
BIG DATA

About the Author

Dr. Anil Maheshwari is a Professor of Management Informa-

tion Systems and Director of Center for Data Analytics at

Maharishi University of Management, Fairfield, Iowa, USA.

He received a bachelor’s degree in Electrical Engineering from

Indian Institute of Technology (IIT) Delhi, and further received

his MBA degree from Indian Institute of Management (IIM)

Ahmedabad. He earned his PhD from Case Western Reserve

University, Cleveland, Ohio. He has been a Professor at the

University of Cincinnati, City University of New York, among

others. His research has been published in prestigious journals

and conferences. He teaches data analytics, big data, leadership, and marketing. He

has authored many books in data science and leadership. He has also worked in the

global IT industry for over 20 years, including leadership roles at IBM in Austin,

Texas. He has completed various leadership and marketing training programs at

IBM and also won several awards.

He is a practitioner of Transcendental Meditation (TM) and TM-Sidhi techniques. He

blogs on IT and Enlightenment at anilmah.com, and is a popular speaker on those

topics. He is also a marathoner. He can be reached at akm2030@gmail.com.

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices

Chennai New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Dr. Anil Maheshwari

Professor of Management Information Systems and
Director of Center for Data Analytics
Maharishi University of Management

Fairfield, Iowa, USA.

BIG DATA

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai - 600 116

Big Data

Copyright © 2017, by Dr. Anil Maheshwari

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers.

The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for

publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited

Print Edition:

ISBN-13: 978-93-5260-502-6

ISBN-10: 93-5260-502-0

E-Book Edition:

ISBN-13: 978-93-5260-454-8

ISBN-10: 93-5260-454-7

Managing Director: Kaushik Bellani

Director—Science & Engineering Portfolio: Vibha Mahajan

Lead—Science & Engineering Portfolio: Hemant Jha

Content Development Lead: Shalini Jha

Content Developer: Shehla Mirza

Production Head: Satinder S Baveja

Sr. Manager—Production: Piyaray Pandita

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.

However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information

published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions,

or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education

(India) and its authors are supplying information but are not attempting to render engineering or other professional services.

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at

Cover Printer:

Visit us at: www.mheducation.co.in

Dedicated to

My family of three lovely ladies

Wife Neerja, and daughters Ankita and Nupur

who taught me love, care and gentleness

Preface

Big Data is a new, and inclusive, natural phenomenon, as big and messy as nature

itself. It requires a new kind of consciousness to fathom its scale and scope, and its

many opportunities and challenges. Understanding the essentials of Big Data requires

suspending many conventional expectations and assumptions about data ... such as

completeness, clarity, consistency, and conciseness. Fathoming and taming the multi-

layered Big Data is a dream that is slowly becoming a reality. It is a rapidly evolving

field that is growing exponentially in value and capabilities.

There are a growing number of books being written on Big Data. They fall mostly

in two categories. There are those that focus on business aspects, and discuss the

strategic internal shifts required for reaping the business benefits from the many

opportunities offered by Big Data. Then there are those that focus on particular

technology platforms, such as Hadoop or Spark. This book aims to bring together the

business context and the technologies in a seamless way.

Thanks to Maharishi Mahesh Yogi for creating a wonderful university whose

consciousness-based environment made writing this evolutionary book possible.

Thanks to many current and former students for contributing to this book. Dheer-

aj Pandey assisted with the Weblog analyzer application and its details. Suraj

Thapalia assisted with the Hadoop installation guide. Enkh Tseeleesuren helped

write the Spark tutorial. Thanks to my family for supporting me in this process.

My daughters Ankita and Nupur reviewed the book and made helpful comments. My

father Mr. R L Maheshwari and brother Dr. Sunil Maheshwari also read the book

and enthusiastically approved it. My colleague Dr. Edi Shivaji too reviewed the book.

May the Big Data Force be with you!

Dr. Anil Maheshwari

May 2017, Fairfield, IA

Contents

Preface vii

1. Wholeness of Big Data 1
Introduction 1

1.1 Understanding Big Data 2

1.2 Capturing Big Data 4

1.2.1 Volume of Data 4

1.2.2 Velocity of Data 4

1.2.3 Variety of Data 5

1.2.4 Veracity of Data 5

1.3 Benefitting from Big Data 7

1.4 Management of Big Data 8

1.5 Organizing Big Data 9

1.6 Analyzing Big Data 10

1.7 Technology Challenges for Big Data 12

1.7.1 Storing Huge Volumes 12

1.7.2 Ingesting Streams at an Extremely Fast Pace 12

1.7.3 Handling a Variety of Forms and Functions of Data 13

1.7.4 Processing Data at Huge Speeds 13

1.8 Conclusion 14

1.9 Organization of the Rest of the Book 15

Review Questions 16

True/False Questions 16

SECTION 1

2. Big Data Sources and Applications 21
Introduction 21

2.1 Big Data Sources 23

x Contents

2.1.1 People-to-People Communications 23

2.1.2 People-to-Machine Communications 24

2.2 Machine-to-Machine (M2M) Communications 25

2.2.1 RFID Tags 26

2.2.2 Sensors 26

2.3 Big Data Applications 27

2.3.1 Monitoring and Tracking Applications 27

2.3.2 Analysis and Insight Applications 29

2.3.3 New Product Development 31

2.4 Conclusion 32

Review Questions 32

True/False Questions 32

3. Big Data Architecture 34
Introduction 34

3.1 Standard Big Data Architecture 35

3.2 Big Data Architecture Examples 37

3.2.1 IBM Watson 37

3.2.2 Netflix 38

3.2.3 eBay 38

3.2.4 VMWare 39

3.2.5 The Weather Company 40

3.2.6 TicketMaster 40

3.2.7 LinkedIn 42

3.2.8 Paypal 42

3.2.9 CERN 43

3.3 Conclusion 44

Review Questions 44

True/False Questions 44

SECTION 2

4. Distributed Computing Using Hadoop 47
Introduction 47

4.1 Hadoop Framework 48

4.2 HDFS Design Goals 48

4.3 Master-Slave Architecture 49

4.4 Block System 51

4.5 Ensuring Data Integrity 52

Contents xi

4.6 Installing HDFS 52

4.6.1 Reading and Writing Local Files into HDFS 53

4.6.2 Reading and Writing Data Streams into HDFS 53

4.7 Sequence Files 54

4.8 YARN 54

4.9 Conclusion 55

Review Questions 55

True/False Questions 56

5. Parallel Processing with Map Reduce 57
Introduction 57

5.1 MapReduce Overview 58

5.2 Sample MapReduce Application: Wordcount 61

5.3 MapReduce Programming 63

5.3.1 MapReduce Data Types and Formats 64

5.3.2 Writing MapReduce Programming 64

5.3.3 Testing MapReduce Programs 66

5.4 MapReduce Jobs Execution 66

5.4.1 How MapReduce Works 67

5.4.2 Managing Failures 68

5.4.3 Shuffle and Sort 68

5.4.4 Progress and Status Updates 69

5.5 Hadoop Streaming 69

5.6 Hive Language 70

5.6.1 HIVE Language Capabilities 70

5.7 Pig Language 72

5.7.1 PIG Language Capabilities 73

5.7.2 Pig Script Example 74

5.8 Conclusion 75

Review Questions 75

True/False Questions 75

6. NoSQL Databases 76
Introduction 76

6.1 RDBMS Vs NoSQL 77

6.2 Types of NoSQL Databases 78

6.3 Architecture of NoSQL 81

6.4 CAP Theorem 82

6.5 HBase 83

6.5.1 Architecture Overview 83

6.5.2 Reading and Writing Data 85

xii Contents

6.6 Cassandra 85

6.6.1 Architecture Overview 85

6.6.2 Protocols 86

6.6.3 Data Model 87

6.6.4 Cassandra Writes 88

6.6.5 Cassandra Reads 88

6.6.6 Replication 90

6.7 Conclusion 91

Review Questions 91

True/False Questions 91

7. Stream Processing with Spark 93
Introduction 93

7.1 Spark Architecture 94

7.1.1 Resilient Distributed Datasets (RDDs) 95

7.1.2 Directed Acyclic Graph (DAG) 96

7.2 Spark Ecosystem 96

7.3 Spark for Big Data Processing 96

7.3.1 MLlib 96

7.3.2 Spark GraphX 97

7.3.3 SparkR 98

7.3.4 SparkSQL 98

7.3.5 Spark Streaming 99

7.4 Spark Applications 99

7.4.1 Spark vs Hadoop 99

7.5 Conclusion 101

Review Questions 101

True/False Questions 101

8. New Ingesting Data 102
Introduction 102

8.1 Messaging Systems 103

8.1.1 Point to Point Messaging System 103

8.1.2 Publish-Subscribe Messaging System 104

8.2 Data Ingest Systems 104

8.3 Apache Kafka 104

8.4 Use Cases 105

8.5 Kafka Architecture 106

8.5.1 Producers 107

8.5.2 Consumers 107

8.5.3 Broker 107

Contents xiii

8.5.4 Topic 107

8.5.5 Summary of Key Attributes 108

8.5.6 Data Replication 109

8.5.7 Guarantees 109

8.5.8 Client Libraries 109

8.6 Apache ZooKeeper 110

8.6.1 Kafka Producer Example in Java 110

8.7 Conclusion 110

Review Questions 110

True/False Questions 111

9. Cloud Computing 112
Introduction 112

9.1 Cloud Computing Characteristics 114

9.1.1 In-house Storage 114

9.2 Cloud Storage 114

9.3 Cloud Computing: Evolution of Virtualized Architecture 116

9.4 Cloud Computing Myths 118

9.5 Cloud Computing: Getting Started 118

9.6 Conclusion 119

Review Questions 119

True/False Questions 120

SECTION 3

10. Web Log Analyzer Application Case Study 123
Introduction 123

10.1 Client-Server Architecture 123

10.2 Web Log Analyzer 124

10.2.1 Requirements 124

10.2.2 Solution Architecture 124

10.2.3 Benefits of Such Solution 125

10.3 Technology Stack 126

10.3.1 Apache Spark 126

10.3.2 Spark Deployment 126

10.3.3 Components of Spark 126

10.4 HDFS 127

10.5 MongoDB 127

10.6 Apache Flume 128

xiv Contents

10.7 Overall Application Logic 128

10.8 Technical Plan for the Application 128

10.9 Scala Spark Code for Log Analysis 129

10.10 Sample Log Data 130

10.10.1 Sample Input Data 130

10.11 Sample Output of Web Log Analysis 131

10.12 Conclusion and Findings 132

Review Questions 132

True/False Questions 132

11. Data Mining Primer 133
Introduction 133

11.1 Gathering and Selecting Data 134

11.2 Data Cleansing and Preparation 135

11.3 Outputs of Data Mining 135

11.4 Evaluating Data Mining Results 136

11.4.1 Predictive Accuracy = (Correct Predictions)/

Total Predictions 136

11.5 Data Mining Techniques 137

11.6 Mining Big Data 140

11.6.1 From Causation to Correlation 140

11.6.2 From Sampling to the Whole 140

11.6.3 From Dataset to Data Stream 140

11.7 Data Mining Best Practices 141

11.8 Conclusion 143

Review Questions 143

True/False Questions 143

12. Big Data Programming Primer 145
Introduction 145

12.1 Comparing Hive and Pig 145

12.2 Apache Hive 146

12.2.1 Architecture of Hive 147

12.2.2 Working of Hive 147

12.2.3 Hive Data Definition 149

12.2.4 Hive Partitioning 151

12.2.5 Hive Data Manipulation 152

12.2.6 Hive View and Indexes 156

12.3 Apache Pig 157

12.3.1 Running Pig 158

12.3.2 Pig Latin Data Model 159

Contents xv

12.3.3 Pig Latin Operators 160

12.3.4 Pig Data Definition 161

12.3.5 Pig Diagnostic Operators 162

12.3.6 Pig Data Manipulation 162

12.3.7 Pig Built-in Functions 165

12.3.8 Pig User Defined Functions 168

12.3.9 Running Pig Scripts 168

12.4 Conclusion 169

Review Questions 169

True/False Questions 170

Appendix 1 Installing Hadoop Using Cloudera on Virtual Box 171

Appendix 2 Installing Hadoop on Amazon Web Services (AWS)
Elastic Compute Cluster (EC2) 197

Appendix 3 Spark Installation and Tutorial 222

Additional Resources 232

Index 233

Chapter 1
Wholeness of Big Data

Learning Objectives

 ■ Understand Big Data and its powerful business benefits
 ■ Learn the differences between Big Data and Conventional Data
 ■ Learn the 4 Vs of Big Data – Volume, Velocity, Variety, and Veracity
 ■ Discover three types of business applications of Big Data
 ■ Learn valuable tips on how to manage Big Data
 ■ Conceptualize the Big Data ecosystem and appreciate its key components
 ■ Appreciate major technological challenges in managing Big Data
 ■ Relate to the key technology solutions for addressing those challenges

INTRODUCTION

Big Data is an all-inclusive term that refers to extremely large, very fast, highly diverse,

and complex data that cannot be managed with traditional data management tools.

Business Intelligence

Veracity

AnalyticsBIG
DATA

Volume

Variety
(from, function,

source)
Velocity

FIGURE 1.1 Big data context

2 Big Data

Ideally, Big Data includes all kinds of data, which helps deliver the right informa-

tion, to the right person, in the right quantity, at the right time, to help make the

right decisions. Big Data can be harnessed by developing infinitely scalable, flexible,

and evolutionary data architectures, coupled with the use of cost-effective computing

machines. The infinite potential knowledge embedded within this Big Data cosmic

computer would help connect with and enjoy the support of all the laws of nature.

This book will provide a complete overview of Big Data for executives and data sci-

entists. This chapter will cover the key challenges and benefits of Big Data, and the

essential tools and technologies available for organizing and manipulating Big Data.

1.1 UNDERSTANDING BIG DATA

Big Data can be examined at two levels (Figure 1.1). At a fundamental level, it is

just another collection of data that can be analyzed and utilized for the benefit of the

business. On another level, it is a special kind of data that poses unique challenges

and offers unique benefits. This book will focus on the latter level.

At business level, data generated by business operations, can be analyzed to generate

insights that can help the business make better decisions. This makes the business

grow bigger, and generate even more data, so that the cycle continues. This is repre-

sented by the cycle on the top-right of Figure 1.1. This aspect is discussed in Chapter

10, ‘A Primer on Data Analytics’.

On the other level, Big Data is different from traditional data in every way, i.e. space,

time, and function. Quantitatively, Big Data is 1000 times more than the traditional

data and of the data generation and transmission speed is also of the same order.

The forms and functions of Big Data are 10 times more diverse: from numbers to

 text, pictures, audio, videos, web logs, machine data, and more. There are many more

sources of data, from individuals to organizations to governments, using a range of

devices from mobile phones to computers to industrial machines. Not all Big Data

will be of equal quality and value, as represented by the cycle on the bottom left of

Figure 1.1. This aspect of Big Data, and its new technologies, is the focus of this book.

Big Data is mostly, over 90 per cent, unstructured data. Every type of Big Data is

structured differently, and should be dealt in with an appropriate way. There are

huge opportunities for technology providers to innovate and manage the entire life

cycle of Big Data; to generate, gather, store, organize, analyze, and visualize this data.

 Wholeness of Big Data 3

Caselet
 IBM Watson: A Big Data System

IBM created the Watson system as a way of pushing the boundaries of Artificial Intelligence and natural

language understanding technologies. Watson beat the world champion human players of Jeopardy

(quiz style TV show) in Feb 2011. Watson reads up data about everything on the web including the

entire Wikipedia. It digests and absorbs the data based on simple generic rules such as: books have

authors; stories have heroes; and drugs treat ailments. A Jeopardy clue, received in the form of a cryptic

phrase, is broken down into many possible potential sub-clues of the correct answer. Each sub-clue is

examined to see the likeliness of its answer being the correct answer for the main problem. Watson

calculates the confidence level of each possible answer. If the confidence level reaches more than a

desirable threshold level, Watson decides to offer the answer to the clue. It manages to do all this in

a mere 3 seconds.

Watson is now being applied to many important applications such as diagnosing diseases, especially

cancer. Watson can read all the new research published in the medical journals to update its knowl-

edge base. It can diagnose the probability of various diseases, by applying factors such as patient’s

current symptoms, health history, genetic history, medication records, and other factors to recommend

a particular diagnosis. (Source: Smartest machines on Earth: youtube.com/watch?v=TCOhyaw5bwg)

FIGURE 1.2 IBM Watson playing jeopardy

 1. What kinds of Big Data knowledge, technologies and skills are required to build a system like

Watson? What other resources are needed?

 2. Will doctors be able to compete with Watson in diagnosing diseases and prescribing medications?

Who else could benefit from a system like Watson?

4 Big Data

1.2 CAPTURING BIG DATA

If data were only growing too large, or only moving too fast, or only becoming too di-

verse, it would have been relatively easy. However, when three Vs (Volume, Velocity,

Variety) arrive together in an interactive manner, it creates a perfect storm. While

the Volume and Velocity of data drive the major technological concerns and the costs

of managing Big Data, these two Vs are themselves being driven by the third V, that

is, the Variety of forms and functions and sources of data. The varying veracity and

value of data complicate the situation further.

1.2.1 Volume of Data

The quantity of data generated in the world has been relentlessly doubling every 12–18

months. Traditional data is measured in Gigabytes (GB) and Terabytes (TB), but Big

Data is measured in Petabytes (PB) and Exabytes (1 Exabyte = 1 Million TB). This

data is so huge that it is almost a miracle that one can find any specific thing in it,

in a reasonable period of time. Searching the world-wide web was the first true Big

Data application. Google perfected the art of this application and developed many of

the path-breaking Big Data technologies we see in use today.

The primary reason for the growth of data is the dramatic reduction in the cost of

storing data. The costs of storing data have decreased by 30–40 per cent every year.

Therefore, there is an incentive to record everything that can be observed. It is called

‘ datafication’ of the world. The costs of computation and communication of data have

also been coming down. Another reason for the growth of data is the increase in the

number of forms and functions of data. We will discuss more about this in the ‘Va-

riety’ section.

1.2.2 Velocity of Data

If traditional data is like a lake, Big Data is like a fast-flowing river. Big Data is being

generated by billions of devices, and communicated at the speed of the light, through

the internet. Ingesting all this data is like drinking from a fire hose. One does not

have any control over how fast the data will come. A huge unpredictable data-stream

is the new metaphor for thinking about Big Data.

The primary reason for the increased velocity of data is the increase in internet speed.

Internet speeds available to homes and offices are now increasing from 10 MB/s to 1

GB/s (100 times faster). More people are getting access to high-speed internet around

the world. Another important reason is the increased variety of sources, such as mo-

bile devices, that can generate and communicate data from anywhere, at any time.

 Wholeness of Big Data 5

1.2.3 Variety of Data

Big Data is inclusive of all forms of data, for all kinds of functions, from all sources

and devices. If traditional data forms such as invoices and ledgers were like a small

store, Big Data is the biggest imaginable shopping mall that offers unlimited variety.

There are three major kinds of variety of data.

 1. The first aspect of variety is the Form of data. Data types range in variety from

numbers to text, graph, map, audio, video, and others, with some being simple

and others being very complex. There could be composites of data that include

many elements in a single file. For example, text documents have graphs and

pictures embedded in them. Video movies can have audio songs embedded in

them. Audio and video have different and vastly more complex storage formats

than numbers and text. Numbers and text can be more easily analyzed than an

audio or video file. How should composite entities be stored and analyzed?

 2. The second aspect of variety is the Function of data. There is data from hu-

man conversations, songs and movies, business transaction records, machine

operations performance data, new product design data, old archived data, etc.

Human communication data would need to be processed very differently from

operational performance data, with different expectations and objectives. Big

Data technologies could be used to recognize people’s faces in pictures; compare

voices to identify the speaker; and compare handwritings to identify the writer.

 3. The third aspect of variety is the Source of data. Mobile phone and tablet

devices enable a wide series of applications (or apps) to access data and, also,

generate data from anytime anywhere. Web access and search logs are another

new and huge source of data. Business systems generate massive amount of

structured business transactional information. Temperature and pressure sensors

on machines, and Radio Frequency (RFID) tags on assets, generate incessant

and repetitive data. Broadly speaking, there are three broad types of sources of

data: Human-human communications; human-machine communications; and

machine-to-machine communications. The sources of Big Data, and their busi-

ness applications, will be discussed in the next chapter.

1.2.4 Veracity of Data

Veracity relates to the truthfulness, believability, and quality of data. Big Data is

messy and there is considerable misinformation and disinformation out there. The

reasons for poor quality of data can range from technical error, to human error, to

malicious intent.

6 Big Data

FIGURE 1.3 Sources of big data (Source: Hortonworks.com)

 1. The source of information may not be authoritative. For example, all websites are

not equally trustworthy. Any information from whitehouse.gov or from nytimes.

com is more likely to be authentic and complete. Wikipedia is useful, but not all

pages are equally reliable. In each case, the communicator may have an agenda

or a point of view.

 2. The data may not be communicated and received correctly because of human or

technical failure. Sensors and machines for gathering and communicating data

may malfunction and may record and transmit incorrect data. Urgency may

require the transmission of the best data available at a point in time. Such data

makes reconciliation with later, accurate, records more problematic.

 3. The data provided and received may, however, also be intentionally wrong for

competitive or security reasons. There could be disinformation and malicious

information spread for strategic reasons.

Big Data need to be sifted and organized by quality, for it to be put to any great use.

 Wholeness of Big Data 7

1.3 BENEFITTING FROM BIG DATA

Data is the new natural resource. Traditionally, data usually belongs to the organiza-

tion that generates it. There are other types of data, such as social media data, which

are freely accessible under an open general license. Organizations can use this data to

learn about their consumers, improve their service delivery, and design new products

to delight their customers, and to gain a competitive advantage. Data is also being

used to design new digital products, such as on-demand entertainment and learning.

Organizations cannot afford to ignore Big Data. They may choose to gather and store

this data for later analysis, or to sell it to other organizations, that might benefit from

it. They may also legitimately choose to discard parts of their data for privacy or

legal reasons. However, organizations that do not learn to engage with Big Data,

could find themselves left far behind their competition, landing in the dustbin of his-

tory. Innovative and nimble small organizations can use Big Data to quickly scale up

and beat larger and more mature organizations.

Big Data applications exist in all industries and aspects of life. There are three major

types of Big Data applications: Monitoring and Tracking, Analysis and Insight, and

 Digital Product Development.

FIGURE 1.4 The first big data president

8 Big Data

Monitoring and Tracking Applications Consumer goods producers use monitor-

ing and tracking applications to understand the sentiments and needs of their custom-

ers. Industrial organizations use Big Data to track inventory in massive interlinked

global supply chains. Factory owners use it to monitor machine performance and

do preventive maintenance. Utility companies use it to predict energy consumption,

and manage demand and supply. Information Technology companies use it to track

website performance and improve its usefulness. Financial organizations use it to

project trends better and make more effective and profitable bets, etc.

Analysis and Insight Political organizations use Big Data to micro-target voters

and win elections. Police use Big Data to predict and prevent crime. Hospitals use it

to better diagnose diseases and make medicine prescriptions. Advertising agencies

use it to design more targeted marketing campaigns more quickly. Fashion designers

use it to track trends and create more innovative products.

New Product Development Incoming data could be used to design new products

such as reality TV entertainment. Stock market feeds could be a digital product.

Imagination is the limit on how new such products and services can be developed

and delivered at the speed of thought.

1.4 MANAGEMENT OF BIG DATA

Big Data is a new phase representing a digital world. Business and society are not

immune from its strong impacts. Many organizations have started initiatives around

the use of Big Data. However, most organizations do not necessarily have a good grip

on it. Here are some emerging insights into making better use of Big Data.

 1. Across all industries, the business case for Big Data is strongly focused on ad-

dressing customer-centric objectives. The first focus on deploying Big Data initia-

tives is to protect and enhance customer relationships and customer experience.

 2. Big Data should be used to solve a real pain-point. It should be deployed for

specific business objectives of management while avoiding being overwhelmed

by the enormity of Big Data.

 3. Organizations are beginning their pilot implementations by using existing and

newly accessible internal sources of data. It is better to begin with data under

one’s control and where one has a superior understanding of the data. One should

use more diverse data, and not just more data. This would permit tuning into a

broader perspective of reality, leading to better insights.

 Wholeness of Big Data 9

 4. Putting humans and data together leads to the most insights. Combining data-

based analysis with human intuition and perspectives is better than going just

one way. Most organizations lack the advanced analytical capabilities required

to get the most value from Big Data. There is a growing awareness of building

or hiring those skills and capabilities.

 5. The faster one analyzes the data, the more its predictive value. The value of data

depreciates rapidly with time. Many kinds of data need to be processed within

minutes, or else the immediate competitive advantage is lost.

 6. One should not throw away data if no immediate use can be seen for it. Data

usually has value beyond what one initially anticipates. Data can add perspec-

tive to other data later in a multiplicative manner. One should maintain just one

copy of your data, not multiple. This would help avoid confusion and increase

efficiency.

 7. Big Data is growing exponentially, so one should plan for exponential growth.

Storage costs continue to fall, data generation continues to grow, data-based ap-

plications continue to grow in capability and functionality.

 8. Big Data builds upon a resilient, secure, efficient, flexible, and real-time infor-

mation processing environment. Big Data is transforming business, just like IT

did.

1.5 ORGANIZING BIG DATA

Good organization depends upon the purpose of the organization.

Given huge quantities of data, it would be desirable to organize the data to speed

up the search process for finding a specific desired thing in the entire data. The cost

of storing and processing the data, too, would be a major driver for the choice of an

organizing pattern.

Given fast and variable speed of data, it would be desirable to create a scalable number

of ingest points. It will also be desirable to create at least some element of control over

the data by maintaining count and averages over time, unique values received, etc.

Given wide variety in form factors, data will need to be stored and analyzed differ-

ently. Videos need to be stored separately and used for serving in a streaming mode.

Text data may be stored separately, so it can be combined, cleaned, and analyzed for

themes and sentiments.

10 Big Data

Given different quality of data, various data sources may need to be ranked and pri-

oritized before serving them to the audience. For example, the quality of a webpage

and its data may be evaluated using its PageRank value.

1.6 ANALYZING BIG DATA

Big Data can be analyzed in two ways. Big Data can be utilized to visualize a flowing

or a static situation. These are called analyzing Big Data in motion AND Big Data at

rest. First way is to process the incoming stream of data in real time for quick and

effective statistics about the data. The second way is to store and structure batches of

data and apply standard analytical techniques on for generating insights. This could

then be visualized using real-time dashboards. The nature of processing this huge,

diverse, and largely unstructured data, can be limited only by one’s imagination.

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 1.5 Big data architecture

A million points of data can be plotted in a graph and offer a view of the density of

data. However, plotting a million points on the graph may produce a blurred image

which may hide, rather than highlight the distinctions. In such a case, binning the

data would help, or selecting the top few frequent categories may deliver greater in-

sights. Streaming data can also be visualized by simple counts and averages over time.

For example, below is a dynamically updated chart that shows up-to-date statistics

of visitor traffic to the author’s blogsite, anilmah.com. The bar shows the number

of page views, and the inner darker bar shows the number of unique visitors. The

 dashboard could show the view by days, weeks, or years also.

 Wholeness of Big Data 11

Insights Days Weeks Months Years

Views Visitors

800

400

0Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

VISITORS

380

LIKES

6

COMMENTS

1

VIEWS

645

FIGURE 1.6 Real-time dashboard for website performance for the author’s blog

Text Data could be combined, filtered, cleaned, thematically analyzed, and visual-

ized in a wordcloud. Here is wordcloud from a recent stream of tweets (i.e. Twitter

messages) from 2016 US Presidential candidates Hillary Clinton and Donald Trump

(Figure 1.7). The larger size of words implies greater frequency of occurrence in the

tweets. This can help understand the major topics of discussion between the two.

FIGURE 1.7 A wordcloud of Hillary Clinton’s and Donald Trump’s tweets

12 Big Data

1.7 TECHNOLOGY CHALLENGES FOR BIG DATA

There are four major technological challenges in managing Big Data. There are four

matching layers of technologies to overcome those challenges.

1.7.1 Storing Huge Volumes

The first challenge relates to storing huge quantities of data. No computing machine

is big enough to store the relentlessly growing quantity of data. Therefore, data must

be stored in several smaller inexpensive machines. However, with a large number

of machines, there is the inevitable challenge of machine failure. Each of these com-

modity machines will fail at some point or another. Failure of a machine could entail

a loss of data stored on it.

The first layer of Big Data technology thus helps store huge volumes of data, at an

affordable cost, while avoiding the risk of data loss. It distributes data across a large

cluster of inexpensive commodity machines. It ensures that every piece of data is

stored on multiple machines to guarantee that at least one copy is always available.

Hadoop is the most well-known clustering technology for Big Data. Its data storage

pattern is called Hadoop Distributed File System (HDFS). This system is built on

the patterns of Google’s Big File systems, designed to store billions of pages, and sort

them to answer user search queries.

1.7.2 Ingesting Streams at an Extremely Fast Pace

The second challenge relates to the Velocity of data, i.e. handling torrential streams

of data. Some of the data streams may be too large to store, but must still be moni-

tored. The solution lies in creating special scalable ingesting systems that can open

an unlimited number of channels for receiving data. These systems can hold data

in queues, from which business applications can read and process data at their own

pace and convenience.

The second layer of Big Data technology manages this velocity challenge. It uses a

special stream-processing engine, where all incoming data is fed into a central queue-

ing system. From there, a fork-shaped system sends data to batch storage as well as

to stream processing directions. The stream processing engine can do its work while

the batch processing does its work. Apache Spark is the most popular system for

 streaming applications.

 Wholeness of Big Data 13

1.7.3 Handling a Variety of Forms and Functions of Data

The third challenge relates to the structuring and access of all varieties of data that

comprise Big Data. Storing them in traditional flat or relational structures would be

too impractical, wasteful, and slow. Accessing and analyzing them requires different

capabilities.

The third layer of Big Data technology solves this problem by storing the data in non-

relational systems that relax many of the stringent conditions of the relational model.

These are called NoSQL (Not Only SQL) databases. These databases are optimized for

certain tasks such as query processing, or graph processing, document processing, etc.

HBase and Cassandra are two of the better known NoSQL databases systems. HBase,

for example, stores each data element separately along with its key identifying infor-

mation. This is called a key-value pair format. Cassandra stores data in a columnar

format. There are many other variants of NoSQL databases. NoSQL languages, such

as Pig and Hive, are used to access this data.

1.7.4 Processing Data at Huge Speeds

The fourth challenge relates to moving large amounts of data from storage to the

processor, as this would consume enormous network capacity and choke the network.

The alternative and innovative mode would be to do just the opposite, i.e. to move

the processing to where the data is stored.

The fourth layer of Big Data technology avoids the choking of the network. It distrib-

utes the task logic throughout the cluster of machines where the data is stored. Those

machines work, in parallel, on the data assigned to them, respectively. A follow-up

process consolidates the outputs of all the small tasks and delivers the final results.

MapReduce, also invented by Google, is the best-known technology for parallel pro-

cessing of distributed Big Data. Table 1.1 lists technological challenges and solutions

for Big Data.

Table 1.1

Technological challenges and solutions for big data

Challenge Description Solution Technology

Volume Avoid risk of data loss from

machine failure in clusters of

commodity machines

Replicate segments of data

in multiple machines; master

node keeps track of segment

location

HDFS

(Contd.)

14 Big Data

Challenge Description Solution Technology

Volume & Velocity Avoid choking of network

bandwidth by moving large

volumes of data

Move processing logic to where

the data is stored; manage

using parallel processing al-

gorithms

 Map-Reduce

Variety Efficient storage of large and

small data objects

Columnar databases using

key-pair values format

HBase, Cassandra

Velocity Monitoring streams too large

to store

Fork-shaped architecture to

process data as stream and

as batch

Spark

Once these major technological challenges arising from the 4 Vs of data are met, all

traditional analytical and presentation tools can be applied to Big Data. There are

many additional supportive technologies to make the task of managing Big Data

easier. For example, there are technologies to monitor the resource usage and load

balancing of the machines in the cluster.

1.8 CONCLUSION

Big Data is a major social and technological phenomenon that impacts everyone. It

also provides an opportunity to create new ways of knowing and working. Big Data

is extremely large, complex, fast, and not always clean as it is data that comes from

many sources such as people, web, and machine communications. Big Data needs to

be gathered, organized and processed in a cost-effective way that manages the volume,

velocity, variety, and veracity of Big Data. Hadoop, MapReduce, NoSQL, and Spark

systems are popular technological platforms for this purpose.

To summarize, here is a list of the many differences between traditional and Big Data

(Table 1.2).

Table 1.2

Comparing big data with traditional data

Feature Traditional Data Big Data

Representative Structure Lake/Pool Flowing Stream/river

Primary Purpose Manage business activities Communicate, Monitor

 Source of data Business transactions, docu-

ments

 Social media, Web access logs,

machine generated

Volume of data Gigabytes, Terabytes Petabytes, Exabytes

Velocity of data Ingest level is controlled Real-time unpredictable ingest

Variety of data Alphanumeric Audio, Video, Graphs, Text

(Contd.)

(Contd.)

 Wholeness of Big Data 15

Feature Traditional Data Big Data

Veracity of data Clean, more trustworthy Varies depending on source

Structure of data Well-Structured Semi- or Un-structured

Physical Storage of Data In a Storage Area Network Distributed clusters of commod-

ity computers

Database organization Relational databases NoSQL databases

Data Access SQL NoSQL such as Pig

Data Manipulation Conventional data processing Parallel processing

Data Visualization Variety of tools Dynamic dashboards with simple

measures

Database Tools Commercial systems Open-source - Hadoop, Spark

Total Cost of System Medium to High high

1.9 ORGANIZATION OF THE REST OF THE BOOK

This book will cover applications, architectures, and the essential Big Data technolo-

gies. The rest of the book is organized as follows.

Section 1 will discuss sources, applications, and architectural topics. Chapter 2 will

discuss a few compelling business applications of Big Data, based on understanding

the different sources and formats of data. Chapter 3 will cover some examples of Big

Data architectures used by leading organizations.

