holding the data to be transferred, the flag bit of the status register

is set to one. The processor to I/O devices communication involves two important operations,

i.e., I/O read and I/O write. The I/O read operation helps the processor to read the data from

an input device.

Figure 1.10 illustrates how the data is transferred from an input device to the processor of

the computer system. The steps performed while transferring the data from an input device to

the processor are:

 1. The data to be transferred is placed on the data bus by the input device, which transfers

single byte of data at a time.

 2. The input device then issues the data valid signal through the device control bus to the

data register, indicating that the data is available on the data bus.

 3. When the data register of the interface unit accepts the data, it issues a data accepted

signal through the device control bus as an acknowledgement to the input device,

indicating that the data has been received. The input device then disables the data valid

signal.

 4. As the data register now holds the data, the F or the flag bit of the status register is set

to 1.

 5. The processor now issues an I/O read signal to the data register in the interface unit.

 6. The data register then places the data on the data bus connected to the processor of

the computer system. After receiving the data, the processor sends an appropriate

acknowledgement signal to the input device, indicating that the data has been received.

Fig. 1.10 3 Illustrating the I/O read operation

The I/O write operation helps the processor to write the data to an output device. Figure

1.11 illustrates how the data is transferred from the processor to an output device. The steps

performed while transferring the data from the processor to the output device are:

 1. The processor places the data that needs to be transferred on the data bus connected to

the data register of the interface unit.

 2. The CPU also places the address of the output device on the device address bus.

 3. After placing the address and data on the appropriate buses, CPU issues the I/O write

signal, which writes the data on the data register. The flag bit in the interface unit is set

to 1, indicating that the data register now holds the data.

1.12 Basic Computer Engineering

 4. The data register of the interface unit issues a data accepted signal through the control

bus to the processor, indicating that the data has been received.

 5. The interface unit then places the data stored in the data register on to the data bus

connected to the device controller of the output device.

 6. The output device then receives the data and sends an acknowledgement signal to the

processor of the computer system through the interface unit, indicating that the desired

data has been received.

 1.6 The Bus

A bus is a set of wires that is used to connect the

different internal components of the computer

system for the purpose of transferring data as

well addresses amongst them. There may be

several buses in a computer system. A bus can

either be a serial bus or a parallel bus. In serial

bus, only one bit of data is transferred at a time

amongst the various hardware components.

On the other hand, in parallel bus, several

bits of data can be transferred at a time

amongst the various hardware components.

The speed of any type of bus is measured in

terms of the number of bits transferred per

second, between two components.

Figure 1.12 shows a bus system used in a

computer system. The figure depicts the two

different types of buses according to the type

of operations performed by them. These buses

are data bus and the address bus. Apart from

data and address bus, a third type of bus—

known as control bus—also exists in the computer system. The control bus manages the transfer

of data and addresses among various components by transferring appropriate control signals.

Fig. 1.11 3 Illustrating I/O write operation

Fig. 1.12 3 Data and address buses

1.13Fundamentals of Computers

1.6.1 Data Bus

As the name suggests, the data bus in a

computer system is used to transfer data

amongst the different internal components.

The speed of the data bus also affects the

overall processing power of a computer

system. Modern computer systems use 32-

bit data buses for data transfer. This means

that these buses are capable of transferring

32 bits of data at a time. Figure 1.13 shows

the data bus implemented between the main

memory and the processor of a computer

system.

The figure shows that a bidirectional data bus is implemented between the main memory

and the processor of the computer system. The bidirectional data bus allows the transfer of

data in both the directions. The data bus is generally bidirectional in nature in most computer

systems.

1.6.2 Address Bus

The address bus is also known as memory bus.

It transfers the memory addresses for read and

write memory operations. It contains a number of

address lines that determine the range of memory

addresses that can be referenced using the address

bus. For example, a 32-bit address bus can be used

to reference 232 memory locations. Like data bus,

the address bus can also be a serial or a parallel

bus. Figure 1.14 shows the address bus, used for

transferring memory locations between processor

and memory.

The figure shows that the address bus between the main memory and the processor of a

computer system is unidirectional. However, an address bus may also be bidirectional. For

example, the address bus between the processor and the I/O system is bidirectional.

 1.7 Instruction Set

An instruction set can be defined as a group of instructions that a processor can execute to

perform different operations. On the basis of complexity and the number of instructions used,

the instruction set can be classified as:

Complex instruction set

Reduced instruction set

Fig. 1.13 3 The data bus

Fig. 1.14 3 An address bus

1.14 Basic Computer Engineering

1.7.1 Complex Instruction Set

The complex instruction set refers to the set of instructions that includes very complex and

large number of instructions. The number of instructions in this set varies from 100 to 250.

The instructions in this set are mostly memory-based instructions, which involve frequent

references to the memory. The complex instruction set makes use of a large number of addressing

modes because of the frequent references to registers as well as memory. The instructions in

this instruction set have variable length instruction format, which is not limited to only 32-

bits. The execution of the instructions takes a lot of time because the instructions are memory-

based and accessing the memory is a time consuming process as compared to accessing the

registers.

The computer, which makes use of complex instruction set, is called Complex Instruction

Set Computer (CISC). The instruction set of CISC has a large number of instructions and

for each instruction type, the computer requires a separate circuitry, which makes the CPU

design more complicated.

Some of the advantages of CISC are as follows: There is no need to invent an instruction set for each new design. A new processor can

use the instruction set of its predecessor. A program written in CISC requires less memory space, as the code is confined to less

number of instructions. CISC makes the job of a compiler easier by facilitating the implementation of high-level

language constructs.

Some of the disadvantages of a CISC are as follows: The inheritance of old instructions into new processors increases the complexity. Many CISC instructions are not frequently used. CISC commands are translated into a large number of lines of microcode, which makes

the CPU processing slower. CISC systems have a complex hardware, so they require more time for designing.

1.7.2 Reduced Instruction Set

The reduced instruction set refers to a set of instructions that contains very few instructions

ranging from 0 to 100. It comprises of only those instructions, that are frequently used by

the processor for the execution of a program. These instructions are generally very simple to

execute. The instructions used in this set are mostly register-based, which means that the

execution of the instruction involves frequent references to the registers. The memory-based

instructions, which involve frequent references to the memory locations, are very few in this

instruction set. The memory-based instructions include only load and store instructions.

The instructions in this instruction set have fixed length instruction format of 32 bits. An

instruction format divides the bits of instruction into small groups called fields. Generally, an

instruction has the following fields: Opcode field. It represents the operation to be performed by the instruction. Operand field. It represents the data on which the operation is to be performed, or the

memory location or register where the data is stored.

1.15Fundamentals of Computers

Mode field. It represents the method of fetching the operands stored at specified

memory location or registers.

The computer, which makes use of reduced instruction set, is called Reduced Instruction

Set Computer (RISC). As the instruction set of RISC has very few instructions, the design of

hardware circuitry becomes easier and also the speed of processing increases. The speed of

RISC processors is measured in MIPS (Millions of Instructions Per Second).

The comparison of RISC and CISC processors indicates that the RISC processors are always

preferred over the CISC processors because of their compact size and small instruction set.

The other advantages of the RISC processors over the CISC processors are as follows:

In RISC processors, the instructions are executed by decoding, whereas in CISC

processors, the instructions are executed by first translating them into equivalent

microcode instructions. The conversion of instructions into microcode consumes a lot of

space in the memory, thereby reducing the speed of execution.

The RISC processors execute instructions in a single clock cycle, while the CISC

processors require multiple clock cycles for the execution of an instruction.

The hardware of the RISC processors is very simple and can be designed easily, as

compared to the hardware of the CISC processors that is very complex, difficult to design

and large in size.

The only disadvantage of RISC, in comparison to CISC, is that the number of instructions

required to perform an operation is comparatively large.

 1.8 Memory and Storage Systems

The memory unit of a computer is used to store

data, instructions for processing data, intermediate

results of processing and the final processed

information. The memory units of a computer

are classified as primary memory and secondary

memory.

1.8.1 Primary Memory

The primary memory is available in the computer

as a built-in unit of the computer. The primary

memory is represented as a set of locations with

each location occupying 8 bits. Each bit in the

memory is identified by a unique address. The data

is stored in the machine-understandable binary

form in these memory locations. The commonly

used primary memories are as follows:

ROM — ROM represents Read Only Memory that stores data and instructions, even

when the computer is turned off. It is the permanent memory of the computer where

the contents cannot be modified by an end user. ROM is a chip that is inserted into the

Secondary Memory
(Magnetic storage

device, Optical
storage device)

Primary Memory
(RAM, Cache

memory)

Central Processing
Unit (CPU)

ALU

Control Unit

Input/Output
Devices (Mouse,

Keyboard, Printer)

Fig. 1.15 3 Computer Memory Organization

1.16 Basic Computer Engineering

motherboard. It is generally used to store the Basic Input/Output system (BIOS), which

performs the Power On Self Test (POST).

 RAM — RAM is the read/write memory unit in which the information is retained only

as long as there is a regular power supply. When the power supply is interrupted or

switched off, the information stored in the RAM is lost. RAM is volatile memory that

temporarily stores data and applications as long as they are in use. When the use of

data or the application is over, the content in RAM is erased.

 Cache memory — Cache memory is used to store the data and the related application

that was last processed by the CPU. When the processor performs processing, it first

searches the cache memory and then the RAM, for an instruction. The cache memory

can be either soldered into the motherboard or is available as a part of RAM.

1.8.2 Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer.

They provide a non-volatile memory source used to store information that is not in use currently.

A storage device is either located in the CPU casing of the computer or is connected externally

to the computer. The secondary storage devices can be classified as:

 Magnetic storage device — The magnetic storage devices store information that can

be read, erased and rewritten a number of times. These include floppy disk, hard disk

and magnetic tapes.

 Optical storage device — The optical storage devices are secondary storage devices

that use laser beams to read the stored data. These include CD-ROM, rewritable compact

disk (CD-RW), digital video disks with read only memory (DVD-ROM), etc.

 Magneto-optical storage device — The magneto-optical devices are generally used

to store information, such as large programs, files and back up data. The end user can

modify the information stored in magneto-optical storage devices multiple times. These

devices provide higher storage capacity as they use laser beams and magnets for reading

and writing data to the device.

 1.9 Input Devices

Input devices can be connected to the computer system using cables. The most commonly used

input devices among others are:

 Keyboard

 Mouse

 Scanner

1.9.1 Keyboard

A standard keyboard includes alphanumeric keys, function keys, modifier keys, cursor

movement keys, spacebar, escape key, numeric keypad, and some special keys, such as Page

Up, Page Down, Home, Insert, Delete and End. The alphanumeric keys include the number

keys and the alphabet keys. The function keys are the keys that help perform a specific task

such as searching a file or refreshing a Web page. The modifier keys such as Shift and Control

1.17Fundamentals of Computers

keys modify the casing style of a character or symbol. The cursor movement keys include up,

down, left and right keys and are used to modify the direction of the cursor on the screen. The

spacebar key shifts the cursor to the right by one position. The numeric keypad uses separate

keypads for numbers and mathematical operators. A keyboard is shown in Fig. 1.16.

Fig. 1.16 3 Keyboard

Function Keys
(F1 to F12)

Escape Key

Modifier Keys

Spacebar KeyAlphanumeric
Keys

Cursor Movement
Keys

Special Keys

Numeric Keypad

1.9.2 Mouse

The mouse allows the user to select elements on the screen, such as tools, icons, and buttons,

by pointing and clicking them. We can also use a mouse to draw and paint on the screen of the

computer system. The mouse is also known as a pointing device because it helps change the

position of the pointer or cursor on the screen.

The mouse consists of two buttons, a wheel at the top

and a ball at the bottom of the mouse. When the ball

moves, the cursor on the screen moves in the direction

in which the ball rotates. The left button of the mouse

is used to select an element and the right button, when

clicked, displays the special options such as open and

explore and shortcut menus. The wheel is used to

scroll down in a document or a Web page. A mouse is

shown in Fig. 1.17.

1.9.3 Scanner

A scanner is an input device that converts documents and

images as the digitized images understandable by the computer

system. The digitized images can be produced as black and

white images, gray images, or colored images. In case of colored

images, an image is considered as a collection of dots with each

dot representing a combination of red, green, and blue colors,

varying in proportions. The proportions of red, green, and blue

colors assigned to a dot are together called as color description.

The scanner uses the color description of the dots to produce a

digitized image. Figure 1.18 shows a scanner.

Fig. 1.17 3 Mouse

Wheel

Right Button

Left Button

Fig. 1.18 3 Scanner

1.18 Basic Computer Engineering

There are the following types of scanners that can be used to produce digitized images:

 Flatbed scanner — It contains a scanner head that moves across a page from top to

bottom to read the page and converts the image or text available on the page in digital

form. The flatbed scanner is used to scan graphics, oversized documents, and pages from

books.

 Drum scanner — In this type of scanner, a fixed scanner head is used and the image to

be scanned is moved across the head. The drum scanners are used for scanning prepress

materials.

 Slide scanner — It is a scanner that can scan photographic slides directly to produce

files understandable by the computer.

 Handheld scanner — It is a scanner that is moved by the end user across the page to

be scanned. This type of scanner is inexpensive and small in size.

 1.10 Output Devices

The data, processed by the CPU, is made available to the end user by the output devices. The

most commonly used output devices are:

 Monitor

 Printer

 Speaker

 Plotter

1.10.1 Monitor

A monitor is the most commonly used output device that produces visual displays generated

by the computer. The monitor, also known as a screen, is connected as an external device using

cables or connected either as a part of the CPU case. The monitor connected using cables,

is connected to the video card placed on the expansion slot of the motherboard. The display

device is used for visual presentation of textual and graphical information.

The monitors can be classified as cathode ray tube (CRT) monitors or liquid crystal display

(LCD) monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD

monitors are thin, light weighted, and occupy lesser space. Both the monitors are available as

monochrome, gray scale and color models. However, the quality of the visual display produced

by the CRT is better than that produced by the LCD.

The inner side of the screen of the CRT contains the red, green, and blue phosphors. When

a beam of electrons strike the screen, the beam strikes the red, green and blue phosphors on

the screen and irradiates it to produce the image. The process repeats itself for a change in

the image, thus refreshing the changing image. To change the color displayed by the monitor,

the intensity of the beam striking the screen is varied. If the rate at which the screen gets

refreshed is large, then the screen starts flickering, when the images are refreshed.

The LCD monitor is a thin display device that consists of a number of color or monochrome

pixels arrayed in front of a light source or reflector. LCD monitors consume a very small

amount of electric power.

1.19Fundamentals of Computers

A monitor can be characterized by its monitor size and resolution. The monitor size is the

length of the screen that is measured diagonally. The resolution of the screen is expressed as

the number of picture elements or pixels of the screen. The resolution of the monitor is also

called the dot pitch. The monitor with a higher resolution produces a clearer image.

1.10.2 Printer

The printer is an output device that transfers the text displayed on the screen, onto paper

sheets that can be used by the end user. The various types of printers used in the market are

generally categorized as dot matrix printers, inkjet printers, and laser printers. Dot matrix

printers are commonly used in low quality and high volume applications like invoice printing,

cash registers, etc. However, inkjet printers are slower than dot matrix printers and generate

high quality photographic prints. Since laser printers consist of microprocessor, ROM and RAM,

they can produce high quality prints in quicker time without being connected to a computer.

The printer is an output device that is used to produce a hard copy of the electronic text

displayed on the screen, in the form of paper sheets that can be used by the end user. The

printer is an external device that is connected to the computer system using cables. The

computer needs to convert the document that is to be printed to data that is understandable

by the printer. The printer driver software or the print driver software is used to convert a

document to a form understandable by the computer. When the computer components are

upgraded, the upgraded printer driver software needs to be installed on the computer.

The performance of a printer is measured in terms of dots per inch (DPI) and pages per

minute (PPM) produced by the printer. The greater the DPI parameter of a printer, the better

is the quality of the output generated by it. The higher PPM represents higher efficiency of

the printer. Printers can be classified based on the technology they use to print the text and

images:

 Dot matrix printers — Dot matrix printers are impact printers that use perforated

sheet to print the text. The process to print a text involves striking a pin against a

ribbon to produce its impression on the paper. As the striking motion of the pins help in

making carbon copies of a text, dot matrix printers are used to produce multiple copies

of a print out.

 Inkjet printers — Inkjet printers are slower than dot matrix printers and are used

to generate high quality photographic prints. Inkjet printers are not impact printers.

The ink cartridges are attached to the printer head that moves horizontally, from left

to right. The print out is developed as the ink of the cartridges is sprayed onto the

paper. The ink in the inkjet is heated to create a bubble. The bubble bursts out at high

pressure, emitting a jet of the ink on the paper thus producing images.

 Laser printers — The laser printer may or may not be connected to a computer, to

generate an output. These printers consist of a microprocessor, ROM and RAM, which

can be used to store the textual information. The printer uses a cylindrical drum, a

toner and the laser beam. The toner stores the ink that is used in generating the output.

The fonts used for printing in a laser printer are stored in the ROM or in the cartridges

that are attached to the printer. The laser printers are available as gray scale, black

and white or color models. To print high quality pages that are graphic intensive, laser

printers use the PageMaker software.

1.20 Basic Computer Engineering

1.10.3 Speaker

The speaker is an electromechanical transducer that converts an electrical signal into sound.

They are attached to a computer as output devices, to provide audio output, such as warning

sounds and Internet audios. We can have built-in speakers or attached speakers in a computer

to warn end users with error audio messages and alerts. The audio drivers need to be installed

in the computer to produce the audio output. The sound card being used in the computer system

decides the quality of audio that we listen using music CDs or over the Internet. The computer

speakers vary widely in terms of quality and price. The sophisticated computer speakers may

have a subwoofer unit, to enhance bass output.

1.10.4 Plotter

The plotter is another commonly used output device that is connected to a computer to print

large documents, such as engineering or constructional drawings. Plotters use multiple ink

pens or inkjets with color cartridges for printing. A computer transmits binary signals to all

the print heads of the plotter. Each binary signal contains the coordinates of where a print head

needs to be positioned for printing. Plotters are classified on the basis of their performance, as

follows:

 Drum plotter — They are used to draw perfect circles and other graphic images. They

use a drawing arm to draw the image. The drum plotter moves the paper back and forth

through a roller and the drawing arm moves across the paper.

 Flat-bed plotter — A flat bed plotter has a flat drawing surface and the two drawing

arms that move across the paper sheet, drawing an image. The plotter has a low speed

of printing and is large in size.

 Inkjet plotter — Spray nozzles are used to generate images by spraying droplets of

ink onto the paper. However, the spray nozzles can get clogged and require regular

cleaning, thus resulting in a high maintenance cost.

 Electrostatic plotter — As compared to other plotters, an electrostatic plotter produces

quality print with highest speed. It uses charged electric wires and special dielectric

paper for drawing. The electric wires are supplied with high voltage that attracts the

ink in the toner and fuses it with the dielectric paper.

 1.11 Types of Software

In the field of computer science, software is defined as a computer program, which includes

logical instructions used for performing a particular task on a computer system using hardware

components. The following are the two major categories of software under which different

types of computer programs can be classified:

 System software

 Application software

Figure 1.19 shows the relationship among hardware, software, and user.

The figure shows a layered architecture, which represents different components of a computer

such as hardware, system software, application software, and user in a hierarchical manner.

1.21Fundamentals of Computers

1.11.1 System Software

System software refers to a computer program that manages and controls hardware components

of a computer system. In other words, the system software is responsible for handling the

functioning of the computer hardware. The system software is also responsible for the proper

functioning of the application software on a computer system. The system software includes

general programs, which are written to provide an environment for developing new application

software using programming languages. In computer science, there are several types of system

software, such as operating systems and utility programs. The operating system is the primary

system software, which controls the hardware and software resources of a computer system. It

also performs various operations, such as memory allocation, instruction processing, and file

management. The most commonly used operating systems are MS DOS, MS Windows, and

UNIX. The following are the various functions of system software:

 Process management

 Memory management

 Secondary storage management

 I/O system management

 File management

1.11.2 Application Software

Application software is a computer program that is executed on the system software. It is

designed and developed for performing specific tasks and is also known as end-user program.

Application software is unable to run without the system software, such as operating

system and utility programs. It includes several applications, such as word-processing and

spreadsheet. The word-processing application helps in creating and editing a document. Using

this application software, we can also format and print the document. For word-processing,

many applications are available, such as WordStar, WordPerfect, and Open-source. The most

commonly used word-processing application is MS Word, which is a part of the MS Office suite.

Spreadsheet application helps in creating a customized ledger, which has number of columns

Hardware

System software

Application software

User

Fig. 1.19 3 Relationship among hardware, software, and user

1.22 Basic Computer Engineering

and rows for entering the data values. The most commonly used spreadsheet application is MS

Excel, which is also a part of MS Office suite. It helps in storing and maintaining a database

in a structural manner.

 1.12 Computer Ethics

Ethics is a set of moral guidelines or principles that help ascertain what is right or wrong in

a particular situation. When such principles are applied to computers and their related usage

it is referred as computer ethics. Computers along with the advent of Internet have opened

up a plethora of options for the users. There is no set pattern to what all tasks a user can or

will perform while working on computers. Both professional and personal usage of computers

may require the users to make certain decisions based on their ethical judgement; thus, it is

important to be aware of the right conduct while working on computers and the Internet.

With growing use of computers in almost every field, the awareness towards computer

ethics has also increased. Now, most of us are aware of what comprises a computer crime or

an online fraud. In fact, most of the ethical guidelines have also been adopted into relevant

laws both nationally as well as internationally. Some of the ethical issues concerning the use

of computers are explained below.

1.12.1 Hacking

It is the unauthorized access to somebody else’s computer system with malicious intentions.

Hacking may be done to carry out illegal tasks, such as information theft, online theft of funds,

privacy breach, etc. A number of security measures are adopted to prevent any attempt to

computer hacking. Additionally, the computer users must be made aware of the fact that accessing

a restricted system without appropriate rights or permissions is absolutely illegal and unethical.

Of late, a popular term called ethical hacking has come to the fore. It is used by professional

hackers to expose the loopholes in the security framework of a computer system. The owners

of the system are later made aware of these gaps so that appropriate mitigating actions can be

taken.

1.12.2 Breach of Privacy

While blatant breaches of privacy like illegal access to somebody else’s e-mail or social networking

account come under the purview of hacking, there are certain finer privacy issues that are quite

debatable. For instance, the use of cookies or spywares to log personal details of the Internet

users do not obviously go well with some users but the providers argue that these details are

used only for the same users’ convenience. For example, if a user browses for cookery books on

an online books portal, then he/she may get happily surprised to see the new add-ons in the

cookery category prominently displayed on the Web site’s main page on his/her subsequent

visits to the portal. However, certain users may object to such a situation where their personal

information is being gathered without their consent. There are appropriate laws in place now to

make sure that such activities are carried out within the legal and ethical purview.

1.23Fundamentals of Computers

1.12.3 Intellectual Property Theft

Intellectual property comprises of all those intangible entities that originate from somebody’s

intellect or creativity. For instance, digital content, songs, images, etc. are all referred as

intellectual property. The use of computers with Internet has made it extremely difficult to

check intellectual property thefts. For instance, it is very easy for a person to copy the content

written by somebody else and publish it under his own credentials at some other platform. Thus,

ethical and legal grounds are a must to check the theft of intellectual property. The owners of

intellectual property are advised to clearly tag the property with Intellectual Property Rights

statement that mentions who the owners of the property are and how it can be accessed and

utilized by the other users.

1.12.4 Ethical Standards

Several organizations and professional bodies have come up with a set of ethical standards or

code of ethics for computer professionals. Some of these organizations are:

 Association for Computing Machinery

 British Computer Society

 Uniform Computer Information Transactions Act (UCITA)

The objective of all sets of ethical standards is same, i.e., to make the individuals aware of

the right ethical behaviour while working with computers.

 1.13 Application of Computers

The use of computers has grown in leaps and bounds in the last two decades. There is virtually

no field untouched by computers, either directly or indirectly. For instance, e-mail, online funds

transfer, e-ticketing, e-commerce, etc. are all automated alternatives to otherwise manual

tasks. The use of computers has become so much widespread that it is difficult to imagine even

a single day without them. Here, we’ll focus on some of the specific areas where computers are

of great importance and usage.

1.13.1 E-business

E-business or electronic business refers to the use of information and communication technologies

(ICT) for conducting business. ICT uses computer, networking and telecommunication

systems for the purpose of communication. To understand the concept of e-business, let us

take the example of buyer-supplier relationship. By using a computer equipped with Internet,

a buyer can receive quotations from the supplier through e-mail. Further, the buyer can raise

a purchase order towards the supplier on its vendor management portal. The supplier, on the

other hand can raise the corresponding invoices on the same portal once the delivery of the

ordered materials is done. All these e-business activities greatly reduce the amount of paper

work as well as the related overheads. In addition to the buyer-supplier scenario, we can also

refer other activities such as online banking, online shopping, online stock trading, etc., as

examples of e-business activities.

1.24 Basic Computer Engineering

1.13.2 Bioinformatics

Bioinformatics is the field of science which applies computer-based tools and technologies on

biological research and development. It primarily involves collection and storage of biological and

genetic data on which statistical techniques are applied to arrive at the required solution.

Bioinformatics has revolutionized the way research and development activities are carried out in

the field of molecular biology. Some of the key research-oriented application areas of bioinformatics

are DNA mapping, medicinal research, 3-D modelling, pattern recognition, computational

genomics, etc. The field of bioinformatics is continuously evolving with the discovery of advanced

tools and techniques for addressing challenges in the field of molecular biology.

1.13.3 Healthcare

Nowadays, computers are being used to cater to several different aspects of healthcare. The

use of computers is evident right from the beginning when a patient approaches a healthcare

facility. The healthcare staff logs the patient’s details in an organized manner in the computer

system. The same computer is used for finding and allocating a vacant bed to the patient,

if required. If the patient had visited the healthcare facility earlier then the physician can

check history of treatments that the patient has already undergone. This helps the physician

in effective diagnosis of the patient’s ailment. Further, if the doctor wishes to seek advice on a

complicated case then he/she can do that instantly by using ICT technologies.

The most significant use of computers within healthcare has been its amalgamation with

medical equipments. A majority of medical equipments are now computer based, thus enabling

accurate capture of data in digital form. Further, devices like CT scanner help the physicians

to view a 3-D imagery of body organs, thus facilitating effective diagnosis.

1.13.4 Remote Sensing and GIS

Remote sensing is the technique of acquiring information about a subject (material or spatial)

without coming in direct contact with it. Since, there is no direct contact involved, wireless

devices are used for performing remote sensing tasks. Such devices are typically real-time

systems that continuously gather and store data related to the subject under observation. A

RADAR system can be considered as a good example of a remote sensing device that measures

the time delay between sending and receiving of signals to detect information related to objects.

Computers are used to collect, manage and analyze such data collected using remote sensing

techniques. Marine navigation and air traffic management are some of the typical examples

where computers are used along with remote sensing mechanisms.

Geographical Information System or GIS is a system that gathers location-specific data and

presents it in various meaningful forms. It is basically a computer-based information system

that captures and stores location-specific data against different parameters. Relationships

are then drawn from these data elements and presented in a suitable format. For example, a

utility GIS system fitted in a car may help a person while travelling at an unknown location

with the help of real-time maps. Further, the user may additionally be fed vital information

around the current location, such as the closest filling station, automobile service station,

restaurant, etc. Some of the application areas of GIS systems are environmental research,

disaster management, demographic studies, and so on.

1.25Fundamentals of Computers

1.13.5 Meteorology and Climatology

Meteorology is the study of atmosphere and the related weather conditions over short time

intervals aimed at making routine weather forecasts. Climatology, on the other hand is the

study of weather conditions over a long period of time (in years) so as to explore the climate of

a region in totality. Both these processes use computers for collection, storage and processing

of data. Climatology in particular requires extensive data analysis to study the weather

trends over long periods of time. The results of the analysis are displayed using graphics and

animations so that accurate forecasts can be predicted by the weather experts.

1.13.6 Computer Gaming

Computers are widely used for playing games that are similar to video or console-based

games. A computer must possess graphics and animations support for ensuring rich gaming

experience to the users. The computer gaming industry has evolved tremendously over the

past few decades. A number of software companies are dedicatedly involved in developing

computer games that are sold to the users under the licensing arrangement.

In the last decade or so, the concept of online games has also come to the fore. Now, users do

not need to install games on their personal computers. They can simply log on to the provider’s

Web site and play games in real-time. The gamers are represented on the Web through their

virtual identities. In certain cases like virtual reality, these virtual entities behave just like

their real-world counterparts. Although, computer-based games are meant for the sole purpose

of entertainment, they have certain flip sides as well. For instance, excessive use of computer

games at times makes the users game-addicts, thus hampering their daily routine lives.

1.13.7 Multimedia and Animation

Multimedia is a system that represents information through various media components

such as music, video, sound, text and images. Animation is an instance of multimedia that

represents images or art works in motion. A cartoon film is a very good example of an animation.

Multimedia and animations are actively used in the entertainment industry to add special

effects to a video. Similarly, they are also used for the purpose of training and development.

For instance, a flight simulator that creates a virtual flying environment for the trainee pilot

is an example of a high-end animation system. A number of development tools such as Flash,

Captivate, etc., can be used by designers to build a multimedia and animation system.

SUMMARY

 In simple terms, a computer is defined as an electronic machine that takes input from the user,

processes the given input and generates output in the form of useful information. However, in

actuality the power and capability of computers go way beyond this simple definition. There

are hardly any areas that have not been impacted by computers in some way or the other.

In fact, it is now hard to imagine a life without the direct or indirect usage of computers.

1.26 Basic Computer Engineering

 Based on operating principles, applications and size and capability, the computers are

classified into different categories, such as analog computer, digital computer, mini

computer, mainframe, etc. Each of these categorizations helps us to explore a different

facet of computers in terms of their functioning and performance.

 Any type of computer system possesses four key constituents i.e., an input system, output

system, CPU and memory. While input and output systems are essential for user interaction,

CPU and memory are used for data processing and storage. The primary memory of a

computer system stores the data temporarily till the time a program is executed while the

secondary memory stores the data permanently for later usage. Bus is another important

hardware component that enables the transfer of data to and from CPU and memory and

CPU and input/output system.

 Even though hardware constitutes the backbone of a computer system, it the software that

brings hardware into operation. It acts as an interface between the users and the underlying

hardware system. Computer software are broadly classified into two categories, system

software and application software. All system management programs (such as operating

system, device driver, etc.) and system development programs (such as compilers, IDEs, etc)

come under the category of system software. On the other hand, all standard application

programs (such as word processor, spreadsheet, etc.) and unique application programs

(such as inventory management system, payroll system, etc.) come under the application

software category.

Key Terms

 Computer

 Data

 Program

 Information

 Analog Computer

 Digital computer

 Hybrid computer

 Microcomputer

 Minicomputer

 Super computer

 Mainframe computer

 Hardware

 Software

 AU

 LU

 CU

 Opcode

 Operand

 Main memory

 Cache memory

 Primary cache

 Secondary cache

 Registers

 PC

 IR

 MAR

1.27Fundamentals of Computers

 Review Questions

1.1 What are the different components of a computer? Explain, each of them.

1.2 Discuss briefly the various characteristics of a computer.

1.3 How are computers classified? Explain briefly.

1.4 Draw the block diagram of a microcomputer.

1.5 Differentiate between hardware and software of a computer?

1.7 Draw the block diagram of a computer system and explain its main components.

1.8 How does the control unit assist the CPU in carrying out its operations?

1.9 What do you understand by CPU cycle? What are the main operations accomplished

using the CPU cycle?

1.10 Explain the concept of cache memory with diagram. What are the different types of

cache memory found in a computer system?

1.11 List the different types of CPU registers.

1.12 What do you understand by internal communications? List the major categories of

internal communications.

1.13 Explain the importance of MAR and MDR in accomplishing processor to memory

communication.

1.14 What is the difference between memory read and memory write operations? List the

different steps involved in memory read and memory write operations.

1.15 Explain the concept of processor to I/O devices communication. What is the role of

interface unit in implementing such type of communication in a computer system?

1.16 Explain how data is transferred from processor to an output device within a computer

system.

 MBR

 MDR

 Accumulator

 Bus

 Data bus

 Address bus

 Control bus

 Complex instruction set

 Reduced instruction set

 CISC

 RISC

 Input devices

 Output devices

 Memory

 Scanner

 Motherboard

 RAM

 Printer

 Speaker

 Plotter

 Application software

 System software

1.28 Basic Computer Engineering

1.17 Explain the importance of a bus in the computer system. What are the different types

of buses usually found in the computer system?

1.18 What is the function of a control bus in a computer system?

1.19 Explain the concept of instruction set. Which component of a computer system is mostly

associated with instruction set?

1.20 What are the different factors considered for classifying an instruction set?

1.21 Explain in detail the different categories of instruction sets.

1.22 What do you understand by CISC? List the advantages and disadvantages of CISC.

1.23 What do you understand by RISC? List the advantages of RISC processors.

1.24 What are input devices? Briefly explain some popular input devices.

1.25 What is the purpose of an output device? Explain various types of output devices.

1.66 List, with examples, five important application areas of computers today.

 Fill in the Blanks

1.1 The central processing unit of the computer system is popularly known as ________

of the computer system.

1.2 _________ unit is responsible for performing all the arithmetic operations in the

computer system.

1.3 The ___________ register keeps the track of the next instruction to be executed.

1.4 _____________ is called the main-memory of the computer.

1.5 The access time of _________ memory is faster as compared to that of main

memory.

1.6 The group of wires used to connect the components of CPU to transfer the data is

called ________________.

1.7 The time taken by the CPU to fetch an instruction and execute it is called

________________.

1.8 The group of instructions that a processor can execute is called ________________.

1.9 _________ bus is used to transfer data from the memory.

1.10 The instruction set can be classified as ________________ and ________________.

1.11 The _______ field represents the operation to be performed by the instruction.

1.12 A ___________ is an electronic machine that takes input from the user and stores and

processes the given input to generate the output in the form of useful information to

the user.

1.13 The raw details that need to be processed to generate some useful information is

known as ___________.

1.14 The set of instructions that can be executed by the computer is known as

___________.

1.29Fundamentals of Computers

1.15 ___________ is the processor of the computer that is responsible for controlling and

executing the various instructions.

1.16 ___________ is a screen, which displays the information in visual form, after receiving

the video signals from the computer.

1.17 A ___________ is the fastest type of computer that can perform complex operations

at a very high speed.

1.18 The term ___________ refers to the programs and instructions that help the computer

in carrying out their processing.

1.19 The programs, which are designed to perform a specific task for the user, are known

as ___________.

1.20 The programs, which are designed to control the different operations of the computer,

are known as ___________.

1.21 The instruction set of _________ has a few instructions compared to that of

_________.

1.22 The direct communication between processor and memory of the computer system

is implemented with the help of two registers, __________ and __________.

1.23 The two important operations performed while communicating with the memory of

the computer system are _________ and _________.

1.24 The flag bit of the status register is ______, when the register holds the data.

1.25 The computer, which makes use of reduced instruction set, is called ________.

1.26 The speed of the RISC processors is measured in ________.

1.27 __________ bus transfers the memory addresses for reading or writing the data.

 Multiple Choice Questions

1.1 Which component of the computer is known as the brain of computer?

 A. Monitor B. CPU C. Memory D. None of the above

1.2 Which of the following is an input device?

 A. Printer B. Monitor C. Mouse D. None of the above

1.3 Which of the following is a characteristic of the modern digital computer?

 A. High speed B. Large storage capacity

 C. Greater accuracy D. All of the above

1.4 On what basis computers can be classified?

 A. Operating principles B. Applications

 C. Size and capability D. All of the above

1.5 Which of the following unit is a part of the CPU?

 A. ALU B. CU C. Memory unit D. All of the above

1.30 Basic Computer Engineering

1.6 Which of the following is known as a midrange computer?

 A. Microcomputer B. Mini computer

 C. Mainframe computer D. Super computer

1.7 The programs and instructions that help the computer in carrying out their processing

are known as?

 A. Hardware B. Software C. Data D. None of the above

1.8 What does CPU stand for?

 A. Center processing unit B. Central processing unit

 C. Central programming unit D. Computer processing unit

1.9 Which one of the following is not an internal component of CPU?

 A. Arithmetic unit B. Logic unit C. Interface unit D. Control unit

1.10 What is the main function of CPU in a computer system?

 A. Storing the data

 B. Programming the computer

 C. Transferring the data to an output device

 D. Processing the data

1.11 Which of the following memory locations are first referred by the CPU while searching

for data?

 A. Main memory B. Cache Memory

 C. ROM D. Secondary memory

1.12 Cache memory is used to transfer data between:

 A. Main memory and secondary memory

 B. Processor and an input device

 C. Main memory and processor

 D. Processor and an output device

1.13 Which one of the following cache memory is also known as internal cache?

 A. L2 cache B. L1 cache C. L3 cache D. L4 cache

1.14 Which one of the following hardware components is normally used to accommodate

secondary cache?

 A. Motherboard B. Processor

 C. RAM D. Any secondary storage device

1.15 Which one of the following statement is not true about L1 cache?

 A. L1 cache is a type of cache memory.

 B. L1 cache stores the data from the main memory.

 C. L1 cache is an expensive type of memory.

 D. L1 cache is usually slower than L2 cache.

1.31Fundamentals of Computers

1.16 Which one of the following register is not a CPU register?

 A. Memory control register B. Memory data register

 C. Memory buffer register D. Instruction register

1.17 What is the purpose of memory address register?

 A. Stores the address of the next location in the main memory

 B. Stores the address of the next location in the secondary memory

 C. Stores the address of the next location in the cache memory

 D. Stores the address of an output device to which the data is to be sent

1.18 Which of the following registers is used to indicate whether the data register holds

the data to be transferred or not?

 A. Status register B. MAR C. MBR D. MDR

1.19 Which of the following two registers are used by the CPU to transfer the data between

processor and memory?

 A. MDR and IR B. PC and IR C. IR and MAR D. MAR and MDR

1.20 Which of the following is not a type of bus used in the computer system?

 A. Data bus B. Address bus

 C. Information bus D. Control bus

1.21 Which of the following is a characteristic of the CISC processor?

 A. Number of instructions varying between 100 and 250

 B. Large number of addressing modes

 C. Variable length instruction format

 D. All of the above

1.22 What is the fixed length of the instruction format used in RISC processors?

 A. 30-bits B. 16-bits C. 32-bits D. 24-bits

1.23 Which of the following is the most powerful and expensive computer at present?

 (a) Minicomputer (b) Mainframe computer

 (c) Supercomputer (d) Microcomputer

1.24 Which of the following is used to perform computations on the entered data?

 (a) Memory (b) Processor (c) Input device (d) Output device

1.25 Which of the following is not an input device?

 (a) Plotter (b) Scanner (c) Keyboard (d) Mouse

1.26 Which of the following is not an output device?

 (a) Plotter (b) Scanner (c) Printer (d) Speaker

1.27 Which of the following is used as a primary memory of the computer?

 (a) Magnetic storage device (b) RAM

 (c) Optical storage device (d) Magneto-optical storage device

1.32 Basic Computer Engineering

1.28 Which of the following is used as a secondary memory of the computer?

 (a) Magnetic storage device (b) RAM

 (c) Cache memory (d) ROM

1.29 Which of the following is defined as a computer program for performing a particular

task on the computer system?

 (a) Hardware (b) Software (c) Processor (d) Memory

Operating Systems

2

 2.1 Introduction

An operating system (OS) is a software that

makes the computer hardware to work. While

the hardware provides ‘raw computer power’,

the OS is responsible for making the computer

power useful for the users. As discussed in

the previous chapter, the OS is the main

component of system software and therefore

must be loaded and activated before we can

accomplish any other task.

The operating system provides an interface

for users to communicate with the computer.

It also manages the use of hardware resources

and enables proper implementation of

application programs. In short, the operating

system is the master control program of a

computer. Figure 2.1 shows the different roles

performed by an operating system. The main

functions include:

 Operates CPU of the computer.

 Controls input/output devices that

provide the interface between the user

and the computer.

Key Concepts

 Operating System

 History

 Function of Operating System

 Processs Management

 Memory Management

 File Management

 Batch Processing Operating Systems

 Multi-User Operating Systems

 Multitasking Operating Systems

 Real-Time Operating Systems

 Multiprocessor Operating Systems

 Embedded Operatings System

 MS-DOS

 UNIX

 Windows

2.2 Basic Computer Engineering

 Handles the working of application programs

with the hardware and other software systems.

 Manages the storage and retrieval of informa-

tion using storage devices such as disks.

Every computer, irrespective of its size and

application, needs an operating system to make it

functional and useful. Operating systems are usually

prewritten by the manufacturers and supplied with

the hardware and are rarely developed in-house

owing to its technical complexity. There are many

operating systems developed during the last few

decades but the popular among them are MS-DOS,

Windows 2000, Windows XP, Windows Server 2003,

UNIX and Linux.

In this chapter we shall discuss in detail the various functions of operating systems, different

types of operating systems and their services, and the types of user interfaces available.

 2.2 History of Operating Systems

A series of developments in the computer architecture led to the evolution of the operating

system during the later half of the 20th century. During the 1940’s, there was no operating

system and assembly language was used to develop programs that could directly interact with

the hardware. The computer systems during this period were mainly used by the researchers,

who were both the programmers as well as the end users of the computer system.

During the 1950s, more number of people started using the computer systems. This led to

a repetition of tasks as everyone started developing their own programs and device drivers.

Different people created device drivers for the same input and output devices. To avoid this

repetition of tasks, various batch processing operating systems such as BKY, CAL and Chios

were developed during this period. FORTRAN Monitor System, General Motors Operating

System and Input Output System are the other operating systems developed in the 1950s. The

operating systems developed during this period were capable of performing only a single task

at a time.

During the 1960s, multi-tasking operating systems were developed. These operating

systems ensured better utilisation of resources by allowing the multiple tasks to be performed

simultaneously. They also allowed multiple programs to remain in memory at the same time.

Central Processing Unit (CPU) executed multiple processes at a single time and also handled

the hardware devices attached to the computer system. These operating systems used the

concepts of spooling and time-sharing model for achieving the multi-tasking functionality.

The various operating systems developed during the 1960s include Admiral, Basic Executive

System, Input Output Control System and SABRE (Semi-Automatic Business Related

Environment).

During the 1970s, a major breakthrough was achieved in the development of operating

system with the introduction of UNIX by AT&T Bell Labs. UNIX supported a multi-user

Fig. 2.1 3 The roles of an operating system

2.3Operating Systems

environment where multiple users could work on a computer system. The core functionality

of UNIX resided in a kernel that was responsible for performing file, memory and process

management. UNIX also came bundled with utility programs for performing specific tasks.

The other operating systems that were introduced in the 1970s include DOS/VS, OS/VS1 and

OpenVMS.

During the 1980s, some key operating systems were developed including MS-DOS, HP-

UX and Macintosh. MS-DOS was developed by Microsoft and could be installed on desktop

Personal Computers (PCs), such as Intel 80x86 PCs. HP-UX was similar to UNIX and was

developed by Hewlett Packard. This operating system could be installed on the HP PA RISC

computer systems. Macintosh was developed by Apple computers and could be installed on the

desktop PCs such as Motorola 680x0. MS DOS and Macintosh became quite popular in the

1980’s and are still in use.

A number of operating systems were developed during the 1990s including Windows 95,

Windows 98, Windows NT, FreeBSD and OS/2. Windows 95, Windows 98 and Windows NT

were GUI based operating systems developed by Microsoft. FreeBSD was similar to UNIX and

was available free of cost. OS/2 was introduced by IBM and could be installed on Intel/AMD

Pentium and Intel 80x86 based computer systems. The decade of 1990 revolutionised the way

of computing through robust GUI-based operating systems and fast processing devices.

The first decade of 21st century has seen the development of operating systems such as MAC

OS X, Windows 2000, Windows Server 2003, Windows ME and Windows XP. With the advent

of Internet, security has been the prime focus of the operating systems of this era.

 2.3 Functions of Operating Systems

The main function of an operating system is to manage the resources such as memory and

files of a computer system. The operating system also resolves the conflicts that arise when

two users or programs request the same resource at the same time. Therefore, the operating

system is also called the resource manager of a computer system. The currently used operating

systems such as Windows 2000, Windows Server 2003 and Linux also support networking that

allows the sharing of files and resources such as printer and scanner. The following are some

of the important functions of an operating system: Process management It manages the processes running in a computer system. A

process is basically a program that is being currently run by a user on a computer

system. For example, a word processor application program such as Microsoft Word

runs as a process in a computer system. Memory management It manages the memory resources of a computer system. There

are various memory resources of a computer system including primary memory or

Random Access Memory (RAM) and secondary memory like hard disk and Compact

Disk (CD). All the programs are loaded in the main memory before their execution. It is

the function of the operating system to determine how much memory should be provided

to each process. File management It manages the files and directories of a computer system. A file

can be defined as a collection of information or data that is stored in the memory of a

2.4 Basic Computer Engineering

computer system. Every file has a unique name associated with it. The organisation

of files and directories in a computer system is referred as file system. An operating

system allows us to create, modify, save, or delete files in a computer system.

Device management This function of operating system deals with the management

of peripheral devices, such as printer, mouse and keyboard attached to a computer

system. An operating system interacts with the hardware devices through specific

device drivers. The primary task of an operating system is to manage the input/output

operations performed by the end users.

Security management It ensures security for a computer system from various threats

such as virus attacks and unauthorised access. An operating system uses various

techniques, such as authentication, authorisation, cryptography, etc. for ensuring

security of a computer system.

Figure 2.2 depicts the various functions of an operating system.

Fig. 2.2 3 The functions of an operating system

 2.4 Process Management

Process management involves the execution of various tasks such as creation of processes,

scheduling of processes, management of deadlocks and termination of processes. When a

process runs in a computer system, a number of resources such as memory and CPU of the

computer system are utilised. It is the responsibility of an operating system to manage the

running processes by performing tasks such as resource allocation and process scheduling. The

operating system also has to synchronise the different processes effectively in order to ensure

consistency of shared data.

Generally, only a single process is allowed to access the CPU for its execution at a particular

instant of time. When one process is being processed by the CPU, the other processes have

to wait until the execution of that particular process is complete. After the CPU completes

the execution of a process, the resources being utilised by that process are made free and the

execution of the next process is initiated. All the processes that are waiting to be executed are

said to be in a queue. In some cases, a computer system supports parallel processing allowing

a number of processes to be executed simultaneously.

A process consists of a set of instructions to be executed called process code. A process is also

associated with some data that is to be processed. The resources that a process requires for

its execution are called process components. There is also a state associated with a process at

2.5Operating Systems

a particular instant of time called process state. Similar to these concepts, there are a number

of concepts associated with the process management function of an operating system. Some of

these key concepts are:

Process state

Process Control Block (PCB)

Process operations

Process scheduling

Process synchronisation

Interprocess communication

Deadlock

2.4.1 Process State

A process state can be defined as the condition of a process at a particular instant of time.

There are basically seven states of a process:

New It specifies the time when a process is created.

Ready It specifies the time when a process is loaded into the memory and is ready for

execution.

Waiting It specifies the time when a process waits for the allocation of CPU time and

other resources for its execution.

Executing It is the time when a process is being executed by the CPU.

Blocked It specifies the time when a process is waiting for an event like I/O operation

to complete.

Suspended It specifies the time when a

process is ready for execution but has not been

placed in the ready queue by the operating

system.

Terminated It specifies the time when a

process is terminated and the resources being

utilised by the process are made free.

Figure 2.3 illustrates the various process states.

The Fig. 2.3 shows that a process is initially in

the new state when it is created. After the process

has been created, the state of the process changes

from new to ready state where the process is loaded

into the memory. The state of the process changes

from ready to the waiting state when the process is

loaded into the memory. The process state changes

from waiting to the executing state after the CPU

time and other resources are allocated to it and

the process starts running. After the process has

executed successfully, it is terminated and its state

changes to terminated. Fig. 2.3 3 The different states of a process

2.6 Basic Computer Engineering

2.4.2 Process Control Block (PCB)

PCB is a data structure associated with a process that provides complete information about

the process. PCB is important in a multiprogramming environment as it captures information

pertaining to a number of processes running simultaneously. PCB comprises of the following:

Process id It is an identifi cation number that uniquely identifi es a process.

Process state It refers to the state of a process such as ready and executing.

Program counter It points to the address of the next instruction to be executed in a process.

Register information It comprises of the various

registers, such as index and stack that are associated with a

process.

Scheduling information It specifi es the priority

information pertaining to a process that is required for process

scheduling.

Memory related information This section

of the PCB comprises of page and segment tables.

It also stores the data contained in base and limit registers.

Accounting information This section of the PCB stores

the details relate to CPU utilisation and execution time of a

process.

Status information related to I/O This section of the

PCB stores the details pertaining to resource utilisation and

the fi les opened during process execution.

The operating system maintains a table called process table,

which stores the PCBs related to all the processes. Figure 2.4 shows

the structure of PCB.

2.4.3 Process Operations

The process operations carried out by an operating system are primarily of two types, process

creation and process termination. Process creation is the task of creating a new process.

There are different situations in which a new process is created. A new process can be

created during the time of initialisation of operating system or when system calls such as

create-process and fork() are initiated by other processes. The process, which creates a new

process using system calls, is called parent process while the new process that is created is

called child process. The child processes can further create new processes using system calls.

A new process can also be created by an operating system based on the request received

from the user. Figure 2.5 shows the hierarchical structure of multiple processes running in a

computer system.

The process creation operation is very common in a running computer system because

corresponding to every task that is performed there is a process associated with it. For instance,

a new process is created every time a user logs on to a computer system, an application program

such as MS Word is initiated, or when a document is printed.

Process termination is an operation in which a process is terminated after it has executed

its last instruction. When a process is terminated, the resources that were being utilised by

Fig. 2.4 3 The structure of a PCB

2.7Operating Systems

the process are released by the operating system. When a child process terminates, it sends

the status information back to the parent process before terminating. The child process can

also be terminated by the parent process if the task performed by the child process is no longer

needed. In addition, when a parent process terminates, it has to terminate the child process as

well because a child process cannot run when its parent process has been terminated.

The termination of a process when all its instructions have been executed successfully is

called normal termination. However, there are instances when a process terminates due to

some error. This is called abnormal termination of a process.

2.4.4 Process Scheduling

Process scheduling is the task performed by an operating system for deciding the priority in

which the processes, which are in ready and waiting states, are allocated the CPU time for

their execution. Process scheduling is very important in multiprogramming and multitasking

operating systems where multiple processes are executed simultaneously. Process scheduling

ensures maximum utilisation of CPU because a process is always running at a specific instant

of time. At first, the processes that are to be executed are placed in a queue called job queue.

The processes, which are present in the main memory and are ready for CPU allocation, are

placed in a queue called ready queue. If a process is waiting for an I/O device then that process

is placed in a queue called device queue.

An operating system uses a program called scheduler for deciding the priority in which a

process is allocated the CPU time. Scheduler is of three types:

Long term scheduler It selects the processes that are to be placed in the ready queue. The

long term scheduler basically decides the priority in which processes must be placed in the main

memory.

Mid term scheduler It places the blocked or suspended processes in the secondary memory of

a computer system. The task of moving a process from the main memory to the secondary memory

is referred as swapping out. The task of moving back a swapped-out process from the secondary

memory to the main memory is referred as swapping in. The swapping of processes is performed to

ensure the best utilisation of main memory.

Short term scheduler It decides the priority in which processes in the ready queue are allocated

the CPU time for their execution. The short term scheduler is also referred as CPU scheduler.

Fig. 2.5 3 The hierarchical structure of processes

2.8 Basic Computer Engineering

An operating system uses two types of scheduling policies for process execution, preemptive and

non preemptive. In the preemptive scheduling policy, a low priority process has to suspend

its execution if a high priority process is waiting in the queue for its execution. However in

the non preemptive scheduling policy, processes are executed in first come first serve basis,

which means the next process is executed only when currently running process finishes its

execution. The selection of the next process, however, may be done considering the associated

priorities. Operating systems perform the task of assigning priorities to processes based on

certain scheduling algorithms. Some of the key scheduling algorithms are: First Come First Served (FCFS) scheduling In this scheduling algorithm, the first

process in a queue is processed first. Shortest Job First (SJF) scheduling In this scheduling algorithm, the process that

requires shortest CPU time is executed first. Priority scheduling In this scheduling algorithm, a priority is assigned to all the

processes and the process with highest priority is executed first. Priority assignment of

processes is done on the basis of internal factors such as CPU and memory requirements

or external factors such as user’s choice. The priority scheduling algorithm can support

either preemptive or non-preemptive scheduling policy. Round Robin (RR) scheduling In this scheduling algorithm, a process is allocated the

CPU for a specific time period called time slice or time quantum, which is normally of

10 to 100 milliseconds. If a process completes its execution within this time slice then it

is removed from the queue otherwise it has to wait until the next time slice.

2.4.5 Process Synchronisation

Process synchronisation is the task of synchronising the execution of processes in such a

manner that no two processes have access to the same shared data or resource. When multiple

processes are concurrently running then they may attempt to gain access to the same shared

data or resource. This can lead to inconsistency in the shared data as the changes made by

one process in the shared data may not be reflected when another process accesses the same

shared data. In order to avoid such inconsistency of data, it is important that the processes are

synchronised with each other.

One of the important concepts related to process synchronisation is that of critical section

problem. Each process contains a set of code called critical section through which a specific task,

such as changing the value of a global variable and writing certain data to a file, is performed.

To ensure that only a single process enters its critical section at a specific instant of time, the

processes need to coordinate with other by sending requests for entering the critical section.

When a process is in its critical section no other process is allowed to enter the critical section.

Peterson’s solution is one of the solutions to critical section problem involving two processes.

Peterson’s solution states that when one process is executing its critical section then the other

process executes the rest of the code and vice versa. This ensures that only one process is in

the critical section at a particular instant of time.

Locking is another solution to critical section problem in which a process acquires a lock

before entering its critical section. When the process finishes executing its critical section,

2.9Operating Systems

it releases the lock. The lock is then available for any other process that wants to enter the

critical section. The locking mechanism also ensures that only one process is in the critical

section at a particular period of time.

Another solution to the critical section problem is that

of Semaphore. It is basically a synchronisation tool in

which the value of an integer variable called semaphore

is retrieved and set using wait and signal operations.

Based on the value of the Semaphore variable, a process

is allowed to enter its critical section.

2.4.6 Interprocess Communication

Interprocess communication is the method of

communication between processes through which

processes interact with each other for gaining access

to shared data and resources. There are two methods

of interprocess communication, shared memory and

message passing.

In the shared memory method, a part of memory is

shared between the processes. A process can write the

data that it wants to share with other processes in to

the memory. Similarly, another process can read the

data that has been written by another process. Figure

2.6 shows the shared memory method of interprocess

communication.

In Fig. 2.6, P1 and P2 represent the two processes.

P1 writes the data that it needs to share with P2in the

shared memory. P2 then reads the data written by P1

from the shared memory.

In the message passing method, a process sends a

message to another process for communication. This

method allows the sharing of data between processes

in the form of messages. Figure 2.7 shows the message

passing method of interprocess communication.

In Fig. 2.7, P1 sends the shared data in the form of

a message to the kernel and then the kernel sends the

message sent by P1 to P2.

2.4.7 Deadlock

Deadlock is a condition that occurs when multiple

processes wait for each other to free up resources and

as a result all the processes remain halted. Let us

Fig. 2. 6 3 The shared memory method of
interprocess communication

Fig. 2.7 3 The message passing method for
the interprocess communication

2.10 Basic Computer Engineering

understand the concept of deadlock with the help of an example. Suppose there are two processes

P1 and P2 running in a computer system. P1 requests for a resource, such as printer that is being

utilised by the P2 process. As a result, the P1 process has to wait till the time P2 completes its

processing and frees the resource. At the same time, the P2 process requests for a resource, such

as shared data that has been locked by the process P1. Thus, both the processes end up waiting

for each other to free up the required resources. This situation is called a deadlock.

The following are some of the reasons due to which a deadlock situation may arise. Mutual exclusion In mutual exclusion, processes are not allowed to share resources

with each other. This means that if one process has control over a resource, then

that resource cannot be used by another process until the first process releases the

resource. Hold and wait In this condition, a process takes control of a resource and waits for

some other resource or activity to complete. No preemption In this condition, a process is not allowed to force some other process

to release a resource.

There are a number of methods through which the deadlock condition can be avoided. Some

of these methods are: Ignore deadlock In this method, it is assumed that a deadlock would never occur.

There is a good chance that a deadlock may not occur in a computer system for a long

period of time. As a result, the ignore deadlock method can be useful in some cases. Detect and recover from deadlock In this method, the deadlock is first detected

using allocation/request graph. This graph represents the allocation of resources to

different processes. After a deadlock has been detected, a number of methods can be

used to recover from the deadlock. One way is preemption in which a resource held

by one process is provided to another process. The second way is rollback in which the

operating system keeps a record of the process states and makes a process roll back to

its previous state; thus eliminating the deadlock situation. The third way is to kill one

or more processes to overcome the deadlock situation. Avoid deadlock In this method, a process requesting a resource is allocated the

resource only if there is no possibility of deadlock occurrence.

 2.5 Memory Management

Memory management function of an operating system helps in allocating the main memory

space to the processes and their data at the time of their execution. Along with the allocation

of memory space, memory management also perform the following activities: Upgrading the performance of the computer system Enabling the execution of multiple processes at the same time Sharing the same memory space among different processes

Memory management is one of the most important functions of operating system because

it directly affects the execution time of a process. The execution time of a process depends on

the availability of data in the main memory. Therefore, an operating system must perform

2.11Operating Systems

the memory management in such a manner that the essential data is always present in the

main memory. An effective memory management system ensures accuracy, availability and

consistency of the data imported from the secondary memory to the main memory.

An effective memory management system must ensure the following:

Correct relocation of data The data should be relocated to and from the main memory

in such a manner that the currently running processes are not affected. For example, if

two processes are sharing a piece of data then the memory management system must

relocate this data only after ensuring that the two processes are no longer referencing

the data.

Protection of data from illegal change The data present in the main memory should

be protected against unauthorised access or modifications. The memory management

system should ensure that a process is able to access only that data for which it has the

requisite access and it should be prohibited from accessing data of other processes.

Provision to share the information An ideal memory management system must

facilitate sharing of data among multiple processes.

Utilisation of small free spaces A memory management system should be able to apply

appropriate defragmentation techniques in order to utilise small chunks of scattered

vacant spaces in the main memory.

Segmentation, paging and swapping are the three key memory management techniques used by

an operating system.

2.5.1 Segmentation

Segmentation refers to the technique of dividing the physical memory space into multiple

blocks. Each block has a specific length and is known as a segment. Each segment has a

starting address called the base address. The length of a segment determines the available

memory spaces in the segment. Figure 2.8 shows the organisation of segments in a memory

unit.

Fig. 2.8 3 Memory unit having segments

2.12 Basic Computer Engineering

The location of data values stored in a segment can be determined by the distance of the

actual position of data value from the base address of the segment. The distance between the

actual position of data and the base address of segment is known as displacement or offset

value. In other words, whenever it is required to obtain data from the segmented memory then

the actual address of the data is calculated by adding the base address of the segment and with

offset value. The base address of the segment and the offset value is specified in a program

instruction itself. Figure 2.9 shows how the actual position of an operand in a segment is

obtained by adding the base address and the offset value.

Fig. 2.9 3 Obtaining the actual address of data

2.5.2 Paging

Paging is a technique in which the main memory of the computer system is organised in the

form of equal sized blocks called pages. In this technique, the addresses of the occupied pages

of the physical memory are stored in a table, which is known as page table.

Paging enables the operating system to obtain data from the physical memory location

without specifying its lengthy memory address in the instruction. In this technique, a virtual

address is used to map the physical address of the data. The length of the virtual address is

specified in the instruction and is smaller than the physical address of the data. It consists of

two different numbers, first number is the address of a page called virtual page in the page

table and second number is the offset value of the actual data in the page. Figure 2.10 shows

how the virtual address is used to obtain the physical address of an occupied page of physical

memory using a page table.

2.5.3 Swapping

Swapping is a technique used by an operating system for efficient management of memory

space of a computer system. Swapping involves performing two tasks called swapping in and

swapping out. The task of placing the pages or blocks of data from hard disk to the main

memory is called swapping in. On the other hand, the task of removing pages or blocks of data

2.13Operating Systems

from main memory to hard disk is called swapping out. The swapping technique is useful when

a large program has to be executed or some operations have to be performed on a large file.

The main memory in a computer system is

limited. Therefore, to run a large program or to

perform some operation on a large file, the operating

system swaps in certain pages or blocks of data

from the hard disk. To make space for these pages

or blocks of data in the main memory, the operating

system swaps out the pages or blocks of data that

are no longer required in the main memory. The

operating system places the swapped out pages or

blocks of data in a swap file. A swap file is the space

in the hard disk that is used as an extension to

the main memory by the operating system. Figure

2.11 shows the technique of swapping used by the

operating system for memory management.

 2.6 File Management

File management is defined as the process of manipulating files in a computer system. A

file is a collection of specific information stored in the memory of the computer system. File

management includes the process of creating, modifying and deleting the files. The following

are some of the tasks performed by the file management function of operating system:

Fig. 2.10 3 Obtaining data from a page using the paging technique

Fig. 2.11 3 Swapping of pages

2.14 Basic Computer Engineering

It helps in creating new files and placing

them at a specific location.

It helps in easily and quickly locating the

files in the computer system.

It makes the process of sharing the files

among different users easy.

It helps store the files in separate folders

known as directories that ensure better

organisation of data.

It helps modify the content as well as the name

of the file as per the user’s requirement.

Figure 2.12 shows the general hierarchy of file

storage in an operating system.

In Fig. 2.12, the root directory is present at

the highest level in the hierarchical structure. It

includes all the subdirectories in which the files

are stored. Subdirectory is a directory present

inside another directory in the file storage system.

The directory based storage system ensures better organisation of files in the memory of the

computer system.

The file management function of OS is based on the following concepts:

File attributes It specifies the characteristics, such as type and location that completely

describe a file.

File operations It specifies the tasks that can be performed on a file such as opening

and closing a file.

File access permissions It specifies the access permissions related to a file such as

read and write.

File systems It specifies the logical method of file storage in a computer system. Some

of the commonly used file systems include FAT and NTFS.

2.6.1 File Attributes

File attributes are the properties associated with a file that specify different information

related to a file. The following are some of the key file attributes:

Name It specifies the name of a file given by the user at the time of saving it.

File type It specifies the type of a file such as a Word document or an Excel worksheet.

Location It specifies the location of a file where it is stored in the memory.

Size It specifies the size of the file in bytes.

Date and time It specifies the date and time when the file was created, last modified

and last accessed.

Read-only It specifies that the file can be opened only for reading purpose.

Hidden If this attribute of a file is selected, then the file is hidden from the user.

Archive If this attribute of a file is selected, then the back up of a file is created.

Fig. 2.12 3 The general hierarchy of file
storage in an operating system

2.15Operating Systems

2.6.2 File Operations

File operations are the various tasks that are performed on files. A user can perform these

operations by using the commands provided by the operating system. The following are some

of the typical file operations: Creating It helps in creating a new file at the specified location in a computer system.

The new file could be a Word document, an image file or an Excel worksheet. Saving It helps in saving the content written in a file at some specified location. The

file can be saved by giving it a name of our choice. Opening It helps in viewing the contents of an existing file. Modifying It helps in changing the existing content or adding new to an existing file. Closing It helps in closing an already open file. Renaming It helps in changing the name of an existing file. Deleting It helps in removing a file from the memory of the computer system.

2.6.3 File Access Permissions

File access permissions help specify the manner in which a user can access a file. These are the

access rights that allow us to read, write or execute a file. The following are some of the typical

file access permissions:

Read It allows a user to only read the content of an existing file.

Write It allows a user to only modify the content of an existing file.

Execute It allows a user to run an existing file stored in the computer system.

2.6.4 File Systems

File systems are used by an operating system to store and organise the various files and their

information on a hard disk. The following are the two different file systems that are used to

organise files in a computer system: File Allocation Table (FAT) It is a method used for organising the files and folders in

the form of a table, which is known as FAT. This type of system is used for disks that

are smaller in size and contain simple folders. The different types of FAT systems are

FAT12, FAT16 and FAT32. New Technology File System (NTFS) This file system is specifically designed for large

hard disks for performing basic file operations, such as reading, writing, modifying,

saving, etc., quickly and efficiently. NTFS overcomes the drawbacks of the FAT

system.

