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Preface

Big Data is a new, and inclusive, natural phenomenon, as big and messy as nature 

itself. It requires a new kind of consciousness to fathom its scale and scope, and its 

many opportunities and challenges. Understanding the essentials of Big Data requires 

suspending many conventional expectations and assumptions about data ... such as 

completeness, clarity, consistency, and conciseness. Fathoming and taming the multi-

layered Big Data is a dream that is slowly becoming a reality. It is a rapidly evolving 

field that is growing exponentially in value and capabilities. 

There are a growing number of books being written on Big Data. They fall mostly 

in two categories. There are those that focus on business aspects, and discuss the 

strategic internal shifts required for reaping the business benefits from the many 

opportunities offered by Big Data. Then there are those that focus on particular 

technology platforms, such as Hadoop or Spark. This book aims to bring together the 

business context and the technologies in a seamless way. 

Thanks to Maharishi Mahesh Yogi for creating a wonderful university whose 

consciousness-based environment made writing this evolutionary book possible. 

Thanks to many current and former students for contributing to this book. Dheer-

aj Pandey assisted with the Weblog analyzer application and its details. Suraj 

Thapalia assisted with the Hadoop installation guide. Enkh Tseeleesuren helped 

write the Spark tutorial. Thanks to my family for supporting me in this process. 

My daughters Ankita and Nupur reviewed the book and made helpful comments. My 

father Mr. R L Maheshwari and brother Dr. Sunil Maheshwari also read the book 

and enthusiastically approved it. My colleague Dr. Edi Shivaji too reviewed the book. 

May the Big Data Force be with you!

Dr. Anil Maheshwari

May 2017, Fairfield, IA
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Chapter  1
Wholeness of Big Data

Learning Objectives

 ■ Understand Big Data and its powerful business benefits
 ■ Learn the differences between Big Data and Conventional Data
 ■ Learn the 4 Vs of Big Data – Volume, Velocity, Variety, and Veracity
 ■ Discover three types of business applications of Big Data
 ■ Learn valuable tips on how to manage Big Data
 ■ Conceptualize the Big Data ecosystem and appreciate its key components
 ■ Appreciate major technological challenges in managing Big Data
 ■ Relate to the key technology solutions for addressing those challenges

INTRODUCTION

Big Data is an all-inclusive term that refers to extremely large, very fast, highly diverse, 

and complex data that cannot be managed with traditional data management tools. 

Business Intelligence

Veracity

AnalyticsBIG
DATA

Volume

Variety
(from, function,

source)
Velocity

FIGURE 1.1 Big data context
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Ideally, Big Data includes all kinds of data, which helps deliver the right informa-

tion, to the right person, in the right quantity, at the right time, to help make the 

right decisions. Big Data can be harnessed by developing infinitely scalable, flexible, 

and evolutionary data architectures, coupled with the use of cost-effective computing 

machines. The infinite potential knowledge embedded within this Big Data  cosmic 

computer would help connect with and enjoy the support of all the laws of nature.

This book will provide a complete overview of Big Data for executives and data sci-

entists. This chapter will cover the key challenges and benefits of Big Data, and the 

essential tools and technologies available for organizing and manipulating Big Data.

1.1 UNDERSTANDING BIG DATA

Big Data can be examined at two levels (Figure 1.1). At a fundamental level, it is 

just another collection of data that can be analyzed and utilized for the benefit of the 

business. On another level, it is a special kind of data that poses unique challenges 

and offers unique benefits. This book will focus on the latter level.

At business level, data generated by business operations, can be analyzed to generate 

insights that can help the business make better decisions. This makes the business 

grow bigger, and generate even more  data, so that the cycle continues. This is repre-

sented by the cycle on the top-right of Figure 1.1. This aspect is discussed in Chapter 

10, ‘A Primer on  Data Analytics’.

On the other level, Big Data is different from  traditional data in every way, i.e. space, 

time, and function. Quantitatively, Big Data is 1000 times more than the traditional 

data and of the data generation and transmission speed is also of the same order. 

The forms and functions of Big Data are 10 times more diverse: from numbers to 

 text,  pictures,  audio,  videos,  web logs,  machine data, and more. There are many more 

sources of data, from individuals to organizations to governments, using a range of 

devices from mobile phones to computers to industrial machines. Not all Big Data 

will be of equal quality and value, as represented by the cycle on the bottom left of 

Figure 1.1. This aspect of Big Data, and its new technologies, is the focus of this book.