Section 2 will discuss expand on the Big Data Ecosystem (Figure 1.5). It will have

six chapters discussing the six major technology elements identified in the ecosys-

tem. Chapter 4 will discuss Hadoop ecosystem and how its Distributed File system

(HDFS) works. Chapter 5 will discuss MapReduce parallel processing algorithm and

how it helps accomplish big tasks quickly. An introduction to Hive and Pig program-

ming languages will also be included. Chapter 6 will discuss NoSQL databases to

learn how to structure Big Data into four major types of databases. In particular,

HBase and Cassandra databases will be covered in great detail. Chapter 7 will cover

streaming data, and the systems for ingesting and processing this data. This chapter

will cover Spark, an integrated, in-memory processing toolset to manage Big Data.

Chapter 8 will cover Data ingest system, using Apache Kafka messaging system.

Finally, Chapter 9 will be a primer on Cloud Computing technologies used for rent-

ing storage and compute capacity at third party networks at a fraction of the cost of

in-house IT infrastructure.

Section 3 will include applications, primers, and tutorials. Chapter 10 will present

a case study on “ web log analyzer”, a popular and generic application that ingests

a log of a large number of web request entries every day and can create summary

(Contd.)

16 Big Data

and exception reports. Chapter 11 will be a primer on data analytics technologies for

analyzing data. A full treatment can be found in my book, Data Analytics. Chapter

12 will be a primer on Big Data languages, Apache Hive and Pig. Appendix A will be

a tutorial on installing Hadoop cluster on Amazon EC2 cloud. Appendix B will be a

tutorial on installing and using Spark.

Review Questions

 1. What is Big Data? Why should anyone care?

 2. Describe the 4V model of Big Data.

 3. What are the major technological challenges in managing Big Data?

 4. What are the technologies available to manage Big Data?

 5. What kind of analyses can be done on Big Data?

 6. Watch Cloudera CEO present the evolution of Hadoop at https://www.youtube.

com/watch?v=S9xnYBVqLws . Why did people not pay attention to Hadoop and

MapReduce when it was introduced? What implications does it have to emerging

technologies?

True/False Questions

 1. Big Data is an umbrella term for a collection of data sets so large and complex

that they do not fit into a single file system.

 2. ‘Datafication’ means that ‘increasing’ details about events are being recorded and

stored.

 3. Data only belongs to the user or the organization that generates it.

 4. Big Data is so precious that multiple copies of data should be maintained.

 5. Big Data includes approximately equal amounts of structured data and unstruc-

tured data.

 6. Social media interactions are a form of big data.

 7. Big Data is growing steadily at an exponential rate.

 8. Big Data at rest means to process the incoming stream of data in real time for

quick and effective statistics about the data.

 9. The major causes of variety of data are the source, form, and function of data.

 Wholeness of Big Data 17

 10. Transactions + Interactions + Observations = Traditional Data.

 11. The primary cause of poor quality of data is because of human error.

 12. There are five different categories of Big Data applications.

 13. Big Data should be used for solving technology-centric applications.

 14. Visualizing Big Data presents no special challenges.

 15. Storing huge volumes of data is solved using MapReduce.

 16. Processing massive data in parallel is solved using NoSQL databases.

 17. Processing massive data in real-time streaming mode is done through Apache

Spark.

 18. Managing huge variety of data is done through NoSQL databases.

 19. Hadoop is a proprietary Big data technology.

 20. Hadoop Distributed File System (HDFS) was invented by Google.

Liberty Stores Case Exercise: Step B1

Liberty Stores Inc. is a specialized global retail chain that sells organic food, organic clothing, wellness

products, and education products to enlightened LOHAS (Lifestyles of the Healthy and Sustainable)

citizens worldwide. The company is 20 years old, and is growing rapidly. It now operates in 5 conti-

nents, 50 countries, 150 cities, and has 500 stores. It sells 20000 products and has 10000 employees.

The company has revenues of over $5 billion and has a profit of about 5 per cent of its revenue. The

company pays special attention to the conditions under which the products are grown and produced.

It donates about one-fifth (20 per cent) from its pre-tax profits from global local charitable causes.

 1. Suggest a comprehensive Big Data strategy for the CEO of the company.

 2. How can a Big Data system such as IBM Watson help this company?

This section covers two important high-level topics.

 ➨ Chapter 2 will cover big data sources, and its varied applications in many

industries.

 ➨ Chapter 3 will cover examples of Big Data architectures from leading

organizations.

Section 1

Chapter 2
Big Data Sources and

Applications

Learning Objectives

 ■ Recognize the three categories of sources of Big Data

 ■ Identify the three categories of applications of Big Data

 ■ Appreciate how Internet of Things (IoT) is driving Big Data

 ■ Understand how analyzing and interpreting Big Data requires caution

INTRODUCTION

If a traditional software application is a lovely cat, then a Big Data application is a

fierce tiger. An ideal Big Data application will take advantage of all the richness of

data and produce relevant information to make the organization responsive and suc-

cessful. Big Data applications can align the organization with the totality of natural

laws, the source of all sustainable success in the world (Figure 2.1).

Companies like the consumer goods giant, Proctor & Gamble, have inserted Big Data

into all aspects of its planning and operations. The industrial giant, Volkswagen,

requires all its business units to identify some realistic initiative using Big Data to

grow their unit’s sales. The entertainment giant, Netflix, processes 400 billion user

actions every day to understand their customers’ needs.

Learning Objectives

■ Recognize the three categories of sources of Big Data

■ Identify the three categories of applications of Big Data

■ Appreciate how Internet of Things (IoT) is driving Big Data

■ Understand how analyzing and interpreting Big Data requires caution

22 Big Data

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 2.1 Big data architecture

Caselet
Big Data Gets the Flu

Google Flu Trends was an enormously successful influenza forecasting service, pioneered by Google. It

employed Big Data, such as the stream of search terms used in its ubiquitous Internet search service.

The program aimed to better predict flu outbreaks using data and information from the U.S. Centers

for Disease Control and Prevention (CDC). What was most amazing was that this application could

predict the onset of flu, almost two weeks before CDC saw it coming. From 2004 till about 2012 it

was able to successfully predict the timing and geographical location of the arrival of the flu season

around the world.

United States Flu Activity
Influenza estimate Google Flue Trends estimate United States data

See data for: United States

2004 2005 2006 2007 2008 2009

Historical estimates

6,885

5,168

3,442

1,121

FIGURE 2.2 Google flu trends

 Big Data Sources and Applications 23

However, it failed spectacularly to predict the 2013 flu outbreak. Data used to predict Ebola’s spread

in 2014–15 yielded wildly inaccurate results, and created a major panic. Newspapers across the globe

spread this application’s worst-case scenarios for the Ebola outbreak of 2014.

Google Flu Trends failed for two reasons: Big Data hubris, and algorithmic dynamics, (a) The quantity

of data does not mean that one can ignore foundational issues of measurement and construct valid-

ity and reliability and dependencies among data and (b) Google Flu Trends predictions were based

on a commercial search algorithm that frequently changes, based on Google’s business goals. This

uncertainty skewed the data in ways even Google engineers did not understand, even skewing the

accuracy of predictions. Perhaps the biggest lesson is that there is far less information in the data,

typically available in the early stages of an outbreak, than is needed to parameterize the test models.

 1. What lessons would you learn from the death of a prominent and highly successful Big Data ap-

plication?

 2. What other Big Data applications can be inspired from the success of this application?

2.1 BIG DATA SOURCES

Big Data is inclusive of all data, about all activities, everywhere. It can thus poten-

tially transform our perspective on life and the universe. It can bring new insights

in real-time, make life happier, and make the world more productive. Big Data can

however also bring perils—in terms of violation of privacy, and social and economic

disruption.

There are three major categories of data sources: people-to-people communications,

human-machine communications, and machine-machine communications.

2.1.1 People-to-People Communications

People and corporations increasingly communicate instantly over electronic networks.

Everyone communicates through phone and email. Influential networks have expand-

ed. Distance and time have been annihilated. News travels instantly. The content of

communication has become richer and multimedia. For example, high-resolution cam-

eras in mobile phones enable people to record pictures and videos, and instantly share

them with friends and family. All these communications are stored in the facilities of

many intermediaries, such as telecom and internet service providers. Social media is

a new and particularly transformative type of human-human communications.

2.1.1.1 Social Media

Social media platforms such as Facebook, Twitter, LinkedIn, YouTube, Flickr, Tumblr,

 Skye, Snapchat, and others have become an increasingly intimate part of modern life.

24 Big Data

People instantly share messages and pictures through social media such as Facebook

and YouTube. They share photo albums through Flickr. They communicate in short

asynchronous messages with each other on Twitter. They make friends on Facebook,

and follow others on Twitter. They do video conferencing, using Skype and leaders

deliver messages that sometimes go viral through social media.

FIGURE 2.3 Sampling of major social media

Figure 2.3 shows a few among the hundreds of social media that people use and they

generate huge streams of text, pictures, videos, logs, and other multimedia data. All

these data streams are part of Big Data, and can be monitored and analyzed to un-

derstand many phenomena, such as patterns of communication, as well as the gist of

the conversations. These media have been used for a wide variety of purposes with

stunning effects.

2.1.2 People-to-Machine Communications

Sensors and web are two of the kinds of machines that people communicate with.

Personal assistants such as Siri and Cortana are the latest in man–machine com-

munications as they try to understand human requests in natural language, and

fulfil them. Wearable devices such as FitBit and smart watch are smart devices that

read, store and analyze people’s personal data such as blood pressure and weight,

food and exercise data, and sleep patterns. The world-wide web is like a knowledge

machine that people interact with to get answers for their queries. They also use the

web for commerce.

 Big Data Sources and Applications 25

2.1.2.1 Web Access

The world-wide-web has integrated itself into all parts of human and machine activ-

ity. The usage of the tens of billions of pages by billions of web users generates huge

amount of enormously valuable clickstream data. Every time a web page is requested,

a record of this activity is generated at the webpage provider end. The webpage

provider tracks the identity of the requesting device and user, and time and spatial

location of each request. On the webpage requester side, there are certain small

pieces of computer code and data called cookies which track the webpages received,

date/time of access, and some identifying information about the user. All these web

access logs, and cookie records, can provide web usage records that can be analyzed

for discovering opportunities for marketing purposes.

A web log analyzer is an application required to monitor streaming web access logs

in real-time to check on website health and to flag errors. A detailed case study of a

practical development of this application is shown in Chapter 10.

2.2 MACHINE-TO-MACHINE (M2M) COMMUNICATIONS

M2M communications is also sometimes broadly called the Internet of Things (IoT). A

trillion devices are connected to the internet and they communicate with each other,

or with some master machines. All this data can be accessed and harnessed by mak-

ers and owners of those machines.

Machines and equipment have many kinds of sensors to measure certain environ-

mental parameters, which can be broadcast to communicate their status. RFID tags

and sensors embedded in machines help generate the data. Containers on ships are

tagged with RFID tags that convey their location to all those who can listen. Simi-

larly, when pallets of goods are moved in warehouses and retail stores, those pallets

contain electromagnetic (RFID) tags that convey their location. Cars carry an RFID

transponder to identify themselves to automated tollbooths and pay the tolls. Robots

in a factory, and internet-connected refrigerators in a house, continually broadcast

a ‘heartbeat’ that they are functionally normally. Automobiles contain sensors that

record and communicate operational data. A modern car can generate many mega-

bytes of data every day, and there are more than 1 billion motor vehicles on the road.

Thus the automotive industry itself generate huge amounts of data. Self-driving cars

would only add to the quantity of data generated. Surveillance videos using commod-

ity cameras are another major source of machine-generated data.

26 Big Data

2.2.1 RFID Tags

An RFID tag (Figure 2.4) is a radio transmitter with

a little antenna that can respond to and communicate

essential information to special readers through Radio

Frequency (RF) channel. A few years ago, major retail-

ers such as Walmart decided to invest in RFID technol-

ogy to take the retail industry to a new level. It forced

their suppliers to invest in RFID tags on the supplied

products. Today, almost all retailers and manufacturers

have implemented RFID-tags based solutions.

Here is how an RFID tag works. When a passive RFID

tag comes in the vicinity of an RF reader and is ‘tickled’,

the tag responds by broadcasting a fixed identifying

code. An active RFID tag has its own battery and stor-

age, and can store and communicate a lot more information. Every reading of mes-

sage from an RFID tag by an RF reader creates a record, or a log entry. Thus there

is a steady stream of data from every reader as it records information about all the

RFID tags in its area of influence. The records may be logged regularly, to track the

location and movement of an item. All the duplicate and redundant records must be

removed to produce clean, consolidated data about the location and status of items

in real time.

2.2.2 Sensors

A sensor (Figure 2.5) is a small physi-

cal device that can observe and record

physical or chemical parameters. Sensors

are all-pervasive. A photo sensor in the

elevator or train door can sense if some-

one is moving and to thus keep the door

from closing. A CCTV camera can record

a video for surveillance purposes. A GPS

device can record its geographical loca-

tion every moment. Temperature sensors

in a car can measure the temperature of

the engine and the tires and more. The

thermostat in a building or a refrigerator

too have temperature sensors. A pressure sensor can measure the pressure inside an

industrial boiler.

FIGURE 2.4 A small passive

RFID tag

FIGURE 2.5 An embedded sensor

 Big Data Sources and Applications 27

2.3 BIG DATA APPLICATIONS

Recording and processing all data requires much talent, resources, and time. The data

can be use imaginatively and meaningfully to derive business benefit. There are three

major types of business applications with different levels of transformational potential.

2.3.1 Monitoring and Tracking Applications

These are the first and basic applications of Big Data. They help improve the effi-

ciency of the business, in almost all industries. Here are a few specific applications.

2.3.1.1 Public Health Monitoring

The US government is encouraging all healthcare stakeholders to establish a national

platform for interoperability and data sharing standards. This would enable secondary

use of health data, which would advance Big Data analytics and personalized holistic

precision medicine. This would be a broad-based platform like Google Flu Trends.

2.3.1.2 Consumer Sentiment Monitoring

Social Media has become more powerful than advertising. Many consumer goods

companies have moved a bulk of their advertising budgets from traditional media

into social media. They have set up Big Data listening platforms (Figure 2.6), where

Social Media data streams (including tweets and Facebook posts and blog posts) are

filtered and analyzed for certain keywords or sentiments, by certain demographics

and regions. Actionable information from this analysis is delivered to marketing pro-

fessionals for appropriate action, especially when the product is new to the market.

2.3.1.3 Asset Tracking

The US Department of Defense is encouraging the industry to devise a tiny RFID chip that

could prevent the counterfeiting of electronic parts that end up in avionics or circuit boards for

other devices. Airplanes are one of the heaviest users of sensors which track every as-

pect of the performance of every part of the plane. The data can be displayed on the

dashboard, as well as stored for later detailed analysis. Working with communicating

devices, these sensors can produce a torrent of data.

Theft by shoppers and employees is a major source of loss of revenue for retailers. All

valuable items in the store can be assigned RFID tags, and the gates of the store can

be equipped with RF readers. This can help secure the products, and reduce leakage

(theft) from the store.

28 Big Data

2.3.1.4 Supply Chain Monitoring

All containers on ships communicate their status and location using RFID tags. Thus,

retailers and their suppliers can gain real-time visibility to the inventory throughout

the global supply chain. Retailers can know exactly where the items are in the ware-

house, and so can bring them into the store at the right time. This is particularly

relevant for seasonal items that must be sold on time, or else they will be sold at a

discount. With item-level RFID tacks, retailers also gain full visibility of each item

and can serve their customers better.

2.3.1.5 Electricity Consumption Tracking

Electric utilities can track the status of generating and transmission systems and, also,

measure and predict the consumption of electricity. Sophisticated sensors can help

monitor voltage, current, frequency, temperature, and other vital operating charac-

teristics of huge and expensive electric distribution infrastructure. Smart meters can

measure the consumption of electricity at regular intervals of one hour or less. This

data is analyzed to make real-time decisions to maximize power capacity utilization

and the total revenue generation.

Collect
Social Media
Blogs
Twitter
News
Product Reviews

Analyze
Enrich and prepare
social media content
with metadata

Index
Enable keyword search
with linguistic analysis.
Search for names with
fuzzy matching

Deliver
Provide marketing
professionals with
instant access to social
media data and analysis

Language
Identification

Document
Clustering

Entity
Extraction

Sentiment
Analysis

Mention Identity

Reporting &
analysis

Brand, product &
entity monitoring

Dashboards

Advanced search &
faceted navigation

FIGURE 2.6 Architecture for a social media listening platform (Source: Intelligenthq.com)

 Big Data Sources and Applications 29

2.3.1.6 Preventive Machine Maintenance

All machines, including cars and computers, do tend to fail sometimes. This is because

one or more or their components may cease to function. As a preventive measure, pre-

cious equipment could be equipped with sensors. The continuous stream of data from

the sensors could be monitored and analyzed to forecast the status of key components,

and thus, monitor the overall machine’s health. Preventive maintenance can, thus,

reduce the cost of downtime.

2.3.2 Analysis and Insight Applications

These are next level of Big Data applications. They can increase the effectiveness of

business and have transformative potential. Big Data can be structured and analyzed

to produce insights and patterns that can be used to make business better.

2.3.2.1 Predictive Policing

The Los Angeles Police Department (LAPD) invented the concept of Predictive Polic-

ing. The LAPD worked with UC Berkeley researchers to analyze its large database

of 13 million crimes recorded over 80 years, and predicted the likeliness of crimes of

certain types, at certain times, and in certain locations. They identified hotspots of

crime where crimes had occurred, and where crime was likely to happen in the future

(Figure 2.7). Crime patterns were mathematically modelled after a simple insight

borrowed from a metaphor of earthquakes and its aftershocks. The model said that

once a crime occurred in a location, it represented a certain disturbance in harmony,

and would thus, lead to a greater likelihood of a similar crime occurring in the local

vicinity soon. The model showed for each police beat, the specific neighborhood blocks

and specific time slots, where crime was likely to occur.

FIGURE 2.7 LAPD officer on predicting policing (Source: nbclosangeles.com)

30 Big Data

By aligning the police cars’ patrol schedules in accordance with the model’s predictions,

the LAPD could reduce crime by 12 per cent to 26 per cent for different categories of

crime. Recently, the San Francisco Police Department released its own crime data

for over 2 years, so data analysts could model that data and prevent future crimes.

2.3.2.2 Winning Political Elections

The US President, Barack Obama, was the first major political candidate to use Big

Data in a significant way, in the 2008 elections. He is the first Big Data president. His

campaign gathered data about millions of people, including supporters. They invented

the mechanism to obtain small campaign contributions from millions of supporters.

They created personal profiles of millions of supporters and what they had done and

could do for the campaign. Data was used to determine undecided voters who could

be converted to their side. They provided phone numbers of these undecided voters

to the volunteers. The results of the calls were recorded in real time using interac-

tive web applications. Obama himself used his twitter account to communicate his

messages directly with his millions of followers.

After the elections, Obama converted his list of tens of millions of supporters to an

advocacy machine that would provide the grassroots support for the President’s initia-

tives. Since then, almost all campaigns use Big Data. Senator Bernie Sanders used

the same Big Data playbook to build an effective national political machine powered

entirely by small donors.

Elections analyst, Nate Silver, created sophistical predictive models using inputs from

many political polls and surveys to win pundits to successfully predict winners of the

US elections. Nate was however, unsuccessful in predicting Donald Trump’s rise and

ultimate victory, and that shows the limits of Big Data.

2.3.2.3 Personal Health

Correct diagnosis is the sine qua non of effective treatment. Medical knowledge and

technology is growing by leaps and bounds. IBM’s Watson system is a Big Data Ana-

lytics engine that ingests and digests all the medical information in the world, and

then applies it intelligently to an individual situation. Watson can provide a detailed

and accurate medical diagnosis using current symptoms, patient history, medication

history, and environmental trends, and other parameters. Similar products might be

offered as an App to licensed doctors, and even individuals, to improve productivity

and accuracy in health care.

 Big Data Sources and Applications 31

2.3.3 New Product Development

These applications are totally new concepts that did not exist earlier. These applica-

tions have the transformative potential to disrupt entire industries, and generate new

avenues of revenue for businesses.

2.3.3.1 Flexible Auto Insurance

An auto insurance company can use the GPS data from cars to calculate the risk of

accidents based on travel patterns (Figure 2.8). The automobile companies can use

the car sensor data to track the performance of a car. Safer drivers can be rewarded

and the errant drivers can be penalized.

FIGURE 2.8 GPS based tracking of vehicles

2.3.3.2 Location-based Retail Promotion

A retailer, or a third-party advertiser, can target customers with specific promotions

and coupons based on location data obtained through Global Positioning System (GPS)

the time of day, the presence of stores nearby, and mapping it to the consumer pref-

erence data available from social media databases. Advertisements and offers can be

delivered through mobile apps, SMS, and email. These are examples of mobile apps.

32 Big Data

2.3.3.3 Recommendation Service

 E-commerce has been a fast growing industry in the last couple of decades. A variety

of products are sold and shared over the internet. Web users’ browsing and purchase

history on ecommerce sites is utilized to learn about their preferences and needs, and

to advertise relevant product and pricing offers in real-time. Amazon uses a personal-

ized recommendation engine system to suggest new additional products to consumers

based on affinities of various products. Netflix also uses a recommendation engine to

suggest entertainment options to its users.

2.4 CONCLUSION

Big Data is valuable across all industries. There are three major types of data sources

of Big Data, viz., people-people communications, people-machine communications,

and machine-machine communications. Each type has many sources of data. There

are three types of applications. They are the monitoring type, the analysis type, and

new product development. They have impact on efficiency, effectiveness, and even

disruption of industries. This chapter presents a few business applications of each of

those three types.

Review Questions

 1. What are the major sources of Big Data? Describe a source of each type.

 2. What are the three major types of Big Data applications? Describe two applica-

tions of each type.

 3. Would it be ethical to arrest someone based on a Big Data Model’s prediction of

that person likely to commit a crime?

 4. An auto insurance company learned about the movements of a person based on

the GPS installed in the vehicle. Would it be ethical to use that as a surveillance

tool?

 5. Research can describe a Big Data application that has a proven return on invest-

ment (ROI) for an organization.

True/False Questions

 1. One of the major source of Big Data is man-machine communications.

 2. The more data is available, the most successful with be the business applications.

 Big Data Sources and Applications 33

 3. RFID tags are a form of man-machine communications.

 4. Social media are a form of man-machine communications.

 5. A sensor is a device that computes whether the social media message is sensible.

 6. Tracking the location of assets can lead to great efficiencies.

 7. Predictive policing has been shown to reduce crime.

 8. Social media data can be used to design flexible auto insurance policies.

 9. Big Data applications are relevant mostly for knowledge-intensive industries.

 10. Big Data can be used for effective marketing campaigns.

Liberty Stores Case Exercise: Step B2

The Board of Directors asked the company to take concrete and effective steps to become a data-driven

company. The company wants to understand its customers better. It wants to improve the happiness

levels of its customers and employees. It wants to innovate on new products that its customers would

like. It wants to relate its charitable activities to the interests of its customers.

 1. What kind of data sources should the company capture for this?

 2. What kind of Big Data applications would you suggest for this company?

Chapter 3
Big Data Architecture

INTRODUCTION

Big Data Application Architecture is the configuration of tools and technologies to

accomplish the whole task. An ideal Big Data architecture would be resilient, secure,

cost-effective, and adaptive to new needs and environments. This can be achieved by

beginning with a proven architecture, and creatively and progressively restructuring

it as additional needs and problems arise. Big Data architectures should ultimately

align with the architecture of the Universe itself, the source of all invincibility.

Caselet
Google Query Architecture

Google invented the first Big Data architecture. Their goal was to gather all the information on the web,

organize it, and search it for specific queries from millions of users. An additional goal was to find a way

to monetize this service by serving relevant and prioritized online advertisements on behalf of clients.

Google developed web crawling agents which would follow all the links in the web and make a copy of

all the content on all the webpages it visited. Google invented cost-effective, resilient, and fast ways to

store and process all that exponentially growing data. It developed a scale-out architecture in which it

could linearly increase its storage capacity by inserting additional computers into its computing network.

The data files were distributed over the large number of machines in the cluster. This distributed files

system was called the Google File system, and was the precursor to Hadoop.

Appreciate the variety of architectures for Big Data ecosystem

■ Explain the many layers of technologies in the Big Data architecture

Analyse how leading organizations are architecting Big Data solutions

 Big Data Architecture 35

Google would sort or index the data thus gathered so it can be searched efficiently (Figure 3.1). They

invented the key-pair NoSQL database architecture to store variety of data objects. They developed

the storage system to avoid updates in the same place. Thus the data was written once, and read

multiple times.

Query

Google Web Server
Spell checker

Ad Server

Many corpora

News

Books

…

Doc shards

R
ep

lic
a
s

D0

D0

D0

D1

D1

D1

DM

DM

DM

Doc servers

I0 I1 I2 IN

I0 I1 I2 IN

I0 I1 I2 IN

Index shards

R
ep

lic
a
s

Index servers

Elapsed time: 0.25s, machines involved: 1000s+

Google Query Serving Infrastructure

Misc. Servers

FIGURE 3.1 Google query architecture

Google developed the MapReduce parallel processing architecture whereby large datasets could be

processed by thousands of computers in parallel, with each computer processing a chunk of data,

to produce quick results for the overall job. The Hadoop ecosystem of data management tools like

Hadoop distributed file system (HDFS), columnar database system like HBase, a querying tool such as

Hive, and more, emerged from Google’s inventions. Apache Spark is a streaming data technology to

produce instant results.

 1. Why should Google publish its File System and the MapReduce parallel programming system and

send it into open-source system?

 2. What else good can be done with Google’s repository of the entire web’s data?

3.1 STANDARD BIG DATA ARCHITECTURE

Here is the generic Big Data Architecture as introduced in Chapter 1 (shown again

in Figure 3.2). There are many sources of data. All data is funneled in through an

ingest system. The data is forked into two sides: a stream processing system and a

batch processing system. The outcome of these processing can be sent into NoSQL

36 Big Data

databases for later retrieval, or sent directly for consumption by many applications

and devices.

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 3.2 Generic big data architecture

A Big Data solution typically comprises these as logical layers. Each layer can be

represented by one or more available technologies.

Big Data sources layer The choice of sources of data for an application depends

upon what data is required to perform the kind of analyses you need. Big Data will

vary in origin, size, speed, form, and function, as described by the 4 Vs in Chapter

1. The sources of Big Data, as described in Chapter 2, can be internal or external to

the organization. The scope of access to data available could be limited. The level of

structure as well as the speed of data and its quantity could be high or low depend-

ing upon the data source.

Data Ingest layer This layer is responsible for acquiring data from the various data

sources. Incoming data is received through a scalable number of input points, that

can acquire data at various speeds and in various quantities. The data is sent to a

batch processing system, or a realtime processing system, or to a storage file system

such as Hadoop. Compliance regulations and governance policies impact what data

can be stored and for how long.

Batch Processing layer The analysis layer receives data from the ingest point or

from the file system or from the NoSQL databases. Data is processed using parallel

programming techniques (such as MapReduce) to process it and produce the desired

results. This batch processing layer thus must understand the data sources and data

 Big Data Architecture 37

types, the algorithms that would work on that data, and the format of the desired

outcomes. The output of this layer could be sent for instant reporting, or be stored in

NoSQL databases for an on-demand report, for the client.

 Stream Processing layer This technology layer receives data directly from the

ingest point. Data is processed using parallel programming techniques (such as

MapReduce) to process it in real time, and produce the desired results. This layer

thus should understand the data sources and data types extremely well, and the

super-light algorithms that would work on that data to produce the desired results.

The outcome of this layer too could be stored in the NoSQL Databases.

 Data Organizing Layer This layer receives data from both the batch and stream

processing layers. Its objective is to organize the data for easy access. It is represented

by NoSQL databases. There are a variety of NoSQL databases to suit different needs.

SQL-like languages like Hive and Pig can be used to access data easily and generate

reports from these databases.

 Infrastructure Layer At bottom there is a layer that manages the raw resources

of storage, computation, and communication. This is increasingly provided through

a cloud computing paradigm.

 Distributed File System Layer This is the heart of a Big Data system. It would

store huge quantities of data and make it quickly and securely available and accessible

to the other layers. Hadoop Distributed File System (HDFS) is the primary technology

in this layer. It would also include supporting applications, such as YARN (Yet Another

Resource Manager) that enable the efficient access to data storage and its transfer.

 Data Consumption layer This is the final layer, and it consumes the output pro-

vided by the analysis layers, directly or through the organizing layer. The outcome

could be standard reports, data analytics, dashboards and other visualization applica-

tions, recommendation engine, on mobile and other devices.

3.2 BIG DATA ARCHITECTURE EXAMPLES

Every major organization and its applications have a unique optimized infrastructure

to suit its specific needs. Some architecture examples from some very prominent users

and designers of Big Data applications are as follows.

3.2.1 IBM Watson

IBM Watson uses Spark to manage incoming data streams. It also uses Spark’s

Machine Learning library (MLLib) to analyze data and predict diseases (Figure 3.3).

38 Big Data

FIGURE 3.3 The architecture underlying IBM Watson

3.2.2 Netflix

This is one of the largest providers of online video entertainment. They handle more

than 400 billion online events per day. As a cutting-edge user of Big Data technolo-

gies, they are constantly innovating their mix of technologies to deliver the best per-

formance. They use Apache Kafka as the common messaging system for all incoming

requests. They use Spark for stream processing and host their entire infrastructure

on Amazon Web Services (AWS) cloud service (Figure 3.4). The database system is

AWS’ S3 as well as Cassandra and Hbase for storing data.

3.2.3 eBay

 eBay is the second-largest e-commerce company in the world. It delivers 800 million

listings from 25 million sellers to 160 million buyers. To manage this huge stream of

activity, eBay uses a stack of Hadoop, Spark, Kafka, and other elements (Figure 3.5).

They think that Kafka is the best new thing for processing data streams.

 Big Data Architecture 39

App Cluster

App Cluster

App Cluster

kafka

S3

Druid

Custom App X?

?

Router

(Source: Netflix)

FIGURE 3.4 Netflix database processing and storage system

FIGURE 3.5 eBay data stream platforms

3.2.4 VMWare

VMware is a leading provider of virtualization systems used in cloud computing

systems. VMware’s view of a Big Data architecture is similar to, but more detailed,

than our main big architecture diagram (Figure 3.6).

40 Big Data

FIGURE 3.6 A holistic view of a big data system in VMWare

3.2.5 The Weather Company

The Weather company serves tens of billions of weather data requests globally through

websites and mobile apps, everyday. It uses streaming architecture using Apache

Spark to frame its Big Data infrastructure (Figure 3.7).

3.2.6 TicketMaster

This is the world’s largest company that sells event tickets. Their goal is to make

tickets available to real fans for purchase, and prevent bad actors from manipulating

the system to increase the price of the tickets in the secondary markets. They use

a mix of Hadoop, Spark, and Kafka systems to manage throughput and reliability

(Figure 3.8).

 Big Data Architecture 41

FIGURE 3.7 Streaming architecture using Apache Spark to frame Big Data infrastructure of the

weather company

Secret Sauce:
Hyperloglog

Set Values
(Aggregates, Time
Series)

Nothing exotic
Operational First
Consistency Between Apps
Eliminate ETL
Reduce QA

Ticketmaster:
Inputs and Busses
Transactions
User Engagement
Event Access

One hard problem with real-time data
operational data is idempotency

End-to-end idempotency is the
holy grail of data availability

If more unique data is THE asset then collect more in a way that scales

FIGURE 3.8 Mix of Hadoop, Spark, and Kafka systems to manage throughput and reliability by

TicketMaster

42 Big Data

3.2.7 LinkedIn

This professional networking company aims to maintain an efficient system for pro-

cessing streaming data and make the link options available in real-time. They use

Hadoop and Kafka for receiving and storing data, and Samza for stream processing

(Figure 3.9).

FIGURE 3.9 Mix of Hadoop, Spark, and Kafka systems to manage data storage and Samza for

stream processing by LinkedIn

3.2.8 Paypal

This payments-facilitation company needs to understand and acquire customers, and

process a large number of payment transactions. They use Apache Storm for stream

processing of data. They use Druid for distributed data storage. They also use Apache

Titan Graphical (NoSQL) database to manage links and relationship among data

elements (Figure 3.10).

 Big Data Architecture 43

Rest
Spout

Meta
data

Processing

Collection

Bot
flagging

Bolt

Geo
Enrichment

Bolt

Analysis &
Visualization

Data Stores

R
e
p
o
r
t
i
n
g

Reporting
consumer

Apache
Titan

Druid

MetricsMetadata

AggregationSessionization
Metadata
Service

Developers
Product Owners

Tools

Server
Side

Performance

Client
Side

HTTP

Proxy

R
E
S
T

©2014 PayPal Inc. All rights reserved. Confidential and proprietary

DATA Pipeline

Customers

FIGURE 3.10 Apache Storm and Apache Titan Graphical (NoSQL) database to manage links and

relationship among data elements in Paypal

3.2.9 CERN

This premier high-energy physics research lab computes petabytes of data using

in-memory stream processing to process data from millions of sensors and devices

(Figure 3.11).

RISK
APPLICATION

Big Memory

RISK
APPLICATION

Big Memory

RISK
APPLICATION

Big Memory

RISK
APPLICATION

Big Memory

TCP TCP TCP TCP

TERRACOTTA

FIGURE 3.11 Streaming insights into In-memory operational store in CERN lab

44 Big Data

3.3 CONCLUSION

Big Data architectures are multi-tier designs that use technologies for ingesting, stor-

ing, processing, and delivering data to user applications. Data is ingested and fed into

both streaming and batch processing engines. Most tools used for big data processing

are open source tools served through the Apache community.

Review Questions

 1. Describe the Big Data processing architecture.

 2. What are Google’s contributions to Big data processing?

 3. What are some of the hottest technologies visible in Big Data processing?

True/False Questions

 1. The more the sources of Big data included, the more complex will the Big Data

architecture be.

 2. Big Data architecture includes many kinds of data sources.

 3. Big Data architecture includes transaction processing applications.

 4. A simple Big Data architecture consists of two layers: a data ingest layer, and

a data consumption layer.

 5. Once established, a company’s Big Data Architecture cannot be changed.

 6. Serving web-based apps is a form of a Big Data application.

 7. Google invented Big Data architecture with Search Query engine.

 8. IBM Watson uses Big Data architecture to do Deep Question-Answer applica-

tions.