 2.7 Types of Operating Systems

Many different types of operating systems have evolved till date. As the computers have

improved in terms of speed, reliability, and cost so have the operating systems in terms of

their capabilities. The operating systems supported by first generation computers were not

very powerful. They were only designed and developed to cater the needs of a single user at a

2.16 Basic Computer Engineering

time. Also, the users of these operating systems were capable of performing only one task at a

time. However, there has been a tremendous amount of improvement in operating systems in

the recent years. The modern-day operating systems allow multiple users to carry out multiple

tasks simultaneously. Based on their capabilities and the types of applications supported, the

operating systems can be divided into the following six major categories: Batch processing operating systems Multi-user operating systems Multitasking operating systems Real-time operating systems Multiprocessor operating systems Embedded operating systems

2.7.1 Batch Processing Operating Systems

The batch processing operating systems are capable of executing only one job at a time. The

jobs or the programs submitted by different users are grouped into batches and one batch of

jobs is provided as input to the computer system at a time. The jobs in the batch are processed

on the first-come-first-serve basis. After getting an appropriate command from the operator,

the batch processing operating system starts executing the jobs one-by-one. The execution

of a particular job generally involves three major activities, which are reading the job from

the input device, executing the job by the system and printing the calculated result on to the

output device. After the execution of one job is complete, the operating system automatically

fetches the next job from the batch without any human intervention.

The following are some of the advantages of batch processing operating systems: The computer systems employing the batch processing operating systems were very

efficient computer systems of their times because the idle time for these systems was

very small. These operating systems facilitated the execution of jobs in an organised manner.

The following are some of the disadvantages of batch processing operating systems: The jobs are processed only in the order in which they are placed in a batch and not as per

their priority. The debugging of a program at execution time is not possible in these operating systems. The executing jobs may enter an infinite loop, as each job is not associated with a proper

timer.

2.7.2 Multi-user Operating Systems

The multi-user operating systems enable multiple users to use the resources of a computer

system at the same time. In other words, a multi-user operating system allows a number of

users to work simultaneously on the same computer system. These types of operating systems

are specially designed for the multi-user systems. A multi-user system is usually implemented

by following the multi-terminal configuration. In this type of configuration, a single powerful

computer system is connected to multiple terminals though serial ports. This computer system

is responsible for processing the different requests generated by the various terminals at

2.17Operating Systems

the same time. The devices connected with the various terminals are keyboard, mouse, and

monitor. The central computer system is equipped with a fast processor and a memory of

large capacity for catering to the multiple requests of the end users. Examples of multi-user

operating system include Unix, Linux, Windows 2000 and VM-386

The following are some of the advantages of the multi-user operating systems: It allows the resources of the computer system to be utilised in an efficient manner. It enhances the overall productivity of the various users by providing simultaneous

access to the various computer resources.

The following are the disadvantages of the multi-user operating systems: The configuration of the computer system employing multi-user operating system is

complex and hence, is difficult to handle and maintain. This type of system may result in an inconsistent data if the activities of one user are

not protected from another user. This type of operating system is required to have robust security mechanisms.

2.7.3 Multitasking Operating Systems

The multitasking operating systems allow a user to carry out multiple tasks at the same time

on a single computer system. The multitasking operating systems are also known as by several

other names, such as multiprocessing, multiprogramming, concurrent or process scheduling

operating systems. The first multitasking operating systems evolved during 1960s. The number

of tasks or processes that can be processed simultaneously in this type of operating system

depends upon various factors, such as the speed of the CPU, the capacity of the memory, and

the size of the programs.

In this type of operating system, the different processes are executed simultaneously by

implementing the concept of time slicing. According to this concept, a regular slice of CPU time

is provided to each of the processes running in the computer system. Multitasking operating

systems can be of two different types, which are preemptive multitasking operating systems

and cooperative multitasking operating systems. In preemptive multitasking operating system,

slices of CPU time are allocated to the various processes on some priority basis. These priorities

are assigned to the various processes in such a manner that the overall efficiency of the system

is maintained. In cooperative multitasking operating system, it strongly depends upon the

processes whether or not to relinquish CPU control for other running processes. Examples of

multitasking operating system include Unix, Linux, Windows 2000, and Windows XP.

The following are some of advantages of multitasking operating systems: It helps in increasing the overall performance of the computer system. It helps in increasing the overall productivity of the user by performing a number of

tasks at the same time.

The following are some of the disadvantages of multitasking operating systems: A large amount of memory is required to execute several programs at the same time. Some mechanism needs to be implemented to ensure that the activities of one process

do not interfere with the activities of another process.

2.18 Basic Computer Engineering

2.7.4 Real-time Operating Systems

The real-time operating systems are similar to multitasking operating systems in their

functioning. However, these operating systems are specially designed and developed for

handling real-time applications or embedded applications. The real time applications are

those critical applications that are required to be executed within a specific period of time.

Therefore, time is the major constraint for these applications. The different examples of

real-time applications are industrial robots, spacecrafts, industrial control applications and

scientific research equipments.

The real-time operating systems can be of two different types, hard real-time operating

system, and soft real-time operating system. In the hard real-time operating system, it is

necessary to perform a task in the specified amount of time, i.e., within the given deadline. On

the other hand, in the soft real-time operating system, a task can be performed even after its

allocated time has elapsed.

The following are some of the examples of real-time operating system: MTOS Lynx RTX

The following are some of the advantages of the real-time operating systems: It is easy to design and develop and execute real-time applications under real-time

operating system as compared to other types of operating systems. The real-time operating systems are usually more compact as compared to other

operating systems. Thus, these systems require less memory space.

The following are some of the disadvantages of real-time operating systems: It is primarily focused on optimising the execution time of an application and thus, it

sometimes overlooks some of the other critical factors related to the overall efficiency of

the computer system. It is only used for providing some dedicated functionality, and thus, cannot be used as a

general-purpose operating system.

2.7.5 Multiprocessor Operating Systems

The multiprocessor operating system allows the use of multiple CPUs in a computer system for

executing multiple processes at the same time. By using more than one CPU, the processes are

executed in a faster manner as compared to the computer systems performing multiprocessing

with a single CPU.

The following are some of the examples of the multiprocessor operating system:

Linux Unix Windows 2000

The following are some of advantages of multiprocessor operating systems: It helps in improving the overall performance and throughput of the computer system.

2.19Operating Systems It helps in increasing the reliability of the computer system. If one CPU of the computer

system fails, the other CPU takes control and executes the currently running process.

The following are some of disadvantages of the multiprocessor operating systems: The cost of the computer systems employing multiprocessor operating systems is very high. A large amount of memory is required for running and executing several user programs.

2.7.6 Embedded Operating Systems

The embedded operating systems are somewhat similar to real-time operating systems. The

embedded operating system is installed on an embedded computer system, which is primarily

used for performing computational tasks in electronic devices. These operating systems provide

limited functionality that is required for the corresponding embedded computer system.

The other common functions that a usual operating system supports are not found in these

operating systems.

The following are some of the examples of embedded operating systems:

Palm OS

Windows CE

The following are some of the advantages of embedded operating systems: These operating systems allow the implementation of embedded systems in an efficient

manner. The computer system with embedded operating system is easy to use and maintain.

The following are some of the disadvantages of embedded operating systems: It is only possible to perform some specific operations with these operating systems. These operating systems cannot be used in frequently changing environments.

 2.8 Popular Operating Systems

To date, many operating systems have been developed that suit different requirements of the

users. Some of these operating systems became quite popular while others did not do well. The

following are some of the popular operating systems: MS-DOS UNIX Windows

2.8.1 MS-DOS

MS-DOS was developed and introduced by Microsoft in 1981. It is a single-user and single-

tasking operating system developed for personal computers. MS-DOS was specifically designed

for the family of Intel 8086 microprocessors. This operating system provides a command line

user interface, which means that a user needs to type a command at the command line for

performing a specific task. The CLI of MS-DOS is more commonly known as DOS prompt. The

2.20 Basic Computer Engineering

user interface of MS-DOS is very simple to use but not very user-friendly because of its non-

graphical nature. The user has to issue a command to carry out even a simple task.

The command prompt of MS-DOS only allows the execution of the files with the extensions:

.COM (Command files), .BAT (Batch files) and .EXE (Executable file). The structure of MS-

DOS comprises the following programs: IO.SYS It is an important hidden and read only system file of MS-DOS that is used

to start the computer system. It is also responsible for the efficient management and

allocation of the hardware resources through the use of appropriate device drivers. MSDOS.SYS It is another hidden and read only system file that is executed immediately

after the execution of IO.SYS file is finished. MSDOS.SYS acts as the kernel of MS-DOS.

It is responsible for managing the memory, processors and the input/output devices of

the computer system. CONFIG.SYS It is a system file that is used to configure various hardware components

of the computer system so that they can be used by the various applications. COMMAND.COM It is the command interpreter that is used to read and interpret the

various commands issued by the users. AUTOEXEC.BAT It is a batch file consisting of a list of commands that is executed

automatically as the computer system starts up.

2.8.2 UNIX

UNIX is an operating system that allows several users to perform a number of tasks

simultaneously. The first version of UNIX was introduced during the 1970s. However, since

then, it is in constant development phase for further improving its functionality. UNIX operating

system provides a GUI that enables its users to work in a more convenient environment. UNIX

is most suitable for the computers that are connected to a Local Area Network (LAN) for

performing scientific and business related operations. It can also be implemented on personal

computers. The following are the core components of the UNIX operating system:

Kernel It is the central part of the UNIX operating system that manages and

controls the communication between the various hardware and software components

of the computer system. The other major functions performed by the kernel are process

management, memory management and device management.

Shell It is the user interface of the UNIX operating system that acts as an intermediary

between the user and the kernel of the operating system. Shell is the only program in

UNIX operating system that takes the commands issued by the users and interprets

them in an efficient manner to produce the desired result.

Files and processes The UNIX operating system arranges everything in terms of files

and processes. The directory in this operating system is also considered as a file that is

used to house other files within it. The process is usually a program executed under the

UNIX operating system. Several processes can be executed simultaneously in this operating

system and are identified by a unique Process Identifier (PID) assigned to them.

Figure 2.13 shows the directory structure of UNIX operating system.

The UNIX operating system supports hierarchical directory structure in the form of a tree

for arranging different files in the computer system. The root of the tree is always denoted by

2.21Operating Systems

slash (/). The current working directory of the user is denoted by home. There can be several

home directories corresponding to the different users of the UNIX operating system. All the

files and directories under the home directory belong to a particular user. The path of any file

or directory in UNIX operating system always starts with the root (/). For example, the full

path of the file word.doc can be represented as /home/its/ag2/mmdata/word.doc.

The following are some of the significant features of UNIX operating system:

It allows multiple users to work simultaneously.

It allows the execution of several programs and processes at the same time to ensure

efficient utilisation of the processor.

It implements the concept of virtual memory in an efficient manner. This feature enables

the UNIX operating system to execute a program whose size is larger than the main

memory of the computer system.

2.8.3 Windows

Microsoft has provided many operating systems to cater the needs of different users. Microsoft is a

well known name in the development of operating system as well as various software applications.

Initially, Microsoft introduced Windows 1.x, Windows 2.x and Windows 386 operating systems.

Fig. 2.13 3 UNIX directory structure

2.22 Basic Computer Engineering

However, these operating systems lacked certain desirable features, such as networking and

interactive user interface. Microsoft continued to work towards developing an operating system

that met the desirable features of users and came up with a new operating system in the year

1993, which was known as Windows NT 3.1. This operating system was specially designed for

the advanced users performing various business and scientific operations. After the release of

Windows NT 3.1, several other operating systems were introduced by Microsoft in the successive

years with their own unique features. Table 2.1 lists some of other important Windows operating

system introduced by Microsoft with their release dates and significant features.

Table 2.1 Microsoft Windows operating system

 Name of oper- Date of Significant features
 ating system release

Windows 95 August,

1995
32-bit file system

Multitasking

Object Linking and Embedding (OLE)

Plug and play

Optimised memory management

Windows 98 June, 1998 32-bit Data Link Control (DLC) protocol

Improved GUI

Improved online communication through various tools, such as

outlook express, personal web server and web publishing wizard

Multiple display support

Windows update

Windows

2000

February,

2000
More reliable against application failures

Improved Windows explorer

Secure file system using encryption

Microsoft Management Console (MMC)

Improved maintenance operations

Windows ME September,

2000
System restoration against failure

Universal plug and play

Automatic updates

Image preview

Windows XP October,

2001
Attractive desktop and user interface

System restore

Windows firewall

Files and settings transfer wizard

Windows

Server 2003

April, 2003 Enhanced Internet Information Services (IIS)

Enhanced Microsoft Message Queuing (MSMQ)

Enhanced active directory support

Watchdog timer

Windows

Vista

November,

2006
Multilingual user interface

Enhanced search engine

Enhanced Internet explorer

Enhanced Windows media player

Enhanced Windows update

Windows system assessment tool

2.23Operating Systems

SUMMARY

 Operating system is a system software installed on a computer system that performs several

key tasks, such as process management, memory management, device management, file

management, etc. An operating system also secures the computer system from various

threats such as virus and unauthorised access. There are different types of operating system

available such as multi-user, batch processing and embedded. The multi-user operating

system allows multiple users to use the computer system simultaneously. The batch

processing operating system processes the jobs in groups called batches. The embedded

operating system is installed on an embedded computer system, which is primarily used

for performing computational tasks in electronic devices.

 An end user interacts with an operating system through a user interface, which is of two

types, GUI or CLI. A GUI interface allows the end users to issue commands through point-

and-click operations while a CLI interface allows the end users to issue commands only by

typing them at the command prompt. Windows, UNIX and MS-DOS are some of the most

popular operating systems. Windows is a GUI based operating system, while MS-DOS is

a CLI based operating system.

Key Terms

 Operating system

 Process management

 Process state

 Process Control Block

 Process scheduling

 Process synchronisation

 Interprocess communication

 Deadlock

 Memory management

 File management

 Batch processing operating system

 Multi-user operating system

 Multitasking operating system

 Real-time operating system

 Multiprocessor operating system

 Embedded operating system

 Kernel

 Shell

 Review Questions

2.1 What is an operating system? Explain briefly with the help of examples.

2.2 Briefly state the history of operating system.

2.24 Basic Computer Engineering

2.3 Briefly explain the various functions of an operating system.

2.4 What is a process state? Explain the various states of a process with the help of a

figure.

2.5 What is a PCB and what information is contained in it?

2.6 Explain the process creation and process termination operations related to a

process.

2.7 Briefly explain the term process scheduling.

2.8 Explain the three types of schedulers that help in process scheduling.

2.9 Which scheduling algorithms are used in process scheduling? Explain each one of

them briefly.

2.10 Briefly explain the task of process synchronisation performed by an operating

system.

2.11 What is interprocess communication? Explain the two methods used for interprocess

communication.

2.12 What is a deadlock? Explain briefly the methods that can be used to handle this

condition.

2.13 What is memory management? Explain briefly.

2.14 Briefly explain the function of file management performed by an operating system.

2.15 Briefly explain any three types of operating system.

2.16 State the programs that are a part of the MS-DOS structure.

2.17 Explain the core components of UNIX operating system.

2.18 Briefly explain why Windows operating system is one of the most popular operating

systems.

 Fill in the Blanks

2.1 ____________ is a system software that allows the users to interact with the hardware

and other resources of a computer system.

2.2 In ____________ interface, users type the commands pertaining to the tasks that they

want to perform.

2.3 In ____________ interface, commands are given by means of point-and-click operations

performed using a pointing device, such as mouse.

2.4 The process of managing the files and directories contained in a computer system is

known as ___________.

2.5 The ___________ state specifies the time when a process is ready for execution but

has not been placed in the ready queue by the operating system.

2.6 ___________ is a data structure associated with a process that provides complete

information about the process.

2.7 The operating system maintains a table called ___________, which stores the PCBs

related to all the processes.

2.25Operating Systems

2.8 The process, which creates a new process using the system call, is called

____________.

2.9 ____________ is the task performed by an operating system for deciding the priority

in which the processes, which are in ready and waiting states, are allocated the CPU

time for their execution.

2.10 An operating system uses a program called ________ for deciding the priority in which

a process is allocated the CPU time.

2.11 In __________ scheduling algorithm, a process is allocated the CPU for a specific time

period called time slice or time quantum.

2.12 ____________ is the task of synchronising the execution of processes in such a manner

that no two processes have access to the same shared data or resource.

2.13 ____________ is a condition that occurs when multiple processes wait for each other

to free up resources and as a result all the processes remain halted.

2.14 The ____________ function of an operating system helps in allocating the main memory

space to the processes and their data at the time of their execution.

2.15 Paging is a technique in which the main memory of the computer system is organized

in the form of equal sized blocks called ______.

2.16 In ___________ operating system, jobs are grouped into groups called batches and

assigned to the computer system with the help of a card reader.

2.17 In ____________ operating system, multiple users can make use of computer system’s

resources simultaneously.

2.18 ___________ is the central part of the UNIX operating system that manages and controls

the communication between the various hardware and software components.

 Multiple Choice Questions

2.1 Which of the following program is essential for the functioning of a computer

system?

 A. MS Word B. Operating system

 C. MS Excel D. System software

2.2 Which of the following operating systems makes use of CLI?

 A. MS-DOS B. Windows 2000

 C. Windows Server 2003 D. None of the above

2.3 Which of the following functions is provided by an operating system?

 A. Process management B. Security management

 C. File management D. All of the above

2.4 Which of the following provides complete information related to a process?

 A. Process state B. Process scheduling

 C. Process communication D. PCB

2.26 Basic Computer Engineering

2.5 Which of the following is an operation related to a process?

 A. Process creation B. Process execution

 C. Process completion D. None of the above

2.6 Which of the following is responsible for ascertaining the order in which processes

are executed?

 A. Scheduler B. Process schedule manager

 C. Operating system scheduler D. Process Scheduler

2.7 Which one of the following scheduling algorithm is the simplest algorithm for the

scheduling of processes?

 A. FCFS scheduling algorithm B. RR scheduling algorithm

 C. Priority scheduling algorithm D. SJF scheduling algorithm

2.8 Which of the following methods is used for interprocess communication?

 A. Shared cache memory B. Shared region

 C. Message passing D. Cache memory

2.9 Which one of the following methods is used for handling of deadlocks?

 A. Detect and recover deadlock B. Mutual exclusion

 C. No preemption D. All of the above

2.10 Which one of the following is a file operation?

 A. Opening a file B. Manipulating a file

 C. Resising a file D. All of the above

2.11 Which one of the following types of the operating systems allows multiple users to

work simultaneously?

 A. Multitasking operating system B. Multi-user operating system

 C. Multiprocessor operating system D. None of the above

2.12 Which of the following is a part of MS-DOS?

 A. DOS.SYS B. CONFIGURATION.SYS

 C. EXEC.BAT D. COMMAND.COM

2.13 Which of the following is the core component of UNIX?

 A. Command shell B. Kernel

 C. Directories and programs D. None of the above

Programming Languages

3

Key Concepts

 Programming Languages

 History

 Generations

 Characteristics of a Good Programming

Language

 Categorization

 Popular High Level Languages

 Fortran

 LISP

 COBOL

 BASIC

 PASCAL

 C

 C++

 JAVA

 Python

 C#

 Factors affecting choice of a language

 Developing a Program

 Running a Program

 3.1 Introduction

Computers can perform a variety of tasks. However, they cannot perform any of them on their

own. As we know, computers have no commonsense and they cannot think. They need clear-

cut instructions to tell them what to do, how to do and when to do. A set of instructions to carry

out these functions is called a computer program.

3.2 Basic Computer Engineering

The communication between two parties, whether they are machines or human beings,

always needs a common language or terminology. The language used in the communication

of instructions to a computer is known as computer language or programming language.

There are many different types of languages available today. A computer program can be

written using any of the programming languages depending upon the task to be performed

and the knowledge of the person developing the program. The process of writing instructions

using a computer language is known as programming or coding. The person who writes such

instructions is referred as a programmer.

We know that natural languages such as English, Hindi or Tamil have a set of characters

and use some rules known as grammar in framing sentences and statements. Similarly, set

of characters and rules known as syntax that must be adhered to by the programmers while

developing computer programs.

Although, during the initial years of computer programming. All the instructions were written

in the machine language, a large number of different type of programming languages have been

developed during the last six decades. Each one of them has its own unique features and specific

applications. In this chapter, we shall discuss briefly the various types of programming languages,

their evolution and characteristics and how they are used to solve a problem using a computer.

 3.2 History of Programming Languages

The history of programming languages is interlinked with the evolution of computer systems.

As the computer systems became smaller, faster and cheaper with time, the programming

languages also became more and more user friendly. Ada Augusta Lovelace, a companion

of Charles Babbage, was considered as the first computer programmer in the history of

programming languages. In the year 1843, Ada Augusta Lovelace wrote a set of instructions

to program the analytical engine designed by Charles Babbage. This computer program was

used to transform the data entered by the users into binary form before being processed

by the computer system. This program increased the efficiency and the productivity of the

analytical engine by automating various mathematical tasks. Later, in the year 1946, Konrad

Zuse, a German engineer, developed a programming language known as Plankalkul. It was

developed to target the various scientific, business and engineering needs of the users. It was

considered as the first complete programming language that supported various programming

constructs and the concept of data structures as well. The various programming constructs

were implemented in this programming language with the help of Boolean algebra.

During the 1940s, machine languages were developed to program the computer system. The

machine languages which used binary codes 0s and 1s to represent instructions were regarded

as low-level programming languages. The instructions written in the machine language could

be executed directly by the CPU of the computer system. These languages were hardware

dependent languages. Therefore, it was not possible to run a program developed for one computer

system in another computer system. This is because of the fact that the internal architecture

of one computer system may be different from that of another. The development of programs

in machine languages was not an easy task for the programmers. One was required to have

thorough knowledge of the internal architecture of the computer system before developing a

program in machine language.

3.3Programming Languages

During the 1950s, assembly language, which is another low-level programming language,

was developed to program the computer systems. The assembly language used the concept of

mnemonics to write the instructions of a computer program. Mnemonics refer to the symbolic

names that are used to replace the machine language code. The programmers enjoyed working

with this programming language because it was easy to develop a program in the assembly

language as compared to the machine language. However, unlike machine language programs,

assembly language programs could not be directly executed by the CPU of the computer system

and required some a software program to convert these programs into machine understandable

form.

During the period between 1950 and 1960, many high-level programming languages were

developed to cater to the needs of the users of various disciplines, such as business, science and

engineering. In 1951, Grace Hopper, an American computer scientist, started working towards

designing a compiler called A-0, and in the year 1957, developed a high-level programming

language known as MATH-MATIC. In 1952, another programming system known as

AUTOCODE was developed by Alick E. Glennie. Grace Hopper was considered as the first

person who had put some serious efforts towards the development of a high-level programming

language.

In the year 1957, another popular high-level programming language known as FORTRAN

(FORmula TRANslation) was developed. During its era, it was the only high-level programming

language that became hugely popular among its users. FORTRAN was developed by John

Backus and his team at International Business Machines (IBM). FORTAN was best suited

for solving problems related to scientific and numerical analysis field. Another high-level

programming language known as ALGOL (Algorithm Language) was developed in the year

1958. Some other high-level languages that evolved during this era were LISt Processing

(LISP) in 1958, Common Business Oriented Language (COBOL) in 1959 and ALGOL 60 in

1960.

In the next decade, from 1960 to 1970, more high-level programming languages evolved. In

the year 1964, the Beginners All-Purpose Symbolic Instruction Code (BASIC) was designed

by John G. Kemeny and Thomos E. Kurtz at Dartmouth college. It was a general-purpose

programming language that was very simple to use. In the same year, another powerful high-

level programming language, PL/1 with many rich programming features such as complex

data type and methods, was designed for developing engineering and business applications.

PL/I was considered to have the best features of its ancestor programming languages: COBOL,

FORTRAN, and ALGOL 60. The other programming languages that evolved during this era

were Simula I, Simula 67, Algol 68 and APL.

The period between 1970 and 1980 was actually the golden era for the development high-

level programming languages. This period saw the birth of many general-purpose and powerful

high-level programming languages. In the early 1970s, a procedural programming language,

Pascal was developed by Niklaus Wirth. This programming language was provided with strong

data structures and pointers, which helped in utilizing the memory of the computer system

in an efficient manner. In the year 1972, Dennis Ritchie developed a powerful procedural and

block structured programming language known as C. C is still very popular among the users for

developing system as well as application software. In 1974, IBM developed Structured Query

Language (SQL) that was used for performing various operations on the databases, such as

creating, retrieving, deleting and updating. Apart from these programming languages, some

3.4 Basic Computer Engineering

other high-level programming languages that evolved during this era were Forth, Smalltalk,

and Prolog.

During the next decade, from 1980 to 1990, the focus of development of high-level

programming languages shifted towards enhancing the performance and design methodology.

The languages of this period used modular approach for designing large-scale applications. The

modular approach of program design can be regarded as a design methodology, which divides

the whole system into smaller parts that could be developed independently. This approach of

designing software applications is still employed by modern programming languages. Some of

the high-level programming languages that evolved during this era include Ada, C++, Perl

and Eiffel.

The high-level programming languages developed and designed in the 1990s are considered

as the fifth generation programming languages. During this period, Internet technology

evolved tremendously. Therefore, the basic purpose of the programming languages of this

period was to develop web-based applications. However, these languages could also be used for

the development of desktop applications. The important high-level programming languages of

this era are Java, VB and C#. Most of the programming languages of this era employed object-

oriented programming paradigm for designing and developing robust and reliable software

applications.

Table 3.1 summarises the history of development of programming languages:

Table 3.1 The evolution of programming languages

 Period of employment Programming language Characteristics

1940s Machine language Machine dependent

Faster execution

Difficult to use and understand

More prone to errors

1950s Assembly language Machine dependent

Faster execution

More prone to errors

Relatively simple to use

1950–1970 FORTRAN, LISP, COBOL, AL-

GOL 60, BASIC, APL

High-level languages

Easy to develop and understand

programs

Less prone to errors

1970–1990 C, C++, Forth, Prolog, Smalltalk,

Ada, Perl, SQL

Very high-level languages

Easier to learn

Highly portable

1990s Java, HTML, VB, PHP, XML, C # Internet-based languages

Object-oriented languages

More efficient

Reliable and robust

3.5Programming Languages

 3.3 Generations of Programming Languages

Programming languages have been developed over the years in a phased manner. Each phase

of development has made the programming languages more user-friendly, easier to use and

more powerful. Each phase of improvement made in the development of the programming

languages can be referred as a generation. The programming languages, in terms of their

performance, reliability and robustness can be grouped into five different generations.

First generation languages (1GL)

Second generation languages (2GL)

Third generation languages (3GL)

Fourth generation languages (4GL)

Fifth generation languages (5GL)

3.3.1 First Generation: Machine Languages

The first generation programming languages are also called low-level programming language

because they were used to program the computer systems at a very low level of abstraction,

i.e., at the machine-level. The machine language, also referred as the native language of the

computer system, is the first generation programming language. In the machine language,

a programmer can issue the instructions to the computer system in the binary form only.

Therefore, machine language programming only deals with two numbers, 0 and 1. The

machine language programs are entered into the computer system by setting the appropriate

switches available in the front panel system. These switches are actually the devices used

to alter the course of the flow of electric current. The enable state of the switch represents

the binary value, 1 and the disable state of the switch

represents the binary value, 0. The programs written

in the machine language are directly executed by the

CPU of the computer system and therefore, unlike the

modern programming languages, there is no need of

using a translator in a machine language. Figure 3.1

shows the typical instruction format of the machine

language instruction.

As seen in the figure, the instruction in the machine language is made up of two parts

only, opcode and operand. The opcode part of the machine language instruction specifies

the operation to be performed by the computer system and the operand part of the machine

language instruction specifies the data on which the operation is to be performed. However,

the instruction format of any instruction in the machine language strongly depends upon the

CPU architecture.

The advantages of the first generation programming languages are:

They are translation free and can be directly executed by the computers.

The programs written in these languages are executed very speedily and efficiently by

the CPU of the computer system.

The programs written in these languages utilise the memory in an efficient manner

because it is possible to keep track of each bit of data.

Fig. 3.1 3 Machine instruction format

3.6 Basic Computer Engineering

There are many disadvantages of using the first generation programming languages. They

include:

It is very difficult to develop a program in the machine language.

The programs developed in these languages cannot be understood very easily by a

person, who has not actually developed these programs.

The programs written in these languages are so prone to frequent errors that they are

very difficult to maintain.

The errors in the programs developed in these languages cannot be detected and

corrected easily.

A programmer has to write a large number of instructions for executing even a simple

task in these languages. Therefore, we can say that these languages result in poor

productivity while developing programs.

The programs developed in these languages are hardware dependent and thus they are

non-portable.

Due to these limitations, machine languages are very rarely used for developing application

programs.

3.3.2 Second Generation: Assembly Languages

Like the first generation programming languages, the second generation programming

languages also belong to the category of low-level programming languages. The second

generation programming languages comprise of assembly languages that use the concept of

mnemonics for writing programs. Similar to the machine language, the programmer of assembly

language needs to have internal knowledge of the CPU registers and the instructions set before

developing a program. In the assembly language, symbolic names are used to represent the

opcode and the operand part of the instruction. For example, to move the contents of the CPU

register, a1 to another CPU register, b1 the following assembly language instruction can be

used:

mov b1, a1

The above code shows the use of symbolic name, mov in an assembly language instruction.

The symbolic name, mov instructs the processor to transfer the data from one register to

another. Using this symbolic name, a value can also be moved to a particular CPU register.

The use of symbolic names made these languages little bit user-friendly as compared to the

first generation programming languages. However, the second generation languages were still

machine-dependent. Therefore, one was required to have adequate knowledge of the internal

architecture of the computer system while developing programs in these languages.

Unlike the machine language programs, the programs written in the assembly language

cannot be directly executed by the CPU of the computer system because they are not written

in the binary form. As a result, some mechanism is needed to convert the assembly language

programs into the machine understandable form. A software program called assembler is used

to accomplish this purpose. An assembler is a translator program that converts the assembly

language program into the machine language instructions. Figure 3.2 shows the role of an

assembler in executing an assembly language program.

3.7Programming Languages

An assembler acts as an intermediary

between the assembly language program

and the machine language program. It takes

a program written in the assembly language

as input and generates the corresponding

machine language instructions as output.

The following are some of the advantages

of second generation programming languages:

It is easy to develop, understand and modify the programs developed in these languages

as compared to those developed in the first generation programming languages.

The programs written in these languages are less prone to errors, and therefore can be

maintained with great ease.

The detection and correction of errors is relatively easy in these languages in comparison

to the first generation programming languages.

The following are some of the disadvantages of the second generation programming languages:

The programs developed in these languages are not executed as quickly as the programs

developed in the machine language. This is because of the fact that the computer system

needs to convert these programs into machine language before executing them.

The programs developed in these languages are not portable as these languages are

machine dependent.

The programmer of these languages needs to have thorough knowledge of the internal

architecture of the CPU for developing a program.

The assembly language programs, like the machine language programs, still result in

poor productivity.

3.3.3 Third Generation: High-level Languages

The third generation programming languages were designed to overcome the various

limitations of the first and second generation programming languages. The languages of the

third and later generations are considered as high-level programming languages because they

enable the programmer to concentrate only on the logic of the program without concerning

about the internal architecture of the computer system. In other words, we can also say that

these languages are machine independent languages.

The third generation programming languages are also quite user-friendly because they

relieve the programmer from the burden of remembering operation codes and instruction sets

while writing a program. The instructions used in the third and later generations of languages

can be specified in English-like sentences, which are easy to comprehend for a programmer. The

programming paradigm employed by most of the third generation programming languages was

procedural programming, which is also known as imperative programming. In the procedural

programming paradigm, a program is divided into a large number of procedures, also known

as subroutines. Each procedure contains a set of instructions for performing a specific task.

A procedure can be called by the other procedures while a program is being executed by the

computer system.

Fig. 3.2 3 Functioning of an assembler

3.8 Basic Computer Engineering

The third generation programming languages were considered as domain-specific

programming languages because they were designed to develop software applications for a

specific field. For example, the third generation programming language, COBOL, was designed

to solve a large number of problems related to the business field only.

Unlike the assembly language, the programs developed in the third and the later generation

of programming languages were not directly executed by the CPU of the computer system.

These programs require translator programs for converting them into machine language. There

are two types of translator programs, namely, compiler and interpreter. Figure 3.3 shows the

translation of a program developed in the high-level programming language into the machine

language program.

A program written in any high-level

language can be converted by the compiler

or the interpreter into the machine-level

instructions. Both the translator programs,

compiler and interpreter, are used for the same

purpose except for one point of difference. The

compiler translates the whole program into the

machine language program before executing any of the instructions. If there are any errors,

the compiler generates error messages which are displayed on the screen. All errors must be

rectified before compiling again. On the other hand, the interpreter executes each statement

immediately after translating it into the machine language instruction. Therefore, the

interpreter performs the translation as well as the execution of the instructions simultaneously.

If any error is encountered, the execution is halted after displaying the error message.

The following are some of the popular third generation programming languages:

FORTRAN

ALGOL

BASIC

COBOL

C/C++

The following are some of the advantages of the third generation programming languages:

It is easy to develop, learn and understand the programs.

The programs developed in these languages are highly portable as compared to the

programs developed in the first and second generation programming languages.

Hence, we can also say that the third generation programming languages are machine

independent programming languages.

The programs written in these languages can be developed in very less time as compared

to the first and second generation programming languages. This is because of the fact

that the third generation programming languages are quite user-friendly and provide

necessary inbuilt tools required for developing an application.

As the programs written in these languages are less prone to errors, they are easy to

maintain.

Fig. 3.3 3 Functioning of a compiler and an
interpreter

3.9Programming Languages

The third generation programming languages provide more enhanced documentation and

debugging techniques as compared to the first and the second generation programming

languages.

The following are some of the disadvantages of the third generation programming languages:

As compared to the assembly and the machine language programs, the programs written

in the third generation programming languages are executed slowly by the computer

system.

The memory requirement of the programs written in these programming languages is more

as compared to the programs developed using the assembly and machine languages.

3.3.4 Fourth Generation: Very High-level Languages

The languages of this generation were considered as very high-level programming languages.

The process of developing software using the third generation programming languages required

a lot of time and effort that affected the productivity of a programmer. Moreover, most of

the third generation programming languages were domain-specific. The fourth generation

programming languages were designed and developed to reduce the time, cost and effort needed

to develop different types of software applications. Most of the fourth generation programming

languages were general-purpose programming languages. This means that most of the fourth

generation programming languages could be used to develop software applications related to

any domain. During this generation, the concept of Database Management System (DBMS)

also evolved tremendously. Therefore, most of the fourth generation programming languages

had database related features for working with databases. These languages have simple,

English-like syntax rules. Since 4GLs are non-procedural languages, they are easier to use

and therefore more user-friendly. We need to specify WHAT is required rather than specifying

How to do it.

The following are some of the fourth generation programming languages:

PowerBuilder

SQL

XBase++

CSS

ColdFusion

Apart from being machine independent, the following are some of the other important

advantages of the fourth generation programming languages:

The fourth generation programming languages are easier to learn and use as compared

to the third generation programming languages.

These programming languages require less time, cost and effort to develop different

types of software applications.

These programming languages allow the efficient use of data by implementing various

database concepts.

As compared to the third generation programming languages, these languages required

less number of instructions for performing a specific task.

3.10 Basic Computer Engineering

The programs developed in these languages are highly portable as compared to the

programs developed in the languages of other generations.

The following are some of the disadvantages of the fourth generation programming languages:

As compared to the programs developed in the programming languages of previous

generations, the programs developed in the 4GLs are executed at a slower speed by the

CPU.

As compared to the third generation programming languages, the programs developed

in these programming languages require more space in the memory of the computer

system.

3.3.5 Fifth Generation: Artifi cial Intelligence Languages

The programming languages of this generation mainly focus on constraint programming.

The constraint programming, which is somewhat similar to declarative programming, is a

programming paradigm in which the programmer only needs to specify the solution to be

found within the constraints rather than specifying the method or algorithm of finding the

desired solution. The major fields in which the fifth generation programming languages are

employed are Artificial Intelligence (AI) and Artificial Neural Network (ANN). AI is the branch

of computer science in which the computer system is programmed to have human intelligence

characteristics. It helps make computer system so intelligent that it can take decisions on its

own while solving various complicated problems. On the other hand, ANN refers to a network

that is used to imitate the working of a human brain. ANN is widely used in voice recognition

systems, image recognition systems and industrial robotics.

The following are some of the fifth generation programming languages:

Mercury

Prolog

OPS5

The following are two important advantages of fifth generation programming languages:

The fifth generation languages allow the users to communicate with the computer

system in a simple and an easy manner. Programmers can use normal English words

while interacting with the computer system.

These languages can be used to query the databases in a fast and efficient manner.

 3.4 Characteristics of a Good Programming Language

The popularity of any programming language depends upon the useful features that it provides

to its users. A large number of programming languages are in existence around the world but

not all of them are popular. The following are some of the important characteristics of a good

programming language:

The language must allow the programmer to write simple, clear and concise programs.

The language must be simple to use so that a programmer can learn it without any

explicit training.

3.11Programming Languages

The glossary used in the language should be very close to the one used in human

languages.

The function library used in the language should be well documented so that the necessary

information about a function can be easily obtained while developing an application.

The various programming constructs supported by the language must match well with

the application area it is being designed for.

The language must allow the programmer to focus only on the design and the

implementation of the different programming concepts without requiring the programmer

to be well acquainted with the background details of the concepts being used.

The programs developed in the language must make efficient use of memory as well as

other computer resources.

The language must provide necessary tools for development, testing, debugging and

maintenance of a program. All these tools must be incorporated into a single environment

known as Integrated Development Environment (IDE), which enables the programmer

to use them easily.

The language must be platform independent, i.e., the programs developed using the

programming language can run on any computer system.

The Graphical User Interface (GUI) of the language must be attractive, user-friendly

and self explanatory.

The language must be object-oriented in nature so as to provide various features such

as inheritance, information hiding, and dynamic binding to its programmers.

 The language must be consistent in terms of both syntax and semantics.

 3.5 Categorisation of High-level Languages

The high-level languages can be categorised into different types on the basis of the application

areas in which they are employed, as well as the different design paradigms supported by

them. Figure 3.4 shows the different types of high-level languages categorised on the basis of

application areas and design paradigms.

Fig. 3.4 3 Types of high-level languages

3.12 Basic Computer Engineering

The figure clearly shows that the high-level programming languages are designed for use in

a number of areas. Each high-level language is designed by keeping its target application area

in mind. Some of the high-level languages are best suited for business domain, while others

are apt in scientific domain only.

The high-level programming languages can also be categorised on the basis of the various

programming paradigms supported by them. The programming paradigm refers to the approach

employed by the programming languages for solving the different types of problems.

3.5.1 Categorisation Based on Application

On the basis of application area, the high-level programming languages can be divided into

the following types:

Commercial languages. These programming languages are dedicated to the

commercial domain and are specially designed for solving business-related problems.

These languages can be used in organisations for processing and handling the data

related to payroll, accounts payable and tax handling applications. COBOL is the best

example of the commercial-based high-level programming language employed in the

business domain. This language was developed with strong file handling capabilities

and support for business arithmetic operations. Another example of business-oriented

programming language is Programming Language for Business (PL/B), which was

developed by Datapoint during the 1970s.

Scientific languages. These programming languages are dedicated to the scientific

domain and are specially designed for solving different scientific and mathematical

problems. These languages can be used to develop programs for performing complex

calculations during scientific research. FORTRAN is the best example of the scientific-

based high-level programming language. This language is capable of performing various

numerical and scientific calculations.

Special-purpose languages. These programming languages are specially designed

for performing some dedicated functions. For example, SQL is a high-level language

specially designed to interact with the database programs only. Therefore, we can say

that the special-purpose high-level programming languages are designed to support a

particular domain area only.

General-purpose languages. These programming languages are used for developing

different types of software applications regardless of their application area. The various

examples of general-purpose high-level programming languages are BASIC, C, C++ and

Java.

3.5.2 Categorisation Based on Design Paradigm

On the basis of design paradigm, the high-level programming languages can be categorised

into the following types:

Procedure-oriented languages. These programming languages are also called

imperative programming languages. In these languages, a program is written as a

sequence of procedures. Each procedure contains a series of instructions for performing

3.13Programming Languages

a specific task. Each procedure can be called by the other procedures during the

program execution. In this type of programming paradigm, a code once written in the

form of a procedure can be used any number of times in the program by only specifying

the corresponding procedure name. This approach also makes the program structure

relatively very simple to follow as compared to the other programming paradigms.

We can also say that the major emphasis of these languages is on the procedures and

not on the data. Therefore, the procedure-oriented languages allow the data to move

freely around the system. The various examples of procedure-oriented languages are

FORTRAN, ALGOL, C, BASIC and Ada.

Logic-oriented languages. These languages use logic programming paradigm as

the design approach for solving various computational problems. In this programming

paradigm, predicate logic is used to describe the nature of a problem by defining

relationships between rules and facts. Prolog is the best example of the logic-oriented

programming language.

Object-oriented languages. These languages use object-oriented programming

paradigm as the design approach for solving a given problem. In this programming

paradigm, a problem is divided into a number of objects, which can interact by passing

messages to each other. The other features included in the object-oriented languages are

encapsulation, polymorphism, inheritance and modularity. C++, JAVA and C# are the

examples of object-oriented programming language.

 3.6 Popular High-level Languages

Today, a large number of high-level programming languages are available for developing

different types of software applications. However, only few of these programming languages are

popular among programmers. The following are some of the popular high-level programming

languages used around the world:

FORTRAN

LISP

COBOL

BASIC

PASCAL

C

C++

Java

Python

C#

3.6.1 FORTRAN

FORTRAN is the most dominant high-level programming language employed in the science

and engineering domain. As mentioned earlier, FORTRAN was initially developed by a team

led by John Backus at IBM in the 1950s. Since then several new versions of FORTRAN

have evolved. They include FORTRAN II, FORTRAN IV, FORTRAN 77 and FORTRAN 90.

3.14 Basic Computer Engineering

FORTRAN 90, which is approved by the International Organisation for Standardisation, is

more portable, reliable and efficient as compared to its earlier versions. The following are some

of the important applications areas where FORTRAN can be employed:

Finding solutions to partial differential equations

Predicting weather

Solving problems related to fluid mechanics

Solving problems related to physics and chemistry

Some of the most significant characteristics of FORTRAN are enumerated as under:

It is easier to learn as compared to the other scientific high-level languages.

It has a powerful built-in library containing some useful functions, which are helpful in

performing complex mathematical computations.

It enables the programmers to create well-structured and well-documented programs.

The internal computations in this language are performed rapidly and efficiently.

The programs written in this language can be easily understood by other programmers,

who have not actually developed the programs.

3.6.2 LISP

LISP (List Processing) was developed by John McCarthy in the year 1958 as a functional

programming language for handling data structures known as lists. LISP is now extensively

used for research in the field of artificial intelligence (AI). Some of the versions of LISP are

Standared LISP, MACLISP, Inter LISP, Zeta LISP and Common LISP.

Some good features of LISP are:

Easy to write and use.

Recursion, that is a programming calling itself, is possible.

Supports grabage collection.

Supports interactive computing.

Most suitable for AI applications.

Some negative aspects of LISP are:

Poor reliability.

Poor readability of programs.

Not a general-purpose language.

3.6.3 COBOL

COBOL is a high-level programming language developed in the year 1959 by COnference on

DAta SYstems Languages (CODASYL) committee. This language was specially designed and

developed for the business domain. Apart from the business domain, COBOL can also be used

to develop the programs for the various other applications. However, this language cannot be

employed for developing various system software such as operating systems, device drivers

etc. COBOL has gone through a number of improvement phases since its inception and, as a

result, several new versions of COBOL have evolved. The most significant versions of COBOL,

3.15Programming Languages

which are standardised by American National Standards Institute (ANSI), are COBOL-68,

COBOL-74 and COBOL-85.

Some of the most significant characteristics of COBOL are enumerated as follows:

The applications developed in this language are simple, portable and easily maintainable.

It has several built-in functions to automate the various tasks in business domain.

It can handle and process a large amount of data at a time and in a very efficient manner.

As compared to the other business-oriented high-level programming languages, the

applications can be developed rapidly.

It does not implement the concept of pointers, user-defined data types, and user-defined

functions and hence is simple to use.

3.6.4 BASIC

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was developed by John Kemeny and

Thomas Kurty at Dartmaith Collge, USA in the year 1964. The language was extensively used

for microcomputers and home computers during 1970s and 1980s. BASIC was standardized by

ANSI in 1978 and became popular among business and scientific users alike. BASIC continues

to be widely used because it can be learned quickly.

During the last four decades, different versions of BASIC have appeared. These include Altair

BASIC, MBASIC, GWBASIC, Quick BASIC, Turbo BASIC and Visual BASIC. Microsoft’s Visual

BASIC adds object-oriented features and a graphical user interface to the standard BASIC.

Main features of BASIC are:

It is the first interpreted language.

It is a general-purpose language.

It is easy to learn as it uses common English words.

3.6.5 PASCAL

PASCAL is one of the oldest high-level programming languages developed by Niklaus Wirth in

the year 1970. It was the most efficient and productive language of its time. The programming

paradigm employed by PASCAL is procedural programming. A number of different versions of

PASCAL have evolved since 1970 that help in developing the programs for various applications

such as research projects, computer games and embedded systems. Some of the versions of

PASCAL include USCD PASCAL, Turbo PASCAL, Vector PASCAL and Morfik PASCAL. This

programming language was also used for the development of various operating systems such

as Apple Lisa and Mac.

Some of the most significant characteristics of PASCAL are enumerated as under:

It is simple and easy to learn as compared to the other high-level programming languages

of its time.

It enables the programmers to develop well-structured and modular programs that are

easy to maintain and modify.

The data in this language is stored and processed efficiently with the help of strong data

structures.

3.16 Basic Computer Engineering

It enables the programmer to create the data types according to their requirements that

are also referred as user-defined data types.

The PASCAL compiler has strong type checking capability that prevents the occurrence

of data type mismatch errors in a program.

3.6.6 C

C is a general-purpose high-level programming language developed by Dennis Ritchie and

Brain Kernighan at Bell Telephone Laboratories, the USA in the year 1972. C is a well-known

high-level programming language that is used for developing the application as well as system

programs. It is also block-structured and procedural, which means that the code developed

in C can be easily understood and maintained. C is the most favourite language of system

programmers because of its several key characterises, that are hardly found in other high-

level programming languages. The first major system program developed in C was the UNIX

operating system. C is also regarded as a middle-level language because it contains the low-

level as well as the high-level language features.

Some of the most significant characteristics of C are:

C is machine and operating system independent language. Therefore, the programs

developed in C are highly portable as compared to the programs developed in the other

high-level programming languages.

It is a highly efficient programming language because the programs developed in this

language are executed very rapidly by the CPU of the computer system. Also, the memory

requirement for the storage and the processing of C programs is comparatively less.

Therefore, C is considered to be equivalent to assembly language in terms of efficiency.

It can be used to develop a variety of applications; hence, it is considered to be quite

flexible.

It allows the programmer to define and use their own data types.

C allows the use of pointers that allows the programmers to work with the memory of

the computer system in an efficient manner.

3.6.7 C++

C++ is a general-purpose, object-oriented programming language developed by Bjarne

Stroustrup at Bell Labs in the year 1979. Initially, Bjarne Stroustrup named his new

language as C with classes because this new language was the extended version of the existing

programming language, C. Later, this new language was renamed as C++. It is also regarded

as the superset of the C language because it retains many of its salient features. In addition to

having the significant features of C, C++ was also expanded to include several object-oriented

programming features, such as classes, virtual functions, operator overloading, inheritance

and templates.

Some of the most significant characteristics of C++ are as follows:

It uses the concept of objects and classes for developing programs.

The code developed in this language can be reused in a very efficient and productive

manner.

3.17Programming Languages

Like C, C++ is also a machine and operating system independent language. Therefore,

the programs developed in this language are highly portable.

It is a highly efficient language in terms of the CPU cycles and memory required for

executing different programs.

The number of instructions required to accomplish a particular task in C++ is relatively

lesser as compared to some of the other high-level programming languages.

It follows the modular approach of developing the programs for the different types

of applications. Therefore, the programs developed in C++ can be understood and

maintained easily.

C++ is highly compatible with its ancestor language, i.e., C because a program developed

in C can be executed under the C++ compiler with almost no change in the code.

3.6.8 JAVA

JAVA is an object-oriented programming language introduced by Sun Microsystems in the

year 1995. It was originally developed in the year 1991 by James Gosling and his team. The

syntax and the semantics of JAVA are somewhat similar to C++. However, it is regarded as

more powerful than C++ and the other high-level programming languages. In the current

scenario, JAVA is the most dominant object-oriented programming language for developing

web-based applications. Apart from the web-based applications, JAVA can also be employed

to develop other types of applications, such as desktop applications and embedded systems

applications.

JAVA is a highly platform independent language because it uses the concept of just-in-time

compilation. In this type of compilation, the JAVA programs are not directly compiled into the

native machine code. Instead, an intermediate machine code called bytecode is generated by

the JAVA compiler that can be interpreted on any platform with the help of a program known

as JAVA interpreter.

Some of the most significant characteristics of JAVA are enumerated as under:

It is a highly object-oriented and platform independent language.

The programs written in this language are compiled and interpreted in two different

phases.

The programs written in this language are more robust and reliable.

It is more secure as compared to the other high-level programming languages because

it does not allow the programmer to access the memory directly.

It assists the programmers in managing the memory automatically with a feature called

garbage collection.

It also implements the concept of dynamic binding and threading in a better and efficient

manner as compared to other object-oriented languages.

3.6.9 Python

Python is a high-level and object-oriented programming language developed by Guido Van

Rossum in the year 1991. It is a general-purpose programming language that can be used

to develop software for a variety of applications. Python is also regarded as the successor

3.18 Basic Computer Engineering

language of ABC programming language. ABC was a general-purpose programming language

developed by a team of three scientists, leo Geurts, Lambert Meertens, and Steven Pemberton.

Several versions of Python have been evolved since 1991. Some of the versions of Python are

Python 0.9, Python 1.0, Python 1.2, Python 1.4, Python 1.6 and Python 2.0.

Python has a strong built-in library for performing various types of computations. This

built-in library also makes Python simple and easy to learn. Python is an interpreted language

and its interpreter as well as other standard libraries are freely available on the Internet. The

programs developed in this language can be run on different platforms and under different

operating systems. Hence, Python is regarded as platform independent language.

Some of the salient features of Python are:

It is an interpreted and object-oriented programming language.

It implements the concept of exception handling and dynamic binding better than the

other languages of its time.

The syntax and the semantics of this language are quite clear and concise.

It is a platform independent language.

3.6.10 C#

C#, pronounced as “C-sharp” is a new object-oriented programming language developed by

Microsoft late in the 1990s. It combines the power of C++ with the programming ease of Visual

BASIC. C# is directly descended from C++ and contains features similar to those of JAVA.

C# was specially designed to work with Microsoft’s .NET platform launched in 2000. This

platform offers a new software-development model that allows applications developed in

different languages to communicate with each other. C# includes several modern programming

features that include:

concise, lean and modern language

object-oriented visual programming

component-oriented language

multimedia (audio, animation and video) support

very good exception handling

suitable for Web-based applications

language interoperability

more type safe than C++.

As C# has been built upon widely used languages such as C and C++, it is easy to learn.

Using the Integrated Development Environment (IDE), it is very easy and much faster to

develop and test C# programs.

 3.7 Factors Affecting the Choice of a Language

A large number of programming languages are available for developing programs for different

types of applications. To develop software for a specific application, one needs to carefully

choose a programming language so as to ensure that the programs can be developed easily and

3.19Programming Languages

efficiently in a specific period of time. There are certain factors that must be considered by a

programmer while choosing a programming language for software development. These factors

are described as follows:

Purpose It specifies the objective for which a program is being developed. If a commercial

application is to be developed, some business-oriented programming language such as

COBOL is preferred. Similarly, if some scientific application is to be developed, then

it is best to use some scientific-oriented language such as FORTRAN. The programs

related to the AI field can be developed efficiently in the LISP or Prolog programming

languages. Some object-oriented language should be preferred for developing web-based

applications. A middle-level language such as C should be chosen for developing system

programs.

Programmer’s experience If more than one programming language is available for

developing the same application, then a programmer should choose a language as per

his comfort level. Generally, the programmer should go for the language in which he has

more experience. For this, the programmer can also compromise with the power of the

programming language.

Ease of development and maintenance The programmer should always prefer the

language in which programs can be easily developed and maintained. Generally, the

object-oriented languages are preferred over the procedural-oriented programming

languages because the code developed in these languages can be reused and maintained

with great ease.

Performance and effi ciency These are the two important factors, which need to be

considered while selecting a programming language for software development. The

language in which programs can be developed and executed rapidly should always be

preferred. In addition, the languages, which require less amount of memory for the

storage of programs, should be chosen.

Availability of IDE The language with an IDE (Integrated Development Environment)

of well-supported development, debugging and compilation tools should be preferred. A

powerful IDE helps in increasing the productivity of a programmer.

Error checking and diagnosis These two factors involve finding the errors and their

causes in a program. A programmer must choose a programming language, which

contains efficient error handling features. For example, JAVA provides an efficient

error handling mechanism of try/catch block. The try/catch block in JAVA programs

can be used to handle the unexpected errors that may occur during the execution of a

program. Error checking and diagnosis is very important for developing quality and

error free programs. A programming language with efficient and robust error detection

and correction mechanism eases the task of code development and testing.

 3.8 Developing a Program

Developing a program refers to the process of writing the source code for the required

application by following the syntax and the semantics of chosen programming language.

Syntax and semantics are the set of rules that a programmer needs to adhere while developing

a program.

3.20 Basic Computer Engineering

Before actually developing a program, the aim and the logic of the program should be very

clear to the programmer. Therefore, the first stage in the development of a program is to

carry out a detailed study of the program objectives. The objectives make the programmer

aware of the purpose for which the program is being developed. After ascertaining the program

objectives, the programmer needs to list down the set of steps to be followed for program

development. This set of program development steps is called algorithm. The programmer may

also use a graphical model known as flowchart to represent the steps defined in the program

algorithm.

After the logic of the program has been developed either by an algorithm or a flowchart,

the next step is to choose a programming language for actual development of the program

code. There are a number of factors that should be taken into consideration while selecting

the target programming language, such as performance and efficiency of the programming

language, programmer’s prior experience with the language, etc.

A programming language is typically bundled together with an IDE containing the necessary

tools for developing, editing, running and debugging a computer program. For instance, Turbo

C++ is provided with a strong and powerful IDE to develop, compile, debug and execute the

programs.

Figure 3.5 shows the Turbo C++ IDE.

Fig. 3.5 3 The Turbo C++ IDE

Suppose we are required to develop a program for calculating the percentage of marks of two

subjects for a student and display the output. The first step in the development of a program

for this problem is the preparation of an algorithm, as shown below:

3.21Programming Languages

Step 1 – Input the marks for fi rst subject. (mark1)
Step 2 – Input the marks for second subject. (mark2)
Step 3 – Calculate the percentage.
 percentage = (mark1 + mark2)/200*100
Step 4 – If percentage > 40
Step 5 – Display Pass
Step 6 – Else
Step 7 – Display Fail

Figure 3.6 shows the flowchart for the above algorithm.

Fig. 3.6 3 Flowchart for calculating the percentage of marks and displaying the result

After developing the algorithm and flowchart, the actual development of the program can

be started in the source code editor of C++. The following code shows the C++ program for

calculating the percentage of marks in two different subjects for a student.

3.22 Basic Computer Engineering

#include <iostream>
#include <conio.h>
using namespace std;

int main()
{

fl oat mark1,mark2;
fl oat percentage;

 cout << “Enter marks of fi rst subject: “;
 cin >> mark1;

 cout << “Enter marks of second subject: “;
 cin >> mark2;

 percentage =((mark1+mark2)/200)*100;

 if (percentage>40)
 cout << “\nThe student is passed”;
 else
 cout <<”\nThe student is failed”;

 getch();
 return 0;
}

Figure 3.7 shows the program code in the source code editor of Turbo C++ IDE.

Fig. 3.7 3 Developing a program in the source code editor of C++ language

3.23Programming Languages

 3.9 Running a Program

After developing the program code, the next step is to compile the program. Program compilation

helps identify any syntactical errors in the program code. If there are no syntax errors in the

source code, then the compiler generates the target object code. It is the machine language

code that the processor of the computer system can understand and execute.

Once the corresponding object code or the executable file is built by the compiler, the

program can be run in order to check the logical correctness of the program and generate

the desired output. The logical errors also called semantic errors might cause the program

to generate undesired results. Programming languages provide various mechanisms such as

exception handling for handling these logical errors. If the output generated by the program

corresponding to the given inputs matches with the desired result, then the purpose of

developing the program is solved. Otherwise, the logic of the program should be checked again

to obtain the correct solution for the given problem

Figure 3.8 shows the output of the program for displaying student’s result.

Fig. 3.8 3 Running a program

The above figure shows the output generated by running the C++ program. We can run the

program in Turbo C++ IDE by either selecting Run S Run or by pressing the Alt and F9 keys

simultaneously.

SUMMARY

 Programming languages help perform a specific task by providing a set of instructions

to the computer system. Programming languages have evolved a lot over the years. The

3.24 Basic Computer Engineering

evolution of the programming languages is divided in five different generations. The

first generation programming languages comprise of machine language, which is a fast

and efficient programming language but not very easy to use. The second generation

programming languages comprise of assembly language. The first and second generation

languages are also known as low level languages. The third, fourth and fifth generation of

languages comprise of various high-level languages. The high-level languages are machine

independent languages in which a program can be developed with great ease. Some popular

high-level languages are FORTRAN, BASIC, PASCAL, C, C++, and Java.

 There are various high-level languages in existence that can be used for developing programs.

Therefore, a proper high-level language should be chosen by considering certain factors

such as the purpose of the program to be developed, the experience of the programmer,

performance and efficiency of the language, and the IDE of the programming language.

After selecting the right programming language, a program can be developed and run in

the IDE of the selected programming language to obtain the desired result.

Key Terms

 Programming languages

 Low-level programming languages

 High-level programming languages

 Machine language

 Assembly language

 Assembler

 Interpreter

 Compiler

 Opcode

 Operand

 Program development

 Review Questions

3.1 What do you understand by programming languages?

3.2 What is the difference between low-level and high-level programming languages?

Which one of these is considered more user-friendly and why?

3.3 Why are the programs developed in low-level programming languages considered

as efficient programs? Is it not possible to develop efficient programs in high-level

programming languages?

3.4 Explain in detail the evolution of the programming languages.

3.5 What do you understand by generations of programming languages?

3.6 Why the second generation programming languages are considered as more user-

friendly than the first generation programming languages?

3.7 Explain in detail the machine instruction format.

3.25Programming Languages

3.8 What is the function of an assembler in assembly language? Does it affect the efficiency

of the programs developed in the assembly language?

3.9 What is the difference between a compiler and an interpreter?

3.10 What are the different advantages and disadvantages of third generation programming

languages?

3.11 What do you understand by constraint programming? List out some of the applications

in which constraint programming is employed.

3.12 What are the different characteristics of a good programming language?

3.13 Explain the difference between different programming paradigms used in programming

languages.

3.14 List out some popular high-level languages and explain in detail any three of them.

3.15 Why is C++ considered as a superset of C?

3.16 Do the programming languages, C and C++, use the same programming paradigm?

3.17 What are the different factors that affect the choice of a language for software

development?

3.18 What are the different points that should be remembered before developing a program?

3.19 What is the difference between compiling and running of a program? Do these two

processes generate the same output?

2.20 Explain the terms—source code, syntax, semantics and IDE.

 Fill in the Blanks

3.1 Programming languages are used to provide _______ to the computer system.

3.2 The person who uses the programming languages to communicate with the computer

system is referred as _______.

3.3 _______ was considered as the first computer programmer in the history of

programming.

3.4 The _______ of the front panel of the ancient computer systems were used to enter

the machine language programs into the computer system.

3.5 The two important parts of the machine instruction are _______ and _______.

3.6 The opcode part of the machine instruction specifies the _______ to be performed by

the computer system.

3.7 The operand part of the machine instruction specifies the _______ on which the

operation is to be performed by the computer system.

3.8 The second generation programming languages used the concept of _______ for writing

computer programs.

3.9 An assembler is a software program that converts the assembly language program

into _______ language instructions.

3.10 The programming paradigm employed by most of the third generation programming

languages was _______.

3.26 Basic Computer Engineering

3.11 _______ and _______ are the software programs that can be used to convert the high-

level programs into machine language programs.

3.12 _______ is a good example of scientific-oriented high-level programming language.

3.13 _______ is a high-level language specially designed to interact with database

programs.

3.14 C language was developed by _______ in the year _______.

3.15 C++ uses the _______ programming paradigm for developing programs for various

applications.

3.16 Java is best suited for developing _______ applications.

3.17 A program is developed by following the _______ and _______ of the programming

language.

3.18 A program is compiled for finding the _______ errors in the program.

3.19 The object code is the _______ code that a processor of the computer system understands

and executes.

3.20 The running of a program may reveal the _______ errors in the source code.

 Multiple Choice Questions

1. What is a programming language?

 A. It is the language that instructs the computer system to perform a certain action.

 B. It is used to change the configuration of the computer system.

 C. It is the language for managing computer hardware.

 D. None of the above.

2. The person who uses the programming languages to develop programs is usually

known as:

 A. Hardware engineer B. Programmer

 C. Analyst D. All of the above

3. Who was considered as the first computer programmer in the history of programming

languages?

 A. Charles Babbage B. Ada Augusta Lovelace

 C. Konrad Zuse D. John Backus

4. Which of the following is a low-level programming language?

 A. FORTRAN B. Ada C. C D. Machine language

5. Machine language programs are very efficient because

 A. They are directly executed by the CPU

 B. The are very easy to develop

 C. Their object code is very small in size

 D. None of the above

3.27Programming Languages

6 What is a machine language?

 A. It is an object-oriented language. B. It is a language of 0s and 1s.

 C. It is a high-level language. D. All of the above

7. Which of the following domain is best suited for FORTRAN?

 A. Engineering B. Medical C. Education D. Business

8. Who developed the SQL language?

 A. Microsoft B. Dell C. Google D. IBM

9. Who was the inventor of C programming language?

 A. Lary Wall B. Roussel C. Dennis Ritchie D. Bjarne Stroustrup

10. Which of the following is a part of the machine instruction?

 A. Data B. Mnemonics C. Opcode D. Address

11. Which of the following languages is considered as the second generation language?

 A. Machine language B. Assembly language

 C. Ada D. BASIC

12. Which of the following programs is used to convert the assembly programs into

machine instructions?

 A. Compiler B. Interpreter C. Assembler D. SQL

13. In which generation were database languages developed?

 A. 2GL B. 3GL C. 4GL D. 5GL

14. What is the full form of FORTRAN?

 A. Form transaction B. Formulation transcription

 C. Formula transition D. Formula translation

15. Which one of the following is not a programming paradigm?

 A. Procedure-oriented B. Logic-oriented

 C. Data-oriented D. Object-oriented

16. Who was the developer of PASCAL?

 A. Dannis Ritchie B. Niklaus Wirth

 C. John Backus D. James Gosling

17. Which of the following operating systems was written in C?

 A. UNIX B. Windows C. Macintosh D. None of the above

18. Which of the following paradigm is employed by C++?

 A. Procedural B. Object-oriented

 C. Logic-oriented D. None of the above

19. Which of the following errors are detected by the compiler?

 A. Syntax errors B. Logical errors

 C. Semantics errors D. Data errors

Introduction to Programming

4

 4.1 Programming Environment

A programming environment comprises

all those components that facilitate the

development of a program. These components

are largely divided under two categories— pro-

gramming tools and Application Programming

Interfaces (APIs). They are regarded as the

building blocks of any programming environ-

ment.