Big Data is mostly, over 90 per cent,  unstructured data. Every type of Big Data is 

structured differently, and should be dealt in with an appropriate way. There are 

huge opportunities for technology providers to innovate and manage the entire life 

cycle of Big Data; to generate, gather, store, organize, analyze, and  visualize this data.
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Caselet
 IBM Watson: A Big Data System

IBM created the Watson system as a way of pushing the boundaries of Artificial Intelligence and natural 

language understanding technologies. Watson beat the world champion human players of Jeopardy 

(quiz style TV show) in Feb 2011. Watson reads up data about everything on the web including the 

entire Wikipedia. It digests and absorbs the data based on simple generic rules such as: books have 

authors; stories have heroes; and drugs treat ailments. A Jeopardy clue, received in the form of a cryptic 

phrase, is broken down into many possible potential sub-clues of the correct answer. Each sub-clue is 

examined to see the likeliness of its answer being the correct answer for the main problem. Watson 

calculates the confidence level of each possible answer. If the confidence level reaches more than a 

desirable threshold level, Watson decides to offer the answer to the clue. It manages to do all this in 

a mere 3 seconds.

Watson is now being applied to many important applications such as diagnosing diseases, especially 

cancer. Watson can read all the new research published in the medical journals to update its knowl-

edge base. It can diagnose the probability of various diseases, by applying factors such as patient’s 

current symptoms, health history, genetic history, medication records, and other factors to recommend 

a particular diagnosis. (Source: Smartest machines on Earth: youtube.com/watch?v=TCOhyaw5bwg)

FIGURE 1.2 IBM Watson playing jeopardy

 1. What kinds of Big Data knowledge, technologies and skills are required to build a system like 

Watson? What other resources are needed?

 2. Will doctors be able to compete with Watson in diagnosing diseases and prescribing medications? 

Who else could benefit from a system like Watson?
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1.2 CAPTURING BIG DATA

If data were only growing too large, or only moving too fast, or only becoming too di-

verse, it would have been relatively easy. However, when three Vs (Volume, Velocity, 

Variety) arrive together in an interactive manner, it creates a perfect storm. While 

the Volume and Velocity of data drive the major technological concerns and the costs 

of managing Big Data, these two Vs are themselves being driven by the third V, that 

is, the Variety of forms and functions and sources of data. The varying veracity and 

value of data complicate the situation further.

1.2.1  Volume of Data

The quantity of data generated in the world has been relentlessly doubling every 12–18 

months.  Traditional data is measured in Gigabytes (GB) and Terabytes (TB), but Big 

Data is measured in Petabytes (PB) and Exabytes (1 Exabyte = 1 Million TB). This 

data is so huge that it is almost a miracle that one can find any specific thing in it, 

in a reasonable period of time. Searching the world-wide web was the first true Big 

Data application.  Google perfected the art of this application and developed many of 

the path-breaking Big Data technologies we see in use today.

The primary reason for the  growth of data is the dramatic reduction in the cost of 

storing data. The costs of storing data have decreased by 30–40 per cent every year. 

Therefore, there is an incentive to record everything that can be observed. It is called 

‘ datafication’ of the world. The costs of computation and communication of data have 

also been coming down. Another reason for the growth of data is the increase in the 

number of forms and functions of data. We will discuss more about this in the ‘Va-

riety’ section.

1.2.2  Velocity of Data

If traditional data is like a lake, Big Data is like a  fast-flowing river. Big Data is being 

generated by billions of devices, and communicated at the speed of the light, through 

the internet. Ingesting all this data is like drinking from a fire hose. One does not 

have any control over how fast the data will come. A huge unpredictable data-stream 

is the new metaphor for thinking about Big Data.

The primary reason for the increased velocity of data is the increase in  internet speed. 

Internet speeds available to homes and offices are now increasing from 10 MB/s to 1 

GB/s (100 times faster). More people are getting access to high-speed internet around 

the world. Another important reason is the increased variety of sources, such as mo-

bile devices, that can generate and communicate data from anywhere, at any time.
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1.2.3 Variety of Data

Big Data is inclusive of all forms of data, for all kinds of functions, from all sources 

and devices. If traditional data forms such as invoices and ledgers were like a small 

store, Big Data is the biggest imaginable shopping mall that offers unlimited variety. 