 9. Facebook is a not an active user of Big Data architectures.

 10. Government organizations should use a more secure Big Data architecture.

Liberty Stores Case Exercise: Step B3

Liberty wants to build a scalable and futuristic listening platform for understanding its customers and

other stakeholders.

 1. What kind of Big Data architecture would you suggest for this company?

This section covers the six important Big Data technologies as defined in the Big

Data architecture (specified in Chapter 3).

 ➨ Chapter 4 will discuss Hadoop and its Distributed File System (HDFS).

 ➨ Chapter 5 will delve into MapReduce parallel processing algorithm. It will

also cover Pig and Hive languages used for programming as front end to

MapReduce.

 ➨ Chapter 6 will discuss NoSQL databases, including details of popular co-

lumnar databases HBase and Cassandra.

 ➨ Chapter 7 will highlight Streaming systems using Apache Spark.

 ➨ Chapter 8 will address Data Ingest systems, using Apache Kafka.

 ➨ Chapter 9 will cover Cloud Computing model and its many benefits and

challenges.

Section 2

Chapter 4
Distributed Computing

Using Hadoop

Learning Objectives

 ■ Describe Hadoop as open-source technologies for Big Data processing

 ■ Understand Hadoop Distributed File System (HDFS)

 ■ Appreciate HDFS’ hierarchical master-slave architecture

 ■ Recognize the two kinds of Hadoop files, Text, and Sequence files

 ■ View sample code for reading and writing data from HDFS

 ■ Understand the purpose and design of YARN, the Resource Manager

INTRODUCTION

A distributed file storage system is a clever way of storing huge quantities of data,

securely and cost-effectively, for speed and ease, for retrieval and processing, using a

networked collection of commodity machines. The ideal distributed file system would

store infinite amounts of data while making the complexity completely hidden from the

user, and enabling instant and easy access to the right data. This would be achieved

by storing sections of data at different locations, and internally managing the lower-

level tasks of integrating and replicating data across the network. The distributed

system ultimately leads to the creation of the unbounded cosmic computer that is a

manifestation of all the laws of nature.

Learning Objectives

■ Describe Hadoop as open-source technologies for Big Data processing

■ Understand Hadoop Distributed File System (HDFS)

■ Appreciate HDFS’ hierarchical master-slave architecture

■ Recognize the two kinds of Hadoop files, Text, and Sequence files

■ View sample code for reading and writing data from HDFS

■ Understand the purpose and design of YARN, the Resource Manager

48 Big Data

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

4.1 Big data architecture

4.1 HADOOP FRAMEWORK

The Apache Hadoop distributed computing framework is composed of the following

modules:

 1. Hadoop Common – contains libraries and utilities needed by other Hadoop mod-

ules

 2. Hadoop Distributed File System (HDFS) – a distributed file-system that stores

data on commodity machines, providing very high aggregate bandwidth across

the cluster

 3. YARN – a resource-management platform responsible for managing computing

resources in clusters and using them for scheduling of users’ applications, and

 4. MapReduce – an implementation of the MapReduce programming model for large

scale data processing.

This chapter will cover Hadoop Common, HDFS, and YARN. The next chapter will

cover MapReduce.

4.2 HDFS DESIGN GOALS

The Hadoop distributed file system (HDFS) is a distributed and scalable file-system.

It is designed for applications that deal with very large data sizes. It is also designed

to deal with mostly immutable files, i.e. write data once, but read it many times.

 Distributed Computing Using Hadoop 49

HDFS has the following major design goals:

 1. Hardware failure management – it will happen, and one must plan for it

 2. Huge volume – create capacity for large number of huge file sizes, with fast read/

write throughput

 3. High speed – create a mechanism to provide low latency access to streaming

applications

 4. High variety – Maintain simple data coherence, by writing data once but reading

many times

 5. Plug-and-play – Maintain easy accessibility of data using any hardware, software,

and database platform

 6. Network efficiency – Minimize network bandwidth requirement, by minimizing

data movement.

4.3 MASTER-SLAVE ARCHITECTURE

Hadoop is an architecture for organizing computers in a master-slave relationship

that helps achieve great scalability in processing. A Hadoop cluster has two types of

 NameNo-

de), and a large number of slave worker nodes (called DataNodes). A small Hadoop

cluster includes a single master and multiple worker nodes. A large Hadoop cluster

would consist of a master and thousands of small ordinary machines as worker nodes

(Figure 4.1).

NameNode

DataNode 1 DataNode 2 DataNode 3 DataNode 4

 FIGURE 4.1 Master-slave architecture

In Hadoop system, the master node manages the overall file system, its namespace,

and controls the access to files by clients. The master node is aware of the data-nodes,

i.e. which blocks of which file are stored on which data node. It also controls the

processing plan for all applications running on the data on the cluster. There is only

50 Big Data

one master node. Unfortunately, that makes it a single point of failure. Therefore,

whenever possible, the master node has its hot backup always ready to take over,

just in case the master node dies unexpectedly. The master node uses a transaction

log to persistently record every change that occurs to file system.

The worker nodes, also called DataNodes, store the data blocks in their storage space,

as directed by the master node, also called the NameNode. Each worker node typical

contains many disks to maximize storage capacity and access speed. Each worker

node has its own local file system. A worker node has no awareness of the distributed

file structure. It simply stores each block of data as directed, as if each block were

a separate file. The DataNodes store and serve up blocks of data over the network

using a block protocol, under the direction of the NameNode (Figure 4.2).

HDFS Architecture

Namenode
Metadata ops

Client

Read Datanodes

Block ops

Replication

Write

Client

Datanodes

Blocks

Rack 2Rack 1

Metadata (Name, replicas, …):
/home/foo/data, 3, …

FIGURE 4.2 Hadoop architecture (Source: Hadoop.apache.org)

The NameNode stores all relevant information about all the DataNodes, and the files

stored in those DataNodes. The NameNode will know the following:

 ■ For every DataNode, its name, rack, capacity, and health

 ■ For every File, its name, replicas, type, size, timeStamp, location, health, etc.

It a DataNode fails, there is no serious problem. The data on the failed DataNode

will be accessed from its replicas on other DataNodes. The failed DataNode can be

 Distributed Computing Using Hadoop 51

automatically recreated on another machine, by writing all those file blocks of from

the other healthy replicas. Each DataNode sends a heartbeat message to the Na-

meNode periodically. Without this message, the DataNode is assumed to be dead. The

DataNode replication effort would automatically kick-in to replace the dead DataNode.

The Hadoop file system has a set of features and capabilities to completely hide the

splintering and scattering of data, and enable the user to deal with the data at a

high, logical level. The NameNode tries to ensure that files are evenly spread across

the data-nodes in the cluster. That balances the storage and computing load and,

also, limits the extent of loss from the failure of a node. The NameNode also tries to

optimize the networking load. When retrieving data or ordering the processing, the

NameNode tries to pick Fragments from multiple nodes to balance the processing

load and speed up the total processing effort. The NameNode also tries to store frag-

ments of files on the same node for speed of read and writing. Processing is done on

the node where the file fragment is stored.

Any piece of data is stored typically on three nodes: two on the same rack, and one on

a different rack. DataNodes can talk to each other to rebalance data, to move copies

around, and to keep the replication of data high.

4.4 BLOCK SYSTEM

A block of data is the fundamental storage unit in HDFS. HDFS stores large files

(typically gigabytes to terabytes) by storing segments (called blocks) of the file across

multiple machines. Data files are described, read and written in block-sized granular-

ity. All storage capacity and file sizes are measured in blocks. A block ranges from

16–128MB in size, with a default block size of 64MB. Thus, an HDFS file is chopped

up into 64 MB chunks, and if possible, each chunk will reside on a different DataNode.

Every data file takes up a number of blocks depending upon its size. Thus a 100 MB

file will occupy two blocks (100MB divided by 64MB), with some room to spare. Every

storage disk can accommodate several blocks depending upon the size of the disk.

Thus, a 1 Terabyte storage will have 16000 blocks (1TB divided by 64MB).

Every file is organized as a consecutively numbered sequence of blocks. A file’s blocks

are stored physically close to each other for ease and speed of access, as far as pos-

sible. The file’s block size and replication factor are configurable by the application

that writes the file on HDFS.

52 Big Data

4.5 ENSURING DATA INTEGRITY

Hadoop ensures that no data is lost or corrupted during storage or processing. The

files are written only once, and never updated in place. They can be read many times.

Only one client can write or append to a file, at a time. No concurrent updates are

allowed.

If some data on a DataNode is indeed lost or corrupted, or if a part of the disk gets

corrupted, a new healthy replica for that lost block will be automatically recreated by

copying from the replicas on other data-nodes. At least one of the replicas is stored on

a data-node on a different rack. This guards against the failure of the rack of nodes,

or the networking router, on it.

A checksum algorithm is applied on all data written to HDFS. A process of serialization

is used to turn files into a byte stream for transmission over a network or for writing

to persistent storage. Hadoop has additional security built in, using Kerberos verifier.

4.6 INSTALLING HDFS

It is possible to run Hadoop on an in-house cluster of machines, or on the cloud inex-

pensively. As an example, The New York Times used 100 Amazon Elastic Compute

Cloud (EC2) instances (DataNodes) and a Hadoop application to process 4 TB of

raw image TIFF data stored in Amazon Simple Storage Service (S3) into 11 million

finished PDFs in the space of 24 hours at a computation cost of about $240 (plus the

cost of bandwidth). See Chapter 9 for a primer on Cloud Computing and Appendix

A for a step-by-step tutorial on installing Hadoop on Amazon EC2.

Hadoop is written in Java. Hadoop also requires a working Java installation. Most

access to files is provided through Java abstract class org.apache.hadoop.fs.FileSystem.

Installing Hadoop takes many resources. For example, all information about fragments

of files needs to be in NameNode memory. A thumb rule is that Hadoop needs ap-

proximately 1GB memory to manage 1 million file fragments. Many easy mechanisms

exist to install the entire Hadoop stack. Using a GUI such as Cloudera Resources

Manager to install a Cloudera Hadoop stack is easy. This stack includes HDFS and

many other related components, such as HBase, Pig, and YARN. Installing it on a

cluster on a cloud services provider like AWS is easier than installing Java Virtual

Machines (JVMs) on local machines. HDFS can be installed by using Cloudera’s GUI

Resources Manager. If installing using command line, download Hadoop from one of

the Apache mirror sites.

 Distributed Computing Using Hadoop 53

HDFS can be mounted directly with a Filesystem in Userspace (FUSE) virtual file

system on Linux and some other Unix systems. File access can be achieved through

the native Java APIs. Another API, called Thrift, helps to generate a client in the

language of the users’ choosing (such as C++, Java, Python). When the Hadoop com-

mand is invoked with a classname as the first argument, it launches a JVM to run

the class, along with the relevant Hadoop libraries (and their dependencies) on the

classpath.

HDFS has a UNIX-like command like interface (CLI). Use sh shell to communicate

with Hadoop. HDFS has UNIX-like permissions model for files and directories. There

are three progressively increasing levels of permissions: read (r), write (w), and ex-

ecute (x). Create a hduser, and communicate using ssh shell on the local machine.

% hadoop fs -help ## get detailed help on every command.

4.6.1 Reading and Writing Local Files into HDFS

There are two different ways to transfer data: from the local file system, or form an

input/output stream. Copying a file from the local filesystem to HDFS can be done by:

% hadoop fs -copyFromLocal path/filename

4.6.2 Reading and Writing Data Streams into HDFS

Read a file from HDFS by using a java.net.URL object to open a stream to read the

data requires a short script, as below.

InputStream in = null;

Start {

instream = new URL(“hdfs://host/path”).openStream(); // details of process in }

Finish { IOUtils.closeStream(instream); }

A simple method to create a new file is as follows:

public FSDataOutputStream create(Path p) throws IOException

Data can be appended to an existing file using the append() method:

public FSDataOutputStream append(Path p) throws IOException

A directory can be created by a simple method:

public boolean mkdirs(Path p) throws IOException

54 Big Data

List the contents of a directory using:

public FileStatus[] listStatus(Path p) throws IOException

public FileStatus[] listStatus(Path p, PathFilter filter) throws IOException

4.7 SEQUENCE FILES

The incoming data files can range from very small to extremely large, and with dif-

ferent structures. Big Data files are therefore organized quite differently to handle

the diversity of file sizes and type. Large files are stored as Text Files, with File

Fragments distributed across the cluster. However, smaller files should be bunched

together into single segment for efficient storage.

 Sequence Files are a specialized data structure within Hadoop to handle smaller

files with smaller record sizes. Sequence File uses a persistent data structure for

data available in key-value pair format. These help efficiently store smaller objects.

HDFS and MapReduce are designed to work with large files, so packing small files

into a Sequence File container, makes storing and processing the smaller files more

efficient for HDFS and MapReduce.

Sequence files are row-oriented file formats, which means that the values for each

row are stored contiguously in the file. This formats are appropriate when a large

number of columns of a single row are needed for processing at the same time. There

are easy commands to create, read and write Sequence File structures. Sorting and

merging Sequence Files is native to MapReduce system. A MapFile is essentially a

sorted Sequence File with an index to permit lookups by key.

4.8 YARN

YARN (Yet Another Resource Negotiator) is the architectural centre of Hadoop, it is

often characterized as a large-scale, distributed operating system for big data appli-

cations. YARN manages resources and monitors workloads, in a secure multi-tenant

environment, while ensuring high availability across multiple Hadoop clusters. YARN

also brings great flexibility as a common platform to run multiple tools and applica-

tions such as interactive SQL (e.g. Hive), real-time streaming (e.g. Spark), and batch

processing (MapReduce), to work on data stored in a single HDFS storage platform

(Figure 4.3). It brings clusters more scalability to expand beyond 1000 nodes, it also

improves cluster utilization through dynamic allocation of cluster resources to vari-

ous applications.

 Distributed Computing Using Hadoop 55

Pig Hive HBase Storm Solr Spark
Cascading

&
Scalding

Other

YARN

HDFS

FIGURE 4.3 Hadoop distributed architecture including YARN

The Resource Manager in YARN has two main components: Scheduler and Applica-

tions Manager.

YARN Scheduler allocates resources to the various requesting applications. It does

so based on an abstract notion of a resource Container which incorporates elements

such as Memory, CPU, Disk storage, Network, etc. Each machine also has a Node-

Manager that manages all the Containers on that machine, and reports status on

resources and Containers to the YARN Scheduler.

YARN Applications Manager accepts new job submissions from the client. It then

requests a first resource Container for the application-specific ApplicationMaster

program, and monitors the health and execution of the application. Once running,

the ApplicationMaster directly negotiates additional resource containers from the

Scheduler as needed.

4.9 CONCLUSION

Hadoop is the dominant technology for managing Big Data. Hadoop Distributed

Files system securely stores data on large clusters of commodity machines. A master

machine controls the storage and processing activities of the worker machines. A

NameNode controls the namespace and storage information for the file system on the

DataNodes. A master JobTracker controls the processing of tasks at the DataNodes.

YARN is the resources manager that manages all resources dynamically and effi-

ciently across all applications on the cluster. Hadoop File system and other parts of

the Hadoop stack are distributed by many providers, and can be easily installed on

cloud computing infrastructure. Hadoop installation tutorial is in Appendix A.

Review Questions

 1. How does Hadoop differ from a traditional file system?

 2. What are the design goals for HDFS?

56 Big Data

 3. How does HDFS ensure security and integrity of data?

 4. How does a master node differ from the worker node?

True/False Questions

 1. Hadoop is a big project of the open-source Apache series of Big Data products.

 2. Hadoop Distributed File system is a general purpose file manager for Big data

projects.

 3. Hadoop provides unlimited scalability of data storage.

 4. HDFS uses a ring architecture to organize masses of data and machines.

 5. A name-node is a machine that stores the names of all the data files and their

locations of the various data storage devices.

 6. If a data-node fails, data may be lost, unless it is backed up by the user.

 7. HDFS permits dozens of file formats to optimize storage of many different of

data.

 8. One of the design goals of HDFS is to reduce network bandwidth requirements.

 9. YARN is the task manager that computes data on a node.

 10. Hadoop is written in Scala and Python.

Chapter 5
Parallel Processing with

Map Reduce

Learning Objectives

 ■ Recognize the need for parallel processing for Big Data

 ■ Evaluate the MapReduce processing paradigm: Map and Reduce programs

 ■ Understand the key-pair data structure necessary for MapReduce

 ■ Learn the program structure for MapReduce programs

 ■ Analyze the concepts of Job Tracker and Task Tracker programs

 ■ Learn how MapReduce executes programs despite node failures

INTRODUCTION

A parallel processing system is a clever way to process huge amounts of data in a

short period by enlisting the services of many computing devices to work on differ-

ent parts of the job, simultaneously. The ideal parallel processing system will work

across any computational problem, using any number of computing devices, across

any size of data sets, with ease and high programmer productivity. This is achieved

by framing the problem in a way that it can be broken down into many parts, such

that each part can be partially processed independently of the other parts; and then

the intermediate results from processing the parts can be combined to produce a final

solution. Infinite parallel processing is the essence of infinite dynamism of the laws

of nature.

Learning Objectives

■ Recognize the need for parallel processing for Big Data

■ Evaluate the MapReduce processing paradigm: Map and Reduce programs

■ Understand the key-pair data structure necessary for MapReduce

■ Learn the program structure for MapReduce programs

■ Analyze the concepts of Job Tracker and Task Tracker programs

■ Learn how MapReduce executes programs despite node failures

58 Big Data

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 5.1 Big data architecture

Caselet
How Google search works?

When Google search engine receives a search query, it uses MapReduce algorithm to quickly and ef-

ficiently search and return the right answers to the query.

First, the search term is broken into smaller query using its key words. For example, if one wants to

search for ‘US Presidential Election’, the search term will be mapped to three sub-queries for each of

the three words in this query. A Map program is generated for each of these three sub-queries.

The Map program for each sub-query will then be sent out to tens of thousands of data nodes in data-

centers around the world, where the web page data is stored. Each node will process the data and

return the matching a list of websites for that subquery to the requesting node.

The intermediate results will be gathered, sorted, and then combined by a Reducer program, which

will also sort the results in order of importance according to certain criteria. The sorted results are sent

back to the browser. All this back and forth would happen in a fraction of a second.

5.1 MAPREDUCE OVERVIEW

MapReduce is a parallel programming framework for speeding up large scale data

processing for certain types of tasks. It achieves so with minimal movement of data

on distributed file systems on Hadoop clusters, to achieve near real-time results.

There are two major pre-requisites for MapReduce programming. (a) The application

must lend itself to parallel programming. (b) The data for the applications can be

expressed in key-value pairs.

 Parallel Processing with Map Reduce 59

MapReduce processing is similar to UNIX sequence (also called pipe) structure

e.g. the UNIX command:

grep | sort | count myfile.txt

will produce a wordcount in the text document called myfile.txt.

There are three commands in this sequence, and they work as follows: (a) grep is

a command to read the text file and create an intermediate file with one word on a

line; (b) sort command will sort that intermediate file, and produce an alphabetically

sorted list of words in that set; (c) the count command will work on that sorted list,

to produce the number of occurrences of each word, and display the results to the

user in a “word, frequency” pair format.

For example: Suppose myfile.txt contains the following text:

Myfile: We are going to a picnic near our house. Many of our friends are coming.

You are welcome to join us. We will have fun.

The outputs of Grep, Sort and Wordcount will be as follows:

Grep Sort WordCount

We a A 1

are Are Are 3

going Are Coming 1

to Are Friends 1

a Coming Fun 1

picnic Friends Going 1

near Fun Have 1

our Going House 1

house Have Join 1

Many House Many 1

of Join Near 1

our Many Of 1

friends Near Our 2

are Of Picnic 1

coming Our To 2

You Our Us 1

60 Big Data

are Picnic We 2

welcome To Welcome 1

to To will 1

join Us You 1

us We

we We

will welcome

have Will

fun You

If the file is very large, then it will be take the computer a long time to process it.

Parallel processing can help here.

MapReduce speeds up the computation by reading and processing small chunks of file,

by different computers in parallel. Thus if a file can be broken down into 100 small

chunks, each chunk can be processed at a separate computer in parallel. The total

time taken to process the file could be 1/100 of the time taken otherwise. However,

now the results of the computation on small chunks are residing in a 100 different

places. These large number of partial results must be combined to produce a composite

result. The results of the outputs from various chunks will be combined by another

program called the Reduce program.

The Map step will distribute the full job into smaller tasks that can be done on sepa-

rate computers each using only a part of the data set. The result of the Map step will

be considered as intermediate results. The Reduce step will read the intermediate

results, and will combine all of them and produce the result. The programmer should

specify the functional logic for both the map and reduce steps. The sorting, between

the Map and Reduce steps, does not need to be specified and is automatically taken

care of the MapReduce system as a standard service provided to every job. The sort-

ing of the data requires a field to sort on. Thus the intermediate results should have

a key field, and a set of associated non-key attribute(s) for that key (Figure 5.2).

In practice, to manage the variety of data structures stored in the file system, data is

stored as one key and one non-key attribute value. Thus the data is represented as a

key-value pair. The intermediate results, and the results all will also be in key-pair

format. Thus a key requirement for the use of MapReduce parallel processing system

is that the input data and output data must both be represented in key-values formats.

Map step reads data in key-value pair format. The programmer decides what should

be the characteristics of the key and value fields. The Map step produces results in

 Parallel Processing with Map Reduce 61

key-value pair format. However, the characteristics of the keys produced by the Map

step, i.e. the intermediate results, need not be same keys at the input data. So, those

can be called key2-value2 pairs.

The Reduce step reads the key2-value2 pairs, and produces an output using the same

keys that it read. Only the values associated with those keys will change though as a

result of processing. Thus the Reducer’s output can be labeled as key2-value3 format.

5.2 SAMPLE MAPREDUCE APPLICATION: WORDCOUNT

Suppose we want to identify unique words in a piece of text, and the frequency of

the occurrence of each word in the text. Suppose the text in the data file myfile.txt

can be split into 4 approximately equal segments. In this case, it could be done with

each sentence as a separate piece of text. The four segments will look as following:

Segment1: We are going to a picnic near our house.

Segment2: Many of our friends are coming.

Segment3: You are welcome to join us.

Segment4: We will have fun.

Each of these 4 segments of data could be processed in parallel. The results of those

processing could be suitably aggregated to provide results for the text as a whole.

Thus there will be 4 Map tasks, one for each of the segments of data. Each Map

process will take in input in a <key-value> pair format. The first column is the key,

which is the entire sentence in this case. The second column is the value, which in

this application is the frequency of the sentence. Each Map process will also be ex-

ecuted by a different processor.

K
ey

va
lu
e
Pa

ir
s
(K
,
V
)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

Output
Data
File

Reducer
Sorter
by Key

Mapper

Large
Input
Data
File

FIGURE 5.2 MapReduce architecture

62 Big Data

We are going to a picnic near our house. 1

Many of our friends are coming. 1

You are welcome to join us. 1

We will have fun. 1

This task can be done in parallel by four processors. Each of this segment will be task

for a different processor. Thus, each task will produce a file of words, with a count of

1. There will be four intermediate files, in <key2, value2> pair format, as shown here.

Key2 Value2 Key2 Value2 Key2 Value2 Key2 Value2

we 1 many 1 you 1 we 1

are 1 Of 1 Are 1 will 1

going 1 Our 1 Welcome 1 have 1

to 1 friends 1 To 1 fun 1

a 1 Are 1 Join 1

picnic 1 coming 1 Us 1

near 1

our 1

house 1

The sort process inherent within MapReduce will sort each of the intermediate files,

and produce the following sorted key2-value2 pairs:

Key2 Value2 Key2 Value2 Key2 Value2 Key2 Value2

a 1 Are 1 Are 1 fun 1

Are 1 coming 1 Join 1 have 1

Going 1 friends 1 To 1 we 1

House 1 many 1 Us 1 will 1

Near 1 Of 1 welcome 1

Our 1 our 1 you 1

Picnic 1

to 1

We 1

 Parallel Processing with Map Reduce 63

The Reduce function will read the sorted intermediate files, and combine the counts

for all the unique words, to produce the following output. The keys remain the same

as in the intermediate results. However, the values change as counts from each of

the intermediate files are added up for each key. For example, the count for the word

‘are’ goes up to 3.

Key2 Value3

a 1

are 3

coming 1

friends 1

fun 1

going 1

have 1

house 1

join 1

many 1

near 1

of 1

our 2

picnic 1

to 2

us 1

we 2

welcome 1

will 1

you 1

This output will be identical to that produced by the UNIX grep sequence earlier.

5.3 MAPREDUCE PROGRAMMING

A data processing problem needs to be transformed into the MapReduce model. The

first step is to visualize the processing plan into a Map and a Reduce step. When the

processing gets more complex, this complexity can be generally manifested in having

more MapReduce jobs, or more complex Map and Reduce jobs. Having more but sim-

pler MapReduce jobs leads to more easily maintainable Map and Reduce programs.

64 Big Data

5.3.1 MapReduce Data Types and Formats

MapReduce has a simple model of data processing: inputs and outputs for the map

and reduce functions are key-value pairs. The map and reduce functions in Hadoop

MapReduce have the following general form:

map: (K1, V1) Æ list (K2, V2)

reduce: (K2, list(V2)) Æ list (K2, V3)

In general, the map input key and value types (K1 and V1) are different from the Map

output types (K2 and V2). However, the Reduce input must have the same types as the

Map output, although the Reduce output types may be different again (K2 and V3).

MapReduce can process many different types of data formats, from flat text files to

databases. An input split is a chunk of the input that is processed by a single Map.

Each Map processes a single split. Each split is divided into records, and the map

processes each record—a key-value pair—in turn. Splits and records are logical: and

may map to a full file, a part of a file, or a collection of files. In a database context, a

split might correspond to a range of rows from a table and a record to a row in that

range.

5.3.2 Writing MapReduce Programming

It should start by writing pseudocode for the Map and Reduce functions. The pro-

gram code for both the Map and the Reduce function can then be written in Java

or other languages. In Java, the Map function is represented by the generic Mapper

class. It uses four parameters: (input key, input value, output key, output value).

This class uses an abstract map () method. This method receives the input key and

input value. It would normally produce and output key and output value. For more

complex problems, it is better to use a higher-level language than MapReduce, such

as Pig, Hive, and Spark.

A Mapper commonly performs input format parsing, projection (selecting the relevant

fields), and filtering (selecting the records of interest). The Reducer typically combines

(adds or averages) those values (Figure 5.3).

Following is the step-by-step logic to do a word count of all unique words in a text.

 1. The big document is split into many segments. The Map step is run on each

segment of data. The output will be a set of (key, value) pairs. In this case, the

key will be a word in the document.

 Parallel Processing with Map Reduce 65

FIGURE 5.3 MapReduce program flow

 2. The system will gather the (key, value) pair outputs from all the mappers, and

will sort them by key. The sorted list itself may then be split into a few segments.

 3. A Reducer task will read the sorted list and produce a combined list of word

counts.

Here is the Java code for wordcount:.

map(String key, String value):

for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

66 Big Data

5.3.3 Testing MapReduce Programs

Mapper programs running on a cluster can be complicated to debug. The time-

honoured way of debugging programs is via print statements. However, with the

programs eventually running on tens or thousands of nodes, it is best to debug the

programs in stages. Therefore, (a) run the program using small sample datasets to

ensure that the program is working correctly; (b) Expand the unit tests to cover larger

dataset and run it on a cluster; (c) Ensure that the Mapper or Reducer can handle

the inputs correctly. Running against the full dataset is likely to expose some more

issues, which should be fixed, by altering your Mapper or Reducer to handle the new

cases. After the program is working, the program may be tuned to make the entire

MapReduce job run faster.

It may be desirable to split the logic into many simple Mappers and chaining them into

a single Mapper using a facility (the ChainMapper library class) built into Hadoop.

It can run a chain of Mappers, followed by a Reducer and another chain of Mappers,

in a single MapReduce job.

5.4 MAPREDUCE JOBS EXECUTION

A MapReduce job is specified by the Map program and the Reduce program, along

with the data sets associated with that job. There is another master program that

resides and runs endlessly on the NameNode. It is called the Job Tracker, and it

tracks the progress of the MapReduce jobs from beginning to the completion. Hadoop

moves the Map and Reduces computation logic to every DataNode that is hosting a

fragment of the data. The communication between the nodes is accomplished using

YARN, Hadoop’s native resource manager.

The master machine (NameNode) is completely aware of the data stored on each of the

worker machines (DataNodes). It schedules the Map or Reduce jobs to Task trackers

with full awareness of the data location. For example: if node A contains data (x,y,z)

and node B contains data (a,b,c), the Job tracker schedules node B to perform map

or Reduce tasks on (a,b,c) and node A would be scheduled to perform Map or Reduce

tasks on (x,y,z). This reduces the data traffic and prevents choking of the network.

Each DataNode has a master program called the Task tracker. This program moni-

tors the execution of every task assigned to it by the NameNode. When the task is

completed, the Task tracker sends a completion message to the Job tracker program

on the Name Node (Figure 5.4). The jobs and tasks work in a ‘master-slave’ mode.

 Parallel Processing with Map Reduce 67

Job Tracker

Task Tracker 1 Task Tracker 2 Task Tracker 3 Task Tracker 4

FIGURE 5.4 Hierarchical monitoring architecture

When there is more than one job in a MapReduce workflow, it is necessary that they

be executed in the right order. For a linear chain of jobs, it might be easy while for

a more complex directed acyclic graph (DAG) of jobs, there are libraries that can

help orchestrate the workflow. Or one can use Apache Oozie, a system for running

workflows of dependent jobs. Oozie consists of two main parts: a workflow engine

that stores and runs workflows composed of different types of Hadoop jobs (MapRe-

duce, Pig, Hive, and so on), and a coordinator engine that runs workflow jobs based

on predefined schedules and data availability. Oozie has been designed to scale, and

it can manage the timely execution of thousands of workflows in a Hadoop cluster.

The dataset for the MapReduce job is divided into fixed-size pieces called input splits,

or just splits. Hadoop creates one map task for each split, which runs the user-defined

Map function for each record in the split. The tasks are scheduled using YARN and

run on DataNodes in the cluster. YARN ensures that if a task fails or inordinately

delayed, it will be automatically scheduled to run on a different node. The outputs

of the Map jobs are fed as input to the Reduce job. That logic is also propagated to

the node(s) that will do the Reduce jobs. To save on bandwidth, Hadoop allows the

use of a combiner function on the Map output. Then the combiner function’s output

forms the input to the Reduce function.

5.4.1 How MapReduce Works

A MapReduce job can be executed with a single method call: submit () on a Job object.

When the resource manager receives a call to its submitApplication() method, it hands

off the request to the YARN scheduler. The scheduler allocates a container, and the

resource manager then launches the application master’s process. The application

master for MapReduce jobs is a Java application whose main class is MRAppMaster.

It initializes the job by creating several bookkeeping objects to keep track of the job’s

progress. It retrieves the input splits computed in the client from the shared filesys-

tem. It then creates a Map task object for each split, as well as a number of Reduce

tasks. Tasks are assigned IDs at this point.

68 Big Data

The application master must decide how to run the tasks that make up the MapReduce

job. The application master requests containers for all the Map and Reduce tasks in

the job from the resource manager. Once a task has been assigned resources for a

container on a particular node by the resource manager’s scheduler, the application

master starts the container by contacting the node manager. The task is executed by

a Java application whose main class is YarnChild.

5.4.2 Managing Failures

There can be failures at the level of the entire job or particular tasks. The entire ap-

plication master itself could fail.

Task failure usually happens when the user code in the map or reduce task throws

a runtime exception. If this happens, the task JVM reports the error to its parent

application master, where it is logged into error logs. The application master will

then reschedule execution of the task on another data node. The entire job, i.e. Ma-

pReduce application master application running on YARN, too can fail. In that case,

it is started again, subject to a configurable maximum number.

If a DataNode manager fails by crashing or running very slowly, it will stop sending

heartbeats to the resource manager (or send them very infrequently). The resource

manager will then remove it from its pool of nodes to schedule containers on. Any

task or application master running on the failed node manager will be recovered us-

ing error logs, and started on other nodes.

The Resource Manager YARN can also fail. That has more severe consequences, as

the entire cluster is affected. Therefore, typically, there will be a hot-standby for

YARN. If the active resource manager fails, then the standby can take over without

a significant interruption to the client. The new resource manager can read the ap-

plication information from the state store, and then restart the application that were

running on the cluster.

5.4.3 Shuffle and Sort

MapReduce guarantees that the input to every Reducer is sorted by a key. The pro-

cess by which the system performs the sort—and transfers the Map outputs to the

Reducers as inputs—is known as the shuffle.

When the Map function starts producing output, it is not directly written to disk.

It takes advantage of buffering — writes in memory, and does some presorting for

efficiency reasons. Each Map task has a circular memory buffer that it writes the

output to. Before it writes to disk, the thread first divides the data into partitions

 Parallel Processing with Map Reduce 69

corresponding to the Reducers that they will ultimately be sent to. Within each parti-

tion, the background thread performs an in-memory sort by key. If there is a combiner

function, it is run on the output of the sort so that there is less data to transfer to

the reducer.

The Reduce task needs the Map output for its particular partition from several Map

tasks across the cluster. The Map tasks may finish at different times, so the Reduce

task starts reading their outputs as soon as all the Map programs have successfully

been executed. When all the Map outputs have been read, the Reduce task merges

the Map outputs, maintaining their sort ordering. The Reduce function is invoked

for each key in the sorted output. The output of this phase is written directly to the

output filesystem.

5.4.4 Progress and Status Updates

MapReduce jobs are long-running batch jobs, and take a long time to run. It is im-

portant for the user to get feedback on how the job’s progress. A job and each of its

tasks have a status value (e.g., running, successfully completed, failed) the progress

of maps and reduces, the values of the job’s counters. These values are constantly

communicated back to the client. When the application master receives a notification

that the last task for a job is complete, it changes the status for the job to “success-

ful.” Job statistics and counters are communicated to the user.

Hadoop comes with a native web-based GUI for tracking the MapReduce jobs. It dis-

plays useful information about a job’s progress such as how many tasks have been

completed, and which ones are still being executed. Once the job is completed, one

can view the job statistics and logs.