An API can be defined as a collection of data

structures, classes, protocols, and pre-defined

functions stored in the form of libraries.

These libraries are included in the software

packages of the programming languages like

C, C++, etc. An API makes the development

task easier for the programmers, as in-built

API components are used again and again,

ensuring reusability.

Key Concepts

 Procedure-oriented programming

 Object-oriented programming

 Objects

 Classes

 Data abstraction

 Encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message passing

The software application which is used for the development, maintenance and debugging of

a software program is known as programming tool. A good programming tool ensures that the

programming activities are performed in an efficient manner. The following are some of the

main categories of programming tools:

Integrated Development Environment (IDE): It is the most commonly used tool

that offers an integrated environment to the programmers for software development. It

4.2 Basic Computer Engineering

contains almost all the components for software development such as compiler, editor,

debugger, etc.

Debugging tool: It is a specialized tool that helps the programmer to detect and remove

bugs or errors from a program.

Memory usage tool: As the name suggests, memory usage tool helps the programmer

to manage the memory resources in an efficient manner.

 4.2 Introduction to the Design and Implementation of
Correct, Effi cient and Maintainable Programs

The design and development of a correct, efficient, and maintainable program depends on the

approach followed by the programmer. A programmer should follow standard methodologies

throughout the life cycle of program development. The entire program development process is

divided into a number of phases, with each phase serving a definite purpose. Also, the output

of one phase acts as an input for the next phase. Let us now understand these standard set of

phases in the program development process:

 1. Analysis phase As the name suggests, the first phase of program development involves

analyzing the problem in order to ascertain the objectives that the program is supposed

to meet. All the identified requirements are documented so as to avoid any doubts or

uncertainties pertaining to the functionality of the program. This phase also emphasizes

on determining the input and output values of the program.

 2. Designing phase This phase involves making the plan of action before actually starting

the development work. The plan is made on the basis of the program specifications

identified in the previous phase. Different programs require different designing patterns

depending on the program specifications. Thus, this phase helps in framing the core

structure of the program. In addition, the designing phase has an added advantage

of modularity. It basically helps to break the program into small modules or chunks.

This breaking of the large program into smaller chunks results in the development of a

well-organized program. Furthermore, it gives the programmer liberty of planning and

creating the algorithm for each module separately.

 3. Development phase This phase involves writing the instructions or code for the program

on the basis of the design document created in the previous phase. The choice of the

programming language in which the program will be developed is made on the basis of

the type of program. For example, if it is a system program, then it is better to choose C++

language instead of Visual Basic (VB), which is more suited for applications programming.

 4. Implementation and Testing In this stage, the developed program is implemented in

its target environment and its key parameters are closely observed in order to ensure

that the program runs correctly. Apart from ensuring the correct functioning of the

program this phase primarily focuses on identifying the hidden bugs in the program.

No matter how many preventive measures are taken in the development phase there

is always the possibility of prevalence of hidden bugs in a program. Thus, to identify

such bugs a program needs to be tested using large number of varied input values. Once

identified the bugs are removed with the help of software patches.

4.3Introduction to Programming

Main Program

Function - 4

Function - 6 Function - 7 Function - 8

Function - 5

Function - 1 Function - 2 Function - 3

 4.3 A Look at Procedure-Oriented Programming

Conventional programming, using high level languages such as COBOL, FORTRAN and C,

is commonly known as procedure-oriented programming (POP). In the procedure-oriented

approach, the problem is viewed as a sequence of things to be done such as reading, calculating

and printing. A number of functions are written to accomplish these tasks. The primary focus

is on functions. A typical program structure for procedural programming is shown in Fig. 4.1.

The technique of hierarchical decomposition has been used to specify the tasks to be completed

for solving a problem.

Fig. 4.1 3 Typical structure of procedure-oriented programs

Procedure-oriented programming basically consists of writing a list of instructions (or

actions) for the computer to follow, and organizing these instructions into groups known as

functions. We normally use a flowchart to organize these actions and represent the flow of

control from one action to another. While we concentrate on the development of functions, very

little attention is given to the data that are being used by various functions. What happens to

the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they

may be accessed by all the functions. Each function may have its own local data. Figure 4.2

shows the relationship of data and functions in a procedure-oriented program.

Global data are more vulnerable to an inadvertent change by a function. In a large program

it is very difficult to identify what data is used by which function. In case we need to revise an

external data structure, we also need to revise all functions that access the data. This provides

an opportunity for bugs to creep in.

4.4 Basic Computer Engineering

Global dataGlobal data

Function -1 Function -2 Function -3

Local data Local data Local data

Another serious drawback with the procedural approach is that it does not model real world

problems very well. This is because functions are action-oriented and do not really correspond

to the elements of the problem.

Some characteristics exhibited by procedure-oriented programming are:

 Emphasis is on doing things (algorithms).

 Large programs are divided into smaller programs known as functions.

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Functions transform data from one form to another.

 Employs top-down approach in program design.

 4.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of object-oriented approach is to remove some

of the flaws encountered in the procedural approach. OOP treats data as a critical element in

the program development and does not allow it to flow freely around the system. It ties data

more closely to the functions that operate on it, and protects it from accidental modification

from outside functions. OOP allows decomposition of a problem into a number of entities called

objects and then builds data and functions around these objects. The organization of data

and functions in object-oriented programs is shown in Fig. 4.3. The data of an object can be

accessed only by the functions associated with that object. However, functions of one object can

access the functions of other objects.

Some of the striking features of object-oriented programming are:

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

Fig. 4.2 3 Relationship of data and functions in procedural programming

4.5Introduction to Programming

Object A Object B

Data

Functions Functions

Functions

Data

Object C

Communication

Data

Object-oriented programming is the most recent concept among programming paradigms

and still means different things to different people. It is therefore important to have a working

definition of object-oriented programming before we proceed further. We define “object-oriented

programming as an approach that provides a way of modularizing programs by creating

partitioned memory area for both data and functions that can be used as templates for creating

copies of such modules on demand.” Thus, an object is considered to be a partitioned area of

computer memory that stores data and set of operations that can access that data. Since the

memory partitions are independent, the objects can be used in a variety of different programs

without modifications.

 4.5 Object-Oriented Programming Features

It is necessary to understand some of the features used extensively in object-oriented

programming. These include:

 Objects

 Classes

 Data abstraction and encapsulation

 Inheritance

Fig. 4.3 3 Organization of data and functions in OOP

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the data structure.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever necessary.

 Follows bottom-up approach in program design.

4.6 Basic Computer Engineering

Object: STUDENT

DATA

Name

Date-of-birth

Marks

.

FUNCTIONS

Total
Average

Display

.

STUDENT

Total

Average

Display

 Polymorphism

 Dynamic binding

 Message passing

We shall discuss these features in some detail in this section.

4.5.1 Objects

Objects are the basic run-time entities in an object-oriented system. They may represent a

person, a place, a bank account, a table of data or any item that the program has to handle. They

may also represent user-defined data such as vectors, time and lists. Programming problem is

analyzed in terms of objects and the nature of communication between them. Program objects

should be chosen such that they match closely with the real-world objects. Objects take up space

in the memory and have an associated address like a record in Pascal, or a structure in C.

When a program is executed, the objects interact by sending messages to one another. For

example, if “customer”and “account” are two objects in a program, then the customer object

may send a message to the account object requesting for the bank balance. Each object contains

data, and code to manipulate the data. Objects can interact without having to know details of

each other’s data or code. It is sufficient to know the type of message accepted, and the type

of response returned by the objects. Although different authors represent them differently,

Fig. 4.4 shows two notations that are popularly used in object-oriented analysis and design.

Fig. 4.4 3 Two ways of representing an object

4.5.2 Classes

We just mentioned that objects contain data, and code to manipulate that data. The entire set

of data and code of an object can be made a user-defined data type with the help of a class. In

fact, objects are variables of the type class. Once a class has been defined, we can create any

number of objects belonging to that class. Each object is associated with the data of type class

with which they are created. A class is thus a collection of objects of similar type. For example,

mango, apple and orange are members of the class fruit. Classes are user-defined data types

and behave like the built-in types of a programming language. The syntax used to create an

object is no different than the syntax used to create an integer object in C. If fruit has been

defined as a class, then the statement

4.7Introduction to Programming

fruit mango;

will create an object mango belonging to the class fruit.

4.5.3 Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called class) is known as encapsulation.

Data encapsulation is the most striking feature of a class. The data is not accessible to the

outside world, and only those functions which are wrapped in the class can access it. These

functions provide the interface between the object’s data and the program. This insulation of

the data from direct access by the program is called data hiding or information hiding.

Abstraction refers to the act of representing essential features without including the

background details or explanations. Classes use the concept of abstraction and are defined

as a list of abstract attributes such as size, weight and cost, and functions to operate on these

attributes. They encapsulate all the essential properties of the objects that are to be created. The

attributes are sometimes called data members because they hold information. The functions

that operate on these data are sometimes called methods or member functions.

Since the classes use the concept of data abstraction, they are known as Abstract Data Types

(ADT).

4.5.4 Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of

another class. It supports the concept of hierarchical classification. For example, the bird

‘robin’ is a part of the class ‘flying bird’ which is again a part of the class ‘bird’. The principle

behind this sort of division is that each derived class shares common characteristics with the

class from which it is derived as illustrated in Fig. 4.5.

In OOP, the concept of inheritance provides the idea of reusability. This means that we can

add additional features to an existing class without modifying it. This is possible by deriving

a new class from the existing one. The new class will have the combined features of both

the classes. The real appeal and power of the inheritance mechanism is that it allows the

programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor the

class in such a way that it does not introduce any undesirable side-effects into the rest of the

classes.

Note that each sub-class defines only those features that are unique to it. Without the use

of classification, each class would have to explicitly include all of its features.

4.5.5 Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means the

ability to take more than one form. An operation may exhibit different behaviours in different

instances. The behaviour depends upon the types of data used in the operation. For example,

consider the operation of addition. For two numbers, the operation will generate a sum. If the

operands are strings, then the operation would produce a third string by concatenation. The

4.8 Basic Computer Engineering

process of making an operator to exhibit different behaviours in different instances is known

as operator overloading.

Figure 4.6 illustrates that a single function name can be used to handle different number

and different types of arguments. This is something similar to a particular word having several

different meanings depending on the context. Using a single function name to perform different

types of tasks is known as function overloading.

Polymorphism plays an important role in allowing objects having different internal structures

to share the same external interface. This means that a general class of operations may be
accessed in the same manner even though specific actions associated with each operation may
differ. Polymorphism is extensively used in implementing inheritance.

4.5.6 Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to
the call. Dynamic binding (also known as late binding) means that the code associated with
a given procedure call is not known until the time of the call at run-time. It is associated
with polymorphism and inheritance. A function call associated with a polymorphic reference
depends on the dynamic type of that reference.

Fig. 4.5 3 Property inheritance

Bird

Attributes

Feathers

Lay eggs

Flying Bird

Attributes

.................

.................

.................

Attributes

.................

.................

.................

Attributes

.................

.................

.................

Attributes

.................

.................

.................

Attributes

.................

.................

.................

Attributes

.................

.................

.................

Nonflying Bird

Robin Swallow Penguin Kiwi

4.9Introduction to Programming

Consider the procedure “draw” in Fig. 4.6. By inheritance, every object will have this
procedure. Its algorithm is, however, unique to each object and so the draw procedure will be
redefined in each class that defines the object. At run-time, the code matching the object under
current reference will be called.

4.5.7 Message Passing

An object-oriented program consists of a set of objects that communicate with each other. The process
of programming in an object-oriented language, therefore, involves the following basic steps:

 1. Creating classes that define objects and their behaviour,
 2. Creating objects from class definitions, and
 3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the same
way as people pass messages to one another. The concept of message passing makes it easier to
talk about building systems that directly model or simulate their real-world counterparts.

A message for an object is a request for execution of a procedure, and therefore will invoke

a function (procedure) in the receiving object that generates the desired result. Message

passing involves specifying the name of the object, the name of the function (message) and the

information to be sent. Example:

object

message

information

employee.salary (name);

Fig. 4.6 3 Polymorphism

Shape

Draw ()

Circle object

Draw (circle)

Box object

Draw (box)

Triangle object

Draw (triangle)

4.10 Basic Computer Engineering

Objects have a life cycle. They can be created and destroyed. Communication with an object

is feasible as long as it is alive.

. 4.6 Merits of OOP

OOP offers several merits to both the program designer and the user. Object-orientation

contributes to the solution of many problems associated with the development and quality

of software products. The new technology promises greater programmer productivity, better

quality of software and lesser maintenance cost. The principal advantages are:

 Through inheritance, we can eliminate redundant code and extend the use of existing

classes.

 We can build programs from the standard working modules that communicate with one

another, rather than having to start writing the code from scratch. This leads to saving

of development time and higher productivity.

 The principle of data hiding helps the programmer to build secure programs that cannot

be invaded by code in other parts of the program.

 It is possible to have multiple instances of an object to co-exist without any

interference.

 It is possible to map objects in the problem domain to those in the program.

 It is easy to partition the work in a project based on objects.

 The data-centered design approach enables us to capture more details of a model in

implementable form.

 Object-oriented systems can be easily upgraded from small to large systems.

 Message passing techniques for communication between objects makes the interface

descriptions with external systems much simpler.

 Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented system, their

importance depends on the type of the project and the preference of the programmer. There

are a number of issues that need to be tackled to reap some of the benefits stated above. For

instance, object libraries must be available for reuse. The technology is still developing and

current products may be superseded quickly. Strict controls and protocols need to be developed

if reuse is not to be compromised.

Developing a software that is easy to use makes it hard to build. It is hoped that the object-

oriented programming tools would help manage this problem.

 4.7 Applications of OOP

OOP has become one of the programming buzzwords today. There appears to be a great deal

of excitement and interest among software engineers in using OOP. Applications of OOP are

beginning to gain importance in many areas. The most popular application of object-oriented

programming, up to now, has been in the area of user interface design such as windows.

Hundreds of windowing systems have been developed, using the OOP techniques.

4.11Introduction to Programming

Real-business systems are often much more complex and contain many more objects with

complicated attributes and methods. OOP is useful in these types of applications because it

can simplify a complex problem. The promising areas for application of OOP include:

 Real-time systems

 Simulation and modeling

 Object-oriented databases

 Hypertext, hypermedia and expertext

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CIM/CAM/CAD systems

The richness of OOP environment has enabled the software industry to improve not only the

quality of software systems but also its productivity. Object-oriented technology is certainly

changing the way the software engineers think, analyze, design and implement systems.

SUMMARY

 The most popular phase till recently was procedure-oriented programming (POP).

 POP employs top-down programming approach where a problem is viewed as a sequence

of tasks to be performed. A number of functions are written to implement these tasks.

 POP has two major drawbacks, viz. (1) data move freely around the program and are

therefore vulnerable to changes caused by any function in the program, and (2) it does not

model very well the real-world problems.

 Object-oriented programming (OOP) was invented to overcome the drawbacks of the POP.

It employs the bottom-up programming approach. It treats data as a critical element in

the program development and does not allow it to flow freely around the system. It ties

data more closely to the functions that operate on it in a data structure called class. This

feature is called data encapsulation.

 In OOP, a problem is considered as a collection of a number of entities called objects.

Objects are instances of classes.

 Insulation of data from direct access by the program is called data hiding.

 Data abstraction refers to putting together essential features without including background

details.

 Inheritance is the process by which objects of one class acquire properties of objects of

another class.

 Polymorphism means one name, multiple forms. It allows us to have more than one

function with the same name in a program. It also allows overloading of operators so that

an operation can exhibit different behaviours in different instances.

4.12 Basic Computer Engineering

 Dynamic binding means that the code associated with a given procedure is not known until

the time of the call at run-time.

 Message passing involves specifying the name of the object, the name of the function

(message) and the information to be sent.

 Object-oriented technology offers several benefits over the conventional programming

methods—the most important one being the reusability.

 Applications of OOP technology has gained importance in almost all areas of computing

including real-time business systems.

 There are a number of languages that support object-oriented programming paradigm.

Popular among them are C++, Smalltalk and Java. C++ has become an industry standard

language today.

Key Terms

 assembly language

 bottom-up programming

 C++

 classes

 concurrency

 data abstraction

 data encapsulation

 data hiding

 data members

 dynamic binding

 early binding

 flowcharts

 function overloading

 functions

 garbage collection

 global data

 hierarchical classification

 inheritance

 late binding

 local data

 machine language

 member functions

 message passing

 methods

 modular programming

 multiple inheritance

 object libraries

 object-based programming

 Objective C

 object-oriented programming

 objects

 operator overloading

 persistence

 polymorphism

 procedure-oriented programming

 reusability

 Simula

 structured programming

 top-down programming

4.13Introduction to Programming

 Review Questions

4.1 What do you think are the major issues facing the software industry today?

4.2 Briefly discuss the software evolution during the period 1950 – 1990.

4.3 What is procedure-oriented programming? What are its main characteristics?

4.4 Discuss an approach to the development of procedure-oriented programs.

4.5 Describe how data are shared by functions in a procedure-oriented program.

4.6 What is object-oriented programming? How is it different from the procedure-oriented

programming?

4.7 How are data and functions organized in an object-oriented program?

4.8 What are the unique advantages of an object-oriented programming paradigm?

4.9 Distinguish between the following terms:

 (a) Objects and classes

 (b) Data abstraction and data encapsulation

 (c) Inheritance and polymorphism

 (d) Dynamic binding and message passing

4.10 What kinds of things can become objects in OOP?

4.11 Describe inheritance as applied to OOP.

4.12 What do you mean by dynamic binding? How is it useful in OOP?

4.13 How does object-oriented approach differ from object-based approach?

4.14 List a few areas of application of OOP technology.

4.15 State whether the following statements are TRUE or FALSE.

 (a) In procedure-oriented programming, all data are shared by all functions.

 (b) The main emphasis of procedure-oriented programming is on algorithms rather

than on data.

 (c) One of the striking features of object-oriented programming is the division of

programs into objects that represent real-world entities.

 (d) Wrapping up of data of different types into a single unit is known as encapsulation.

 (e) One problem with OOP is that once a class is created it can never be changed.

 (f) Inheritance means the ability to reuse the data values of one object by

 (g) Polymorphism is extensively used in implementing inheritance.

 (h) Object-oriented programs are executed much faster than conventional programs.

 (i) Object-oriented systems can scale up better from small to large.

 (j) Object-oriented approach cannot be used to create databases.

Beginning with C++

5

 5.1 What is C++?

C++ is an object-oriented programming

language. It was developed by Bjarne

Stroustrup at AT&T Bell Laboratories in

Murray Hill, New Jersey, USA, in the early

1980’s. Stroustrup, an admirer of Simula67

and a strong supporter of C, wanted to combine

the best of both the languages and create a

more powerful language that could support

object-oriented programming features and still

retain the power and elegance of C. The result

was C++. Therefore, C++ is an extension of C

with a major addition of the class construct

feature of Simula67. Since the class was a

major addition to the original C language,

Stroustrup initially called the new language

‘C with classes’. However, later in 1983, the

name was changed to C++. The idea of C++

comes from the C increment operator ++,

thereby suggesting that C++ is an augmented

(incremented) version of C.

During the early 1990’s the language

underwent a number of improvements and

changes. In November 1997, the ANSI/ISO

Key Concepts

 C with classes

 C++ features

 Main function

 C++ comments

 Output operator

 Input operator

 Header file

 Return statement

 Namespace

 Variables

 Cascading of operators

 C++ program structure

 Client-server model

 Source file creation

standards committee standardised these changes and added several new features to the

language specifications.

5.2 Basic Computer Engineering

C++ is a superset of C. Most of what we know about C applies to C++ also. Therefore, almost

all C programs are also C++ programs. However, there are a few minor differences that will

prevent a C program to run under C++ compiler. We shall see these differences later as and

when they are encountered.

The most important facilities that C++ adds on to C are classes, inheritance, function

overloading, and operator overloading. These features enable creating of abstract data types,

inherit properties from existing data types and support polymorphism, thereby making C++

a truly object-oriented language.

The object-oriented features in C++ allow programmers to build large programs with

clarity, extensibility and ease of maintenance, incorporating the spirit and efficiency of C. The

addition of new features has transformed C from a language that currently facilitates top-

down, structured design, to one that provides bottom-up, object-oriented design.

 5.2 Applications of C++

C++ is a versatile language for handling very large programs. It is suitable for virtually any

programming task including development of editors, compilers, databases, communication

systems and any complex real-life application systems.

 Since C++ allows us to create hierarchy-related objects, we can build-special object-

oriented libraries which can be used later by many programmers.

While C++ is able to map the real-world problem properly, the C part of C++ gives the

language the ability to get close to the machine-level details.

C++ programs are easily maintainable and expandable. When a new feature needs to be

implemented, it is very easy to add to the existing structure of an object.

It is expected that C++ will replace C as a general-purpose language in the near future.

 5.3 A Simple C++ Program

Let us begin with a simple example of a C++ program that prints a string on the screen.

PRINTING A STRING

#include <iostream> // include header fi le

using namespace std;

int main()

{

 cout << “C++ is better than C.\n”; // C++ statement

 return 0;

} // End of example

PROGRAM 5.1

This simple program demonstrates several C++ features.

5.3Beginning with C++

5.3.1 Program Features

Like C, the C++ program is a collection of functions. The above example contains only one

function, main(). As usual, execution begins at main(). Every C++ program must have a

main(). C++ is a free-form language. With a few exceptions, the compiler ignores carriage

returns and white spaces. Like C, the C++ statements terminate with semicolons.

5.3.2 Comments

C++ introduces a new comment symbol // (double slash). Comments start with a double slash

symbol and terminate at the end of the line. A comment may start anywhere in the line, and

whatever follows till the end of the line is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multiline comments can be

written as follows:

// This is an example of

// C++ program to illustrate

// Some of its features

The C comment symbols /*, */ are still valid and are more suitable for multiline comments.

The following comment is allowed:

/* This is an example of
 C++ program to illustrate

some of its features
*/

We can use either or both styles in our programs. Since this is a book on C++, we will use

only the C++ style. However, remember that we can not insert a // style comment within the

text of a program line. For example, the double slash comment cannot be used in the manner

as shown below:

for(j=0; j<n; /* loops n times */ j++)

5.3.3 Output Operator

The only statement in Program 5.1 is an output statement. The statement

cout << “C++ is better than C.”;

causes the string in quotation marks to be displayed on the screen. This statement introduces

two new C++ features, cout and <<. The identifier cout (pronounced as ‘C out’) is a predefined

object that represents the standard output stream in C++. Here, the standard output stream

represents the screen. It is also possible to redirect the output to other output devices. We

shall later discuss streams in detail.

The operator << is called the insertion or put to operator. It inserts (or sends) the contents

of the variable on its right to the object on its left (Fig. 5.1).

The object cout has a simple interface. If string represents a string variable, then the

following statement will display its contents:

cout << string;

5.4 Basic Computer Engineering

You may recall that the operator << is the bit-wise left-shift operator and it can still be used

for this purpose. This is an example of how one operator can be used for different purposes,

depending on the context. This concept is known as operator overloading, an important aspect

of polymorphism. Operator overloading is discussed in detail in Chapter 10.

It is important to note that we can still use printf() for displaying an output. C++ accepts

this notation. However, we will use cout << to maintain the spirit of C++.

5.3.4 The iostream File

We have used the following #include directive in the program:

#include <iostream>

This directive causes the preprocessor to add the contents of the iostream file to the program.

It contains declarations for the identifier cout and the operator <<. Some old versions of C++

use a header file called iostream.h. This is one of the changes introduced by ANSI C++. (We

should use iostream.h if the compiler does not support ANSI C++ features.)

The header file iostream should be included at the beginning of all programs that use

input/output statements. Note that the naming conventions for header files may vary. Some

implementations use iostream.hpp; yet others iostream.hxx. We must include appropriate

header files depending on the contents of the program and implementation.

Tables 5.1 and 5.2 provide lists of C++ standard library header files that may be needed in

C++ programs. The header files with .h extension are “old style” files which should be used

with old compilers. Table 5.1 also gives the version of these files that should be used with the

ANSI standard compilers.

Insertion operator
Variable

Screen

cout

Object

<< “C++”

Fig. 5.1 3 Output using insertion operator

5.5Beginning with C++

Table 5.1 Commonly used old-style header fi les

 Header file Contents and purpose New version

 <assert.h> Contains macros and information for adding diagnostics that <cassert>

 aid program debugging

 <ctype.h> Contains function prototypes for functions that test characters <cctype>

 for certain properties, and function prototypes for functions

 that can be used to convert lowercase letters to uppercase letters

 and vice versa.

 <float.h> Contains the floating-point size limits of the system. <cfloat>

 <limits.h> Contains the integral size limits of the system. <climits>

 <math.h> Contains function prototypes for math library functions. <cmath>

 <stdio.h> Contains function prototypes for the standard input/output <cstdio>

 library functions and information used by them.

 <stdlib.h> Contains function prototypes for conversion of numbers to text, <cstdlib>

 text to numbers, memory allocation, random numbers, and

 various other utility functions.

 <string.h> Contains function prototypes for C-style string processing <cstring>

 functions.

 <time.h> Contains function prototypes and types for manipulating the

 time and date.

 <iostream.h> Contains function prototypes for the standard input and <iostream>

 standard output functions.

 <iomanip.h> Contains function prototypes for the stream manipulators that <iomanip>

 enable formatting of streams of data.

 <fstream.h> Contains function prototypes for functions that perform input <fstream>

 from fi les on disk and output to fi les on disk.

Table 5.2 New header fi les included in ANSI C++

 Header file Contents and purpose

 <utility> Contains classes and functions that are used by many standard library

header files.

 <vector>, <list>, <deque> The header files contain classes that implement the standard

 <queue>, <set>, <map>, library containers. Containers store data during a program’s

 <stack>, <bitset> execution.

 <functional> Contains classes and functions used by algorithms of the standard

library.

 <memory> Contains classes and functions used by the standard library to allocate

memory to the standard library containers.

 <iterator> Contains classes for manipulating data in the standard library con-

tainers.

(Contd)

5.6 Basic Computer Engineering

 <algorithm> Contains functions for manipulating data in the standard library

containers.

 <exception>, <stdexcept> These header files contain classes that are used for exception han-

dling.

 <string> Contains the definition of class string from the standard library.

 <sstream> Contains function prototypes for functions that perform input from

strings in memory and output to strings in memory.

 <locale> Contains classes and functions normally used by stream processing to

process data in the natural form for different languages (e.g., monetary

formats, sorting strings, character presentation, etc.)

 <limits> Contains a class for defining the numerical data type limits on each

computer platform.

 <typeinfo> Contains classes for run-time type identifi cation (determining

data types at execution time).

5.3.5 Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This defines

a scope for the identifiers that are used in a program. For using the identifiers defined in the

namespace scope we must include the using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All ANSI

C++ programs must include this directive. This will bring all the identifiers defined in std to

the current global scope. using and namespace are the new keywords of C++.

5.3.6 Return Type of main()

In C++, main() returns an integer type value to the operating system. Therefore, every main()

in C++ should end with a return(0) statement; otherwise a warning or an error might occur.

Since main() returns an integer type value, return type for main() is explicitly specified as int.

Note that the default return type for all functions in C++ is int. The following main without

type and return will run with a warning:

main()

{

}

Table 5.2 (Contd)

 Header file Contents and purpose

5.7Beginning with C++

 5.4 More C++ Statements

Let us consider a slightly more complex C++ program. Assume that we would like to read

two numbers from the keyboard and display their average on the screen. C++ statements to

accomplish this is shown in Program 5.2.

AVERAGE OF TWO NUMBERS

#include <iostream>

using namespace std;

int main()
{

fl oat number1, number2,
 sum, average;

 cout << “Enter two numbers: “; // prompt
 cin >> number1; // Reads numbers

 cin >> number2; // from keyboard

 sum = number1 + number2;
 average = sum/2;

 cout << “Sum = “ << sum << “\n”;
 cout << “Average = “ << average << “\n”;

 return 0;
}

PROGRAM 5.2

The output of Program 5.2 is:

Enter two numbers: 6.5 7.5
Sum = 14
Average = 7

5.4.1 Variables

The program uses four variables number1, number2, sum, and average. They are declared as

type float by the statement.

fl oat number1, number2, sum, average;

All variables must be declared before they are used in the program.

5.8 Basic Computer Engineering

5.4.2 Input Operator

The statement

cin >> number1;

is an input statement and causes the program to wait for the user to type in a number. The

number keyed in is placed in the variable number1. The identifier cin (pronounced ‘C in’) is

a predefined object in C++ that corresponds to the standard input stream. Here, this stream

represents the keyboard.

The operator >> is known as extraction or get from operator. It extracts (or takes) the value

from the keyboard and assigns it to the variable on its right (Fig. 5.2). This corresponds to the

familiar scanf() operation. Like << , the operator >> can also be overloaded.

Keyboard

cin

Object Extraction operator Variable

45.5>>

Fig. 5.2 3 Input using extraction operator

5.4.3 Cascading of I/O Operators

We have used the insertion operator << repeatedly in the last two statements for printing

results.

The statement

cout << “Sum = “ << sum << “\n”;

first sends the string “Sum =” to cout and then sends the value of sum. Finally, it sends the

newline character so that the next output will be in the new line. The multiple use of << in

one statement is called cascading. When cascading an output operator, we should ensure

necessary blank spaces between different items. Using the cascading technique, the last two

statements can be combined as follows:

cout << “Sum = “ << sum << “\n”
 << “Average = “ << average << “\n”;

This is one statement but provides two lines of output. If you want only one line of output,

the statement will be:

cout << “Sum = “ << sum << “,”
 << “Average = “ << average << “\n”;

5.9Beginning with C++

The output will be:

Sum = 14, Average = 7

We can also cascade input operator >> as shown below:

cin >> number1 >> number2;

The values are assigned from left to right. That is, if we key in two values, say, 10 and 20,

then 10 will be assigned to number1 and 20 to number2.

 5.5 An Example with Class

One of the major features of C++ is classes. They provide a method of binding together data

and functions which operate on them. Classes are user-defined data types.

Program 5.3 shows the use of class in a C++ program.

USE OF CLASS

#include <iostream>
using namespace std;
class person
{
 char name[30];
 int age;

 public:
 void getdata(void);
 void display(void);
};
void person :: getdata(void)
{
 cout << “Enter name: “;
 cin >> name;
 cout << “Enter age: “;
 cin >> age;
}
void person :: display(void)
{

 cout << “\nName: “ << name;

 cout << “\nAge: “ << age;
}

int main()
{
 person p;

5.10 Basic Computer Engineering

 p.getdata();

 p.display();

 return 0;
}

PROGRAM 5.3

 The output of Program 5.3 is:

Enter Name: Ravinder

Enter Age: 30

Name: Ravinder

Age: 30

The program defines person as a new data of type class.

The class person includes two basic data type items and

two functions to operate on that data. These functions

are called member functions. The main program uses

person to declare variables of its type. As pointed out

earlier, class variables are known as objects. Here, p is an

object of type person. Class objects are used to invoke the functions defined in that class.

 5.6 Structure of C++ Program

As it can be seen from the Program 5.3, a

typical C++ program would contain four

sections as shown in Fig. 5.3. These sections

may be placed in separate code files and

then compiled independently or jointly.

It is a common practice to organize a

program into three separate files. The class

declarations are placed in a header file

and the definitions of member functions go

into another file. This approach enables

the programmer to separate the abstract

specification of the interface (class definition)

from the implementation details (member

functions definition). Finally, the main

program that uses the class is placed in a third file which “includes” the previous two files as

well as any other files required.

This approach is based on the concept of client-server model as shown in Fig. 5.4. The class

definition including the member functions constitute the server that provides services to the main

program known as client. The client uses the server through the public interface of the class.

note

cin can read only one word and

therefore we cannot use names

with blank spaces.

Include files

Class declaration

Member functions definitions

Main function program

Fig. 5.3 3 Structure of a C++ program

5.11Beginning with C++

 5.7 Creating the Source File

C++ programs can be created using any text editor.

For example, on the UNIX, we can use vi or ed text

editor for creating and editing the source code. On

the DOS system, we can use edlin or any other editor

available or a word processor system under non-

document mode.

Some systems such as Turbo C++ provide an

integrated environment for developing and editing

programs. Appropriate manuals should be consulted

for complete details.

 The file name should have a proper file extension

to indicate that it is a C++ program file. C++

implementations use extensions such as .c, .C, .cc,

.cpp and .cxx. Turbo C++ and Borland C++ use .c for

C programs and .cpp (C plus plus) for C++ programs.

Zortech C++ system uses .cxx while UNIX AT&T version uses .C (capital C) and .cc. The operating

system manuals should be consulted to determine the proper file name extensions to be used.

SUMMARY

 C++ is a superset of C language.

 C++ adds a number of object-oriented features such as objects, inheritance, function

overloading and operator overloading to C. These features enable building of programs

with clarity, extensibility and ease of maintenance.

 C++ can be used to build a variety of systems such as editors, compilers, databases,

communication systems, and many more complex real-life application systems.

 C++ supports interactive input and output features and introduces a new comment symbol

// that can be used for single line comments. It also supports C-style comments.

 Execution of all C++ programs begins at main() function and ends at return() statement.

The header file iostream should be included at the beginning of all programs that use

input/output operations.

 All ANSI C++ programs must include using namespace std directive.

 A typical C++ program would contain four basic sections, namely, include files section,

class declaration section, member function section and main function section.

 C++ programs can be created using any text editor.

 Most compiler systems provide an integrated environment for developing and executing

programs. Popular systems are UNIX AT&T C++, Turbo C++ and Microsoft Visual C++.

ClientMain function program

Server

Member functions

Class definition

Fig. 5.4 3 The client-server model

5.12 Basic Computer Engineering

Key Terms

 #include main()

 a.out member functions

Borland C++ MS-DOS

cascading namespace

 cin object

class operating systems

client operator overloading

comments output operator

 cout put to operator

edlin return ()

extraction operator screen

 float server

free-form Simula67

get from operator text editor

input operator Turbo C++

insertion operator Unix AT&T C++

 int using

iostream Visual C++

 iostream.h Windows

keyboard Zortech C++

 Review Questions

5.1 State whether the following statements are TRUE or FALSE.

 (a) Since C is a subset of C++, all C programs will run under C++ compilers.

 (b) In C++, a function contained within a class is called a member function.

 (c) Looking at one or two lines of code, we can easily recognize whether a program

is written in C or C++.

 (d) In C++, it is very easy to add new features to the existing structure of an

object.

 (e) The concept of using one operator for different purposes is known as oerator

overloading.

 (f) The output function printf() cannot be used in C++ programs.

5.13Beginning with C++

5.2 Why do we need the preprocessor directive #include <iostream> ?

5.3 How does a main() function in C++ differ from main() in C?

5.4 What do you think is the main advantage of the comment // in C++ as compared to

the old C type comment?

5.5 Describe the major parts of a C++ program.

 Debugging Exercises

5.1 Identify the error in the following program.

#include <iostream.h>

 void main()

 {

 int i = 0;

 i = i + 1;

 cout << i << “ “;

 /*comment*//i = i + 1;

 cout << i;

 }

5.2 Identify the error in the following program.

#include <iostream.h>

 void main()

 {

 short i=2500, j=3000;

 cout >> “i + j = “ >> -(i+j);

 }

5.3 What will happen when you run the following program?

 #include <iostream.h>

 void main()

 {

 int i=10, j=5;

 int modResult=0;

 int divResult=0;

 modResult = i%j;

 cout << modResult << “ “;

 divResult = i/modResult;

 cout << divResult;

 }

5.14 Basic Computer Engineering

5.4 Find errors, if any, in the following C++ statements.

 (a) cout << “x=” x;

 (b) m = 5; // n = 10; // s = m + n;

 (c) cin >>x; >>y;

 (d) cout << \n “Name:” << name;

 (e) cout <<”Enter value:”; cin >> x;

 (f) /*Addition*/ z = x + y;

 Programming Exercises

5.1 Write a program to display the following output using a single cout statement.

 Maths = 90

 Physics = 77

 Chemistry = 69

5.2 Write a program to read two numbers from the keyboard and display the larger

value on the screen.

5.3 Write a program to input an integer value from keyboard and display on screen

“WELL DONE” that many times.

5.4 Write a program to read the values of a, b and c and display the value of x, where

x = a / b – c

Test your program for the following values:

 (a) a = 250, b = 85, c = 25

 (b) a = 300, b = 70, c = 70

5.5 Write a C++ program that will ask for a temperature in Fahrenheit and display it in

Celsius.

5.6 Redo Exercise 5.5 using a class called temp and member functions.

Tokens, Expressions and
Control Structures

6

 6.1 Introduction

As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in C++

with their meaning unchanged. However, there are some exceptions and additions. In this chapter,

we shall discuss these exceptions and additions with respect to tokens and control structures.

Key Concepts

 Tokens

 Keywords

 Identifiers

 Data types

 User-defined types

 Derived types

 Symbolic constants

 Declaration of variables

 Initialization

 Reference variables

 Type compatibility

 Scope resolution

 Dereferencing

 Memory management

 Formatting the output

 Type casting

 Constructing expressions

 Special assignment expressions

 Implicit conversion

 Operator overloading

 Control structures

6.2 Basic Computer Engineering

 6.2 Tokens

As we know, the smallest individual units in a program are known as tokens. C++ has the

following tokens:

 Keywords

 Identifiers

 Constants

 Strings

 Operators

A C++ program is written using these tokens, white spaces, and the syntax of the language.

Most of the C++ tokens are basically similar to the C tokens with the exception of some

additions and minor modifications.

 6.3 Keywords

The keywords implement specific C++ language features. They are explicitly reserved identifiers and

cannot be used as names for the program variables or other user-defined program elements.

Table 6.1 gives the complete set of C++ keywords. Many of them are common to both C and

C++. The ANSI C keywords are shown in boldface. Additional keywords have been added to

the ANSI C keywords in order to enhance its features and make it an object-oriented language.

ANSI C++ standards committee has added some more keywords to make the language more

versatile. These are shown separately. Meaning and purpose of all C++ keywords are given

in Appendix D.

Table 6.1 C++ keywords

 asm double new switch

auto else operator template

break enum private this

 case extern protected throw

 catch float public try

 char for register typedef

 class friend return union

const goto short unsigned

continue if signed virtual

default inline sizeof void

 delete int static volatile

do long struct while

Added by ANSI C++

 bool export reinterpret_cast typename

 const_cast false static_cast using

 dynamic_cast mutable true wchar_t

 explicit namespace typeid

Note: The ANSI C keywords are shown in bold face.

6.3Tokens, Expressions and Control Structures

 6.4 Identifi ers and Constants

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the

programmer. They are the fundamental requirement of any language. Each language has its

own rules for naming these identifiers. The following rules are common to both C and C++:

 Only alphabetic characters, digits and underscores are permitted.

 The name cannot start with a digit.

 Uppercase and lowercase letters are distinct.

 A declared keyword cannot be used as a variable name.

A major difference between C and C++ is the limit on the length of a name. While ANSI C

recognizes only the first 32 characters in a name, ANSI C++ places no limit on its length and,

therefore, all the characters in a name are significant.

Care should be exercised while naming a variable which is being shared by more than one file

containing C and C++ programs. Some operating systems impose a restriction on the length

of such a variable name.

Constants refer to fixed values that do not change during the execution of a program.

C++ supports several kinds of literal constants. They include integers, characters, floating

point numbers and strings. Literal constant do not have memory locations. Examples:

123 // decimal integer
12.34 // fl oating point integer
037 // octal integer
0X2 // hexadecimal integer
“C++” // string constant
‘A’ // character constant
L’ab’ // wide-character constant

The wchar_t type is a wide-character literal introduced by ANSI C++ and is intended for

character sets that cannot fit a character into a single byte. Wide-character literals begin with

the letter L.

C++ also recognizes all the backslash character constants available in C.

C++ supports two types of string representation — the C-style character string and the

string class type introduced with Standard C++. Although the use of the string class type is

recommended, it is advisable to understand and use C-style strings in some situations.

 6.5 Basic Data Types

Data types in C++ can be classified under various categories as shown in Fig. 6.1.

C++ compilers support all the built-in (also known as basic or fundamental) data types. With

the exception of void, the basic data types may have several modifiers preceding them to serve

note

6.4 Basic Computer Engineering

the needs of various situations. The modifiers signed, unsigned, long, and short may be

applied to character and integer basic data types. However, the modifier long may also be applied

to double. Data type representation is machine specific in C++. Table 6.2 lists all combinations of

the basic data types and modifiers along with their size and range for a 16-bit word machine.

Table 6.2 Size and range of C++ basic data types

 Type Bytes Range

 char 1 –128 to 127

 unsigned char 1 0 to 255

 signed char 1 – 128 to 127

 int 2 – 32768 to 32767

 unsigned int 2 0 to 65535

 signed int 2 – 31768 to 32767

 short int 2 – 31768 to 32767

 unsigned short int 2 0 to 65535

 signed short int 2 –32768 to 32767

 long int 4 –2147483648 to 2147483647

 signed long int 4 –2147483648 to 2147483647

 unsigned long int 4 0 to 4294967295

 float 4 3.4E–38 to 3.4E+38

 double 8 1.7E–308 to 1.7E+308

 long double 10 3.4E–4932 to 1.1E+4932

ANSI C++ committee has added two more data types, bool and wchar_t.

User-defined type Derived type

structure

union

class

enumeration

array

function

pointer

reference

Void Floating type

int char float

C++ Data Types

Built-in type

Integral type

double

Fig. 6.1 3 Hierarchy of C++ data types

6.5Tokens, Expressions and Control Structures

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify the

return type of a function when it is not returning any value, and (2) to indicate an empty

argument list to a function. Example:

void funct1(void);

Another interesting use of void is in the declaration of generic pointers. Example:

void *gp; // gp becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not be

dereferenced. For example,

int *ip; // int pointer
gp = ip; // assign int pointer to void pointer

are valid statements. But, the statement,

*ip = *gp;

is illegal. It would not make sense to dereference a pointer to a void value.

Assigning any pointer type to a void pointer without using a cast is allowed in both C++ and

ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer without using a

cast to non-void pointer type. This is not allowed in C++. For example,

void *ptr1;
char *ptr2;
ptr2 = ptr1;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly assigned

to other type pointers in C++. We need to use a cast operator as shown below:

ptr2 = (char *)ptr1;

 6.6 User-Defi ned Data Types

6.6.1 Enumerated Data Type

An enumerated data type is another user-defined type which provides a way for attaching

names to numbers, thereby increasing comprehensibility of the code. The enum keyword (from

C) automatically enumerates a list of words by assigning them values 0, 1, 2, and so on. This

facility provides an alternative means for creating symbolic constants. The syntax of an enum

statement is similar to that of the struct statement. Examples:

enum shape{circle, square, triangle};
enum colour{red, blue, green, yellow};
enum position{off, on};

The enumerated data types differ slightly in C++ when compared with those in ANSI C. In

C++, the tag names shape, colour, and position become new type names. By using these tag

names, we can declare new variables. Examples:

shape ellipse; // ellipse is of type shape
colour background; // background is of type colour

6.6 Basic Computer Engineering

ANSI C defines the types of enums to be ints. In C++, each enumerated data type retains

its own separate type. This means that C++ does not permit an int value to be automatically

converted to an enum value. Examples:

colour background = blue; // allowed
colour background = 7; // Error in C++
colour background = (colour) 7; // OK

However, an enumerated value can be used in place of an int value.

int c = red; // valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first

enumerator, 1 for the second, and so on. We can over-ride the default by explicitly assigning

integer values to the enumerators. For example,

enum colour{red, blue=4, green=8};
enum colour{red=5, blue, green};

are valid definitions. In the first case, red is 0 by default. In the second case, blue is 6 and

green is 7. Note that the subsequent initialized enumerators are larger by one than their

predecessors.

C++ also permits the creation of anonymous enums (i.e., enums without tag names).

Example:

enum{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as regular

constants. Examples:

int switch_1 = off;
int switch_2 = on;

In practice, enumeration is used to define symbolic constants for a switch statement.

Example:

enum shape
{
 circle,
 rectangle,
 triangle
};

int main()
{
 cout << “Enter shape code:”;
 int code;
 cin >> code;
 while(code >= circle && code <= triangle)
 {
 switch(code)

6.7Tokens, Expressions and Control Structures

 {
 case circle:

 break;
 case rectangle:

 break;
 case triangle:

 break;
 }
 cout << “Enter shape code:”;
 cin >> code;
 }
 cout << “BYE \n”;

 return 0;
}

ANSI C permits an enum to be defined within a structure or a class, but the enum is

globally visible. In C++, an enum defined within a class (or structure) is local to that class (or

structure) only.

 6.7 Structures and Unions

Standalone variables of primitive types are not sufficient enough to handle real world problems.

It is often required to group logically related data items together. While arrays are used to

group together similar type data elements, structures are used for grouping together elements

with dissimilar types.

The general format of a structure definition is as follows:

struct name
{
 data_type member1;
 data_type member2;

};

 Let us take the example of a book, which has several attributes such as title, number of

pages, price, etc. We can realize a book using structures as shown below:

struct book
{
 char title[25];

6.8 Basic Computer Engineering

 charauthor[25];
 int pages;

fl oat price;
};
struct book book1, book2, book3;

Here book1, book2 and book3 are declared as variables of the user-defined type book. We

can access the member elements of a structure by using the dot (.) operator, as shown below:

book1.pages=550;
book2.price=225.75;

Unions are conceptually similar to structures as they allow us to group together dissimilar

type elements inside a single unit. But there are significant differences between structures

and unions as far as their implementation is concerned. The size of a structure type is equal

to the sum of the sizes of individual member types. However, the size of a union is equal to the

size of its largest member element. For instance, consider the following union declaration:

union result
{
 int marks;
 char grade;

fl oat percent;
};

The union result will occupy four bytes in memory as its largest size member element is the

floating type variable percent. However, if we had defined result as a structure then it would have

occupied seven bytes in memory that is, the sum of the sizes of individual member elements. Thus,

in case of unions the same memory space is used for representing different member elements.

As a result, union members can only be manipulated exclusive of each other. In simple words,

we can say that unions are memory-efficient alternatives of structures particularly in situations

where it is not required to access the different member elements simultaneously.

In C++, structures and unions can be used just like they are used in C. However, there is an

interesting aside to C++ structures that we will study in Chapter 11.

 6.8 Derived Data Types

6.8.1 Arrays

The application of arrays in C++ is similar to that in C. The only exception is the way character

arrays are initialized. When initializing a character array in ANSI C, the compiler will allow

us to declare the array size as the exact length of the string constant. For instance,

char string[3] = “xyz”;

is valid in ANSI C. It assumes that the programmer intends to leave out the null character \0 in the

definition. But in C++, the size should be one larger than the number of characters in the string.

char string[4] = “xyz”; // O.K. for C++

6.9Tokens, Expressions and Control Structures

6.8.2 Functions

Functions have undergone major changes in C++. While some of these changes are simple, others

require a new way of thinking when organizing our programs. Many of these modifications and

improvements were driven by the requirements of the object-oriented concept of C++. Some of

these were introduced to make the C++ program more reliable and readable. All the features

of C++ functions are discussed in Chapter 7.

6.8.3 Pointers

Pointers are declared and initialized as in C. Examples:

int *ip; // int pointer
ip = &x; // address of x assigned to ip
*ip = 10; // 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.

char * const ptr1 = “GOOD”; // constant pointer

We cannot modify the address that ptr1 is initialized to.

int const * ptr2 = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the

contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following way:

const char * const cp = “xyz”;

This statement declares cp as a constant pointer to the string which has been declared a

constant. In this case, neither the address assigned to the pointer cp nor the contents it points

to can be changed.

Pointers are extensively used in C++ for memory management and achieving polymorphism.

 6.9 Symbolic Constants

There are two ways of creating symbolic constants in C++:

 Using the qualifier const, and

 Defining a set of integer constants using enum keyword.

In C++, any value declared as const cannot be modified by the program in any way. However,

there are some differences in implementation. In C++, we can use const in a constant expression,

such as

const int size = 10;
char name[size];

This would be illegal in C. const allows us to create typed constants instead of having to use

#define to create constants that have no type information.

6.10 Basic Computer Engineering

As with long and short, if we use the const modifier alone, it defaults to int. For example,

const size = 10;

means

const int size = 10;

The named constants are just like variables except that their values cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is

given, it initializes the const to 0.

The scoping of const values differs. A const in C++ defaults to the internal linkage and

therefore it is local to the file where it is declared. In ANSI C, const values are global in

nature. They are visible outside the file in which they are declared. However, they can be made

local by declaring them as static. To give a const value an external linkage so that it can be

referenced from another file, we must explicitly define it as an extern in C++. Example:

extern const total = 100;

Another method of naming integer constants is by enumeration as under;

enum {X,Y,Z};

This defines X, Y and Z as integer constants with values 0, 1, and 2 respectively. This is

equivalent to:

const X = 0;
const Y = 1;
const Z = 2;

We can also assign values to X, Y, and Z explicitly. Example:

enum{X=100, Y=50, Z=200};

Such values can be any integer values. Enumerated data type has been discussed in detail in

Section 6.6.

 6.10 Type Compatibility

C++ is very strict with regard to type compatibility as compared to C. For instance, C++ defines

int, short int, and long int as three different types. They must be cast when their values are

assigned to one another. Similarly, unsigned char, char, and signed char are considered as

different types, although each of these has a size of one byte. In C++, the types of values must

be the same for complete compatibility, or else, a cast must be applied. These restrictions in

C++ are necessary in order to support function overloading where two functions with the same

name are distinguished using the type of function arguments.

Another notable difference is the way char constants are stored. In C, they are stored as

ints, and therefore,

sizeof (‘x’)

6.11Tokens, Expressions and Control Structures

is equivalent to

sizeof(int)

in C. In C++, however, char is not promoted to the size of int and therefore

sizeof(‘x’)

equals

sizeof(char)

 6.11 Declaration of Variables

In C, all variables must be declared before they are used in executable statements. This is true

with C++ as well. However, there is a significant difference between C and C++ with regard to

the place of their declaration in the program. C requires all the variables to be defined at the

beginning of a scope. When we read a C program, we usually come across a group of variable

declarations at the beginning of each scope level. Their actual use appears elsewhere in the scope,

sometimes far away from the place of declaration. Before using a variable, we should go back to

the beginning of the program to see whether it has been declared and, if so, of what type.

C++ allows the declaration of a variable anywhere in the scope. This means that a variable

can be declared right at the place of its first use. This makes the program much easier to write

and reduces the errors that may be caused by having to scan back and forth. It also makes the

program easier to understand because the variables are declared in the context of their use.

The example below illustrates this point.

 int main()
 {

fl oat x; // declaration
fl oat sum = 0;

 for(int i=1; i<5; i++) // declaration
 {
 cin >> x;
 sum = sum +x;
 }

fl oat average; // declaration
 average = sum/(i-1);
 cout << average;

 return 0;
 }

The only disadvantage of this style of declaration is that we cannot see all the variables used

in a scope at a glance.

6.12 Basic Computer Engineering

 6.12 Dynamic Initialization of Variables

In C, a variable must be initialized using a constant expression, and the C compiler would fix

the initialization code at the time of compilation. C++, however, permits initialization of the

variables at run time. This is referred to as dynamic initialization. In C++, a variable can

be initialized at run time using expressions at the place of declaration. For example, the

following are valid initialization statements:

.....

.....
int n = strlen(string);
.....
fl oat area = 3.14159 * rad * rad;

Thus, both the declaration and the initialization of a variable can be done simultaneously at

the place where the variable is used for the first time. The following two statements in the

example of the previous section

fl oat average; // declare where it is necessary
average = sum/i;

can be combined into a single statement:

fl oat average = sum/i; // initialize dynamically at run time

Dynamic initialization is extensively used in object-oriented programming. We can create

exactly the type of object needed, using information that is known only at the run time.

 6.13 Reference Variables

C++ introduces a new kind of variable known as the reference variable. A reference variable

provides an alias (alternative name) for a previously defined variable. For example, if we

make the variable sum a reference to the variable total, then sum and total can be used

interchangeably to represent that variable. A reference variable is created as follows:

data-type & reference-name = variable-name

Example:

fl oat total = 100;
fl oat & sum = total;

total is a float type variable that has already been declared; sum is the alternative name

declared to represent the variable total. Both the variables refer to the same data object in the

memory. Now, the statements

cout << total;

and

cout << sum;

6.13Tokens, Expressions and Control Structures

both print the value 100. The statement

total = total + 10;

will change the value of both total and sum to 110. Likewise, the assignment

sum = 0;

will change the value of both the variables to zero.

A reference variable must be initialized at the time of declaration. This establishes the

correspondence between the reference and the data object which it names. It is important to

note that the initialization of a reference variable is completely different from assignment to

it.

C++ assigns additional meaning to the symbol &. Here, & is not an address operator. The

notation float & means reference to float. Other examples are:

int n[10];
int & x = n[10]; // x is alias for n[10]
char & a = ‘\n’; // initialize reference to a literal

The variable x is an alternative to the array element n[10]. The variable a is initialized to

the newline constant. This creates a reference to the otherwise unknown location where the

newline constant \n is stored.

The following references are also allowed:

i. int x;
 int *p = &x;
 int & m = *p;

ii. int & n = 50;

The first set of declarations causes m to refer to x which is pointed to by the pointer p and

the statement in (ii) creates an int object with value 50 and name n.

A major application of reference variables is in passing arguments to functions. Consider

the following:

void int

int

f(& x) //

{

x = x+10; //

}

int main()

{

m = 10;

f(m); //

.....

.....

}

uses reference

x is incremented; so also m

function call

6.14 Basic Computer Engineering

When the function call f(m) is executed, the following initialization occurs:

int & x = m;

Thus x becomes an alias of m after executing the statement

f(m);

Such function calls are known as call by reference. This implementation is illustrated in

Fig. 6.2. Since the variables x and m are aliases, when the function increments x, m is also

incremented. The value of m becomes 20 after the function is executed. In traditional C, we

accomplish this operation using pointers and dereferencing techniques.

f(m)

int m=10;

call

int & x = m;

10
one location
two names

m

x

Fig. 6.2 3 Call by reference mechanism

The call by reference mechanism is useful in object-oriented programming because it permits

the manipulation of objects by reference, and eliminates the copying of object parameters back

and forth. It is also important to note that references can be created not only for built-in data

types but also for user-defined data types such as structures and classes. References work

wonderfully well with these user-defined data types.

 6.14 Operators in C++

C++ has a rich set of operators. All C operators are valid in C++ also. In addition, C++ introduces

some new operators. We have already seen two such operators, namely, the insertion operator

<<, and the extraction operator >>. Other new operators are:

:: Scope resolution operator
::* Pointer-to-member declarator
->* Pointer-to-member operator
.* Pointer-to-member operator
delete Memory release operator
endl Line feed operator
new Memory allocation operator
setw Field width operator

In addition, C++ also allows us to provide new definitions to some of the built-in operators.

That is, we can give several meanings to an operator, depending upon the types of arguments

used. This process is known as operator overloading.

6.15Tokens, Expressions and Control Structures

 6.15 Scope Resolution Operator

C++ is a block-structured language. Blocks and scopes can be used in constructing programs.

Same variable name can be used to have different meanings in different blocks. The scope of

the variable extends from the point of its declaration till the end of the block containing the

declaration. A variable declared inside a block is said to be local to that block. Consider the

following segment of a program:

.....

.....
{

int x = 10;

}
.....
.....
{

int x = 1;

}

The two declarations of x refer to two different memory locations containing different values.

Statements in the second block cannot refer to the variable x declared in the first block, and

vice versa. Blocks in C++ are often nested. For example, the following style is common:

. . . .

. . . .
{
int x = 10;
. . . .
. . . .
{

int x = 1;
. . . .
. . . .

}
. . . .

}

Block 2 Block 1

Block2 is contained in block1. Note that a declaration in an inner block hides a declaration of the

same variable in an outer block and, therefore, each declaration of x causes it to refer to a different

data object. Within the inner block, the variable x will refer to the data object declared therein.

In C, the global version of a variable cannot be accessed from within the inner block. C++

resolves this problem by introducing a new operator :: called the scope resolution operator. This

can be used to uncover a hidden variable. It takes the following form:

6.16 Basic Computer Engineering

:: variable-name

This operator allows access to the global version of a variable. For example, ::count means

the global version of the variable count (and not the local variable count declared in that

block). Program 6.1 illustrates this feature.

SCOPE RESOLUTION OPERATOR

#include <iostream>
using namespace std;
int m = 10; // global m

int main()
{
 int m = 20; // m redeclared, local to main

 {
 int k = m;
 int m = 30; // m declared again
 // local to inner block

 cout << “we are in inner block \n”;
 cout << “k = “ << k << “\n”;
 cout << “m = “ << m << “\n”;
 cout << “::m = “ << ::m << “\n”;
 }

 cout << “\nWe are in outer block \n”;
 cout << “m = “ << m << “\n”;
 cout << “::m = “ << ::m << “\n”;

 return 0;
}

PROGRAM 6.1

The output of Program 6.1 would be:

We are in inner block
k = 20
m = 30
::m = 10

We are in outer block
m = 20
::m = 10

6.17Tokens, Expressions and Control Structures

In the above program, the variable m is declared at three places, namely, outside the main()

function, inside the main(), and inside the inner block.

note

It is to be noted ::m will always refer to the global m. In the inner block, ::m refers to the

value 10 and not 20.

A major application of the scope resolution operator is in the classes to identify the class

to which a member function belongs. This will be dealt in detail later when the classes are

introduced.

 6.16 Member Dereferencing Operators

As you know, C++ permits us to define a class containing various types of data and functions

as members. C++ also permits us to access the class members through pointers. In order to

achieve this, C++ provides a set of three pointer-to-member operators. Table 6.3 shows these

operators and their functions.

Table 6.3 Member dereferencing operators

 Operator Function

 ::* To declare a pointer to a member of a class

 * To access a member using object name and a pointer to that member

 –>* To access a member using a pointer to the object and a pointer to that member

Further details on these operators will be meaningful only after we discuss classes, and

therefore we defer the use of member dereferencing operators until then.

 6.17 Memory Management Operators

C uses malloc() and calloc() functions to allocate memory dynamically at run time. Similarly,

it uses the function free() to free dynamically allocated memory. We use dynamic allocation

techniques when it is not known in advance how much of memory space is needed. Although

C++ supports these functions, it also defines two unary operators new and delete that perform

the task of allocating and freeing the memory in a better and easier way. Since these operators

manipulate memory on the free store, they are also known as free store operators.

An object can be created by using new, and destroyed by using delete, as and when required.

A data object created inside a block with new, will remain in existence until it is explicitly

destroyed by using delete. Thus, the lifetime of an object is directly under our control and is

unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following general form:

pointer-variable = new data-type;

6.18 Basic Computer Engineering

Here, pointer-variable is a pointer of type data-type. The new operator allocates sufficient

memory to hold a data object of type data-type and returns the address of the object. The data-

type may be any valid data type. The pointer-variable holds the address of the memory space

allocated. Examples:

p = new int;
q = new fl oat;

where p is a pointer of type int and q is a pointer of type float. Here, p and q must have

already been declared as pointers of appropriate types. Alternatively, we can combine the

declaration of pointers and their assignments as follows:

int *p = new int;
fl oat *q = new fl oat;

Subsequently, the statements

*p = 25;
*q = 7.5;

assign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the memory using the new operator. This is done as follows:

pointer-variable = new data-type(value);

Here, value specifies the initial value. Examples:

int *p = new int(25);
fl oat *q = new fl oat(7.5);

As mentioned earlier, new can be used to create a memory space for any data type

including user-defined types such as arrays, structures and classes. The general form for a

one-dimensional array is:

pointer-variable = new data-type[size];

Here, size specifies the number of elements in the array. For example, the statement

int *p = new int[10];

creates a memory space for an array of 10 integers. p[0] will refer to the first element, p[1] to

the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be supplied.

array_ptr = new int[3][5][4]; // legal
array_ptr = new int[m][5][4]; // legal
array_ptr = new int[3][5][]; // illegal
array_ptr = new int[][5][4]; // illegal

The first dimension may be a variable whose value is supplied at runtime. All others must

be constants.

The application of new to class objects will be discussed later in Chapter 9.

6.19Tokens, Expressions and Control Structures

When a data object is no longer needed, it is destroyed to release the memory space for

reuse. The general form of its use is:

delete pointer-variable;

The pointer-variable is the pointer that points to a data object created with new.

Examples:

delete p;
delete q;

If we want to free a dynamically allocated array, we must use the following form of delete:

delete [size] pointer-variable;

The size specifies the number of elements in the array to be freed. The problem with this

form is that the programmer should remember the size of the array. Recent versions of C++ do

not require the size to be specified. For example,

delete []p;

will delete the entire array pointed to by p.

What happens if sufficient memory is not available for allocation? In such cases, like

malloc(), new returns a null pointer. Therefore, it may be a good idea to check for the pointer

produced by new before using it. It is done as follows:

.....

.....
p = new int;
if(!p)
{
 cout << “allocation failed \n”;
}
.....
.....

The new operator offers the following advantages over the function malloc().

 1. It automatically computes the size of the data object. We need not use the operator

sizeof.

 2. It automatically returns the correct pointer type, so that there is no need to use a type

cast.

 3. It is possible to initialize the object while creating the memory space.

 4. Like any other operator, new and delete can be overloaded.

 6.18 Manipulators

Manipulators are operators that are used to format the data display. The most commonly used

manipulators are endl and setw.

6.20 Basic Computer Engineering

The endl manipulator, when used in an output statement, causes a linefeed to be inserted.

It has the same effect as using the newline character “\n”. For example, the statement

.....

.....
cout << “m = “ << m << endl
 << “n = “ << n << endl
 << “p = “ << p << endl;
.....
.....

would cause three lines of output, one for each variable. If we assume the values of the variables

as 2597, 14, and 175 respectively, the output will appear as follows:

m = 2 5 9 7

n = 1 4

p = 1 7 5

It is important to note that this form is not the ideal output. It should rather appear as

under:

m = 2597
n = 14
p = 175

Here, the numbers are right-justified. This form of output is possible only if we can specify a

common field width for all the numbers and force them to be printed right-justified. The setw

manipulator does this job. It is used as follows:

cout << setw(5) << sum << endl;

The manipulator setw(5) specifies a field width 5 for printing the value of the variable sum.

This value is right-justified within the field as shown below:

3 4 5

Program 6.2 illustrates the use of endl and setw.

USE OF MANIPULATORS

#include <iostream>
#include <iomanip> // for setw

using namespace std;

int main()
{
 int Basic = 950, Allowance = 95, Total = 1045;

 cout << setw(10) << “Basic” << setw(10) << Basic << endl

6.21Tokens, Expressions and Control Structures

 << setw(10) << “Allowance” << setw(10) << Allowance << endl
 << setw(10) << “Total” << setw(10) << Total << endl;

 return 0;
}

PROGRAM 6.2

Output of this program is given below:

 Basic 950
Allowance 95
 Total 1045

note

Character strings are also printed right-justified.

We can also write our own manipulators as follows:

#include <iostream>
ostream & symbol(ostream & output)
{
 return output << “\tRs”;
}

The symbol is the new manipulator which represents Rs. The identifier symbol can be

used whenever we need to display the string Rs.

 6.19 Type Cast Operator

C++ permits explicit type conversion of variables or expressions using the type cast

operator.

Traditional C casts are augmented in C++ by a function-call notation as a syntactic

alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:

average = sum/(fl oat)i; // C notation
average = sum/fl oat(i); // C++ notation

A type-name behaves as if it is a function for converting values to a designated type. The

function-call notation usually leads to simplest expressions. However, it can be used only if the

type is an identifier. For example,

p = int * (q);

6.22 Basic Computer Engineering

is illegal. In such cases, we must use C type notation.

p = (int *) q;

Alternatively, we can use typedef to create an identifier of the required type and use it in

the functional notation.

typedef int * int_pt;
p = int_pt(q);

ANSI C++ adds the following new cast operators:

 const_cast

 static_cast

 dynamic_cast

 reinterpret_cast

 6.20 Expressions and Their Types

An expression is a combination of operators, constants and variables arranged as per the rules

of the language. It may also include function calls which return values. An expression may

consist of one or more operands, and zero or more operators to produce a value. Expressions

may be of the following seven types:

 Constant expressions

 Integral expressions

 Float expressions

 Pointer expressions

 Relational expressions

 Logical expressions

 Bitwise expressions

An expression may also use combinations of the above expressions. Such expressions are

known as compound expressions.