There are three major kinds of variety of data.

 1. The first aspect of variety is the Form of data. Data types range in variety from 

numbers to text, graph, map, audio, video, and others, with some being simple 

and others being very complex. There could be composites of data that include 

many elements in a single file. For example, text documents have graphs and 

pictures embedded in them. Video movies can have audio songs embedded in 

them. Audio and video have different and vastly more complex storage formats 

than numbers and text. Numbers and text can be more easily analyzed than an 

audio or video file. How should composite entities be stored and analyzed?

 2. The second aspect of variety is the Function of data. There is data from hu-

man conversations, songs and movies, business transaction records, machine 

operations performance data, new product design data, old archived data, etc. 

Human communication data would need to be processed very differently from 

operational performance data, with different expectations and objectives. Big 

Data technologies could be used to recognize people’s faces in pictures; compare 

voices to identify the speaker; and compare handwritings to identify the writer.

 3. The third aspect of variety is the Source of data. Mobile phone and tablet 

devices enable a wide series of applications (or apps) to access data and, also, 

generate data from anytime anywhere. Web access and search logs are another 

new and huge source of data. Business systems generate massive amount of 

structured business transactional information. Temperature and pressure sensors 

on machines, and Radio Frequency (RFID) tags on assets, generate incessant 

and repetitive data. Broadly speaking, there are three broad types of sources of 

data: Human-human communications; human-machine communications; and 

machine-to-machine communications. The sources of Big Data, and their busi-

ness applications, will be discussed in the next chapter.

1.2.4 Veracity of Data

Veracity relates to the truthfulness, believability, and quality of data. Big Data is 

messy and there is considerable misinformation and disinformation out there. The 

reasons for poor quality of data can range from technical error, to human error, to 

malicious intent.



6 Big Data

FIGURE 1.3 Sources of big data (Source: Hortonworks.com)

 1. The source of information may not be authoritative. For example, all websites are 

not equally trustworthy. Any information from whitehouse.gov or from nytimes.

com is more likely to be authentic and complete. Wikipedia is useful, but not all 

pages are equally reliable. In each case, the communicator may have an agenda 

or a point of view.

 2. The data may not be communicated and received correctly because of human or 

technical failure. Sensors and machines for gathering and communicating data 

may malfunction and may record and transmit incorrect data. Urgency may 

require the transmission of the best data available at a point in time. Such data 

makes reconciliation with later, accurate, records more problematic.

 3. The data provided and received may, however, also be intentionally wrong for 

competitive or security reasons. There could be disinformation and malicious 

information spread for strategic reasons.

Big Data need to be sifted and organized by quality, for it to be put to any great use.
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1.3 BENEFITTING FROM BIG DATA

Data is the new natural resource. Traditionally, data usually belongs to the organiza-

tion that generates it. There are other types of data, such as  social media data, which 

are freely accessible under an open general license. Organizations can use this data to 

learn about their consumers, improve their service delivery, and design new products 

to delight their customers, and to gain a competitive advantage. Data is also being 

used to design new digital products, such as on-demand entertainment and learning.

Organizations cannot afford to ignore Big Data. They may choose to gather and store 

this data for later analysis, or to sell it to other organizations, that might benefit from 

it. They may also legitimately choose to discard parts of their data for  privacy or 

legal reasons. However, organizations that do not learn to engage with Big Data, 

could find themselves left far behind their competition, landing in the dustbin of his-

tory. Innovative and nimble small organizations can use Big Data to quickly scale up 

and beat larger and more mature organizations.

Big Data applications exist in all industries and aspects of life. There are three major 

types of Big Data applications:  Monitoring and Tracking,  Analysis and Insight, and 

 Digital Product Development.

FIGURE 1.4 The first  big data president
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Monitoring and Tracking Applications Consumer goods producers use monitor-

ing and tracking applications to understand the sentiments and needs of their custom-

ers. Industrial organizations use Big Data to track inventory in massive interlinked 

global supply chains. Factory owners use it to monitor machine performance and 

do preventive maintenance. Utility companies use it to predict energy consumption, 

and manage demand and supply. Information Technology companies use it to track 

website performance and improve its usefulness. Financial organizations use it to 

project trends better and make more effective and profitable bets, etc.