5.5 HADOOP STREAMING

 Hadoop Streaming uses standard Unix streams as the interface between Hadoop

and user program. Streaming is an ideal application for text processing. Map input

data is passed over standard input to your map function, which processes it line by

line and writes lines to standard output. A Map output key-value pair is written as

a single tab-delimited line. Input to the Reduce function is in the same format—a

tab-separated key-value pair—passed over standard input. The Reduce function reads

lines from standard input, which the framework guarantees and are sorted by key,

and writes its results to standard output.

70 Big Data

5.6 HIVE LANGUAGE

Hive is a declarative SQL-like language for processing queries. Hive was designed to

appeal to a community that is comfortable with SQL. Data analysts mainly use it, on

the server side, for generating reports. It has its own metadata section which can be

defined ahead of time, i.e. before the data is loaded. Hive supports Map and Reduce

transform scripts in the language of the user’s choice, which can be embedded within

SQL clauses. Hive is best used for producing reports using structured data; it is not

designed for online transaction processing.

Hive can be used to query data stored in Hbase, which is a key-value store. Hive’s

 SQL-like structure makes transformation of data to and from an RDBMS is easier.

Supporting SQL syntax also makes it easy to integrate with existing Business Intel-

ligence (BI) tools. Hive needs the data to be first imported (or loaded) and after that it

can be worked upon. In case of streaming data, one would have to keep filling buckets

(or files), and then Hive can be used to process each filled bucket, while using other

buckets to keep storing the newly arriving data.

Hive data Columns are mapped to tables in HDFS (Figure 5.5). This mapping is

stored in Metadata. All HQL queries are converted to MapReduce jobs. A table can

have one or more partition keys. There are usual SQL data types, and Arrays and

Maps and Structs to represent more complex types of data.

Meta Data

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 5.5 Hive architecture

5.6.1 HIVE Language Capabilities

 Hive’s SQL provides almost all basic SQL operations. These operations work on

tables and (or) partitions. These operations are: SELECT, FROM, WHERE, JOIN,

 Parallel Processing with Map Reduce 71

GROUP BY, ORDER BY. It also allows the results to be stored in another table, or

in a HDFS file.

Hive Relational Database

SQL SQL

Analytics OLTP or analytics

Batch only Real-time or batch

No transactions Transactions

No INSERT or UPDATE

Adding through partitions

Random INSERT or UPDATE

Distributed processing – 100s of nodes Depends on the system – if available, < 100

Achieve high performance on commodity

hardware

Achieve high performance on proprietary hardware

Low cost for huge amounts of storage Expensive, limited compared to Hadoop based solutions

The statement to create a page view table would be like:

CREATE TABLE page_view(viewTime INT, userid BIGINT,

 page_url STRING, referrer_url STRING,

 ip STRING COMMENT ‘IP Address of the User’)

COMMENT ‘This is the page view table’

PARTITIONED BY (dt STRING, country STRING)

STORED AS SEQUENCEFILE;

Here is a script for loading data into this file.

CREATE EXTERNAL TABLE page_view_stg(viewTime INT, userid BIGINT,

 page_url STRING, referrer_url STRING,

 ip STRING COMMENT ‘IP Address of the User’,

 country STRING COMMENT ‘country of origination’)

COMMENT ‘This is the staging page view table’

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘44’ LINES TERMINATED BY ‘12’

STORED AS TEXTFILE

LOCATION ‘/user/data/staging/page_view’;

The table created above can be stored in HDFS as a TextFile or as a SequenceFile.

An INSERT query on this table will look like:

hadoop dfs -put /tmp/pv_2008-06-08.txt /user/data/staging/page_view

 FROM page_view_stg pvs

72 Big Data

INSERT OVERWRITE TABLE page_view PARTITION(dt=’2008-06-08’, country=’US’)

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url, null, null, pvs.ip

WHERE pvs.country = ‘US’;

5.7 PIG LANGUAGE

Pig is also a high-level scripting language/platform for data manipulation, that is

used with Hadoop and MapReduce. Compared with Hive, Pig offers greater proce-

dural control over data flows, and thus excels at solving problems such as ETL that

require great control over data flows (Table 5.1). Pig is also used for performing tasks

involving ad-hoc processing and quick prototyping. For example, to process huge

data sources such as web logs, and to perform data processing for search engines.

Pig has a scripting part and an execution part. Pig Latin is the scripting language

to develop high-level code. It provides a rich set of data types, functions, and opera-

tors to perform various operations on the data. This script is then parsed, optimized

and run by Pig Engine to create MapReduce code which then runs and delivers the

results to the user. Pig thus helps deliver the power to deliver the insights from big

data flexibly and efficiently.

Table 5.1

Comparison between Apache Pig and Apache Hive platforms

Apache Pig Apache Hive

Pig uses a language called Pig Latin. It was origi-

nally created at Yahoo.

Hive uses a language called HiveQL. It was origi-

nally created at Facebook.

Pig Latin is a data flow language. HiveQL is a query processing language.

Pig Latin is a procedural language and it fits in a

data flow pipeline paradigm.

HiveQL is a declarative language like SQL.

Pig can handle structured, unstructured, and semi-

structured data.

Hive is used mostly for structured data.

The architecture of Apache Pig is shown in Figure 5.6.

The Parser checks the syntax of the Pig Latin script, and produces a DAG (directed

acyclic graph), which represents the Pig Latin statements and logical operators. In

the DAG, the logical operators of the script are represented as the nodes and the data

flows are represented as edges. The Optimizer carries out the logical optimizations

such as projection and pushdown on the DAG. The Compiler compiles the optimized

logical plan into a series of MapReduce jobs. The MapReduce jobs are submitted to

Hadoop in a sorted order. The desired results are returned to the user.

 Parallel Processing with Map Reduce 73

Pig Latin
Script

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 5.6 Architecture of Apache Pig

5.7.1 PIG Language Capabilities

Required data manipulations in Hadoop are possible with Pig Latin. It offers greater

control over data flows, and it can perform all the data manipulation operations

through MapReduce. Pig is thus very suitable for ETL (Extract, Transform, and

Load) jobs. An ETL job extracts data from a source, transforms it according to a rule

set, and then loads it into a datastore. Pig Latin allows splits in the data pipeline. It

allows developers to store data anywhere in the pipeline. This reduces the need for

duplicating the read/write code at multiple places, and significantly reduces the overall

length of the code. Pig reduces the program size by a factor of 10 compared to Java,

and thus saves development time by a factor of 10, while still delivering comparable

data manipulation capabilities.

Pig is also sufficiently SQL-like language that is easy to learn. Anyone with a basic

knowledge of SQL can work conveniently with Pig. Pig provides many built-in opera-

tors to support data operations like joins, sorts, and filters. Therefore, performing an

important relational operation like Join is very simple in Pig. Pig has a rich library

of built-in functions. In addition, it allows the use of User-Defined functions (UDFs),

that enable sophisticated program logic to be written in Java and other such lan-

guages, and then run from within Pig. Conversely Pig scripts can be executed in other

languages. Thus one can use Pig to build components of larger and more complex

applications that tackle real business problems.

Pig works primarily with data stored in Hadoop Distributed File System. It works

through the MapReduce parallel processing mechanism. Pig can ingest data from files,

streams, or other sources. Using built-in functions as well as User Defined Functions

(UDF), the data can be ingested and transformed in very sophisticated ways. The

results are stored back into HDFS.

74 Big Data

Pig can handle structured, unstructured, and semi-structured data. Pig enables many

kinds of data structures such as Atom, Tuple, bag, Map and Relations. A relational

schema is not necessary for a Pig data structure. The data model in Apache Pig is

nested-relational. It provides nested data types like tuples, bags, and maps that are

not available in MapReduce. Pig does not have a dedicated metadata section; the

schema needs to be defined in the program itself. Pig can be easier for someone who

had not earlier experience with SQL.

5.7.2 Pig Script Example

Here is Pig Script for loading sample driver data and producing summary reports.

Read file 1 and create a schema

drivers = LOAD ‘drivers.csv’ USING PigStorage(‘,’);

drivers_details = FOREACH drivers GENERATE $0 AS driverId, $1 AS name;

Read file 2 and create a schema

timesheet = LOAD ‘timesheet.csv’ USING PigStorage(‘,’);

timesheet_logged = FOREACH timesheet GENERATE $0 AS driverId, $2 AS hours_logged,
$3 AS miles_logged;

generate summary data and add those fields to schema

grp_logged = GROUP timesheet_logged by driverId;

sum_logged = FOREACH grp_logged GENERATE group as driverId,

SUM(timesheet_logged.hours_logged) as sum_hourslogged,

SUM(timesheet_logged.miles_logged) as sum_mileslogged;

generate a JOIN of two files and generate a report from it

join_sum_logged = JOIN sum_logged by driverId, drivers_details by driverId;

join_data = FOREACH join_sum_logged GENERATE $0 as driverId, $4 as name, $1 as
hours_logged, $2 as miles_logged;

discard the temporary JOIN relation

dump join_data;

 Parallel Processing with Map Reduce 75

5.8 CONCLUSION

MapReduce is the most popular parallel processing framework for Big Data. It works

well for applications where the data can be large, divisible into separate sets, and

represented in <key, value> pair format. The application logic is divided into two parts:

a Map program and a Reduce Program. Each of these programs can be run in parallel

using several machines. A Job tracker tracks the processing of the entire MapReduce

job, while a Task tracker monitors the performs the processing on a data node. Hive

and Pig are high-level languages that make MapReduce programming easier.

Review Questions

 1. What is MapReduce? What are its benefits?

 2. What is the key-value pair format? How is it different from other data structures?

What are its benefits and limitations?

 3. What is a Job tracker program? How does it differ from the task tracker program?

 4. What are Hive and Pig? How are they different?

True/False Questions

 1. MapReduce processing is similar to UNIX sequence (also called pipe) structure.

 2. MapReduce speeds up the computation by reading and processing small chunks

of file, by different computers in parallel.

 3. The MapReduce model can be used for any data processing problem.

 4. The Map step reads data in key-value pair format.

 5. A mapper commonly performs input format parsing, projection, and filtering of

data.

 6. The Reduce function reads unsorted intermediate files.

 7. One should start MapReduce processing by writing pseudocode for the map and

reduce functions.

 8. The Task tracker program monitors the progress of the MapReduce jobs from

beginning to the completion.

 9. One Task Tracker can control many Job Trackers.

 10. MapReduce was invented by Google.

Chapter 6
NoSQL Databases

Learning Objectives

 ■ Identify key differences between NoSQL and relational databases

 ■ Appreciate the architecture of NoSQL databases

 ■ Describe the major types of NoSQL databases and their features

 ■ Analyze the architecture and processes of Hadoop HBase

 ■ Analyze the architecture and processes of Cassandra database

INTRODUCTION

A NoSQL database is a clever way of cost-effectively organizing large amounts of

heterogeneous data for efficient access and updates. An ideal NoSQL database is

completely aligned with the nature of the problems being solved, and is superfast

in accomplishing that task. This is achieved by relaxing many of the integrity and

redundancy constraints of storing data in relational databases. Data is thus stored

in many innovative formats closely aligned with business need. The diverse NoSQL

databases will ultimately collective evolve into a holistic set of efficient and elegant

knowledge stored at the heart of a cosmic computer.

Relational data management systems (RDBMs) are a powerful and universally used

database technology by almost all enterprises. Relational databases are structured

and optimized to ensure accuracy and consistency of data, while also eliminating any

redundancy of data. These databases are stored on the largest and most reliable of

computers to ensure that the data is always available at a granular level and at a

high speed.

Big data is, however, a much larger and unpredictable stream of data. Relational

databases are inadequate for this task, and will also be very expensive for such large

data volumes. Managing the costs and speed of managing such large and heteroge-

Learning Objectives

■ Identify key differences between NoSQL and relational databases

■ Appreciate the architecture of NoSQL databases

■ Describe the major types of NoSQL databases and their features

■ Analyze the architecture and processes of Hadoop HBase

■ Analyze the architecture and processes of Cassandra database

 NoSQL Databases 77

neous data streams requires relaxing many of the strict rules and requirements of

relational database. Depending upon which constraint(s) are relaxed, a different kind

of database structure will emerge. These are called NoSQL databases, to differentiate

them from relational databases that use Structured Query Language (SQL) as the

primary means to manipulate data.

NoSQL databases are next-generation databases that are non-relational in their de-

sign. The name NoSQL is meant to differentiate it from antiquated, ‘pre-relational’

databases. Today, almost every organization that must gather customer feedback and

sentiments to improve their business, uses a NoSQL database. NoSQL is useful when

an enterprise needs to access, analyze, and utilize massive amounts of either struc-

tured or unstructured data that’s stored remotely in virtual servers across the globe.

The constraints of a relational database are relaxed in many ways. For example,

relational databases require that any data element could be randomly accessed and

its value could be updated in that same physical location. However, the simple phys-

ics of storage says that it is simpler and faster to read or write sequential blocks of

data on a disk. Therefore, NoSQL database files are written once and almost never

updated in place. If a new version of a part of the data become available, it would be

appended to the respective files. The system would have the intelligence to link the

appended data to the original file.

6.1 RDBMS VS NoSQL

These differ from each other in many ways. First, NoSQL databases do not support

relational schema or SQL language. The term NoSQL stands mostly for “Not only

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 6.1 Big data architecture

78 Big Data

SQL”. Second, their transaction processing capabilities are fast but weak, and they

do not support the ACID (Atomicity, Consistency, Isolation, Durability) properties

associated with transaction processing using relational databases. Instead, they sup-

port BASE properties (Basically Available, Soft State, and Eventually Consistent).

NoSQL databases are thus approximately accurate at any point in time, and will be

eventually consistent. Third, these databases are also distributed and horizontally

scalable to manage web-scale databases using Hadoop clusters of storage. Thus, they

work well with the write-once and read-many storage mechanism of Hadoop clusters.

Table 6.1 lists comparative features of RDBMS and NoSQL.

Table 6.1

Comparative features of RDBMS and NoSQL.

Feature RDBMS NoSQL

Applications Mostly centralized Applications (e.g.

 ERP)

Mostly designed for the decentralized appli-

cations (e.g. Web, mobile, sensors)

Rigor Support ACID properties for Transac-

tion Processing

Support BASE properties for approximate

reporting

Availability Moderate to high Continuous availability to receive and serve

data

Velocity Moderate velocity of data High velocity of data (devices, sensors, social

media, etc.). Low latency of access.

Data Volume Moderate size; archived after for a cer-

tain period

Huge volume of data, stored mostly for a

long time or forever; Linearly scalable DB.

Data Sources Data arrives from one or few, mostly

predictable sources

Data arrives from multiple locations and are

of unpredictable nature

Data type Data are mostly structured Structured or unstructured data

Data Access Primary concern is reading the data Concern is both read and write

Technology Standardized relational schemas; SQL

language

Many designs with many implementations of

data structures and access languages

Cost Expensive; commercial Low; open-source software

6.2 TYPES OF NoSQL DATABASES

The variety of big data means that file size and types will vary enormously. Despite

the name, a NoSQL database does not necessarily prohibit structured query language

(like SQL). While some of the NoSQL systems are entirely non-relational, others

just avoid some selected functionality of RDMS such as fixed table schemas and join

 NoSQL Databases 79

operations. For NoSQL systems, instead of using tables, the data can be organized

the data in key/value pair format, and then SQL can be used. There are specialized

NoSQL databases to suit different purposes.

The choice of NoSQL database depends on the system requirements. There are at least

200 implementations of NoSQL databases of these four types. Visit nosql-database.

org for more. Here are some recent offerings in these categories (Figure 6.2).

Key/Value Store Columnar or
Extensible record

Document
Store

Graph DB

Memcached

Redis

Tokyo
Cabinet

Dyanamo

Dynomite

Risk

Project
Voldemort

Google
Big Table

HBase

Cassandra

Hyper Table

Couch DB

Mongo DB

Simple DB

Lotus
Domino

Mnesia

Neo4j

Flock DB

Infinite Graph

FIGURE 6.2 Offerings in NoSQL databases

 1. Columnar Databases: These are database structures that include only the rel-

evant columns of the dataset, along with the key-identifying information. These

are useful in speeding up some oft-sought queries from very large data sets. Sup-

pose there is an extremely large data warehouse of web log access data, which is

rolled up by the number of web access by the hour. This needs to be queried, or

summarized often, involving only some of the data fields from the database. Thus

the query could be speeded up by organizing the database in a columnar format.

This is useful for content management systems, blogging platforms, maintaining

counters, expiring usage, heavy write volume such as log aggregation. Column

family databases for systems well when the query patterns have stabilized.

 HBase and Cassandra are the two of the more popular Columnar database of-

ferings. HBase was developed at Yahoo, and comes as part of the Hadoop ecosys-

tem. Cassandra was originally developed at Facebook to serve its exponentially

growing user base, which is now close to 2 billion people. It was open sourced in

2008. This chapter will discuss both in detail.

80 Big Data

 2. Key-Value Pair Databases: There could be a collection of many data elements

such as a collection of text messages, which could also fit into a single physical

block of storage. Each text message is a unique object. This data would need to

be queried often. That collection of messages could also be stored in a key-value

pair format, by combining the identifier of the message and the content of the

message. Key-value databases are useful for storing session information, user

profiles, preferences, and shopping cart data. Key-value databases do not work

so well when we need to query by non-key fields or on multiple key fields at the

same time.

 Dynamo is a NoSQL highly available key-value structured storage system that

has properties of both databases and distributed hash tables. Amazon DynamoDB

is a fully managed NoSQL database service that provides fast and predictable

performance with seamless scalability. DynamoDB automatically spreads the

data and traffic for your tables over enough servers to handle your throughput

and storage requirements, while maintaining consistent and fast performance.

 3. Document Databases: These databases store an entire document of any size,

as a single value for a key element. Suppose one is storing a 10GB video movie

file as a single object. An index could store the identifying information about the

movie, and the address of the starting block. The system could handle the rest

of storage details. This storage format would be a called document store format.

Document databases are generally useful for content management systems, blog-

ging platforms, web analytics, real-time analytics, ecommerce-applications. Docu-

ment databases would not be useful for systems that need complex transactions

spanning multiple operations or queries against varying aggregate structures.

 MongoDB is an open-source document database that provides high performance,

high availability, and automatic scaling. A record in MongoDB is a document,

which is a data structure composed of field and value pairs. The values of fields

may include other documents, arrays, and arrays of documents.

 4. Graph Databases: Graph databases are very well suited for problem spaces

where we have connected data, such as social networks, spatial data, routing

information, and recommendation engines. For example, geographic map data

used in Google Maps is stored in set of relationships or links between points. For

intensive data relationship handling, graph databases improve performance by

several orders of magnitude. Tech giants like Google, Facebook, and LinkedIn

use graph databases to deliver scalable, insightful, and quick service.

 Neo4j is a highly scalable and most popular ACID-compliant transactional

database with native graph storage and processing. It is an open-source graph

database, implemented in Java, and accessible from software written in other

languages.

 NoSQL Databases 81

The first popular NoSQL database was HBase, which is a part of the Hadoop fam-

ily. The most popular NoSQL database used today is Apache Cassandra, which was

developed and owned by Facebook till it was released as open source in 2008. Other

NoSQL database systems are SimpleDB, Google’s BigTable, MemcacheDB, Oracle

NoSQL, Voldemort, etc.

6.3 ARCHITECTURE OF NoSQL

One of the key concepts underlying the NoSQL databases is that database manage-

ment has moved to a two-layer architecture; separating the concerns of data modeling

and data storage (Figure 6.3). The data storage layer focuses on the task of high-

performance scalable data storage for the task at hand. The data management layer

a variety of database formats, and allows for low-level access to that data through

specialized languages that are more appropriate for the job, rather than being con-

strained by using the standard SQL format.

Logically consistent
access

FIGURE 6.3 NoSQL databases architecture

NoSQL databases maps the data in the key/value pairs and saves the data in the

storage unit. There is no storage of data in a centralized tabular form, so the data-

base is highly scalable. The data could be of different forms, and coming from differ-

ent sources, and they can all be stored in similar key/value pair formats. There are

a variety of NoSQL architectures. Some popular NoSQL databases like MongoDB

are designed in a master/slave model like many RDBMS. But other popular NoSQL

databases like Cassandra are designed in a master-less fashion where all the nodes

in the clusters are the same. So, it is the architecture of the NoSQL database system

82 Big Data

that determines the benefits of distributed and scalable system and emerges like

continuous availability, distributed access, high speed, and so on.

NoSQL databases provide developers lot of options to choose from and fine tune the

system to their specific requirements. Understanding the requirements of how the

data is going to be consumed by the system, questions such as is it read heavy vs

write heavy, is there a need to query data with random query parameters, will the

system be able handle inconsistent data.

6.4 CAP THEOREM

Data is expected to be accurate and available. In a distributed environment, accuracy

depends upon the consistency of data. A system is considered Consistent if all replicas

of copy contain the same value. The system is considered Available, if the data I is

available at all points in time. It is also desirable for the data to be consistent and

available even when a network failure renders the database partitioned into two or

more islands. A system is considered partition tolerant if processing can continue in

both partitions in the case of a network failure. In practice it is hard to achieve all

three.

The choice between Consistency and Availability remains the unavoidable reality for

distributed data stores. CAP theorem states that in any distributed system one can

choose only two out of the three (Consistency, Availability, and Partition Tolerance).

The third will be determined by those choices.

NoSQL databases can be tuned to suit one’s choice of high consistency or availability.

For example, for a NoSQL database, there are essentially three parameters:

 ■ N = replication factor, i.e. the number of replicas created for each piece of data

 ■ R = Minimum number of nodes that should respond to a read request for it to

be considered successful

 ■ W = Minimum number of nodes that should respond to a write request before

its considered successful.

Setting the values of R and W very high (R=N, and W=N) will make the system more

consistent. However, it will be slow to report Consistency, and thus Availability will

be low. On the other end, setting R and W to be very low (such as R=1 and W=1),

would make the cluster ‘highly’ available, as even a single successful read (or write)

would let the cluster to report success. However, consistency of data on the cluster

will be low since many of these may not have yet received the latest copy of the data.

 NoSQL Databases 83

If a network gets partitioned because of a network failure, then one has to trade off

availability versus consistency. NoSQL database users often choose availability and

partition tolerance over strong consistency. They argue that short periods of applica-

tion misbehaviour are less problematic than short periods of unavailability.

Consistency is more expensive in terms of throughput or latency, than is Availabil-

ity. However, HDFS chooses consistency – as three failed DataNodes can potentially

render a file’s blocks completely unavailable.

6.5 HBASE

Apache HBase is a column-oriented, non-relational, distributed database system

that runs on top of HDFS. An HBase system comprises a set of tables; each table

contains rows and columns, much like a traditional database. Each table must have

an element defined as a Primary Key; all access to HBase tables is done using the

Primary Key. An HBase column represents an attribute of an object. For example, if

the table is storing diagnostic logs from web servers, each row will be a log record.

Each column in that table will represent an attribute such as the date/time of the

record, or the server name. HBase permits many attributes to be grouped together

into a column family, so that all elements of a column family are all stored as es-

sentially a composite attribute.

Columnar databases are different from a relational database in terms of how the data

is stored. In the relational database, all the columns/attributes of a given row are

stored together. With HBase you must predefine the table schema and specify the

column families. All rows of a column family will be stored sequentially. However, it

is very flexible in that new columns can be added to families at any time, making the

schema flexible and, therefore, able to adapt to changing application requirements.

6.5.1 Architecture Overview

HBase is built on master-slave concept. In HBase a master node manages the cluster,

while the worker nodes (called region servers) store portions of the tables and perform

the work on the data (Figure 6.4). HBase is designed after Google Bigtable, and of-

fers similar capabilities on top of HDFS. It does consistent reads and writes. It does

automatic and configurable sharding of tables. A shard is a segment of the database.

84 Big Data

HBase Arcjotectire

HBase API

Master

Region Servers

HFile Memstore

Write-Ahead Log

HDFS ZooKeeper

FIGURE 6.4 HBASE Architecture

Physically, HBase is composed of three types of servers in a master-slave type of

architecture.

(a) The NameNode maintains metadata information for all the physical data blocks

that comprise the files.

(b) Region servers serve data for reads and writes.

(c) The Hadoop DataNode stores the data that the Region Server is managing.

HBase Tables are divided horizontally, by row key range, into “Regions.” A region

contains all rows in the table between the region’s start key and end key. Region as-

signment, DDL (create, delete tables) operations are handled by the HBase Master

process. Zookeeper, which is part of HDFS, maintains a live cluster state. There is

an automatic failover support between Region Servers. All HBase data is stored in

HDFS files. Region Servers are collocated with the HDFS DataNodes, which enable

data locality (putting the data close to where it is needed) for the data served by the

Region Servers. HBase data is local when it is written, but when a region is moved,

it is not local until compaction. Each Region Server creates an ephemeral node. The

HMaster monitors these nodes to discover available region servers, and it also moni-

tors these nodes for server failures. A master is responsible for coordinating the region

servers, including assigning regions on startup, load balancing of recovery among

regions, and monitoring their health. It is also the interface for creating, deleting,

and updating tables.

 NoSQL Databases 85

6.5.2 Reading and Writing Data

There is a special HBase Catalog table called the META table, which holds the loca-

tion of the regions in the cluster. ZooKeeper stores the location of the META table.

When the first time a client reads or writes to HBase, the client gets the Region

server that hosts the META table from ZooKeeper. The client will query the META

server to get the region server corresponding to the row key it wants to access. The

client caches this information along with the META table location. It will get the Row

from the corresponding Region Server. For future reads, the client uses the cache to

retrieve the META location and previously read row keys. Over time, it does not need

to query the META table, unless there is a miss because a region has moved; then it

will re-query and update the cache.

6.6 CASSANDRA

Apache Cassandra is a more recent and popular scalable open source non-relational

database that offers continuous uptime, simplicity and easy data distribution across

multiple data centers and cloud. It is a hybrid between a key-value and a column-

oriented database. It provides many benefits over the traditional relational databases

for modern online applications like scalable architecture, continuous availability, high

data protection, multi-data replications over data centers, data compression, SQL like

language and so on.

6.6.1 Architecture Overview

Cassandra architecture provides its ability to scale and

provide continuous availability (Figure 6.5). Rather than

using master-slave architecture, it has a master-less “ring”

design that is easy to set up and maintain. In Cassandra,

all nodes play an equal role, all nodes communicate with

one another by a distributed and highly scalable protocol

called gossip. The read and write processes are summarized

in Figure 6.6.

So, the Cassandra scalable architecture provides the capac-

ity of handling large volume of data, and large number of

concurrent users or operations occurring at the same time,

across multiple data centers, just as easily as a normal op-

eration for the relational databases. To enhance its capacity, one simply needs to add

new nodes to an existing cluster without taking down the system and designing from

FIGURE 6.5 Cassandra

architecture

86 Big Data

the scratch. Also the Cassandra architecture means that unlike other master slave

systems, it has no single point of failure and thus is capable of offering continuous

availability and uptime.

6.6.2 Protocols

Cassandra was designed to be fault-tolerant. Its peer-to-peer, distributed system re-

sults in read/write anywhere design. Data is transparently partitioned among all nodes

in the cluster. All the nodes are similar and equal. Each node communicates with other

through the GOSSIP protocol, which exchanges information across the cluster every

second. A commit log is used on each node to capture every write activity. All data

is written to the commit log first for durability. When multiple updates are applied

to the same column, Cassandra uses client-provided timestamps to resolve conflicts.

Data of update/delete operations is written in key/value pairs format to an in-memory

structure called memTable. The memTable is written to a disk file called a sorted

string table (SSTable). An SSTable is an immutable, append-only, data file to which

Cassandra writes memtables periodically. After all the commit log’s data has been

flushed from the memtable to the SStable, the it is archived, deleted, or recycled

(Figure 6.7).

Cassamdra
Disks
Zone A2

4 2
2

3

5
Cassamdra
Disks
Zone A

Cassamdra
Disks
Zone B

Cassamdra
Disks
Zone B

Cassamdra
Disks
Zone C

Cassamdra
Disks 5
Zone C

Clients

1

3

5

If a node goes offline,
hinted handoff
completes the write
when the node comes
back up.

Requests can choose to
wait for one node, a
quorum, or all nodes to
ack the write

SSTable disk writes and
compactions occur
asynchronously

1. Client Writes to any
Cassandra Node

2. Coordinator Node
replicates to nodes
and Zones

3. Nodes return ack to
coordinator

4. Coordinator returns
ack to client

5. Data written to
internal commit log
disk

Single Region, Multiple Availability Zone

3

FIGURE 6.6 Cassandra read and write processes

 NoSQL Databases 87

FLUSH

FIGURE 6.7 Cassandra protocols

All data is indexed for faster access. A row in a column family is indexed by its key.

The index summary is loaded into the memory. A lookup for actual rows can be per-

formed with a single disk seek and by scanning sequentially for the data. Operations

are provided to look up the value associated with a specific key and to iterate over

all the column names and value pairs within a specified key range.

6.6.3 Data Model

In Cassandra world, the data model can be seen as a map which is distributed across

the cluster. In other words, a table in Cassandra is a distributed multi-dimensional

map indexed by a key. The data values can be as columns, column family, or Super

columns families.

A column is the smallest container in Cassandra world with following properties,

Name and Value and Timestamp. A Super column is a tuple with Name and Value.

Thus a value can map to many columns. A Column family is a collection of rows and

columns (like an entire table in a traditional RDBMS). Each row in a column family

is uniquely identified by a row key (Figure 6.8). Each row can have multiple columns,

each of which has a name, value and a timestamp. Unlike traditional RDBMS, dif-

ferent rows in the same column family need not to share the same set of columns.

A column may be added to one or multiple rows at any time without affecting the

complete dataset. In a column family there can be billions of columns.

A super column contains multiple column families. It is a tuple (pair) that consists

of a key-value pair, where the key is mapped to value which are column families. It

is something like a “view” on more than one tables. A key space contains the column

families just like a database contains tables in relational world. They are used to

group column families together. In traditional relational database analogy key spaces

can be seen as database schema. It is the outermost grouping of the data in the data

store. Generally, in a cluster there is one key space per application.

88 Big Data

FIGURE 6.8 Cassandra data model

6.6.4 Cassandra Writes

There are two write modes in Cassandra. A Quorum Write is a synchronous operation

in which client blocks until the quorum is reached i.e. the data is propagated to all

the nodes in quorum. An Asynchronous Write sends the request to any node, further

that node will push the data to appropriate nodes but return to client immediately

hence client is not blocked in this case.

In a write operation, the Client sends a write request to a single, random Cassandra

node. This node writes the data to the cluster. The writes are then replicated to N

nodes using a configurable replication strategy to minimize the possibility of data loss.

Cassandra will determine the distance of other nodes from the current node. The clos-

est node is on the same rack. The next distant node is in the same data center. The

most distant node is in an entirely different data center (Figure 6.9). Consistency can

be chosen between strong and eventual (from all to any node responding) depending

on the need. As the data files accumulate over time, they are periodically merged and

sorted into a new file hence creating new index.

6.6.5 Cassandra Reads

The client can select the strength of the read consistency. A Single Read means the

client request returns once it gets the first response, even though the data can be

 NoSQL Databases 89

stale. In a Quorum Read the request returns only after most of the nodes responded

with the same value, and this reduces the chances of getting stale data.

A random node receives the read request from the client. This node determines the

nodes that have copies of data, and then requests the data from each node (Figure

6.10). When a read request comes in to a node, the data to be returned is merged

from all the related SSTables and any unflushed memtables.

FIGURE 6.10 Cassandra read process

FIGURE 6.9 Cassandra write process

90 Big Data

6.6.6 Replication

The term replication means how many copies of each piece of data we need in our

cluster. It is the process of storing copies of data on multiple nodes to ensure reliabil-

ity and fault tolerance. Basically, there are two replication strategies are available.

A Simple strategy should be used for a single data centre only. It places the first

replica on a node determined by the partitioner. Additional replicas are placed on the

next nodes clockwise in the ring without considering topology, i.e. rack or data centre

location. The total number of replicas across the cluster are referred as the replica-

tion factor. All replicas are equally important for failover as there is no primary or

master replica in Cassandra.

The partitioner controls how the data is distributed over your nodes. To find a set

of keys, Cassandra must know what nodes have the range of values client is looking

for. A partitioner is a hash function for calculating the token or hash of a row key to

replicate the data in cluster. Each row of data is uniquely identified by a row key and

distributed across the cluster by the value of the token. The token generated by the

partitioner is further used by replication strategy to place the replica in the cluster.

Consistency level in Cassandra can be seen as how many replicas must response to

declare a successful read or write operation. Consistency refers to how up-to-date

and synchronized a row of Cassandra data is on all its replicas. Since Cassandra

extends the concept of eventual consistency by offering tunable consistency, hence

for any given read or write operation, the client application decides how consistent

the requested data must be.

Write Syntax

TTransport tr = new TSocket(HOST, PORT);

TFramedTransport tf = new TFramedTransport(tr);
TProtocol protocal = new TBinaryProtocol(tf);
Cassandra.Client client = new Cassandra.Client(protocol);

tf.open();

client.insert(userIDKey, cp, new Column(“Colume-name”.getBytes(UTF8), “Colume-
data”.getBytes(), clock), CL);

Read Syntax:

Column col = client.get(userIDKey, colPathName, CL).getColumn();

LOG.debug(“Column name: “ + new String(col.Colume-name, UTF8));

LOG.debug(“Column value: “ + new String(col.Colume-data, UTF8));

 NoSQL Databases 91

6.7 CONCLUSION

NoSQL databases emerged in response to the limitations of relational databases in

handling the sheer volume, nature, and growth of data. NoSQL databases have the

functionality like MapReduce. NoSQL database is proving to be a viable solution

to the enterprise data needs and continue to do so. There are four types of NoSQL

databases: columnar, Key-pair, document, and graphical databases. Cassandra and

HBase are among the most popular NOSQL databases. Hive is an SQL-type language

to access data from NoSQL databases. Pig is a procedural high-language that gives

greater control over data flows.

Review Questions

 1. What is a NoSQL database? What are the different types of it?

 2. How does a NoSQL database leverage the power of MapReduce?

 3. What are different kinds of NoSQL databases? What are the advantages of each?

 4. What are the similarities and differences between Hive and Pig?

True/False Questions

 1. Relational databases are better than NoSQL databases in managing large and

unpredictable streams of data.