6.20.1 Constant Expressions

Constant Expressions consist of only constant values. Examples:

15
20 + 5 / 2.0
‘x’

6.20.2 Integral Expressions

Integral Expressions are those which produce integer results after implementing all the

automatic and explicit type conversions. Examples:

m
m * n - 5

6.23Tokens, Expressions and Control Structures

m * ‘x’
5 + int(2.0)

where m and n are integer variables.

6.20.3 Float Expressions

Float Expressions are those which, after all conversions, produce floating-point results. Examples:

x + y

x * y / 10

5 + fl oat(10)

10.75

where x and y are floating-point variables.

6.20.4 Pointer Expressions

Pointer Expressions produce address values. Examples:

&m

ptr

ptr + 1

“xyz”

where m is a variable and ptr is a pointer.

6.20.5 Relational Expressions

Relational Expressions yield results of type bool which takes a value true or false. Examples:

x <= y

a+b == c+d

m+n > 100

When arithmetic expressions are used on either side of a relational operator, they will be

evaluated first and then the results compared. Relational expressions are also known as Boolean

expressions.

6.20.6 Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool type

results. Examples:

a>b && x==10

x==10 || y==5

6.24 Basic Computer Engineering

6.20.7 Bitwise Expressions

Bitwise Expressions are used to manipulate data at bit level. They are basically used for testing

or shifting bits. Examples:

x << 3 // Shift three bit position to left
y >> 1 // Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

ANSI C++ has introduced what are termed as operator keywords that can be used as

alternative representation for operator symbols.

 6.21 Special Assignment Expressions

6.21.1 Chained Assignment

x = (y = 10);
 or
x = y = 10;

First 10 is assigned to y and then to x.

A chained statement cannot be used to initialize variables at the time of declaration. For

instance, the statement

fl oat a = b = 12.34; // wrong

is illegal. This may be written as

fl oat a=12.34, b=12.34 // correct

6.21.2 Embedded Assignment

x = (y = 50) + 10;

(y = 50) is an assignment expression known as embedded assignment. Here, the value 50 is assigned

to y and then the result 50+10 = 60 is assigned to x. This statement is identical to

y = 50;
x = y + 10;

6.21.3 Compound Assignment

Like C, C++ supports a compound assignment operator which is a combination of the assignment

operator with a binary arithmetic operator. For example, the simple assignment statement

x = x + 10;

may be written as

x += 10;

6.25Tokens, Expressions and Control Structures

The operator += is known as compound assignment operator or short-hand assignment

operator. The general form of the compound assignment operator is:

variable1 op= variable2;

where op is a binary arithmetic operator. This means that

variable1 = variable1 op variable2;

 6.22 Implicit Conversions

We can mix data types in expressions. For example,

m = 5+2.75;

is a valid statement. Wherever data types are mixed in an expression, C++ performs the

conversions automatically. This process is known as implicit or automatic conversion.

When the compiler encounters an expression, it divides the expressions into sub-expressions

consisting of one operator and one or two operands. For a binary operator, if the operands

type differ, the compiler converts one of them to match with the other, using the rule that the

“smaller” type is converted to the “wider” type. For example, if one of the operand is an int

and the other is a float, the int is converted into a float because a float is wider than an int.

The “water-fall” model shown in Fig. 6.3 illustrates this rule.

short char

int

unsigned

long int

unsigned long int

float

double

long double

Fig. 6.3 3 Water-fall model of type conversion

6.26 Basic Computer Engineering

Whenever a char or short int appears in an expression, it is converted to an int. This is

called integral widening conversion. The implicit conversion is applied only after completing

all integral widening conversions.

Table 6.4 Results of Mixed-mode Operations

 RHO char short int long float double long double

 LHO

 char int int int long float double long double

 short int int int long float double long double

 int int int int long float double long double

 long long long long long float double long double

 float float float float float float double long double

 double double double double double double double long double

 long double long long long long long long long double

 double double double double double double

RHO – Right-hand operand

LHO – Left-hand operand

 6.23 Operator Overloading

As stated earlier, overloading means assigning different meanings to an operation, depending

on the context. C++ permits overloading of operators, thus allowing us to assign multiple

meanings to operators. The number and type of operands decide the nature of operation to

follow.

The input/output operators << and >> are good examples of operator overloading. Although

the built-in definition of the << operator is for shifting of bits, it is also used for displaying the

values of various data types. This has been made possible by the header file iostream where a

number of overloading definitions for << are included. Thus, the statement

cout << 75.86;

invokes the definition for displaying a double type value, and

cout << “well done”;

invokes the definition for displaying a char value. However, none of these definitions in

iostream affect the built-in meaning of the operator.

Similarly, we can define additional meanings to other C++ operators. For example, we can

define + operator to add two structures or objects. Almost all C++ operators can be overloaded

with a few exceptions such as the member-access operators (. and .*), conditional operator (?:),

scope resolution operator (::) and the size operator (sizeof). Definitions for operator overloading

are discussed in detail in Chapter 10.

6.27Tokens, Expressions and Control Structures

 6.24 Operator Precedence

Although C++ enables us to add multiple meanings to the operators, yet their association and

precedence remain the same. For example, the multiplication operator will continue having

higher precedence than the add operator. Table 6.5 gives the precedence and associativity of

all the C++ operators. The groups are listed in the order of decreasing precedence. The labels

prefix and postfix distinguish the uses of ++ and --. Also, the symbols +, –, *, and & are used

as both unary and binary operators.

A complete list of ANSI C++ operators and their meanings, precedence, associativity and

use are given in Appendix B.

Table 6.5 Operator precedence and associativity

Operator Associativity

 :: left to right

 –> . () [] postfix ++ postfix – – left to right

 prefix ++ prefix – – ~ ! unary + unary –

 unary * unary & (type) sizeof new delete right to left

 –> * * left to right

 * / % left to right

 + – left to right

 << >> left to right

 << = >> = left to right

 = = != left to right

 & left to right

 ^ left to right

 | left to right

 && left to right

 || left to right

 ?: left to right

 = * = / = % = + = = right to left

 << = >> = & = ^= |= left to right

 , (comma)

The unary operations assume higher precedence.

 6.25 Control Structures

In C++, a large number of functions are used that pass messages, and process the data contained

in objects. A function is set up to perform a task. When the task is complex, many different

algorithms can be designed to achieve the same goal. Some are simple to comprehend, while

others are not. Experience has also shown that the number of bugs that occur is related to the

format of the program. The format should be such that it is easy to trace the flow of execution

of statements. This would help not only in debugging but also in the review and maintenance

of the program later. One method of achieving the objective of an accurate, error-resistant and

maintainable code is to use one or any combination of the following three control structures:

6.28 Basic Computer Engineering

 1. Sequence structure (straight line)

 2. Selection structure (branching)

 3. Loop structure (iteration or repetition)

Figure 6.4 shows how these structures are implemented using one-entry, one-exit concept, a

popular approach used in modular programming.

(a) Sequence

Entry Entry Entry

Action 1

Action 2

Action 3

Exit

Action 1 Action 2

Action 3

Exit

Condition
Action 1

Action 2

True

(b) Selection (c) Loop

True
Condition

False Loop

False

Fig. 6.4 3 Basic control structures

It is important to understand that all program processing can be coded by using only these three

logic structures. The approach of using one or more of these basic control constructs in programming

is known as structured programming, an important technique in software engineering.

Using these three basic constructs, we may represent a function structure either in detail or

in summary form as shown in Figs 6.5 (a), (b) and (c).

Like C, C++ also supports all the three basic control structures, and implements them using

various control statements as shown in Fig. 6.6. This shows that C++ combines the power of

structured programming with the object-oriented paradigm.

6.25.1 The if Statement

The if statement is implemented in two forms:

 Simple if statement

if...else statement

6.29Tokens, Expressions and Control Structures

Entry Entry

A B

Exit

A

B1 B2

(a) First level of abstraction (b) Second level of abstraction

Module A

B1 B2

Exit

Module B

A1 A2

Entry

(c) Detailed flow chart

Exit

Fig. 6.5 3 Different levels of abstraction

6.30 Basic Computer Engineering

Examples:

Form 1

if(expression is true)
{
 action1;
}
action2;
action3;

Form 2

if(expression is true)
{
 action1;
}
else
{
 action2;
}

action3;

6.25.2 The Switch Statement

This is a multiple-branching statement where, based on a condition, the control is transferred

to one of the many possible points. This is implemented as follows:

switch(expression)
{
 case1:

Two way branch Multiple branch
Exit-control Entry-control

Selection Sequence Loop

if-else switch do-while while, for

Control structure

Fig. 6.6 3 C++ statements to implement in two forms

6.31Tokens, Expressions and Control Structures

 {
 action1;
 }
 case2:
 {
 action2;
 }
 case3:
 {
 action3;
 }
 default:
 {
 action4;
 }
}
action5;

6.25.3 The do-while statement

The do-while is an exit-controlled loop. Based on a condition,the control is transferred back to

a particular point in the program. The syntax is as follows:

do
{
 action1;
}
while(condition is true);
action2;

6.25.4 The while Statement

This is also a loop structure, but is an entry-controlled one. The syntax is as follows:

while(condition is true)
{
 action1;
}
action2;

6.25.5 The for Statement

The for is an entry-entrolled loop and is used when an action is to be repeated for a predetermined

number of times. The syntax is as follows:

for(initial value; test; increment)
{
 action1;

6.32 Basic Computer Engineering

}
action2;

The syntax of the control statements in C++ is very much similar to that of C and therefore

they are implemented as and when they are required.

SUMMARY

C++ provides various types of tokens that include keywords, identifiers, constants, strings,

and operators.

Identifiers refer to the names of variables, functions, arrays, classes, etc.

C++ provides an additional use of void, for declaration of generic pointers.

The enumerated data types differ slightly in C++. The tag names of the enumerated data

types become new type names. That is, we can declare new variables using these tag

names.

In C++, the size of character array should be one larger than the number of characters in

the string.

C++ adds the concept of constant pointer and pointer to constant. In case of constant

pointer we can not modify the address that the pointer is initialized to. In case of pointer

to a constant, contents of what it points to cannot be changed.

Pointers are widely used in C++ for memory management and to achieve polymorphism.

C++ provides a qualifier called const to declare named constants which are just like

variables except that their values can not be changed. A const modifier defaults to an

int.

C++ is very strict regarding type checking of variables. It does not allow to equate variables

of two different data types. The only way to break this rule is type casting.

C++ allows us to declare a variable anywhere in the program, as also its initialization at

run time, using the expressions at the place of declaration.

A reference variable provides an alternative name for a previously defined variable. Both

the variables refer to the same data object in the memory. Hence, change in the value of

one will also be reflected in the value of the other variable.

A reference variable must be initialized at the time of declaration, which establishes the

correspondence between the reference and the data object that it names.

A major application of the scope resolution (::) operator is in the classes to identify the class

to which a member function belongs.

In addition to malloc(), calloc() and free() functions, C++ also provides two unary

operators, new and delete to perform the task of allocating and freeing the memory in a

better and easier way.

C++ also provides manipulators to format the data display. The most commonly used

manipulators are endl and setw.

6.33Tokens, Expressions and Control Structures

C++ supports seven types of expressions. When data types are mixed in an expression, C++

performs the conversion automatically using certain rules.

C++ also permits explicit type conversion of variables and expressions using the type cast

operators.

 Like C, C++ also supports the three basic control structures namely, sequence, selection and

loop, and implements them using various control statements such as, if, if...else, switch,

do..while, while and for.

Key Terms

 array

 associativity

 automatic conversion

 backslash character

 bitwise expression

bool

 boolean expression

 branching

 call by reference

calloc()

 character constant

 chained assignment

class

 compound assignment

 compound expression

const

 constant

 constant expression

 control structure

 data types

 decimal integer

 declaration

delete

 dereferencing

 derived-type

do...while

 embedded assignment

endl

 entry control

 enumeration

 exit control

 explicit conversion

 expression

 float expression

 floating point integers

for

 formatting

 free store

free()

 function

 hexadecimal integer

 identifier

if

if...else

 implicit conversion

 initialization

 integer constant

 integral expression

 integral widening

 iteration

6.34 Basic Computer Engineering

 keyword

 literal

 logical expression

 loop

 loop structure

malloc()

 manipulator

 memory

 named constant

new

 octal integer

 operator

 operator keywords

 operator overloading

 operator precedence

 pointer

 pointer expression

 pointer variable

 reference

 reference variable

 relational expression

 repetition

 scope resolution

 selection

 selection structure

 sequence

 sequence structure

setw

 short-hand assignment

sizeof()

 straight line

string

 string constant

struct

 structure

 structured programming

 switch

 symbolic constant

 token

 type casting

 type compatibility

typedef

union

 user-defined type

 variable

void

 water-fall model

wchar_t

while

 wide-character

 Review Questions

6.1 Enumerate the rules of naming variables in C++. How do they differ from ANSI C

rules?

6.2 An unsigned int can be twice as large as the signed int. Explain how?

6.3 Why does C++ have type modifiers?

6.4 What are the applications of void data type in C++?

6.5 Can we assign a void pointer to an int type pointer? If not, why? How can we achieve

this?

6.6 Describe, with examples, the uses of enumeration data types.

6.35Tokens, Expressions and Control Structures

6.7 Describe the differences in the implementation of enum data type in ANSI C and

C++.

6.8 Why is an array called a derived data type?

6.9 The size of a char array that is declared to store a string should be one larger than

the number of characters in the string. Why?

6.10 The const was taken from C++ and incorporated in ANSI C, although quite differently.

Explain.

6.11 How does a constant defined by const differ from the constant defined by the

preprocessor statement #define?

6.12 In C++, a variable can be declared anywhere in the scope. What is the significance of

this feature?

6.13 What do you mean by dynamic initialization of a variable? Give an example.

6.14 What is a reference variable? What is its major use?

6.15 List at least four new operators added by C++ which aid OOP.

6.16 What is the application of the scope resolution operator :: in C++?

6.17 What are the advantages of using new operator as compared to the function

malloc()?

6.18 Illustrate with an example, how the setw manipulator works.

6.19 How do the following statements differ?

(a) char * const p;

(b) char const *p;

 Debugging Exercises

6.1 What will happen when you execute the following code?

 #include <iostream.h>
 void main()
 {
 int i=0;
 i=400*400/400;
 cout << i;
 }

6.2 Identify the error in the following program.

 #include <iostream.h>
 void main()
 {
 int num[]={1,2,3,4,5,6};
 num[1]==[1]num ? cout<<“Success” : cout<<“Error”;
 }

6.36 Basic Computer Engineering

6.3 Identify the errors in the following program.

 #include <iostream.h>
 void main()
 {
 int i=5;
 while(i)
 {
 switch(i)
 {
 default:
 case 4:
 case 5:

 break;

 case 1:
 continue;

 case 2:
 case 3:
 break;

 }
 i—;
 }
 }

6.4 Identify the error in the following program.

 #include <iostream.h>
 #defi ne pi 3.14
 int squareArea(int &);
 int circleArea(int &);

 void main()
 {
 int a=10;
 cout << squareArea(a) << “ “;
 cout << circleArea(a) << “ “;
 cout << a << endl;
 }

 int squareArea(int &a)

6.37Tokens, Expressions and Control Structures

 {
 return a *== a;
 }

 int circleArea(int &r)
 {
 return r = pi * r * r;
 }

6.5 Identify the error in the following program.

 #include <iostream.h>
 #include <malloc.h>

 char* allocateMemory();

 void main()
 {
 char* str;
 str = allocateMemory();
 cout << str;
 delete str;
 str = “ “;
 cout << str;
 }

 char* allocateMemory()
 {
 str = “Memory allocation test, “;
 return str;
 }

6.6 Find errors, if any, in the following C++ statements.

 (a) long float x;

 (b) char *cp = vp; // vp is a void pointer

 (c) int code = three; // three is an enumerator

 (d) int *p = new; // allocate memory with new

 (e) enum (green, yellow, red);

 (f) int const *p = total;

 (g) const int array_size;

 (h) for (i=1; int i<10; i++) cout << i << “\n”;

 (i) int & number = 100;

 (j) float *p = new int [10];

 (k) int public = 1000;

 (l) char name[3] = “USA”;

6.38 Basic Computer Engineering

 Programming Exercises

6.1 Write a function using reference variables as arguments to swap the values of a pair

of integers.

6.2 Write a function that creates a vector of user-given size M using new operator.

6.3 Write a program to print the following output using for loops.

1

 22

 333

 4444

 55555

6.4 Write a program to evaluate the following investment equation

V = P(1 + r)n

 and print the tables which would give the value of V for various combination of the

following values of P, r and n:

P: 1000, 2000, 3000,, 10,000

 r: 0.10, 0.11, 0.12,, 0.20

 n: 1, 2, 3,, 10

 (Hint: P is the principal amount and V is the value of money at the end of n years.

This equation can be recursively written as

 V = P(1 + r)

 P = V

 In other words, the value of money at the end of the first year becomes the principal

amount for the next year, and so on.

6.5 An election is contested by five candidates. The candidates are numbered 1 to 5

and the voting is done by marking the candidate number on the ballot paper. Write

a program to read the ballots and count the votes cast for each candidate using an

array variable count. In case, a number read is outside the range 1 to 5, the ballot

should be considered as a ‘spoilt ballot’, and the program should also count the number

of spoilt ballots.

6.6 A cricket team has the following table of batting figures for a series of test matches:

 Player’s name Runs Innings Times not out

 Sachin 8430 230 18

 Saurav 4200 130 9

 Rahul 3350 105 11

Write a program to read the figures set out in the above form, to calculate the batting

averages and to print out the complete table including the averages.

6.39Tokens, Expressions and Control Structures

6.7 Write programs to evaluate the following functions to 0.0001% accuracy.

(a) sin x = x
x

3!
+

x

5!

x

7!
+

5 7

- -

3

��

 (b) SUM = 1 + (1/2)2 + (1/3)3 + (1/4)4 + … …

(c) cos x = 1 –
x

2!
+

x

4!

x

6!
+

2 4 6

- ��

6.8 Write a program to print a table of values of the function

 y = e–x

 for x varying from 0 to 10 in steps of 0.1. The table should appear as follows.

TABLE FOR Y = EXP [–X]

 X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0.0
 1.0
 .
 .
 .

 9.0

6.9 Write a program to calculate the variance and standard deviation of N numbers.

 Variance =
1

x
1

2

=1

N

i

-Â

 Standard Deviation =
1

N

2

=1

N

x xi
i

-Â

 where

i

=
1

N
1

=1

N

Â

6.10 An electricity board charges the following rates to domestic users to discourage large

consumption of energy:

 For the first 100 units — 60P per unit

 For next 200 units — 80P per unit

 Beyond 300 units — 90P per unit

 All users are charged a minimum of Rs. 50.00. If the total amount is more than

Rs. 300.00 then an additional surcharge of 15% is added.

 Write a program to read the names of users and number of units consumed and print

out the charges with names.

Functions in C++

7

 7.1 Introduction

Functions play an important role in realizing

the concept of encapsulation and data hiding

in object oriented programming. They are the

only means of accessing and manipulating

member data elements hidden inside the

private section of a class. In C++, there are

a number of interesting concepts surrounding

functions; first and foremost amongst them

is the main function. No matter how big a

program is in terms of the number of classes,

it is the main function where the execution

of the program begins. The main function

instantiates the class objects and also contains

the overall logic of the program.

Functions often operate on data values

passed as arguments during function calls.

These values are copied into new variables by

Key Concepts

 Return types in main()

 Function prototyping

 Call by reference

 Call by value

 Return by reference

 Inline functions

 Default arguments

 Constant arguments

 Function overloading

the function before executing its other statements. The computed values are then returned

back to the calling function so that the original variables can be updated. To avoid so much

copying of data that takes place in routine function calls, C++ provides a brilliant feature called

reference variables. These variables are simple aliases to the actual variables that means,

both the variable names refer to the same location in memory. Thus, any change made to the

reference variable by the function changes the original value stored in the memory.

Another C++ concept of great significance is the concept of function overloading. It allows

us to write multiple function definitions with the same name. The only point of distinction

7.2 Basic Computer Engineering

between these function definitions is in their number and type of arguments. The choice of

the function to be executed is made by the compiler by analysing the type and number of

arguments passed in the function call.

void show(); /* Function declaration */
main()
{

 show(); /* Function call */

}
void show() /* Function defi nition */
{

 /* Function body */

}

When the function is called, control is transferred to the first statement in the function

body. The other statements in the function body are then executed and control returns to the

main program when the closing brace is encountered. C++ is no exception. Functions continue

to be the building blocks of C++ programs.

This chapter will focus on all these concepts in more detail.

 7.2 The Main Function

C does not specify any return type for the main() function which is the starting point for the

execution of a program. The definition of main() would look like this:

main()
{
 // main program statements
}

This is perfectly valid because the main() in C does not return any value.

In C++, the main() returns a value of type int to the operating system. C++, therefore,

explicitly defines main() as matching one of the following prototypes:

int main();
int main(int argc, char * argv[]);

The functions that have a return value should use the return statement for termination.

The main() function in C++ is, therefore, defined as follows:

int main()
{

7.3Functions in C++

 return 0;
}

Since the return type of functions is int by default, the keyword int in the main() header is

optional. Most C++ compilers will generate an error or warning if there is no return statement.

Turbo C++ issues the warning

Function should return a value

and then proceeds to compile the program. It is good programming practice to actually return

a value from main().

Many operating systems test the return value (called exit value) to determine if there is

any problem. The normal convention is that an exit value of zero means the program ran

successfully, while a nonzero value means there was a problem. The explicit use of a return(0)

statement will indicate that the program was successfully executed.

 7.3 Function Prototyping

Function prototyping is one of the major improvements added to C++ functions. The prototype

describes the function interface to the compiler by giving details such as the number and type

of arguments and the type of return values. With function prototyping, a template is always

used when declaring and defining a function. When a function is called, the compiler uses the

template to ensure that proper arguments are passed, and the return value is treated correctly.

Any violation in matching the arguments or the return types will be caught by the compiler

at the time of compilation itself. These checks and controls did not exist in the conventional C

functions.

While C++ makes the prototyping essential, ANSI C makes it optional, perhaps, to preserve

the compatibility with classic C.

Function prototype is a declaration statement in the calling program and is of the following

form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that must be passed to the

function.

Example:

fl oat volume(int x, fl oat y, fl oat z);

Note that each argument variable must be declared independently inside the parentheses.

That is, a combined declaration like

7.4 Basic Computer Engineering

fl oat volume(int x, fl oat y, z);

is illegal.

In a function declaration, the names of the arguments are dummy variables and therefore,

they are optional. That is, the form

fl oat volume(int, fl oat, fl oat);

is acceptable at the place of declaration. At this stage, the compiler only checks for the type of

arguments when the function is called.

In general, we can either include or exclude the variable names in the argument list of

prototypes. The variable names in the prototype just act as placeholders and, therefore, if names

are used, they don’t have to match the names used in the function call or function definition.

In the function definition, names are required because the arguments must be referenced

inside the function. Example:

fl oat volume(int a,fl oat b,fl oat c)
{
 fl oat v = a*b*c;

}

The function volume() can be invoked in a program as follows:

fl oat cube1 = volume(b1,w1,h1); // Function call

The variable b1, w1, and h1 are known as the actual parameters which specify the

dimensions of cube1. Their types (which have been declared earlier) should match with the

types declared in the prototype. Remember, the calling statement should not include type

names in the argument list.

We can also declare a function with an empty argument list, as in the following example:

void display();

In C++, this means that the function does not pass any parameters. It is identical to the

statement

void display(void);

However, in C, an empty parentheses implies any number of arguments. That is, we have

foregone prototyping. A C++ function can also have an ‘open’ parameter list by the use of

ellipses in the prototype as shown below:

void do_something(...);

 7.4 Call by Reference

In traditional C, a function call passes arguments by value. The called function creates a new

set of variables and copies the values of arguments into them. The function does not have access

7.5Functions in C++

to the actual variables in the calling program and can only work on the copies of values. This

mechanism is fine if the function does not need to alter the values of the original variables in

the calling program. But, there may arise situations where we would like to change the values

of variables in the calling program. For example, in bubble sort, we compare two adjacent

elements in the list and interchange their values if the first element is greater than the second.

If a function is used for bubble sort, then it should be able to alter the values of variables in the

calling function, which is not possible if the call-by-value method is used.

Provision of the reference variables in C++ permits us to pass parameters to the functions

by reference. When we pass arguments by reference, the ‘formal’ arguments in the called

function become aliases to the ‘actual’ arguments in the calling function. This means that

when the function is working with its own arguments, it is actually working on the original

data. Consider the following function:

void swap(int &a,int &b) // a and b are reference variables
{
 int t = a; // Dynamic initialization
 a = b;
 b = t;
}

Now, if m and n are two integer variables, then the function call

swap(m, n);

will exchange the values of m and n using their aliases (reference variables) a and b. Reference

variables have been discussed in detail in Chapter 3. In traditional C, this is accomplished

using pointers and indirection as follows:

void swap1(int *a, int *b) /* Function defi nition */
{
 int t;
 t = *a; /* assign the value at address a to t */
 *a = *b; /* put the value at b into a */
 b = t; / put the value at t into b */
}

This function can be called as follows:

swap1(&x, &y); /* call by passing */
/* addresses of variables */

This approach is also acceptable in C++. Note that the call-by-reference method is neaterin

its approach.

 7.5 Return by Reference

A function can also return a reference. Consider the following function:

int & max(int &x,int &y)

7.6 Basic Computer Engineering

{
 if (x > y)
 return x;
 else
 return y;
}

Since the return type of max() is int &, the function returns reference to x or y (and not

the values). Then a function call such as max(a, b) will yield a reference to either a or b

depending on their values. This means that this function call can appear on the left-hand side

of an assignment statement. That is, the statement

max(a,b) = –1;

is legal and assigns –1 to a if it is larger, otherwise -1 to b.

 7.6 Inline Functions

One of the objectives of using functions in a program is to save some memory space, which

becomes appreciable when a function is likely to be called many times. However, every time a

function is called, it takes a lot of extra time in executing a series of instructions for tasks such

as jumping to the function, saving registers, pushing arguments into the stack, and returning

to the calling function. When a function is small, a substantial percentage of execution time

may be spent in such overheads.

One solution to this problem is to use macro definitions, popularly known as macros.

Preprocessor macros are popular in C. The major drawback with macros is that they are not

really functions and therefore, the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small functions,

C++ proposes a new feature called inline function. An inline function is a function that is

expanded in line when it is invoked. That is, the compiler replaces the function call with the

corresponding function code (something similar to macros expansion). The inline functions are

defined as follows:

inline function-header

{
 function body
}

Example:

inline double cube(double a)
{
 return(a*a*a);
}

7.7Functions in C++

The above inline function can be invoked by statements like

c = cube(3.0);
d = cube(2.5+1.5);

On the execution of these statements, the values of c and d will be 27 and 64 respectively. If

the arguments are expressions such as 2.5 + 1.5, the function passes the value of the expression,

4 in this case. This makes the inline feature far superior to macros.

It is easy to make a function inline. All we need to do is to prefix the keyword inline to the

function definition. All inline functions must be defined before they are called.

We should exercise care before making a function inline. The speed benefits of inline

functions diminish as the function grows in size. At some point the overhead of the function call

becomes small compared to the execution of the function, and the benefits of inline functions

may be lost. In such cases, the use of normal functions will be more meaningful. Usually,

the functions are made inline when they are small enough to be defined in one or two lines.

Example:

inline double cube(double a) {return(a*a*a);}

Remember that the inline keyword merely sends a request, not a command, to the compiler.

The compiler may ignore this request if the function definition is too long or too complicated

and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

 1. For functions returning values, if a loop, a switch, or a goto exists.

 2. For functions not returning values, if a return statement exists.

 3. If functions contain static variables.

 4. If inline functions are recursive.

note

Inline expansion makes a program run faster because the overhead of a function call and

return is eliminated. However, it makes the program to take up more memory because the

statements that define the inline function are reproduced at each point where the function

is called. So, a trade-off becomes necessary.

Program 7.1 illustrates the use of inline functions.

INLINE FUNCTIONS

#include <iostream>

using namespace std;

 inline fl oat mul(fl oat x, fl oat y)
 {
 return(x*y);

7.8 Basic Computer Engineering

 }

 inline double div(double p, double q)
 {
 return(p/q);
 }

int main()
{

fl oat a = 12.345;
fl oat b = 9.82;

 cout << mul(a,b) << “\n”;
 cout << div(a,b) << “\n”;

 return 0;
}

PROGRAM 7.1

The output of program 4.1 would be

121.228
1.25713

 7.7 Default Arguments

C++ allows us to call a function without specifying all its arguments. In such cases, the

function assigns a default value to the parameter which does not have a matching argument

in the function call. Default values are specified when the function is declared. The compiler

looks at the prototype to see how many arguments a function uses and alerts the program

for possible default values. Here is an example of a prototype (i.e. function declaration) with

default values:

fl oat amount(fl oat principal,int period,fl oat rate=0.15);

The default value is specified in a manner syntactically similar to a variable initialization.

The above prototype declares a default value of 0.15 to the argument rate. A subsequent

function call like

value = amount(5000,7); // one argument missing

passes the value of 5000 to principal and 7 to period and then lets the function use default

value of 0.15 for rate. The call

value = amount(5000,5,0.12); // no missing argument

passes an explicit value of 0.12 to rate.

7.9Functions in C++

A default argument is checked for type at the time of declaration and evaluated at the time

of call. One important point to note is that only the trailing arguments can have default values

and therefore we must add defaults from right to left. We cannot provide a default value to a

particular argument in the middle of an argument list. Some examples of function declaration

with default values are:

int mul(int i, int j=5, int k=10); // legal
int mul(int i=5, int j); // illegal
int mul(int i=0, int j, int k=10); // illegal
int mul(int i=2, int j=5, int k=10); // legal

Default arguments are useful in situations where some arguments always have the same

value. For instance, bank interest may remain the same for all customers for a particular

period of deposit. It also provides a greater flexibility to the programmers. A function can

be written with more parameters than are required for its most common application. Using

default arguments, a programmer can use only those arguments that are meaningful to a

particular situation. Program 7.2 illustrates the use of default arguments.

DEFAULT ARGUMENTS

#include <iostream>

using namespace std;

int main()
{

fl oat amount;

fl oat value(fl oat p, int n, fl oat r=0.15); // prototype
 void printline(char ch=’*’, int len=40); // prototype

 printline(); // uses default values for arguments

 amount = value(5000.00,5); // default for 3rd argument

 cout << “\n Final Value = “ << amount << “\n\n”;

 printline(‘=’); // use default value for 2nd argument

 return 0;
}
/*--*/
fl oat value(fl oat p, int n, fl oat r)
{
 int year = 1;

fl oat sum = p;

7.10 Basic Computer Engineering

 while(year <= n)
 {
 sum = sum*(1+r);
 year = year+1;
 }
 return(sum);
}

void printline(char ch, int len)
{
 for(int i=1; i<=len; i++) printf(“%c”,ch);
 printf(“\n”);
}

PROGRAM 7.2

The output of Program 7.2 would be

Final Value = 10056.8

====================================

Advantages of providing the default arguments are:

 1. We can use default arguments to add new parameters to the existing functions.

 2. Default arguments can be used to combine similar functions into one.

 7.8 const Arguments

In C++, an argument to a function can be declared as const as shown below.

int strlen(const char *p);
int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.

The compiler will generate an error when this condition is violated. This type of declaration is

significant only when we pass arguments by reference or pointers.

 7.9 Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes. C++ also

permits overloading of functions. This means that we can use the same function name to create

functions that perform a variety of different tasks. This is known as function polymorphism

in OOP.

Using the concept of function overloading; we can design a family of functions with one

function name but with different argument lists. The function would perform different

7.11Functions in C++

operations depending on the argument list in the function call. The correct function to be

invoked is determined by checking the number and type of the arguments but not on the

function type. For example, an overloaded add() function handles different types of data as

shown below:

// Declarations

int add(int a, int b); // prototype 1
int add(int a, int b, int c); // prototype 2
double add(double x, double y); // prototype 3
double add(int p, double q); // prototype 4
double add(double p, int q); // prototype 5

// Function calls

cout << add(5, 10); // uses prototype 1
cout << add(15, 10.0); // uses prototype 4
cout << add(12.5, 7.5); // uses prototype 3
cout << add(5, 10, 15); // uses prototype 2
cout << add(0.75, 5); // uses prototype 5

A function call first matches the prototype having the same number and type of arguments

and then calls the appropriate function for execution. A best match must be unique. The

function selection involves the following steps:

 1. The compiler first tries to find an exact match in which the types of actual arguments

are the same, and use that function.

 2. If an exact match is not found, the compiler uses the integral promotions to the actual

arguments, such as,

char to int
fl oat to double

 to find a match.

 3. When either of them fails, the compiler tries to use the built-in conversions (the implicit

assignment conversions) to the actual arguments and then uses the function whose

match is unique. If the conversion is possible to have multiple matches, then the compiler

will generate an error message. Suppose we use the following two functions:

long square(long n)
double square(double x)

 A function call such as

square(10)

 will cause an error because int argument can be converted to either long or double,

thereby creating an ambiguous situation as to which version of square() should be

used.

 4. If all of the steps fail, then the compiler will try the user-defined conversions in

combination with integral promotions and built-in conversions to find a unique match.

User-defined conversions are often used in handling class objects.

7.12 Basic Computer Engineering

Program 7.3 illustrates function overloading.

FUNCTION OVERLOADING

// Function volume() is overloaded three times

#include <iostream>

using namespace std;

// Declarations (prototypes)
int volume(int);
double volume(double, int);
long volume(long, int, int);

int main()
{
 cout << volume(10) << “\n”;
 cout << volume(2.5,8) << “\n”;
 cout << volume(100L,75,15) << “\n”;

 return 0;
}

// Function defi nitions

int volume(int s) // cube
{
 return(s*s*s);
}

double volume(double r, int h) // cylinder
{
 return(3.14519*r*r*h);
}

long volume(long l, int b, int h) // rectangular box
{
 return(l*b*h);
}

PROGRAM 7.3

The output of Program 7.3 would be:

1000
157.26
112500

7.13Functions in C++

Overloading of the functions should be done with caution. We should not overload unrelated

functions and should reserve function overloading for functions that perform closely related

tasks. Sometimes, the default arguments may be used instead of overloading. This may reduce

the number of functions to be defined.

Overloaded functions are extensively used for handling class objects. They will be illustrated

later when the classes are discussed in the next chapter.

 7.10 Friend and Virtual Functions

C++ introduces two new types of functions, namely, friend function and virtual function.

They are basically introduced to handle some specific tasks related to class objects. Therefore,

discussions on these functions have been reserved until after the class objects are discussed.

The friend functions are discussed in Sec. 8.15 of the next chapter.

 7.11 Math Library Functions

The standard C++ supports many math functions that can be used for performing certain

commonly used calculations. Most frequently used math library functions are summarized in

Table 11.1.

Table 7.1 Commonly used math library functions

Function Purposes

ceil(x) Rounds x to the smallest integer not less than x ceil(8.1)

 = 9.0 and ceil(-8.8) = –8.0

cos(x) Trigonometric cosine of x (x in radians)

exp(x) Exponential function ex.

fabs(x) Absolute value of x.

 If x>0 then abs(x) is x

 If x=0 then abs(x) is 0.0

 If x<0 then abs(x) is –x

floor(x) Rounds x to the largest integer not greater than x

 floor(8.2) = 8.0 and floor(–8.8 = –9.0

log(x) Natural logarithm of x(base e)

log10(x) Logarithm of x(base 10)

pow(x,y) x raised to power y(xy)

sin(x) Trigonometric sine of x (x in radians)

sqrt(x) Square root of x

tan(x) Trigonometric tangent of x (x in radians)

note

The argument variables x and y are of type double and all the functions return the data

type double.

7.14 Basic Computer Engineering

To use the math library functions, we must include the header file math.h in conventional

C++ and cmath in ANSI C++.

SUMMARY

 It is possible to reduce the size of program by calling and using functions at different places

in the program.

 In C++ the main() returns a value of type int to the operating system. Since the return

type of functions is int by default, the keyword int in the main() header is optional. Most

C++ compilers issue a warning, if there is no return statement.

 Function prototyping gives the compiler the details about the functions such as the number

and types of arguments and the type of return values.

 Reference variables in C++ permit us to pass parameters to the functions by reference. A

function can also return a reference to a variable.

 When a function is declared inline the compiler replaces the function call with the respective

function code. Normally, a small size function is made as inline.

 The compiler may ignore the inline declaration if the function declaration is too long or too

complicated and hence compile the function as a normal function.

C++ allows us to assign default values to the function parameters when the function is

declared. In such a case we can call a function without specifying all its arguments. The

defaults are always added from right to left.

ó In C++, an argument to a function can be declared as const, indicating that the function

should not modify the argument.

C++ allows function overloading. That is, we can have more than one function with the

same name in our program. The compiler matches the function call with the exact function

code by checking the number and type of the arguments.

C++ supports two new types of functions, namely friend functions and virtual

functions.

Many mathematical computations can be carried out using the library functions supported

by the C++ standard library.

Key Terms

actual arguments

argument list

bubble sort

call by reference

7.15Functions in C++

call by value

called function

calling program

calling statement

 cmath

 const arguments

declaration statement

default arguments

default values

dummy variables

ellipses

empty argument list

exit value

formal arguments

 friend functions

function call

function definition

function overloading

function polymorphism

function prototype

indirection

 inline

inline functions

macros

 main()

math library

 math.h

overloading

pointers

polymorphism

prototyping

reference variable

return by reference

 return statement

return type

 return()

template

virtual functions

 Review Questions

7.1 State whether the following statements are TRUE or FALSE.

 (a) A function argument is a value returned by the function to the calling

program.

 (b) When arguments are passed by value, the function works with the original

arguments in the calling program.

 (c) When a function returns a value, the entire function call can be assigned to a

variable.

 (d) A function can return a value by reference.

 (e) When an argument is passed by reference, a temporary variable is created in

the calling program to hold the argument value.

 (f) It is not necessary to specify the variable name in the function prototype.

7.2 What are the advantages of function prototypes in C++?

7.3 Describe the different styles of writing prototypes.

7.4 Find errors, if any, in the following function prototypes.

(a) float average(x,y);

7.16 Basic Computer Engineering

(b) int mul(int a,b);

(c) int display(...);

(d) void Vect(int? &V, int & size);

(e) void print(float data [], size = 20);

7.5 What is the main advantage of passing arguments by reference?

7.6 When will you make a function inline? Why?

7.7 How does an inline function differ from a preprocessor macro?

7.8 When do we need to use default arguments in a function?

7.9 What is the significance of an empty parenthesis in a function declaration?

7.10 What do you meant by overloading of a function? When do we use this concept?

7.11 Comment on the following function definitions:

 (a) int *f()

 {
 int m = 1;

 return(&m);
 }

 (b) double f()

 {

 return(1);
 }

 (c) int & f()

 {
 int n = 10;

 return(n);
 }

 Debugging Exercises

7.1 Identify the error in the following program.

#include <iostream.h>
 int fun()
 {
 return 1;
 }

fl oat fun()

7.17Functions in C++

 {
 return 10.23;
 void main()
 {
 cout << (int)fun() << ‘ ‘;
 cout << (fl oat)fun() << ‘ ‘;
 }

7.2 Identify the error in the following program.

 #include <iostream.h>
 void display(const int const1=5)
 {
 const int const2=5;
 int array1[const1];
 int array2[const2];
 for(int i=0; i<5; i++)
 {
 array1[i] = i;
 array2[i] = i*10;
 cout << array1[i] << ‘ ‘ << array2[i] << ‘ ‘ ;
 }
 }

 void main()
 {
 display(5);
 }

7.3 Identify the error in the following program.

#include <iostream.h>
 int gValue=10;
 void extra()
 {
 cout << gValue << ’ ‘;
 }
 void main()
 {
 extra();
 {
 int gValue = 20;
 cout << gValue << ‘ ‘;
 cout << : gValue << ‘ ‘;
 }
 }

7.4 Find errors, if any, in the following function definition for displaying a matrix: void

display(int A[] [], int m, int n)

7.18 Basic Computer Engineering

 {
 for(i=0; i<m; i++)
 for(j=0; j<n; j++)
 cout << “ “ << A[i][j];
 cout << “\n”;
 }

 Programming Exercises

7.1 Write a function to read a matrix of size m x n from the keyboard.

7.2 Write a program to read a matrix of size m x n from the keyboard and display the

same on the screen using functions.

7.3 Rewrite the program of Exercise 7.2 to make the row parameter of the matrix as a

default argument.

7.4 The effect of a default argument can be alternatively achieved by overloading. Discuss

with an example.

7.5 Write a macro that obtains the largest of three numbers.

7.6 Redo Exercise 7.5 using inline function. Test the function using a main program.

7.7 Write a function power() to raise a number m to a power n. The function takes a double

value for m and int value for n, and returns the result correctly. Use a default value

of 2 for n to make the function to calculate squares when this argument is omitted.

Write a main that gets the values of m and n from the user to test the function.

7.8 Write a function that performs the same operation as that of Exercise 7.7 but

takes an int value for m. Both the functions should have the same name. Write a main

that calls both the functions. Use the concept of function overloading.

Classes and Objects

8

Key Concepts

 Using structures

 Creating a class

 Defining member functions

 Creating objects

 Using objects

 Inline member functions

 Nested member functions

 Private member functions

 Arrays as class members

 Storage of objects

 Static data members

 Static member functions

 Using arrays of objects

 Passing objects as parameters

 Making functions friendly to

classes

 Functions returning objects

 const member functions

 Pointers to members

 Using dereferencing operators

 Local classes

 8.1 Introduction

The most important feature of C++ is the “class”. Its significance is highlighted by the fact

that Stroustrup initially gave the name “C with classes” to his new language. A class is an

8.2 Basic Computer Engineering

extension of the idea of structure used in C. It is a new way of creating and implementing a

user-defined data type. We shall discuss, in this chapter, the concept of class by first reviewing

the traditional structures found in C and then the ways in which classes can be designed,

implemented and applied.

 8.2 Traditional C Structures

One of the unique features of the C language is structures. They provide a method for packing

together data of different types. A structure is a convenient tool for handling a group of logically

related data items. It is a user-defined data type with a template that serves to define its data

properties. Once the structure type has been defined, we can create variables of that type

using declarations that are similar to the built-in type declarations. For example, consider the

following declaration:

struct student
{
 char name[20];
 int roll_number;
 fl oat total_marks;
};

The keyword struct declares student as a new data type that can hold three fields of

different data types. These fields are known as structure members or elements. The identifier

student, which is referred to as structure name or structure tag, can be used to create variables

of type student. Example:

struct student A; // C declaration

A is a variable of type student and has three member variables as defined by the template.

Member variables can be accessed using the dot or period operator as follows:

strcpy(A.name, “John”);
A.roll_number = 999;
A.total_marks = 595.5;
Final_total = A.total_marks + 5;

Structures can have arrays, pointers or structures as members.

8.2.1 Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For example,

consider the following structure:

struct complex
{
 fl oat x;
 fl oat y;
};
 struct complex c1, c2, c3;

8.3Classes and Objects

The complex numbers c1, c2, and c3 can easily be assigned values using the dot operator,

but we cannot add two complex numbers or subtract one from the other. For example,

c3 = c1 + c2;

is illegal in C.

Another important limitation of C structures is that they do not permit data hiding. Structure
members can be directly accessed by the structure variables by any function anywhere in their

scope. In other words, the structure members are public members.

8.2.2 Extensions to Structures

C++ supports all the features of structures as defined in C. But C++ has expanded its
capabilities further to suit its OOP philosophy. It attempts to bring the user-defined types as
close as possible to the built-in data types, and also provides a facility to hide the data which
is one of the main principles of OOP. Inheritance, a mechanism by which one type can inherit
characteristics from other types, is also supported by C++.

In C++, a structure can have both variables and functions as members. It can also declare
some of its members as ‘private’ so that they cannot be accessed directly by the external
functions.

In C++, the structure names are stand-alone and can be used like any other type names. In
other words, the keyword struct can be omitted in the declaration of structure variables. For
example, we can declare the student variable A as

student A; // C++ declaration

Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class. There
is very little syntactical difference between structures and classes in C++ and, therefore, they
can be used interchangeably with minor modifications. Since class is a specially introduced
data type in C++, most of the C++ programmers tend to use the structures for holding only
data, and classes to hold both the data and functions. Therefore, we will not discuss structures
any further.

note

The only difference between a structure and a class in C++ is that, by default, the members

of a class are private, while, by default, the members of a structure are public.

 8.3 Specifying a Class

A class is a way to bind the data and its associated functions together. It allows the data (and

functions) to be hidden, if necessary, from external use. When defining a class, we are creating

a new abstract data type that can be treated like any other built-in data type. Generally, a

class specification has two parts:

8.4 Basic Computer Engineering

 1. Class declaration

 2. Class function definitions

The class declaration describes the type and scope of its members. The class function

definitions describe how the class functions are implemented.

The general form of a class declaration is:

class class_name
{

private:

 variable declarations;
 function declarations;

public:

 variable declarations;
 function declaration;
};

The class declaration is similar to a struct declaration. The keyword class specifies, that

what follows is an abstract data of type class_name. The body of a class is enclosed within

braces and terminated by a semicolon. The class body contains the declaration of variables

and functions. These functions and variables are collectively called class members. They are

usually grouped under two sections, namely, private and public to denote which of the members

are private and which of them are public. The keywords private and public are known as

visibility labels. Note that these keywords are followed by a colon.

The class members that have been declared as private can be accessed only from within the

class. On the other hand, public members can be accessed from outside the class also. The data

hiding (using private declaration) is the key feature of object-oriented programming. The use

of the keyword private is optional. By default, the members of a class are private. If both the

labels are missing, then, by default, all the members are private. Such a class is completely

hidden from the outside world and does not serve any purpose.

The variables declared inside the class are known as data members and the functions are

known as member functions. Only the member functions can have access to the private data

members and private functions. However, the public members (both functions and data) can

be accessed from outside the class. This is illustrated in Fig. 8.1. The binding of data and

functions together into a single class-type variable is referred to as encapsulation.

8.3.1 A Simple Class Example

A typical class declaration would look like:

class item

{
 int number; // variables declaration
 fl oat cost; // private by default
public:

8.5Classes and Objects

 void getdata(int a, fl oat b); // functions declaration
 void putdata(void); // using prototype
 };

 // ends with semicolon

Public area

Data

Data

Functions

Functions

Private area

CLASS

No entry to

private area

Entry allowed to

public area

X

Fig. 8.1 3 Data hiding in classes

We usually give a class some meaningful name, such as item. This name now becomes a

new type identifier that can be used to declare instances of that class type. The class item

contains two data members and two function members. The data members are private by

default while both the functions are public by declaration. The function getdata() can be used

to assign values to the member variables number and cost, and putdata() for displaying their

values. These functions provide the only access to the data members from outside the class.

This means that the data cannot be accessed by any function that is not a member of the class

item. Note that the functions are declared, not defined. Actual function definitions will appear

later in the program. The data members are usually declared as private and the member

functions as public. Figure 8.2 shows two different notations used by the OOP analysts to

represent a class.

8.3.2 Creating Objects

Remember that the declaration of item as shown above does not define any objects of item but

only specifies what they will contain. Once a class has been declared, we can create variables

of that type by using the class name (like any other built-in type variable). For example,

item x; // memory for x is created

creates a variable x of type item. In C++, the class variables are known as objects. Therefore,

x is called an object of type item. We may also declare more than one object in one statement.

Example:

item x, y, z;

8.6 Basic Computer Engineering

The declaration of an object is similar to that of a variable of any basic type. The necessary

memory space is allocated to an object at this stage. Note that class specification, like a

structure, provides only a template and does not create any memory space for the objects.

Objects can also be created when a class is defined by placing their names immediately

after the closing brace, as we do in the case of structures. That is to say, the definition

class item
{

} x,y,z;

would create the objects x, y and z of type item. This practice is seldom followed because we

would like to declare the objects close to the place where they are used and not at the time of

class definition.

8.3.3 Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only through the member

functions of that class. The main() cannot contain statements that access number and cost

directly. The following is the format for calling a member function:

object-name.function-name (actual-arguments);

For example, the function call statement

x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing

the getdata() function. The assignments occur in the actual function. Please refer Sec. 8.4 for

further details.

FUNCTIONS

getdata()

putdata()

.........

ITEM

getdata()

putdata()

...........

(a) (b)

Class : ITEM

DATA

number

cost

.........

Fig. 8.2 3 Representation of a class

8.7Classes and Objects

Similarly, the statement

x.putdata();

would display the values of data members. Remember, a member function can be invoked only

by using an object (of the same class). The statement like

getdata(100,75.5);

has no meaning. Similarly, the statement

x.number = 100;

is also illegal. Although x is an object of the type item to which number belongs, the number

(declared private) can be accessed only through a member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving messages. This is

achieved through the member functions. For example,

x.putdata();

sends a message to the object x requesting it to display its contents.

A variable declared as public can be accessed by the objects directly. Example:

class xyz

{
 int x;
 int y;
public:

 int z;
};

xyz p;
p.x = 0; // error, x is private
p.z = 10 // OK, z is public

note

The use of data in this manner defeats the very idea of data hiding and therefore should be

avoided.

 8.4 Defi ning Member Functions

Member functions can be defined in two places:

 Outside the class definition.

 Inside the class definition.

It is obvious that, irrespective of the place of definition, the function should perform the

same task. Therefore, the code for the function body would be identical in both the cases.

8.8 Basic Computer Engineering

However, there is a subtle difference in the way the function header is defined. Both these

approaches are discussed in detail in this section.

8.4.1 Outside the Class Defi nition

Member functions that are declared inside a class have to be defined separately outside the
class. Their definitions are very much like the normal functions. They should have a function
header and a function body. Since C++ does not support the old version of function definition,
the ANSI prototype form must be used for defining the function header.

An important difference between a member function and a normal function is that a member
function incorporates a membership ‘identity label’ in the header. This ‘label’ tells the compiler
which class the function belongs to. The general form of a member function definition is:

return-type class-name :: function-name (argument declaration)
 {
 Function body
 }

The membership label class-name :: tells the compiler that the function function-name
belongs to the class class-name. That is, the scope of the function is restricted to the class-name
specified in the header line. The symbol :: is called the scope resolution operator.

For instance, consider the member functions getdata() and putdata() as discussed above.
They may be coded as follows:

void item :: getdata(int a, fl oat b)
{
 number = a;
 cost = b;
}
void item :: putdata(void)
{
 cout << “Number :” << number << “\n”;
 cout << “Cost :” << cost << “\n”;
}

Since these functions do not return any value, their return-type is void. Function arguments

are declared using the ANSI prototype.

The member functions have some special characteristics that are often used in the program

development. These characteristics are :

 Several different classes can use the same function name. The ‘membership label’ will

resolve their scope.

 Member functions can access the private data of the class. A non-member function

cannot do so. (However, an exception to this rule is a friend function discussed later.)

 A member function can call another member function directly, without using the dot

operator.

8.9Classes and Objects

8.4.2 Inside the Class Defi nition

Another method of defining a member function is to replace the function declaration by the

actual function definition inside the class. For example, we could define the item class as

follows:

class item
{
 int number;
 fl oat cost;
 public:
 void getdata(int a, fl oat b); // declaration
 // inline function
 void putdata(void) // defi nition inside the class
 {
 cout << number << “\n”;
 cout << cost << “\n”;
 }
};

When a function is defined inside a class, it is treated as an inline function. Therefore,

all the restrictions and limitations that apply to an inline function are also applicable here.

Normally, only small functions are defined inside the class definition.

 8.5 A C++ Program with Class

All the details discussed so far are implemented in Program 8.1.

CLASS IMPLEMENTATION

#include <iostream>
using namespace std;
class item
{
 int number; // private by default

fl oat cost; // private by default
 public:
 void getdata(int a, fl oat b); // prototype declaration,
 // to be defi ned
 // Function defi ned inside class
 void putdata(void)
 {
 cout << “number :” << number << “\n”;
 cout << “cost :” << cost << “\n”;
 }
};

8.10 Basic Computer Engineering

//............ Member Function Defi nition
void item :: getdata(int a, fl oat b) // use membership label
{
 number = a; // private variables
 cost = b; // directly used
}
//..................... Main Program

int main()
{
 item x; // create object x

 cout << “\nobject x “ << “\n”;

 x.getdata(100, 299.95); // call member function
 x.putdata(); // call member function

 item y; // create another object

 cout << “\nobject y” << “\n”;

 y.getdata(200, 175.50);
 y.putdata();

 return 0;
}

PROGRAM 8.1

This program features the class item. This class contains two private variables and two

public functions. The member function getdata() which has been defined outside the class

supplies values to both the variables. Note the use of statements such as

number = a;

in the function definition of getdata(). This shows that the member functions can have direct
access to private data items.

The member function putdata() has been defined inside the class and therefore behaves

like an inline function. This function displays the values of the private variables number and

cost.

The program creates two objects, x and y in two different statements. This can be combined

in one statement.

item x, y; // creates a list of objects

Here is the output of Program 8.1:

object x

8.11Classes and Objects

number :100
cost :299.95
object y
number :200
cost :175.5

For the sake of illustration we have shown one member function as inline and the other as

an ‘external’ member function. Both can be defined as inline or external functions.

 8.6 Making an Outside Function Inline

One of the objectives of OOP is to separate the details of implementation from the class

definition. It is therefore good practice to define the member functions outside the class.

We can define a member function outside the class definition and still make it inline by just

using the qualifier inline in the header line of function definition. Example:

class item
{

 public:
 void getdata(int a, fl oat b); // declaration
};
inline void item :: getdata(int a, fl oat b) // defi nition
{
 number = a;
 cost = b;
}

 8.7 Nesting of Member Functions

We just discussed that a member function of a class can be called only by an object of that class

using a dot operator. However, there is an exception to this. A member function can be called

by using its name inside another member function of the same class. This is known as nesting

of member functions. Program 8.2 illustrates this feature.

NESTING OF MEMBER FUNCTIONS

#include <iostream>
using namespace std;
class set
{
 int m, n;
 public:

8.12 Basic Computer Engineering

 void input(void);
 void display(void);
 int largest(void);
};

int set :: largest(void)
{
 if(m >= n)
 return(m);
 else
 return(n);
}

void set :: input(void)
{
 cout << “Input values of m and n” << “\n”;
 cin >> m >> n;
}

void set :: display(void)
{
 cout << “Largest value = “
 << largest() << “\n”; // calling member function
}

int main()
{
 set A;
 A.input();
 A.display();
 return 0;
 }

PROGRAM 8.2

The output of Program 8.2 would be:

Input values of m and n
25 18
Largest value = 25

 8.8 Private Member Functions

Although it is normal practice to place all the data items in a private section and all the functions
in public, some situations may require certain functions to be hidden (like private data) from the
outside calls. Tasks such as deleting an account in a customer file, or providing increment to an

8.13Classes and Objects

employee are events of serious consequences and therefore the functions handling such tasks
should have restricted access. We can place these functions in the private section.

A private member function can only be called by another function that is a member of its
class. Even an object cannot invoke a private function using the dot operator. Consider a class

as defined below:

class sample
{
 int m;
 void read(void); // private member function
 public:
 void update(void);
 void write(void);
};

If s1 is an object of sample, then

s1.read(); // won’t work; objects cannot access
 // private members

is illegal. However, the function read() can be called by the function update() to update the

value of m.

void sample :: update(void)
{
 read(); // simple call; no object used
}

 8.9 Arrays within a Class

The arrays can be used as member variables in a class. The following class definition is valid.

const int size=10; // provides value for array size
class array
{
 int a[size]; // ‘a’ is int type array
 public:
 void setval(void);
 void display(void);
};

The array variable a[] declared as a private member of the class array can be used in

the member functions, like any other array variable. We can perform any operations on it.

For instance, in the above class definition, the member function setval() sets the values of

elements of the array a[], and display() function displays the values. Similarly, we may use

other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every

month. The list includes details such as the code number and price of each item. We would

8.14 Basic Computer Engineering

like to perform operations such as adding an item to the list, deleting an item from the list and

printing the total value of the order. Program 8.3 shows how these operations are implemented

using a class with arrays as data members.

PROCESSING SHOPPING LIST

#include <iostream>

using namespace std;

const m=50;

class ITEMS

{
 int itemCode[m];

fl oat itemPrice[m];
 int count;
 public:
 void CNT(void){count = 0;} // initializes count to 0
 void getitem(void);
 void displaySum(void);
 void remove(void);
 void displayItems(void);
};
//==
void ITEMS :: getitem(void) // assign values to data
 // members of item
{
 cout << “Enter item code :”;
 cin >> itemCode[count];

 cout << “Enter item cost :”;
 cin >> itemPrice[count];
 count++;
}
void ITEMS :: displaySum(void) // display total value of
 // all items
{

fl oat sum = 0;
for(int i=0; i<count; i++)
 sum = sum + itemPrice[i];

 cout << “\nTotal value :” << sum << “\n”;
}

8.15Classes and Objects

void ITEMS :: remove(void) // delete a specifi ed item
{
 int a;
 cout << “Enter item code :”;
 cin >> a;

 for(int i=0; i<count; i++)
 if(itemCode[i] == a)
 itemPrice[i] = 0;
}

void ITEMS :: displayItems(void) // displaying items
{
 cout << “\nCode Price\n”;

 for(int i=0; i<count; i++)
 {
 cout <<”\n” << itemCode[i];
 cout <<” “ << itemPrice[i];
 }
 cout << “\n”;
}
//==

int main()
{
 ITEMS order;
 order.CNT();
 int x;
 do // do....while loop
 {
 cout << “\nYou can do the following;”
 << “Enter appropriate number \n”;
 cout << “\n1 : Add an item “;
 cout << “\n2 : Display total value”;
 cout << “\n3 : Delete an item”;
 cout << “\n4 : Display all items”;
 cout << “\n5 : Quit”;
 cout << “\n\nWhat is your option?”;

 cin >> x;

 switch(x)

8.16 Basic Computer Engineering

 {
 case 1 : order.getitem(); break;
 case 2 : order.displaySum(); break;
 case 3 : order.remove(); break;
 case 4 : order.displayItems(); break;
 case 5 : break;
 default : cout << “Error in input; try again\n”;
 }

 } while(x != 5); // do...while ends

 return 0;
}

PROGRAM 8.3

The output of Program 8.3 would be:

You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?1
Enter item code :111
Enter item cost :100

You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?1
Enter item code :222
Enter item cost :200

You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

8.17Classes and Objects

What is your option?1
Enter item code :333
Enter item cost :300

You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?2
Total value :600
You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?3
Enter item code :222
You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?4
Code Price
111 100
222 0
333 300

You can do the following; Enter appropriate number
1 : Add an item
2 : Display total value
3 : Delete an item
4 : Display all items
5 : Quit

What is your option?5

8.18 Basic Computer Engineering

note

The program uses two arrays, namely itemCode[] to hold the code number of items and

itemPrice[] to hold the prices. A third data member count is used to keep a record of items

in the list. The program uses a total of four functions to implement the operations to be

performed on the list. The statement

 const int m = 50;

defines the size of the array members.

The first function CNT() simply sets the variable count to zero. The second function getitem()

gets the item code and the item price interactively and assigns them to the array members

itemCode[count] and itemPrice[count]. Note that inside this function count is incremented

after the assignment operation is over. The function displaySum() first evaluates the total value

of the order and then prints the value. The fourth function remove() deletes a given item from the

list. It uses the item code to locate it in the list and sets the price to zero indicating that the item

is not ‘active’ in the list. Lastly, the function displayItems() displays all the items in the list.

The program implements all the tasks using a menu-based user interface.

 8.10 Memory Allocation for Objects

We have stated that the memory space for objects is allocated when they are declared and not

when the class is specified. This statement is only partly true. Actually, the member functions

are created and placed in the memory space only once when they are defined as a part of a class

specification. Since all the objects belonging to that class use the same member functions, no

separate space is allocated for member functions when the objects are created. Only space for

member variables is allocated separately for each object. Separate memory locations for the

objects are essential, because the member variables will hold different data values for different

objects. This is shown in Fig. 8.3.

 8.11 Static Data Members

A data member of a class can be qualified as static. The properties of a static member

variable are similar to that of a C static variable. A static member variable has certain special

characteristics. These are :

 It is initialized to zero when the first object of its class is created. No other initialization

is permitted.

Only one copy of that member is created for the entire class and is shared by all the

objects of that class, no matter how many objects are created.

It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For

example, a static data member can be used as a counter that records the occurrences of all the

objects. Program 8.4 illustrates the use of a static data member.

8.19Classes and Objects

STATIC CLASS MEMBER

#include <iostream>

using namespace std;

class item
{
 static int count;
 int number;
 public:
 void getdata(int a)
 {
 number = a;
 count ++;
 }
 void getcount(void)
 {
 cout << “count: “;
 cout << count << “\n”;

memory created when

functions defined

Common for all objects

member variable 1

memory created

when objects defined

Object 1

member 2variable

member function 1

member function 2

member 1variable

member 2variable

member 1variable

member 2variable

Object 2 Object 3

Fig. 8.3 3 Object of memory

8.20 Basic Computer Engineering

 }
};

int item :: count;

int main()
{
 item a, b, c; // count is initialized to zero
 a.getcount(); // display count
 b.getcount();
 c.getcount();

 a.getdata(100); // getting data into object a

 b.getdata(200); // getting data into object b

 c.getdata(300); // getting data into object c

 cout << “After reading data” << “\n”;

 a.getcount(); // display count
 b.getcount();
 c.getcount();
 return 0;
}

PROGRAM 8.4

The output of the Program 8.4 would be:

count: 0
count: 0
count: 0
After reading data
count: 3
count: 3
count: 3

note

Notice the following statement in the program:

int item :: count; // defi nition of static data member

Note that the type and scope of each static member variable must be defined outside the

class definition. This is necessary because the static data members are stored separately rather

than as a part of an object. Since they are associated with the class itself rather than with any

class object, they are also known as class variables.

8.21Classes and Objects

The static variable count is initialized to zero when the objects are created. The count

is incremented whenever the data is read into an object. Since the data is read into objects

three times, the variable count is incremented three times. Because there is only one copy of

count shared by all the three objects, all the three output statements cause the value 3 to be

displayed. Figure 8.4 shows how a static variable is used by the objects.

3

count

(common to all three objects)

number

Object 1 Object 2 Object 3

number number

100 200 300

Fig. 8.4 3 Sharing of a static data member

Static variables are like non-inline member functions as they are declared in a class

declaration and defined in the source file. While defining a static variable, some initial value

can also be assigned to the variable. For instance, the following definition gives count the

initial value 10.

int item :: count = 10;

 8.12 Static Member Functions

Like static member variable, we can also have static member functions. A member function

that is declared static has the following properties:

A static function can have access to only other static members (functions or variables)

declared in the same class.

A static member function can be called using the class name (instead of its objects) as

follows:

class-name :: function-name;

Program 8.5 illustrates the implementation of these characteristics. The static function

showcount() displays the number of objects created till that moment. A count of number of

objects created is maintained by the static variable count.

8.22 Basic Computer Engineering

The function showcode() displays the code number of each object.

STATIC MEMBER FUNCTION

#include <iostream>
using namespace std;
class test
{
 int code;
 static int count; // static member variable
public:
 void setcode(void)
 {
 code = ++count;
 }
 void showcode(void)
 {
 cout << “object number: “ << code << “\n”;
 }
 static void showcount(void) // static member function
 {
 cout << “count: “ << count << “\n”;
 }
};
int test :: count;
int main()
{
 test t1, t2;

 t1.setcode();
 t2.setcode();

 test :: showcount(); // accessing static function

 test t3;
 t3.setcode();

 test :: showcount();

 t1.showcode();
 t2.showcode();
 t3.showcode();

 return 0;
}

PROGRAM 8.5

8.23Classes and Objects

Output of Program 8.5:

count: 2
count: 3
object number: 1
object number: 2
object number: 3

note

Note that the statement

code = ++count;

is executed whenever setcode() function is invoked and the current value of count is

assigned to code. Since each object has its own copy of code, the value contained in code

represents a unique number of its object.