 2. NoSQL databases support the ACID (Atomicity, Consistency, Isolation, Durabil-

ity) properties associated with transaction processing.

 3. Document databases are useful for storing session information, user profiles,

preferences, and shopping cart data.

 4. Key-value NoSQL Databases are a popular form of NoSQL databases, for content

management, blogging platforms, etc.

 5. Graph databases are very well suited for social network analysis applications.

 6. NoSQL databases have a two-layer architecture, separating the concerns of data

modeling and data storage.

 7. All NoSQL databases work in a master/slave model.

 8. A system is considered consistent only if all replicas of copy contain the same

value.

92 Big Data

 9. A system is considered partition tolerant if processing can continue in both parti-

tions in the case of a network failure.

 10. Apache HBase is a column-oriented, non-relational, distributed database system.

 11. HBase is built on a master-slave concept.

 12. HBase serves data for reads and writes data through Region Servers.

 13. Apache Cassandra is a scalable NoSQL database that offers continuous uptime,

simplicity and easy data distribution across multiple data centers and cloud.

 14. Cassandra was developed at Google.

 15. Cassandra uses ring-architecture to arrange data servers.

 16. Cassandra looks a “Bloom filter” to speed up data access.

 17. Pig and Hive are popular languages that work well on NoSQL databases.

 18. Hive was designed by FaceBook.

 19. Hive allows almost all SQL operations.

 20. For analytical needs, Pig is preferable over Hive.

Chapter 7
Stream Processing with Spark

Learning Objectives

 ■ Recognize the need for stream processing

 ■ Discuss Apache Spark and its architecture

 ■ Describe RDD and DAG as major features of Spark

 ■ Understand MLLib and GraphX libraries within Spark

 ■ Discuss many use cases for Spark

INTRODUCTION

A stream processing system is a clever way to process large quantities of data from a

vast set of extremely fast incoming data streams. The ideal stream processing engine

will capture and report in real time the essence of all data streams, no matter the

speed or size or number of streams. This can be achieved by using innovative algo-

rithms and filters that relax many computational accuracy requirements, to compute

simple approximate metrics in real time. Stream processing engine aligns with the

infinite dynamism of the flow of nature.

Apache Spark is an integrated, fast, in-memory, general-purpose engine for large-

scale data processing. Spark is ideal for iterative and interactive processing tasks on

large data sets and streams. Spark achieves 10–100x performance over Hadoop by

operating with an in-memory data construct called Resilient Distributed Datasets

(RDDs). It helps avoid the latencies involved in disk reads and writes. Spark also

offers built-in libraries for Machine Learning, Graph Processing, Stream processing

and SQL to deliver seamless superfast data processing along with high programmer

productivity. Spark is compatible with Hadoop file systems and tools. Spark is an

alternative to MapReduce rather than a replacement for Hadoop file system. It has

Learning Objectives

■ Recognize the need for stream processing

■ Discuss Apache Spark and its architecture

■ Describe RDD and DAG as major features of Spark

■ Understand MLLib and GraphX libraries within Spark

■ Discuss many use cases for Spark

94 Big Data

also become a more efficient and productive alternative for Hadoop ecosystem, and

is increasing being used in industry.

 Apache Spark was developed in 2009 in UC Berkeley’s AMPLab, and open sourced

in 2010 as an Apache project. It can process data from a variety of data repositories,

including the Hadoop Distributed File System (HDFS), and NoSQL databases such

as HBase and Cassandra. Spark prioritizes in-memory processing to boost the perfor-

mance of big data analytics applications, however, it can also do conventional disk-

based processing when data sets are too large to fit into the available system memory.

Spark enables applications in Hadoop clusters to run up to 100 times faster in memory

and 10 times faster even when running on disk. Spark gives us a comprehensive,

unified solution to manage Big Data processing requirements with a variety of use

cases, and data sets that are diverse in nature (text data, graph data etc.) as well as

the source of data (batch vs. real-time streaming data).

7.1 SPARK ARCHITECTURE

The core Spark engine functions partly as an application programming interface (API)

layer and underpins a set of related tools for managing and analyzing data. These

include a SQL query engine, a library of machine learning algorithms, a graph pro-

cessing system, and streaming data processing software (Figure 7.2). Spark allows

programmers to develop complex, multi-step data pipelines using directed acyclic

graph (DAG) pattern. It also supports in-memory data sharing across DAGs, so that

different jobs can work with the same data. Spark runs on top of existing HDFS in-

frastructure to provide enhanced and additional functionality.

FIGURE 7.1 Big data architecture

 Stream Processing with Spark 95

Spark SQL
structured data

Spark Streaming
real-time

MLib
machine
learning

GraphX
graph

processing

Spark Core

Standalone Scheduler YARN Mesos

FIGURE 7.2 Spark architecture

Next, we explain the two important innovations in Spark: RDDs and DAG.

7.1.1 Resilient Distributed Datasets (RDDs)

RDDs, Resilient Distributed Datasets, is a distributed memory construct. These are

motivated by two types of applications that current computing frameworks handle

inefficiently: Iterative algorithms, and Interactive data mining tools. In both cases,

keeping data in memory can improve performance by an order of magnitude.

RDDs are immutable and partitioned collection of records. They can only be created

by coarse grained operations such as map, filter, group by, etc. Coarse grained opera-

tions mean that the operations are applied on all elements in a dataset. RDDs can

only be created by:

 (a) Reading data from a stable storage such as HDFS or

 (b) Transformations on existing RDDs.

Once data is read into an RDD object in Spark, a variety of operations can be per-

formed on the RDD by invoking abstract Spark APIs. The two major types of operation

available are transformations and actions.

 (a) Transformations return a new, modified RDD based on the original. Several

transformations are available through the Spark API, including map (), filter

(), sample (), and union ().

 (b) Actions return a value based on some computation being performed on an RDD.

Some examples of actions supported by the Spark API include reduce (), count

(), first (), and for each ().

96 Big Data

7.1.2 Directed Acyclic Graph (DAG)

DAG refers to a Directed Acyclic Graph. This approach is an important feature for

real-time data processing platforms such as Spark, Storm, and Tez, and helps them

offer amazing new capabilities for building highly interactive, real-time computing

systems to power real-time BI, predictive analytics, real-time marketing, and other

critical systems.

DAG Scheduler is the scheduling layer of Apache Spark that implements stage-

oriented scheduling, i.e. after an RDD action has been called it becomes a job that is

then transformed into a set of stages that are submitted as task-sets for execution.

In general, DAG Scheduler does three things in Spark:

 (a) Computes an execution DAG, i.e. DAG of stages, for a job;

 (b) Determines the preferred locations to run each task on;

 (c) Handles failures due to shuffle output files being lost.

7.2 SPARK ECOSYSTEM

Spark is an integrated stack of tools responsible for scheduling, distributing, and

monitoring applications consisting of many computational tasks across many worker

machines, or a computing cluster. Spark is written primarily in Scala, but includes

code from Python, Java, R, and other languages. Spark comes with a set of integrated

tools that reduce learning time and deliver higher user productivity. Spark ecosystem

includes Mesos resource manager, and other tools.

Spark has already overtaken Hadoop in general because of benefits it provides in

terms of faster execution in iterative processing algorithms.

7.3 SPARK FOR BIG DATA PROCESSING

Spark support big data mining through many tools such as MLlib, GraphX, SparkR,

Spark SQL, and Streaming library.

7.3.1 MLlib

MLlib is Spark’s machine learning library. It consists of basic machine learning algo-

rithms such as classification, regression, clustering, collaborative filtering, dimension-

ality reduction, lower-level optimization primitives, and higher-level pipeline APIs.

RDDs help Spark excel at iterative computation, thus enabling MLlib to run fast.

MLlib contains high-quality algorithms that leverage iteration, and can yield better

 Stream Processing with Spark 97

results than the one-pass approximations sometimes used on MapReduce. In addi-

tion, Spark MLlib is easy to use and it can support Scala, Java, Python, and SparkR.

For example, decision trees is a popular data classification technique, Spark MLlib

can support decision trees for binary and multiclass classification, using both continu-

ous and categorical features. The implementation partitions data by rows, allowing

distributed training with millions of instances.

7.3.2 Spark GraphX

Efficient processing of large graphs is another important and challenging issue.

Many practical computing problems concern large graphs. For example, Google runs

its PageRank on tens of billions of webpages and maybe a trillion weblinks. GraphX

is Spark’s component for graphs and graph-parallel computation. At a high level,

GraphX extends the Spark RDD by introducing a new Graph abstraction: a directed

multi-graph with properties attached to each vertex and edge.

To support graph computation, GraphX exposes a set of fundamental operators

such as subgraph, joinVertices, and aggregateMessages on the basis of an optimized

variant of the Pregel API (Pregel is the graphs processing system at Google that

powers PageRank). In addition, GraphX includes a growing collection of graph algo-

rithms and builders to simplify graph analytics tasks.

FIGURE 7.3 Spark ecosystem

98 Big Data

One can compute the PageRank of nodes in a graph as follows, using Scala on Spark:

//load the edges as a graph object

val graph = GraphLoader.edgeListFile (sc, “outlink.txt”)

// Run Pagerank

val ranks = graph.pagerank(0.0001).vertices

// join the rank with the webpages

val pages = sc.textFile(“pages.txt”).map{line => val fields = line.split(“,”)
(fields(0).toLong, fields(1)) }

val ranksByPagename = pages.join(ranks).map { case (id, (pagename, rank)) =>
(pagename, rank)}

//print the output

println(rankByPagename.collect().mkString(“\n”))

7.3.3 SparkR

R is a popular statistical programming language with several extensions that support

data processing and machine learning tasks. However, interactive data analysis in

R is usually limited as the runtime is single-threaded and can only process data sets

that fit in a single machine’s memory. SparkR is an R package initially developed at

the AMPLab to provide an R frontend to Apache Spark. It uses Spark’s distributed

computation engine to run large scale data analysis from the R shell. SparkR exposes

the RDD API of Spark as distributed lists in R.

For example, one can read an input file from HDFS and process every line using lap-

ply on a RDD, to compute space-separated words per line.

sc<- sparkR.init(“local”)

lines <- textFile(sc, “hdfs://data.txt”)

wordsPerLine <- lapply(lines, function(line)) { length(unlist(strsplit(line,” “)))}

In addition to lapply, SparkR also allows closures to be applied on every partition using

lapplyWithPartition. Other supported RDD functions include operations like reduce,

reduceByKey, groupByKey and collect.

7.3.4 SparkSQL

Spark SQL is a language provided to deal with the structured data. Using this one

can run queries on the data and get some meaningful result. It supports queries

through SQL as well as HiveQL (Apache’s Hive version of SQL).

 Stream Processing with Spark 99

7.3.5 Spark Streaming

Spark Streaming gains data streams from input sources, processes them in a cluster,

and pushes out to databases/ dashboards. Spark further chops up data streams into

batches of few seconds. Spark treats each batch of data as RDDs and processes them

using RDD operations. The processed results are pushed out as batches.

7.4 SPARK APPLICATIONS

Some real uses cases that are solved well by a tool like Apache Spark include:

 1. Real-time Log Data monitoring.

 2. Massive Natural Language Processing.

 3. Large Scale Online Recommendation Systems.

A simple Wordcount application can be run in Spark shell as below.

val textFile = sc.textFile(“C:\\Users\\MyName\\Documents\\obamaSpeech.txt”)

//Comment: saves the text file as textFile

val counts = textFile.flatMap(line => line.split(“ “)).map(word => (word, 1))
.reduceByKey(_ + _)

//Comment: Calculate the total words by splitting by space

counts.count();

//Results the output as below

Long = 52

counts.saveAsTextFile(“C:\\Users\\MyName\\Desktop\\counts1”)

//Comment: saves the file on Desktop

7.4.1 Spark vs Hadoop

Spark and Hadoop are both popular top-level Apache projects dedicated to Big Data

processing. For many years, Hadoop was the leading open source Big Data platform,

and many companies already use a distributed computing framework, e.g. Hadoop

based on MapReduce. However, Spark is gradually gaining attention, and has acquired

more than 50% market share. Table 7.1 provides a comparison between Hadoop and

Spark.

100 Big Data

Table 7.1

Comparison between Hadoop and Spark

Feature Hadoop Spark

Purpose Resilient cost-effective storage and

processing of large data sets

Fast general-purpose engine for large-

scale data processing

Core component Hadoop Distributed File system

(HDFS)

Spark Core, the in-memory processing

engine

Storage HDFS manages massive data collec-

tions across multiple nodes within a

cluster of commodity servers.

Spark doesn’t do distributed storage. It

operates on distributed data collections

Fault tolerance Hadoop uses replication to achieve

fault tolerance

Spark uses RDD for fault tolerance that

minimizes network I/O

Nature of processing Accompanied by MapReduce, it in-

cludes batch processing of this data

in parallel mode

Batch as well as stream processing

Sweet spot Batch processing Iterative and interactive processing jobs,

that can fit in the memory

Processing speed Map Reduce is slow Spark can be up to 10x faster than Ma-

pReduce for batch processing and up to

100x faster for stream processing

Security More secure Less secure

Failure recovery Hadoop can recover from system

faults or failures since data are writ-

ten to disk after every operation

With Spark, data objects are stored in

RDD. These can be reconstructed after

faults or failures

Analytics tools Separate engine Built-in MLLib (Machine Learning) and

GraphX (Graph Processing) libraries

Compatibility Primary storage model is HDFS Compatibility with HDFS and other

storage formats

Language support Java Scala is native language. APIs for py-

thon, java, R, others

Driving organization Yahoo AMPLabs from UCBerkeley

Technology owners Apache, Open-source, free Open-source, free

Key distributors Cloudera, Horton, MapR Databricks, AMPLabs

Cost of system Medium to High Medium to High

 Stream Processing with Spark 101
7.5 CONCLUSION

Spark is a new integrated system for Big Data processing. Its most important core

abstraction is Resilient Distributed Datasets (RDDs), an in-memory construct that

provides 10–100x processing speed over Hadoop. Directed Acyclic Graphs (DAG) based

execution engine delivers superior execution speed. Important libraries like MLlib and

GraphX make Spark a powerful open source processing engine that delivers speed,

ease of use, and sophisticated analytics.

Review Questions

 1. Describe the Apache Spark ecosystem.

 2. Compare Spark and Hadoop in terms of their ability to do stream computing?

 3. What is an RDD? How does it make Spark faster?

 4. Describe three major capabilities in Spark for data analytics.

True/False Questions

 1. Apache Spark is an integrated, in-memory, general-purpose engine for batch

processing.

 2. Spark achieves 10–100x performance over Hadoop by operating with an in-

memory construct called ‘Resilient Distributed Datasets’.

 3. Spark has built-in libraries for Machine Learning and Graph Processing.

 4. DAG is a directed acyclic graph for Apache Spark that implements stage-oriented

scheduling.

 5. Spark is written primarily in R, but includes code from Python, Java, Scala, and

other languages.

 6. Spark excels at iterative computation, enabling MLlib to run fast.

 7. GraphX extends the Spark RDD by introducing a new Graph abstraction: a di-

rected multi-graph.

 8. Spark Streaming gains data streams from input sources, processes them in a

cluster, and pushes out the data directly to the users.

 9. Spark was developed at the MIT’s High Performance Computing Lab.

 10. Apache Spark is a good system for transaction processing.

Chapter 8
New Ingesting Data

Learning Objectives

 ■ Recognize need for a Big Data ingest system

 ■ Describe messaging system architectures

 ■ Analyze Kafka system, its architecture, and key concepts of producers, consumers, brokers, and topics

 ■ Understand the use cases of Kafka

 ■ Know Zookeeper and its support role for Kafka

INTRODUCTION

Big Data arrives at unpredictable speeds and quantities. An ingest system receives

data and communicates it to target applications. All data should be smoothly received,

and made available for target applications to access securely and reliably at their

own convenience. An ideal ingest system would be flexible and scalable to receive

data from all types of sources, at any time and speed and in any quantity; and make

it available to all target applications without loss of data or speed.

A Data ingest system is a reliable and efficient point of reception for all data coming

into a system. Incoming data is treated like messages, and is put into an organized

set of locations, from where the target applications can fetch them when they are

ready. An effective data ingest mechanism is achieved by creating a fast and flexible

buffer for receiving and storing all incoming streams of data. The data in the buffer is

stored in a sequential manner, and its contents are made available to all consuming

applications in a fast and orderly manner.

Learning Objectives

■ Recognize need for a Big Data ingest system

■ Describe messaging system architectures

■ Analyze Kafka system, its architecture, and key concepts of producers, consumers, brokers, and topics

■ Understand the use cases of Kafka

■ Know Zookeeper and its support role for Kafka

 New Ingesting Data 103
Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

8.1 MESSAGING SYSTEMS

A Messaging System is an asynchronous mode of communicating data between ap-

tem, and a publish-subscribe (pub-sub) system. Most of the messaging patterns now

follow pub-sub model.

With huge amounts of data coming in from different sources, and many more consum-

ing applications, a point-to-point system of delivering messages from source to target,

becomes inadequate and slow. Alternatively, incoming data can be categorized into

certain subjects or topics, and it could be stored in the respective location or loca-

tions for those topics. Now the data is available for consumption by any application

that is interested in data related to a topic. Each consuming application can choose

to read data about one or more topics of its interest. This is called the publish-and-

subscribe system.

8.1.1 Point to Point Messaging System

In a point-to-point system, every message is directed at a particular receiver. A com-

mon queue can receive messages from many producers or messages. Any particular

message can be received and consumed by only one receiver. Once that target con-

sumer reads a message in the queue, that message disappears from that queue. The

typical example of this system is an Order Processing System, where each order will

be processed by one Order Processor.

FIGURE 8.1 Big data architecture

104 Big Data

8.1.2 Publish-Subscribe Messaging System

In a pub-sub messaging system, the applications publish their output to a standard

messaging queue. The target recipient will only need to know where to get the mes-

sage, whenever it is ready to pick up the message. Applications thus can ignore the

mechanics of interaction with other applications, and simply care about the message

itself. This is especially valuable when there may be many target recipients for a

message. In a pub-sub system, messages are entered into the messaging queue asyn-

chronously from client applications. A pub-sub system needs to be fast and secure to

serve many applications, both producers and subscribers. Messages are also replicated

across multiple locations for reliability of data.

8.2 DATA INGEST SYSTEMS

There are two popular Data ingesting systems used in Big Data. An older system,

called Apache Flume, is closely tied to the Hadoop. Flume is a simple, robust, and

extensible tool for data ingestion from various data producers and storing into Hadoop

distributed file system. Flume agents collect data from data sources, aggregate it,

and pushed into a centralized store such as HDFS or HBase.

A new and more popular system is a general-purpose pub-sub system called Apache

Kafka. It can connect to all types of sources and target applications. In this chapter

we will discuss the new system, Kafka.

8.3 APACHE KAFKA

 Apache Kafka is an open source publish-and-subscribe message broker system. Kafka

aims to provide an integrated high-throughput, low- latency messaging platform for

handling real-time data feeds. In the abstract, it is a single point of contact between

all producers and consumers of data. All producers of data send data to Kafka. All

consumers of data read data from Kafka (Figure 8.2).

Kafka is a distributed, partitioned, scalable, replicated messaging system, with a

simple but unique design. It was initially developed by LinkedIn and was open sourced

to Apache in 2011. It is written in Scala programming language. Kafka is a valuable

for an enterprises level infrastructure because of its simplicity and scalability.

 New Ingesting Data 105
Producer

Producer

Producer

Consumer

Consumer

Consumer

FIGURE 8.2 Kafka core idea

8.4 USE CASES

The very general nature of Kafka’s design makes it suitable for many use cases.

1. Messaging

Kafka is a very good alternative for a traditional messaging system because Kafka

messaging system has better throughput, built in partitioning, replication, and bet-

ter fault tolerance. Kafka is very good solution for a large scale message processing

applications.

2. Website Activity Tracking

Website Activity Tracking was one of initial use cases for Kafka for LinkedIn. Users’

online activity tracking pipeline was rebuilt as a set of real time data feeds. Web ac-

tivity tracking includes very large volume of data, and Kafka is very good at handling

huge volumes of data. User activity types such as page view, searches, clicks, etc.

can be designated as central topics, and the activity data can be published to those

topics. Those events are available for real time or offline processing and reporting.

3. Stream Processing

Popular frameworks such as Storm and Spark Streaming can read data from a Kafka

topic, process it, and send to other users and consumer applications. They may even

write it back to Kafka to a new topic. Kafka’s strong durability is also very useful

for stream processing.

4. Log Aggregation

Log aggregation typically gathers physical log files from many servers and puts them

all in a central location for processing. Kafka can abstract away the details of the

106 Big Data

files, and provide a clean abstraction of log data as a stream of messages. Kafka then

allows for lower-latency processing and easier support for multiple data sources and

distributed consumption of this data. Unlike dedicated log-centric systems, Kafka of-

fers higher performance and stronger durability guarantees due to data replication.

5. Commit Log

Kafka can be used as external commit log for a distributed database system. This

audit log can help to re-sync data between the failed nodes to restore their data. The

log compaction in Kafka helps to achieve this feature more efficiently.

8.5 KAFKA ARCHITECTURE

In the abstract, Kafka is a master broker (or a collection of brokers) that deals with

all producers and consumers of data. A producer pushes data into Kafka system at

its own speed, scale and convenience. A consumer pulls data out of the system at

its own speed, scale and convenience. All the received data in Kafka is organized by

categories, called topics. Incoming data is sorted and stored into topic servers. The

topic servers are replicated for reliability and ease of access. The consumers of data

can subscribe to one or more topics (Figure 8.3).

Producer 1

Producer 2

Producer 3

Consumer 1

Consumer 2

Consumer 3

ZooKeeper
(Support Services)

Pu
sh

m
es
sa
g
e

Pu
ll
m
es
sa
g
e

Data Producers Kafka Brokers Data Consumers

Broker
(Topic 1)

Broker
(Topic 2)

Broker
(Topic n)

FIGURE 8.3 Kafka ecosystem

In practice, there are many brokers (also called servers, or partitions) for each topic,

for reliability of the messaging system. Thus two or more brokers will store data on

each topic. One broker is assigned as a leader for a topic. Only one broker can be

leader at any given time. In the lead broker fails, then a second one can automatically

take over as the leader and prevent the loss of access to data.

 New Ingesting Data 107
Kafka is designed for distributed high throughput systems. In comparison to other

messaging systems, Kafka allows almost no processing of data in its servers. That

gives it high throughput. It has built-in partitioning to provide infinite scalability.

Adding new broker is as simple as adding new partitions on new storage. It has built-

in replication of data, and thus delivers fault-tolerance. All these features make it a

good fit for large-scale message processing applications. Kafka is very fast and can

perform 2 million writes/second. It also guarantees zero downtime and zero data loss.

Kafka also can handle many diverse consumers. It integrates very well with Apache

Storm, Spark, and other real-time streaming data applications. There are many

contributing organizations helping to improve the Kafka open-source system. It has

very well documented online resources. Many big organizations have used it such

as LinkedIn, Cisco, Spotify, PayPal, HubSpot, Shopify, Uber and more. HubSpot, for

example, uses Kafka to deliver real time notification of when a recipient opens their

email.

8.5.1 Producers

A data producer is responsible for selecting the topic, and partition, the message that

it wants to convey. The producer can use round-robin algorithm to balance the load

among partitions. There can be both synchronous and asynchronous producers of mes-

sages. All the messages are published to the partition. It is automatically replicated

to other partitions.

8.5.2 Consumers

A data consumer is responsible for reading the data about the topic that it has sub-

scribed. The consumer is responsible for reading the data within a reasonable period

of time, before the queues are emptied for efficient management of storage. Different

consuming applications can read the data at different times. Kafka has stronger or-

dering guarantees than a traditional messaging system. A consumer needs to know

how far it has read in that queue, so as to avoid duplicates or lose some data.

8.5.3 Broker

A broker is a server in a Kafka cluster. The cluster may have many servers or brokers.

Each broker can serve one of more producers, and one or more topics.

8.5.4 Topic

A topic is a category of messages, into which incoming messages are published. For

each topic there is a separate partition log for storage of messages. Each partition

108 Big Data

has an ordered sequence of messages for that topic. Each message in the partition

is assigned a unique sequential number, also called the offset. This offset helps to

identify each message within the partition (Figure 8.4).

FIGURE 8.4 Anatomy of a topic

The consumer reads the data sequentially according to offset numbers. The consumer

is responsible for maintaining the offset to remember how far it has read. Generally,

the offset increases linearly as messages are consumed. However, a consumer can

reset offset to access the data gain and reprocess it as needed.

The Kafka cluster retains all the published messages whether or not they have been

consumed, for a configurable period or not. For example, if the log retention is set

to seven days, then for the seven days after publishing, the message is available for

consumption. After seven days, Kafka discards the messages to free up space.

Kafka’s performance is not affected by the size of data. Each partition must fit on the

servers that host it, but a topic may have multiple partitions. This enables Kafka to

manage an arbitrary amount of data. Also, it acts as the unit of parallelism.

8.5.5 Summary of Key Attributes

 1. Disk based: Kafka works on a cluster of disks. It keeps writing to the disk to

make the storage permanent.

 2. Fault tolerant: Data in Kafka is replicated across multiple brokers. When any

leader broker fails, a follower broker takes over as leader and everything con-

tinues to work normally.

 3. Scalable: Kafka can scale up easily by adding more partitions or more brokers.

More brokers help to spread the load and this provides greater throughput.

 New Ingesting Data 109
 4. Low latency: Kafka does very little processing on the data. Thus it has very low

latency rate. Messages produced by the consumer are published and available

to the consumer within a few milliseconds.

 5. Finite Retention: Kafka by default keeps the message in the cluster for a week.

After that the storage is refreshed. Thus the data consumers have up to a week

to catch up on data, in case they fall behind for any reason.

8.5.6 Data Replication

The Kafka cluster maintains multiple servers over the distributed network. The par-

titions of the log are maintained over this network. Each server handles data and

requests for a share of the partitions. Each partition is replicated across a configurable

number of servers for fault tolerance. But one of the server for each partition acts as

the main server also called “leader” while it may or may not have one or more second-

ary server also known as “followers”. The leader server is responsible for handling all

the read and write operation for the partition while the followers silently replicates

the leader. The follower server becomes very helpful when the leader server fails.

The follower server automatically becomes the leader and then handles the failure.

One server can be a leader for some of the partitions on it, while it may be follower

for other partitions. Thus one server can act as both leader and follower. This helps

to balance the work load on the servers within the cluster.

8.5.7 Guarantees

Data sent always maintain the order they were sent. For example, if a message M1

and M2 were sent by the same producer and M1 was sent first then the message M1

will have lower offset than message M2. Therefore, M1 will always appear before the

M2 for the consumer.

Each topic has a replication factor N and the system can tolerate up to N-1 server

failures without losing any messages committed to the log.

8.5.8 Client Libraries

Kafka supports following client libraries:

 1. Python: Pure python implementation with full protocol support

 3. C: High performance C library with full protocol support

 3. C++, Ruby, JavaScript and more.

110 Big Data

8.6 APACHE ZOOKEEPER

Kafka is built on top of ZooKeeper. Apache Zookeeper is a distributed configuration

and synchronization service in Hadoop clusters. It serves as the coordination inter-

face between the Kafka brokers and data consumers. The Kafka servers stores basic

metadata in Zookeeper and shares information about topics, brokers, and consumer

offsets (queue readers) and so on.

Since Zookeeper does its own layer of replication, the failure of a Kafka broker does

not affect the state of the Kafka cluster. Even if Zookeeper fails, Kafka will restore

the state, once the Zookeeper restarts. This gives zero downtime for Kafka. Zookeeper

also manages the alternative leader broker selection, in case of a Kafka leader failure.

8.6.1 Kafka Producer Example in Java

//Configure

Properties config = new Properties();

config.setProperty(ProducerConfig.BOOTSTRAP_SERVER_CONFIG, “localhost:8082”);

KafkaProducer producer = new KafkaProducer(config);

ProducerRecord record= new ProducerRecord(“topic”, “key”.getBytes(), ”value”.
getBytes());

Future<RecordMetaData> response = producer.send(record);

8.7 CONCLUSION

Big data is ingested using a dedicated system. Publish-and-subscribe systems are

efficient ways of delivering data from many sources to many targets, in a reliable,

secure, and efficient way. Kafka is an open-source, reliable, secure, and scalable data

publish-subscribe messaging system. It is a set of brokers that deal with producers as

well as consumers of data. Messages are published to a set of central topics. Consumer

can subscribe to topics. Kafka uses a leader-follower system of managing replicated

partitions for the same set of data, to ensure full reliability and zero downtime.

Review Questions

 1. What is a data ingest system? Why is it an important topic?

 2. What are the two ways of delivering data from many sources to many targets?

 New Ingesting Data 111
 3. What is Kafka? What are its advantages? Describe 3 use cases of Kafka.

 4. What is a topic? How does it help with data ingest management?

True/False Questions

 1. A dedicated ingest system is needed to accept the data because Hadoop cannot

directly receive data.

 2. Point-to-point messaging systems are not suitable for large volumes of data.

 3. Kafka is a pub-sub messaging system.

 4. Kafka is used mostly for batch processing systems.

 5. A data producer is a source of incoming data.

 6. Kafka can handle up to 64 data sources.

 7. Kafka consumers can read the data anytime in the future.

 8. Kafka organizes data in terms of categories called Topics.

 9. Data for every topic is stored in a separate server.

 10. A consumer can subscribe up to 64 Topics.

 11. A Kafka broker is dedicated to a particular topic.

 12. Kafka guarantees the order of sequence of messages will be in the order in which

they were received.

 13. ZooKeeper provides support services to Kafka brokers and data producers and

consumers.

 14. Kafka uses a leader-follower system to manage multiple partitions for a topic.

 15. Kafka was developed at Facebook.

Chapter 9
 Cloud Computing

Learning Objectives

 ■ Know key concepts of cloud computing

 ■ Examine its technical and business benefits

 ■ Understand the concept of virtualization and hypervisors

 ■ Analyze different cloud computing models

 ■ Be aware of the myths and challenges of cloud computing

INTRODUCTION

Cloud computing is a cost-effective and flexible mode of delivering IT infrastructure

over internet, as a service to clients on a metered basis. The cloud computing model

offers clients enormous flexibility to use as much IT capacity – compute, storage, net-

work – as needed without having to invest in a dedicated IT capacity on one’s own.

The IT usage can be scaled up or down in minutes. The complex IT infrastructure

management skills are all owned by the cloud computing provider, and any problems

can be resolved much faster. The client can simply access a smoothly running IT

infrastructure over a fast internet connection. IT capacity in the cloud can also be

purchased as a custom package depending upon one’s needs in terms of average and

peak IT requirements. The computing cloud is the ultimate cosmic computer aligned

with all laws of nature.

Managing large and fast data streams is a huge challenge. It requires making criti-

cal decisions about its storage, structure, and access. This data would be stored in

large clusters of hundreds or thousands of inexpensive computers. Such clusters of

machines are also called server farms. The location and size of such clusters impacts

Learning Objectives

■ Know key concepts of cloud computing

■ Examine its technical and business benefits

■ Understand the concept of virtualization and hypervisors

■ Analyze different cloud computing models

■ Be aware of the myths and challenges of cloud computing

 Cloud Computing 113

costs. The server farms may be located in an organization’s own data centers, or they

may be rented from specialized third-party organizations called cloud computing

service providers.

Cloud computing provides an organization’s IT leadership a cost-effective and pre-

dictable solution for reliably meeting their large data management needs. There are

many cloud computing vendors offering this service. Prices are dropping regularly,

because per-unit IT components are getting cheaper by the day. In addition, there is

growing volume of business and, also, effective competition. With cloud computing, the

IT expense becomes an operating expense rather than a capital expense. The costs of

IT become aligned with revenue streams and makes cash flow management easier.

Another major reason for enterprises moving to cloud computing is to experiment

with new and risky projects. This flexible model makes it much easier to launch

new products and services, without being exposed to the risk of a heavy loss in IT

infrastructure. For example, a new Hollywood movie’s site will have millions of visi-

tors to its website for a month before and for a month after the movie’s release date.

After that the visits to the website will drop dramatically. The website owner would

benefit enormously from using a cloud computing model where they pay for the peak

web usage capacity for those few months, and much less as the usage drops down.

More importantly, the flexibility ensures that their website will not crash just in

case the movie becomes a super-hit and attracts unusually large number of visitors

to the website.

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 9.1 Big data architecture

114 Big Data

9.1 CLOUD COMPUTING CHARACTERISTICS

Here are the major characteristics of a cloud computing model.

 1. Flexible Capacity: The capacity can scale up rapidly. One can expand and reduce

resources according to one’s specific service requirements, as and when needed.

The cloud infrastructure internally does regular workload balancing among the

needs of millions of clients, and this helps bring down costs for everyone.

 2. Attractive payment model: Cloud computing works on a pay-per-use model. i.e.

one pays only for what one uses, and for how long one uses it. IT costs become

an expense rather than a capital expense for the client. The resource prices may

be negotiated at long-term contract rates, and can also be purchased at spot

market rates.

 3. Resiliency and Security: The failure of any individual server and storage

resources does not impact the user. The servers and storage for all clients are

isolated to maximize security of data.

9.1.1 In-house Storage

Most organizations have their dedicated data centres for running their regular IT

operations. An organization may decide to expand its own data centre to store large

streams of data. The organization can ensure complete security and privacy of its data

if it keeps all the data in-house. However, the costs and complexity of managing this

data infrastructure are increasing, and it is not cost-effective for every organization

to manage huge data centres. Hiring and retaining scarce advanced skills to manage

such data centres would also be a challenge.

9.2 CLOUD STORAGE

It is now becoming a trend for organizations to choose to store their data in massive

data centers owned by other specialized companies. Their data and processing capac-

ity resides in some sort of a huge cloud out there, which is accessible from anywhere

anytime through a simple internet connection (Figure 9.2).

Companies like Amazon, Google, Microsoft, Apple, and IBM are among the major

providers of cloud storage and computing services around the world. They own and

operate data centers with millions of computers in them.

Commercially, cloud service providers can consolidate the requirements of thousands

or millions of customers, and supply flexible amounts of data storage and computing

 Cloud Computing 115

facility available to clients on a per-usage basis. This pay model is similar to how

electric utility companies charge consumers for their usage of electricity in homes and

offices. Cloud computing offers much lower costs per use, just like using the electric

utility costs much less than owning and operating one’s own electricity generators

(Figure 9.3).

FIGURE 9.3 A cloud computing data center

FIGURE 9.2 Cloud storage system

116 Big Data

A major disadvantage of cloud storage is that the data is stored away from one’s physi-

cal control. Thus security of precious data is left to the hands of the cloud computing

provider. While the security protocols are rapidly improving, however, there are no

failsafe methods for securing data in the cloud.

There is also a risk of being locked into one provider’s infrastructure. The cost-benefit

tradeoffs have definitely tilted towards using cloud computing providers. At some

future point in time, the cloud services providers might be heavily regulated like the

electric utilities.

9.3 CLOUD COMPUTING: EVOLUTION OF VIRTUALIZED
ARCHITECTURE

Cloud computing is essentially a commercial model for virtualized server infrastruc-

ture. IBM began to offer time-sharing services on its mainframe computers beginning

in the 1960s. That same resource-sharing technology has been offered on networks

of small machines through the virtualization process.

Virtualization assumes that logical machines can be differentiated from physical

machines. A physical server could run multiple Virtual Machines (VMs). One virtual

machine may span multiple physical servers. The virtualization software is called a

hypervisor. It abstracts all machines into Virtual Machines, using easy GUI interface

(Figure 9.4). A virtualization software can typically run on a heterogeneous physical

FIGURE 9.4 Virtualized architecture of cloud computing

 Cloud Computing 117
Cloud Computing Service Models

Control/Governance

Le
ve
lo

fA
b
st
ra
ct
io
n

Flexib
ility

o
f Purp

o
se

SaaS
Software as a Service

PaaS
Platform as a Service

IaaS
Infrastructure as a Service

Public Hybrid Private

Economies of Scale

FIGURE 9.5 Cloud computing service models

 1. The range of cloud computing services from a cloud computing provider, fall in

three broad buckets:

 (a) Infrastructure as a service: This is the lowest level of services, and in-

cluded only raw capacity of compute, storage, and networking. The price for

this services is the lowest.

 (b) Platform as a service: This includes IaaS, along with other technologies

and services. These are still very general tools such open source Hadoop or

Spark or Cassandra implementation, along with certain monitoring tools.

The costs are a little higher because of the additional management and

monitoring services provided by the provider.

infrastructure, and convert all IT capacity into a single unified capacity. This capacity

can then be provisioned in slices and packages. The user applications are not aware

that they are running in a virtualized environment; so they run as if running on a

dedicated machine. The applications can also run on top of their own native operat-

ing systems.

Cloud Service Models

There are two major dimensions to conceptualize the Cloud computing models: the

scope of services received; and the control over and cost of those services (Figure 9.5).

118 Big Data

 (c) Software as a service: This includes the computing platform as well as

business applications that get work done. For example, salesforce.com was

one of the first CRM application sold only on a SaaS model. Google’s email

service is sold to organizations on a per-user-per-year basis. The costs of

this service model are higher than the platform-as-a-service model.

 2. The other way the cloud services differ is in terms of the ownership and control.

 (a) Public cloud: This will be a large shared infrastructure made available to

all, in a low-cost and multi-tenancy model. The client can access it using

any device. The downside is that the data also resides on the cloud, and

thus could be vulnerable to theft or hacking. The costs to client are low,

and variable depending upon use.

 (b) Private cloud: This is a cloud version of an in-house IT infrastructure. The

organization will have exclusive control over the entire infrastructure. The

costs would be fixed and higher.

 (c) Hybrid cloud: This is a mix of flexibility of capacity, and much control

over some key aspects of it. One could retain complete control over critical

applications, while using shared infrastructure for non-critical applications.

All levels of infrastructure and pay serve different levels of needs for client organi-

zations. However, most of the recent growth in cloud computing is happening in the

public cloud model because of the attractiveness of the dramatically lower prices.

9.4 CLOUD COMPUTING MYTHS

There are a couple of misconceptions about the costs and benefits of cloud computing.

 1. Myth: Public Cloud computing would satisfy all the requirement: scalability,

flexibility, pay per use, resilience, multitenancy, and security. Depending upon

the type of service selected (SaaS, IaaS, or PaaS), the service can satisfy specific

subsets of these requirements.

 2. Myth: Cloud computing would be useful only if you are outsourcing your IT func-

tions to an external service provider. One could use a private cloud computing

model for a section of IT applications to offer on-demand, scalable, and pay-per-

use deployments within your enterprise’s own data center.

9.5 CLOUD COMPUTING: GETTING STARTED

Learn more about the context for getting benefits from cloud computing. Select the

right model and level of cloud capacity. Set up the applications and a monitoring

 Cloud Computing 119
system for those application and the total cloud footprint. Choose a service provider,

say Amazon Web Services, the leading provider of cloud computing (Figure 9.6). Use

Appendix A to install Hadoop on AWS EC2 public cloud infrastructure.

FIGURE 9.6 AWS cloud adoption framework

9.6 CONCLUSION

Cloud computing is a business model to provide shared, flexible, cost-effective IT

infrastructure to get started quickly on building an application. For Big Data applica-

tions, it can be even more attractive to test the system using rented facilities, before

making the determination of investing in dedicated IT infrastructure.

Review Questions

 1. Describe Cloud Computing model.

 2. What are the advantages of cloud computing over in-house computing.

 3. Describe the technical architecture for Cloud computing.

 4. Name a few major providers of cloud computing services.

120 Big Data

True/False Questions

 1. Cloud computing simplifies computing for the end-users.

 2. Cloud computing is essentially a business model.

 3. Cloud computing offers instant scalability in data storage.

 4. Virtualization is a model of creating flexible units of computing and storage.

 5. Cloud model offers lower costs of computing.

 6. Data security is not an issue in cloud computing.

 7. There are two kinds of cloud computing ownership models.

 8. Cloud computing models can differ based on the range of services offered.

 9. Google is the largest public cloud computing provider.

 10. Cloud computing model can be implemented in-house also.

This section covers the other relevant concepts and tutorials for effectively man-

aging and utilizing Big Data.

 ➨ Chapter 10 will bring all the tools together in a case study of developing

web log analyzer, as an example of a useful Big Data application.

 ➨ Chapter 11 will cover the overall view of Data Mining tools and techniques

to extract benefit from Big Data.

 ➨ Chapter 12 will be a primer on Big data programming languages, Hive and

Pig.

 ➨ Appendix 1 will present the systematic way to install a Hadoop cluster on

a local machine and to run a sample Word count application.

 ➨ Appendix 2 will display systematic way to install a Hadoop cluster on a

cloud computing platform and to run a sample Word count application.

 ➨ Appendix 3 will demonstrate a tutorial on installing and running Spark.

Section 3

Chapter 10
Web Log Analyzer

Application Case Study

Learning Objectives

 ■ Understand the architecture of a typical big data application

 ■ Learn the design elements of a Web log analyzer application

 ■ Develop the sample code and outputs for such an application

INTRODUCTION

A web log analyzer is an automated software tool that helps to analyze and make

decisions on several issues regarding web application server logs. An ideal web log

analyzer would analyze unlimited streams of data and help keep the entire universe

running smoothly and without fault. This would be done by eliminating the need for

manually accessing the logs, automating the flow of information, and alerting the

system administrator as needed.

10.1 CLIENT-SERVER ARCHITECTURE

Every web-based application runs on a client-server architecture. Clients are entities

that access servers, and servers are entities that respond to the client with a solu-

tion. Many clients simultaneously try to access servers. The servers may be database

server, network server, the application server, or any server in the n-tier architecture.

For each request, a log entry is generated. The speed of access requests determined

the stream of log entries. This leads to a potentially huge log over time. The log can

be processed as stream of data. This log can also be stored on the servers for later

analysis.

Learning Objectives

■ Understand the architecture of a typical big data application

■ Learn the design elements of a Web log analyzer application

■ Develop the sample code and outputs for such an application

124 Big Data

Logs can be used for monitoring, audit, and analysis purposes. It can help with error

diagnostics in case a website becomes slow or it goes down. Logs can be analyzed to

detect hacking activity. They can also be analyzed to summarize the popularity of

webpages, and the distribution of the page requesters. It can help with access volumes,

and for scaling up or down the infrastructure.

10.2 WEB LOG ANALYZER

The log analyzer received streaming logs from a server location, and analyzes multiple

things using many algorithms to generate the desired results. The system is completely

automated. The log is produced, and it is consumed to make real-time reports. It is

easy to imagine the massive dataflow produced by the log in the server environment

while it is also being analyzed simultaneously on the administrator side. `

10.2.1 Requirements

This is a log analyzer to analyze a web application hosted on a server. It is a busy

application owned by a big company. It receives more than 15000 web access requests

per hour. All the access requests need to be logged, and dumped to Hadoop File sys-

tem periodically. The analyzer is required to ingest real-time log data, and filter out

a part of data for analyzing and dumping to HDFS. It has to do streaming data flow

management as well as batch processing. The analyzer needs to process the data

before it is dumped into HDFS, and also after it is put into HDFS. The system ad-

ministrators should be alerted in real time about possible threats, overloads, delays,

potentials errors, and any other damages. The results of all the analyses must be

stored in a database for later presentation in a graphical format. The results must

be made available for any period, without any missing time values. The log data has

to be preserved for future without losing any log data.

10.2.2 Solution Architecture

Get streaming data using Apache Flume, and send it to HDFS. Use Apache Spark for

data flow management platform and processing engine. Store the results of analysis

in MongoDB. This is a safe solution, because the data gets stored into Hadoop cluster

and is available for future requirements, even while it is being analyzed in real time.

The results of real-time processing also go into MongoDB. Figure 10.1 presents web

log analyzer architecture.

 Web Log Analyzer Application Case Study 125
webserver webserver webserver

log file log file log file

flume flume flume

HDFS
Hot Path

HDFS
Cold Path Analytics

Awesome
web

application

FIGURE 10.1 Web log analyzer architecture

10.2.3 Benefits of Such Solution

The advantages of such solution are:

 1. Real-time logging and analysis data generated on server. It is streamed directly

to HDFS by Flume agent without delay. Every log entry generated over every

single point of time is analyzed and used for monitoring and decision making.

 2. Automatic log handling and storage. Loading data into HDFS normally requires

manually running certain Hadoop commands. This log analyzer uses a Flume

agent or spark streaming to handle all data on its own, without any externally

managed efforts.

 3. Easy and convenient to implement: It is made possible by using built-in and

easy-to-customize machine learning algorithms in Spark.

 4. Easy error handling, server request handling, and overall server performance

optimization. It makes server smarter by keeping track of almost every aspects

of server.

126 Big Data

10.3 TECHNOLOGY STACK

The technology stack used for this application is shown below. A brief of each com-

ponent follows.

 1. Apache Spark v2

 2. Hadoop 2.6.0 cdh5

 3. Apache Flume

 4. Scala, Java

 5. MongoDB

 6. RestFul Webservices

 7. Front UI tools

 8. Linux Shell Scripts

10.3.1 Apache Spark

Spark is fast in-memory-based cluster computing technology, designed for fast and

streaming computation. It is built on top of Hadoop and MapReduce system, and it

extends MapReduce model to use more types of computation, which includes interac-

tive queries and stream processing. It has lot of libraries and packages like machine

learning (MLLib), graph computation (GraphX) etc. It claims to execute 10 to 100

times faster than Hadoop because of its in-memory computation model. It also sup-

ports multiple languages such as Scala, Python, Java, and R.

10.3.2 Spark Deployment

 1. Standalone

 2. Hadoop YARN

 3. SIMR: Spark in mapReduce //Mesos

10.3.3 Components of Spark

Spark Sql: Data abstraction called schemaRDD, which provides support for structured

and semi-structured data.

Spark Streaming: Ingests data in mini batch and perform RDD transformation on

those mini-batches. Streaming data analytics using RDD.

 Web Log Analyzer Application Case Study 127
MLLib (Machine learning): It is a distributed machine learning framework, which

operates in-memory at high speed, and offers many ML algorithms.

GraphX: This distributed graph processing framework provides API for many graph

computation algorithms.

Spark Core: This is a general execution engine for spark platform upon which all

other functionality is built. It takes care of task dispatching and scheduling, and

basic I/O functionalities.

Spark-shell: It is a powerful tool to analyze data interactively. It is available on scala

and python. Spark’s primary data abstraction is an in-memory collections of items

called RDD. It can be created from Hadoop input formats like HDFS, and by trans-

forming existing RDDs using filters and maps into new RDDs.

Scripting and Programming model using Spark Context: One can use an IDE to

develop and test the analytics code. One can then create a jar to run the analytics

using Hadoop architecture. The jar can also be submitted using spark-submit utility

to the Spark engine. For example:

spark-submit --class apache.accesslogs.ServerLogAnalyzer --master

* local ScalaSpark/Scala1/target/scala-2.10/Scala1-assembly-1.0.jar > output.txt

10.4 HDFS

HDFS is a distributed file system, that is at the core of Hadoop system.

 ■ Deployed on low cost commodity hardware

 ■ Fault tolerant

 ■ Supports Batch Processing

 ■ Designed for large dataset or large files

 ■ Maintains coherence through write once read many times

 ■ Moving computation to the location of the data.

10.5 MONGODB

It is a free and open-source cross-platform document-oriented database. It came into

existence as a NoSQL database and is classified as a NoSQL database program.

MongoDB supports field, range queries, regular expression searches.

128 Big Data

10.6 APACHE FLUME

Flume is an open source tool for handling streaming logs or data. It is a distributed

and reliable system for efficiently collecting, aggregating and moving large amount

of data from many different sources to a centralized data store. It is a popular tool to

assist with data flow and storage to HDFS. Flume is not restricted to log data. The

data sources are customizable so it might be any source like event data, traffic data,

social media data, or any other data source. The major Components of Flume are:

 ■ Event

 ■ Agent

 ■ Data Generators

 ■ Centralized Stores

10.7 OVERALL APPLICATION LOGIC

The system reads access logs and presents the results in tabular and graphical form

to end users. This system provides the following major functions:

 1. Calculate content size

 2. Count Response code

 3. Analyze requesting IP-address

 4. Manage End points

10.8 TECHNICAL PLAN FOR THE APPLICATION

Technically, the project follows the following structure:

 1. Flume takes streaming log from running application server and stores in HDFS.

Flume uses compression to store huge log files to speed up the data transfer and

for storage efficiency.

 2. Apache Spark uses HDFS as input source and analyzes data using MLLib. Apache

Spark stores analyzed data in MongoDB.

 3. RESTful java service presents JSON objects fetching from MongoDB and sending

to Front end. Graphical tools are used to present data.

 Web Log Analyzer Application Case Study 129
10.9 SCALA SPARK CODE FOR LOG ANALYSIS

Note: This application is written in Scala language. Below is the operative part of

the code. Visit github link below for the complete Scala code for this application.

//calculates size of log, and provides min, max and average size

// caching is done for repeatedly used factors

def calcContentSize(log: RDD[AccessLogs]) = {

 val size = log.map(log => log.contentSize).cache()

 val average = size.reduce(_ + _) / size.count()

 println(“ContentSize:: Average :: “ + average + “ “ +

 “ || Maximum :: “ + size.max() + “ || Minimum ::” + size.min())

 }

//Send all the response code with its frequency of occurrence as Output

def responseCodeCount(log: RDD[AccessLogs]) = {

 val responseCount = log.map(log => (log.responseCode, 1))

 .reduceByKey(_ + _)

 .take(1000)

 println(s”””ResponseCodes Count : ${responseCount.mkString(“[“, “,”, “]”)} “””)

 }

//filters ipaddresses that have more then 10 requests in server log

 def ipAddressFilter(log: RDD[AccessLogs]) = {

 val result = log.map(log => (log.ipAddr, 1))

 .reduceByKey(_ + _)

 .filter(count => count._2 > 1)

 // .map(_._1).take(10)

 .collect()

 println(“IP Addresses Count :: ${result.mkString(“[“, “,”, “]”)}”)

 } }

130 Big Data

10.10 SAMPLE LOG DATA

10.10.1 Sample Input Data

Input Fields (Selected Fields)

Certain fields have been omitted to make the code clear. The response code has been

colored in red as it is the basis of the major reports.

 1. ipAddress: String,

 2. dateTime: String,

 3. method: String,

 4. endPoint: String,

 5. protocol: String,

 6. responseCode: Long,

 7. contentSize: Long

Sample Input Rows of Data

64.242.88.10 [07/Mar/2014:16:05:49 -0800] “GET
/twiki/bin/edit/Main/Double_bounce_sender?topicparent=Main.ConfigurationVariables
HTTP/1.1” 401 12846

64.242.88.10 [07/Mar/2014:16:06:51 -0800] “GET
/twiki/bin/rdiff/TWiki/NewUserTemplate?rev1=1.3&rev2=1.2 HTTP/1.1” 200 4523

64.242.88.10 [07/Mar/2014:16:10:02 -0800] “GET
/mailman/listinfo/hsdivision HTTP/1.1” 200 6291

64.242.88.10 [07/Mar/2014:16:11:58 -0800] “GET
/twiki/bin/view/TWiki/WikiSyntax HTTP/1.1” 200 7352

64.242.88.10 [07/Mar/2014:16:20:55 -0800] “GET
/twiki/bin/view/Main/DCCAndPostFix HTTP/1.1” 200 5253

64.242.88.10 [07/Mar/2014:16:23:12 -0800] “GET
/twiki/bin/oops/TWiki/AppendixFileSystem?template=oopsmore¶m1=1.12¶m2=1.12
HTTP/1.1” 200 11382

 Web Log Analyzer Application Case Study 131
10.11 SAMPLE OUTPUT OF WEB LOG ANALYSIS

ContentSize:: Average:: 10101 || Maximum :: 138789 || Minimum ::0

ResponseCodes Count: [(401,113), (200,591), (302,1)]

IP Addresses Count:: [(127.0.0.1, 31), (207.195.59.160, 15), (67.131.107.5, 3),
(203.147.138.233, 13), (64.242.88.10, 452), (10.0.0.153, 188)]

EndPoints :: [(/wap/Project/login.php,15),(/cgi-bin/mailgraph.cgi/mailgraph_2.png,12),
(/cgi-bin/mailgraph.cgi/mailgraph_0.png,12),(/wap/Project/loginsubmit.php,12),(/cgi-
bin/mailgraph.cgi/mailgraph_2_err.png,12),(/cgi-bin/mailgraph.cgi/mailgraph_1.png,12),
(/cgi-bin/mailgraph.cgi/mailgraph_0_err.png,12),(/cgi-bin/mailgraph.cgi/mailgraph_1_err.
png,12),(/cgi-bin/mailgraph.cgi/mailgraph_3_err.png,12),(/cgi-bin/mailgraph.cgi/mail-
graph_3.png,12)]

Intermediate data is stored in Hadoop File System in CSV format

To see detailed code, visit: https://github.com/databricks/reference-apps/blob/master/

logs_analyzer/chapter1/scala/src/main/scala/com/databricks/apps/logs/chapter1/LogA-

nalyzer.scala

Top 10 Requests
/

FIGURE 10.2 A pie chart showing top ten requests of web log analyzer

This web log analyzer (Figure 10.2) can be enhanced in many ways. For example, it

can analyze history of logs from previous years and discover web access trends. This

application can also be made to discard data older than 5 years into permanent and

backup storage.

132 Big Data

10.12 CONCLUSION

This application shows how to create a simple but useful application using Apache

Spark for getting useful value out of Big Data. It also showed how the analyzed data

can be visualized for easy decision making. One can experiment with other tools to

enhance this application.

Review Questions

 1. Describe the advantages of a web log analyzer.

 2. Describe the major challenges in developing this application.

 3. Identify 3–4 major lessons learned from the code.

 4. How can this code be improved?

True/False Questions

 1. A web application follows a client-server architecture.

 2. A web log analyzer is a very specialized application that differs for every client.

 3. The web log application architecture definitely needs Spark for data ingest.

 4. HDFS is used in this application for processing data.

 5. Many kinds of reports can be produced from web log analysis.

Chapter 11
Data Mining Primer

Learning Objectives

 ■ Understand the concept and process of data mining

 ■ Know the process of gathering and selecting data for mining

 ■ Represent many outputs of data mining

 ■ Evaluate the results of data mining

 ■ Learn many techniques for data mining

INTRODUCTION

Data mining is the art and science of discovering knowledge, insights, and patterns in

data. It is the act of extracting useful patterns from an organized collection of data.

Patterns must be valid, novel, potentially useful, and understandable. The implicit

assumption is that data about the past can reveal patterns of activity that can be

projected into the future.

Business Intelligence

Data Mining

FIGURE 11.1 Data analytics architecture

Learning Objectives

■ Understand the concept and process of data mining

■ Know the process of gathering and selecting data for mining

■ Represent many outputs of data mining

■ Evaluate the results of data mining

■ Learn many techniques for data mining

134 Big Data

Data mining is a multidisciplinary field that borrows techniques from a variety of

fields. It utilizes the knowledge of data quality and data organizing from the data-

bases area. It draws modeling and analytical techniques from statistics and computer

science (artificial intelligence) areas. It also draws the knowledge of decision-making

from the field of business management.

The field of data mining emerged in the context of pattern recognition in defense,

such as identifying a friend-or-foe on a battlefield. Like many other defense-inspired

technologies, it has evolved to help gain a competitive advantage in business.

For example, “customers who buy cheese and milk also buy bread 90 per cent of the

time” would be a useful pattern for a grocery store, which can then stock the products

appropriately. Similarly, “people with blood pressure greater than 160 and an age

greater than 65 were at a high risk of dying from a heart stroke” is of great diagnos-

tic value for doctors, who can then focus on treating such patients with urgent care

and great sensitivity.

Past data can be of predictive value in many complex situations, especially where

the pattern may not be so easily visible without the modeling technique. Here is a

dramatic case of a data-driven decision-making system that beats the best of human

experts. Using past data, a decision tree model was developed to predict votes for

Justice Sandra Day O’Connor, who had a swing vote in a 5–4 divided US Supreme

Court. All her previous decisions were coded on a few variables. What emerged from

data mining was a simple four-step decision tree that was able to accurately predict

her votes 71 per cent of the time. In contrast, the legal analysts could at best predict

correctly 59 per cent of the time.

11.1 GATHERING AND SELECTING DATA

To learn from data, quality data needs to be effectively gathered, cleaned and orga-

nized, and then efficiently mined. One requires the skills and technologies for con-

solidation and integration of data elements from many sources.

Gathering and curating data takes time and effort, particularly when it is unstruc-

tured or semi-structured. Unstructured data can come in many forms like databases,

blogs, images, videos, audio, and chats. There are streams of unstructured social

media data from blogs, chats, and tweets. There are streams of machine-generated

data from connected machines, RFID tags, the internet of things, and so on. Eventu-

ally the data should be rectangularized, that is, put in rectangular data shapes with

clear columns and rows, before submitting it to data mining.

 Data Mining Primer 135
Knowledge of the business domain helps select the right streams of data for pursu-

ing new insights. Only the data that suits the nature of the problem being solved

should be gathered. The data elements should be relevant, and suitably address the

problem being solved. They could directly impact the problem, or they could be a

suitable proxy for the effect being measured. Select data could also be gathered from

the data warehouse. Every industry and function will have its own requirements

and constraints. The health care industry will provide a different type of data with

different data names. The HR function would provide different kinds of data. There

would be different issues of quality and privacy for these data.

11.2 DATA CLEANSING AND PREPARATION

The quality of data is critical to the success and value of the data mining project.

Otherwise, the situation will be of the kind of garbage in and garbage out (GIGO). The

quality of incoming data varies by the source and nature of data. Data from internal

operations is likely to be of higher quality, as it will be accurate and consistent. Data

from social media and other public sources is less under the control of business, and

is less likely to be reliable.

Data almost certainly needs to be cleansed and transformed before it can be used for

data mining. There are many ways in what data may need to be cleansed – filling

missing values, reigning in the effects of outliers, transforming fields, binning continu-

ous variables, and much more – before it can be ready for analysis. Data cleansing

and preparation is a labor-intensive or semi-automated activity that can take up to

60–80% of the time needed for a data mining project.

11.3 OUTPUTS OF DATA MINING

Data mining techniques can serve different types of objectives. The outputs of data

mining will reflect the objective being served. There are many ways of representing

the outputs of data mining.

One popular form of data mining output is a decision tree. It is a hierarchically

branched structure that helps visually follow the steps to make a model-based decision.

The tree may have certain attributes, such as probabilities assigned to each branch.

A related format is a set of business rules, which are if-then statements that show

causality. A decision tree can be mapped to business rules. If the objective function

is prediction, then a decision tree or business rules are the most appropriate mode

of representing the output.

136 Big Data

The output can be in the form of a regression equation or mathematical function that

represents the best fitting curve to represent the data. This equation may include

linear and nonlinear terms. Regression equations are a good way of representing the

output of classification exercises. These are also a good representation of forecasting

formulae.

Population “centroid” is a statistical measure for describing central tendencies of a

collection of data points. These might be defined in a multidimensional space. For

example, a centroid could be “middle-aged, highly educated, high-net worth profes-

sionals, married with two children, living in the coastal areas”. Or a population of

“20-something, ivy-league-educated, tech entrepreneurs based in Silicon Valley”. Or

it could be a collection of “vehicles more than 20 years old, giving low mileage per

gallon, which failed environmental inspection”. These are typical representations of

the output of a cluster analysis exercise.

Business rules are an appropriate representation of the output of a market basket

analysis exercise. These rules are if-then statements with some probability parameters

associated with each rule. For example, those that buy milk and bread will also buy

butter (with 80 per cent probability).

11.4 EVALUATING DATA MINING RESULTS

There are two primary kinds of data mining processes: supervised learning and un-

supervised learning. In supervised learning, a decision model can be created using

past data, and the model can then be used to predict the correct answer for future

data instances. Classification is the main category of supervised learning activity.

There are many techniques for classification, decision trees being the most popular

one. Each of these techniques can be implemented with many algorithms. A common

metric for all of classification techniques is predictive accuracy.

11.4.1 Predictive Accuracy = (Correct Predictions)/Total Predictions

Suppose a data mining project has been initiated to develop a predictive model for

cancer patients using a decision tree. Using a relevant set of variables and data in-

stances, a decision tree model has been created. The model is then used to predict

other data instances. When a true positive data point is positive, that is a correct

prediction, called a true positive (TP). Similarly, when a true negative data point

is classified as negative, that is a true negative (TN). On the other hand, when a

 Data Mining Primer 137
true-positive data point is classified by the model as negative, that is an incorrect

prediction, called a false negative (FN). Similarly, when a true-negative data point

is classified as positive, that is classified as a false positive (FP). This is represented

using the confusion matrix (Figure 11.2).

FIGURE 11.2 Confusion matrix

Thus, the predictive accuracy can be specified by the following formula.

Predictive Accuracy = (TP +TN) / (TP + TN + FP + FN).

All classification techniques have a predictive accuracy associated with a predictive

model. The highest value can be 100%. In practice, predictive models with more than

70% accuracy can be considered usable in business domains, depending upon the

nature of the business.

There are no good objective measures to judge the accuracy of unsupervised learning

techniques such as Cluster Analysis. There is no single right answer for the results

of these techniques. For example, the value of the segmentation model depends upon

the value the decision-maker sees in those results.

11.5 DATA MINING TECHNIQUES

Data may be mined to help make more efficient decisions in the future. Or it may be

used to explore the data to find interesting associative patterns. The right technique

depends upon the kind of problem being solved (Figure 11.3).

138 Big Data

Data Mining Techniques

Supervised Learning

(Predictive ability

based on past data)

Classification

Machine Learning

Classification
Statistics

Unsupervised Learning

(Exploratory analysis to

discover patterns)

Clustering Analysis

Association Rules

Decision Trees

Neural Networks

Regression

FIGURE 11.3 Important data mining techniques

The most important class of problems solved using data mining are classification

problems. Classification techniques are called supervised learning as there is a way

to supervise whether the model is providing the right or wrong answers. These are

problems where data from past decisions is mined to extract the few rules and pat-

terns that would improve the accuracy of the decision making process in the future.

The data of past decisions is organized and mined for decision rules or equations,

that are then codified to produce more accurate decisions.

Decision trees are the most popular data mining technique, for many reasons.

 1. Decision trees are easy to understand and easy to use, by analysts as well as

executives. They also show a high predictive accuracy.

 2. Decision trees select the most relevant variables automatically out of all the

available variables for decision making.

 3. Decision trees are tolerant of data quality issues and do not require much data

preparation from the users.

 4. Even non-linear relationships can be handled well by decision trees.

There are many algorithms to implement decision trees. Some of the popular ones

are C5, CART and CHAID.

Regression is a most popular statistical data mining technique. The goal of regres-

sion is to derive a smooth well-defined curve to best the data. Regression analysis

techniques, for example, can be used to model and predict the energy consumption

as a function of daily temperature. Simply plotting the data may show a non-linear

 Data Mining Primer 139
curve. Applying a non-linear regression equation will fit the data very well with high

accuracy. Once such a regression model has been developed, the energy consumption

on any future day can be predicted using this equation. The accuracy of the regres-

sion model depends entirely upon the dataset used and not at all on the algorithm

or tools used.

Artificial Neural Networks (ANN) is a sophisticated data mining technique from

the Artificial Intelligence stream in Computer Science. It mimics the behavior of hu-

man neural structure: Neurons receive stimuli, process them, and communicate their

results to other neurons successively, and eventually a neuron outputs a decision. A

decision task may be processed by just one neuron and the result may be communi-

cated soon. Alternatively, there could be many layers of neurons involved in a deci-

sion task, depending upon the complexity of the domain. The neural network can be

trained by making a decision repeatedly with many data points. It will continue to

learn by adjusting its internal computation and communication parameters based on

feedback received on its previous decisions. The intermediate values passed within

the layers of neurons may not make any intuitive sense to an observer. Thus, the

neural networks are considered a black-box system.

Cluster Analysis is an exploratory learning technique that helps in identifying a set

of similar groups in the data. It is a technique used for automatic identification of

natural groupings of things. Data instances that are similar to (or near) each other

are categorized into one cluster, while data instances that are very different (or far

away) from each other are categorized into separate clusters. There can be any number

of clusters that could be produced by the data. The K-means technique is a popular

technique and allows the user guidance in selecting the right number (K) of clusters

from the data. Clustering is also known as the segmentation technique. It helps divide

and conquer large data sets. The technique shows the clusters of things from past

data. The output is the centroids for each cluster and the allocation of data points

to their cluster. The centroid definition is used to assign new data instances can be

assigned to their cluster homes. Clustering is also a part of the artificial intelligence

family of techniques.

Association rules are a popular data mining method in business, especially where

selling is involved. Also known as market basket analysis, it helps in answering ques-

tions about cross-selling opportunities. This is the heart of the personalization engine

used by ecommerce sites like Amazon.com and streaming movie sites like Netflix.com.

The technique helps find interesting relationships (affinities) between variables (items

or events). These are represented as rules of the form X Æ Y, where X and Y are sets

of data items. A form of unsupervised learning, it has no dependent variable; and

there are no right or wrong answers. There are just stronger and weaker affinities.

140 Big Data

Thus, each rule has a confidence level assigned to it. A part of the machine learning

family, this technique achieved legendary status when a fascinating relationship was

found in the sales of diapers and beers.

11.6 MINING BIG DATA

As data grows larger and larger, there are a few ways in which analyzing Big data

is different.

11.6.1 From Causation to Correlation

There is more data available than there are theories and tools available to explain

it. Historically, theories of human behaviour, and theories of universe in general,

have been intuited and tested using limited and sampled data, with some statistical

confidence level. Now that data is available in extremely large quantities about many

people and many factors, there may be too much noise in the data to articulate and

test clean theories. In that case, it may suffice to value co-occurrences or correlation

of events as significant without necessarily establishing strong causation.

11.6.2 From Sampling to the Whole

Pooling all the data together into a single big data system can help discover events,

that help bring about a fuller picture of the situation, and highlight threats or op-

portunities that an organization faces. Working from the full dataset can enable

discovering remote but extremely valuable insights. For example, an analysis of the

purchasing habits of millions of customers and their billions of transactions at their

thousands of stores can give an organization a vast, detailed and dynamic view of

sales patterns in their company, which may not be available from the analysis of

small samples of data by each store or region.

11.6.3 From Dataset to Data Stream

A flowing stream has a perishable and unlimited connotation to it, while a dataset

has a finitude and permanence about it. With any given infrastructure, one can only

consume so much data at a time. Data streams are many, large and fast. Thus one

has to choose which of the many streams of data does one want to engage with. It

is equivalent to deciding which stream to fish in. The metrics used for analysis of

streams tend to be relatively simple and relate to time dimension. Most of the metrics

are statistical measures such as counts and means. For example, a company might

want to monitor customer sentiment about its products. So they could create a social

media listening platform that would read all tweets and blogposts about them in

 Data Mining Primer 141
real-time. This platform would (a) keep a count of positive and negative sentiment

messages every minute, and (b) flag any messages that merit attention such as send-

ing an online advertisement or purchase offer to that customer.

11.7 DATA MINING BEST PRACTICES

Effective and successful use of data mining activity requires both business and technol-

ogy skills. The business aspects help understand the domain and the key questions.

It also helps one imagine possible relationships in the data, and create hypotheses

to test it. The IT aspects help fetch the data from many sources, clean up the data,

assemble it to meet the needs of the business problem, and then run the data mining

techniques on the platform.

An important element is to go after the problem iteratively. It is better to divide and

conquer the problem with smaller amounts of data, and get closer to the heart of the

solution in an iterative sequence of steps. There are several best practices learned

from the use of data mining techniques over a long period of time. The Data Mining

industry has proposed a Cross-Industry Standard Process for Data Mining (CRISP-

DM). It has six essential steps (Figure 11.4):

Data

Deployment

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

FIGURE 11.4 CRISP-DM data mining cycle

142 Big Data

 1. Business Understanding: The first and most important step in data mining

is asking the right business questions. A question is a good one if answering it

would lead to large payoffs for the organization, financially and otherwise. In

other words, selecting a data mining project is like any other project, in that it

should show strong payoffs if the project is successful. There should be strong

executive support for the data mining project, which means that the project

aligns well with the business strategy. A related important step is to be creative

and open in proposing imaginative hypotheses for the solution. Thinking outside

the box is important, both in terms of a proposed model as well in the data sets

available and required.