Remember, the following function definition will not work:

static void showcount()
{
 cout << code; // code is not static
}

 8.13 Arrays of Objects

We know that an array can be of any data type including struct. Similarly, we can also have

arrays of variables that are of the type class. Such variables are called arrays of objects.

Consider the following class definition:

class employee
{
 char name[30];
 fl oat age;
 public:
 void getdata(void);
 void putdata(void);
};

The identifier employee is a user-defined data type and can be used to create objects that

relate to different categories of the employees. Example:

employee manager[3]; // array of manager
employee foreman[15]; // array of foreman
employee worker[75]; // array of worker

The array manager contains three objects(managers), namely, manager[0], manager[1]

and manager[2], of type employee class. Similarly, the foreman array contains 15 objects

(foremen) and the worker array contains 75 objects(workers).

8.24 Basic Computer Engineering

Since an array of objects behaves like any other array, we can use the usual array-accessing

methods to access individual elements, and then the dot member operator to access the member

functions. For example, the statement

manager[i].putdata();

will display the data of the ith element of the array manager. That is, this statement requests

the object manager[i] to invoke the member function putdata().

An array of objects is stored inside the memory in the same way as a multi-dimensional

array. The array manager is represented in Fig. 8.5. Note that only the space for data items

of the objects is created. Member functions are stored separately and will be used by all the

objects.

name

name

name

age

age

manager[0]

age

manager[1]

manager[2]

Fig. 8.5 3 Storage of data items of an object array

Program 8.6 illustrates the use of object arrays.

ARRAYS OF OBJECTS

#include <iostream>

using namespace std;

class employee
{
 char name[30]; // string as class member

fl oat age;
 public:
 void getdata(void);
 void putdata(void);
};

8.25Classes and Objects

void employee :: getdata(void)
{
 cout << “Enter name: “;
 cin >> name;
 cout << “Enter age: “;
 cin >> age;
}
void employee :: putdata(void)
{
 cout << “Name: “ << name << “\n”;
 cout << “Age: “ << age << “\n”;
}
const int size=3;
int main()
{
 employee manager[size];
 for(int i=0; i<size; i++)
 {
 cout << “\nDetails of manager” << i+1 << “\n”;
 manager[i].getdata();
 }
 cout << “\n”;
 for(i=0; i<size; i++)
 {
 cout << “\nManager” << i+1 << “\n”;
 manager[i].putdata();
 }
 return 0;
}

PROGRAM 8.6

This being an interactive program, the input data and the program output are shown below:

Interactive input

 Details of manager1
 Enter name: xxx
 Enter age: 45

 Details of manager2
 Enter name: yyy
 Enter age: 37

 Details of manager3
 Enter name: zzz
 Enter age: 50

8.26 Basic Computer Engineering

Program output

 Manager1
 Name: xxx
 Age: 45

 Manager2
 Name: yyy
 Age: 37

 Manager3
 Name: zzz
 Age: 50

 8.14 Objects as Function Arguments

Like any other data type, an object may be used as a function argument. This can be done in

two ways:

A copy of the entire object is passed to the function.

Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is passed to the function,

any changes made to the object inside the function do not affect the object used to call the

function. The second method is called pass-by-reference. When an address of the object is

passed, the called function works directly on the actual object used in the call. This means that

any changes made to the object inside the function will reflect in the actual object. The pass-by

reference method is more efficient since it requires to pass only the address of the object and

not the entire object.

Program 8.7 illustrates the use of objects as function arguments. It performs the addition of

time in the hour and minutes format.

OBJECTS AS ARGUMENTS

#include <iostream>

using namespace std;

class time
{
 int hours;
 int minutes;
 public:
 void gettime(int h, int m)
 { hours = h; minutes = m; }

8.27Classes and Objects

 void puttime(void)
 {
 cout << hours << “ hours and “;
 cout << minutes << “ minutes “ << “\n”;
 }
 void sum(time, time); // declaration with objects as arguments
};
void time :: sum(time t1, time t2) // t1, t2 are objects
{
 minutes = t1.minutes + t2.minutes;
 hours = minutes/60;
 minutes = minutes%60;
 hours = hours + t1.hours + t2.hours;
}
int main()
{
 time T1, T2, T3;

 T1.gettime(2,45); // get T1
 T2.gettime(3,30); // get T2

 T3.sum(T1,T2); // T3=T1+T2

 cout << “T1 = “; T1.puttime(); // display T1
 cout << “T2 = “; T2.puttime(); // display T2
 cout << “T3 = “; T3.puttime(); // display T3

 return 0;
}

PROGRAM 8.7

The output of Program 8.7 would be:

T1 = 2 hours and 45 minutes
T2 = 3 hours and 30 minutes
T3 = 6 hours and 15 minutes

note

Since the member function sum() is invoked by the object T3, with the objects T1 and

T2 as arguments, it can directly access the hours and minutes variables of T3. But, the

members of T1 and T2 can be accessed only by using the dot operator (like T1.hours and

T1.minutes). Therefore, inside the function sum(), the variables hours and minutes refer

to T3, T1.hours and T1.minutes refer to T1, and T2.hours and T2.minutes refer to T2.

8.28 Basic Computer Engineering

Figure 8.6 illustrates how the members are accessed inside the function sum().

15

hours

minutes

T1.hours T2.hours

T1.minutes T2.minutes

6 2

45

3

30

(T1 + T2)

T3. sum(T1, T2)

Fig. 8.6 3 Accessing members of objects with in a called function

An object can also be passed as an argument to a non-member function. However, such

functions can have access to the public member functions only through the objects passed as

arguments to it. These functions cannot have access to the private data members.

 8.15 Friendly Functions

We have been emphasizing throughout this chapter that the private members cannot be

accessed from outside the class. That is, a non-member function cannot have an access to the

private data of a class. However, there could be a situation where we would like two classes

to share a particular function. For example, consider a case where two classes, manager and

scientist, have been defined. We would like to use a function income_tax() to operate on the

objects of both these classes. In such situations, C++ allows the common function to be made

friendly with both the classes, thereby allowing the function to have access to the private data

of these classes. Such a function need not be a member of any of these classes.

To make an outside function “friendly” to a class, we have to simply declare this function as

a friend of the class as shown below:

class ABC
{

 public:

 friend void xyz(void); // declaration
};

The function declaration should be preceded by the keyword friend. The function is defined

elsewhere in the program like a normal C++ function. The function definition does not use

8.29Classes and Objects

either the keyword friend or the scope operator ::. The functions that are declared with the

keyword friend are known as friend functions. A function can be declared as a friend in any

number of classes. A friend function, although not a member function, has full access rights to

the private members of the class.

A friend function possesses certain special characteristics:

 It is not in the scope of the class to which it has been declared as friend.

 Since it is not in the scope of the class, it cannot be called using the object of that class.

 It can be invoked like a normal function without the help of any object.

 Unlike member functions, it cannot access the member names directly and has to use an

object name and dot membership operator with each member name.(e.g. A.x).

 It can be declared either in the public or the private part of a class without affecting its

meaning.

 Usually, it has the objects as arguments.

The friend functions are often used in operator overloading which will be discussed later.

Program 8.8 illustrates the use of a friend function.

FRIEND FUNCTION

#include <iostream>

using namespace std;

class sample
{
 int a;
 int b;
 public:
 void setvalue() {a=25; b=40; }
 friend fl oat mean(sample s);
};
fl oat mean(sample s)
{
 return fl oat(s.a + s.b)/2.0;
}

int main()
{
 sample X; // object X
 X.setvalue();
 cout << “Mean value = “ << mean(X) << “\n”;

 return 0;
}

PROGRAM 8.8

8.30 Basic Computer Engineering

The output of Program 8.8 would be:

Mean value = 32.5

note

The friend function accesses the class variables a and b by using the dot operator and the

object passed to it. The function call mean(X) passes the object X by value to the friend

function.

Member functions of one class can be friend functions of another class. In such cases, they

are defined using the scope resolution operator as shown below:

class X
{

 int fun1(); // member function of X

};

class Y
{

 friend int X :: fun1(); // fun1() of X
 // is friend of Y

};

The function fun1() is a member of class X and a friend of class Y.

We can also declare all the member functions of one class as the friend functions of another

class. In such cases, the class is called a friend class. This can be specified as follows:

class Z
{

 friend class X; // all member functions of X are
 // friends to Z
};

Program 8.9 demonstrates how friend functions work as a bridge between the classes.

A FUNCTION FRIENDLY TO TWO CLASSES

#include <iostream>

8.31Classes and Objects

using namespace std;

class ABC; // Forward declaration
//--//
class XYZ
{
 int x;
 public:
 void setvalue(int i) {x = i;}
 friend void max(XYZ, ABC);
};
//---//
class ABC
{
 int a;
 public:
 void setvalue(int i) {a = i;}
 friend void max(XYZ, ABC);
};
//---//
void max(XYZ m, ABC n) // Defi nition of friend
{
 if(m.x >= n.a)
 cout << m.x;
 else
 cout << n.a;
}
//---//
int main()
{
 ABC abc;
 abc.setvalue(10);
 XYZ xyz;
 xyz.setvalue(20);
 max(xyz, abc);

 return 0;
}

PROGRAM 8.9

The output of Program 8.9 would be:

20

8.32 Basic Computer Engineering

note

The function max() has arguments from both XYZ and ABC. When the function max() is

declared as a friend in XYZ for the first time, the compiler will not acknowledge the presence

of ABC unless its name is declared in the beginning as

class ABC;

This is known as ‘forward’ declaration.

As pointed out earlier, a friend function can be called by reference. In this case, local copies

of the objects are not made. Instead, a pointer to the address of the object is passed and the

called function directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class. Remember,

altering the values of private members is against the basic principles of data hiding. It should

be used only when absolutely necessary.

Program 8.10 shows how to use a common friend function to exchange the private values of

two classes. The function is called by reference.

SWAPPING PRIVATE DATA OF CLASSES

#include <iostream>

using namespace std;

class class_2;

class class_1
{
 int value1;
 public:
 void indata(int a) {value1 = a;}
 void display(void) {cout << value1 << “\n”;}
 friend void exchange(class_1 &, class_2 &);
};

class class_2
{
 int value2;
 public:
 void indata(int a) {value2 = a;}
 void display(void) {cout << value2 << “\n”;}
 friend void exchange(class_1 &, class_2 &);
};

8.33Classes and Objects

void exchange(class_1 & x, class_2 & y)
{
 int temp = x.value1;
 x.value1 = y.value2;
 y.value2 = temp;
}

int main()
{
 class_1 C1;
 class_2 C2;

 C1.indata(100);
 C2.indata(200);

 cout << “Values before exchange” << “\n”;
 C1.display();
 C2.display();

 exchange(C1, C2); // swapping

 cout << “Values after exchange “ << “\n”;
 C1.display();
 C2.display();

 return 0;
}

PROGRAM 8.10

The objects x and y are aliases of C1 and C2 respectively. The statements

int temp = x.value1
x.value1 = y.value2;
y.value2 = temp;

directly modify the values of value1 and value2 declared in class_1 and class_2.

Here is the output of Program 8.10:

Values before exchange
100
200
Values after exchange
200
100

8.34 Basic Computer Engineering

 8.16 Returning Objects

A function cannot only receive objects as arguments but also can return them. The example

in Program 8.11 illustrates how an object can be created (within a function) and returned to

another function

RETURNING OBJECTS

#include <iostream>

using namespace std;

class complex // x + iy form
{

fl oat x; // real part
fl oat y; // imaginary part

 public:
 void input(fl oat real, fl oat imag)
 { x = real; y = imag; }
 friend complex sum(complex, complex);

 void show(complex);
};

complex sum(complex c1, complex c2)
{
 complex c3; // objects c3 is created
 c3.x = c1.x + c2.x;
 c3.y = c1.y + c2.y;
 return(c3); // returns object c3
}

void complex :: show(complex c)
{
 cout << c.x << “ + j” << c.y << “\n”;
}
int main()
{
 complex A, B, C;
 A.input(3.1, 5.65);
 B.input(2.75, 1.2);

 C = sum(A, B); // C = A + B

8.35Classes and Objects

 cout << “A = “; A.show(A);
 cout << “B = “; B.show(B);
 cout << “C = “; C.show(C);

 return 0;
}

PROGRAM 8.11

Upon execution, Program 8.11 would generate the following output:

A = 3.1 + j5.65
B = 2.75 + j1.2
C = 5.85 + j6.85

The program adds two complex numbers A and B to produce a third complex number C and

displays all the three numbers.

 8.17 const Member Functions

If a member function does not alter any data in the class, then we may declare it as a const

member function as follows:

void mul(int, int) const;
double get_balance() const;

The qualifier const is appended to the function prototypes (in both declaration and definition).

The compiler will generate an error message if such functions try to alter the data values.

 8.18 Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The address

of a member can be obtained by applying the operator & to a “fully qualified” class member

name. A class member pointer can be declared using the operator ::* with the class name. For

example, given the class

class A
{
 private:
 int m;
 public:
 void show();
};

We can define a pointer to the member m as follows:

int A::* ip = &A :: m;

8.36 Basic Computer Engineering

The ip pointer created thus acts like a class member in that it must be invoked with a class

object. In the statement above, the phrase A::* means “pointer-to-member of A class”. The

phrase &A::m means the “address of the m member of A class”.

Remember, the following statement is not valid:

int *ip = &m; // won’t work

This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer and

the member.

The pointer ip can now be used to access the member m inside member functions (or friend

functions). Let us assume that a is an object of A declared in a member function. We can access

m using the pointer ip as follows:

cout << a.*ip; // display
cout << a.m; // same as above

Now, look at the following code:

ap = &a; // ap is pointer to object a
cout << ap -> *ip; // display m
cout << ap -> m; // same as above

The dereferencing operator ->* is used to access a member when we use pointers to both the

object and the member. The dereferencing operator.* is used when the object itself is used with

the member pointer. Note that *ip is used like a member name.

We can also design pointers to member functions which, then, can be invoked using the

dereferencing operators in the main as shown below :

(object-name .* pointer-to-member function) (10);

(pointer-to-object ->* pointer-to-member function) (10)

The precedence of () is higher than that of .* and ->*, so the parentheses are necessary.

Program 8.12 illustrates the use of dereferencing operators to access the class members.

DEREFERENCING OPERATORS

#include <iostream>

using namespace std;

class M
{
 int x;
 int y;
 public:
 void set_xy(int a, int b)

8.37Classes and Objects

 {
 x = a;
 y = b;
 }
 friend int sum(M m);
};
int sum(M m)
{
 int M ::* px = &M :: x;
 int M ::* py = &M :: y;
 M *pm = &m;
 int S = m.*px + pm->*py;
 return S;
}

int main()
{
 M n;
 void (M :: *pf)(int,int) = &M :: set_xy;
 (n.*pf)(10,20);
 cout << “SUM = “ << sum(n) << “\n”;

 M *op = &n;
 (op->*pf)(30,40);
 cout << “SUM = “ << sum(n) << “\n”;

 return 0;
}

PROGRAM 8.12

The output of Program 8.12 would be:

sum = 30
sum = 70

 8.19 Local Classes

Classes can be defined and used inside a function or a block. Such classes are called local

classes. Examples:

void test(int a) // function
{

 class student // local class
 {

8.38 Basic Computer Engineering

 // class defi nition

 };

 student s1(a); // create student object
 // use student object
}

Local classes can use global variables (declared above the function) and static variables

declared inside the function but cannot use automatic local variables. The global variables

should be used with the scope operator (::).

There are some restrictions in constructing local classes. They cannot have static data

members and member functions must be defined inside the local classes. Enclosing function

cannot access the private members of a local class. However, we can achieve this by declaring

the enclosing function as a friend.

SUMMARY

 A class is an extension to the structure data type. A class can have both variables and

functions as members.

 By default, members of the class are private whereas that of structure are public.

 Only the member functions can have access to the private data members and private

functions. However the public members can be accessed from outside the class.

 In C++, the class variables are called objects. With objects we can access the public members

of a class using a dot operator.

 We can define the member functions inside or outside the class. The difference between

a member function and a normal function is that a member function uses a membership

‘identity’ label in the header to indicate the class to which it belongs.

 The memory space for the objects is allocated when they are declared. Space for member

variables is allocated separately for each object, but no separate space is allocated for

member functions.

 A data member of a class can be declared as a static and is normally used to maintain

values common to the entire class.

 The static member variables must be defined outside the class.

 A static member function can have access to the static members declared in the same class

and can be called using the class name.

 C++ allows us to have arrays of objects.

 We may use objects as function arguments.

8.39Classes and Objects

 A function declared as a friend is not in the scope of the class to which it has been declared

as friend. It has full access to the private members of the class.

 A function can also return an object.

 If a member function does not alter any data in the class, then we may declare it as a const

member function. The keyword const is appended to the function prototype.

 It is also possible to define and use a class inside a function. Such a class is called a local

class.

Key Terms

 abstract data type

 arrays of objects

 class

 class declaration

 class members

 class variables

 const member functions

 data hiding

 data members

 dereferencing operator

 dot operator

 elements

 encapsulation

 friend functions

 inheritance

 inline functions

 local class

 member functions

 nesting of member functions

objects

 pass-by-reference

 pass-by-value

 period operator

 private

 prototype

 public

 scope operator

 scope resolution

 static data members

 static member functions

 static variables

 struct

 structure

 structure members

 structure name

 structure tag

 template

 Review Questions

8.1 How do structures in C and C++ differ?

8.2 What is a class? How does it accomplish data hiding?

8.3 How does a C++ structure differ from a C++ class?

8.40 Basic Computer Engineering

8.4 What are objects? How are they created?

8.5 How is a member function of a class defined?

8.6 Can we use the same function name for a member function of a class and an outside

function in the same program file? If yes, how are they distinguished? If no, give

reasons.

8.7 Describe the mechanism of accessing data members and member functions in the

following cases:

 (a) Inside the main program.

 (b) Inside a member function of the same class.

 (c) Inside a member function of another class.

8.8 When do we declare a member of a class static?

8.9 What is a friend function? What are the merits and demerits of using friend

functions?

8.10 State whether the following statements are TRUE or FALSE.

 (a) Data items in a class must always be private.

 (b) A function designed as private is accessible only to member functions of that

class.

 (c) A function designed as public can be accessed like any other ordinary

functions.

 (d) Member functions defined inside a class specifier become inline functions by

default.

 (e) Classes can bring together all aspects of an entity in one place.

 (f) Class members are public by default.

 (g) Friend functions have access to only public members of a class.

 (h) An entire class can be made a friend of another class.

 (i) Functions cannot return class objects.

 (j) Data members can be initialized inside class specifier.

 Debugging Exercises

8.1 Identify the error in the following program.

 #include <iostream.h>
 struct Room
 {
 int width;
 int length;

 void setValue(int w, int l)
 {
 width = w;

8.41Classes and Objects

 length = l;
 }
 };
 void main()
 {
 Room objRoom;
 objRoom.setValue(12, 1,4);
 }

8.2 Identify the error in the following program.

 #include <iostream.h>
 class Room
 {
 int width, height;
 void setValue(int w, int h)
 {
 width = w;
 height = h;
 }
 };
 void main()
 {
 Room objRoom;
 objRoom.width = 12;
 }

8.3 Identify the error in the following program.

 #include <iostream.h>
 class Item
 {
 private:
 static int count;
 public:
 Item()
 {
 count++;
 }
 int getCount()
 {
 return count;
 }
 int* getCountAddress()
 {
 return count;
 }

8.42 Basic Computer Engineering

 };
 int Item::count = 0;

 void main()
 {
 Item objItem1;
 Item objItem2;

 cout << objItem1.getCount() << ‘ ‘;
 cout << objItem2.getCount() << ‘ ‘;

 cout << objItem1.getCountAddress() << ‘ ‘;
 cout << objItem2.getCountAddress() << ‘ ‘;
}

8.4 Identify the error in the following program.

#include <iostream.h>
class staticFunction
{
 static int count;
public:
 static void setCount()
 {
 count++;
 }
 void displayCount()
 {
 cout << count;
 }
};
int staticFunction::count = 10;
void main()
{
 staticFunction obj1;
 obj1.setCount(5);
 staticFunction::setCount();
 obj1.displayCount();
}

8.5 Identify the error in the following program.

#include <iostream.h>
class Length
{
 int feet;

fl oat inches;
public:

8.43Classes and Objects

 Length()
 {
 feet = 5;
 inches = 6.0;
 }
 Length(int f, fl oat in)
 {
 feet = f;
 inches=in;
 }
 Length addLength(Length l)
 {
 l.inches += this->inches;
 l.feet += this->feet;
 if(l.inches>12)
 {
 l.inches-=12;
 l.feet++;
 }
 return l;
 }
 int getFeet()
 {
 return feet;
 }

fl oat getInches()
 {
 return inches;
 }
};
void main()
{
 Length objLength1;
 Length objLength1(5, 6.5);
 objLength1 = objLength1.addLength(objLength2);
 cout << objLength1.getFeet() << ‘ ‘;
 cout << objLength1.getInches() << ‘ ‘;
}

8.6 Identify the error in the following program.

#include <iostream.h>
class Room;
void Area()
{
 int width, height;
 class Room

8.44 Basic Computer Engineering

 {
 int width, height;
 public:
 void setValue(int w, int h)
 {
 width = w;
 height = h;
 }
 void displayValues()
 {
 cout << (fl oat)width << ‘ ‘ << (fl oat)height;
 }
 };
 Room objRoom1;
 objRoom1.setValue(12, 8);
 objRoom1.displayValues();
}

void main()
{
 Area();
 Room objRoom2;
}

 Programming Exercises

8.1 Define a class to represent a bank account. Include the following members:

Data members

 1. Name of the depositor

 2. Account number

 3. Type of account

 4. Balance amount in the account

 Member functions

 1. To assign initial values

 2. To deposit an amount

 3. To withdraw an amount after checking the balance

 4. To display name and balance

 Write a main program to test the program.

8.2 Write a class to represent a vector (a series of float values). Include member functions

to perform the following tasks:

 (a) To create the vector

8.45Classes and Objects

 (b) To modify the value of a given element

 (c) To multiply by a scalar value

 (d) To display the vector in the form (10, 20, 30, ...)

 Write a program to test your class.

8.3 Modify the class and the program of Exercise 8.1 for handling 10 customers.

8.4 Modify the class and program of Exercise 8.2 such that the program would be able

to add two vectors and display the resultant vector. (Note that we can pass objects as

function arguments.)

8.5 Create two classes DM and DB which store the value of distances. DM stores distances

in metres and centimetres and DB in feet and inches. Write a program that can read

values for the class objects and add one object of DM with another object of DB.

 Use a friend function to carry out the addition operation. The object that stores the

results may be a DM object or DB object, depending on the units in which the results

are required.

 The display should be in the format of feet and inches or metres and centimetres

depending on the object on display.

Constructors and Destructors

9

Key Concepts

 Constructing objects

 Constructors

 Constructor overloading

 Default argument constructor

 Copy constructor

 Constructing matrix objects

 Automatic initialization

 Parameterized constructors

 Default constructor

 Dynamic initialization

 Dynamic constructor

 Destructors

 9.1 Introduction

We have seen, so far, a few examples of classes

being implemented. In all the cases, we have

used member functions such as putdata()

and setvalue() to provide initial values to the

private member variables. For example, the

following statement

A.input();

invokes the member function input(), which

assigns the initial values to the data items of

object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as arguments to the

function getdata(), where these values are

assigned to the private variables of object x.

All these ‘function call’ statements are used

with the appropriate objects that have already

been created. These functions cannot be used

to initialize the member variables at the time

of creation of their objects.

Providing the initial values as described above does not conform with the philosophy of

C++ language. We stated earlier that one of the aims of C++ is to create user-defined data

types such as class, that behave very similar to the built-in types. This means that we should

9.2 Basic Computer Engineering

be able to initialize a class type variable (object) when it is declared, much the same way as

initialization of an ordinary variable. For example,

int m = 20;
fl oat x = 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes out of scope, the compiler automatically

destroys the variable. But it has not happened with the objects we have so far studied. It is

therefore clear that some more features of classes need to be explored that would enable us to

initialize the objects when they are created and destroy them when their presence is no longer

necessary.

C++ provides a special member function called the constructor which enables an object to

initialize itself when it is created. This is known as automatic initialization of objects. It also

provides another member function called the destructor that destroys the objects when they

are no longer required.

 9.2 Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its class. It

is special because its name is the same as the class name. The constructor is invoked whenever

an object of its associated class is created. It is called constructor because it constructs the

values of data members of the class.

A constructor is declared and defined as follows:

// class with a constructor

class integer

{
 int m, n;
 public:
 integer(void); // constructor declared

};
integer :: integer(void) // constructor defi ned
{
 m = 0; n = 0;
}

When a class contains a constructor like the one defined above, it is guaranteed that an

object created by the class will be initialized automatically. For example, the declaration

integer int1; // object int1 created

not only creates the object int1 of type integer but also initializes its data members m and

n to zero. There is no need to write any statement to invoke the constructor function (as

9.3Constructors and Destructors

we do with the normal member functions). If a ‘normal’ member function is defined for zero

initialization, we would need to invoke this function for each of the objects separately. This

would be very inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default

constructor for class A is A::A(). If no such constructor is defined, then the compiler supplies

a default constructor. Therefore a statement such as

A a;

invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics. These are :

 They should be declared in the public section.

 They are invoked automatically when the objects are created.

 They do not have return types, not even void and therefore, and they cannot return

values.

 They cannot be inherited, though a derived class can call the base class constructor.

 Like other C++ functions, they can have default arguments.

 Constructors cannot be virtual.

 We cannot refer to their addresses.

 An object with a constructor (or destructor) cannot be used as a member of a union.

 They make ‘implicit calls’ to the operators new and delete when memory allocation is

required.

Remember, when a constructor is declared for a class, initialization of the class objects

becomes mandatory.

 9.3 Parameterized Constructors

The constructor integer(), defined above, initializes the data members of all the objects to zero.

However, in practice it may be necessary to initialize the various data elements of different

objects with different values when they are created. C++ permits us to achieve this objective by

passing arguments to the constructor function when the objects are created. The constructors

that can take arguments are called parameterized constructors.

The constructor integer() may be modified to take arguments as shown below:

class integer
{
 int m, n;
 public:

integer(int x, int y); // parameterized constructor

};
integer :: integer(int x, int y)

9.4 Basic Computer Engineering

{
 m = x; n = y;

}

When a constructor has been parameterized, the object declaration statement such as

integer int1;

may not work. We must pass the initial values as arguments to the constructor function when

an object is declared. This can be done in two ways:

 By calling the constructor explicitly.

 By calling the constructor implicitly.

The following declaration illustrates the first method:

integer int1 = integer(0,100); // explicit call

This statement creates an integer object int1 and passes the values 0 and 100 to it. The

second is implemented as follows:

integer int1(0,100); // implicit call

This method, sometimes called the shorthand method, is used very often as it is shorter,

looks better and is easy to implement.

Remember, when the constructor is parameterized, we must provide appropriate arguments

for the constructor. Program 9.1 demonstrates the passing of arguments to the constructor

functions.

CLASS WITH CONSTRUCTORS

#include <iostream>

using namespace std;

class integer
{
 int m, n;
 public:
 integer(int, int); // constructor declared

 void display(void)
 {
 cout << “ m = “ << m << “\n”;
 cout << “ n = “ << n << “\n”;
 }
};

integer :: integer(int x, int y) // constructor defi ned

9.5Constructors and Destructors

{
 m = x; n = y;
}

int main()
{
 integer int1(0,100); // constructor called implicitly

 integer int2 = integer(25, 75); // constructor called explicitly

 cout << “\nOBJECT1” << “\n”;
 int1.display();

 cout << “\nOBJECT2” << “\n”;
 int2.display();

 return 0;
}

PROGRAM 9.1

Program 9.1 displays the following output:

OBJECT1
m = 0
n = 100
OBJECT2
m = 25
n = 75

The constructor functions can also be defined as inline functions. Example:

class integer
{
 int m, n;
 public:
 integer(int x, int y) // Inline constructor
 {
 m = x; y = n;
 }

};

The parameters of a constructor can be of any type except that of the class to which it

belongs. For example,

class A
{

9.6 Basic Computer Engineering

 public:
 A(A);
};

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus, the

statement

Class A
{

 public:
 A(A&);
};

is valid. In such cases, the constructor is called the copy constructor.

 9.4 Multiple Constructors in a Class

So far we have used two kinds of constructors. They are:

 integer(); // No arguments
 integer(int, int); // Two arguments

In the first case, the constructor itself supplies the data values and no values are passed by

the calling program. In the second case, the function call passes the appropriate values from

main(). C++ permits us to use both these constructors in the same class. For example, we

could define a class as follows:

class integer
{
 int m, n;
 public:
 integer(){m=0; n=0;} // constructor 1
 integer(int a, int b)
 {m = a; n = b;} // constructor 2
 integer(integer & i)
 {m = i.m; n = i.n;} // constructor 3
};

This declares three constructors for an integer object. The first constructor receives no

arguments, the second receives two integer arguments and the third receives one integer

object as an argument. For example, the declaration

integer I1;

9.7Constructors and Destructors

would automatically invoke the first constructor and set both m and n of I1 to zero. The

statement

integer I2(20,40);

would call the second constructor which will initialize the data members m and n of I2 to 20

and 40 respectively. Finally, the statement

integer I3(I2);

would invoke the third constructor which copies the values of I2 into I3. In other words, it sets

the value of every data element of I3 to the value of the corresponding data element of I2. As

mentioned earlier, such a constructor is called the copy constructor. We learned in Chapter 7

that the process of sharing the same name by two or more functions is referred to as function

overloading. Similarly, when more than one constructor function is defined in a class, we say

that the constructor is overloaded.

Program 9.2 shows the use of overloaded constructors.

OVERLOADED CONSTRUCTORS

#include <iostream>

using namespace std;

class complex
{
 fl oat x, y;
 public:
 complex(){ } // constructor no arg
 complex(fl oat a) {x = y = a;} // constructor-one arg
 complex(fl oat real, fl oat imag) // constructor-two args
 {x = real; y = imag;}

 friend complex sum(complex, complex);
 friend void show(complex);
};
complex sum(complex c1, complex c2) // friend
{
 complex c3;
 c3.x = c1.x + c2.x;
 c3.y = c1.y + c2.y;
 return(c3);
}
void show(complex c) // friend
{
 cout << c.x << “ + j” << c.y << “\n”;
}

9.8 Basic Computer Engineering

int main()
{
 complex A(2.7, 3.5); // defi ne & initialize
 complex B(1.6); // defi ne & initialize
 complex C; // defi ne
 C = sum(A, B); // sum() is a friend
 cout << “A = “; show(A); // show() is also friend
 cout << “B = “; show(B);
 cout << “C = “; show(C);

// Another way to give initial values (second method)

 complex P,Q,R; // defi ne P, Q and R
 P = complex(2.5,3.9); // initialize P
 Q = complex(1.6,2.5); // initialize Q
 R = sum(P,Q);

 cout << “\n”;
 cout << “P = “; show(P);
 cout << “Q = “; show(Q);
 cout << “R = “; show(R);

 return 0;
}

PROGRAM 9.2

The output of Program 9.2 would be:

A = 2.7 + j3.5
B = 1.6 + j1.6
C = 4.3 + j5.1

P = 2.5 + j3.9
Q = 1.6 + j2.5
R = 4.1 + j6.4

note

There are three constructors in the class complex. The first constructor, which takes no

arguments, is used to create objects which are not initialized; the second, which takes one

argument, is used to create objects and initialize them; and the third, which takes two

arguments, is also used to create objects and initialize them to specific values. Note that the

second method of initializing values looks better.

Let us look at the first constructor again.

complex(){ }

9.9Constructors and Destructors

It contains the empty body and does not do anything. We just stated that this is used to

create objects without any initial values. Remember, we have defined objects in the earlier

examples without using such a constructor. Why do we need this constructor now? As pointed

out earlier, C++ compiler has an implicit constructor which creates objects, even though it was

not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,

once we define a constructor, we must also define the “do-nothing” implicit constructor. This

constructor will not do anything and is defined just to satisfy the compiler.

 9.5 Constructors with Default Arguments

It is possible to define constructors with default arguments. For example, the constructor

complex() can be declared as follows:

complex(fl oat real, fl oat imag=0);

The default value of the argument imag is zero. Then, the statement

complex C(5.0);

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However, the

statement

complex C(2.0,3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides the default

value. As pointed out earlier, the missing arguments must be the trailing ones.

It is important to distinguish between the default constructor A::A() and the default argument

constructor A::A(int = 0). The default argument constructor can be called with either one

argument or no arguments. When called with no arguments, it becomes a default constructor.

When both these forms are used in a class, it causes ambiguity for a statement such as

A a;

The ambiguity is whether to ‘call’ A::A() or A::A(int = 0).

 9.6 Dynamic Initialization of Objects

Class objects can be initialized dynamically too. That is to say, the initial value of an object may

be provided during run time. One advantage of dynamic initialization is that we can provide

various initialization formats, using overloaded constructors. This provides the flexibility of

using different format of data at run time depending upon the situation.

Consider the long term deposit schemes working in the commercial banks. The banks provide

different interest rates for different schemes as well as for different periods of investment.

Program 9.3 illustrates how to use the class variables for holding account details and how to

construct these variables at run time using dynamic initialization.

9.10 Basic Computer Engineering

DYNAMIC INITIALIZATION OF CONSTRUCTORS

// Long-term fi xed deposit system

#include <iostream>

using namespace std;

class Fixed_deposit
{
 long int P_amount; // Principal amount
 int Years; // Period of investment

fl oat Rate; // Interest rate
fl oat R_value; // Return value of amount

 public:
 Fixed_deposit(){ }
 Fixed_deposit(long int p, int y, fl oat r=0.12);
 Fixed_deposit(long int p, int y, int r);
 void display(void);
};
Fixed_deposit :: Fixed_deposit(long int p, int y, fl oat r)
{
 P_amount = p;
 Years = y;
 Rate = r;
 R_value = P_amount;
 for(int i = 1; i <= y; i++)
 R_value = R_value * (1.0 + r);
}

Fixed_deposit :: Fixed_deposit(long int p, int y, int r)
{
 P_amount = p;
 Years = y;
 Rate = r;
 R_value = P_amount;

 for(int i=1; i<=y; i++)
 R_value = R_value*(1.0+fl oat(r)/100);
}

void Fixed_deposit :: display(void)
{
 cout << “\n”
 << “Principal Amount = “ << P_amount << “\n”
 << “Return Value = “ << R_value << “\n”;
}

9.11Constructors and Destructors

int main()
{
 Fixed_deposit FD1, FD2, FD3; // deposits created

 long int p; // principal amount

 int y; // investment period, years
fl oat r; // interest rate, decimal form

 int R; // interest rate, percent form

 cout << “Enter amount,period,interest rate(in percent)”<<”\n”;
 cin >> p >> y >> R;
 FD1 = Fixed_deposit(p,y,R);

 cout << “Enter amount,period,interest rate(decimal form)” << “\n”;
 cin >> p >> y >> r;
 FD2 = Fixed_deposit(p,y,r);

 cout << “Enter amount and period” << “\n”;
 cin >> p >> y;
 FD3 = Fixed_deposit(p,y);

 cout << “\nDeposit 1”;
 FD1.display();

 cout << “\nDeposit 2”;
 FD2.display();

 cout << “\nDeposit 3”;
 FD3.display();

 return 0;
}

PROGRAM 9.3

The output of Program 9.3 would be:

Enter amount,period,interest rate(in percent)
10000 3 18
Enter amount,period,interest rate(in decimal form)
10000 3 0.18
Enter amount and period
10000 3

Deposit 1
Principal Amount = 10000

9.12 Basic Computer Engineering

Return Value = 16430.3
Deposit 2
Principal Amount = 10000
Return Value = 16430.3

Deposit 3
Principal Amount = 10000
Return Value = 14049.3

The program uses three overloaded constructors. The parameter values to these constructors

are provided at run time. The user can provide input in one of the following forms:

 1. Amount, period and interest in decimal form.

 2. Amount, period and interest in percent form.

 3. Amount and period.

note

Since the constructors are overloaded with the appropriate parameters, the one that matches

the input values is invoked. For example, the second constructor is invoked for the forms

(1) and (3), and the third is invoked for the form (2). Note that, for form (3), the constructor

with default argument is used. Since input to the third parameter is missing, it uses the

default value for r.

 9.7 Copy Constructor

We briefly mentioned about the copy constructor in Sec. 9.3. We used the copy constructor

integer(integer &i);

in Sec. 9.4 as one of the overloaded constructors.

As stated earlier, a copy constructor is used to declare and initialize an object from another

object. For example, the statement

integer I2(I1);

would define the object I2 and at the same time initialize it to the values of I1. Another form

of this statement is

integer I2 = I1;

The process of initializing through a copy constructor is known as copy initialization.

Remember, the statement

I2 = I1;

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement is legal
and simply assigns the values of I1 to I2, member-by-member. This is the task of the overloaded
assignment operator(=). We shall see more about this later.

9.13Constructors and Destructors

A copy constructor takes a reference to an object of the same class as itself as an argument.
Let us consider a simple example of constructing and using a copy constructor as shown in

Program 9.4.

COPY CONSTRUCTOR

#include <iostream>

using namespace std;

class code
{
 int id;
 public:
 code(){ } // constructor
 code(int a) { id = a;} // constructor again
 code(code & x) // copy constructor

 {
 id = x.id; // copy in the value
 }
 void display(void)
 {
 cout << id;
 }
};
int main()
{
 code A(100); // object A is created and initialized
 code B(A); // copy constructor called
 code C = A; // copy constructor called again

 code D; // D is created, not initialized
 D = A; // copy constructor not called

 cout << “\n id of A: “; A.display();
 cout << “\n id of B: “; B.display();
 cout << “\n id of C: “; C.display();
 cout << “\n id of D: “; D.display();

 return 0;
}

PROGRAM 9.4

9.14 Basic Computer Engineering

The output of Program 9.4 is shown below

 id of A: 100
 id of B: 100
 id of C: 100
 id of D: 100

note

A reference variable has been used as an argument to the copy constructor. We cannot pass

the argument by value to a copy constructor.

When no copy constructor is defined, the compiler supplies its own copy constructor.

 9.8 Dynamic Constructors

The constructors can also be used to allocate memory while creating objects. This will enable

the system to allocate the right amount of memory for each object when the objects are not

of the same size, thus resulting in the saving of memory. Allocation of memory to objects at

the time of their construction is known as dynamic construction of objects. The memory is

allocated with the help of the new operator. Program 9.5 shows the use of new, in constructors

that are used to construct strings in objects.

CONSTRUCTORS WITH NEW

#include <iostream>
#include <string>

using namespace std;

class String
{
 char *name;
 int length;
 public:
 String() // constructor-1
 {
 length = 0;
 name = new char[length + 1];
 }

 String(char *s) // constructor-2
 {
 length = strlen(s);

9.15Constructors and Destructors

 name = new char[length + 1]; // one additional
 // character for \0
 strcpy(name, s);

 }

 void display(void)
 {cout << name << “\n”;}
 void join(String &a, String &b);
};

void String :: join(String &a, String &b)
{
 length = a.length + b.length;
 delete name;
 name = new char[length+1]; // dynamic allocation

 strcpy(name, a.name);
 strcat(name, b.name);
};

int main()
{
 char *fi rst = “Joseph “;
 String name1(fi rst), name2(“Louis “),name3(“Lagrange”),s1,s2;

 s1.join(name1, name2);
 s2.join(s1, name3);
 name1.display();
 name2.display();
 name3.display();
 s1.display();
 s2.display();

 return 0;
}

PROGRAM 9.5

The output of Program 9.5 would be:

Joseph
Louis
Lagrange
Joseph Louis
Joseph Louis Lagrange

9.16 Basic Computer Engineering

note

This Program uses two constructors. The first is an empty constructor that allows us to

declare an array of strings. The second constructor initializes the length of the string,

allocates necessary space for the string to be stored and creates the string itself. Note that

one additional character space is allocated to hold the end-of-string character ‘\0’.

The member function join() concatenates two strings. It estimates the combined length of

the strings to be joined, allocates memory for the combined string and then creates the same

using the string functions strcpy() and strcat(). Note that in the function join(), length

and name are members of the object that calls the function, while a.length and a.name are

members of the argument object a. The main() function program concatenates three strings

into one string. The output is as shown below:

Joseph Louis Lagrange

 9.9 Constructing Two-dimensional Arrays

We can construct matrix variables using the class type objects. The example in Program 9.6

illustrates how to construct a matrix of size m x n.

CONSTRUCTING MATRIX OBJECTS

#include <iostream>

using namespace std;

class matrix
{
 int **p; // pointer to matrix
 int d1,d2; // dimensions
 public:
 matrix(int x, int y);
 void get_element(int i, int j, int value)
 {p[i][j]=value;}
 int & put_element(int i, int j)
 {return p[i][j];}
};
matrix :: matrix(int x, int y)
{
 d1 = x;
 d2 = y;
 p = new int *[d1]; // creates an array pointer
 for(int i = 0; i < d1; i++)
 p[i] = new int[d2]; // creates space for each row

9.17Constructors and Destructors

}

int main()
{
 int m, n;

 cout << “Enter size of matrix: “;
 cin >> m >> n;
 matrix A(m,n); // matrix object A constructed

 cout << “Enter matrix elements row by row \n”;
 int i, j, value;

 for(i = 0; i < m; i++)
 for(j = 0; j < n; j++)
 {
 cin >> value;
 A.get_element(i,j,value);
 }
 cout << “\n”;
 cout << A.put_element(1,2);

 return 0;
};

PROGRAM 9.6

The output of a sample run of Program 9.6 is as follows.

Enter size of matrix: 3 4
Enter matrix elements row by row
11 12 13 14
15 16 17 18
19 20 21 22

17

17 is the value of the element (1,2).

The constructor first creates a vector

pointer to an int of size d1. Then, it

allocates, iteratively an int type vector of

size d2 pointed at by each element p[i].

Thus, space for the elements of a d1 ¥

d2 matrix is allocated from free store as

shown above.

9.18 Basic Computer Engineering

 9.10 const Objects

We may create and use constant objects using const keyword before object declaration. For

example, we may create X as a constant object of the class matrix as follows:

 const matrix X(m,n); // object X is constant

Any attempt to modify the values of m and n will generate compile-time error. Further, a

constant object can call only const member functions. As we know, a const member is a function

prototype or function definition where the keyword const appears after the function’s signature.

Whenever const objects try to invoke non-const member functions, the compiler generates

errors.

 9.11 Destructors

A destructor, as the name implies, is used to destroy the objects that have been created by a

constructor. Like a constructor, the destructor is a member function whose name is the same

as the class name but is preceded by a tilde. For example, the destructor for the class integer

can be defined as shown below:

~integer(){ }

A destructor never takes any argument nor does it return any value. It will be invoked

implicitly by the compiler upon exit from the program (or block or function as the case may be)

to clean up storage that is no longer accessible. It is a good practice to declare destructors in a

program since it releases memory space for future use.

Whenever new is used to allocate memory in the constructors, we should use delete to

free that memory. For example, the destructor for the matrix class discussed above may be

defined as follows:

matrix :: ~matrix()
{
 for(int i=0; i<d1; i++)
 delete p[i];
 delete p;
}

This is required because when the pointers to objects go out of scope, a destructor is not

called implicitly.

The example below illustrates that the destructor has been invoked implicitly by the compiler.

IMPLEMENTATION OF DESTRUCTORS

#include <iostream>

using namespace std;

9.19Constructors and Destructors

int count = 0;

class alpha
{
 public:
 alpha()
 {
 count++;
 cout << “\nNo.of object created “ << count;
 }

 ~alpha()
 {
 cout << “\nNo.of object destroyed “ << count;
 count--;
 }
};

int main()
{
 cout << “\n\nENTER MAIN\n”;

 alpha A1, A2, A3, A4;
 {
 cout << “\n\nENTER BLOCK1\n”;
 alpha A5;
 }

 {
 cout << “\n\nENTER BLOCK2\n”;
 alpha A6;
 }
 cout << “\n\nRE-ENTER MAIN\n”;

 return 0;
}

PROGRAM 9.7

The output of a sample run of Program 9.7 is shown below:

ENTER MAIN

No.of object created 1
No.of object created 2

9.20 Basic Computer Engineering

No.of object created 3
No.of object created 4

ENTER BLOCK1

No.of object created 5
No.of object destroyed 5

ENTER BLOCK2

No.of object created 5
No.of object destroyed 5

RE-ENTER MAIN

No.of object destroyed 4
No.of object destroyed 3
No.of object destroyed 2
No.of object destroyed 1

note

As the objects are created and destroyed, they increase and decrease the count. Notice that

after the first group of objects is created, A5 is created, and then destroyed, A6 is created,

and then destroyed. Finally, the rest of the objects are also destroyed. When the closing

brace of a scope is encountered, the destructors for each object in the scope are called. Note

that the objects are destroyed in the reverse order of creation.

SUMMARY

C++ provides a special member function called the constructor which enables an object to

initialize itself when it is created. This is known as automatic initialization of objects.

A constructor has the same name as that of a class.

Constructors are normally used to initialize variables and to allocate memory.

Similar to normal functions, constructors may be overloaded.

When an object is created and initialized at the same time, a copy constructor gets

called.

We may make an object const if it does not modify any of its data values.

C++ also provides another member function called the destructor that destroys the

 objects when they are no longer required.

9.21Constructors and Destructors

Key Terms

 automatic initialization explicit call

Const implicit call

 Constructor implicit constructor

 constructor overloading initialization

 copy constructor new

 copy initialization parameterized constructor

 default argument reference

 default constructor shorthand method

Delete strcat()

 Destructor strcpy()

 dynamic construction strlen()

 dynamic initialization virtual

 Review Questions

9.1 What is a constructor? Is it mandatory to use constructors in a class?

9.2 How do we invoke a constructor function?

9.3 List some of the special properties of the constructor functions.

9.4 What is a parameterized constructor?

9.5 Can we have more than one constructors in a class? If yes, explain the need for such

a situation.

9.6 What do you mean by dynamic initialization of objects? Why do we need to do this?

9.7 How is dynamic initialization of objects achieved?

9.8 Distinguish between the following two statements:

time T2(T1);
 time T2 = T1;

 T1 and T2 are objects of time class.

9.9 Describe the importance of destructors.

9.10 State whether the following statements are TRUE or FALSE.

 (a) Constructors, like other member functions, can be declared anywhere in the class.

 (b) Constructors do not return any values.

 (c) A constructor that accepts no parameter is known as the default constructor.

9.22 Basic Computer Engineering

 (d) A class should have at least one constructor.

 (e) Destructors never take any argument.

 Debugging Exercises

9.1 Identify the error in the following program.

#include <iostream.h>
class Room
{
 int length;
 int width;
public:
 Room(int l, int w=0):
 width(w),
 length(l)
 {
 }
};
void main()
{
 Room objRoom1;
 Room objRoom2(12, 8);
}

9.2 Identify the error in the following program.

#include <iostream.h>
class Room
{
 int length;
 int width;
public:
 Room()
 {
 length = 0;
 width = 0;
 }
 Room(int value=8)
 {
 length = width = 8;
 }
 void display()
 {
 cout << length << ‘ ‘ << width;
 }
};

9.23Constructors and Destructors

void main()
{
 Room objRoom1;
 objRoom1.display();
}

9.3 Identify the error in the following program.

#include <iostream.h>
class Room
{
 int width;
 int height;
 static int copyConsCount;
public:
 void Room()
 {
 width = 12;
 height = 8;
 }

 Room(Room& r)
 {
 width = r.width;
 height = r.height;
 copyConsCount++;
 }

 void dispCopyConsCount()
 {
 cout << copyConsCount;
 }
};

int Room::copyConsCount = 0;

void main()
{
 Room objRoom1;
 Room objRoom2(objRoom1);
 Room objRoom3 = objRoom1;
 Room objRoom4;
 objRoom4 = objRoom3;

 objRoom4.dispCopyConsCount();
}

9.24 Basic Computer Engineering

9.4 Identify the error in the following program.

#include <iostream.h>
class Room
{
 int width;
 int height;
 static int copyConsCount;
public:
 Room()
 {
 width = 12;
 height = 8;
 }

 Room(Room& r)
 {
 width = r.width;
 height = r.height;
 copyConsCount++;

 }

 void disCopyConsCount()
 {
 cout << copyConsCount;
 }
};

int Room::copyConsCount = 0;

void main()
{
 Room objRoom1;
 Room objRoom2 (objRoom1);
 Room objRoom3 = objRoom1;
 Room objRoom4;
 objRoom4 = objRoom3;

 objRoom4.dispCopyConsCount();
}

 Programming Exercises

9.1 Design constructors for the classes designed in Programming Exercises 8.1 through

8.5 of Chapter 8.

9.25Constructors and Destructors

9.2 Define a class String that could work as a user-defined string type. Include constructors

that will enable us to create an uninitialized string

 String s1; // string with length 0

and also to initialize an object with a string constant at the time of creation like

 String s2(“Well done!”);

Include a function that adds two strings to make a third string. Note that the

statement

 s2 = s1;

will be perfectly reasonable expression to copy one string to another.

 Write a complete program to test your class to see that it does the following tasks:

 (a) Creates uninitialized string objects.

 (b) Creates objects with string constants.

 (c) Concatenates two strings properly.

 (d) Displays a desired string object.

9.3 A book shop maintains the inventory of books that are being sold at the shop. The list

includes details such as author, title, price, publisher and stock position. Whenever

a customer wants a book, the sales person inputs the title and author and the system

searches the list and displays whether it is available or not. If it is not, an appropriate

message is displayed. If it is, then the system displays the book details and requests

for the number of copies required. If the requested copies are available, the total cost

of the requested copies is displayed; otherwise the message “Required copies not in

stock” is displayed.

Design a system using a class called books with suitable member functions and

constructors. Use new operator in constructors to allocate memory space required.

9.4 Improve the system design in Exercise 9.3 to incorporate the following features:

 (a) The price of the books should be updated as and when required. Use a private

member function to implement this.

 (b) The stock value of each book should be automatically updated as soon as a

transaction is completed.

 (c) The number of successful and unsuccessful transactions should be recorded for

the purpose of statistical analysis. Use static data members to keep count of

transactions.

9.5 Modify the program of Exercise 9.4 to demonstrate the use of pointers to access the

members.

Operator Overloading and
Type Conversions

10

Key Concepts

 Overloading

 Operator functions

 Overloading unary operators

 String manipulations

 Basic to class type

 Class to class type

 Operator overloading

 Overloading binary operators

 Using friends for overloading

 Type conversions

 Class to basic type

 Overloading rules

 10.1 Introduction

Operator overloading is one of the many

exciting features of C++ language. It is an

important technique that has enhanced the

power of extensibility of C++. We have stated

more than once that C++ tries to make the user-

defined data types behave in much the same

way as the built-in types. For instance, C++

permits us to add two variables of user-defined

types with the same syntax that is applied to

the basic types. This means that C++ has the

ability to provide the operators with a special

meaning for a data type. The mechanism of

giving such special meanings to an operator

is known as operator overloading.

Operator overloading provides a flexible

option for the creation of new definitions for

most of the C++ operators. We can almost

create a new language of our own by the

creative use of the function and operator

overloading techniques. We can overload (give additional meaning to) all the C++ operators

except the following:

 Class member access operators (., .*).

 Scope resolution operator (::).

10.2 Basic Computer Engineering

 Size operator (sizeof).

 Conditional operator (?:).

The excluded operators are very few when compared to the large number of operators which

qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot change its syntax,

the grammatical rules that govern its use such as the number of operands, precedence and

associativity. For example, the multiplication operator will enjoy higher precedence than the

addition operator. Remember, when an operator is overloaded, its original meaning is not lost.

For instance, the operator +, which has been overloaded to add two vectors, can still be used

to add two integers.

 10.2 Defi ning Operator Overloading

To define an additional task to an operator, we must specify what it means in relation to the

class to which the operator is applied. This is done with the help of a special function, called

operator function, which describes the task. The general form of an operator function is:

return type classname :: operator op(arglist)
{
 Function body // task defi ned
}

where return type is the type of value returned by the specified operation and op is the operator

being overloaded. The op is preceded by the keyword operator. operator op is the function

name.

Operator functions must be either member functions (non-static) or friend functions. A

basic difference between them is that a friend function will have only one argument for unary

operators and two for binary operators, while a member function has no arguments for unary

operators and only one for binary operators. This is because the object used to invoke the

member function is passed implicitly and therefore is available for the member function. This

is not the case with friend functions. Arguments may be passed either by value or by reference.

Operator functions are declared in the class using prototypes as follows:

vector operator+(vector); // vector addition
vector operator–(); // unary minus
friend vector operator+(vector,vector); // vector addition
friend vector operator–(vector); // unary minus
vector operator–(vector &a); // subtraction
int operator==(vector); // comparison
friend int operator==(vector,vector) // comparison

vector is a data type of class and may represent both magnitude and direction (as in physics

and engineering) or a series of points called elements (as in mathematics)

10.3Operator Overloading and Type Conversions

The process of overloading involves the following steps:

 1. Create a class that defines the data type that is to be used in the overloading operaion.

 2. Declare the operator function operator op() in the public part of the class.

 It may be either a member function or a friend function.

 3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

op x or x op

for unary operators and

x op y

for binary operators. op x (or x op) would be interpreted as

operator op (x)

for friend functions. Similarly, the expression x op y would be interpreted as either

x.operator op (y)

in case of member functions, or

operator op (x,y)

in case of friend functions. When both the forms are declared, standard argument matching
is applied to resolve any ambiguity.

 10.3 Overloading Unary Operators

Let us consider the unary minus operator. A minus operator when used as a unary, takes just
one operand. We know that this operator changes the sign of an operand when applied to a

basic data item. We will see here how to overload this operator so that it can be applied to an

object in much the same way as is applied to an int or float variable. The unary minus when

applied to an object should change the sign of each of its data items.

Program 10.1 shows how the unary minus operator is overloaded.

 OVERLOADING UNARY MINUS

#include <iostream>
using namespace std;
class space
{
 int x;
 int y;
 int z;
public:
 void getdata(int a, int b, int c);

10.4 Basic Computer Engineering

 void display(void);
 void operator-(); // overload unary minus
};
void space :: getdata(int a, int b, int c)
{
 x = a;
 y = b;
 z = c;
}
void space :: display(void)
{
 cout << x << “ “;
 cout << y << “ “ ;
 cout << z << “\n”;
}
void space :: operator-()
{
 x = -x;
 y = -y;
 z = -z;
}
int main()
{
 space S;
 S.getdata(10, -20, 30);
 cout << “S : “;
 S.display();
 -S; // activates operator-() function
 cout << “S : “;
 S.display();
 return 0;
}

PROGRAM 10.1

The Program 10.1 produces the following output:

S : 10 –20 30
S : –10 20 –30

note

The function operator – () takes no argument. Then, what does this operator function do?.

It changes the sign of data members of the object S. Since this function is a member function

of the same class, it can directly access the members of the object which activated it.

10.5Operator Overloading and Type Conversions

Remember, a statement like

 S2 = –S1;

will not work because, the function operator–() does not return any value. It can work if the

function is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:

friend void operator-(space &s); // declaration
 void operator-(space &s) // defi nition
 {
 s.x = s.x;
 s.y = s.y;
 s.z = s.z;
 }

note

Note that the argument is passed by reference. It will not work if we pass argument by

value because only a copy of the object that activated the call is passed to operator-(). Therefore,

the changes made inside the operator function will not reflect in the called object.

 10.4 Overloading Binary Operators

We have just seen how to overload an unary operator. The same mechanism can be used to

overload a binary operator. In Chapter 9, we illustrated, how to add two complex numbers

using a friend function. A statement like

C = sum(A, B); // functional notation.

was used. The functional notation can be replaced by a natural looking expression

C = A + B; // arithmetic notation

by overloading the + operator using an operator+() function. The Program 10.2 illustrates how

this is accomplished.

OVERLOADING + OPERATOR

#include <iostream>

using namespace std;

class complex
{

fl oat x; // real part
fl oat y; // imaginary part

10.6 Basic Computer Engineering

 public:
 complex(){ } // constructor 1
 complex(fl oat real, fl oat imag) // constructor 2
 { x = real; y = imag; }
 complex operator+(complex);
 void display(void);
};

complex complex :: operator+(complex c)
{
 complex temp; // temporary
 temp.x = x + c.x; // these are
 temp.y = y + c.y; // fl oat additions
 return(temp);
}

void complex :: display(void)
{
 cout << x << “ + j” << y << “\n”;
}

int main()
{
 complex C1, C2, C3; // invokes constructor 1
 C1 = complex(2.5, 3.5); // invokes constructor 2
 C2 = complex(1.6, 2.7);
 C3 = C1 + C2;

 cout << “C1 = “; C1.display();
 cout << “C2 = “; C2.display();
 cout << “C3 = “; C3.display();

 return 0;
}

PROGRAM 10.2

The output of Program 10.2 would be:

C1 = 2.5 + j3.5
C2 = 1.6 + j2.7
C3 = 4.1 + j6.2

note

Let us have a close look at the function operator+() and see how the operator overloading

is implemented.

10.7Operator Overloading and Type Conversions

complex complex :: operator+(complex c)
{
 complex temp;
 temp.x = x + c.x;
 temp.y = y + c.y;
 return(temp);
}

We should note the following features of this function:

 1. It receives only one complex type argument explicitly.

 2. It returns a complex type value.

 3. It is a member function of complex.

The function is expected to add two complex values and return a complex value as the result

but receives only one value as argument. Where does the other value come from? Now let us

look at the statement that invokes this function:

C3 = C1 + C2; // invokes operator+() function

We know that a member function can be invoked only by an object of the same class. Here,

the object C1 takes the responsibility of invoking the function and C2 plays the role of an

argument that is passed to the function. The above invocation statement is equivalent to

C3 = C1.operator+(C2); // usual function call syntax

Therefore, in the operator+() function, the data members of C1 are accessed directly and

the data members of C2 (that is passed as an argument) are accessed using the dot operator.

Thus, both the objects are available for the function. For example, in the statement

temp.x = x + c.x;

c.x refers to the object C2 and x refers to the object C1. temp.x is the real part of temp that

has been created specially to hold the results of addition of C1 and C2. The function returns

the complex temp to be assigned to C3. Figure 10.1 shows how this is implemented.

As a rule, in overloading of binary operators, the left-hand operand is used to invoke the

operator function and the right-hand operand is passed as an argument.

We can avoid the creation of the temp object by replacing the entire function body by the

following statement:

return complex((x+c.x),(y+c.y)); // invokes constructor 2

What does it mean when we use a class name with an argument list? When the compiler

comes across a statement like this, it invokes an appropriate constructor, initializes an object

with no name and returns the contents for copying into an object. Such an object is called a

temporary object and goes out of space as soon as the contents are assigned to another object.

Using temporary objects can make the code shorter, more efficient and better to read.

10.8 Basic Computer Engineering

 10.5 Overloading Binary Operators Using Friends

As stated earlier, friend functions may be used in the place of member functions for overloading

a binary operator, the only difference being that a friend function requires two arguments to

be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using a

friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.

friend complex operator+(complex, complex);

 2. Redefine the operator function as follows:

complex operator+(complex a, complex b)
{
 return complex((a.x+b.x),(a.y+b.y));
}

In this case, the statement

C3 = C1 + C2;

temp.x = c.x + x ;

temp.y = c.y + y ;

{

complex temp ;

return (temp) ;

}

return

4.10 x

6.20

2.50 x

3.50 y

1.60

2.70

4.10

6.20

temp

C3 = C1 + C2 ;

complex operator + (complex c)

y

x

y

Fig. 10.1 3 Implementation of the overloded + operator

10.9Operator Overloading and Type Conversions

is equivalent to

C3 = operator+(C1, C2);

In most cases, we will get the same results by the use of either a friend function or a

member function. Why then an alternative is made available? There are certain situations

where we would like to use a friend function rather than a member function. For instance,

consider a situation where we need to use two different types of operands for a binary operator,

say, one an object and another a built-in type data as shown below,

A = B + 2; (or A = B * 2;)

where A and B are objects of the same class. This will work for a member function but the

statement

A = 2 + B; (or A = 2 * B)

will not work. This is because the left-hand operand which is responsible for invoking the

member function should be an object of the same class. However friend function allows both

approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can be

passed as an argument. Thus, we can use a friend function with a built-in type data as the left-

hand operand and an object as the right-hand operand. Program 10.3 illustrates this, using

scalar multiplication of a vector. It also shows how to overload the input and output operators

>> and <<.

OVERLOADING OPERATORS USING FRIENDS

#include <iostream.h>
 const size = 3;
 class vector
 {
 int v[size];
 public:
 vector(); // constructs null vector
 vector(int *x); // constructs vector from array
 friend vector operator *(int a, vector b); // friend 1
 friend vector operator *(vector b, int a); // friend 2
 friend istream & operator >> (istream &, vector &);
 friend ostream & operator << (ostream &, vector &);
 };

 vector :: vector()
 {
 for(int i=0; i<size; i++)
 v[i] = 0;
 }

10.10 Basic Computer Engineering

 vector :: vector(int *x)
 {
 for(int i=0; i<size; i++)
 v[i] = x[i];
 }

 vector operator *(int a, vector b)
 {
 vector c;

 for(int i=0; i < size; i++)
 c.v[i] = a * b.v[i];
 return c;
 }

 vector operator *(vector b, int a)
 {
 vector c;

 for(int i=0; i<size; i++)
 c.v[i] = b.v[i] * a;
 return c;
 }

 istream & operator >> (istream &din, vector &b)

 {
 for(int i=0; i<size; i++)
 din >> b.v[i];
 return(din);
 }
ostream & operator << (ostream &dout, vector &b)
 {
 dout << “(“ << b.v [0];

 for(int i=1; i<size; i++)
 dout << “, “ << b.v[i];
 dout << “)”;
 return(dout);
 }

 int x[size] = {2,4,6};

 int main()
 {

10.11Operator Overloading and Type Conversions

 vector m; // invokes constructor 1
 vector n = x; // invokes constructor 2

 cout << “Enter elements of vector m “ << “\n”;
 cin >> m; // invokes operator>>() function

 cout << “\n”;
 cout << “m = “ << m << “\n”; // invokes operator <<()

 vector p, q;

 p = 2 * m; // invokes friend 1
 q = n * 2; // invokes friend 2

 cout << “\n”;
 cout << “p = “ << p << “\n”; // invokes operator<<()
 cout << “q = “ << q << “\n”;

 return 0;
 }

PROGRAM 10.3

Shown below is the output of Program 10.3:

Enter elements of vector m
5 10 15

m = (5, 10, 15)
p = (10, 20, 30)
q = (4, 8, 12)

The program overloads the operator * two times, thus overloading the operator function

operator*() itself. In both the cases, the functions are explicitly passed two arguments and

they are invoked like any other overloaded function, based on the types of its arguments. This

enables us to use both the forms of scalar multiplication such as

p = 2 * m; // equivalent to p = operator*(2,m);
q = n * 2; // equivalent to q = operator*(n,2);

The program and its output are largely self-explanatory. The first constructor

vector();

constructs a vector whose elements are all zero. Thus

vector m;

creates a vector m and initializes all its elements to 0. The second constructor

vector(int &x);

10.12 Basic Computer Engineering

creates a vector and copies the elements pointed to by the pointer argument x into it. Therefore,

the statements

int x[3] = {2, 4, 6};
vector n = x;

create n as a vector with components 2, 4, and 6.

note

We have used vector variables like m and n in input and output statements just like simple

variables. This has been made possible by overloading the operators >> and << using the

functions:

friend istream & operator>>(istream &, vector &);
friend ostream & operator<<(ostream &, vector &);

istream and ostream are classes defined in the iostream.h file which has been included

in the program.

 10.6 Manipulation of Strings Using Operators

ANSI C implements strings using character arrays, pointers and string functions. There are
no operators for manipulating the strings. One of the main drawbacks of string manipulations
in C is that whenever a string is to be copied, the programmer must first determine its length
and allocate the required amount of memory.

Although these limitations exist in C++ as well, it permits us to create our own definitions
of operators that can be used to manipulate the strings very much similar to the decimal
numbers. (Recently, ANSI C++ committee has added a new class called string to the C++ class
library that supports all kinds of string manipulations.