 2. Data Understanding: A related important step is to understand the data avail-

able for mining. One needs to be imaginative in scouring for many elements of

data through many sources in helping address the hypotheses to solve a problem.

Without relevant data, the hypotheses cannot be tested.

 3. Data Preparation: The data should be relevant, clean and of high quality. It’s

important to assemble a team that has a mix of technical and business skills,

who understand the domain and the data. Data cleaning can take 60–70% of the

time in a data mining project. It may be desirable to continue to experiment and

add new data elements from external sources of data that could help improve

predictive accuracy.

 4. Modeling: This is the actual task of running many algorithms using the avail-

able data to discover if the hypotheses are supported. Patience is required in

continuously engaging with the data until the data yields some good insights. A

host of modeling tools and algorithms should be used. A tool could be tried with

different options, such as running different decision tree algorithms.

Model Evaluation: One should not accept what the data says at first. It is better to

triangulate the analysis by applying multiple data mining techniques, and conducting

many what-if scenarios, to build confidence in the solution. One should evaluate and

improve the model’s predictive accuracy with more test data. When the accuracy has

reached some satisfactory level, then the model should be deployed.

Dissemination and rollout: It is important that the data mining solution is presented

to the key stakeholders, and is deployed in the organization. Otherwise the project

will be a waste of time and will be a setback for establishing and supporting a data-

based decision-process culture in the organization. The model should be eventually

embedded in the organization’s business processes.

 Data Mining Primer 143
11.8 CONCLUSION

Data Mining is like diving into the rough material to discover a valuable finished

nugget. While the technique is important, domain knowledge is also important to

provide imaginative solutions that can then be tested with data mining. The business

objective should be well understood and should always be kept in mind to ensure that

the results are beneficial to the sponsor of the exercise.

Review Questions

 1. What is data mining? What are supervised and unsupervised learning techniques?

 2. Describe the key steps in the data mining process. Why is it important to follow

these processes?

 3. What is a confusion matrix?

 4. Why is data preparation so important and time consuming?

 5. What are some of the most popular data mining techniques?

 6. How is mining Big data different from traditional data mining?

True/False Questions

 1. Data mining is a multidisciplinary field that borrows techniques from a variety

of fields.

 2. Past data can be of predictive value in many complex situations.

 3. Knowledge of the business domain is irrelevant to selecting the right streams of

data.

 4. Garbage in and garbage out (GIGO) states that the quality of data is critical to

the success and value of the data mining project.

 5. Data preparation is a labour-intensive activity that can take up to 60–80 per cent

of the time needed for a data mining project.

 6. There are two primary kinds of data mining processes: supervised learning and

unsupervised learning.

 7. A decision tree is a hierarchically branched structure that helps visually follow

the steps to make a model-based decision.

 8. A population “centroid” is a statistical measure for describing central tendencies

of a collection of data points.

144 Big Data

 9. A common metric for all of classification techniques is predictive accuracy which

is defined at (Correct Predictions) / Total Predictions

 10. Clustering Analysis is an unsupervised form of learning

 11. Artificial Neural Networks (ANN) is a data mining technique that mimics the

behavior of human neural structure.

 12. Association rules are the heart of the personalization engine used by ecommerce

sites like Amazon.com.

 13. Pooling all the data together can better highlight threats or opportunities that

an organization faces.

 14. CRISP-DM is called so, because the process is very crisp and clear.

 15. Mining data is like searching for diamond in a mine.

Chapter 12
Big Data Programming Primer

Learning Objectives

 ■ Understand the languages used to process Big Data

 ■ Understand the differences between Pig and Hive

 ■ Understand the design and structure of Hive

 ■ Learn Hive commands to access and analyze Hadoop data

 ■ Understand the design and structure of Pig

 ■ Learn Pig commands to access and analyze Hadoop data

INTRODUCTION

The Hadoop ecosystem includes many language tools such as Hive and Pig to easily

access and speedily managing large diverse distributed data systems to produce re-

ports and insights. Hive and Pig languages offer easy high-level SQL-like commands,

supplemented by complex computation using user-defined functions, and managing

partitioned data in Hadoop Distributed File system. These languages ultimately

generate code for MapReduce, that does parallel processing to compute the data with

great speed. Using these languages greatly helps increase programmer productivity.

This chapter will offer a short primer on both Hive and Pig. It will include detailed

listing of functions and features of both languages.

12.1 COMPARING HIVE AND PIG

Hive uses Hive Query Language (HiveQL or HQL), to offer a SQL-like language plat-

form to develop scripts for MapReduce operations for structured, semi-structured, and

unstructured data. Hive is convenient since it does not necessarily require knowledge

Learning Objectives

■ Understand the languages used to process Big Data

■ Understand the differences between Pig and Hive

■ Understand the design and structure of Hive

■ Learn Hive commands to access and analyze Hadoop data

■ Understand the design and structure of Pig

■ Learn Pig commands to access and analyze Hadoop data

146 Big Data

of Java, and can thus be used for ad-hoc analyses. Hive works well with partitioned

time series data. Multiple analysts can simultaneously use the database structure to

do their work. Hive can use partitions to speed up queries.

Apache Pig includes Pig Latin, a SQL-like high level, yet procedural, language plat-

form that is more suited for developing a script for control of data flows in MapReduce

operations to process structured and semi-structured data. Pig is a better choice for

doing ETL (Extract-Transform-Load) work, or where one need more control over data

flows such as when the data does not cleanly fit into rows and columns. Pig also al-

lows for partitioned data.

Both Apache Pig and Hive create MapReduce jobs at the backend (Table12.1). Hive

operates on HDFS in a similar way Apache Pig does. The following table lists a few

significant points to compare Hive and Pig.

Table 12.1

A comparative analysis of Hive and Pig

Tool Key

Compo-

nent

Capabilities Ease of use Learning

Curve

Data

Handling

Execution

platform

Apache

Hive

HiveQL SQL-like capabili-

ties for data access

& reporting

Transferrable

skills from

SQL

Easy Mostly

structured

data

MapReduce

Apache

Pig

Pig Latin Procedural Java-like

control, useful for

ETL operations

Java-like

detailed

programming

Takes

more effort

Structured

& unstruc-

tured data

MapReduce

12.2 APACHE HIVE

Hive is a tool to process structured data in HDFS. It resides on top of HDFS to help

summarize and analyze data. Hive was designed and developed at Facebook. It was

turned over to the open source Apache Software Foundation. It is highly scalable, and

is used widely. It is also available on most cloud infrastructure such as Amazon EC2.

Hive is not a relational database. It is not a tool for transaction processing. Like with

almost all Hadoop-based tools, it is not a tool for data updates in place. Hive is useful

mostly for Analytical Processing. Hive works through a schema that maps HDFS files

into a database structure. This data schema can then be used to access data through

SQL-like easy commands.

 Big Data Programming Primer 147
Visit apache.org to install Hive. Ensure that Linux and Java and Hadoop have been

installed.

12.2.1 Architecture of Hive

The component diagram presented in Figure 12.1 depicts the architecture of Hive:

Meta Data

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 12.1 Apache Hive architecture

Hive supports Web UI, command line, and other user interfaces. Hive stores the

schema of tables, the databases, columns in a table, their data types, and HDFS

mapping in Metadata server. Writing HiveQL is similar to using SQL for querying on

schema info on the Metastore. Hive is a replacement for MapReduce programming.

Instead of writing MapReduce program in Java, one can write an HQL query. The

Hive Execution engine processes the query and generates results just as MapReduce

would. The results are sent to the user, or written back into HDFS as needed.

12.2.2 Working of Hive

Hive interpreter chains pre-built binaries together to create and run a MapReduce

job to perform the query. Hive table structures are internal to it, but its data will be

stored in HDFS. Hive assumes that no other system is using these internal tables.

Thus dropping a table would not affect others. External tables can also be used, and

can be defined as such by specifying an HDFS directory path.

Figure 12.2 depicts the workflow between Hive and Hadoop.

148 Big Data

FIGURE 12.2 Workflow between Hive and Hadoop

Here is how Hive interacts with Hadoop framework. The first step is the writing of the

Hive query using one of the user interfaces. The Driver parses the query statements

to check the syntax. The compiler then requests the Metadata store for relevant meta-

data for interpreting the query. The compiler then checks requirement and resends

the execution plan to the driver. The execution plan is a MapReduce job. The driver

sends the execution plan to the execution engine. The execution engine sends the job

to JobTracker, which runs on the Namenode. The parts of the job are assigned to

TaskTrackers, which run on the Data nodes. Once the MapReduce job is completed,

the results are returned to the Hive User Interface.

Not unlike SQL, there are two essential aspects of using Hive.

 ■ The first step is to create a database, and to create tables in the database. This

also includes defining the structure of partitions to store the data. This is the

Data Definition part.

 ■ The second step is to access and manipulate the data to generate reports and

queries. This includes generating views and indexes. This is the Data Manipula-

tion part.

 Big Data Programming Primer 149
12.2.3 Hive Data Definition

Hive is a database technology that can define databases and tables to analyze struc-

tured data. The theme for structured data analysis is to store the data in a tabular

manner, and pass queries to analyze it. This section explains how to create a Hive

database and tables.

Hive permits data of all types supported by SQL. These include Numeric, Floating,

String, Date, DateStamp. NULL values. In addition, Hive permits many complex data

types such as a Union. A Union is a collection of heterogeneous data types such as

Array types, Maps, Struct, and others.

CREATE DATABASE is a statement used to create a database in Hive. A database

in Hive is a namespace, and a collection of tables. The syntax is:

CREATE DATABASE|SCHEMA [IF NOT EXISTS] <database name>

Drop Database is the opposite of Create statement, in that it drops all the tables and

deletes the database. Its syntax is as follows:

DROP DATABASE StatementDROP (DATABASE|SCHEMA) [IF EXISTS] database_name

[RESTRICT|CASCADE];

The conventions of creating a table in HIVE are similar to those for creating a table

in SQL. CREATE TABLE is a statement used to create a table in Hive. The syntax

is as follows:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.] table_name

[ROW FORMAT row_format]

[STORED AS file_format]

The following query creates a table named customer with a few fields.

hive> CREATE TABLE IF NOT EXISTS customer (eid int, name String,

> salary String, destination String)

> COMMENT ‘customer details’

> ROW FORMAT DELIMITED

> FIELDS TERMINATED BY ‘\t’

> LINES TERMINATED BY ‘\n’

> STORED AS TEXTFILE;

150 Big Data

Data is inserted in SQL tables using the Insert statement. However, in Hive, data is

inserted more often using the LOAD DATA statement, especially when loading bulk

records.

There are two ways to load data: one is from local file system and second is from

Hadoop file system. The syntax for load data is as follows:

LOAD DATA [LOCAL] INPATH ‘filepath’ [OVERWRITE] INTO TABLE tablename

[PARTITION (partcol1=val1, partcol2=val2 ...)]

LOCAL is identifier to specify the local path. It is optional.

OVERWRITE is optional to overwrite the data in the table.

PARTITION is optional.

The following query loads the given text into the table.

hive> LOAD DATA LOCAL INPATH ‘/home/user/sample.txt’

> OVERWRITE INTO TABLE customer;

The table structures can be altered using the ALTER commands. It is used to alter

the attributes of a table such as changing its table name, changing column names,

adding columns, and deleting or replacing columns in Hive. Here is the syntax.

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

For example, the following query renames the table from customer to cust, and

changes the name and types of fields, and adds a new field.

hive> ALTER TABLE customer RENAME TO cust;

hive> ALTER TABLE customer CHANGE name cname String;

hive> ALTER TABLE customer CHANGE cred_llimit Double;

hive> ALTER TABLE customer ADD COLUMNS (state STRING);

Tables can also be dropped or deleted. When a table is dropped from Hive Metastore,

it removes the table/column data and their metadata. It can be a normal table (stored

in Metastore) or an external table (stored in local file system); Hive treats both in the

same manner, irrespective of their types.

DROP TABLE [IF EXISTS] table_name;

 Big Data Programming Primer 151
12.2.4 Hive Partitioning

Consistent with the underlying data storage in HDFS, Hive organizes tables into

partitions. It is a way of dividing a table into related parts based on the values of

partitioned columns such as date and state. Using partition, it is easy to query a

portion of the data.

Tables or partitions are sub-divided into buckets, to provide extra structure to the

data that may be used for more efficient querying. Bucketing works based on the

value of hash function of some column of a table.

For example, a table named Tab1 contains customer data. Suppose you need to re-

trieve the details of all customers from a particular year. A query searches the whole

table for the required information. However, if you partition the customer data with

the year and store it in a separate file, it reduces the query processing time.

The following example shows how to partition a file and its data:

The following file contains customer data table.

/table1/ customer /file1

id, name, state, year

The above data is partitioned into two files using year.

/table1/ customer /2015/file2

/table1/ customer /2016/file3

Partitions are added by altering the table.

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec

[LOCATION ‘location1’] partition_spec [LOCATION ‘location2’] ...;

The following query is used to add a partition to the customer table. And to rename

a partition. And to drop a partition.

> ALTER TABLE customer

> ADD PARTITION (year=’2015’)

> location ‘/2015/part2015’;

152 Big Data

ALTER TABLE customer PARTITION (year=’2015’)

 > RENAME TO PARTITION (Year = ‘2015’);

ALTER TABLE customer DROP [IF EXISTS]

 > PARTITION (year=’2015’);

12.2.5 Hive Data Manipulation

The Hive Query Language (HiveQL) is a query language for Hive to process and ana-

lyze structured data. SELECT statement is used to retrieve the data from a table or

a set of tables. This section shows how to use the SELECT statement and its various

clauses.

Here is the syntax of the SELECT query:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]]

[LIMIT number];

The WHERE clause works similar to a condition. It filters the data using the condi-

tion and gives you a finite result. The built-in operators and functions generate an

expression, which fulfils the condition.

Hive also offers a rich set of SQL-like operators. There are four types of operators

in Hive:

Relational Operators such as EQUAL, GREATER, etc.

Arithmetic Operators, such as +, -, /, etc.

Logical Operators, such as AND, OR, NOT, etc.

Complex Operators such as Arrays, Key-value pairs, and Structs.

The following complex operators provide an expression to access the elements of

Complex Types. Examples of such functions is shown later.

 Big Data Programming Primer 153
Operator Description

A[n] It returns the nth element in the array A. The first element

has index 0.

M[key] It returns the value corresponding to the key in the

M<key,value> map.

S.x It returns the x field of S.

The following query retrieves the customer details

hive> SELECT * FROM customer WHERE state=”CA”;

The following queries retrieve the customer details and orders them by state, and

groups the counts by state.

hive> SELECT Id, Name, state FROM customer ORDER BY state;

hive> SELECT count(*) FROM customer GROUP BY state;

JOIN is a clause that is used for combining specific fields from two tables by using

values common to each one. It is used to combine records from two or more tables in

the database, just like SQL JOINS. There are different types of joins:

JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

A JOIN is same as OUTER JOIN in SQL. A JOIN condition is to be raised using the

primary keys and foreign keys of the tables.

Join_table:

 table_reference JOIN table_factor [join_condition]

 | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference

 join_condition

 | table_reference LEFT SEMI JOIN table_reference join_condition

 | table_reference CROSS JOIN table_reference [join_condition]

154 Big Data

As an example, the following query executes JOIN on the CUSTOMER and ORDER

tables, and retrieves the records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

 > FROM CUSTOMERS c JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

A LEFT JOIN returns all the values from the left table, plus the matched values

from the right table, or NULL in case of no matching JOIN predicate. The following

query demonstrates LEFT OUTER JOIN between CUSTOMER and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > LEFT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

A RIGHT JOIN returns all the values from the right table, plus the matched values

from the left table, or NULL in case of no matching join predicate. The following query

demonstrates RIGHT OUTER JOIN between the CUSTOMER and ORDER tables.

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > RIGHT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

The HiveQL FULL OUTER JOIN combines the records of both the left and the right

outer tables that fulfil the JOIN condition. The joined table contains either all the

records from both the tables, or fills in NULL values for missing matches on either

side. The following query demonstrates FULL OUTER JOIN between CUSTOMER

and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > FULL OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

Hive Built-in functions

Hive supports the following built-in functions (Table 12.1). The functions look quite

similar to SQL functions.

 Big Data Programming Primer 155
Table 12.1

 Hive built-in functions and descriptions

Command Description

Numeric

functions

round(n) returns the rounded value of the n.

floor(n) returns the maximum value that is equal or less than n.

ceil(n) returns the minimum value that is equal or greater than n.

rand() returns a string of random numbers that change from row to row.

String

functions

concat(A, B) returns the string resulting from concatenating B after A.

substr(A, n) returns the substring of A starting from position n till the end of A.

upper(A) returns a string a all characters of A in upper case.

lower(A) returns a string a all characters of B in lower case.

trim(A) returns a string after trimming spaces from both ends of A.

ltrim(A) returns the string after trimming spaces from the left side of A.

rtrim(A) returns the string after trimming spaces from the right side of A.

Date from_unixtime (n) converts the number of seconds from Unix era (1970-01-01 00:00:00)

to a date string in the in the format of “1970-01-01 00:00:00”.

to_date(string

timestamp)

returns the date part of a timestamp string: to_date(“2010-01-01

00:00:00”) = “2010-01-01”.

year(string date) returns the year part of a date or a timestamp string.

month

(string date)

returns the month part of a date or a timestamp string.

day(date) returns the day part of a date or a timestamp string.

Array

functions

Size (Map<K.V>) returns the number of elements in the map type.

Size (A) returns the number of elements in the array type.

cast(<expr> as

<type>)

converts the results of the expression expr to <type>. Returns NULL

if the conversion does not succeed.

The following queries demonstrate built-in functions:

hive> SELECT round(2.6) from temp;

hive> SELECT upper(name) from customer;

hive> SELECT month(order_date) from orders;

156 Big Data

12.2.6 Hive View and Indexes

Views are generated based on user requirements. You can save any result set data

as a view. The usage of view in Hive is same as that of the view in SQL. It is a

One can create a view at the time of executing a SELECT statement.

CREATE VIEW [IF NOT EXISTS] view_name [(column_name [COMMENT column_comment], ...)]

[COMMENT table_comment]

AS SELECT ...

The following query retrieves customer details:

hive> CREATE VIEW cust_CA AS

 > SELECT * FROM customer

 > WHERE state=”CA”;

One can drop this view with:

hive> DROP VIEW cust_CA;

An Index is a pointer on a particular column of a table. Creating an index means

creating a pointer on a particular column of a table. Its syntax is as follows:

CREATE INDEX index_name

ON TABLE base_table_name (col_name, ...)

AS ‘index.handler.class.name’

[WITH DEFERRED REBUILD]

[IDXPROPERTIES (property_name=property_value, ...)]

[IN TABLE index_table_name]

[PARTITIONED BY (col_name, ...)]

[

 [ROW FORMAT ...] STORED AS ...

 | STORED BY ...

]

[LOCATION hdfs_path]

[TBLPROPERTIES (...)]

The following query creates an index:

hive> CREATE INDEX index_state ON TABLE customer(state)

 > AS ‘org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler’;

 Big Data Programming Primer 157
It is a pointer to the state column. If the column is modified, the changes are stored

using an index value.

The index can be deleted with a DROP INDEX command.

12.3 APACHE PIG

Pig is a high-level procedural language/platform used for programming on Hadoop

and MapReduce. Pig helps to create a step-by-step flow of data to do processing. It

operates mostly on the client side of the cluster. Pig has two major components.

 ■ Pig Latin is a high-level language that provides various operators using which

programmers can develop their own functions for reading, writing, and process-

ing data.

 ■ Pig Engine then converts Pig Latin scripts into MapReduce jobs, and optimizes

their execution automatically.

Pig Latin follows a procedure programming model and is more natural to use to build

a data pipeline, such as for an ETL job. It gives full control over how the data flows

through the pipeline, when to checkpoint the data in pipeline, and it support DAGs in

pipeline such as split, and gives more control over optimization. Pig works well with

unstructured data. For complex operations such as analyzing matrices, or search for

patterns in unstructured data, Pig gives greater control and options. Pig works well

for programmers who are not so good at Java, and yet want detailed control over

data flows. Compared with Java, Pig reduces the length of codes by a factor of 10,

and thus drastically reduces development time.

Pig allows one to load data and user code at any point in the pipeline. This can be

important for ingesting streaming data from satellites or instruments. Pig also uses

lazy evaluation. It is faster in the data import but slower in actual execution than an

RDBMS friendly language like Hive. Pig is well suited to parallelization and so it is

better suited for very large datasets throughput (amount of data processed) is more

important than latency (speed of response).

Pig Latin is the language used to write code to analyze data in Hadoop using Pig. It

is a high-level data processing language which provides a rich set of data types and

operators to perform various operations on the data. The Pig Latin scripts are then

executed using any of the execution mechanisms (Grunt Shell, UDFs, Embedded).

Internally, Apache Pig converts these scripts into a series of MapReduce jobs, and

thus, it makes the programmer’s job easy.

158 Big Data

Architecture

The architecture of Apache Pig is shown in Figure 12.3.

Pig Latin
Script

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 12.3 The architecture of Apache Pig

The programmer uses one of the Pig interfaces to communicate Pig Latin commands

or a script. The parser checks the syntax of the Pig Lain script, and data type check-

ing. The output of the parser will be a DAG (directed acyclic graph), which represents

the Pig Latin statements and logical operators. The logical execution plan (DAG) is

passed to the logical optimizer, which carries out the logical optimizations such as

projection and pushdown. The compiler compiles the optimized logical plan into a

series of MapReduce jobs. The MapReduce jobs are submitted to Hadoop in a sorted

order. These MapReduce jobs are executed on Hadoop and the desired results are

returned to the user.

12.3.1 Running Pig

It is essential that Hadoop and Java are installed on the system before installing

Apache Pig. Download and install the latest version of Apache Pig from https://pig.

apache.org/

Pig can be run in two modes, Local and HDFS. In the local mode, all the files are

installed and run from your local host and local file system. There is no need of Ha-

doop or HDFS. This mode is generally used for testing purpose.

$./pig –x local

MapReduce mode is where we load or process the data that exists in the Hadoop

File System (HDFS) using Apache Pig. In this mode, whenever we execute the Pig

 Big Data Programming Primer 159
Latin statements to process the data, a MapReduce job is invoked in the back-end to

perform operations on the data that resides on HDFS.

$./pig -x mapreduce

Pig Latin scripts can be executed in three ways, namely, interactive mode, batch

mode, and embedded mode. In the Interactive Mode, Pig runs using the Grunt shell.

In this shell, you can enter the Pig Latin statements and get the output.

grunt> customers = LOAD ‘customers.txt’ USING PigStorage(‘,’);

In the Batch Mode (Script), Pig Latin script is a single file with .pig extension. It

Defined Functions) in programming languages such as Java, and using them in the

Pig script.

customer = LOAD ‘hdfs://localhost:9000/pig_data/customer.txt’ USING

 PigStorage(‘,’) as (id:int,name:chararray,city:chararray);

The Grunt shell of Apache Pig is mainly used to write Pig Latin scripts. It also pro-

vides a set of utility commands. These include utility commands such as clear, help,

history, quit, and set; and commands such as exec, kill, and run to control Pig from

the Grunt shell.

12.3.2 Pig Latin Data Model

Pig Latin supports many basic data types including int, long, float, chararray, byte-

array, Boolean, DateType. It also supports many complex data types such as Tuple,

Bag and Relation and also map.

Atom: Any single value in Pig Latin, is known as an Atom. It is stored as a string

variable. A simple atomic value is also known as a field.

Tuple: A tuple of record is an ordered set of fields. The fields can be of any type. A

tuple is like a row in an RDBMS table.

Bag: A bag is an unordered set of tuples. Each tuple can have any number of fields

(flexible schema). A bag is represented by ‘{ }’. Unlike a table in RDBMS, however, it

is not necessary that every tuple contain the same number of fields or that the fields

in the same position (column) have the same type.

Relation: A relation is a bag of tuples. The relations in Pig Latin are unordered. There

is no assurance that tuples will be processed in a particular order.

160 Big Data

Map: A data map is a set of key-value pairs. The key is to be of type char-array and

should be unique. The value might be of any data type.

12.3.3 Pig Latin Operators

Pig also offer Type construction operators such as () for Tuple, { } for Bag, and [] for

Map. Pig also supports all the standard arithmetic operators, comparison operators,

and the loop operators (CASE), and WHEN-THEN-ELSE decision-making constructs.

Pig Latin supports many Relational operations. Some of the more important ones are

shown in Table 12.2.

Table 12.2

Important relational operations supported by Pig Latin operators

Type Operator Description

Data Definition LOAD Load the data from the file system (local/HDFS)

into a relation.

STORE Save a relation to the file system (local/HDFS).

Filtering FILTER Remove unwanted rows from a relation.

DISTINCT Remove duplicate rows from a relation.

FOREACH, GENERATE Generate data transformations based on columns

of data.

Grouping,

joining,

combining

JOIN Join two or more relations.

GROUP Group the data in a single relation.

COGROUP Group the data in multiple relations.

CROSS Create the cross product of two or more relations.

UNION Combine two or more relations into one relation.

SPLIT Split a single relation into two or more relations.

Sorting ORDER To arrange a relation in a sorted order based on one

or more fields (ascending or descending).

LIMIT Limit the number of tuples from a relation.

Diagnostic DUMP Print the contents of a relation on the console.

DESCRIBE Describe the schema of a relation.

EXPLAIN View the logical, physical, or MapReduce execution

plans to compute a relation.

ILLUSTRATE View the step-by-step execution of a series of state-

ments.

 Big Data Programming Primer 161
12.3.4 Pig Data Definition

In general, Apache Pig works on top of Hadoop Distributed File System. To analyze

data using Apache Pig, one needs to load the data into Pig. In MapReduce mode, Pig

reads (loads) data from HDFS and stores the results back in HDFS. The input file

of Pig contains each tuple/record in individual lines. And, the entities of the record

are separated by a delimiter.

In the local file system, create an input file customer_data.txt. Then move the file

from the local file system to HDFS using put command as shown below. (Alternatively,

one can use copyFromLocal command as well.)

$ cd $HADOOP_HOME/bin

$ hdfs dfs -put /home/Hadoop/Pig/Pig_Data/customer_data.txt dfs://localhost:9000/

pig_data/

Use the cat command to verify whether the file has been moved into the HDFS, as

shown below.

$ cd $HADOOP_HOME/bin

$ hdfs dfs -cat hdfs://localhost:9000/pig_data/customer_data.txt

One can also load data into Apache Pig from the file system (HDFS/Local) using

LOAD operator of Pig Latin. The left-hand side of the load statement is the name

of the relation where we want to store the data. On the right-hand side, we define

how to store the data. The syntax is as following:

Relation_name = LOAD ‘Input file location’ USING function as schema;

Where:

Input file location is the HDFS directory where the file is stored in MapReduce mode.

-

age, TextLoader).

 ■

One can load the data from the file customer_data.txt into Pig by executing the

following Pig Latin statement in Grunt shell.

grunt> customer = LOAD ‘hdfs://localhost:9000/pig_data/customer_data.txt’ USING

PigStorage(‘,’)as

(id:int, name:chararray, phone:chararray, state:chararray);

162 Big Data

One can also store the loaded data in the file system using the store operator. For

example, store the relation in the HDFS directory “/pig_Output/” as shown below.

grunt> STORE customer INTO ‘ hdfs://localhost:9000/pig_Output/ ‘ USING PigStorage

(‘,’);

12.3.5 Pig Diagnostic Operators

One can verify the execution of the Load and other statements, using Diagnostic

 ■ Dump operator

 ■ Describe operator

 ■ Explanation operator

 ■ Illustration operator

The Dump operator is used to display the results on the screen.

grunt> Dump Relation_Name

for example, the following command will list the contents of the customer table.

grunt> Dump customer

The Describe operator is used to view the schema of a relation. The following state-

ment will produce the following output.

grunt> describe customer;

grunt> customer: { id: int, name: chararray, phone: chararray, state: chararray }

The Explain operator is used to display the logical, physical, and MapReduce execu-

tion plans of a relation.

grunt> explain customer;

The Illustrate operator gives you the step-by-step execution of a sequence of state-

ments.

grunt> illustrate customer;

12.3.6 Pig Data Manipulation

The GROUP operator is used to group the data in one or more relations. It summa-

rizes the data having the same key value.

 Big Data Programming Primer 163
grunt> customer_by_state = GROUP customer by state;

We can also group the relation by multiple fields.

The COGROUP operator works with statements involving two or more relations. The

co-group operator groups the tuples from each relation according to common field.

The JOIN operator is used to combine records from two or more relation n a shared

key fields. When these keys match, the two particular tuples are matched, else the

records are dropped. Joins can be of the following types based on the level of partici-

pation of the two relations:

Self-join

Inner-join

Assume again that there are two files namely customers.txt and orders.txt in the /

pig_data/ directory of HDFS as shown below. And you have loaded these two files

into Pig with the relations customers and orders as shown below.

grunt> customers = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING

PigStorage(‘,’)

 as (id:int, name:chararray, phone:int, address:chararray, state:chararray);

grunt> orders = LOAD ‘hdfs://localhost:9000/pig_data/orders.txt’ USING PigStor-

age(‘,’)

 as (oid:int, date:chararray, customer_id:int, amount:int);

Self-join is used to join a table with itself as if the table were two relations, temporar-

ily renaming at least one relation.

To perform self-join, the same data will be loaded multiple times, under different

aliases (names). Therefore, let us load the contents of the file customers.txt as two

tables as shown below.

grunt> customers1 = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING

PigStorage(‘,’)

 as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> customers2 = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING

PigStorage(‘,’)

164 Big Data

 as (id:int, name:chararray, age:int, address:chararray, salary:int);

Let us perform self-join operation on the relation customers, by joining the two rela-

tions customers1 and customers2 as shown below.

grunt> customers3 = JOIN customers1 BY id, customers2 BY id;

Inner Join is used quite frequently; it is also referred to as equijoin. An inner join

returns rows when there is a match in both tables.

Outer Join: Unlike inner join, outer join returns all the rows from at least one of the

 1. Left outer join

 2. Right outer join

 3. Full outer join

The left outer join operation returns all rows from the left table, even if there are

no matches in the right relation.

grunt> outer_left = JOIN customers BY id LEFT OUTER, orders BY customer_id;

The right outer join operation returns all rows from the right table, even if there

are no matches in the left table.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

The full outer join operation returns rows when there is a match in one of the relations.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

The CROSS operator computes the cross-product of two or more relations.

The UNION operator of Pig Latin helps merge the content of two relations with

identical structure. i.e. their columns and domains must be identical.

grunt> Relation_name3 = UNION Relation_name1, Relation_name2;

The SPLIT operator is used to split a relation into two or more relations.

grunt> SPLIT Relation1_name INTO Relation2_name IF (condition1), Relation2_name

(condition2),

The FILTER operator is used to select the required tuples from a relation based on

a condition.

grunt> Relation2_name = FILTER Relation1_name BY (condition);

 Big Data Programming Primer 165
The DISTINCT operator is used to remove redundant (duplicate) tuples from a rela-

tion.

grunt> Relation_name2 = DISTINCT Relatin_name1;

The FOREACH operator is used to generate specified data transformations based on

the column data.

grunt> Relation_name2 = FOREACH Relatin_name1 GENERATE (required data);

The ORDER BY operator is used to display the contents of a relation in a sorted order

based on one or more fields.

grunt> Relation_name2 = ORDER Relatin_name1 BY (ASC|DESC);

12.3.7 Pig Built-in Functions

Apache Pig provides various built-in functions namely eval, load, store, math, string,

bag and tuple functions.

Table 12.3 provides a representative list of Pig Latin functions.

Table 12.3

A representative list of Pig Latin functions

Type Function Name Description

Bag AVG() Compute the average of the numerical values within a bag.

SUM() Get the total of the numeric values of a column in a single-

column bag.

COUNT() Get the number of elements in a bag, while counting the

number of tuples in a bag.

COUNT_STAR() Get the number of elements in a bag.

IsEmpty() Check if a bag or map is empty.

MAX() Get the highest value for a column (numeric values or cha-

rarrays) in a single-column bag.

MIN() Get the lowest value (numeric or chararray) for a certain

column in a single-column bag.

PluckTuple() Filter the columns in a relation beginning with the given

prefix.

SIZE() Compute the number of elements of any Pig data type.

(Contd.)

166 Big Data

Type Function Name Description

SUBTRACT() Subtract two bags. Returns a bag which contains the tuples

of the first bag that are not in the second bag.

BagToString() Concatenate the elements of a bag into a string.

CONCAT() Concatenate two or more expressions of same type.

TOKENIZE() Split a string in a single tuple and return a bag which con-

tains the output of the split operation.

PigStorage() Load and store structured files.

TextLoader() Load unstructured data into Pig

BinStorage() Load and store data using machine readable format.

TOBAG() Convert two or more expressions into a bag.

TOP() Get the top N tuples of a relation.

TOTUPLE() Convert one or more expressions into a tuple.

TOMAP() Convert the key-value pairs into a Map.

String ENDSWITH

(string, test)

Verify whether a given string ends with a test substring.

STARTSWITH

(string, test)

Accept two string parameters and verifies whether the first

string starts with the test substring.

SUBSTRING

(string, startIndex,

stopIndex)

Return a substring from a given string.

EqualsIgnoreCase

(string1, string2)

Compare two stings ignoring the case.

INDEXOF

(string, ‘character’,

startIndex)

Return the first occurrence of a character in a string, search-

ing forward from a start index.

LCFIRST(expression) Convert the first character in a string to lower case.

UCFIRST(expression) Return a string with the first character converted to upper

case.

UPPER(expression) Return a string converted to upper case.

LOWER(expression) Return a string converted to lower case.

REPLACE(string, ‘old-

Char’,

‘newChar’);

Replace existing characters in a string with new characters.

(Contd.)

(Contd.)

 Big Data Programming Primer 167
Type Function Name Description

STRSPLIT

(string, expr, limit)

Split a string around matches of a given regular expression.

STRSPLITTOBAG

(string, regex, limit)

Similar to the STRSPLIT() function, it splits the string by

given delimiter and returns the result in a bag.