For example, we shall be able to use statements like

string3 = string1 + string2;
if(string1 >= string2) string = string1;

Strings can be defined as class objects which can be then manipulated like the built-in
types. Since the strings vary greatly in size, we use new to allocate memory for each string and
a pointer variable to point to the string array. Thus we must create string objects that can hold
these two pieces of information, namely, length and location which are necessary for string

manipulations. A typical string class will look as follows:

class string
{
 char *p; // pointer to string
 int len; // length of string
public:
 // member functions

10.13Operator Overloading and Type Conversions

 // to initialize and
 // manipulate strings
};

We shall consider an example to illustrate the application of overloaded operators to strings.

The example shown in Program 10.4 overloads two operators, + and <= just to show how they

are implemented. This can be extended to cover other operators as well.

MATHEMATICAL OPERATIONS ON STRINGS

#include <string.h>
#include <iostream.h>

class string
{
 char *p;
 int len;
public:
 string() {len = 0; p = 0;} // create null string
 string(const char * s); // create string from arrays
 string(const string & s); // copy constructor
 ~ string(){delete p;} // destructor

 // + operator
 friend string operator+(const string &s, const string &t);

 // <= operator
 friend int operator<=(const string &s, const string &t);
 friend void show(const string s);
};
string :: string(const char *s)
{
 len = strlen(s);
 p = new char[len+1];
 strcpy(p,s);
}

string :: string(const string & s)
{
 len = s.len;
 p = new char[len+1];
 strcpy(p,s.p);
}

// overloading + operator
string operator+(const string &s, const string &t)

10.14 Basic Computer Engineering

{
 string temp;
 temp.len = s.len + t.len;
 temp.p = new char[temp.len+1];
 strcpy(temp.p,s.p);
 strcat(temp.p,t.p);
 return(temp);
}
// overloading <= operator
int operator<=(const string &s, const string &t)
{
 int m = strlen(s.p);
 int n = strlen(t.p);

 if(m <= n) return(1);

 else return(0);
}
void show(const string s)
{
 cout << s.p;
}
int main()
{
 string s1 = “New “;
 string s2 = “York”;
 string s3 = “Delhi”;
 string t1,t2,t3;
 t1 = s1;
 t2 = s2;
 t3 = s1+s3;

 cout << “\nt1 = “; show(t1);
 cout << “\nt2 = “; show(t2);
 cout << “\n”;
 cout << “\nt3 = “; show(t3);
 cout << “\n\n”;

 if(t1 <= t3)
 {
 show(t1);
 cout << “ smaller than “;
 show(t3);
 cout << “\n”;
 }

10.15Operator Overloading and Type Conversions

 else
 {
 show(t3);
 cout << “ smaller than “;
 show(t1);
 cout << “\n”;
 }

 return 0;
}

PROGRAM 10.4

The following is the output of Program 10.4

t1 = New
t2 = York

t3 = New Delhi

New smaller than New Delhi

 10.7 Rules for Overloading Operators

Although it looks simple to redefine the operators, there are certain restrictions and limitations

in overloading them. Some of them are listed below:

 1. Only existing operators can be overloaded. New operators cannot be created.

 2. The overloaded operator must have at least one operand that is of user-defined type.

 3. We cannot change the basic meaning of an operator. That is to say, we cannot redefine

the plus(+) operator to subtract one value from the other.

 4. Overloaded operators follow the syntax rules of the original operators. They cannot be

overridden.

 5. There are some operators that cannot be overloaded. (See Table 10.1.)

 6. We cannot use friend functions to overload certain operators. (See Table 10.2.) However,

member functions can be used to overload them.

 7. Unary operators, overloaded by means of a member function, take no explicit arguments

and return no explicit values, but, those overloaded by means of a friend function, take

one reference argument (the object of the relevant class).

 8. Binary operators overloaded through a member function take one explicit argument and

those which are overloaded through a friend function take two explicit arguments.

 9. When using binary operators overloaded through a member function, the left hand

operand must be an object of the relevant class.

 10. Binary arithmetic operators such as +, –, *, and / must explicitly return a value. They

must not attempt to change their own arguments.

10.16 Basic Computer Engineering

Table 10.1 Operators that cannot be overloaded

Sizeof Size of operator

 . Membership operator

 .* Pointer-to-member operator

 :: Scope resolution operator

 ?: Conditional operator

Table 10.2 Where a friend cannot be used

 = Assignment operator

 () Function call operator

 [] Subscripting operator

 -> Class member access operator

 10.8 Type Conversions

When constants and variables of different types are mixed in an expression, C applies automatic

type conversion to the operands as per certain rules. Similarly, an assignment operation also

causes the automatic type conversion. The type of data to the right of an assignment operator

is automatically converted to the type of the variable on the left. For example, the statements

int m;
fl oat x = 3.14159;
m = x;

convert x to an integer before its value is assigned to m. Thus, the fractional part is truncated.

The type conversions are automatic as long as the data types involved are built-in types.

What happens when they are user-defined data types?

Consider the following statement that adds two objects and then assigns the result to a third

object.

v3 = v1 + v2; // v1, v2 and v3 are class type objects

When the objects are of the same class type, the operations of addition and assignment

are carried out smoothly and the compiler does not make any complaints. We have seen, in

the case of class objects, that the values of all the data members of the right-hand object are

simply copied into the corresponding members of the object on the left-hand. What if one of the

operands is an object and the other is a built-in type variable? Or, what if they belong to two

different classes?

Since the user-defined data types are designed by us to suit our requirements, the compiler

does not support automatic type conversions for such data types. We must, therefore, design

the conversion routines by ourselves, if such operations are required.

Three types of situations might arise in the data conversion between uncompatible types:

 1. Conversion from basic type to class type.

10.17Operator Overloading and Type Conversions

 2. Conversion from class type to basic type.

 3. Conversion from one class type to another class type.

We shall discuss all the three cases in detail.

10.8.1 Basic to Class Type

The conversion from basic type to class type is easy to accomplish. It may be recalled that the

use of constructors was illustrated in a number of examples to initialize objects. For example,

a constructor was used to build a vector object from an int type array. Similarly, we used

another constructor to build a string type object from a char* type variable. These are all

examples where constructors perform a defacto type conversion from the argument’s type to

the constructor’s class type.

Consider the following constructor:

string :: string(char *a)
{
 length = strlen(a);
 P = new char[length+1];
 strcpy(P,a);
}

This constructor builds a string type object from a char* type variable a. The variables

length and p are data members of the class string. Once this constructor has been defined in

the string class, it can be used for conversion from char* type to string type. Example:

string s1, s2;
char* name1 = “IBM PC”;
char* name2 = “Apple Computers”;
s1 = string(name1);
s2 = name2;

The statement

s1 = string(name1);

first converts name1 from char* type to string type and then assigns the string type values

to the object s1. The statement

s2 = name2;

also does the same job by invoking the constructor implicitly.

Let us consider another example of converting an int type to a class type.

class time
{
 int hrs;
 int mins;
 public:

10.18 Basic Computer Engineering

 time(int t) // constructor
 {
 hours = t/60; // t in minutes

 mins = t%60;
 }
};

The following conversion statements can be used in a function:

time T1; // object T1 created
int duration = 85;
T1 = duration; // int to class type

After this conversion, the hrs member of T1 will contain a value of 1 and mins member a

value of 25, denoting 1 hours and 25 minutes.

note

The constructors used for the type conversion take a single argument whose type is to be

converted.

In both the examples, the left-hand operand of = operator is always a class object. Therefore,

we can also accomplish this conversion using an overloaded = operator.

10.8.2 Class to Basic Type

The constructors did a fine job in type conversion from a basic to class type. What about the

conversion from a class to basic type? The constructor functions do not support this operation.

Luckily, C++ allows us to defi ne an overloaded casting operator that could be used to convert

a class type data to a basic type. The general form of an overloaded casting operator function,

usually referred to as a conversion function, is:

operator typename()
{

 (Function statements)

}

This function converts a class type data to typename. For example, the operator double()

converts a class object to type double, the operator int() converts a class type object to type

int, and so on.

Consider the following conversion function:

vector :: operator double()
{
 double sum = 0;

10.19Operator Overloading and Type Conversions

 for(int i=0; i<size; i++)
 sum = sum + v[i] * v[i];
 return sqrt(sum);
}

This function converts a vector to the corresponding scalar magnitude. Recall that the

magnitude of a vector is given by the square root of the sum of the squares of its components.

The operator double() can be used as follows:

double length = double(V1);
 or
double length = V1;

where V1 is an object of type vector. Both the statements have exactly the same effect. When

the compiler encounters a statement that requires the conversion of a class type to a basic

type, it quietly calls the casting operator function to do the job.

The casting operator function should satisfy the following conditions:

 It must be a class member.

 It must not specify a return type.

 It must not have any arguments.

Since it is a member function, it is invoked by the object and, therefore, the values used for

conversion inside the function belong to the object that invoked the function. This means that

the function does not need an argument.

In the string example described in the previous section, we can do the conversion from

string to char* as follows:

string :: operator char*()
{
 return(p);
}

10.8.3 One Class to Another Class Type

We have just seen data conversion techniques from a basic to class type and a class to basic

type. But there are situations where we would like to convert one class type data to another

class type.

Example:

objX = objY; // objects of different types

objX is an object of class X and objY is an object of class Y. The class Y type data is converted

to the class X type data and the converted value is assigned to the objX. Since the conversion

takes place from class Y to class X, Y is known as the source class and X is known as the

destination class.

Such conversions between objects of different classes can be carried out by either a

constructor or a conversion function. The compiler treats them the same way. Then, how do we

10.20 Basic Computer Engineering

decide which form to use? It depends upon where we want the type-conversion function to be

located in the source class or in the destination class.

We know that the casting operator function

operator typename()

converts the class object of which it is a member to typename. The typename may be a built-

in type or a user-defined one (another class type). In the case of conversions between objects,

typename refers to the destination class. Therefore, when a class needs to be converted, a

casting operator function can be used (i.e. source class). The conversion takes place in the

source class and the result is given to the destination class object.

Now consider a single-argument constructor function which serves as an instruction for

converting the argument’s type to the class type of which it is a member. This implies that the

argument belongs to the source class and is passed to the destination class for conversion. This

makes it necessary that the conversion constructor be placed in the destination class. Figure

10.2 illustrates these two approaches.

objx = objy // Y is a source class

casting operator

function

data access

functions

Constructor

function

Conversion here

(destination class)

Conversion here

(source class)

Class Y

Class Y

converted value of

type X

argument of

type Y

Class X

Fig. 10.2 3 Conversion between object

Table 10.3 provides a summary of all the three conversions. It shows that the conversion from

a class to any other type (or any other class) should make use of a casting operator in the

source class. On the other hand, to perform the conversion from any other type/class to a class

type, a constructor should be used in the destination class.

Table 10.3 Type conversions

Conversion required Conversion takes place in

 Source class Destination class

BasicS class Not applicable Constructor

ClassS basic Casting operator Not applicable

Class S class Casting operator Constructor

10.21Operator Overloading and Type Conversions

When a conversion using a constructor is performed in the destination class, we must be

able to access the data members of the object sent (by the source class) as an argument. Since

data members of the source class are private, we must use special access functions in the

source class to facilitate its data flow to the destination class.

10.8.4 A Data Conversion Example

Let us consider an example of an inventory of products in store. One way of recording the

details of the products is to record their code number, total items in the stock and the cost of

each item. Another approach is to just specify the item code and the value of the item in the

stock. The example shown in Program 10.5 uses two classes and shows how to convert data of

one type to another.

DATA CONVERSIONS

 #include <iostream>

 using namespace std;

 class invent2 // destination class declared

 class invent1 // source class
 {
 int code; // item code
 int items; // no. of items

fl oat price; // cost of each item
public:
 invent1(int a, int b, fl oat c)
 {
 code = a;
 items = b;
 price = c;
 }
 void putdata()
 {
 cout << “Code: “ << code << “\n”;
 cout << “Items: “ << items << “\n”;
 cout << “Value: “ << price << “\n”;
 }
 int getcode() {return code;}
 int getitems() {return items;}

fl oat getprice() {return price;}
 operator fl oat() {return(items * price);}

10.22 Basic Computer Engineering

 /* operator invent2() // invent1 to invent2
 {
 invent2 temp;
 temp.code = code;
 temp.value = price * items;
 return temp;
 } */
}; // End of source class
class invent2 // destination class
{
 int code;

fl oat value;
 public:
 invent2()
 {
 code = 0; value = 0;
 }
 invent2(int x, fl oat y) // constructor for
 // initialization
 {
 code = x;
 value = y;
 }
 void putdata()
 {
 cout << “Code: “ << code << “\n”;
 cout << “Value: “ << value << “\n\n”;
 }
 invent2(invent1 p) // constructor for conversion
 {
 code = p.getcode();
 value = p.getitems() * p.getprice();
 }
}; // End of destination class

int main()
{
 invent1 s1(100,5,140.0);
 invent2 d1;

fl oat total_value;

 /* invent1 To fl oat */

10.23Operator Overloading and Type Conversions

 total_value = s1;

 /* invent1 To invent2 */
 d1 = s1;

 cout << “Product details - invent1 type” << “\n”;
 s1.putdata();

 cout << “\nStock value” << “\n”;
 cout << “Value = “ << total_value << “\n\n”;

 cout << “Product details-invent2 type” << “\n”;
 d1.putdata();

 return 0;
}

PROGRAM 10.5

Following is the output of Program 10.5:

Product details-invent1 type
Code: 100
Items: 5
Value: 140
Stock value
Value = 700
Product details-invent2 type
Code: 100
Value: 700

note

We have used the conversion function

operator fl oat()

in the class invent1 to convert the invent1 type data to a float. The constructor

invent2 (invent1)

is used in the class invent2 to convert the invent1 type data to the invent2 type data.

Remember that we can also use the casting operator function

operator invent2()

in the class invent1 to convert invent1 type to invent2 type. However, it is important that

we do not use both the constructor and the casting operator for the same type conversion,

since this introduces an ambiguity as to how the conversion should be performed.

10.24 Basic Computer Engineering

SUMMARY

 Operator overloading is one of the important features of C++ language. It is called compile

time polymorphism.

 Using overloading feature we can add two user defined data types such as objects, with

the same syntax, just as basic data types.

 We can overload almost all the C++ operators except the following:

 class member access operators(., .*)

 scope resolution operator (::)

 size operator(sizeof)

 conditional operator(?:)

 Operator overloading is done with the help of a special function, called operator function,

which describes the special task to an operator.

 There are certain restrictions and limitations in overloading operators. Operator functions

must either be member functions (non-static) or friend functions. The overloading operator

must have at least one operand that is of user-defined type.

 The compiler does not support automatic type conversions for the user defined data types.

We can use casting operator functions to achieve this.

 The casting operator function should satisfy the following conditions:

 It must be a class member.

 It must not specify a return type.

 It must not have any arguments.

Key Terms

 arithmetic notation

 binary operators

 casting

 casting operator

 constructor

 conversion function

 destination class

friend

friend function

 functional notation

 manipulating strings

 operator

 operator function

 operator overloading

 scalar multiplication

 semantics

10.25Operator Overloading and Type Conversions

 Review Questions

10.1 What is operator overloading?

10.2 Why is it necessary to overload an operator?

10.3 What is an operator function? Describe the syntax of an operator function.

10.4 How many arguments are required in the definition of an overloaded unary operator?

10.5 A class alpha has a constructor as follows:

 alpha(int a, double b);

 Can we use this constructor to convert types?

10.6 What is a conversion function How is it created Explain its syntax.

10.7 A friend function cannot be used to overload the assignment operator =. Explain why?

10.8 When is a friend function compulsory? Give an example.

10.9 We have two classes X and Y. If a is an object of X and b is an object of Y and we

want to say a = b; What type of conversion routine should be used and where?

10.10 State whether the following statements are TRUE or FALSE.

 (a) Using the operator overloading concept, we can change the meaning of an operator.

 (b) Operator overloading works when applied to class objects only.

 (c) Friend functions cannot be used to overload operators.

 (d) When using an overloaded binary operator, the left operand is implicitly passed

to the member function.

 (e) The overloaded operator must have at least one operand that is user-defined type.

 (f) Operator functions never return a value.

 (g) Through operator overloading, a class type data can be converted to a basic type

data.

 (h) A constructor can be used to convert a basic type to a class type data.

 Debugging Exercises

10.1 Identify the error in the following program.

#include <iostream.h>
class Space
{
 int mCount;

sizeof

 source class

 syntax

 temporary object

 type conversion

 unary operators

10.26 Basic Computer Engineering

public:
 Space()
 {
 mCount = 0;
 }

 Space operator ++()
 {
 mCount++;
 return Space(mCount);
 }
};

void main()
{
 Space objSpace;
 objSpace++;
}

10.2 Identify the error in the following program.

#include <iostream.h>
enum WeekDays
{
 mSunday,
 mMonday,
 mTuesday,
 mWednesday,
 mThursday,
 mFriday,
 mSaturday
};
bool op==(WeekDays& w1, WeekDays& w2)
{
 if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)
 return 1;
 else if(w1== mSunday && w2 == mSunday)

10.27Operator Overloading and Type Conversions

 return 1;
 else
 return 0;
}
void main()
{
 WeekDays w1 = mSunday, w2 = mSunday;
 if(w1==w2)
 cout << “Same day”;
 else
 cout << “Different day”;
}

10.3 Identify the error in the following program.

#include <iostream.h>
class Room
{

fl oat mWidth;
fl oat mLength;

public:
 Room()
 {
 }
 Room(fl oat w, fl oat h)
 :mWidth(w), mLength(h)
 {
 }
 operator fl oat()
 {
 return (fl oat)mWidth * mLength;
 }

fl oat getWidth()
 {
 }

fl oat getLength()
 {
 return mLength;
 }
};

void main()
{
 Room objRoom1(2.5, 2.5);

fl oat fTotalArea;

10.28 Basic Computer Engineering

 fTotalArea = objRoom1;
 cout << fTotalArea;
}

 Programming Exercises

NOTE: For all the exercises that follow, build a demonstration program to test your code.

10.1 Create a class FLOAT that contains one float data member. Overload all the four

arithmetic operators so that they operate on the objects of FLOAT.

10.2 Design a class Polar which describes a point in

the plane using polar coordinates radius and

angle. A point in polar coordinates is shown in

Fig. 10.3.

 Use the overloaded + operator to add two objects

of Polar.

 Note that we cannot add polar values of two

points directly. This requires first the conversion

of points into rectangular co-ordinates, then

adding the corresponding rectangular co-

ordinates and finally converting the result back

into polar co-ordinates. You need to use the

following trigonometric formulae:

 x = r * cos(a);
 y = r * sin(a);
 a = atan(y/x); // arc tangent
 r = sqrt(x*x + y*y);

10.3 Create a class MAT of size m x n. Define all possible matrix operations for MAT type

objects.

10.4 Define a class String. Use overloaded == operator to compare two strings.

10.5 Define two classes Polar and Rectangle to represent points in the polar and rectangle

systems. Use conversion routines to convert from one system to the other.

Radius

Angle = a

Point (,)r a

x

y

Fig. 10.3 3 Polar coordinates of a
point

Derived Classes and

Inheritance

11

Key Concepts

 Reusability

 Inheritance

 Single inheritance

 Multiple inheritance

 Multilevel inheritance

 Hybrid inheritance

 Hierarchical inheritance

 Defining a derived class

 Inheritiing private members

 Virtual base class

 Direct base class

 Indirect base class

 Abstract class

 Defining derived class constructors

 Nesting of classes

 11.1 Introduction

Reusability is yet another important feature
of OOP. It is always nice if we could reuse
something that already exists rather than
trying to create the same all over again. It
would not only save time and money but also
reduce frustration and increase reliability.
For instance, the reuse of a class that has
already been tested, debugged and used many
times can save us the effort of developing and
testing the same again.

Fortunately, C++ strongly supports the
concept of reusability. The C++ classes can be
reused in several ways. Once a class has been
written and tested, it can be adapted by other
programmers to suit their requirements. This
is basically done by creating new classes,
reusing the properties of the existing ones.
The mechanism of deriving a new class from
an old one is called inheritance (or derivation).
The old class is referred to as the base class
and the new one is called the derived class or
subclass.

The derived class inherits some or all of
the traits from the base class. A class can
also inherit properties from more than one

11.2 Basic Computer Engineering

class or from more than one level. A derived class with only one base class, is called single
inheritance and one with several base classes is called multiple inheritance. On the other
hand, the traits of one class may be inherited by more than one class. This process is known
as hierarchical inheritance. The mechanism of deriving a class from another ‘derived class’
is known as multilevel inheritance. Figure 11.1 shows various forms of inheritance that
could be used for writing extensible programs. The direction of arrow indicates the direction
of inheritance. (Some authors show the arrow in opposite direction meaning “inherited

from”.)

(a) Single inheritance

A

B

A

B C D

(c) Hierarchical inheritance

C

B

(e) Hybrid inheritance

(b) Multiple inheritance

C

A B

(d) Multilevel inheritance

A

B

C

A

B

Fig. 11.1 3 Forms of inheritance

 11.2 Defi ning Derived Classes

A derived class can be defined by specifying its relationship with the base class in addition to

its own details. The general form of defining a derived class is:

11.3Derived Classes and Inheritance

class derived-class-name : visibility-mode base-class-name

{
 //
 // members of derived class
 //
};

The colon indicates that the derived-class-name is derived from the base-class-name. The

visibility-mode is optional and, if present, may be either private or public. The default

visibility-mode is private. Visibility mode specifies whether the features of the base class are

privately derived or publicly derived.

Examples:

class ABC: private XYZ // private derivation
{
 members of ABC
};

class ABC: public XYZ // public derivation
{
 members of ABC
};

class ABC: XYZ // private derivation by default
{
 members of ABC
};

When a base class is privately inherited by a derived class, ‘public members’ of the base class

become ‘private members’ of the derived class and therefore the public members of the base

class can only be accessed by the member functions of the derived class. They are inaccessible

to the objects of the derived class. Remember, a public member of a class can be accessed by its

own objects using the dot operator. The result is that no member of the base class is accessible

to the objects of the derived class.

On the other hand, when the base class is publicly inherited, ‘public members’ of the base

class become ‘public members’ of the derived class and therefore they are accessible to the objects

of the derived class. In both the cases, the private members are not inherited and therefore, the

private members of a base class will never become the members of its derived class.

In inheritance, some of the base class data elements and member functions are ‘inherited’

into the derived class. We can add our own data and member functions and thus extend the

functionality of the base class. Inheritance, when used to modify and extend the capabilities of

the existing classes, becomes a very powerful tool for incremental program development.

11.4 Basic Computer Engineering

 11.3 Single Inheritance

Let us consider a simple example to illustrate inheritance. Program 11.1 shows a base class B

and a derived class D. The class B contains one private data member, one public data member,

and three public member functions. The class D contains one private data member and two

public member functions.

SINGLE INHERITANCE : PUBLIC

#include <iostream>

using namespace std;

class B
{
 int a; // private; not inheritable
 public:
 int b; // public; ready for inheritance
 void get_ab();
 int get_a(void);
 void show_a(void);
};

class D : public B // public derivation
{
 int c;
 public:
 void mul(void);
 void display(void);
};
//--
void B :: get_ab(void)
{
 a = 5; b = 10;
}
int B :: get_a()
{
 return a;
}
void B :: show_a()
{
 cout << “a = “ << a << “\n”;
}
void D :: mul()
{

11.5Derived Classes and Inheritance

 c = b * get_a();
}
void D :: display()
{
 cout << “a = “ << get_a() << “\n”;
 cout << “b = “ << b << “\n”;
 cout << “c = “ << c << “\n\n”;
}
//---
int main()
{
 D d;

 d.get_ab();
 d.mul();
 d.show_a();
 d.display();

 d.b = 20;
 d.mul();
 d.display();

 return 0;
}

PROGRAM 11.1

Given below is the output of Program 11.1:

a = 5
a = 5
b = 10
c = 50

a = 5
b = 20
c = 100

The class D is a public derivation of the base class B. Therefore, D inherits all the public

members of B and retains their visibility. Thus a public member of the base class B is also

a public member of the derived class D. The private members of B cannot be inherited

by D. The class D, in effect, will have more members than what it contains at the time of

declaration as shown in Fig. 11.2.

11.6 Basic Computer Engineering

The program illustrates that the objects of class D have access to all the public members of

B. Let us have a look at the functions show_a() and mul():

void show_a()
{
 cout << “a = “ << a << “\n”;
}

void mul()
{
 c = b * get_a(); // c = b * a
}

Although the data member a is private in B and cannot be inherited, objects of D are able

to access it through an inherited member function of B.

Let us now consider the case of private derivation.

class B
{
 int a;
 public:
 int b;

Class D

Private Section

b

get_ab()

show_a()

get_a()

mul()

display()

c

Inherited

from B

Public Section

B

Fig. 11.2 3 Adding more members to a class (by public derivation)

11.7Derived Classes and Inheritance

 void get_ab();
void get_a();
 void show_a();
};

class D : private B // private derivation
{
 int c;
 public:
 void mul();
 void display();
};

The membership of the derived class D is shown in Fig. 11.3. In private derivation, the

public members of the base class become private members of the derived class. Therefore,

the objects of D can not have direct access to the public member functions of B.

Class D

Private Section

b

get_ab()

show_a()

get_a()

mul()

display()

c

Inherited

from B

Public Section

B

Fig. 11.3 3 Adding more members to a class (by private derivation)

The statements such as

d.get_ab(); // get_ab() is private
d.get_a(); // so also get_a()
d.show_a(); // and show_a()

11.8 Basic Computer Engineering

will not work. However, these functions can be used inside mul() and display() like the normal

functions as shown below:

void mul()
{
 get_ab();
 c = b * get_a();
}

void display()
{

 show_a(); // outputs value of ‘a’
 cout << “b = “ << b << “\n”
 << “c = “ << c << “\n\n”;
}

Program 11.2 incorporates these modifications for private derivation. Please compare this

with Program 11.1.

SINGLE INHERITANCE : PRIVATE

#include <iostream>

using namespace std;

class B
{
 int a; // private; not inheritable
 public:
 int b; // public; ready for inheritance
 void get_ab();
 int get_a(void);
 void show_a(void);
};

class D : private B // private derivation
{
 int c;
 public:
 void mul(void);
 void display(void);
};

//--

void B :: get_ab(void)

11.9Derived Classes and Inheritance

{
 cout << “Enter values for a and b:”;
 cin >> a >> b;
}

int B :: get_a()
{
 return a;
}

void B :: show_a()
{
 cout << “a = “ << a << “\n”;
}

void D :: mul()
{
 get_ab();
 c = b * get_a(); // ‘a’ cannot be used directly
}

void D :: display()
{
 show_a(); // outputs value of ‘a’
 cout << “b = “ << b << “\n”
 << “c = “ << c << “\n\n”;
}

//---

int main()
{
 D d;

 // d.get_ab(); WON’T WORK
 d.mul();
 // d.show_a(); WON’T WORK
 d.display();
 // d.b = 20; WON’T WORK; b has become private
 d.mul();
 d.display();

 return 0;
}

PROGRAM 11.2

11.10 Basic Computer Engineering

The output of Program 11.2 would be:

Enter values for a and b:5 10
a = 5
b = 10
c = 50
Enter values for a and b:12 20
a = 12
b = 20
c = 240

Suppose a base class and a derived class define a function of the same name. What will

happen when a derived class object invokes the function? In such cases, the derived class

function supersedes the base class definition. The base class function will be called only if the

derived class does not redefine the function.

 11.4 Making a Private Member Inheritable

We have just seen how to increase the capabilities of an existing class without modifying it.

We have also seen that a private member of a base class cannot be inherited and therefore it

is not available for the derived class directly. What do we do if the private data needs to be

inherited by a derived class? This can be accomplished by modifying the visibility limit of the

private member by making it public. This would make it accessible to all the other functions

of the program, thus taking away the advantage of data hiding.

C++ provides a third visibility modifier, protected, which serve a limited purpose in

inheritance. A member declared as protected is accessible by the member functions within its

class and any class immediately derived from it. It cannot be accessed by the functions outside

these two classes. A class can now use all the three visibility modes as illustrated below:

class alpha
{
 private: // optional
 // visible to member functions
 // within its class
 protected:
 // visible to member functions
 // of its own and derived class
 public:
 // visible to all functions
 // in the program
};

When a protected member is inherited in public mode, it becomes protected in the derived

class too and therefore is accessible by the member functions of the derived class. It is also

ready for further inheritance. A protected member, inherited in the private mode derivation,

becomes private in the derived class. Although it is available to the member functions of the

derived class, it is not available for further inheritance (since private members cannot be

inherited). Figure 11.4 is the pictorial representation for the two levels of derivation.

11.11Derived Classes and Inheritance

Fig. 11.4 3 Effect of inheritance on the visibility of members

The keywords private, protected, and public may appear in any order and any number

of times in the declaration of a class. For example,

class beta
{
 protected:

 public:

 private:

 public:

};

is a valid class definition.

However, the normal practice is to use them as follows:

class beta
{
 // private by default

11.12 Basic Computer Engineering

 protected:

 public:

}

It is also possible to inherit a base class in protected mode (known as protected derivation).

In protected derivation, both the public and protected members of the base class become

protected members of the derived class. Table 11.1 summarizes how the visibility of base

class members undergoes modifications in all the three types of derivation.

Table 11.1 Visibility of inherited members

 Derived class visibility

 Base class visibility Public Private Protected

 derivation derivation derivation

 Private æÆ Not inherited Not inherited Not inherited

 Protected æÆ Protected Private Protected

 Public æÆ Public Private Protected

Now let us review the access control to the private and protected members of a class.

What are the various functions that can have access to these members? They could be:

 1. A function that is a friend of the class.

 2. A member function of a class that is a friend of the class.

 3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct access

to both the private and protected data, the member functions of a derived class can directly

access only the protected data. However, they can access the private data through the

member functions of the base class. Figure 11.5 illustrates how the access control mechanism

works in various situations. A simplified view of access control to the members of a class is

shown in Fig. 11.6.

 11.5 Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as shown in Fig. 11.7.

The class A serves as a base class for the derived class B, which in turn serves as a base class

for the derived class C. The class B is known as intermediate base class since it provides a link

for the inheritance between A and C. The chain ABC is known as inheritance path.

A derived class with multilevel inheritance is declared as follows:

class A{.....}; // Base class
class B: public A {.....}; // B derived from A
class C: public B {.....}; // C derived from B

11.13Derived Classes and Inheritance

class Y

class Z

friend of X

friend of X

private

Inherited from X

function 1

protected

data

data

class X

friend class Y:

fx1

fx2

fz1

fz2

fy1

fy2

Fig. 11.5 3 Access mechanism in classes

private

public

protected

own member
functions

and friendly
functions
and classes

derived
class

member

functions

All users

Fig. 11.6 3 A simple view of access control to the members
of a class

C

Base class

Intermediate
base class

Derived class

Grandfather

Father

Child

A

B

Fig. 11.7 3 Multilevel in heritance

11.14 Basic Computer Engineering

This process can be extended to any number of levels.

Let us consider a simple example. Assume that the test results of a batch of students are

stored in three different classes. Class student stores the roll-number, class test stores the

marks obtained in two subjects and class result contains the total marks obtained in the test.

The class result can inherit the details of the marks obtained in the test and the roll-number

of students through multilevel inheritance. Example:

class student
{
 protected:
 int roll_number;
 public:
 void get_number(int);
 void put_number(void);
};
void student :: get_number(int a)
{
 roll_number = a;
}
void student :: put_number()
{
 cout << “Roll Number: “ << roll_number << “\n”;
}

class test : public student // First level derivation
{
 protected:
 fl oat sub1;
 fl oat sub2;
 public:
 void get_marks(fl oat, fl oat);
 void put_marks(void);
};
void test :: get_marks(fl oat x, fl oat y)
{
 sub1 = x;
 sub2 = y;
}
void test :: put_marks()
{
 cout << “Marks in SUB1 = “ << sub1 << “\n”;
 cout << “Marks in SUB2 = “ << sub2 << “\n”;
}

11.15Derived Classes and Inheritance

class result : public test // Second level derivation
{
 fl oat total; // private by default
 public:
 void display(void);
};

The class result, after inheritance from ‘grandfather’ through ‘father’, would contain the

following members:

private:
fl oat total; // own member

protected:
 int roll_number; // inherited from student via test

fl oat sub1; // inherited from test
fl oat sub2; // inherited from test

public:
 void get_number(int); // from student via test
 void put_number(void); // from student via test
 void get_marks(fl oat, fl oat); // from test
 void put_marks(void); // from test
 void display(void); // own member

The inherited functions put_number() and put_marks() can be used in the definition of

display() function:

void result :: display(void)
{
 total = sub1 + sub2;
 put_number();
 put_marks();
 cout << “Total = “ << total << “\n”;
}

Here is a simple main() program:

int main()
{
 result student1; // student1 created
 student1.get_number(111);
 student1.get_marks(75.0, 59.5);
 student1.display();

 return 0;
}

This will display the result of student1. The complete program is shown in Program 11.3.

11.16 Basic Computer Engineering

MULTILEVEL INHERITANCE

#include <iostream>

using namespace std;

class student
{
 protected:
 int roll_number;
 public:
 void get_number(int);
 void put_number(void);
};

void student :: get_number(int a)
{
 roll_number = a;
}

void student :: put_number()
{
 cout << “Roll Number: “ << roll_number << “\n”;
}

class test : public student // First level derivation
{
 protected:

fl oat sub1;
fl oat sub2;

 public:
 void get_marks(fl oat, fl oat);
 void put_marks(void);
};

void test :: get_marks(fl oat x, fl oat y)
{
 sub1 = x;
 sub2 = y;
}

void test :: put_marks()
{
 cout << “Marks in SUB1 = “ << sub1 << “\n”;
 cout << “Marks in SUB2 = “ << sub2 << “\n”;
}

11.17Derived Classes and Inheritance

class result : public test // Second level derivation
{

fl oat total; // private by default
 public:
 void display(void);
};

void result :: display(void)
{
 total = sub1 + sub2;
 put_number();
 put_marks();
 cout << “Total = “ << total << “\n”;
}

int main()
{
 result student1; // student1 created

 student1.get_number(111);
 student1.get_marks(75.0, 59.5);

 student1.display();

 return 0;
}

PROGRAM 11.3

Program 11.3 displays the following output:

Roll Number: 111
Marks in SUB1 = 75
Marks in SUB2 = 59.5
Total = 134.5

 11.6 Multiple Inheritance

A class can inherit the attributes of two or more

classes as shown in Fig. 11.8. This is known as

multiple inheritance. Multiple inheritance allows

us to combine the features of several existing

classes as a starting point for defining new

classes. It is like a child inheriting the physical

features of one parent and the intelligence of

another.

B-1

D

B-2 B-n.

Fig. 11.8 3 Multiple inheritance

11.18 Basic Computer Engineering

The syntax of a derived class with multiple base classes is as follows:

class D: visibility B-1, visibility B-2 ...
{

 (Body of D)

};

where, visibility may be either public or private. The base classes are separated by commas.

Example:

class P : public M, public N
{
 public:
 void display(void);
};

Classes M and N have been specified as follows:

class M
{
 protected:
 int m;
 public:
 void get_m(int);
};
void M :: get_m(int x)
{
 m = x;
}
class N
{
 protected:
 int n;
 public:
 void get_n(int);
};
void N :: get_n(int y)
 {
 n = y;
 }

11.19Derived Classes and Inheritance

The derived class P, as declared above, would, in effect, contain all the members of M and

N in addition to its own members as shown below:

class P
{
 protected:

 int m; // from M
 int n; // from N

 public:

 void get_m(int); // from M
 void get_n(int); // from N
 void display(void); // own member

};

The member function display() can be defined as follows:

void P :: display(void)
{
 cout << “m = “ << m << “\n”;
 cout << “n = “ << n << “\n”;
 cout << “m*n =” << m*n << “\n”;
};

The main() function which provides the user-interface may be written as follows:

main()
{
 P p;
 p.get_m(10);
 p.get_n(20);
 p.display();
}

Program 11.4 shows the entire code illustrating how all the three classes are implemented

in multiple inheritance mode.

MULTIPLE INHERITANCE

#include <iostream>

using namespace std;

class M
{
 protected:
 int m;

11.20 Basic Computer Engineering

 public:
 void get_m(int);
};

class N
{
 protected:
 int n;
 public:
 void get_n(int);
};

class P : public M, public N
{
 public:
 void display(void);
};

void M :: get_m(int x)
{
 m = x;
}

void N :: get_n(int y)
{
 n = y;
}

void P :: display(void)
{
 cout << “m = “ << m << “\n”;
 cout << “n = “ << n << “\n”;
 cout << “m*n = “ << m*n << “\n”;
}

int main()
{
 P p;

 p.get_m(10);
 p.get_n(20);
 p.display();

 return 0;
}

PROGRAM 11.4

11.21Derived Classes and Inheritance

The output of Program 11.4 would be:

m = 10
n = 20
m*n = 200

11.6.1 Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance, when a function with

the same name appears in more than one base class. Consider the following two classes.

class M
{
 public:
 void display(void)
 {
 cout << “Class M\n”;
 }
};

class N
{
 public:
 void display(void)
 {
 cout << “Class N\n”;
 }
};

Which display() function is used by the derived class when we inherit these two classes?

We can solve this problem by defining a named instance within the derived class, using the

class resolution operator with the function as shown below:

class P : public M, public N
{
 public:
 void display(void) // overrides display() of M and N
 {
 M :: display();
 }
};

We can now use the derived class as follows:

int main()
{
 P p;
 p.display();
}

11.22 Basic Computer Engineering

Ambiguity may also arise in single inheritance applications. For instance, consider the

following situation:

class A
{
 public:
 void display()
 {
 cout << “A\n”;
 }
};
class B : public A
{
 public:
 void display()
 {
 cout << “B\n”;
 }
};

In this case, the function in the derived class overrides the inherited function and, therefore,

a simple call to display() by B type object will invoke function defined in B only. However,

we may invoke the function defined in A by using the scope resolution operator to specify the

class.

Example:

int main()
{
 B b; // derived class object
 b.display(); // invokes display() in B
 b.A::display(); // invokes display() in A
 b.B::display(); // invokes display() in B

 return 0;
}

This will produce the following output:

B
A
B

 11.7 Hierarchical Inheritance

We have discussed so far how inheritance can be used to modify a class when it did not satisfy

the requirements of a particular problem on hand. Additional members are added through

inheritance to extend the capabilities of a class. Another interesting application of inheritance

11.23Derived Classes and Inheritance

is to use it as a support to the hierarchical design of a program. Many programming problems

can be cast into a hierarchy where certain features of one level are shared by many others

below that level.

As an example, Fig. 11.9 shows a hierarchical classification of students in a university.

Another example could be the classification of accounts in a commercial bank as shown in Fig.

11.10. All the students have certain things in common and, similarly, all the accounts possess

certain common features.

Students

Arts Medical

Mech. Elec. Civil

Engineering

Fig. 11.9 3 Hierarchical classifi cation of students

Medium-term

Short-term

Fixed-deposit account

Savings account Current account

Long-term

Account

Fig. 11.10 3 Classifi cation of bank accounts

11.24 Basic Computer Engineering

In C++, such problems can be easily converted into class hierarchies. The base class will

include all the features that are common to the subclasses. A subclass can be constructed by

inheriting the properties of the base class. A subclass can serve as a base class for the lower

level classes and so on.

 11.8 Hybrid Inheritance

There could be situations where we need

to apply two or more types of inheritance to

design a program. For instance, consider

the case of processing the student results

discussed in Sec. 11.5. Assume that we have

to give weightage for sports before finalising

the results. The weightage for sports is stored

in a separate class called sports. The new

inheritance relationship between the various

classes would be as shown in Fig. 11.11.

The sports class might look like:

class sports
{
 protected:

fl oat score;
 public:
 void get_score(fl oat);
 void put_score(void);
};

The result will have both the multilevel and multiple inheritances and its declaration would

be as follows:

class result : public test, public sports
{

};

Where test itself is a derived class from student. That is

class test : public student
{

};

Program 11.5 illustrates the implementation of both multilevel and multiple inheritance.

Fig. 11.11 3 Multilevel, multiple inheritance

student

test

result

sports

11.25Derived Classes and Inheritance

HYBRID INHERITANCE

#include <iostream>

using namespace std;

class student
{
 protected:
 int roll_number;
 public:
 void get_number(int a)
 {
 roll_number = a;
 }
 void put_number(void)
 {
 cout << “Roll No: “ << roll_number << “\n”;
 }
};

class test : public student
{
 protected:

fl oat part1, part2;
 public:
 void get_marks(fl oat x, fl oat y)
 {
 part1 = x; part2 = y;
 }
 void put_marks(void)
 {
 cout << “Marks obtained: “ << “\n”
 << “Part1 = “ << part1 << “\n”
 << “Part2 = “ << part2 << “\n”;
 }
};

class sports
{
 protected:
 fl oat score;
 public:
 void get_score(fl oat s)
 {

11.26 Basic Computer Engineering

 score = s;
 }
 void put_score(void)
 {
 cout << “Sports wt: “ << score << “\n\n”;
 }
};

class result : public test, public sports
{
 fl oat total;
 public:
 void display(void);
};

void result :: display(void)
{
 total = part1 + part2 + score;

 put_number();
 put_marks();
 put_score();

 cout << “Total Score: “ << total << “\n”;
}

int main()
{
 result student_1;
 student_1.get_number(1234);
 student_1.get_marks(27.5, 33.0);
 student_1.get_score(6.0);
 student_1.display();

 return 0;
}

PROGRAM 11.5

Here is the output of Program 11.5:

Roll No: 1234
Marks obtained:
Part1 = 27.5
Part2 = 33
Sports wt: 6

Total Score: 66.5

11.27Derived Classes and Inheritance

 11.9 Virtual Base Classes

We have just discussed a situation which would require the use of both the multiple and

multilevel inheritance. Consider a situation where all the three kinds of inheritance,

namely, multilevel, multiple and hierarchical inheritance, are involved. This is illustrated in

Fig. 11.12. The ‘child’ has two direct base classes ‘parent1’ and ‘parent2’ which themselves

have a common base class ‘grandparent’. The ‘child’ inherits the traits of ‘grandparent’ via two

separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’ is

sometimes referred to as indirect base class.

Grandparent

Parent 1 Parent 2

Child

Fig. 11.12 3 Multipath inheritance

Inheritance by the ‘child’ as shown in Fig. 11.12 might pose some problems. All the public

and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parent1’ and

again via ‘parent2’. This means, ‘child’ would have duplicate sets of the members inherited

from ‘grandparent’. This introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by making

the common base class (ancestor class) as virtual base class while declaring the direct or

intermediate base classes as shown below:

class A // grandparent
{

};
class B1 : virtual public A // parent1
{

};
class B2 : public virtual A // parent2
{

};

11.28 Basic Computer Engineering

class C : public B1, public B2 // child
{
 // only one copy of A
 // will be inherited
};

When a class is made a virtual base class, C++ takes necessary care to see that only one

copy of that class is inherited, regardless of how many inheritance paths exist between the

virtual base class and a derived class.

note

The keywords virtual and public may be used in either order.

For example, consider again the student results processing system discussed in Sec. 11.8.

Assume that the class sports derives the roll_number from the class student. Then, the

inheritance relationship will be as shown in Fig. 11.13.

test sports

result

student

As virtual base class As virtual base class

Fig. 11.13 3 Virtual base class

A program to implement the concept of virtual base class is illustrated in Program 11.6.

VIRTUAL BASE CLASS

#include <iostream>

using namespace std;

11.29Derived Classes and Inheritance

class student
{
 protected:
 int roll_number;
 public:
 void get_number(int a)
 {
 roll_number = a;
 }
 void put_number(void)
 {
 cout << “Roll No: “ << roll_number << “\n”;
 }
};

class test : virtual public student
{
 protected:

fl oat part1, part2;
public:

 void get_marks(fl oat x, fl oat y)
 {
 part1 = x; part2 = y;
 }
 void put_marks(void)
 {
 cout << “Marks obtained: “ << “\n”
 << “Part1 = “ << part1 << “\n”
 << “Part2 = “ << part2 << “\n”;
 }
};

class sports : public virtual student
{
 protected:

fl oat score;
 public:
 void get_score(fl oat s)
 {
 score = s;
 }
 void put_score(void)
 {
 cout << “Sports wt: “ << score << “\n\n”;
 }

11.30 Basic Computer Engineering

};

class result : public test, public sports
{

fl oat total;
 public:
 void display(void);
};

void result :: display(void)
{
 total = part1 + part2 + score;

 put_number();
 put_marks();
 put_score();

 cout << “Total Score: “ << total << “\n”;
}

int main()
{
 result student_1;
 student_1.get_number(678);
 student_1.get_marks(30.5, 25.5);
 student_1.get_score(7.0);
 student_1.display();

 return 0;

}

PROGRAM 11.6

The output of Program 11.6 would be

Roll No: 678
Marks obtained:
Part1 = 30.5
Part2 = 25.5
Sport wt: 7

Total Score: 63

 11.10 Abstract Classes

An abstract class is one that is not used to create objects. An abstract class is designed only

to act as a base class (to be inherited by other classes). It is a design concept in program

11.31Derived Classes and Inheritance

development and provides a base upon which other classes may be built. In the previous

example, the student class is an abstract class since it was not used to create any objects.

 11.11 Constructors in Derived Classes

As we know, the constructors play an important role in initializing objects. We did not use

them earlier in the derived classes for the sake of simplicity. One important thing to note

here is that, as long as no base class constructor takes any arguments, the derived class

need not have a constructor function. However, if any base class contains a constructor with

one or more arguments, then it is mandatory for the derived class to have a constructor and

pass the arguments to the base class constructors. Remember, while applying inheritance we

usually create objects using the derived class. Thus, it makes sense for the derived class to

pass arguments to the base class constructor. When both the derived and base classes contain

constructors, the base constructor is executed first and then the constructor in the derived

class is executed.

In case of multiple inheritance, the base classes are constructed in the order in which

they appear in the declaration of the derived class. Similarly, in a multilevel inheritance, the

constructors will be executed in the order of inheritance.

Since the derived class takes the responsibility of supplying initial values to its base classes,

we supply the initial values that are required by all the classes together, when a derived class

object is declared. How are they passed to the base class constructors so that they can do their

job? C++ supports a special argument passing mechanism for such situations.

The constructor of the derived class receives the entire list of values as its arguments and

passes them on to the base constructors in the order in which they are declared in the derived

class. The base constructors are called and executed before executing the statements in the

body of the derived constructor.

The general form of defining a derived constructor is:

Derived-constructor (Arglist1, Arglist2, ... ArglistN, Arglist(D)

base1(arglist1),
base2(arglist2),
.....
.....
.....
baseN(arglistN),
{

Body of derived constructor
}

arguments for base(N)

The header line of derived-constructor function contains two parts separated by a colon(:).

The first part provides the declaration of the arguments that are passed to the derived-

constructor and the second part lists the function calls to the base constructors.

base1(arglist1), base2(arglist2) ... are function calls to base constructors base1(), base2(),

... and therefore arglist1, arglist2, ... etc. represent the actual parameters that are passed

11.32 Basic Computer Engineering

to the base constructors. Arglist1 through ArglistN are the argument declarations for base

constructors base1 through baseN. ArglistD provides the parameters that are necessary to

initialize the members of the derived class.

Example:

D(int a1, int a2, fl oat b1, fl oat b2, int d1):
A(a1, a2), /* call to constructor A */
B(b1, b2) /* call to constructor B */
{
 d = d1; // executes its own body
}

A(a1, a2) invokes the base constructor A() and B(b1, b2) invokes another base constructor

B(). The constructor D() supplies the values for these four arguments. In addition, it has one

argument of its own. The constructor D() has a total of five arguments. D() may be invoked as

follows:

.....
D objD(5, 12, 2.5, 7.54, 30);
.....

These values are assigned to various parameters by the constructor D() as follows:

5 æÆ a1

12 æÆ a2

2.5 æÆ b1

7.54 æÆ b2

 30 æÆ d1

The constructors for virtual base classes are invoked before any non-virtual base classes.

If there are multiple virtual base classes, they are invoked in the order in which they are

declared. Any non-virtual bases are then constructed before the derived class constructor is

executed. See Table 11.2.

Table 11.2 Execution of base class constructors

 Method of inheritance Order of execution

 Class B: public A A() ; base constructor

 { B() ; derived constructor

 };

 class A : public B, public C B() ; base(first)

 { C() ; base(second)

 }; A() ; derived

 class A : public B, virtual public C C() ; virtual base

 { B() ; ordinary base

 }; A() ; derived

11.33Derived Classes and Inheritance

Program 11.7 illustrates how constructors are implemented when the classes are inherited.

CONSTRUCTORS IN DERIVED CLASS

#include <iostream>

using namespace std;

class alpha
{
 int x;
 public:
 alpha(int i)
 {
 x = i;
 cout << “alpha initialized \n”;
 }
 void show_x(void)
 { cout << “x = “ << x << “\n”; }
};

class beta
{

fl oat y;
 public:
 beta(fl oat j)
 {
 y = j;
 cout << “beta initialized \n”;
 }
 void show_y(void)
 { cout << “y = “ << y << “\n”; }
};

class gamma: public beta, public alpha
{
 int m, n;
 public:
 gamma(int a, fl oat b, int c, int d):
 alpha(a), beta(b)
 {
 m = c;
 n = d;
 cout << “gamma initialized \n”;
 }
 void show_mn(void)

11.34 Basic Computer Engineering

 {
 cout << “m = “ << m << “\n”
 << “n = “ << n << “\n”;
 }
};

int main()
{
 gamma g(5, 10.75, 20, 30);
 cout << “\n”;
 g.show_x();
 g.show_y();
 g.show_mn();

 return 0;

}

PROGRAM 11.7

The output of Program 11.7 would be:

beta initialized
alpha initialized
gamma initialized

x = 5
y = 10.75
m = 20
n = 30

note

beta is initialized first, although it appears second in the derived constructor. This is

because it has been declared first in the derived class header line. Also, note that alpha(a)

and beta(b) are function calls. Therefore, the parameters should not include types.

C++ supports another method of initializing the class objects. This method uses what is

known as initialization list in the constructor function. This takes the following form:

constructor (arglist) : intialization-section
{
 assignment-section
}

The assignment-section is nothing but the body of the constructor function and is used

to assign initial values to its data members. The part immediately following the colon is

known as the initialization section. We can use this section to provide initial values to the

base constructors and also to initialize its own class members. This means that we can use

11.35Derived Classes and Inheritance

either of the sections to initialize the data members of the constructors class. The initialization

section basically contains a list of initializations separated by commas. This list is known as

initialization list. Consider a simple example:

class XYZ
{
 int a;
 int b;
 public:
 XYZ(int i, int j) : a(i), b(2 * j) { }
};

main()
{
 XYZ x(2, 3);
}

This program will initialize a to 2 and b to 6. Note how the data members are initialized, just

by using the variable name followed by the initialization value enclosed in the parenthesis (like

a function call). Any of the parameters of the argument list may be used as the initialization

value and the items in the list may be in any order. For example, the constructor XYZ may

also be written as:

XYZ(int i, int j) : b(i), a(i + j) { }

In this case, a will be initialized to 5 and b to 2. Remember, the data members are initialized

in the order of declaration, independent of the order in the initialization list. This enables us

to have statements such as

XYZ(int i, int j) : a(i), b(a * j) { }

Here a is initialized to 2 and b to 6. Remember, a which has been declared first is initialized

first and then its value is used to initialize b. However, the following will not work:

XYZ(int i, int j) : b(i), a(b * j) { }

because the value of b is not available to a which is to be initialized first.

The following statements are also valid:

XYZ(int i, int j) : a(i) {b = j;}
XYZ(int i, int j) { a = i; b = j;}

We can omit either section, if it is not needed. Program 11.8 illustrates the use of initialization

lists in the base and derived constructors.

INITIALIZATION LIST IN CONSTRUCTORS

#include <iostream>

using namespace std;

11.36 Basic Computer Engineering

class alpha
{
 int x;
 public:
 alpha(int i)
 {
 x = i;
 cout << “\n alpha constructed”;
 }

 void show_alpha(void)
 {
 cout << “ x = “ << x << “\n”;
 }
};

class beta
{

fl oat p, q;
 public:
 beta(fl oat a, fl oat b): p(a), q(b+p)
 {
 cout << “\n beta constructed”;
 }
 void show_beta(void)
 {
 cout << “ p = “ << p << “\n”;
 cout << “ q = “ << q << “\n”;
 }
};
class gamma : public beta, public alpha
{
 int u,v;
 public:
 gamma(int a, int b, fl oat c):
 alpha(a*2), beta(c,c), u(a)
 { v = b; cout << “\n gamma constructed”; }

 void show_gamma(void)
 {
 cout << “ u = “ << u << “\n”;
 cout << “ v = “ << v << “\n”;
 }

11.37Derived Classes and Inheritance

 };

 int main()

 {
 gamma g(2, 4, 2.5);

 cout << “\n\n Display member values “ << “\n\n”;

 g.show_alpha();
 g.show_beta();
 g.show_gamma();

 return 0;
 };

PROGRAM 11.8

The output of Program 11.8 would be:

beta constructed
alpha constructed
gamma constructed

Display member values

x = 4
p = 2.5
q = 5
u = 2
v = 4

note

The argument list of the derived constructor gamma contains only three parameters a, b

and c which are used to initialize the five data members contained in all the three classes.

 11.12 Member Classes: Nesting of Classes

Inheritance is the mechanism of deriving certain properties of one class into another. We have

seen in detail how this is implemented using the concept of derived classes. C++ supports yet

another way of inheriting properties of one class into another. This approach takes a view that

an object can be a collection of many other objects. That is, a class can contain objects of other

classes as its members as shown below:

11.38 Basic Computer Engineering

class alpha {....};
class beta {....};
class gamma
{

 alpha a; // a is an object of alpha class
 beta b; // b is an object of beta class

};

All objects of gamma class will contain the objects a and b. This kind of relationship is called

containership or nesting. Creation of an object that contains another object is very different

than the creation of an independent object. An independent object is created by its constructor

when it is declared with arguments. On the other hand, a nested object is created in two stages.

First, the member objects are created using their respective constructors and then the other

‘ordinary’ members are created. This means, constructors of all the member objects should be

called before its own constructor body is executed. This is accomplished using an initialization

list in the constructor of the nested class.

Example:

class gamma
{

 alpha a; // a is object of alpha
 beta b; // b is object of beta
 public:
 gamma(arglist): a(arglist1), b(arglist2)
 {
 // constructor body
 }
};

arglist is the list of arguments that is to be supplied when a gamma object is defined. These

parameters are used for initializing the members of gamma. arglist1 is the argument list

for the constructor of a and arglist2 is the argument list for the constructor of b. arglist1

and arglist2 may or may not use the arguments from arglist. Remember, a(arglist1) and

b(arglist2) are function calls and therefore the arguments do not contain the data types. They

are simply variables or constants.

Example:

gamma(int x, int y, fl oat z) : a(x), b(x,z)
{
 Assignment section(for ordinary other members)
}

We can use as many member objects as are required in a class. For each member object we

add a constructor call in the initializer list. The constructors of the member objects are called

in the order in which they are declared in the nested class.

11.39Derived Classes and Inheritance

SUMMARY

 The mechanism of deriving a new class from an old class is called inheritance. Inheritance

provides the concept of reusability. The C++ classes can be reused using inheritance.

 The derived class inherits some or all of the properties of the base class.

 A derived class with only one base class is called single inheritance.

 A class can inherit properties from more than one class which is known as multiple

inheritance.

 A class can be derived from another derived class which is known as multilevel inheritance.

 When the properties of one class are inherited by more than one class, it is called hierarchical

inheritance.

 A private member of a class cannot be inherited either in public mode or in private mode.

 A protected member inherited in public mode becomes protected, whereas inherited in

private mode becomes private in the derived class.

 A public member inherited in public mode becomes public, whereas inherited in private

mode becomes private in the derived class.

 The friend functions and the member functions of a friend class can directly access the

private and protected data.

 The member functions of a derived class can directly access only the protected and public

data. However, they can access the private data through the member functions of the base

class.

 Multipath inheritance may lead to duplication of inherited members from a ‘grandparent’

base class. This may be avoided by making the common base class a virtual base class.

 In multiple inheritance, the base classes are constructed in the order in which they appear

in the declaration of the derived class.

 In multilevel inheritance, the constructors are executed in the order of inheritance.

 A class can contain objects of other classes. This is known as containership or nesting.

Key Terms

abstract class

access control

access mechanism

ancestor class

assignment section

base class

base constructor

child class

11.40 Basic Computer Engineering

common base class

containership

derivation

derived class

derived constructor

direct base class

dot operator

duplicate members

father class

 friend

grandfather class

grandparent class

hierarchical inheritance

hybrid inheritance

indirect base class

inheritance

inheritance path

initialization list

initialization section

intermediate base

member classes

multilevel inheritance

multiple inheritance

nesting

 private

private derivation

private members

privately derived

 protected

protected members

 public

public derivation

public members

publicly derived

reusability

single inheritance

subclass

virtual base class

visibility mode

visibility modifier

 Review Questions

11.1 What does inheritance mean in C++?

11.2 What are the different forms of inheritance? Give an example for each.

11.3 Describe the syntax of the single inheritance in C++.

11.4 We know that a private member of a base class is not inheritable. Is it anyway possible

for the objects of a derived class to access the private members of the base class? If

yes, how? Remember, the base class cannot be modified.

11.5 How do the properties of the following two derived classes differ?

 (a) class D1: private B{//...};

(b) class D2: public B{//...};

11.6 When do we use the protected visibility specifier to a class member?

11.7 Describe the syntax of multiple inheritance. When do we use such an inheritance?

11.8 What are the implications of the following two definitions?

 (a) class A: public B, public C{//....};

 (b) class A: public C, public B{//....};

11.9 What is a virtual base class?

11.10 When do we make a class virtual?

11.41Derived Classes and Inheritance

11.11 What is an abstract class?

11.12 In what order are the class constructors called when a derived class object is

created?

11.13 Class D is derived from class B. The class D does not contain any data members of

its own. Does the class D require constructors? If yes, why?

11.14 What is containership? How does it differ from inheritance?

11.15 Describe how an object of a class that contains objects of other classes created?

11.16 State whether the following statements are TRUE or FALSE:

 (a) Inheritance helps in making a general class into a more specific class.

 (b) Inheritance aids data hiding.

 (c) One of the advantages of inheritance is that it provides a conceptual

framework.

 (d) Inheritance facilitates the creation of class libraries.

 (e) Defining a derived class requires some changes in the base class.

(f) A base class is never used to create objects.

(g) It is legal to have an object of one class as a member of another class.

(h) We can prevent the inheritance of all members of the base class by making base

class virtual in the definition of the derived class.

 Debugging Exercises

11.1 Identify the error in the following program.

 #include <iostream.h>

 class Student {

 char* name;

 int rollNumber;

 private:

 Student() {

 name = “AlanKay”;

 rollNumber = 1025;

 }

 void setNumber(int no) {

 rollNumber = no;

 }

 int getRollNumber() {

 return rollNumber;

 }

 };

 class AnualTest: Student {

11.42 Basic Computer Engineering

 int mark1, mark2;

 public:

 AnualTest(int m1, int m2)

 :mark1(m1), mark2(m2) {

 }

 int getRollNumber() {

 return Student::getRollNumber();

 }

 };

 void main()

 {

 AnualTest test1(92, 85);

 cout << test1.getRollNumber();

 }

11.2 Identify the error in the following program.

 #include <iostream.h>

 class A

 {

 public:

 A()

 {

 cout << “A”;

 }

 };

 class B: public A

 {

 public:

 B()

 {

 cout << “B”;

 }

 };

 class C: public B

 {

 public:

 C()

 {

11.43Derived Classes and Inheritance

 cout << “C”;

 }

 };

 class D

 {

 public:

 D()

 {

 cout << “D”;

 }

 };

 class E: public C, public D

 {

 public:

 E()

 {

 cout << “D”;

 }

 };

 class F: B, virtual E

 {

 public:

 F()

 {

 cout << “F”;

 }

 };

 void main()

 {

 F f;

 }

11.3 Identify the error in the following program.

 #include <iostream.h>

 class A

 {

 int i;

 };

 class AB: virtual A

 {

11.44 Basic Computer Engineering

 int j;

 };

 class AC: A, ABAC

 {

 int k;

 };

 class ABAC: AB, AC

 {

 int l;

 };

 void main()

 {

 ABAC abac;

 cout << “sizeof ABAC:” << sizeof(abac);

 }

11.4 Find errors in the following program. State reasons.

// Program test

#include <iostream.h>

class X
{
 private:
 int x1;
 protected:
 int x2;
 public:
 int x3;
};

class Y: public X
{
 public:
 void f()
 {
 int y1,y2,y3;
 y1 = x1;
 y2 = x2;
 y3 = x3;
 }
};

class Z: X

11.45Derived Classes and Inheritance

{
 public:
 void f()
 {
 int z1,z2,z3;
 z1 = x1;
 z2 = x2;
 z3 = x3;
 }
};
main()
{
 int m,n,p;

 Y y;

 m = y.x1;

 n = y.x2;

 p = y.x3;

 Z z;

 m = z.x1;

 n = z.x2;

 p = z.x3;

}

11.5 Debug the following program.

// Test program

#include <iostream.h>

class B1

{

 int b1;

 public:

 void display();

 {

 cout << b1 <<”\n”;

 }

};

class B2

{

 int b2;

 public:

 void display();

11.46 Basic Computer Engineering

 {

 cout << b2 <<”\n”;

 }

};

class D: public B1, public B2

{

 // nothing here

};

main()

{

 D d;

 d.display()

 d.B1::display();

 d.B2::display();

}

 Programming Exercises

11.1 Assume that a bank maintains two kinds of accounts for customers, one called as

savings account and the other as current account. The savings account provides

compound interest and withdrawal facilities but no cheque book facility. The current

account provides cheque book facility but no interest. Current account holders should

also maintain a minimum balance and if the balance falls below this level, a service

charge is imposed.

Create a class account that stores customer name, account number and type of

account. From this derive the classes cur_acct and sav_acct to make them more

specific to their requirements. Include necessary member functions in order to achieve

the following tasks:

 (a) Accept deposit from a customer and update the balance.

 (b) Display the balance.

 (c) Compute and deposit interest.

 (d) Permit withdrawal and update the balance.

 (e) Check for the minimum balance, impose penalty, necessary, and update the

balance.

Do not use any constructors. Use member functions to initialize the class members.

11.2 Modify the program of Exercise 11.1 to include constructors for all the three classes.

11.3 An educational institution wishes to maintain a database of its employees. The database

is divided into a number of classes whose hierarchical relationships are shown in Fig.

11.14. The figure also shows the minimum information required for each class. Specify

all the classes and define functions to create the database and retrieve individual

information as and when required.

11.47Derived Classes and Inheritance

Fig. 11.14 3 Class relationships (for Exercise 11.19)

11.4 The database created in Exercise 11.3 does not include educational information of

the staff. It has been decided to add this information to teachers and officers (and

not for typists) which will help the management in decision making with regard to

training, promotion, etc. Add another data class called education that holds two

pieces of educational information, namely, highest qualification in general education

and highest professional qualification. This class should be inherited by the classes

teacher and officer. Modify the program of Exercise 11.19 to incorporate these

additions.

11.5 Consider a class network of Fig. 11.15. The class master derives information from

both account and admin classes which in turn derive information from the class

person. Define all the four classes and write a program to create, update and display

the information contained in master objects.

11.6 In Exercise 11.3, the classes teacher, officer, and typist are derived from the class

staff. As we know, we can use container classes in place of inheritance in some

situations. Redesign the program of Exercise 11.3 such that the classes teacher,

officer, and typist contain the objects of staff.

11.7 We have learned that OOP is well suited for designing simulation programs. Using the

techniques and tricks learned so far, design a program that would simulate a simple

real-world system familiar to you.

11.48 Basic Computer Engineering

person

name

code

account

pay

admin

experience

person

name

code

experience

pay

Fig. 11.15 3 Multipath inheritance (for Exercise 11.21)

Managing Console I/O
Operations

12

Key Concepts

Streams

 Stream classes

 Unformatted output

 Character-oriented input/output

 Line-oriented input/output

 Formatted output

 Formatting functions

 Formatting flags

 Manipulators

 User-defined manipulators

 12.1 Introduction

Every program takes some data as input and

generates processed data as output following

the familiar input-process-output cycle. It is,

therefore, essential to know how to provide the

input data and how to present the results in a

desired form. We have, in the earlier chapters,

used cin and cout with the operators >> and

<< for the input and output operations. But we

have not so far discussed as to how to control

the way the output is printed. C++ supports a

rich set of I/O functions and operations to do

this. Since these functions use the advanced

features of C++ (such as classes, derived

classes and virtual functions), we need to know

a lot about them before really implementing

the C++ I/O operations.