TRIM(expression) Returns a copy of a string with leading and trailing

whitespaces removed.

LTRIM(expression) Returns a copy of a string with leading whitespaces removed.

RTRIM(expression) Returns a copy of a string with trailing whitespaces removed.

Date ToDate(milliseconds) This function returns a date-time object according to the

given parameters. The other alternative for this func-

tion are ToDate(iosstring), ToDate(userstring, format),

ToDate(userstring, format, timezone).

CurrentTime() returns the date-time object of the current time.

GetDay(time) Returns the day of a month from the date-time object.

GetHour(time) Returns the hour of a day from the date-time object.

GetMinute(time) Returns the minute of an hour from the date-time object.

GetSecond(time) Returns the second of a minute from the date-time object.

GetMilliSecond(time) Returns the millisecond of a second from the date-time object.

GetYear(time) Returns the year from the date-time object.

GetMonth(time) Returns the month of a year from the date-time object.

GetWeek(time) Returns the week of a year from the date-time object.

AddDuration

(time, duration)

Returns the result of a date-time object along with the dura-

tion object.

SubtractDuration

(time, duration)

Subtracts the Duration object from the Date-Time object and

returns the result.

Numeric ABS(expression) To get the absolute value of an expression.

CEIL(expression) This function is used to get the value of an expression

rounded up to the nearest integer.

FLOOR

(expression)

To get the value of an expression rounded down to the near-

est integer.

LOG (expression) To get the natural logarithm (base e) of an expression.

(Contd.)

(Contd.)

168 Big Data

Type Function Name Description

RANDOM() To get a pseudo random number (type double) greater than

or equal to 0.0 and less than 1.0.

ROUND

(expression)

To get the value of an expression rounded to an integer (if

the result type is float) or rounded to a long (if the result

type is double).

SQRT (expression) To get the positive square root of an expression.

12.3.8 Pig User Defined Functions

In addition to the built-in functions, Pig provides extensive support for User Defined

Functions (UDF’s). The UDF support is provided in six programming languages,

namely, Java, Jython, Python, JavaScript, Ruby and Groovy. Complete support is

provided for writing UDFs in Java. Limited support is provided in all the remaining

languages. Using Java, one can write UDF’s involving all parts of the processing like

data load/store, column transformation, and aggregation. Since Pig has been written

primarily in Java, the UDF’s written using Java language work efficiently compared

to other languages.

While writing UDF’s using Java, we can create and use the following three types of

 ■ Filter Functions

These functions accept a Pig value as input and return a Boolean value.

 ■ Evaluation Functions -

ERATE statements. These functions accept a Pig value as input and return a

Pig result.

 ■ Algebraic Functions -

GENERATE statement. These functions are used to perform full MapReduce

operations on an inner bag.

In Apache Pig, there is a ready Java repository for UDF’s named Piggybank. Using

Piggybank, one can access Java UDF’s written by others, and also share our own

UDF’s.

12.3.9 Running Pig Scripts

Here is a sample Pig Script.

grunt> customers = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING

PigStorage(‘,’)

(Contd.)

 Big Data Programming Primer 169
as (id:int, name:chararray, phone:int, address:chararray, state:chararray);

customer_order = ORDER customer BY state DESC;

customer_limit = LIMIT customer_order 5;

Dump customer_limit;

This file contains statements performing operations and transformations on the

customer relation, as shown below. This script will print the top 5 tuples of the

customer relation.

There are two ways to run Pig scripts: Batch Mode and HDFS mode.

While executing in batch mode, write all the required Pig Latin statements in a single

file and save it as .pig file. One can execute it from the Grunt shell using the exec

command as shown below.

grunt> exec /sample_script.pig

When executing a Pig script in HDFS, upload the script to HDFS, and then execute it.

$./pig -x mapreduce hdfs://localhost:9000/pig_data/sample_script.pig

12.4 CONCLUSION

Hive and Pig are major data access languages in the Hadoop ecosystem. Both are

easy-to-use high-level SQL-like languages that ultimately generate MapReduce com-

mands to generate reports. Hive is easier to use but works only on structured data;

while Pig is more procedural and offers greater control over data flows. Both offer

User-Defined functions to apply complex logic on the data. Both can be operated upon

from a command-line interface as well as GUI modes. Both offer rich sets of commands

and functions for data definition and data manipulation. This chapter listed many of

the operators and built-in functions available in each of the language.

Review Questions

 1. What is Apache Hive? Describe its architecture.

 2. What is Apache Pig? Describe its architecture.

 3. Compare SQL with Hive and Pig.

 4. What are the major Data definition commands for Hive?

 5. How is data definition done in Pig?

170 Big Data

 6. How is data manipulation done in Hive?

 7. How is data manipulation done in Pig?

True/False Questions

 1. Hive is primarily a data definition language.

 2. Hive is a more powerful language than SQL.

 3. Hive is a substitute for MapReduce programming.

 4. Hive works only on HDFS.

 5. Hive does not need partitions of data.

 6. Hive SELECT statements are very different from those of SQL.

 7. Hive creates indexes very similar to those of SQL.

 8. Hive is more suitable for transaction processing jobs.

 9. Hive is primarily a data definition language.

 10. Hive offers a FOREACH command for data transformation.

 11. Pig is a substitute for Java programming.

 12. Pig works only in HDFS.

 13. Pig does not need partitions of data.

 14. Pig views are very dissimilar to those of SQL.

 15. Pig is more suitable for ETL jobs.

 16. Pig script can work from a command-line interface.

 17. A bag in pig is an unordered collection of tuples.

 18. A Map type in Pig is a collection of <key,value> pairs.

 19. A user defined function can be very complex, and yet be easily run in Pig.

 20. The DUMP operator in Pig is a way to delete a table.

Appendix 1
Installing Hadoop Using
Cloudera on Virtual Box

This tutorial is designed to provide a capability to run Hadoop on local machines,

using the Oracle VirtualBox application. Cloudera’s Hadoop stack is installed. Then

a Wordcount application is written in Java and run on this Hadoop installation. The

results are ported back to local mode.

A1.1 HIGH LEVEL SUMMARY

Check the Prerequisites:

 1. 64 bit OS, 8 GB RAM

 2. At least 10–20 GB free space on hard disk

 3. Need Virtualization (VTx) enabled

Download and install VirtualBox software:

Link: https://www.virtualbox.org/wiki/Downloads

Download Cloudera Quickstart:

Link: http://www.cloudera.com/downloads/quickstart_vms/5-8.html

Start Cloudera Quickstart in VirtualBox:

Unzip the “cloudera-quickstart-vm-5.8.0-0-virtualbox” directory

Import from VirtualBox

Create and Run a Wordcount project in Cloudera and in Hadoop

172 Big Data

Step 1: Check the Prerequisites

For OS and RAM checking, go to Start Menu -> Settings -> System -> About

 1. For hard disk checking:

 Installing Hadoop Using Cloudera on Virtual Box 173
 2. For Virtualization (VTx) making enabled:

Step 1: Press “ESC” to go to BIOS

Step 2: Press “F10” for BIOS Setup

174 Big Data

Step 3: Select “System Configuration”

Step 4: Press “Enter” and change it to “Enabled” then press “Enter” again

 Installing Hadoop Using Cloudera on Virtual Box 175
Step 5: Press “F10” then press “Yes” to save the settings.

Step 2: Download and install VirtualBox software:

 1. Download from the link: https://www.virtualbox.org/wiki/Downloads

176 Big Data

 2. Install the VirtualBox by following all the steps

 3. Start the VirtualBox

 Installing Hadoop Using Cloudera on Virtual Box 177
Download Cloudera Quickstart:

 1. Download from the link following the SIGN IN steps: http://www.cloudera.com/

downloads/quickstart_vms/5-8.html

Step 3: Start Cloudera Quickstart in VirtualBox

 1. Unzip the downloaded “cloudera-quickstart-vm-5.8.0-0-virtualbox” directory

 2. Import from VirtualBox:

Step 1: Select “Import Appliance…”

178 Big Data

Step 2: Choose the “cloudera-quickstart-vm-5.8.0-0-virtualbox” (.vmx) file

Step 3: Click on Next

 Installing Hadoop Using Cloudera on Virtual Box 179
Step 4: Click on Import

Step 5: Start Cloudera image after selecting it.

180 Big Data

Step 6: Wait and do the needful until starting Cloudera.

Then see the Cloudera

 Installing Hadoop Using Cloudera on Virtual Box 181
Step 4: Word Count Project

Programming Language:

Java using Eclipse IDE

Add external jars to the build path of the project:

File System/usr/lib/hadoop

File System/usr/lib/hadoop/client-0.20

File System/usr/lib/hadoop/lib

Step 1: Run Eclipse form Cloudera Desktop

Step 2: Create a project named “CS488” from “File->New->Java Projecct

182 Big Data

Step 3: Add external jars to the build path of the project

Then

 Installing Hadoop Using Cloudera on Virtual Box 183
Then click on OK button after selecting all the jars

Then do same for

184 Big Data

And

Step 4: Create a Java Class named “WordCount”

* Then Copy, Paste and save the below code in the “WordCount” class file

 Installing Hadoop Using Cloudera on Virtual Box 185
import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class WordCountMapper

 extends Mapper<LongWritable, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 @Override

 public void map(LongWritable key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 }

186 Big Data

 public static class WordCountReducer

 extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 @Override

 public void reduce(Text key, Iterable<IntWritable> values, Context context

) throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, “word count”);

 job.setJarByClass(WordCount.class);

 FileInputFormat.addInputPath(job, new Path(“input”));

 FileOutputFormat.setOutputPath(job, new Path(“output”));

 job.setMapperClass(WordCountMapper.class);

 job.setCombinerClass(WordCountReducer.class);

 job.setReducerClass(WordCountReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

 Installing Hadoop Using Cloudera on Virtual Box 187

Step 5: Create “input” directory in the workspace->CS488

Step 6: Create a sample file with sample data named “TestWC.txt” in “input” directory

188 Big Data

Step 7: Run the Java Application

Step 8: Refresh the project

 Installing Hadoop Using Cloudera on Virtual Box 189
Step 9: Check the input and output

Step 5: Create a Jar File to Run the Application in Hadoop

Step 1: To run the application again Delete the “output” directory

190 Big Data

Step 2: Click on “Export” to create a jar file

Then click Next

 Installing Hadoop Using Cloudera on Virtual Box 191
Then do the next steps to finish the jar file creation

Step 6: Create a Directory and Upload Sample Data File in Hadoop:

Run the commands to create a directory and upload sample data file into Hadoop

Step 1: Click on Terminal icon to start

192 Big Data

Step 2: Run the command “hadoop fs –mkdir /user/cloudera/input” to creatre “input”

directory in Hadoop

Step 3: Create the “TestWC.txt” file in Cloudera Desktop

 Installing Hadoop Using Cloudera on Virtual Box 193
Step 4: Run the command “hadoop fs –put /home/cloudera/Desktop/TestWC.txt /user/

cloudera/input” to upload “TestWC.txt” file to Hadoop

Check Hadoop file system to see the upload file

Step 1: Click on “HDFS NameNode”

194 Big Data

Step 2: Click on “Browse the file system”

Step 3: Click on “user”

Step 4: Click on “cloudera”

 Installing Hadoop Using Cloudera on Virtual Box 195
Step 5: We can see the our uploaded “Test.txt” file in “input” directory of Hadoop

Step 7: Run the Application in Hadoop

Step 1: Run the command “hadoop jar /home/cloudera/workspace/myproject.jar Word-

Count /user/cloudera/input /user/cloudera/output” to rut the application in Hadoop

Step 2: Check the output in the Hadoop in browser

196 Big Data

Step 3: Run the command “hadoop fs –get /user/cloudera/output” to download the

“output” directory with output file from Hadoop

Step 4: We can see the output

Note:

 1. VirtualBox is a separate virtual machine, so to get a file in VirtualBox from

Windows, one can do it through email or FTP or TeamViewer.

 2. From Windows, login to email through browser then attach the input files and

send it to youself.

 3. In VirtualBox, login to email through browser then download the attached file

in Cloudera to use.

Appendix 2
Installing Hadoop on Amazon

Web Services (AWS) Elastic
Compute Cluster (EC2)

A2.1 CREATING CLUSTER SERVER ON AWS, INSTALL HADOOP
FROM CLOUDERA

The objective of this tutorial is to set up a big data processing infrastructure using

cloud computing, and Hadoop and Spark software.

Step 1: Creating Amazon EC2 Servers.

 1. Open https://aws.amazon.com/

 2. Click on Services

 3. Click on EC2

198 Big Data

You can see the below result once you click on EC2. If you already have a server you

can see the number of running servers, their volume and other information.

 4. Click on Launch Instance Button.

1
2

3

 5. Click on AWS MarketePlace

 6. Type Ubuntu in search text box.

 Installing Hadoop on Amazon Web Services (AWS) 199
 7. Click on Select button

 8. Ubuntu is free so you don’t have to worry about the service price Click on Con-

tinue button.

200 Big Data

 9. Choose General.purpose m1.large and click on Next:Configurare Instance

Details (Do not choose the Micro Instances t1.micro it is free but it will not

able to handle the installation.)

 10. Click on Next: Add Storage

 Installing Hadoop on Amazon Web Services (AWS) 201
 11. Specify the volume size 20GB (Default will be 8 but it will not sufficient) and

Click on Next: Tag Instance

 12. Type the name cs488-master (This is for label to know which one is master and

slave) and click on Next: Security Group

 13. We need to open our server to the world including most of the port cause cloudera

need to add more port.

 Specify the group name

 Type: Choose Custom TCP Rule

 Port Range 0-65500

 Source : AnyWhere

 And Click on Review Instance

202 Big Data

 14. The message shows the warning this is only that we open our server to world,

So ignore it for now. Click on Launch button.

 15. Type the key pair name and Click on Download Key Pair button (remember the

location of downloaded file we need this file to log in to the server.) and Click on

Launch Instances.

 16. Now the master server is created.

 Now, we need four more servers to make the clustering for that we don’t need to

do these process four times. We just increase the value of no of instance we need

and we got the 4 servers.

 Installing Hadoop on Amazon Web Services (AWS) 203
 Now we are going to launch 4 more server which is slaves.

 Please repeat step 4-9

 Go to amazon market place, choose Ubuntu, select the instance type (General.

purpose)

 17. Type 4 in Number of Instances. Which will create the 4 more server for us.

 18. Name the server cs488-slave

204 Big Data

 19. Select the previous created security group.

 20. It is important that you need to choose the existing key pair for these server too.

 If everything goes well, you can see have 5 instances, 5 volumes, 1 key pair, 1

or 2 security groups.

 We are now successfully created 5 servers.

Step 2: Connecting Server and Installing Required Cloudera Distribution of

Hadoop

First, take a note for all your server details, IP Address, DNS address. Master and

slaves.

 Installing Hadoop on Amazon Web Services (AWS) 205

Master Public DNS Address: ec2-54-200-210-141.us-west-2.compute.amazonaws.com

Master Private IP Address: 172.31.20.82

Slave 1 Private IP: 172.31.26.245

Slave 2 Private IP: 172.31.26.242

Slave 3 Private IP: 172.31.26.243

Slave 4 Private IP: 172.31.26.244

Once you have these in recorded, you can connect to the server. If you are using linux

as operating system you can use ssh command from terminal to connect it.

Connecting the server (Windows)

 1. Download the ssh software (Putty) (http://www.chiark.greenend.org.uk/~sgtatham/

putty/download.html)

 Also download puttygen to convert our authentication file .pem to .ppk

206 Big Data

 2. Open puttygen load the authentication file

 Click on Save Private Key

Original File from amazon

Convert from puttygen

 Installing Hadoop on Amazon Web Services (AWS) 207
 3. Open Putty type the master public dns address in host name and then click on

SSH from left panel > Click on Auth >> Select the recent converted authentica-

tion file (.ppk) and finally click on Open button.

208 Big Data

 4. Now you will able to connect the server please type “ubuntu” the default user-

name to login to the system.

 5. Once you connect type the following command into the terminal

 6. sudo aptitude update

 7. cd /usr/local/src/

 8. sudo wget http://archive.cloudera.com/cm4/installer/latest/cloudera-manager-

installer.bin

 9. sudo chmod u+x cloudera-manager-installer.bin

 10. sudo ./cloudera-manager-installer.bin

 Installing Hadoop on Amazon Web Services (AWS) 209
 11. There is 4 more step where you click on Next and Yes for license agreement.

Once you finish the installation you need to restart the service.

 12. sudo service cloudera-scm-server restart

 You are now able to connect the cloudera from your browser. The address will be

http://<YOUR PUBLIC DNS SERVER>:7180 e.g. http://ec2-54-200-210-141.us-

west-2.compute.amazonaws.com:7180 and default username and password is

admin/admin to login to the system.

210 Big Data

 Once restart the server it will open the login screen again. The same username

and password (admin/admin) is used to login to the system.

 13. Click on Launch the Classic wizard

 Installing Hadoop on Amazon Web Services (AWS) 211
 14. Click on Continue

 15. Provide all the Private IP address of master and slaves computers and click on

Search button.

212 Big Data

 16. Click on Continue button.

 17. Choose None for SOLR1…. And None for IMPAL…. And Click on Continue

button.

 Installing Hadoop on Amazon Web Services (AWS) 213
 18. Click on Another User >> Type “ubuntu” and select All hosts accept same

private key >> upload the authentication file .pem and click on Continue but-

ton.

 19. Now cloudera will install the software for each of our server.

 20. Once the installation is complete click on continue button.

214 Big Data

 21. Once it reaches to 100% click on continue button. Do not disconnect internet nor

shut the machine, If the process will not complete that we need to re-create the

whole process. Click on continue button.

 Installing Hadoop on Amazon Web Services (AWS) 215
 22. Click on Continue.

 23. Choose Core Hadoop and Click on Inspect Role Assignments button

216 Big Data

 24. Now for you master IP it should have only Name Node selection and unchecked

in Data Node. This is important to make the master and slave server.

 25. Now the cloudera will install the all the services for your future use; you can

record the username and password of each services. Click on Test Connection

 Installing Hadoop on Amazon Web Services (AWS) 217

 26. Click on Continue

218 Big Data

 27. Now all the installation is complete you can now have 1 master node 4 data node.

 Installing Hadoop on Amazon Web Services (AWS) 219
 28. You should see the dashboard.

Step 3: WordCount using MapReduce

 29. Now login to master server from putty.

 30. Run the following command

 31. cd ~/

 32. mkdir code-and-data

 33. cd code-and-data

 34. sudo wget https://s3.amazonaws.com/learn-hadoop/hadoop-infiniteskills-richmor-

row-class.tgz

 35. sudo tar -xvzf hadoop-infiniteskills-richmorrow-class.tgz

 36. cd data

 37. sudo -u hdfs hadoop fs -mkdir /user/ubuntu

 38. sudo -u hdfs hadoop fs -chown ubuntu /user/ubuntu

 39. hadoop fs -put shakespeare shakespeare-hdfs

 40. hadoop version

 41. hadoop fs -ls shakespeare-hdfs

220 Big Data

 42. sudo hadoop jar /opt/cloudera/parcels/CDH-4.7.1-1.cdh4.7.1.p0.47/share/hue/apps/

oozie/examples/lib/hadoop-examples.jar wordcount shakespeare-hdfs wordcount-

output

 43. hadoop jar /opt/cloudera/parcels/CDH-4.7.1-1.cdh4.7.1.p0.47/share/hue/apps/oozie/

examples/lib/hadoop-examples.jar sleep -m 10 -r 10 -mt 20000 -rt 20000

 Installing Hadoop on Amazon Web Services (AWS) 221

Appendix 3
Spark Installation and Tutorial

A3.1 SPARK INSTALLING AND RUNNING

This tutorial will help install Spark and get it running on a standalone machine. It

will then help develop a simple analytical application using R language.

Step 1: Verifying Java Installation

Java installation is one of the mandatory things in installing Spark. Try the following

command to verify the JAVA version.

$java -version

java version “1.7.0_71”

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

In case you do not have Java installed on your system, then Install Java before pro-

ceeding to next step.

Step 2: Verifying Scala installation

Verify Scala installation using following command.

$scala -version

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

In case you don’t have Scala installed on your system, then proceed to next step for

Scala installation.

 Spark Installation and Tutorial 223
Step 3: Downloading Scala

Download the latest version of Scala by visit the following link Download Scala. For

this tutorial, we are using scala-2.11.6 version. After downloading, you will find the

Scala tar file in the download folder.

Step 4: Installing Scala

Follow the below given steps for installing Scala.

Extract the Scala tar file

Type the following command for extracting the Scala tar file.

$ tar xvf scala-2.11.6.tgz

Move Scala software files

Use the following commands for moving the Scala software files, to respective direc-

tory (/usr/local/scala).

$ su –

Password:

cd /home/Hadoop/Downloads/

mv scala-2.11.6 /usr/local/scala

exit

Set PATH for Scala

Use the following command for setting PATH for Scala.

$ export PATH = $PATH:/usr/local/scala/bin

Verifying Scala Installation

After installation, it is better to verify it. Use the following command for verifying

Scala installation.

$scala -version

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

224 Big Data

Step 5: Downloading Spark

Download the latest version of Spark. For this tutorial, we are using spark-1.3.1-

bin-hadoop2.6 version. After downloading it, you will find the Spark tar file in the

download folder.

Step 6: Installing Spark

Follow the steps given below for installing Spark.

Extracting Spark tar

The following command for extracting the spark tar file.

$ tar xvf spark-1.3.1-bin-hadoop2.6.tgz

Moving Spark software files

The following commands for moving the Spark software files to respective directory (/

usr/local/spark).

$ su –

Password:

cd /home/Hadoop/Downloads/

mv spark-1.3.1-bin-hadoop2.6 /usr/local/spark

exit

Setting up the environment for Spark

Add the following line to ~/.bashrc file. It means adding the location, where the spark

software file are located to the PATH variable.

export PATH = $PATH:/usr/local/spark/bin

Use the following command for sourcing the ~/.bashrc file.

$ source ~/.bashrc

Step 7: Verifying the Spark Installation

Write the following command for opening Spark shell.

$spark-shell

If spark is installed successfully then you will find the following output.

 Spark Installation and Tutorial 225
Spark assembly has been built with Hive, including Datanucleus jars on classpath

Using Spark’s default log4j profile: org/apache/spark/log4j-defaults.properties

15/06/04 15:25:22 INFO SecurityManager: Changing view acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: Changing modify acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: SecurityManager: authentication disabled;

 ui acls disabled; users with view permissions: Set(hadoop); users with modify per-
missions: Set(hadoop)

15/06/04 15:25:22 INFO HttpServer: Starting HTTP Server

15/06/04 15:25:23 INFO Utils: Successfully started service ‘HTTP class server’ on port
43292.

Welcome to Spark version 1.4.0

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71)

Type in expressions to have them evaluated.

Spark context available as sc

scala>

Here you can see the video:

How to install Spark

You might encounter “file specified not found error” when you are first installing

SPARK stand alone:

To fix this you have to set up your JAVA_HOME

Step 1: Start->run->command prompt(cmd)

226 Big Data

Step 2: Determine where is your JDK is located, by default it is in your C:\program

files

Step 3: Select your JDK to use in my case, I will use my JDK_8

 Spark Installation and Tutorial 227
Copy the directory to your clipboard and go to your CMD. And press enter.

Step 4: Add it to general PATH

And press enter.

228 Big Data

Now go to your spark folder and go to BIN\spark_shell

You have installed spark let’s try to use it.

Step 8: Application: WordCount in Scala

Now we will do an example of word count in Scala:

text_file = sc.textFile(“hdfs://...”)

counts = text_file.flatMap(lambda line: line.split(“ “)) \

 .map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile(“hdfs://...”)

NOTE: If you are working on a stand-alone Spark:

This counts.saveAsTextFile(“hdfs://...”) command will give you an error of

NullPointerException.

Solution: counts.coalesce(1).saveAsTextFile()

For implementing word cloud we could use R in our spark console:

However, if you click on SparkR straight away you will get an error.

To fix this:

Step 1: Set up the environment variables.

In the PATH Variable add your path : I added -> ;C:\spark-1.5.1-bin-hadoop2.6\

spark-1.5.1-bin-hadoop2.6\;C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-hadoop2.6\

sbin;C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-hadoop2.6\bin

Step 2: Install R software and Rstudio. Then add the path of R software path to the

PATH variable.

I added this to my existing path -> ;C:\Program Files\R\R-3.2.2\bin\x64\ (Remem-

ber each path that you add must be separated by semicolon and no spaces please)

Step 3: Run command prompt as an administrator.

Step 4: Now execute the command > “SparkR” from the command prompt. If suc-

 Spark Installation and Tutorial 229
cessful, you should see message “Spark context is available ... “ as seen below. If you

path is not set correctly, you can alternatively navigate to the location where you

have downloaded SparkR. In my case (C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-

hadoop2.6\bin) and execute “SparkR” Command.

 Step 5: Configuration inside the RStudio to connect to Spark!

Execute the below three commands in Rstudio everytime:

Here we are setting up SPARK_HOME environment variable

Sys.setenv(SPARK_HOME = “C:/spark-1.5.1-bin-hadoop2.6/spark-1.5.1-bin-

hadoop2.6”)

Set the library path

.libPaths(c(file.path(Sys.getenv(“SPARK_HOME”),”R”,”lib”), .libPaths()))

Loading the SparkR Libary

library(SparkR)

230 Big Data

If you see the below message then you are all set to start working with SparkR

Now let’s Start Coding in R:

lords <- Corpus (DirSource(“temp/”))

To see what’s in that corpus, type the command

inspect(lords)

This should print out contents on the main screen. Next, we need to clean it up. Ex-

ecute the following in the command line, one line at a time:

lords <- tm_map(lords, stripWhitespace)

lords <- tm_map(lords, tolower)

lords <- tm_map(lords, removeWords, stopwords(“english”))

lords <- tm_map(lords, stemDocument)

The tm_map function comes with the tm package. The various commands are self-ex-

planatory: strip unnecessary white space, convert everything to lower case (otherwise

the wordcloud might highlight capitalised words separately), remove English common

words like ‘the’ (so-called ‘stopwords’), and carry out text stemming for the final tidy-

up. Depending on what you want to achieve you could also explicitly remove numbers

and punctuation with the removeNumbers and removePunctuation arguments.

It is possible that you may get error messages whilst executing some of the commands,

e.g. missing packages. If so install these as outlined above in Step 4, and repeat

If all is well then you should now be ready to create your first wordcloud! Try this:

 Spark Installation and Tutorial 231
wordcloud(lords, scale=c(5,0.5), max.words=100, random.order=FALSE,rot.

per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, “Dark2”))

Additional Resources

Here are some other books and other resources, for learning more about the topics

covered in this book.

 1. Mayer-Schonberger, Viktor; Cukier, Kenneth (2013). Big Data: A Revolution That

Will Transform How We Live, Work, and Think . Houghton Mifflin Harcourt.

 2. McKinsey Global Institute Report (2011). Big Data: The Next Frontier For In-

novation, Competition, and Productivity. Mckinsey.com

 3. Marz, Nathan, and James Warren (2015). Big Data: Principles and Best Practices

of Scalable Realtime Data Systems. Manning Publications.

 4. Sandy Ryza, Uri Laserson et.al (2014). Advanced-Analytics-with-Spark. OReilley.

 5. White, Tom (2014). Mastering Hadoop. OReilley.

Websites:

 1. Apache Hadoop resources: https://hadoop.apache.org/docs/r2.7.2/

 2. Apache HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

 3. Hadoop API site: http://hadoop.apache.org/docs/current/api/

 4. NoSQL databases: http://nosql-database.org/

 5. Apache Spark: http://spark.apache.org/docs/latest/

 6. Tutorials on Big Data technologies: https://www.tutorialspoint.com/

Index

A

ACID (Atomicity, Consistency, Isolation,

Durability) properties 78

ACID-compliant 80

Advanced skills 114

Amazon 114

DynamoDB 80

Web Services 119

Web Services (AWS) 38

AMPLab 94, 100

Analysis and Insight 7

Apache

Flume 104

Kafka 15, 104

Oozie 67

Pig 157

Spark 12, 94

Apple 114

Asset Tracking 27

Association rules 139

Asynchronous Write 88

Audio 2

Availability 82

B

Barack Obama 30

BASE properties (Basically Available, Soft

State, and Eventually Consistent) 78

Batch Processing 36

Big Data 1

architecture 34

at rest 10

context 1

ecosystem 1, 15

in motion 10

President 7, 30

sources 36

BigTable 81

Block of data 51

Broker 107

Business applications 1

Business Intelligence (BI) 70

C

Capital expense 113

CAP Theorem 82

Cassandra 13, 79, 94

Causation 140

CCTV camera 26

Clickstream 25

Cloud Computing 112, 113

Cloudera 52, 100

Cloud

service providers 114

storage 116

Cluster Analysis 139

Columnar Databases 79

Column family 87

Computing cloud 112

Consistency level 82, 90

Consumer Sentiment Monitoring 27

Consumers of data 106

Conventional Data 1

Cookies 25

Correlation 140

Cortana 24

Cosmic computer 2

CRM 118

Cross-Industry Standard Process for Data

Mining (CRISP-DM) 141

Customer-centric objectives 8

234 Index

D

DAG 93, 94
Dashboard 10
Data 2, 9

analytics 2
columns 70
consumer 107
consumption 37
form of 5
function of 5
Ingest 36
Integrity 52
Mining Techniques 138
organizing 37
producer 107
streams 112

Decision trees 138
Digital Product Development 7
Directed Acyclic Graph (DAG) 94
Disinformation 6
Distributed File System 37
Diverse data 8
Document Databases 80
Druid 42
DynamoDB 80

E

eBay 38

E-commerce 32

Electricity Consumption Tracking 28

ERP 78

ETL (Extract, Transform, and Load) 72, 73

F

Facebook 23

Fault tolerant 108

FitBit 24

Flexibility 113

Flexible
Auto Insurance 31
capacity 114

Flickr 23
Flume 104

G

Google

File system 4, 34, 114

Flu Trends 22

Query Architecture 35

Google’s Big File 12

GPS 26

Graph Databases 10, 80

GraphX 93

Grep 59

H

Hadoop Distributed File System

(HDFS) 12, 48, 94

Installing 52

Hadoop Streaming 69

HBase 79, 85

Hive’s SQL 13, 70

accessing 13

analyzing 13

capability 70

key-value 13

processing queries 70

structured data 70

Horton 100

Human-human communications 5

Human intuition 9

Human-machine communications 5

Hybrid cloud 118

Hypervisors 112

I

IBM Watson 3, 114

Incoming data 106

Infrastructure as a service 37, 117

Ingest 14

Internet of Things (IoT) 21, 25

Internet speed 4

J

Java 53, 96

Java Virtual Machines (JVMs) 52

JobTracker 55, 57

 Index 235
K

Key-Value Pair Databases 54, 69, 80

L

LinkedIn 23, 42

Location-based Retail Promotion 31

LOHAS 17

M

Machine
data 2
failure 12

Machine-to-machine communications 5
Malicious information 6
Managing Big Data 1
MapReduce 14, 48, 57, 60
MapReduce Architecture 61
Master broker 106
Master-less “ring” design 85
Master node 49
MemTable 86
Messaging 103
MLLib 93
Mobile phones 23
MongoDB 80
Monitoring and Tracking 7
MRAppMaster 67
Multimedia 24

N

O

Offset numbers 108

Oozie 67

P

PageRank 10, 97

Pain-point 8

Parallel processing 13, 57

Partition Tolerance 82

Paypal 42

Pictures 2

Pig

engine 13, 72

latin 72

script 74

Pilot implementations 8

Platform as a service 117

Point to Point Messaging 103

Predictive Policing 29

Preventive maintenance 29

Privacy 7

Private cloud 118

Public cloud 118

Public Health Monitoring 27

Published messages 108

Publish-subscribe (pub-sub)

messaging 103, 104

Purpose of the organization 9, 14

Python 53, 96

Q

Quality 6

Quorum

Read 89

Write 88

R

R 96

Radio Frequency (RFID) tags 5

RDD 93

Reading and Writing Data Streams into

HDFS 53

Reading and Writing Local Files into

HDFS 53

Reduce 60

Region Server 84

Regression 138

Relational 13, 78

Replication 90

Resiliency 114

Resilient Distributed Datasets (RDDs) 93

RFID 25

Risk of data loss 12

236 Index

S

Sampling 140

Samza 42

Scala 104, 222, 223, 228

Security 114

Self-driving cars 25

Sensors 6

Sequence Files 54

Server farms 107, 112

Siri 24

Skye 23

Smart meters 28

Snapchat 23

Social media 7, 14

Source of data 5, 14

Source of information 6

Spark

API 94, 95

Architecture 95

GraphX 97

Spark’s Machine Learning Library

(MLLib) 37

SQL-like

language 70

structure 70

SQL syntax 70

SSTable 86

Streaming applications 12

Stream Processing 37, 93

Stream-processing engine 12

Supply Chain Monitoring 28

Surveillance videos 25

Synchronous operation 88

T

Task Tracker 57

Technological challenges 1

Technology solutions 1

Text Data 2, 11

Timestamps 86

Traditional data 2, 4

Transforming business 9

Tumblr 23

Types of data 9

U

Unstructured data 2, 10

V

Value of data 9

Variety 1

Velocity 1, 4

Videos 2

Virtualized Architecture 112, 116

Virtual Machines (VMs) 116

Visualize 2

Volume 1, 4

W

Weather Company 40

Web log analyzer 15

Web logs 2

Wordcloud 11

Wordcount 61

Y

Yahoo 79

YarnChild 68

YouTube 23

Z

Zero data loss 107

ZooKeeper 85, 110

	Title
	Contents
	1 Wholeness of Big Data
	Section 1
	2 Big Data Sources and Applications
	3 Big Data Architecture

	Section 2
	4 Distributed Computing Using Hadoop
	5 Parallel Processing with Map Reduce
	6 NoSQL Databases
	7 Stream Processing with Spark
	8 New Ingesting Data
	9 Cloud Computing

	Section 3
	10 Web Log Analyzer Application Case Study
	11 Data Mining Primer
	12 Big Data Programming Primer

	Appendix A
	Appendix B
	Appendix C
	Additional Resources
	Index