Remember, C++ supports all of C’s rich set

of I/O functions. We can use any of them in

the C++ programs. But we restrained from using them due to two reasons. First, I/O methods

in C++ support the concepts of OOP and secondly, I/O methods in C cannot handle the user-

defined data types such as class objects.

C++ uses the concept of stream and stream classes to implement its I/O operations with the

console and disk files. We will discuss in this chapter, how stream classes support the console-

oriented input-output operations.

12.2 Basic Computer Engineering

 12.2 C++ Streams

The I/O system in C++ is designed to work with a wide variety of devices including terminals,

disks, and tape drives. Although each device is very different, the I/O system supplies an

interface to the programmer that is independent of the actual device being accessed. This

interface is known as stream.

A stream is a sequence of bytes. It acts either as a source from which the input data can

be obtained or as a destination to which the output data can be sent. The source stream that

provides data to the program is called the input stream and the destination stream that receives

output from the program is called the output stream. In other words, a program extracts the

bytes from an input stream and inserts bytes into an output stream as illustrated in Fig. 12.1.

Output
device

Input stream

Output stream

Input
device

Program

extraction
from input
stream

insertion
into output
stream

Fig. 12.1 3 Tata streams

The data in the input stream can come from the keyboard or any other storage device.

Similarly, the data in the output stream can go to the screen or any other storage device. As

mentioned earlier, a stream acts as an interface between the program and the input/output

device. Therefore, a C++ program handles data (input or output) independent of the devices

used.

C++ contains several pre-defined streams that are automatically opened when a program

begins its execution. These include cin and cout which have been used very often in our earlier

programs. We know that cin represents the input stream connected to the standard input

device (usually the keyboard) and cout represents the output stream connected to the standard

output device (usually the screen). Note that the keyboard and the screen are default options.

We can redirect streams to other devices or files, if necessary.

 12.3 C++ Stream Classes

The C++ I/O system contains a hierarchy of classes that are used to define various streams
to deal with both the console and disk files. These classes are called stream classes. Figure
12.2 shows the hierarchy of the stream classes used for input and output operations with the
console unit. These classes are declared in the header file iostream. This file should be included

in all the programs that communicate with the console unit.

12.3Managing Console I/O Operations

istream

istream_withassign iostream_withassign ostream_withassign

iostream

ostreamstreambuf

output

pointer

input

ios

Fig. 12.2 3 Stream classes for console I/O operations

As seen in the Fig. 12.2, ios is the base class for istream (input stream) and ostream
(output stream) which are, in turn, base classes for iostream (input/output stream). The class
ios is declared as the virtual base class so that only one copy of its members are inherited by
the iostream.

The class ios provides the basic support for formatted and unformatted I/O operations.
The class istream provides the facilities for formatted and unformatted input while the class
ostream (through inheritance) provides the facilities for formatted output. The class iostream
provides the facilities for handling both input and output streams. Three classes, namely,
istream_withassign, ostream_withassign, and iostream_withassign add assignment

operators to these classes. Table 12.1 gives the details of these classes.

 12.4 Unformatted I/O Operations

12.4.1 Overloaded Operators >> and <<

We have used the objects cin and cout (pre-defined in the iostream file) for the input and output

of data of various types. This has been made possible by overloading the operators >> and <<

to recognize all the basic C++ types. The >> operator is overloaded in the

Table 12.1 Stream classes for console operations

 Class name Contents

 ios Contains basic facilities that are used by all other

 (General input/output stream class) input and output classes

 Also contains a pointer to a buffer object (streambuf

object)

 Declares constants and functions that are necessary for

handling formatted input and output operations

(Contd.)

12.4 Basic Computer Engineering

istream Inherits the properties of ios

 (input stream) Declares input functions such as get(), getline() and

read()

 Contains overloaded extraction operator >>

ostream Inherits the properties of ios

 (output stream) Declares output functions put() and write()

 Contains overloaded insertion operator <<

iostream Inherits the properties of ios istream and ostream

 (input/output stream) through multiple inheritance and thus contains all the

input and output functions

streambuf Provides an interface to physical devices through buf-

fers

 Acts as a base for fi lebuf class used ios fi les

istream class and << is overloaded in the ostream class. The following is the general format

for reading data from the keyboard:

cin >> variable1 >> variable2 >> >> variableN

variable1, variable2, ... are valid C++ variable names that have been declared already. This

statement will cause the computer to stop the execution and look for input data from the

keyboard. The input data for this statement would be:

data1 data2 dataN

The input data are separated by white spaces and should match the type of variable in the
cin list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated location.
The reading for a variable will be terminated at the encounter of a white space or a character
that does not match the destination type. For example, consider the following code:

int code;
cin >> code;

Suppose the following data is given as input:

4258D

The operator will read the characters upto 8 and the value 4258 is assigned to code. The

character D remains in the input stream and will be input to the next cin statement. The

general form for displaying data on the screen is:

cout <<item1 <<item2 <<....<<itemN

The items item1 through itemN may be variables or constants of any basic type. We have

used such statements in a number of examples illustrated in previous chapters.

Table 12.1 (Contd.)

 Class name Contents

12.5Managing Console I/O Operations

12.4.2 put() and get() Functions

The classes istream and ostream define two member functions get() and put() respectively

to handle the single character input/output operations. There are two types of get() functions.

We can use both get(char *) and get(void) prototypes to fetch a character including the blank

space, tab and the newline character. The get(char *) version assigns the input character to

its argument and the get(void) version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke them

using an appropriate object.

Example:

char c;
cin.get(c); // get a character from keyboard
 // and assign it to c
while(c != ‘\n’)
{
 cout << c; // display the character on screen
 cin.get(c); // get another character
}

This code reads and displays a line of text (terminated by a newline character). Remember,

the operator >> can also be used to read a character but it will skip the white spaces and

newline character. The above while loop will not work properly if the statement

cin >> c;

is used in place of

cin.get(c);

note

Try using both of them and compare the results.

The get(void) version is used as follows:

.....
char c;
c = cin.get(); // cin.get(c); replaced
.....
.....

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class, can be used to output a line of text, character

by character. For example,

cout.put(‘x’);

displays the character x and

cout.put(ch);

displays the value of variable ch.

12.6 Basic Computer Engineering

The variable ch must contain a character value. We can also use a number as an argument

to the function put(). For example,

cout.put(68);

displays the character D. This statement will convert the int value 68 to a char value and

display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays it

on the screen.

char c;
cin.get(c); // read a character

while(c != ‘\n’)
{
 cout.put(c); // display the character on screen
 cin.get(c);
}

Program 12.1 illustrates the use of these two character handling functions.

CHARACTER I/O WITH GET() AND PUT()

#include <iostream>

using namespace std;

int main()
{
 int count = 0;
 char c;

 cout << “INPUT TEXT\n”;

 cin.get(c);

 while(c != ‘\n’)
 {
 cout.put(c);
 count++;
 cin.get(c);
 }
 cout << “\nNumber of characters = “ << count << “\n”;

 return 0;
}

PROGRAM 12.1

12.7Managing Console I/O Operations

Input

 Object Oriented Programming
Output

 Object Oriented Programming
 Number of characters = 27

note

When we type a line of input, the text is sent to the program as soon as we press the

RETURN key. The program then reads one character at a time using the statement cin.

get(c); and displays it using the statement cout.put(c);. The process is terminated when

the newline character is encountered.

12.4.3 getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented input/output

functions getline() and write(). The getline() function reads a whole line of text that ends

with a newline character (transmitted by the RETURN key). This function can be invoked by

using the object cin as follows:

cin.getline (line, size);

This function call invokes the function getline() which reads character input into the variable

line. The reading is terminated as soon as either the newline character ‘\n’ is encountered

or size-1 characters are read (whichever occurs first). The newline character is read but not

saved. Instead, it is replaced by the null character. For example, consider the following code:

char name[20];
cin.getline(name, 20);

Assume that we have given the following input through the keyboard:

Bjarne Stroustrup <press RETURN>

This input will be read correctly and assigned to the character array name. Let us suppose

the input is as follows:

Object Oriented Programming <press RETURN >

In this case, the input will be terminated after reading the following 19 characters:

Object Oriented Pro

Remember, the two blank spaces contained in the string are also taken into account.

We can also read strings using the operator >> as follows:

cin >> name;

But remember cin can read strings that do not contain white spaces. This means that cin

can read just one word and not a series of words such as “Bjarne Stroustrup”. But it can read

the following string correctly:

Bjarne_Stroustrup

12.8 Basic Computer Engineering

After reading the string, cin automatically adds the terminating null character to the

character array.

Program 12.2 demonstrates the use of >> and getline() for reading the strings.

READING STRINGS WITH GETLINE()

#include <iostream>

using namespace std;

int main()
{
 int size = 20;
 char city[20];

 cout << “Enter city name: \n”;
 cin >> city;
 cout << “City name:” << city << “\n\n”;

 cout << “Enter city name again: \n”;
 cin.getline(city, size);
 cout << “City name now: “ << city << “\n\n”;

 cout << “Enter another city name: \n”;
 cin.getline(city, size);
 cout << “New city name: “ << city << “\n\n”;

 return 0;
}

PROGRAM 12.2

The output of Program 12.2 would be:

First run

 Enter city name:
 Delhi
 City name: Delhi

 Enter city name again:
 City name now:
 Enter another city name:
 Chennai
 New city name: Chennai

Second run

 Enter city name:

12.9Managing Console I/O Operations

 New Delhi
 City name: New

 Enter city name again:
 City name now: Delhi

 Enter another city name:
 Greater Bombay
 New city name: Greater Bombay

note

During first run, the newline character ‘\n’ at the end of “Delhi” which is waiting in the

input queue is read by the getline() that follows immediately and therefore it does not wait

for any response to the prompt ‘Enter city name again:’. The character ‘\n’ is read as an

empty line. During the second run, the word “Delhi” (that was not read by cin) is read by the

function getline() and, therefore, here again it does not wait for any input to the prompt

‘Enter city name again:’. Note that the line of text “Greater Bombay” is correctly read by the

second cin.getline(city,size); statement.

The write() function displays an entire line and has the following form:

court.write (line, size)

The first argument line represents the name of the string to be displayed and the second

argument size indicates the number of characters to display. Note that it does not stop

displaying the characters automatically when the null character is encountered. If the size

is greater than the length of line, then it displays beyond the bounds of line. Program 12.3

illustrates how write() method displays a string.

DISPLAYING STRINGS WITH WRITE()

#include <iostream>
#include <string>

using namespace std;

int main()
{
 char * string1 = “C++ “;
 char * string2 = “Programming”;
 int m = strlen(string1);
 int n = strlen(string2);

 for(int i=1; i<n; i++)
 {
 cout.write(string2,i);
 cout << “\n”;

12.10 Basic Computer Engineering

 }

 for(i=n; i>0; i— –)
 {
 cout.write(string2,i);
 cout << “\n”;
 }

 // concatenating strings
 cout.write(string1,m).write(string2,n);

 cout << “\n”;

 // crossing the boundary
 cout.write(string1,10);

 return 0;
}

PROGRAM 12.3

Look at the output of Program 12.3:

P
Pr
Pro
Prog
Progr
Progra
Program
Programm
Programmi
Programmin
Programming
Programmin
Programmi
Programm
Program
Progra
Progr
Prog
Pro
Pr
P
C++ Programming
C++ Progr

The last line of the output indicates that the statement

cout.write(string1, 10);

12.11Managing Console I/O Operations

displays more characters than what is contained in string1.

It is possible to concatenate two strings using the write() function. The statement

cout.write(string1, m).write(string2, n);

is equivalent to the following two statements:

cout.write(string1, m);
cout.write(string2, n);

 12.5 Formatted Console I/O Operations

C++ supports a number of features that could be used for formatting the output. These features

include:

 ios class functions and flags.

 Manipulators.

 User-defined output functions.

The ios class contains a large number of member functions that would help us to format the

output in a number of ways. The most important ones among them are listed in Table 12.2.

Table 12.2 ios format functions

 Function Task

 Width () To specify the required field size for displaying an output value

 precision () To specify the number of digits to be displayed after the decimal point of a

float value

 fill() To specify a character that is used to fill the unused portion of a field

 setf() To specify format flags that can control the form of output display (such as

left-justification and right-justification)

 unsetf() To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the format

parameters of a stream. Table 12.3 shows some important manipulator functions that are frequently

used. To access these manipulators, the file iomanip should be included in the program.

Table 12.3 Manipulators

 Manipulators Equivalent ios function

 setw() width()

 setprecision() precision()

 setfill() fill()

 setiosflags() setf()

resetiosfl ags() unsetf()

12.12 Basic Computer Engineering

In addition to these functions supported by the C++ library, we can create our own manipulator

functions to provide any special output formats. The following sections will provide details of

how to use the pre-defined formatting functions and how to create new ones.

12.5.1 Defi ning Field Width: width()

We can use the width() function to define the width of a field necessary for the output of an

item. Since, it is a member function, we have to use an object to invoke it, as shown below:

cout.width(w);

where w is the field width (number of columns). The output will be printed in a field of w

characters wide at the right end of the field. The width() function can specify the field width

for only one item (the item that follows immediately). After printing one item (as per the

specifications) it will revert back to the default. For example, the statements

cout.width(5);
cout << 543 << 12 << “\n”;

will produce the following output:

5 4 3 1 2

The value 543 is printed right-justified in the first five columns. The specification width(5)

does not retain the setting for printing the number 12. This can be improved as follows:

cout.width(5);
cout << 543;
cout.width(5);
cout << 12 << “\n”;

This produces the following output:

5 4 3 1 2

Remember that the field width should be specified for each item separately. C++ never

truncates the values and therefore, if the specified field width is smaller than the size of the

value to be printed, C++ expands the field to fit the value. Program 12.4 demonstrates how the

function width() works.

SPECIFYING FIELD SIZE WITH WIDTH()

#include <iostream>
using namespace std;
int main()
{
 int items[4] = {10,8,12,15};
 int cost[4] = {75,100,60,99};

 cout.width(5);

12.13Managing Console I/O Operations

 cout << “ITEMS”;
 cout.width(8);
 cout << “COST”;

 cout.width(15);
 cout << “TOTAL VALUE” << “\n”;

 int sum = 0;

 for(int i=0; i<4; i++)
 {
 cout.width(5);
 cout << items[i];

 cout.width(8);
 cout << cost[i];

 int value = items[i] * cost[i];
 cout.width(15);
 cout << value << “\n”;
 sum = sum + value;
 }
 cout << “\n Grand Total = “;

 cout.width(2);
 cout << sum << “\n”;

 return 0;
}

PROGRAM 12.4

The output of Program 12.4 would be:

 ITEMS COST TOTAL VALUE

 10 75 750
 8 100 800
 12 60 720
 15 99 1485

Grand Total = 3755

note

A field of width two has been used for printing the value of sum and the result is not

truncated. A good gesture of C++ !

12.14 Basic Computer Engineering

12.5.2 Setting Precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. However,

we can specify the number of digits to be displayed after the decimal point while printing

the floating-point numbers. This can be done by using the precision() member function as

follows:

cout.precision(d);

where d is the number of digits to the right of the decimal point. For example, the statements

cout.precision(3);
cout << sqrt(2) << “\n”;
cout << 3.14159 << “\n”;
cout << 2.50032 << “\n”;

will produce the following output:

1.141 (truncated)
3.142 (rounded to the nearest cent)
2.5 (no trailing zeros)

Not that, unlike the function width(), precision() retains the setting in effect until it is

reset. That is why we have declared only one statement for the precision setting which is used

by all the three outputs.

We can set different values to different precision as follows:

cout.precision(3);
cout << sqrt(2) << “\n”;
cout.precision(5); // Reset the precision
cout << 3.14159 << “\n”;

We can also combine the field specification with the precision setting. Example:

cout.precision(2);
cout.width(5);
cout << 1.2345;

The first two statements instruct: “print two digits after the decimal point in a field of five

character width”. Thus, the output will be:

1 2 3

Program 12.5 shows how the functions width() and precision() are jointly used to control

the output format.

PRECISION SETTING WITH PRECISION()

#include <iostream>
#include <cmath>

using namespace std;

12.15Managing Console I/O Operations

int main()
{

 cout << “Precision set to 3 digits \n\n”;
 cout.precision(3);

 cout.width(10);

 cout << “VALUE”;

 cout.width(15);

 cout << “SQRT_OF_VALUE” << “\n”;

 for(int n=1; n<=5; n++)
 {

 cout.width(8);

 cout << n;

 cout.width(13);

 cout << sqrt(n) << “\n”;
 }
 cout << “\n Precision set to 5 digits \n\n”;

 cout.precision(5); // precision parameter changed

 cout << “ sqrt(10) = “ << sqrt(10) << “\n\n”;

 cout.precision(0); // precision set to default

 cout << “ sqrt(10) = “ << sqrt(10) << “ (default setting)\n”;

 return 0;
}

PROGRAM 12.5

Here is the output of Program 12.5

Precision set to 3 digits

 VALUE SQRT_OF_VALUE
 1 1
 2 1.41
 3 1.73
 4 2
 5 2.24

Precision set to 5 digits

sqrt(10) = 3.1623

sqrt(10) = 3.162278 (default setting)

12.16 Basic Computer Engineering

note

Observe the following from the output:

 1. The output is rounded to the nearest cent (i.e., 1.6666 will be 1.67 for two digit precision

but 1.3333 will be 1.33).

 2. Trailing zeros are truncated.

 3. Precision setting stays in effect until it is reset.

 4. Default precision is 6 digits.

12.5.3 Filling and Padding: fi ll()

We have been printing the values using much larger field widths than required by the values.

The unused positions of the field are filled with white spaces, by default. However, we can

use the fill() function to fill the unused positions by any desired character. It is used in the

following form:

cout.fill (ch);

Where ch represents the character which is used for filling the unused positions. Example:

cout.fi ll(‘*’);
cout.width(10);
cout << 5250 << “\n”;

The output would be:

* * * * * * 5 2 5 0

Financial institutions and banks use this kind of padding while printing cheques so that no

one can change the amount easily. Like precision(), fill() stays in effect till we change it. See

Program 12.6 and its output.

PADDING WITH FILL()

#include <iostream>

using namespace std;

int main()
{ cout.fi ll(‘<‘);

 cout.precision(3);
 for(int n=1; n<=6; n++)
 {
 cout.width(5);
 cout << n;
 cout.width(10);
 cout << 1.0 / fl oat(n) << “\n”;

12.17Managing Console I/O Operations

 if (n == 3)
 cout.fi ll (‘>’);
 }
 cout << “\nPadding changed \n\n”;
 cout.fi ll (‘#’); // fi ll() reset

 cout.width (15);
 cout << 12.345678 << “\n”;

 return 0;
}

PROGRAM 12.6

The output of Program 12.6 would be:

<<<<1<<<<<<<<<1
<<<<2<<<<<<<0.5
<<<<3<<<<<0.333
>>>>4>>>>>>0.25
>>>>5>>>>>>>0.2
>>>>6>>>>>0.167

Padding changed

#########12.346

12.5.4 Formatting Flags, Bit-fi elds and setf()

We have seen that when the function width() is used, the value (whether text or number) is

printed right-justified in the field width created. But, it is a usual practice to print the text

left-justified. How do we get a value printed left-justified? Or, how do we get a floating-point

number printed in the scientific notation?

The setf(), a member function of the ios class, can provide answers to these and many other

formatting questions. The setf() (setf stands for set flags) function can be used as follows:

cout.setf(arg1,arg2)

The arg1 is one of the formatting flags defined in the class ios. The formatting flag specifies

the format action required for the output. Another ios constant, arg2, known as bit field

specifies the group to which the formatting flag belongs.

Table 12.4 shows the bit fields, flags and their format actions. There are three bit fields and

each has a group of format flags which are mutually exclusive. Examples:

cout.setf(ios::left, ios::adjustfi eld);
cout.setf(ios::scientifi c, ios::fl oatfi eld);

Note that the first argument should be one of the group members of the second argument.

12.18 Basic Computer Engineering

Consider the following segment of code:

cout.fi ll(‘*’);
cout.setf(ios::left, ios::adjustfi eld);
cout.width(15);
cout << “TABLE 1” << “\n”;

Table 12.4 Flags and bit fi elds for setf() function

Format required Flag (arg1) Bit-field (arg2)

 Left-justified output ios :: left ios :: adjustfield

 Right-justified output ios :: right ios :: adjustfield

 Padding after sign or base ios :: internal ios :: adjustfield

 Indicator (like + # #20)

 Scientific notation ios :: scientific ios :: floatfield

 Fixed point notation ios :: fixed ios :: floatfield

 Decimal base ios :: dec ios :: basefield

 Octal base ios :: oct ios :: basefield

 Hexadecimal base ios :: hex ios :: basefi eld

This will produce the following output:

T A B L E 1 * * * * * * * *

The statements

cout.fi ll (‘*’);
cout.precision(3);
cout.setf(ios::internal, ios::adjustfi eld);
cout.setf(ios::scientifi c, ios::fl oatfi eld);
cout.width(15);

cout << -12.34567 << “\n”;

will produce the following output:

– * * * * * 1 . 2 3 5 e + 0 1

note

The sign is left-justified and the value is right left- justified. The space between them is

padded with stars. The value is printed accurate to three decimal places in the scientific

notation.

12.5.5 Displaying Trailing Zeros and Plus Sign

If we print the numbers 12.75, 25.00 and 15.50 using a field width of, say, eight positions, with

two digits precision, then the output will be as follows:

12.19Managing Console I/O Operations

1 0 . 7 5

2 5

1 5 . 5

Note that the trailing zeros in the second and third items have been truncated.

Certain situations, such as a list of prices of items or the salary statement of employees,

require trailing zeros to be shown. The above output would look better if they are printed as

follows:

10.75
25.00
15.50

The setf() can be used with the flag ios::showpoint as a single argument to achieve this

form of output. For example,

cout.setf(ios::showpoint); // display trailing zeros

would cause cout to display trailing zeros and trailing decimal point. Under default precision,

the value 3.25 will be displayed as 3.250000. Remember, the default precision assumes a

precision of six digits.

Similarly, a plus sign can be printed before a positive number using the following

statement:

cout.setf(ios::showpos); // show +sign

For example, the statements

cout.setf(ios::showpoint);

cout.setf(ios::showpos);

cout.precision(3);

cout.setf(ios::fi xed, ios::fl oatfi eld);

cout.setf(ios::internal, ios::adjustfi eld);

cout.width(10);

cout << 275.5 << “\n”;

will produce the following output:

+ 2 7 5 . 5 0 0

The flags such as showpoint and showpos do not have any bit fields and therefore are

used as single arguments in setf(). This is possible because the setf() has been declared

as an overloaded function in the class ios. Table 12.5 lists the flags that do not possess a

named bit field. These flags are not mutually exclusive and therefore can be set or cleared

independently.

12.20 Basic Computer Engineering

Table 12.5 Flags that do not have bit fi elds

 Flag Meaning

 ios :: showbase Use base indicator on output

 ios :: showpos Print + before positive numbers

 ios :: showpoint Show trailing decimal point and zeroes

 ios :: uppercase Use uppercase letters for hex output

 ios :: skipus Skip white space on input

 ios :: unitbuf Flush all streams after insertion

 ios :: stdio Flush stdout and stderr after insertion

Program 12.7 demonstrates the setting of various formatting flags using the overloaded

setf() function.

FORMATTING WITH FLAGS IN setf()

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
 cout.fi ll(‘*’);
 cout.setf(ios::left, ios::adjustfi eld);
 cout.width(10);
 cout << “VALUE”;

 cout.setf(ios::right, ios::adjustfi eld);
 cout.width(15);
 cout << “SQRT OF VALUE” << “\n”;

 cout.fi ll(‘.’);
 cout.precision(4);
 cout.setf(ios::showpoint);
 cout.setf(ios::showpos);
 cout.setf(ios::fi xed, ios::fl oatfi eld);

 for(int n=1; n<=10; n++)
 {
 cout.setf(ios::internal, ios::adjustfi eld);
 cout.width(5);
 cout << n;

 cout.setf(ios::right, ios::adjustfi eld);
 cout.width(20);

12.21Managing Console I/O Operations

 cout << sqrt(n) << “\n”;
 }

 // fl oatfi eld changed
 cout.setf(ios::scientifi c, ios::fl oatfi eld);
 cout << “\nSQRT(100) = “ << sqrt(100) << “\n”;

 return 0;
}

PROGRAM 12.7

The output of Program 12.7 would be:

VALUE*********SQRT OF VALUE
+...1...............+1.0000
+...2...............+1.4142
+...3...............+1.7321
+...4...............+2.0000
+...5...............+2.2361
+...6...............+2.4495
+...7...............+2.6458
+...8...............+2.8284
+...9...............+3.0000
+..10...............+3.1623

SQRT(100) = +1.0000e+001

note

 1. The flags set by setf() remain effective until they are reset or unset.

 2. A format flag can be reset any number of times in a program.

 3. We can apply more than one format controls jointly on an output value.

 4. The setf() sets the specified flags and leaves others unchanged.

 12.6 Managing Output with Manipulators

The header file iomanip provides a set of functions called manipulators which can be used to

manipulate the output formats. They provide the same features as that of the ios member

functions and flags. Some manipulators are more convenient to use than their counterparts in

the class ios. For example, two or more manipulators can be used as a chain in one statement

as shown below:

cout << manip1 << manip2 << manip3 << item;
cout << manip1 << item1 << manip2 << item2;

This kind of concatenation is useful when we want to display several columns of output.

12.22 Basic Computer Engineering

The most commonly used manipulators are shown in Table 12.6. The table also gives their

meaning and equivalents. To access these manipulators, we must include the file iomanip in

the program.

Table 12.6 Manipulators and their meanings

 Manipulator Meaning Equivalent

 setw (int w)

 setprecision(int d) Set the field width to w. width()

 Set the floating point precision to d. precision()

 setfill(int c) Set the fill character to c. fill()

 setiosflags(long f) Set the format flag f. setf()

 resetiosflags(long f) Clear the flag specified by f. unsetf()

 endl Insert new line and fl ush stream. “\n”

Some examples of manipulators are given below:

cout << setw(10) << 12345;

This statement prints the value 12345 right-justified in a field width of 10 characters. The

output can be made left-justified by modifying the statement as follows:

cout << setw(10) << setiosfl ags(ios::left) << 12345;

One statement can be used to format output for two or more values. For example, the

statement

cout << setw(5) << setprecision(2) << 1.2345
 << setw(10) << setprecision(4) << sqrt(2)
 << setw(15) << setiosfl ags(ios::scientifi c) << sqrt(3);
 << endl;

will print all the three values in one line with the field sizes of 5, 10, and 15 respectively. Note

that each output is controlled by different sets of format specifications.

We can jointly use the manipulators and the ios functions in a program. The following

segment of code is valid:

cout.setf(ios::showpoint);
cout.setf(ios::showpos);
cout << setprecision(4);
cout << setiosfl ags(ios::scientifi c);
cout << setw(10) << 123.45678;

note

There is a major difference in the way the manipulators are implemented as compared to

the ios member functions. The ios member function return the previous format state which

can be used later, if necessary. But the manipulator does not return the previous format

state. In case, we need to save the old format states, we must use the ios member functions

rather than the manipulators. Example:

12.23Managing Console I/O Operations

cout.precision(2); // previous state
int p = cout.precision(4); // current state;

When these statements are executed, p will hold the value of 2 (previous state) and the new

format state will be 4. We can restore the previous format state as follows:

cout.precision(p); // p = 2

Program 12.8 illustrates the formatting of the output values using both manipulators and

ios functions.

FORMATTING WITH MANIPULATORS

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{
 cout.setf(ios::showpoint);

 cout << setw(5) << “n”
 << setw(15) << “Inverse_of_n”
 << setw(15) << “Sum_of_terms\n\n”;

 double term, sum = 0;

 for(int n=1; n<=10; n++)
 {
 term = 1.0 / fl oat(n);
 sum = sum + term;

 cout << setw(5) << n
 << setw(14) << setprecision(4)
 << setiosfl ags(ios::scientifi c) << term
 << setw(13) << resetiosfl ags(ios::scientifi c)
 << sum << endl;
 }
 return 0;
}

PROGRAM 12.8

The output of Program 12.8 would be:

 n Inverse_of_n Sum_of_terms

 1 1.0000e+000 1.0000

12.24 Basic Computer Engineering

 2 5.0000e-001 1.5000
 3 3.3333e-001 1.8333
 4 2.5000e-001 2.0833
 5 2.0000e-001 2.2833
 6 1.6667e-001 2.4500
 7 1.4286e-001 2.5929
 8 1.2500e-001 2.7179
 9 1.1111e-001 2.8290
10 1.0000e-001 2.9290

12.6.1 Designing Our Own Manipulators

We can design our own manipulators for certain special purposes. The general form for creating

a manipulator without any arguments is:

ostream & manipulator (ostream & output)
{

 (code)

 return output;
}

Here, the manipulator is the name of the manipulator under creation. The following function

defines a manipulator called unit that displays “inches”:

ostream & unit(ostream & output)
{
 output << “ inches”;
 return output;
}

The statement

cout << 36 << unit;

will produce the following output

36 inches

We can also create manipulators that could represent a sequence of operations. Example:

ostream & show(ostream & output)
{
 output.setf(ios::showpoint);
 output.setf(ios::showpos);
 output << setw(10);
 return output;
}

12.25Managing Console I/O Operations

This function defines a manipulator called show that turns on the flags showpoint and

showpos declared in the class ios and sets the field width to 10.

Program 12.9 illustrates the creation and use of the user-defined manipulators. The program

creates two manipulators called currency and form which are used in the main program.

USER-DEFINED MANIPULATORS

#include <iostream>
#include <iomanip>

using namespace std;

// user-defi ned manipulators

ostream & currency(ostream & output)
{
 output << “Rs”;
 return output;
}

ostream & form(ostream & output)
{
 output.setf(ios::showpos);
 output.setf(ios::showpoint);
 output.fi ll(‘*’);
 output.precision(2);
 output << setiosfl ags(ios::fi xed)
 << setw(10);
 return output;
}

int main()
{
 cout << currency << form << 7864.5;

 return 0;
}

PROGRAM 12.9

The output of Program 12.9 would be:

Rs**+7864.50

Note that form represents a complex set of format functions and manipulators.

12.26 Basic Computer Engineering

SUMMARY

 In C++, the I/O system is designed to work with different I/O devices. This I/O system

supplies an interface called ‘stream’ to the programmer, which is independent of the actual

device being used.

 A stream is a sequence of bytes and serves as a source or destination for an I/O data.

 The source stream that provides data to the program is called the input stream and the

destination stream that receives output from the program is called the output stream.

 The C++ I/O system contains a hierarchy of stream classes used for input and output

operations. These classes are declared in the header file ‘iostream’.

 cin represents the input stream connected to the standard input device and cout represents

the output stream connected to the standard output device.

 The istream and ostream classes define two member functions get() and put() to handle

the single character I/O operations.

 The >> operator is overloaded in the istream class as an extraction operator and the <<

operator is overloaded in the ostream class as an insertion operator.

 We can read and write a line of text more efficiently using the line oriented I/O functions

getline() and write() respectively.

 The ios class contains the member functions such as width(), precision(), fill(), setf(),

unsetf() to format the output.

 The header file ‘iomanip’ provides a set of manipulator functions to manipulate output

formats. They provide the same features as that of ios class functions.

 We can also design our own manipulators for certain special purposes.

Key Terms

 adjustfield

 basefield

 bit-fields

 console I/O operations

 decimal base

 destination stream

 field width

fill()

 filling

 fixed point notation

 flags

 floatfield

 formatted console I/O

 formatting flags

 formatting functions

get()

12.27Managing Console I/O Operations

 Review Questions

12.1 What is a stream?

12.2 Describe briefly the features of I/O system supported by C++.

12.3 How do the I/O facilities in C++ differ from that in C?

12.4 Why are the words such as cin and cout not considered as keywords?

12.5 How is cout able to display various types of data without any special instructions?

12.6 Why is it necessary to include the file iostream in all our programs?

12.7 Discuss the various forms of get() function supported by the input stream. How are

they used?

12.8 How do the following two statements differ in operation?

 cin >> c;
 cin.get(c);

12.9 Both cin and getline() function can be used for reading a string. Comment.

12.10 Discuss the implications of size parameter in the following statement:

 cout.write(line, size);

getline()

 hexadecimal base

 input stream

 internal

ios

 iomanip

 iostream

 istream

 left-justified

 manipulator

 octal base

 ostream

 output stream

 padding

precision()

put()

resetiosflags()

 right-justified

 scientific notation

setf()

setfill()

setiosflags()

setprecision()

 setting precision

setw()

 showbase

 showpoint

 showpos

 skipus

 source stream

 standard input device

 standard output device

 stream classes

 streambuf

 streams

 unitbuf

unsetf()

width()

write()

12.28 Basic Computer Engineering

12.11 What does the following statement do?

 cout.write(s1,m).write(s2,n);

12.12 What role does the iomanip file play?

12.13 What is the role of file() function? When do we use this function?

12.14 Discuss the syntax of set() function.

12.15 What is the basic difference between manipulators and ios member functions in

implementation? Give examples.

12.16 State whether the following statements are TRUE or FALSE.

 (a) A C++ stream is a file.

 (b) C++ never truncates data.

 (c) The main advantage of width() function is that we can use one width specification

for more than one items.

 (d) The get(void) function provides a single-character input that does not skip over

the white spaces.

 (e) The header file iomanip can be used in place of iostream.

 (f) We cannot use both the C I/O functions and C++ I/O functions in the same

program.

 (g) A programmer can define a manipulator that could represent a set of format

functions.

12.17 What will be the result of the following programs segment?

 for(i=0.25; i<=1.0; i=i+0.25)
 {
 cout.precision(5);
 cout.width(7);
 cout << i;
 cout.width(10);
 cout <<i*i<< “\n”;
 }
 cout << setw(10) << “TOTAL =”
 << setw(20) << setprecision(2) << 1234.567
 << endl;

12.18 Discuss the syntax for creating user-defined manipulators. Design a single

manipulator to provide the following output specifications for printing float

values:

 (a) 10 columns width

 (b) Right-justified

 (c) Two digits precision

 (d) Filling of unused places with *

 (e) Trailing zeros shown

12.29Managing Console I/O Operations

 Debugging Exercises

12.1 To get the output Buffer1: Jack and Jerry Buffer2: Tom and Mono, what do you have

to do in the following program?

 #include <iostream.h>

 void main()

 {

 char buffer1[80];

 char buffer2[80];

 cout << “Enter value for buffer1 : “;

 cin >> buffer1;

 cout << “Buffer1 : “ << buffer1 << endl;

 cout << “Enter value for buffer2 : “;

 cin.getline(buffer2, 80);

 cout << “Buffer2 : “ << buffer2 << endl;

 }

12.2 Will the statement cout.setf(ios::right) work or not?

 #include <iostream.h>

 void main()

 {

 cout.width(5);

 cout << “99” << endl;

 cout.setf(ios::left);

 cout.width(5);

 cout << “99” << endl;

 cout.setf(ios::right);

 cout << “99” << endl;

 }

12.3 State errors, if any, in the following statements.

 (a) cout << (void*) amount;

 (b) cout << put(“John”);

 (c) cout << width();

 (d) int p = cout.width(10);

12.30 Basic Computer Engineering

 (e) cout.width(10).precision(3);

 (f) cout.setf(ios::scientifi c,ios::left);

 (g) ch = cin.get();

 (h) cin.get().get();

 (i) cin.get(c).get();

 (j) cout << setw(5) << setprecision(2);

 (k) cout << resetiosfl ags(ios::left |ios::showpos);

 Programming Exercises

12.1 Write a program to read a list containing item name, item code, and cost interactively

and produce a three column output as shown below.

 NAME CODE COST
 ———————————————————————————————
 Turbo C++ 1001 250.95
 C Primer 905 95.70

 ———————————————————————————————

 Note that the name and code are left-justified and the cost is right-justified with a
precision of two digits. Trailing zeros are shown.

12.2 Modify the above program to fill the unused spaces with hyphens.

12.3 Write a program which reads a text from the keyboard and displays the following
information on the screen in two columns:

 (a) Number of lines

 (b) Number of words

 (c) Number of characters

 Strings should be left-justified and numbers should be right-justified in a suitable

field width.

INSERT INTO emp_details values (‘Rahul’,’Sharma’, 199, ‘Sales’)

UPDATE emp_details SET department = ‘Sales’ WHERE emp_id = 166

SELECT first_name, email_id FROM bluesky WHERE qualification = ‘Btech’

UPDATE bluesky SET email_id = ‘m.afzal@bluesky.com’ WHERE emp_id = 936

DELETE FROM bluesky WHERE designation = ‘SSE’

Computer Networking

14

Key Concepts

 Networking

 Networking Goals

 Protocols Used

 TCP/IP Model

 OSI Model

 Internetworking Concepts

 Internetworking Devices

 Internet

 Internet Applications

 Understanding World Wide Web

 Web Browsers

 Network Security and E-Commerce

 14.1 Introduction

Computers were originally developed as

stand-alone, single-user systems. These

systems were able to receive user’s data and

then process the data to generate useful

information. Only a single user that is, the

owner of the computer system was able to

access the processed data for self use. As the

use of computers spread across government

offices and business organizations, a number

of issues were raised.

 What if a user wants to share his

computer generated information with

other colleagues?

 What if a user wants to explore the

possibility of using certain information

stored somewhere else?

Subsequent developments in software,

hardware and communication technologies

addressed the above issues by enabling the

computers to communicate with each other

and exchange information quickly and accurately and at any time. This field of computer science

that focuses on exchange of data between different computer systems is known as networking.

The advent of networks led to the mushrooming of a large number of isolated networks that

could not interact with each other due to hardware and software incompatibilities. Then, a

14.2 Basic Computer Engineering

revolutionary concept called internetworking or internet came to the fore that allowed computer

systems based on different networks to interact with each other without any problems.

There are a number of standard network hardware devices as well as software protocols

that enable the realization of the concept of global virtual network called the Internet. We shall

study these hardware devices and protocols later in this chapter. Further, we will also study

the power of Internet, its application areas and the key fundamentals of network security.

 14.2 Networking Goals

The primary task of computer networking is to facilitate exchange of data between computer

systems and networking devices. With this key functionality it meets a number of goals, which

are:

Resource sharing It enables data and other computer-related resources present at

remote locations to be shared amongst the various users of the network.

Communication It allows network users present at physically distant locations to

instantly communicate with each other through e-mail and chat applications.

Load sharing Through distributed computing, it allows computing tasks to be divided

across a network of computers, thus reducing the overall processing load.

Reduced costs Resources such as printers, scanners, storage disks, etc. are networked

and shared by a number of users, thus leading to cost reduction.

Reliability and availability It allows multiple server computers or other resources

to be networked in parallel, so that if one of them goes down, the other one can fill its

place.

 14.3 Protocols Used for the Internet

The Internet is a collection of computers, which are connected to each other for the purpose of

sharing of information. To share information, data has to be transferred from one computer to

another. When data is transferred between computers, certain rules called protocols have to

be followed. The protocols perform different tasks, which are arranged in a vertical stack and

each task is performed at a different layer. The computer, which sends the data to another

computer, is called source computer. On the other hand, the computer, which receives the

data from another computer, is called destination computer. At the time of transferring of

data from the source to the destination computer, a protocol is responsible for determining

the network to which the destination computer belongs. It is also responsible for defining the

procedure, which must be followed for dividing the data into packets. The protocols are also

responsible for detection of errors in the data packets and the correction of these errors or loss

of data packets. In addition, it is the responsibility of the protocols to identify loss of connection

between the computers in a network and help the users to establish the connection again.

Each computer on a network has a unique address, which is known as the Internet Protocol

(IP) address. An IP address is a group of four numbers and the numbers are separated from

each other by a dot. When any data is sent from one computer to another computer over the

14.3Computer Networking

network, it is divided into small modules known as packets or datagrams. These packets are

transmitted on the network by the Internet Protocol. Each packet transmitted on the network

contains the addresses of both source and destination computer. A gateway present on the

network reads the address of the destination computer and sends the data to the specified

address. Gateway is a computer, which contains the software required for the transmission of

data over different networks. Each packet on the network is an independent entity, so they are

transferred through different routes to reach the destination computer. The packets received

at the destination are not in the same sequence in which they were transmitted. As a result,

these packets are arranged in a right sequence by a protocol known as Transmission Control

Protocol (TCP) and then are merged at the destination to form the complete data. TCP and IP

work in coordination with other protocols such as Telnet and User Datagram Protocol (UDP)

but are considered as the most fundamental of all protocols. All these protocols are collectively

known as TCP/IP suite. A model known as TCP/IP model determines how the protocols of the

TCP/IP suite will work together for the transfer of data between computers in a network.

14.3.1 TCP/IP Model

The TCP/IP model was initially developed by US Defence

Advanced Research Projects Agency (DARPA). This model

is also known as the Internet Reference model or DoD

model. It consists of four layers, namely, application layer,

transport layer, network layer, and physical layer. Figure

14.1 shows the four layers of TCP/IP model.

The physical layer in the TCP/IP model is responsible

for interacting with the medium of transmission of data,

whereas the application layer helps in interacting with

the users. The four layers of TCP/IP and the functions

performed by these layers are as follows:

Application layer The application layer is

responsible for managing all the user interface

requirements. Many of the protocols, such as telnet,

FTP, SMTP, DNS, NFS, LPD, SNMP and DHCP

work on this layers.

Transport layer The transport layer is responsible for the delivery of packets or

datagrams. It also hides the packet routing details from the upper layer, i.e., the

application layer. In addition, the transport layer allows detection and correction of

errors and helps to achieve end-to-end communication between devices. The transport

layer connects the application layer to the network layer through two protocols, namely,

TCP and UDP.

Network layer The network layer is also known as Internetworking layer or IP layer.

It contains three protocols that perform different functions. The three protocols of

Network layer are as follows:

a. Internet Protocol (IP) IP is a connectionless protocol that is responsible for the

delivery of packets. The IP protocol contains all the address and control information

for each transmitted packet.

Fig. 14.1 3 Layers of TCP/IP model

14.4 Basic Computer Engineering

b. Internet Control Message Protocol (ICMP) The ICMP protocol is responsible

for reporting errors, sending error messages and controlling the flow of packets.

It is more reliable than the IP as it is capable of determining errors during data

transmission.

c. Address Resolution Protocol (ARP) It is responsible for determining the Media

Access Control (MAC) address corresponding to an IP address. It sends an ARP

request on the network for a particular IP address and the device, which identifies

the IP address as its own, returns an ARP reply along with its MAC address.

Physical layer The physical layer is responsible for collecting packets so that the frames,

which are transmitted on the network, can be formed. It performs all the functions

required to transmit the data on the network and determines the ways for accessing

the medium through which data will be transmitted. This layer does not contain any

protocols but instead of protocols, it contains some standards such as RS-232C, V.35 and

IEEE 802.3.

14.3.2 OSI Model

Open System Interconnection (OSI) is a layered design that defines

the functions of the protocols used in a computer network. It

consists of seven layers where each layer provides some services to

the next layer. Figure 14.2 shows the seven layers of OSI model.

The seven layers of the OSI model and the functions performed

by them are as follows:

Application layer The application layer provides an inter-

face through which users can communicate and transfer data

on the network.

Presentation layer The presentation layer determines the

way in which the data is presented to different computers. It

converts the data into a particular format, which is supported

by a specific computer. It is also responsible for encrypting,

decrypting, compressing and decompressing of data.

Session layer The session layer manages the communication

between the computers on the network. This layer is

responsible for notifying the errors, which may have occurred

in the layers above it. It is also responsible for setting up and

breaking the connection between the computers or devices.

Transport layer The transport layer is responsible for the

delivery of packets in a proper sequence. It also provides proper

rectification of errors and manages the flow of packets over the

network. This layer ensures that data is properly delivered at

the destination. It also keeps track of all the packets, which

fail to reach the destination, and transmits them again.

Network layer The network layer is responsible for identifying the ways in which

the data is transmitted over the network from one device to another. It prevents the

overloading of packets on the network and maintains the proper flow so that all the

Fig. 14.2 3 OSI model

14.5Computer Networking

resources on the network can be used efficiently by all. The network layer directs the

packets to the destination device on the basis of the IP address of the device. It detects

the errors, which occur during the transmission of packets. This layer is also responsible

for breaking the large size packets into smaller packets when the device is unable to

accept the packets due to their large size.

Data link layer The data link layer specifies the actions, which must be performed to

maintain the network communication. It collects the packets to form frames, which are

then transmitted over the network. It also finds out and then corrects the errors, which

occur during the transmission of packets.

Physical layer The physical layer describes all the physical requirements for the

transmission of data between devices on a network. For example, the physical layer can

specify the layout of pins, hubs and cables. This layer defines the relation between a

single device and the transmission medium. It specifies the way in which a device must

transmit data and also the way in which another device must receive data. This layer is

responsible for the setting up and ending up of a network connection.

 14.4 Internetworking Concepts

Internetworking is the process of connecting two or more networks with each other so that data

can be exchanged between their computer systems. Thus, internetworking builds a network

of networks called internetwork or simply internet. The need for internetworking arose when

different isolated networks became somewhat disadvantageous due to their limited outreach.

For instance, if a user working on a computer in Network A had to access a printer present

on Network B, then he had to physically move to a computer system in Network B. This was

obviously considered inconvenient because a task of similar nature could easily be performed

in the user’s own network without any physical movement.

14.4.1 Internetworking Issues

A number of issues are required to be addressed for implementing a seamless internetworking

environment. Some of these issues are:

 The two networks may have different infrastructural set ups or topologies. For instance,

one could be a LAN while the other could be a WAN.

 The two networks may be using different protocols for message transfer.

 The underlying hardware of the two networks may be different and incompatible.

Thus, internetworking requires a number of network incompatibilities to be resolved both

at hardware as well as software levels.

14.4.2 Handling Internetworking Issues

The incompatibilities between communicating networks requires dedicated hardware devices

to facilitate data transfer. Routers and gateways are two such devices that are used for

internetworking purposes. A router is used for choosing the correct network path for data

packets while a gateway is used for protocol translation of data packets.

14.6 Basic Computer Engineering

The software incompatibilities between communicating devices requires some standardized

protocol to be developed for intercommunication. TCP/IP is one such protocol that is widely

used for Internetworking purposes.

 14.5 Internetworking Devices

14.5.1 Router

As already explained, a router is used for transferring data packets across different computer

networks. A router reads the address specified on a data packet to ascertain where it is heading

and subsequently forwards it to its target network. There could be a large number of routers

used in a dense interconnected networks system.

A router is similar to a computer having a CPU and memory of its own. It contains a number

of interfaces to which different networks connect for internetworking. The interconnecting

networks may be based on different technologies (Ethernet or FDDI) or have different topologies

(LAN or WAN). The router simply reads the address where the incoming data packets are

headed and routes them to their target network. Routers play a vital role in realizing the

concept of a huge virtual network called Internet. Similarly, they are equally indispensable

while catering to trivial requirements of interconnecting LANs of different departments of an

organization.

14.5.2 Gateway

While a router interconnects different network types with each other, it does require all the

interconnecting networks to be following the same protocol, such as TCP/IP. This limitation of

a router is removed by a gateway which has the capability of interconnecting different types

of networks that are based on different protocols. Thus, gateways are a step ahead of routers.

While a router operates on the network, data link and physical layers of the OSI model, a

gateway operates at all the seven layers.

To facilitate internetworking between cross protocol networks, a gateway is required to possess

some kind of translation mechanism that can translate the incoming data packets into their

respective target network’s protocol. This is achieved with the help of protocol converters.

14.5.3 Networking Devices

While routers and gateways are used for the purpose of internetworking, there are several

other hardware devices that are used by individual computer networks for facilitating data

transmission. Some of these key networking devices are:

Modem It is primarily used for connecting a computer system to the Internet. The

primary objective of a modem is to convert the computer generated digital messages into

analog form for their transfer through an analog communication channel. Similarly, it

is also responsible for receiving the analog signals from the network and decoding them

back to their digital format.

14.7Computer Networking

Hub A hub is the common convergence point for the various devices present on a

network. It exposes a large number of ports to receive data packets, which are then

simply replicated to other networked computers or devices.

Switch It is a more clever device than a hub and also works at higher layers in the OSI

model as compared to a hub. Unlike a hub, it intelligently forwards the incoming data

packet to its destination instead of replicating it across multiple ports. Thus a switch

helps in preserving network bandwidth.

Network adapter Also called Ethernet adapter, it is primarily used to interface a

computer system with a computer network.

14.6 Internet

Internet is a popular buzzword among many people today. Almost everyone working in

government offices and business organisations is using the Internet for exchange of information

in one form or the other.

World Wide Web is another popular phrase among the computer users. It is commonly referred

to as the Web. Most people consider the Internet and the World Wide Web to be synonynous,

but they are not. Although these two terms are used interchangeably, they actually describe

two different but related things.

The Internet is a massive network of networks that links together thousands of independent

networks thus bringing millions of computers on a single network to provide a global

communication system. It acts as a facilitator for exchange of information between computers

that are connected to the Internet. It is like a network of roads in a country that facilitates the

movement of vehicles around the country.

We can create special documents known as hypertext documents containing text, graphics,

sounds and video on a computer. The storage location of these documents is known as website.

The World Wide Web is the network of all such websites all around the world. It is popularly

known as WWW or Web. The websites are spread across the Internet and therefore, the

information contained in the websites can be transmitted through the Internet. It is like

transporting the goods stored in the warehouses using the road network. So the Web is just a

portion on the Internet and not same as the Internet.

 14.7 Internet Applications

Nowadays the Internet is used in almost all the fields for different purposes. Each and every

field uses one or the other services provided by the Internet. The Internet is extensively used

in the following fields: Business Education Communication Entertainment Government

14.8 Basic Computer Engineering

14.7.1 The Internet in Business

In business, the Internet can be used for many purposes. An organisation can provide details

about its products on the Internet that can be either used by the other organisations interested

in developing business links with it or by the prospective customers. Business transactions

such as sale and purchase of products and online payment can also be performed using the

Internet. This service of the Internet is called e-business, which can be further classified into

the following categories: Business-to-business (B2B) B2B e-business refers to the business transactions that

take place between two business organisations. In B2B, a large website acts as a

market place and helps the buyers and suppliers interact at the organisational level.

The website acting as a market place helps the buyers to find new suppliers and the

suppliers to search for new buyers. It also saves the time and cost of interaction between

the organisations. For example, a supplier business organisation can provide certain

raw materials to a manufacturing business organisation through its website. Business-to-consumer (B2C) B2C e-business refers to the business transactions that

take place between an organisation and a consumer directly. In B2C, a consumer can shop

online for the products offered by a business organisation. It provides all the information

regarding the available products through a website and allows the consumers to order

and pay for the products online, thus facilitating fast and convenient shopping. For

example, the Asian Sky Shop sells the various products offered by different business

organisations online and any user who wants to purchase a product can buy it online. Consumer-to-consumer (C2C) C2C refers to the business transactions that take place

between two consumers but with the help of a third party. In C2C, a consumer provides

information about a product, which is to be sold, on the website of the third party.

Another consumer can buy the same item through bidding on the website of the third

party. The consumer, who provides an item for sale on the website, is known as seller;

whereas the consumer, who bids for the item, is known as buyer. For example, e-bay is

a website on which a consumer can provide information about the products, which s/he

needs to sell. The best bidder gets to buy the listed product. Consumer-to-business (C2B) C2B is a business model that allows individual consumers

to offer their products and services to companies in return of which they get payment

from the companies. One of the popular examples of C2B model is the online advertising

site Google Adsense. It allows individuals to display advertising content or promotional

materials on their personal websites. The administration and payment of these ads are

done by Google itself. Also, platforms like Google Video and Fotolia are good examples

of C2B, where individuals can sell digital content including images, animations, videos,

etc. to companies.

14.7.2 The Internet in Education

In the field of education, the Internet is widely used for learning and teaching. The Internet not

only helps the students search information on various topics of their interest but also proves

useful for the students pursuing distance education. The distance education institutes provide

notes, lectures and syllabus to students through their respective websites. The students just

have to access the website of the institute to get all the required information from it. If the

14.9Computer Networking

website of an educational institution supports e-learning, then the students can participate in

online lectures through simulations, Web Based Training (WBT), etc.

The Internet also provides the Usenet service, which contains a large number of Newsgroups

through which a user can submit as well as obtain the articles on different topics. The members

of a newsgroup connect to each other and have discussions through the Usenet network. Usenet

contains a number of message boards on which the articles are placed and the software known

as newsreader is used to read the articles published on message board. Most of the newsgroups

allow the users to submit their articles on the selected topics such as scientific research, social

issues, religion and politics. Moreover, some newsgroups also allow the users to submit their

articles on a topic of their own choice. Newsgroup not only helps the users in gaining knowledge

but also allows them to make online friends.

The Internet also provides an application similar to Newsgroups known as Discussion

forum. The discussion forum also allows a large number of people to hold discussions or place

their articles on a particular topic similar to Newsgroups. But the only difference between the

Discussion forums and Newsgroups is that the Discussion forums display articles according

to the time or the thread of receiving the article. The thread refers to the grouping together

of all the messages received on a particular topic. Some discussion forums allow the users

to place their articles even without having a membership of the Discussion forum, while the

other Discussion forums require the users to have membership along with valid username

and password. The members of such Discussion forums have special facilities such as to make

alterations in their previous articles, to initiate a new topic and to delete the previous articles

submitted by them.

Both Newsgroup and Discussion forums are used by students and other users of the Internet

to share their knowledge with each other by participating in a discussion on a specific topic.

The extensive use of the Internet in education has led to the creation of what are known as

Virtual Universities in many countries.

14.7.3 The Internet in Communication

The Internet is mostly used by the people as a fast and cheap means of communication. Many

services provided by the Internet such as e-mail and instant messaging help the users to

communicate quickly and cheaply over long distances. E-mail is an application of Internet

that allows a user to send and receive text messages electronically. To use the email services,

a user requires an account on a mail server. The account is created by the user by providing a

username; a password and other personal information such as address and contact number.

Each time the user wants to access the email service, she/he has to log on to the server using

the username and the password provided during account creation. If the username or the

password provided by a user is invalid, then that user is considered as an unauthorised user

and is prohibited from using the service.

The Internet also provides another easy way of communication, i.e., communication through

instant messaging. Instant messaging is a service of the Internet through which it is possible

for a user to perform real-time communication with one or more users on the Internet. The

real-time communication refers to the communication in which there is an immediate response

to a message. In case of instant messaging, the communication between two users takes place

14.10 Basic Computer Engineering

by instant sending and receiving of message. To use this service, the users have to log on to

the instant messaging server. After a user has successfully logged on to the server, a chat

room with a list of online users is made available to the user. An online user is a user who is

available for chatting at a specific period of time. The user can then select an online user from

the list and then send a message to that online user. If a response is received from the online

user to whom a message was sent, then instant sending and receiving of message takes place.

Chat rooms not only provide the sharing of text messages but also allow the users to share

images and graphics online.

Apart from e-mail and instant messaging, Internet telephony and web conferencing are the

other application areas of the Internet that facilitate, quick, cheap and efficient communication

over long distances. Through these mediums, the users can talk to the other uses in real-time

through an audio-visual interface.

14.7.4 The Internet in Entertainment

The Internet over the period of time has evolved as a great source of entertainment. It provides

many entertainment resources to the users such as games, music and movies. The most

popular entertainment resources on the Internet are the games, which are either free of cost

or can be bought through the payment of a small price. Multi User Dungeon (MUD) is a virtual

environment in which fantasy characters such as warriors, priests and thieves are adopted

by end users for playing games. Each user represents a specific character and interacts with

other characters with the help of text messages. The information regarding the game and the

virtual environment is also provided to the users through commands displayed on the screen.

MUD is also available with graphics that enhance the background of the game by providing it

a 3-dimensional look. This feature is known as virtual reality because the background and the

characters in the game resemble the real world entities.

Apart from games, the Internet also provides many other entertainment resources. Several

websites provide easy access to any type of music and videos, which can be freely downloaded

on the computers. The Internet also enables the users to share videos and photos with other

users. Many websites on the Internet also provide information regarding the sports events

taking place at specific period of time. These websites allow the users to access continuous

score updates.

14.7.5 The Internet in Government

These days, the Internet is playing a crucial role in the functioning of the government

organisations. Almost all the government organisations have set up their websites that provide

information related to the organisation as well as help them in performing their operations. For

example, nowadays people can submit the passport application form and file the income tax

returns through the use of Internet. Moreover, Internet also enables the government agencies

to share the data with each other.

The vast use of IT and Internet has paved the way for e-governance. More and more

government agencies are adopting the concept of e-governance to improve their service delivery

capabilities.

14.11Computer Networking

 14.8 Understanding the World Wide Web

World Wide Web is a collection of web servers, which contain several web pages pertaining to

different websites. The web pages contain hypertext, simple text, images, videos and graphics.

The web pages are designed with the help of HyperText Markup Language (HTML). To view

the web pages provided by a web server, the software known as web browser is required. To

display the web pages, a web browser runs the HTML code segment written for a particular

web page. Each web page on the Internet is provided its own address known as Uniform

Resource Identifier (URI) or URL. This URL helps the web browser in locating a web page

on the Internet. A URL string begins with the name of a protocol such as http or ftp that

represents the protocol through which a web page is accessed. The rest of the URL string

contains the domain server name of the web page being accessed and the location of the web

page on the local web server.

 14.9 Web Browsers

Web browser is the software, which is used to access the Internet and the WWW. It is basically

used to access and view the web pages of the various websites available on the Internet. A

web browser provides many advanced features that help achieve easy access to the Internet

and WWW. When we open a web browser, the first page, which appears in the web browser

window, is the home page set for that particular web browser.

The web browsers are categorised into two categories, text based and Graphical User

Interface (GUI) based. The text based browsers are the browsers that display unformatted text

contained in the HTML files. These types of browsers do not display images, which are inline

with the text contained in the HTML files. However, the text based browsers have the ability

of displaying the images that are not inline with the text contained in the HTML files. The

text based browsers are simple to use and do not require computers with expensive hardware.

They allow the downloading of graphic and sound files but only if the computer contains the

software and the hardware required for such files. The GUI based browsers, on the other

hand, display formatted text along with images, sounds and videos, which are contained in

the HTML files. The user has to just click the mouse button to view or download image, sound

and video files. The most commonly used web browsers are Internet Explorer (IE), Netscape

Navigator and Mozilla Firefox.

The IE is the most widely used web browser that was developed in 1995 by Microsoft. The

first version of IE, i.e., IE 2.0 could be installed and run on the computers with Macintosh and

the 32-bit Windows operating systems. IE 2.0 was specially designed to access secure websites,

and hence had the capabilities of tracing any kind of errors. To trace the errors and provide

secure access to websites, IE 2.0 included a new protocol known as Secure Socket Layer (SSL)

protocol. In 1996, the next version, i.e., IE 3.0 was developed, which had many advanced

features, such as Internet Mail, Windows Address Book and Window Media Player. This

version was basically developed for Windows 95 operating system. In 1997, the next version,

IE 4.0 was developed that included Microsoft Outlook Express 4.0, which is e-mail software

used for sending and receiving e-mail messages. Microsoft Outlook Express was included with

IE 4.0 to provide enhanced Internet mail and news features. The latest version of IE is IE 8.0.

14.12 Basic Computer Engineering

It is the most secure web browser as it contains many privacy and safety features as compared

to any of the previous versions of IE. The IE 8.0 version supports the latest Windows operating

system, i.e., Windows Vista.

To access Internet Explorer on a computer, we need to select Start Programs Internet

Explorer. The Microsoft Internet Explorer window appears with the home page as shown in

Fig. 14.3.

Fig. 14.3 3 Microsoft Internet Explorer window

Figure 14.3 shows that the home page for the Internet Explorer has been set to the google.

com website, which is a search engine that helps in searching information on the Internet.

A user can change the home page according to the requirements using the Internet Options

option of the Tools menu.

Another commonly used web browser is Netscape Navigator, which was also known as Mozilla
during its development phase. This web browser was widely in use in the 1990’s. The only
advantage of Netscape Navigator over IE is that when a web page is being downloaded, unlike
IE in which a blank screen appears some of the text and graphics contained in the web page
appears in the case of Netscape Navigator. This prevents the wastage of time as the user can
start reading the page even before it is completely downloaded. Initially, Netscape Navigator
became very popular because of its advanced features and free availability to all the users.
However, its usage declined later in 1995 when it was declared that the web browser was freely
available only to the non-profit and educational organisations. Another reason for the decline

14.13Computer Networking

in the usage of Netscape Navigator is that it was not capable of fixing the errors automatically.

On the other hand, IE 4.0 had the feature of automatically fixing errors. As a result, many

people suddenly stopped using Netscape Navigator. In order to increase the usage of Netscape

Navigator many new features such as mail and news reader were added to its older version.

However, these new features affected the speed of the Web browser and increased its size. As

a result, Netscape Navigato is rarely being used nowadays. To access Netscape Navigator,

we need to select Start Programs Netscape Communicator Professional Edition Netscape

Navigator. The Netscape window appears with the home page as shown in Fig. 14.4.

Fig. 14.4 3 The Netscape window with home page

The third most commonly used web browser is the Mozilla Firefox, which was developed

by Dave Hyatt and Blake Ross. Many versions of Mozilla Firefox web browser were developed

before it was officially released in November 2004. The latest version of Mozilla Firefox that is

currently being used is 2.0.0.14. This version includes many new features such as mail, news

and HTML editing. The Firefox web browser uses XML User Interface (XUL), which supports

features such as Cascade Spread Sheets (CSS) and JavaScript. XUL provides extensions and

themes, which enable a user to increase the capabilities of the Mozilla Firefox web browser.

Initially, the Firefox was named as m/b (Mozilla/Browser) but later its name was changed to

Phoenix. The name Phoenix already existed for some BIOS software so the web browser was

14.14 Basic Computer Engineering

renamed as Firebird but again the same problem persisted. This was already a name of a

popular database server. So, in February 2004 another name, i.e., Mozilla Firefox was given

to the web browser that persists till today. To access Mozilla Firefox, we need to select Start

 Programs Mozilla Firefox Mozilla Firefox. The Mozilla Firefox window appears with the

home page as shown in Fig. 14.5.

Fig. 14.5 3 Mozilla Firefox window with home page

 14.10 Network Security and Ecommerce

In today’s highly networked world, network security is an important aspect that needs

dedicated attention. Just as there are security threats in our real lives, there are threats

while working in an internetworking environment. For example, there is a risk that somebody

might impersonate you and try to withdraw funds your bank account. Similarly, there is a risk

that some hacker may illegally gain access to your online bank account and siphon off funds.

Just as a bank implements a number of security measures to ensure that no impostor gains

access to the money saved in your bank account, there are security measures in the networked

environment as well that prevent unauthorized and illegal access.

14.15Computer Networking

Before we learn about the various network security threats and their possible remedies, we

must explore a vital application area of internetworking i.e., ecommerce. It is this aspect of

Internet that requires considerable attention from the security standpoint.

14.10.1 Ecommerce

In simple words, we can define ecommerce as the buying and selling of goods or services online.

While the goods are delivered through some physical distribution medium, the services may

instantly be delivered online. However, in both cases the payment is made through electronic

mode. The following scenarios are some of the typical instances of ecommerce:

 Buying books, groceries, etc., online

 Buying or selling shares electronically

 Transferring funds online (net banking)

 Making utility bills payment online

Ecommerce has given an altogether new dimension to how businesses are conducted these

days. There is a considerably huge consumer segment that likes to buy products or services

online. Thus, a business house must cater to both of these consumer segments equally.

14.10.2 Network Security Issues

Network security is important not just because internetworking involves electronic funds

transfer but there are several other important security concerns that require equal attention,

such as identity theft, breach of privacy, etc. The network security infrastructure and procedures

must comply with the following basic requirements:

Confidentiality or privacy A lot of the information being exchanged on the Internet

may not be confidential, but the personal details of a user such as his name, e-mail

address, credit card details, etc are confidential and must be guarded against any

malicious or illegal access.

Integrity The information available on the Internet must be reliable and must be

prevented against any attempts of tampering. For instance, the user must be charged

the same amount through his credit card as is mentioned in the product gallery or

catalog.

Accountability or authenticity The credentials of the user must be duly authenticated

before granting him the desired access.

14.10.3 Network Security Techniques

There are several robust and logical network security techniques that help address the various

network security issues. Some of these techniques are:

Firewall A firewall is typically implemented to prevent unauthorized access to private

networks (intranet) connected to the Internet. Implemented as a software, hardware, or

a combination of both, it applies suitable security policies before allowing the requesting

entity any access to a network resource. A firewall may be implemented through several

different techniques, such as packet filter, application gateway, proxy server, etc.

14.16 Basic Computer Engineering

Encryption It is the process of encrypting or encoding the transmitted information

in such a way that only the intended recipient having decoding information (a key)

is able to decrypt and read the information. Encryption secures the transmission of

user’s personal data such as credit card details, e-mail address, phone number, etc, thus

preventing any attempts to breach of privacy. PKI or Public Key Infrastructure is one of

the fundamental techniques used to implementing encryption.

Digital Signature It helps to meet the challenges of authenticity and integrity in

an internetworking environment. It is like a digital stamp that makes the recipient

of the digital information believe that the information was not tampered during its

transmission.

VPN VPN or Virtual Private Network, as the name suggests, is not a real but a virtual

network that uses the public transmission medium such as the Internet along with its

own security measures to realize an economical alternate to a dedicated private network.

It is one of the best cost effective mediums being used by organizations world over to

allow their globally dispersed regional offices to communicate and share information

with each other in a secure manner.

SUMMARY

 A collection of networks in which a large number of computers are connected to each other

is known as the Internet. The Internet marked its beginning with a network known as

ARPAnet which was developed at Advanced Research Projects Agency (ARPA) of the U S

in 1969. The first protocol used on the ARPAnet was TCP/IP. From 1975 to 1982, different

scientists developed many new networks, such as Telnet, Usenet and Eunet. All these

continuous developments led to the eventual development of the Internet.

 The Internet can be used to gather information on a wide variety of topics. Today the

Internet is used in many fields such as business, education and entertainment. In business,

the most popular use of the Internet is e-business through which an organisation and a

consumer can communicate with each other and perform business transactions. In education

field, the students use discussion forums and newsgroups on the Internet to gain specific

information. The internet also extends its application in communication field by providing

services such as e-mail and instant messaging through which a person at one location

can communicate to another person located at a remote place. The Internet also provides

entertainment through games, music and movies.

 To access the Internet and the WWW, the user requires a software known as web browser.

Some commonly used web browsers are IE, Netscape Navigator and Mozilla Firefox. To gather

information from the Internet, a user has to search for the information on the Internet. This

is done with the help of search engines provided on the Internet. The most commonly used

search engines are www.google.com, www.altavista.com and www.askjeeves.com.

 While the invention of computer itself was revolutionary, computer networking and

particularly the Internet has added an all new dimension to it. A computer network may be

defined as an arrangement of computer systems connected with each other for the purpose

14.17Computer Networking

of sharing data and resources. Internet is one step ahead of a network as it allows multiple

computer networks to connect with each other. A number of network hardware devices such

as router and gateway and standard networking protocols such as TCP/IP help realize the

concept of Internet by allowing incompatible entities to communicate with each other.

 Internet has entirely changed the way conventional business activities are conducted these

days. Now, products or services can be bought by sitting at the comfort of our homes while

the payments for the purchases can be made directly from out debit or credit card accounts.

Growing use of Internet for business and personal usage has led to the need of an adequate

security infrastructure that can thwart any malicious or illegal activities. This is achieved

at both software and hardware levels through concepts like firewalls, encryption, digital

signatures etc.

Key Terms

 Networking

 Internetworking

 OSI

 Router

 Gateway

 Ecommerce

 Firewall

 Encryption

 Digital signature

 VPN

 TCP/IP

 Internet

 World Wide Web

 Review Exercises

14.1 What is a computer network? List down its key advantages.

14.2 What are goals of networking?

14.3 Briefly explain the OSI model.

14.4 Elaborate upon the need of internetworking.

14.5 Briefly explain the various internetworking devices.

14.6 What is a TCP/IP model? Why is it used?

14.7 Given an introduction to the Internet and its various application areas.

14.8 What is difference between internet and world wide web?

14.9 What is network security? What is its significance?

14.10 Explain the various network security issues.

14.11 Briefly explain the various network security techniques.

14.12 What is ecommerce? What are its advantages?

14.18 Basic Computer Engineering

 Fill in the Blanks

14.1 _________ provides the facility of information sharing and communication between

users.

14.2 WWW refers to _________ __________ ___________.

14.3 Each web page is accessed on a network using ___________.

14.4 The methods and the rules followed to transfer data on a network are known as

__________.

14.5 __________ is the unique address of a computer on the network.

14.6 __________ service of the Internet is used to perform real-time communication on

the Internet.

14.7 __________ allows the users to search for some information on the Internet.

14.8 The TCP/IP model contains four layers, which are _________, _________, _________

and _________.

14.9 The two types of web browsers are ________ and _________.

14.10 An OSI model is also referred as ______________.

 Multiple Choice Questions

14.1 Which of the services of Internet allows the users to gather information from the

Internet?

 A. Email B. Discussion forums

 C. WWW D. Instant messaging

14.2 What is the address of a computer on a network known as?

 A. URL B. IP address C. Host D. Domain name

14.3 Which of the following tasks can be performed using the Internet?

 A. Book air tickets B. Shop for clothing

 C. Check the bank statement D. All of the above

14.4 At which layer of the TCP/IP model IP, ICMP and ARP protocols function?

 A. Physical layer B. Application layer

 C. Network layer D. Transport layer

14.5 How many layers are there in a TCP/IP model?

 A. 2 layers B. 5 layers C. 7 layers D. 4 layers

14.6 Which of the following are the protocols that work at the application layer of the

TCP/IP model?

 A. FTP B. SMTP C. IP D. ARP

14.7 How many layers does an OSI model contain?

 A. 2 layers B. 5 layers C. 7 layers D. 4 layers

14.19Computer Networking

14.8 Which layer in the OSI model prevents the overloading of packets on the

network?

 A. Data link layer B. Application layer

 C. Network layer D. Session layer

14.9 Which of the following are the examples of a web browser?

 A. Net navigator B. Mozilla foxfire

 C. IE D. Netscape communicator

14.10 Which layer in a TCP/IP model does not contain any protocols?

 A. Transport layer B. Application layer

 C. Network layer D. Physical layer

14.11 The term ISP stands for?

 A. Information System Protocol B. Internet System Protocol

 C. Internet Service Provider D. Information Service Provider

C++ Operator Precedence

A

The Table A.1 below lists all the operators supported by ANSI C++ according to their precedence

(i.e. order of evaluation). Operators listed first have higher precedence than those listed next.

Operators at the same level of precedence (between horizontal lines) evaluate either left to

right or right to left according to their associativity.

Table A.1 C++ Operators

 Operator Meaning Associativity Use

 : : global scope right to left ::name

 : : class, namespace scope left to right name : : member

 . direct member left to right object.member

 – > indirect member pointer->member

 [] subscript pointer[expr]

 () function call expr(arg)

 () type construction type(expr)

 ++ postfix increment m++

 — postfix decrement m––

 Sizeof size of object right to left sizeof expr

 sizeof size of type sizeof (type)

 ++ prefix increment ++m

 –– prefix decrement ––m

 typeid type identification typeid(expr)

 const_cast specialized cast const_cast<expr>

 dynamic_cast specialized cast dynamic_cast<expr>

 reinterpret_cast specialized cast reinterpret_cast<expr>

 static_cast specialized cast static_cast<expr>

 () traditional cast (type)expr

 ~ one’s complement ~expr

(Contd)

A.2 Basic Computer Engineering

 ! logical NOT ! expr

 – unary minus – expr

 + unary plus + expr

 & address of & value

 * dereference * expr

 new create object new type

 new [] create array new type []

 delete destroy object right to left delete ptr

 delete [] destroy arrary delete [] ptr

 .* member dereference left to right object.*ptr_to_member

 –>* indirect member dereference ptr->*ptr_to_member

 * Multiply left to right expr1 * expr2

 / Divide expr1 / expr2

 % Modulus expr1 % expr2

 + add left to right expr1 + expr2

 – subtract expr1 – expr2

 << left shift left to right expr1 << expr2

 >> right shift expr1 >> expr2

 < less than left to right expr1 < expr2

 <= less than or equal to expr1 <= expr2

 > greater than expr1 > expr2

 >= greater than or equal to expr1 >= expr2

 == equal left to right expr1 == expr2

 != not equal expr1 != expr2

 & bitwise AND left to right expr1 & expr2

 ^ bitwise XOR left to right expr1 ^ expr2

 | bitwise OR left to right expr1 | expr2

 && logical AND left to right expr1 && expr2

 | | logical OR left to right expr1 | | expr2

 ?: conditional expression left to right expr1 ? expr2: expr3

 = assignment right to left x = expr

 *= multiply update x *= expr

 /= divide update x /= expr

 %= modulus update x %= expr

 += add update x += expr

 –= substract update x – = expr

 <<= left shift update x <<= expr

 >>= right shift update x >>= expr

 &= bitwise AND update x &= expr

 |= bitwise OR update x |= expr

 ^= bitwise XOR update x ^= expr

 throw throw exception right to left throw expr

 , comma left to right expr1, expr2

Projects

B

 B.1 Minor Project 1: Menu Based Calculation System

Learning Objectives

The designing of the Menu Based Calculation System project will help the students to:

 Create C++ classes with static functions

 Generate and call static functions

 Use the functions of Math.h header file

 Develop and display the main menu and its submenus

Understanding the Menu Based Calculation System

The Menu Based Calculation System project is aimed at performing different types of

calculations including normal and scientific calculations. In this project, two calculators,

Standard and Scientific, are used for performing the calculations. The Standard calculator

helps in performing simple calculations such as addition, multiplication, etc. while the

Scientific calculator helps in performing mathematical operations such as finding the square

or cube of a number.

The first screen contains a menu from which you can select the type of calculator: Standard,

or Scientific. The first screen also provides the Quit option to terminate the execution of the

application. Figure B.1 shows the first screen of the menu based calculation system.

To select a calculator, enter the integer corresponding to the calculator name. For instance,

if you select 1, the Standard calculator will open up, while selecting 2 will open the Scientific

calculator.

B.2 Basic Computer Engineering

Fig. B.1

Developing the Menu based Calculation System

The code of the calculator application mainly comprises of two classes stand_calc and scien_

calc. The stand_calc class helps to perform standard calculations. The scien_calc class, on the

other hand, helps to perform scientific calculations. Both classes contain static functions so as

to ensure that these functions can be called in the main function through class name.

Creating the stand_calc class

The stand_calc class aims at performing specific tasks related to standard calculations. These

tasks are:

 Adding two numbers

 Subtracting the second number from the first number

 Multiplying two numbers

 Dividing the first number by the second number

 Modulus of the first number by the second number

To perform the above-mentioned tasks, the stand_calc class implements the following

member functions:

 Functions Description

 Addition Returns the addition of two input numbers.

 Subtraction Returns the subtraction of two numbers accepted as input from the user.

 Multiplication Returns the multiplication of two numbers accepted as input from the user.

 Division Returns the output obtained after performing the division operation on the

input numbers.

 Modulus Returns the output obtained after performing the modulus operation on the

input numbers.

B.3Appendix B: Projects

Creating the scien_calc class

You need to create the scien_calc class to perform tasks related to scientific calculations, which

include finding the square or cube of a number, etc. The scien_calc class performs the following

tasks:

 Determines the square of a number

 Determines the cube of a number

 Determines the first number to the power of the second number

 Determines the square root of a number

 Determines the factorial of a number

 Determines the value of sin, cos and tan by passing a number

To perform the above-mentioned tasks, the scien_calc class implements the following member

functions:

 Functions Description

 Square Accepts a number and returns the square of that number

 Cube Accepts a number and returns the cube of that number

 Power Accepts two numbers and returns the first number to the power of the second

number

 sq_root Accepts a number and returns its square root

 Fact Returns the factorial of an input number

 sin_func Returns the sin value of an input number

 cos_func Returns the cos value of an input number

 tan_func Returns the tan value of an input number

Calc

/* calc.cpp is a calculator. initially, it displays a main menu to choose the calculator

type. If a user chooses Standard calculator, then a menu appears for standard calculator

options. if a user chooses Scientifi c calculator, then a menu appears for scientifi c calculator

options and the last option is to Quit.

In standard calculator, options are to add, subtract, multiply etc. and in scientifi c

calculator, options are power, factorial, square root, etc.

In this program, preprocessor are defi ned for new calculation and old calculation. New

calculation will accept an operand whereas in old calculation, one operand is already

assumed from the result of previous calculation.

Exception handling is not implemented in this project, so do not enter a string when system

asks you for a number.

*/
//File including and preprocessor declaration
#include <iostream.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>
#defi ne new_cal 1

B.4 Basic Computer Engineering

#defi ne old_cal 0
//stand_calc class to defi ne standard calculator functions
class stand_calc
{
 /*Protyping of standard calculator functions. These functions are static, therefore
calling of these functions is possible with the name of the class. There is no need
to create an object of the class. */
 public:
 static double addition(double,double);
 static double subtract(double,double);
 static double multiplication(double,double);
 static double division(double ,double *);
 static double modulus(double *,double *);
};
//scien_calc class to defi ne scientifi c calculator functions
class scien_calc
{
 public:
 static double square(double);
 static double cube(double);
 static double power(double,double);
 static double sq_root(double);
 static long int fact(double);
 static double sin_func(double);
 static double cos_func(double);
 static double tan_func(double);
};
//addition function will add two numbers
double stand_calc::addition(double a, double b)
{
 return(a+b);
}
//subtract function will subtract the second number from the fi rst number
double stand_calc::subtract(double a, double b)
{
 return(a-b);
}
//multiplication function will multiply two numbers
double stand_calc::multiplication(double a, double b)
{
 return(a*b);
}
/*division function will divide the fi rst number by the second number. This function
accepts two arguments, one is copy of a variable and another is pointer type because if
accepting divisor is zero, then this function will show a message to enter the divisor
again. Using pointer means that the entered value of the divisor for this function
should be updated at the main function also.*/
double stand_calc::division(double a, double *b)

B.5Appendix B: Projects

{
 while(*b==0)
 {
 cout<<“\nCannot divide by zero.”;
 cout<<“\nEnter second number again:”;
 cin>>*b;
 }
 return(a/(*b));
}
/*Modulus function will divide the fi rst number by the second number and return the
remainder part of the division. Similar to division function, it will not accept zero
in the divisor. Modulus cannot be performed on a double number, so we need to convert
it into an integer.*/
double stand_calc::modulus(double *a, double *b)
{
 while(*b==0)
 {
 cout<<“\nCannot divide by zero.”;
 cout<<“\nEnter second number again:”;
 cin>>*b;
 }
 //Converting double into an integer
 int x=(int)*a;
 int y=(int)*b;
 if(*a-x>0||*b-y>0)
 cout<<“\nConverting decimal number into an integer to perform modulus”;
 *a=x;
 *b=y;
 return(x%y);
}
//Declaration of scien_calc class functions starts from here.
//square function of scien_calc class to return accepting number to the power 2
double scien_calc::square(double x)
{
 return(pow(x,2));
}
//cube function of scien_calc class to return accepting number to the power 3
double scien_calc::cube(double x)
{
 return(pow(x,3));
}
//power function of scien_calc class to return the fi rst number to the power of the
second number
double scien_calc::power(double x,double y)
{
 return(pow(x,y));
}

B.6 Basic Computer Engineering

//sq_rrot function of scien_calc class to return the square root of the entered number
double scien_calc::sq_root(double x)
{
 return(sqrt(x));
}
/*fact function of the scien_calc class to return a long integer as factorial of an
accepting number. This will convert accepting number into an integer before calculating
the factorial*/
long int scien_calc::fact(double x)
{
 int n=(int)x;
 long int f=1;
 while(n>1)
 {
 f*=n;
 n—;
 }
 return f;
}
//sin_func of the scien_calc class to return the sin value of x
double scien_calc::sin_func(double x)
{
 return(sin(x));
}
//cos_func of the scien_calc class to return the cos value of x
double scien_calc::cos_func(double x)
{
 return(cos(x));
}
//tan_func of the scien_calc class to return the tan value of x
double scien_calc::tan_func(double x)
{
 return(tan(x));
}

//Displaying the menus to enter the options and values
void main()
{
 double num1,num2,num3,temp;
 int choice1=0,choice2,fl ag;
 //Loop of main menu from where the program starts. It will show the menu to choose
the type of calculator.
 do
 {
 clrscr();
 cout<<“========Type of Calculators=======”;
 cout<<“\n1\tStandard Calculator\n2\tScientifi c Calculator\n3\tQuit”;

B.7Appendix B: Projects

 cout<<“\nChoose the type of calculator:”;
 cin>>choice1;

fl ag=new_cal;
 //To perform an operation according to the entered option in the main menu
 switch(choice1)
 {
 case 1:
 //Loop to display the standard calculator menu
 do
 {
 clrscr();
 cout<<“==========Standard Calculator===========”;
 cout<<“\n1\tAddition\n2\tSubtraction\n3\
tMultiplication\n4\tDivision\n5\tModulus\n6\tReturn to Previous Menu\n7\tQuit”;
 //Option 8 will be displayed only when working on old
calculations. Here, already a number is saved in the calculator memory.
 if(fl ag==old_cal)
 cout<<“\n8\tClear Memory”;
 cout<<“\nChoose the type of calculation:”;
 cin>>choice2;
 //To perform operation and call functions of the
stand_calc class
 switch(choice2)
 {
 case 1:
 //If a new calculation is there, then
accept the first number else previous calculation result will be the first number.
 if (fl ag==new_cal)
 {
 cout<<“Enter first number:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number:”;
 cin>>num2;
 num3=stand_calc::addition(num1,num2);
 cout<<“\nAddition of “<<num1<<“ and
“<<num2<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();

B.8 Basic Computer Engineering

 temp=num3;
 fl ag=old_cal;
 break;
 case 2:
 if (fl ag==new_cal)
 {
 cout<<“Enter first number:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number:”;
 cin>>num2;
num3=stand_calc::subtract(num1,num2);
 cout<<“\nSubtraction of “<<num2<<“
from “<<num1<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 3:
 if (fl ag==new_cal)
 {
 cout<<“Enter fi rst number:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number:”;
 cin>>num2;
num3=stand_calc::multiplication(num1,num2);
 cout<<“\nMultiplication of “<<num1<<“
and “<<num2<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;

B.9Appendix B: Projects

 fl ag=old_cal;
 break;
 case 4:
 if (fl ag==new_cal)
 {
 cout<<“Enter first number:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number:”;
 cin>>num2;
num3=stand_calc::division(num1,&num2);
 cout<<“\nDivision of “<<num1<<“ by
“<<num2<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 5:
 if (fl ag==new_cal)
 {
 cout<<“Enter fi rst number:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number:”;
 cin>>num2;
num3=stand_calc::modulus(&num1,&num2);
 cout<<“\nModulus of “<<num1<<“ by
“<<num2<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;

B.10 Basic Computer Engineering

 break;
 case 6:
 cout<<“\nReturning to previous menu.”;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 break;
 case 7:
 cout<<“\nQuitting.............”;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue...........”;
 getch();
 exit(0);
 case 8:
 //If a new calculation is going on
then 8 is an invalid option, else 8 is an option to start a new calculation
 if(fl ag==new_cal)
 {
 cout<<“\nInvalid choice.”;
 cout<<“\nPress any key to
continue.........”;
 getch();
 }
 else
 {
 temp=0;
 fl ag=new_cal;
 }
 break;
 default:
 cout<<“\nInvalid choice.”;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue.............”;
 getch();
 break;
 }
 }while (choice2!=6);
 break;
 case 2:
 //Loop to display scientifi c calculator menu
 do
 {
 clrscr();
 cout<<“==========Scientifi c Calculator===========”;
cout<<“\n1\tSquare\n2\tCube\n3\tPower\n4\tFactorial\n5\tSin\n6\tCos\n7\tTan\n8\tReturn
to previous menu\n9\tQuit”;
 if(fl ag==old_cal)

B.11Appendix B: Projects

 cout<<“\n10\tClear Memory”;
 cout<<“\nChoose the type of calculation:”;
 cin>>choice2;
 switch(choice2)
 {
 case 1:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
square:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 c o u t < < “ \ n N u m b e r i s
“<<num1<<endl;
 }
 num3=scien_calc::square(num1);
 cout<<“\nSquare of “<<num1<<“ is
“<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 2:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
cube:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 c o u t < < “ \ n N u m b e r i s
“<<num1<<endl;
 }
 num3=scien_calc::cube(num1);
 cout<<“\nCube of “<<num1<<“ is
“<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;

B.12 Basic Computer Engineering

 fl ag=old_cal;
 break;
 case 3:
 if (fl ag==new_cal)
 {
 cout<<“Enter fi rst number for
base to fi nd power:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nFirst number is
“<<num1<<endl;
 }
 cout<<“Enter second number for power
to fi nd power:”;
 cin>>num2;
 num3=scien_calc::power(num1,num2);
 cout<<“\n”<<num1<<“ to the power
“<<num2<<“ is “<<num3;
 c o u t < < “ \ n P r e s s a n y k e y t o
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 4:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
factorial:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 c o u t < < “ \ n N u m b e r t o
fi nd factorial is “<<num1<<endl;
 }
 long int num4=scien_calc::fact(num1);
 cout<<“\nFactorial of “<<num1<<“ is
“<<num4;
 cout<<“\nPress any key to
continue..........”;
 getch();
 temp=num4;

B.13Appendix B: Projects

 fl ag=old_cal;
 break;
 case 5:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
sin value:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nNumber for sin value
is “<<num1<<endl;
 }
 num3=scien_calc::sin_func(num1);
 cout<<“\nSin value of “<<num1<<“ is
“<<num3;
 cout<<“\nPress any key to
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 6:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
cos value:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nNumber for cos value
is “<<num1<<endl;
 }
 num3=scien_calc::cos_func(num1);
 cout<<“\nCos value of “<<num1<<“ is
“<<num3;
 cout<<“\nPress any key to
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;

B.14 Basic Computer Engineering

 case 7:
 if (fl ag==new_cal)
 {
 cout<<“Enter number to fi nd
tan value:”;
 cin>>num1;
 }
 else
 {
 num1=temp;
 cout<<“\nNumber for tan value
is “<<num1<<endl;
 }
 num3=scien_calc::tan_func(num1);
 cout<<“\nTan value of “<<num1<<“ is
“<<num3;
 cout<<“\nPress any key to
continue..........”;
 getch();
 temp=num3;
 fl ag=old_cal;
 break;
 case 8:
 cout<<“\nReturning to previous menu.”;
 cout<<“\nPress any key to
continue..........”;
 getch();
 break;
 case 9:
 cout<<“\nQuitting.............”;
 cout<<“\nPress any key to
continue...........”;
 getch();
 exit(0);
 case 10:
 if(fl ag==new_cal)
 {
 cout<<“\nInvalid choice.”;
 cout<<“\nPress any key to
continue.........”;
 getch();
 }
 else
 {
 temp=0;
 fl ag=new_cal;

B.15Appendix B: Projects

 }
 break;
 default:
 cout<<“\nInvalid choice.”;
 cout<<“\nPress any key to
continue.............”;
 getch();
 break;
 }
 }while (choice2!=8);
 break;
 case 3:
 cout<<“\nQuitting......”;
 cout<<“\nPress any key to continue........”;
 getch();
 break;
 default:
 cout<<“\nInvalid Choice.”;
 cout<<“\nPress any key to continue........”;
 getch();
 break;
 }
 }while (choice1!=3);
}

 B.2 Major Project 1: Banking System

Learning Objectives

The designing of the Banking System project helps the students to:

 Create C++ classes and call the functions declared in the classes

 Develop and display main menu and its submenus

 Change the menu options during runtime

 Programmatically create files using File System objects

 Perform file transactions such as Updation, Deletion and Display from files

 Use iomanip header file in C++ to display formatted output of data using setw()

function for setting width of the text to be displayed.

Understanding the Banking System Project

The Banking System application helps maintain the data related to the customers and performs

the typical banking transactions. In the Banking System application, FileSystem Object is

used to create two data files, which have the extension .dat. The data related to a customer is

stored in the newrecords.dat data file. The data related to transactions, such as withdrawal

B.16 Basic Computer Engineering

and deposit are stored in the transaction.dat data file. The following figure shows the main

menu of the Banking System application:

Fig. B.2

Developing the Banking System

The development of Banking System application involves the creation of the following classes:

 menus

 dispRecords

 accountTransactions

Creating the menus Class

You need to create the class menus to implement the functionality of displaying a main

menu and closing the account before quitting the Banking System application. To create the

class menus, you need to define the member functions, showmenu and closemenu and the

variables required for displaying the main menu of the Banking System application. The

showmenu member function helps to display the main menu to the users of the Banking

System application. The closemenu member function helps to display the Closing Account

menu when the user selects the Close an Account option from the main menu.

Creating the dispRecords Class

You need to create the dispRecords class to implement the functionality of displaying the

information related to the customers of a bank and their accounts. In the dispRecords class,

data related to customers is retrieved from the newrecords.dat data file for displaying customer

B.17Appendix B: Projects

information or adding and closing of customer accounts. You can create the dispRecords class

by defining the variables required for displaying customer and account information and the

member functions such as displayCustomer and deleteAccount. The following table lists

the member functions that need to be defined in the class dispRecords:

 Functions Descriptions

 addDetails(int, char name[30], Adds the information related to a new customer of the bank

 char address[60], float) who becomes an account holder.

 displayCustomers(void) Displays a list of all the account holders of the bank along with

their account numbers and balance.

 deleteAccount(int) Deletes the information related to the account holder from the

newrecords.dat data file.

 updateBalance(int, float) Updates the balance after a customer has performed a deposit or

withdrawal transaction.

 lastAccount() Displays the account number of the last entry.

 accountExists(int) Checks whether an account exists or not.

 getName(int) Retrieves the name of the account holder.

 getAddress(int) Retrieves the address of the account holder.

 getBalance(int) Retrieves the balance of the account holder.

 getRecord(int) Returns the record number from the newrecords.dat data file

when an employee of the bank enters the account number related

to an account holder.

 display(int) Displays all the information related to an account holder from the

newrecords.dat file on the basis of specified account number.

Creating the accountTransactions Class

You need to create the accountTransactions class so that transactions related to an account

can be performed. The data related to the transactions are stored in the transaction.dat data

file. The accountTransactions class also uses some member functions defined in the dispRecords

class. In the class accountTransactions, the Object Oriented Programming (OOP) concepts of

Polymorphism are used to manipulate data, which need to be stored in the transaction.dat

data file. You can create the accountTransactions class by defining variables and member

functions, which include new_account and showAccount. The following table lists the

member functions of the accountTransactions class:

Functions Descriptions

 new_account(void) Validates the information related to a new customer and

adds the information to the transaction.dat data file using

the addDetails member function.

 closeAccount() Closes the account of an account holder after verifying the

account number.

 showAccount(int) Displays the headings Customer Name, Deposit and With-

drawal, Interest and Balance.

B.18 Basic Computer Engineering

 display_account(void) Displays the data related to a specific account holder.

 deleteAccount(int) Deletes the data related to a transaction from the transac-

tion.dat data file on the basis of the account number of that

account holder.

 transaction(void) Helps to perform deposit and withdrawal transactions.

 dateDiffer(int, int, int, int, int, int) Checks the current and account creation dates. If the ac-

count in the bank has completed one year, then interest for

that account is calculated.

 getInterest(int, float) Generates interest when one year has completed for a par-

ticular account.

 showInterest(void) Displays the interest generated using the getInterest mem-

ber function. The showInterest member function also helps

to update the balance of the account holder.

Banking_Application

/** A Banking System with normal transactions **/

#include <iostream.h>
#include <fstream.h>
#include <process.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <conio.h>
#include <dos.h>
#include <iomanip.h>

// The Menus Class displays the Menu
class Menus
{
 public :
 void showmenu(void) ;
 private :
 void closemenu(void) ;
};

// The Class displays all the Customer Account related functions
class dispRecords
{
 public :
 void addDetails(int, char name[30], char address[60], fl oat) ;
 void displayCustomers(void) ;
 void deleteAccount(int) ;
 void updateBalance(int, fl oat) ;
 void updateCustomer(void) ;

B.19Appendix B: Projects

 int lastAccount(void) ;
 int accountExists(int) ;
 char *getName(int);
 char *getAddress(int);
 fl oat getBalance(int) ;
 int getRecord(int) ;
 void display(int) ;
 void displayList(void) ;
 int AccountNumber ;
 char name[50], address[50] ;
 fl oat intBalance ;
};

// The Class has all the transaction related methods
class accountTransactions
{
 public :
 void new_account(void);
 void closeAccount(void);
 void display_account(void);
 void transaction(void);
 void addDetails(int, int, int, int, char, char typeTransaction[15],
fl oat, fl oat, fl oat);
 void deleteAccount(int);
 int dateDiffer(int, int, int, int, int, int);
 fl oat getInterest(int, fl oat);
 void display(int);
 void showAccount(int);
 int AccountNumber; //variable for Account Number
 char trantype[10]; // variable of cheque or cash input or output
 int dday, mmonth, yyear; // transaction date
 char transactions; // type of transactions - Deposit or
Withdrawal of Amount
 fl oat intInterest, intAmount, intBalance;
 static fl oat calcInterest;
 void showInterest(void);//added
};

// showmenu() method to display the Main Menu in the application
void Menus :: showmenu(void)
{
 char choice;
 while (1)
 {
 clrscr();
 cout<<“\n —-Welcome to Banking System Application— \n”;
 cout<<“ **\n\n”;
 cout<<“ Choose from Options \n”;

B.20 Basic Computer Engineering

 cout<<“ ———————————————— \n”;
 cout <<“ 1: Open an Account\n”;
 cout <<“ 2: View an Account \n”;
 cout <<“ 3: Show all Accounts \n”;
 cout <<“ 4: Make a Transaction \n”;
 cout <<“ 5: Calculate Interest\n”;
 cout <<“ 6: Close an Account\n”;
 cout <<“ 7: Exit\n\n”;
 cout <<“ Please select a choice : “;
 choice = getche();

 if (choice == ‘1’)
 {
 accountTransactions objAT;
 objAT.new_account();
 }
 else
 if (choice == ‘2’)
 {
 accountTransactions objAT;
 objAT.display_account();
 }
 else
 if (choice == ‘3’)
 {
 dispRecords newRec;
 newRec.displayCustomers();
 }
 else
 if (choice == ‘4’)
 {
 accountTransactions objAT;
 objAT.transaction();
 }
 else
 if (choice == ‘5’)
 {
 accountTransactions objAT;
 objAT.showInterest();
 }
 else
 if (choice == ‘6’) {
 closemenu();
 }
 else
 if (choice == ‘7’) {
 cout<<“\n Thanks for using this application. Please
press any key to exit.\n”;

B.21Appendix B: Projects

 getch();
 break ;
 }
 }
}

// closemenu() method displays the Closing of the Account of the Customer in the
Application
void Menus :: closemenu(void)
{
 char choice;
 while (1)
 {
 clrscr() ;
 cout<<“ —Close Menu— \n” ;
 cout<<“ ********************* \n” ;
 cout <<“ 1: Close/Delete an Account\n” ;
 cout <<“ 0: Exit from this menu\n\n” ;
 cout <<“ Select a Choice: “ ;
 choice = getche() ;

 if (choice == ‘1’)
 {
 accountTransactions at ;
 at.closeAccount() ;
 break ;
 }
 else
 if (choice == ‘0’)
 {
 cout<<“\n You have entered 0 to go back to the previous
Menu. \n”;
 getch();
 break ;
 }
 }
}

// lastAccount() method returns the Last Account Number from the newrecords.dat file
int dispRecords :: lastAccount(void)
{
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::in) ;
fi lename.seekg(0,ios::beg) ;

 int count=0 ;
 while (fi lename.read((char *) this, sizeof(dispRecords)))
 count = AccountNumber ;

fi lename.close() ;

B.22 Basic Computer Engineering

 return count ;
}

// getRecord() method returns the record number from the newrecords.dat fi le when a
banking staff enters the Account Number
int dispRecords :: getRecord(int retrieve_AccNo)
{
 fstream fi lename;

fi lename.open(“newrecords.dat”, ios::in) ;
fi lename.seekg(0,ios::beg) ;

 int count=0 ;
 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 count++ ;
 if (retrieve_AccNo == AccountNumber)
 break ;
 /*keep on counting the record till the Account Number is found and exit from
the newrecords.dat fi le. */
 }

fi lename.close() ;
 return count ;
}

// display() method displays all the details of the Account Number from the newrecords.
dat fi le
void dispRecords :: display(int retrieve_AccNo)
{
 int record ;
 record = getRecord(retrieve_AccNo) ;
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::in);
fi lename.seekg(0,ios::end);

 int location;
 location = (record) * sizeof(dispRecords);

fi lename.seekp(location);

 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 if (retrieve_AccNo == AccountNumber)
 {
 cout <<“\n ACCOUNT NO. : “ <<AccountNumber ;
 cout <<“\n Name : “<<name ;
 cout <<“\n Address : “ <<address ;
 cout <<“\n Balance : “ <<intBalance ;
 break ;
 }
 }

fi lename.close() ;

B.23Appendix B: Projects

}

// getName() method returns the Account Holder’s Name from the newrecords.dat fi le
char *dispRecords :: getName(int retrieve_AccNo)
{
 fstream fi lename;

fi lename.open(“newrecords.dat”, ios::in);
fi lename.seekg(0,ios::beg);

 char retrieve_CustName[30];

 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 strcpy(retrieve_CustName,name);
 }
 }

fi lename.close();
 return retrieve_CustName;
}

// getAddress() method returns the Address of the Account Holder from the newrecords.
dat fi le
char *dispRecords :: getAddress(int retrieve_AccNo)
{
 fstream fi lename;

fi lename.open(“newrecords.dat”, ios::in);
fi lename.seekg(0,ios::beg);

 char retrieve_Address[60];

 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 strcpy(retrieve_Address,address);
 }
 }

fi lename.close();
 return retrieve_Address;

}

/* getBalance() method returns the Balance of the Account Holder from the newrecords.
dat fi le*/
fl oat dispRecords :: getBalance(int retrieve_AccNo)
{
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::in);

B.24 Basic Computer Engineering

fi lename.seekg(0,ios::beg);
fl oat iBalance ;

 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 iBalance = intBalance;
 }
 }

fi lename.close();
 return iBalance;
}

// accountExists() method checks if the Account exists in the newrecords.dat fi le or
not.
int dispRecords :: accountExists(int retrieve_AccNo)
{
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::in);
fi lename.seekg(0,ios::beg) ;

 int count=0 ;
 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 count = 1;
 break;
 }
 }

fi lename.close();
 return count;
}

/* displayList() method displays the output of all the Accounts in a proper format
for the Choice 3*/
void dispRecords :: displayList()
{
 cout<<“
 \n” ;
 int day1, month1, year1 ;
 struct date dateval;
 getdate(&dateval);
 day1 = dateval.da_day ;
 month1 = dateval.da_mon ;
 year1 = dateval.da_year ;
 cout <<“\n Date: “ <<day1 <<“/” <<month1 <<“/” <<year1<<“\n”;
 cout<<setw(80)<<“————————————————————————————————————\n”;
 cout<<setw(23)<<“ ACCOUNT NO.”;

B.25Appendix B: Projects

 cout<<setw(23)<<“ NAME OF PERSON”;
 cout<<setw(23)<<“ BALANCE\n”;
 cout<<setw(80)<<“————————————————————————————————————\n”;
}

// displayCustomers() method displays all the Account Holders/Customers from the
newrecords.dat fi le
void dispRecords :: displayCustomers(void)
{
 clrscr() ;
 int len1;
 int row=8, check ;
 fstream fi lename ;

 FILE * pFile;
 pFile = fopen(“newrecords.dat”,”r”);
 if (pFile == NULL)
 {
 cout<<“\n No Account exists. Please go back to the previous menu. \n”;
 getch();
 return ;
 //fclose (pFile);

 } else {
 displayList();

fi lename.open(“newrecords.dat”, ios::in);
fi lename.seekg(0,ios::beg);

 while (fi lename.read((char *) this, sizeof(dispRecords)))
 {
 check = 0 ;

 cout.fi ll(‘ ‘);
 cout <<setw(20);
 cout.setf(ios::right,ios::adjustfi eld);
 cout<<AccountNumber;
 cout.fi ll(‘ ‘);
 cout <<setw(25);
 cout.setf(ios::internal,ios::adjustfi eld);
 cout<<name;

 cout <<setw(23);
 cout.setf(ios::right,ios::adjustfi eld);
 cout<<intBalance<<“\n” ;
 row++ ;
 if (row == 23)
 {
 check = 1 ;
 row = 8 ;

B.26 Basic Computer Engineering

 cout <<“ \n\n Continue the application... \n”;
 getch() ;
 clrscr() ;
 displayList() ;
 }
 }
 }

fi lename.close() ;
 if (!check)
 {
 cout <<“\n\n Continue the application... \n”;
 getch() ;
 }
}

// addDetails() method adds new records of Account Holders/Customers in the newrecords.
dat fi le
void dispRecords :: addDetails(int retrieve_AccNo, char retrieve_CustName[30], char
retrieve_Address[60], fl oat iBalance)
{
 AccountNumber = retrieve_AccNo ;
 strcpy(name,retrieve_CustName) ;
 strcpy(address,retrieve_Address) ;
 intBalance = iBalance ;
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::out | ios::app) ;
fi lename.write((char *) this, sizeof(dispRecords)) ;
fi lename.close() ;

}

// deleteAccount() method deletes the particular record from the newrecords.dat fi le
on the basis of the Account Number.
void dispRecords :: deleteAccount(int retrieve_AccNo)
{
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::in) ;
 fstream temp ;
 temp.open(“calculations.txt”, ios::out) ;

fi lename.seekg(0,ios::beg) ;
 while (!fi lename.eof())
 {

fi lename.read((char *) this, sizeof(dispRecords)) ;
 if (fi lename.eof())
 break ;
 if (AccountNumber != retrieve_AccNo)
 temp.write((char *) this, sizeof(dispRecords)) ;
 }

fi lename.close() ;

B.27Appendix B: Projects

 temp.close() ;
fi lename.open(“newrecords.dat”, ios::out) ;

 temp.open(“calculations.txt”, ios::in) ;
 temp.seekg(0,ios::beg) ;
 while (!temp.eof())
 {
 temp.read((char *) this, sizeof(dispRecords)) ;
 if (temp.eof())
 break ;

fi lename.write((char *) this, sizeof(dispRecords)) ;
 }

fi lename.close() ;
 temp.close() ;
}

// updateBalance() method updates the balance of the Account Number after a transaction
is done in the newrecords.dat fi le
void dispRecords :: updateBalance(int retrieve_AccNo, fl oat iBalance)
{
 int record ;
 record = getRecord(retrieve_AccNo) ;
 fstream fi lename ;

fi lename.open(“newrecords.dat”, ios::out | ios::ate) ;
 intBalance = iBalance ;
 int location ;
 location = (record-1) * sizeof(dispRecords) ;

fi lename.seekp(location) ;
fi lename.write((char *) this, sizeof(dispRecords)) ;
fi lename.close() ;

}

// addDetails() method adds the details of a transaction in the transactions.dat file
void accountTransactions :: addDetails(int retrieve_AccNo, int day1, int month1, int
year1, char t_tran, char typeTransaction[10], fl oat interest_accrued, fl oat t_amount,
fl oat iBalance)
{
 fstream fi lename ;

fi lename.open(“transactions.dat”, ios::app) ;
 AccountNumber = retrieve_AccNo ;
 dday = day1 ;
 mmonth = month1 ;
 yyear = year1 ;
 transactions = t_tran ;
 strcpy(trantype,typeTransaction) ;
 intInterest = interest_accrued ;
 intAmount = t_amount ;
 intBalance = iBalance ;

fi lename.write((char *) this, sizeof(accountTransactions)) ;

B.28 Basic Computer Engineering

fi lename.close();
}

// deleteAccount() method deletes the record of a transaction from the transactions.
dat fi le
void accountTransactions :: deleteAccount(int retrieve_AccNo)
{
 fstream fi lename ;

fi lename.open(“transactions.dat”, ios::in) ;
 fstream temp ;
 temp.open(“calculations.txt”, ios::out) ;

fi lename.seekg(0,ios::beg) ;
 while (!fi lename.eof())
 {

fi lename.read((char *) this, sizeof(accountTransactions)) ;
 if (fi lename.eof())
 break ;
 if (AccountNumber != retrieve_AccNo)
 temp.write((char *) this, sizeof(accountTransactions)) ;
 }

fi lename.close() ;
 temp.close() ;

fi lename.open(“transactions.dat”, ios::out) ;
 temp.open(“calculations.txt”, ios::in) ;
 temp.seekg(0,ios::beg) ;
 while (!temp.eof())
 {
 temp.read((char *) this, sizeof(accountTransactions)) ;
 if (temp.eof())
 break ;

fi lename.write((char *) this, sizeof(accountTransactions)) ;
 }

fi lename.close() ;
 temp.close() ;
}

// new_account() method adds a new record in the newrecords fi le and transaction.dat
fi les(choice 1)
void accountTransactions :: new_account(void)
{
 char choice ;
 int i, check ;
 clrscr() ;
 dispRecords newRec ;
 cout <<“ Please press 0 to go back to previous menu. \n” ;
 cout<<“ \n”;
 cout<<“ —Open a New Bank Account— \n”;
 cout<<“ ******************** \n”;

B.29Appendix B: Projects

 int day1, month1, year1 ;
 struct date dateval;
 getdate(&dateval);
 day1 = dateval.da_day ;
 month1 = dateval.da_mon ;
 year1 = dateval.da_year ;
 int retrieve_AccNo ;
 retrieve_AccNo = newRec.lastAccount() ;
 retrieve_AccNo++ ;

 if (retrieve_AccNo == 1)
 {
 newRec.addDetails(retrieve_AccNo,”Ravi”,”Delhi”,1.1) ;
 newRec.deleteAccount(retrieve_AccNo) ;
 addDetails(retrieve_AccNo,1,1,1997,’D’,”default value”,1.1,1.1,1.1) ;
 deleteAccount(retrieve_AccNo) ;
 }
 char retrieve_CustName[30], tran_acc[10], retrieve_Address[60] ;

fl oat t_bal, iBalance ;
 cout <<“ Date : “<<day1 <<“/” <<month1 <<“/” <<year1<<“\n” ;
 cout <<“ Account no. # “ <<retrieve_AccNo;
 do
 {
 cout <<“\n\n Please enter the Name of the Account Holder : “;
 check = 1;
 gets(retrieve_CustName);
 if (retrieve_CustName[0] == ‘0’)
 {
 cout<<“\n\t Invalid Customer Name.”;
 getch();
 return;
 }
 strupr(retrieve_CustName);
 if (strlen(retrieve_CustName) == 0 || strlen(retrieve_CustName) > 30)
 {
 check = 0;
 cout<<“\t\n Customer Name is either blank or its length is greater
than 30 characters.\n”;
 getch();
 }
 } while (!check);

 do
 {
 cout <<“\n Please enter the Account Holder’s Address : “;
 check = 1;
 gets(retrieve_Address);
 if (retrieve_Address[0] == ‘0’)
 {

B.30 Basic Computer Engineering

 cout<<“\n\t Invalid Customer Address.”;
 getch();
 return;
 }
 strupr(retrieve_Address);
 if (strlen(retrieve_Address) < 1 || strlen(retrieve_Address) > 60)
 {
 check = 0 ;
 cout<<“\t\n Customer Address is either blank or its length is
greater than 60 characters.\n” ;
 getch() ;
 }
 } while (!check) ;

 do
 {
 char chr_VerifyingPerson[30] ;
 cout <<“\n Please enter the Name of the Verifying Person of the Account
Holder : “;
 check = 1 ;
 gets(chr_VerifyingPerson);
 if (chr_VerifyingPerson[0] == ‘0’)
 {
 cout<<“\n\t Invalid Verifying Person Name.”;
 getch();
 return;
 }
 strupr(chr_VerifyingPerson) ;
 if (strlen(chr_VerifyingPerson) < 1 || strlen(chr_VerifyingPerson) > 30)
 {
 check = 0 ;
 cout<<“\t\n The Verifying Person’s Name is either blank or greater
than 30 characters. Please try again.\n”;
 getch() ;
 }
 } while (!check) ;

 do
 {
 cout <<“\n Please enter the Deposit Amount while opening a New Account : “;
 check = 1 ;
 gets(tran_acc) ;
 t_bal = atof(tran_acc) ;
 iBalance = t_bal ;
 if (strlen(tran_acc) < 1) {
 cout<<“\n Invalid Transaction value. Exiting from the current
Menu.\n “;
 getch();
 return ;

B.31Appendix B: Projects

 }
 if (iBalance < 1000)
 {
 check = 0 ;
 cout<<“\t\n The Minimum Deposit Amount should be Rs.1000. Please
try again. \n”;
 getch() ;
 }

 } while (!check) ;

 do
 {
 cout <<“\n Do you want to save the record? (y/n) : “ ;
 choice = getche() ;
 choice = toupper(choice) ;
 } while (choice != ‘N’ && choice != ‘Y’) ;
 if (choice == ‘N’ || choice == ‘n’)
 {
 cout<<“\n The Customer Account is not created\n.
Please continue with the application.\n”;
 getch();
 return ;
 }

fl oat t_amount, interest_accrued ;
 t_amount = iBalance ;
 interest_accrued = 0.0 ;
 char t_tran, typeTransaction[10] ;
 t_tran = ‘D’ ;
 strcpy(typeTransaction,” “) ;

 newRec.addDetails(retrieve_AccNo,retrieve_CustName,retrieve_Address,iBalance) ;
 addDetails(retrieve_AccNo,day1,month1,year1,t_tran,typeTransaction,
interest_accrued,t_amount,iBalance);
 cout<<“ \n\n The New Account is successfully created.\n
Please continue with the application.\n”;
 getch();
}

// showAccount() method formats the display of the records from the transactions.dat
fi le for a particular account(choice 2).
void accountTransactions :: showAccount(int retrieve_AccNo)
{
 cout<<“
 \n”;
 int day1, month1, year1 ;
 struct date dateval;
 getdate(&dateval);

B.32 Basic Computer Engineering

 day1 = dateval.da_day ;
 month1 = dateval.da_mon ;
 year1 = dateval.da_year ;
 cout<<“Date: “ <<day1 <<“/” <<month1 <<“/” <<year1<<“\n” ;
 cout <<“Account no. “ <<retrieve_AccNo ;
 dispRecords newRec ;

 char retrieve_CustName[30] ;
 strcpy(retrieve_CustName,newRec.getName(retrieve_AccNo)) ;
 char retrieve_Address[60] ;
 strcpy(retrieve_Address,newRec.getAddress(retrieve_AccNo)) ;

 cout<<setw(25)<<“\n Account Holder’s Name : “<<retrieve_CustName;
 cout<<“\nAddress : “<<retrieve_Address<<“\n”;
 cout<<setw(80)<<“\n———————————————————————————————————\n”;
 cout<<setw(10)<<“Dated”;
 cout<<setw(12)<<“Details”;
 cout<<setw(12)<<“Deposited”;
 cout<<setw(15)<<“Withdrawn”;
 cout<<setw(12)<<“ “;
 cout<<setw(10)<<“Balance”;
 cout<<setw(80)<<“\n———————————————————————————————————\n”;
}

// display_account() method displays records from the transactions.dat fi le
void accountTransactions :: display_account(void)
{
 clrscr() ;
 char t_acc[10] ;
 int tran_acc, retrieve_AccNo;
 dispRecords obj2;
 cout <<“ Press 0 to go back to previous menu.\n” ;
 cout <<“ Please enter Account No. you want to view : “ ;
 gets(t_acc);
 tran_acc = atoi(t_acc); /* converting Account Number to integer value */
 retrieve_AccNo = tran_acc;
 if (retrieve_AccNo == 0){
 cout<<“\n You have pressed 0 to exit. \n”;
 getch();
 return ;
 }
 clrscr();
 dispRecords newRec;
 accountTransactions aa;
 int row=8, check ;
 fstream fi lename ;

 FILE * pFile;

B.33Appendix B: Projects

 pFile = fopen(“newrecords.dat”,”r”);
 if (pFile == NULL)
 {
 cout<<“\n No such Account Exists. Please create a New Account. \n”;
 getch();
 return ;

 } else if (!newRec.accountExists(retrieve_AccNo)) {
 cout <<“\t\n Account does not exist.\n”;
 getch();
 return;
 } else {

 showAccount(retrieve_AccNo) ;
fi lename.open(“transactions.dat”, ios::in);

 /* Reading the transaction.dat file and displaying the details of a particular
Account */
 while (fi lename.read((char *) this, sizeof(accountTransactions)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 check = 0 ;
 cout<<setw(3)<<dday<<“/”<<mmonth<<“/”<<yyear ;
 cout <<setw(10)<<trantype ;
 if (transactions == ‘D’) {
 cout.setf(ios::right,ios::adjustfi eld);
 cout <<setw(15);
 cout<<intAmount;
 cout <<setw(20);
 cout<<“ “;

 } else {
 cout.setf(ios::right,ios::adjustfi eld);
 cout<<setw(25);

 cout<<intAmount;
 cout <<setw(10);
 cout<<“ “;
 }
 cout<<setw(15);
 cout.setf(ios::right,ios::adjustfi eld);
 cout <<intBalance <<“\n”;
 row++;

 if (row == 23)
 {
 check = 1 ;
 row = 8 ;

B.34 Basic Computer Engineering

 cout <<“\n\n Please continue with the application.
\n”;
 getch();
 clrscr();
 showAccount(retrieve_AccNo);
 }
 }
 }
 }

fi lename.close() ;
 if (!check)
 {
 cout <<“\n\n Press any key to continue with the application. \n” ;
 getch() ;
 }
}
// dateDiffer() method displays the difference between 2 dates.
int accountTransactions :: dateDiffer(int day1, int month1, int year1, int day2, int
month2, int year2)
{
 static int monthArr[] = {31,28,31,30,31,30,31,31,30,31,30,31}; / / A r r a y o f
months for storing the no. of days in each array
 int days = 0 ;
 while (day1 != day2 || month1 != month2 || year1 != year2)
 {
 /* checking if the two dates in days,months and years differ and incrementing
the number of days.*/
 days++ ;
 day1++ ;
 if (day1 > monthArr[month1-1])
 {
 day1 = 1 ;
 month1++ ;
 }
 if (month1 > 12)
 {
 month1 = 1 ;
 year1++ ;
 }
 } return days ;
}

// getInterest() function calculates interest on the balance from the transaction.
dat fi le
fl oat accountTransactions :: getInterest(int retrieve_AccNo, fl oat iBalance)
{
 fstream fi lename ;

fi lename.open(“transactions.dat”, ios::in);

B.35Appendix B: Projects

 dispRecords newRec;
fi lename.seekg(0,ios::beg) ;

 int day1, month1, year1, month_day;
 while (fi lename.read((char *) this, sizeof(accountTransactions)))
 {
 if (AccountNumber == retrieve_AccNo)
 {
 day1 = dday ;
 month1 = mmonth ;
 year1 = yyear ;
 iBalance = newRec.getBalance(retrieve_AccNo);
 break ;
 }
 }
 int day2, month2, year2;
 struct date dateval;
 getdate(&dateval);
 day2 = dateval.da_day;
 month2 = dateval.da_mon;
 year2 = dateval.da_year;

fl oat interest_accrued=0.0;
 int yeardiff = year2 - year1;

 if ((year2<year1) || (year2==year1 && month2<month1) || (year2==year1 && month2==month1
&& day2<day1)) {

 return interest_accrued;
 }
 month_day = dateDiffer(day1,month1,year1,day2,month2,year2);
 int months;
 if (month_day >= 30)
 {
 months = month_day/30;
 } else {
 months = month_day/30;
 }
 if(interest_accrued == 0 && yeardiff == 1) {
 interest_accrued = ((iBalance*0.5)/100) * (months);
 } else if (yeardiff > 1 && yeardiff < 25 && interest_accrued == 0) {
 interest_accrued = ((iBalance*0.5)/100) * (months);
 } else {
 interest_accrued = 0;
 }

fi lename.close();
 return interest_accrued;
}

B.36 Basic Computer Engineering

/*Method for generating Interest and updation of the Balance and addDetails methods.
(Choice 5)*/
void accountTransactions :: showInterest(void)
{
 clrscr();
 char t_acc[10];
 int tran_acc, retrieve_AccNo, check;

 cout <<strupr(“\n Important Information: Interest should be generated only\n
once in a Year.\n\n\t If you have already generated interest for an Account,\n\t please
ignore that Account.\n\t Thank you.\n”);
 cout <<“\n Press 0 to go back to previous menu.\n” ;
 cout <<“\n To view the transaction of the Account, please enter it: “ ;
 gets(t_acc) ;
 tran_acc = atoi(t_acc) ;
 retrieve_AccNo = tran_acc ;
 if (retrieve_AccNo == 0)
 return ;
 clrscr() ;
 dispRecords newRec ;
 if (!newRec.accountExists(retrieve_AccNo))
 {
 cout <<“\t\n Account does not exist.\n”;
 getch();
 return;
 }
 cout <<“ Press 0 to go back to previous menu.\n”;
 cout<<“ \n”;
 cout<<“\n —Please enter the Account no. to generate interest— \n”;
 cout<<“ ***\n”;
 int day1, month1, year1;
 struct date dateval;
 getdate(&dateval);
 day1 = dateval.da_day;
 month1 = dateval.da_mon;
 year1 = dateval.da_year;
 cout <<“ Date : “<<day1 <<“/” <<month1 <<“/” <<year1<<“\n”;
 cout <<“ Account no. “ <<retrieve_AccNo<<“\n”;
 char retrieve_CustName[30] ;
 char retrieve_Address[60] ;

fl oat iBalance ;
 strcpy(retrieve_CustName,newRec.getName(retrieve_AccNo)) ;
 strcpy(retrieve_Address,newRec.getAddress(retrieve_AccNo)) ;
 iBalance = newRec.getBalance(retrieve_AccNo);

 cout <<“ Customer Name : “ <<retrieve_CustName;
 cout <<“\n Customer Address: “ <<retrieve_Address ;
 cout <<“\n Bank Balance : “ <<iBalance ;

B.37Appendix B: Projects

fl oat interest_accrued;
 interest_accrued = getInterest(retrieve_AccNo,iBalance);

/* Calculation of interest of the deposit amount*/
 cout<<“\n\tInterest generated: “<<interest_accrued;
 getch();
 iBalance = iBalance + interest_accrued;
 dispRecords obj2;
 /*Updating the Balance once Interest is generated in a year*/
 obj2.updateBalance(retrieve_AccNo, iBalance);
 /*Adding Interest as a Deposit when it is generated in a year.*/
 addDetails(retrieve_AccNo,day1,month1,year1,’D’,”Interest”,interest_accrued,
interest_accrued,iBalance);
}
/* This method does all the Deposit/Withdrawal transactions in the transaction.dat
fi le(Choice 4)*/
void accountTransactions :: transaction(void)
{
 clrscr();
 char t_acc[10];
 int tran_acc, retrieve_AccNo, check;
 cout <<“ Press 0 to go back to previous menu.\n” ;
 cout <<“ To view the transaction of the Account, please enter it: “ ;
 gets(t_acc) ;
 tran_acc = atoi(t_acc) ;
 retrieve_AccNo = tran_acc ;
 if (retrieve_AccNo == 0)
 return ;
 clrscr() ;
 dispRecords newRec ;
 if (!newRec.accountExists(retrieve_AccNo))
 {
 cout <<“\t\n Account does not exist.\n”;
 getch();
 return;
 }
 cout <<“ Press 0 to go back to previous menu.\n”;
 cout<<“ \n”;
 cout<<“\n —Make correct entry for the Transaction below— \n”;
 cout<<“ ***\n”;
 int day1, month1, year1;
 struct date dateval;
 getdate(&dateval);
 day1 = dateval.da_day;
 month1 = dateval.da_mon;
 year1 = dateval.da_year;
 cout <<“ Date : “<<day1 <<“/” <<month1 <<“/” <<year1<<“\n”;
 cout <<“ Account no. “ <<retrieve_AccNo<<“\n”;
 char retrieve_CustName[30] ;

B.38 Basic Computer Engineering

 char retrieve_Address[60] ;
fl oat iBalance;
fl oat interest_accrued = 0.0;

 strcpy(retrieve_CustName,newRec.getName(retrieve_AccNo)) ;
 strcpy(retrieve_Address,newRec.getAddress(retrieve_AccNo)) ;
 iBalance = newRec.getBalance(retrieve_AccNo);

 cout <<“ Customer Name : “ <<retrieve_CustName;
 cout <<“\n Customer Address: “ <<retrieve_Address ;
 cout <<“\n Bank Balance: “ <<iBalance ;
 char tranDetails, typeTransaction[10], tm[10] ;

fl oat t_amount, t_amt ;

 do
 {
 cout <<“\n Please enter D for Deposit or W for Withdrawal of Amount : “ ;
 tranDetails = getche() ;
 if(tranDetails == ‘0’) {
 cout<<“\n\n You have pressed 0 to Exit.”;
 getch();
 return;
 }
 tranDetails = toupper(tranDetails) ;
 } while (tranDetails != ‘W’ && tranDetails != ‘D’) ;

 do
 {
 cout <<“\n The Transaction type is either Cash or Cheque..\n” ;
 check = 1 ;
 cout <<“ (Cash/Cheque) : “ ;
 gets(typeTransaction) ;
 strupr(typeTransaction);
 if(typeTransaction[0] == ‘0’) {
 cout<<“\n\n You have pressed 0 to Exit.”;
 getch();
 return;
 }
 if (strlen(typeTransaction) < 1 || (strcmp(typeTransaction,”CASH”) && strc
mp(typeTransaction,”CHEQUE”)))
 {
 check = 0 ;
 cout<<“\n The Transaction is invalid. Please enter either Cash
or Cheque. \n” ;
 getch() ;
 }

 } while (!check);

B.39Appendix B: Projects

 do
 {
 cout <<“\n Please enter the Transaction Amount : \n”;
 check = 1 ;
 cout <<“ Amount : Rs. “;
 gets(tm) ;
 t_amt = atof(tm) ;
 t_amount = t_amt ;

 if (t_amount < 1 || (tranDetails == ‘W’ && t_amount > iBalance))
 {
 check = 0;
 cout<<“\n Either Amount is not a numeric value or\n it is blank
or\n you are trying to withdraw amount more than in the Account..... \n” ;
 getch() ;
 }
 } while (!check) ;
 char choice ;

 do
 {
 cout <<“\n Save the changes made in the transaction details? (y/n): “;
 choice = getche() ;
 choice = toupper(choice);
 } while (choice != ‘N’ && choice != ‘Y’) ;

 if (choice == ‘N’ || choice == ‘n’) {
 cout<<“\n The Transaction is not saved. \n”;
 getch();
 return ;
 }

 if (tranDetails == ‘D’) {
 cout<<“\n The Amount is Deposited in the Bank.\n”;
 getch();
 iBalance = iBalance + t_amount;
 } else {
 cout<<“\n The Amount is Withdrawn from the Bank.\n”;
 getch();
 iBalance = iBalance - t_amount;
 }
 newRec.updateBalance(retrieve_AccNo,iBalance);
 /* Adding record details for the Transaction done (deposit or withdrawal) and saving
it in the fi le*/
 addDetails(retrieve_AccNo,day1,month1,year1,tranDetails,typeTransaction,interes
t_accrued,t_amount,iBalance);
}

B.40 Basic Computer Engineering

/* This method deletes the Account from both the dat fi les(Choice 6)*/
void accountTransactions :: closeAccount(void)
{
 clrscr() ;
 char t_acc[10] ;
 int tran_acc, retrieve_AccNo ;
 cout <<“ Press 0 to go back to previous menu.\n” ;
 cout <<“ Please enter the Account you want to close : “ ;
 gets(t_acc);

 tran_acc = atoi(t_acc) ; /* changing account no. to integer type. */
 retrieve_AccNo = tran_acc ;
 clrscr() ;
 dispRecords newRec ;
 if (!newRec.accountExists(retrieve_AccNo))
 {
 cout <<“\t\n You have entered an invalid Account or it does not exist.\n”;
 cout <<“ Please try again.\n”;
 getch();
 return ;
 }
 cout <<“\n Press 0 to go back to previous menu\n” ;
 cout<<“\n Closing this Account.\n”;
 cout<<“*********************************\n\n”;
 int day1, month1, year1 ;
 struct date dateval;
 getdate(&dateval);
 day1 = dateval.da_day ;
 month1 = dateval.da_mon ;
 year1 = dateval.da_year ;

 cout <<“Date: “<<day1 <<“/” <<month1 <<“/” <<year1<<“\n”;
 char choice;
 newRec.display(retrieve_AccNo); /*Displaying the Account Details on the basis of
the retrieved Account Number*/

 do
 {
 cout <<“\n Are you sure you want to close this Account? (y/n): “;
 choice = getche();
 choice = toupper(choice) ;
 } while (choice != ‘N’ && choice != ‘Y’);

 if (choice == ‘N’ || choice == ‘n’) {
 cout<<“\n The Account is not closed.\n”;
 getch();
 return;
 }

B.41Appendix B: Projects

 newRec.deleteAccount(retrieve_AccNo);
 deleteAccount(retrieve_AccNo);
 cout <<“\t\n\n Record Deleted Successfully.\n”;
 cout <<“ Please continue with the application....\n”;
 getch();
}

/* The Login method checks for the username and the password for accessing the Banking
Application*/
 int login (void)
 {
 char username[9],ch;
 char username1[]=”banking”;
 int i=0;
 char a,b[9],pass[]=”tatahill”;
 cout<<“\n\n”;
 cout<<“\n\t Login to the Banking Application.\n”;
 cout<<“\t **********************************\n”;
 cout<<“\n\n\tPlease enter Username : “;
 cin >> username;
 cout<<“\n\n\tPlease enter Password to authenticate yourself : “;
 ffl ush(stdin);
 do
 {
 ch=getch();
 if(isalnum(ch))
 {
 b[i]=ch;
 cout<<“*”;
 i++;
 }
 else
 if(ch==’\r’)
 b[i]=’\0’;
 else if(ch==’\b’)
 {
 i—;
 cout<<“\b\b”;
 }
 }
 while(ch!=’\r’);

 b[i]=’\0’;
 ffl ush(stdin);

 if((strcmp(b,pass)==0)&&(strcmp(username1,username)==0))
 {
 cout<<“\n\n\t You have entered successfully\n\n”;

B.42 Basic Computer Engineering

 return(1);
 }
 else
 {
 cout<<“\t\n\n Incorrect Username or Password.”;
 cout<<“\n”;
 return(0);
 }

 }

/* This is the Main function which displays the Menu */
void main(void)
{
 clrscr();
 int val,ch;
 a: val=login();
 if (val==0)
 {
 cout<<“\n\t Want to try again?\n”;
 cout<<“\t 1.TRY AGAIN “;
 cout<<“\n\t 2.EXIT”;
 cout<<“\n\n\t Enter your choice and press enter:”;
 cin>>ch;
 if (ch==1) {
 clrscr();
 goto a;

 } else {
 exit(0);
 }
 }
 Menus obj1 ;
 obj1.showmenu();
}

Æ

Æ

Æ

Æ

Æ Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

ÆÆ

Æ

	Title
	Contents
	1 Fundamentals of Computers
	2 Operating Systems
	3 Programming Languages
	4 Introduction to Programming
	5 Beginning with C++
	6 Tokens, Expressions and Control Structures
	7 Functions in C++
	8 Classes and Objects
	9 Constructors and Destructors
	10 Operator Overloading and Type Conversions
	11 Derived Classes and Inheritance
	12 Managing Console I/O Operations
	13 Database Management System
	14 Computer Networking
	Appendix A
	Appendix B
	Examination Paper