Analysis and Insight Political organizations use Big Data to micro-target voters 

and win elections. Police use Big Data to predict and prevent crime. Hospitals use it 

to better diagnose diseases and make medicine prescriptions. Advertising agencies 

use it to design more targeted marketing campaigns more quickly. Fashion designers 

use it to track trends and create more innovative products.

New Product Development Incoming data could be used to design new products 

such as reality TV entertainment. Stock market feeds could be a digital product. 

Imagination is the limit on how new such products and services can be developed 

and delivered at the speed of thought.

1.4 MANAGEMENT OF BIG DATA

Big Data is a new phase representing a digital world. Business and society are not 

immune from its strong impacts. Many organizations have started initiatives around 

the use of Big Data. However, most organizations do not necessarily have a good grip 

on it. Here are some emerging insights into making better use of Big Data.

 1. Across all industries, the business case for Big Data is strongly focused on ad-

dressing  customer-centric objectives. The first focus on deploying Big Data initia-

tives is to protect and enhance customer relationships and customer experience.

 2. Big Data should be used to solve a real  pain-point. It should be deployed for 

specific business objectives of management while avoiding being overwhelmed 

by the enormity of Big Data.

 3. Organizations are beginning their  pilot implementations by using existing and 

newly accessible internal sources of data. It is better to begin with data under 

one’s control and where one has a superior understanding of the data. One should 

use more  diverse data, and not just more data. This would permit tuning into a 

broader perspective of reality, leading to better insights.
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 4. Putting humans and data together leads to the most insights. Combining data-

based analysis with  human intuition and perspectives is better than going just 

one way. Most organizations lack the advanced analytical capabilities required 

to get the most value from Big Data. There is a growing awareness of building 

or hiring those skills and capabilities.

 5. The faster one analyzes the data, the more its predictive value. The  value of data 

depreciates rapidly with time. Many  kinds of data need to be processed within 

minutes, or else the immediate competitive advantage is lost.

 6. One should not throw away data if no immediate use can be seen for it.  Data 

usually has value beyond what one initially anticipates. Data can add perspec-

tive to other data later in a multiplicative manner. One should maintain just one 

copy of your data, not multiple. This would help avoid confusion and increase 

efficiency.

 7. Big Data is growing exponentially, so one should plan for exponential growth. 

Storage costs continue to fall, data generation continues to grow, data-based ap-

plications continue to grow in capability and functionality.

 8. Big Data builds upon a resilient, secure, efficient, flexible, and real-time infor-

mation processing environment. Big Data is  transforming business, just like IT 

did.

1.5 ORGANIZING BIG DATA

Good organization depends upon the  purpose of the organization.

Given huge quantities of data, it would be desirable to organize the data to speed 

up the search process for finding a specific desired thing in the entire data. The cost 

of storing and processing the data, too, would be a major driver for the choice of an 

organizing pattern.

Given fast and variable speed of data, it would be desirable to create a scalable number 

of ingest points. It will also be desirable to create at least some element of control over 

the data by maintaining count and averages over time, unique values received, etc.

Given wide variety in form factors, data will need to be stored and analyzed differ-

ently. Videos need to be stored separately and used for serving in a streaming mode. 

Text data may be stored separately, so it can be combined, cleaned, and analyzed for 

themes and sentiments.
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Given different quality of data, various data sources may need to be ranked and pri-

oritized before serving them to the audience. For example, the quality of a webpage 

and its data may be evaluated using its  PageRank value.

1.6 ANALYZING BIG DATA

Big Data can be analyzed in two ways. Big Data can be utilized to visualize a flowing 

or a static situation. These are called analyzing  Big Data in motion AND  Big Data at 

rest. First way is to process the incoming stream of data in real time for quick and 

effective statistics about the data. The second way is to store and structure batches of 

data and apply standard analytical techniques on for generating insights. This could 

then be visualized using real-time dashboards. The nature of processing this huge, 

diverse, and largely  unstructured data, can be limited only by one’s  imagination.

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
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Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 1.5 Big data architecture

A million points of data can be plotted in a graph and offer a view of the density of 

data. However, plotting a million points on the  graph may produce a blurred image 

which may hide, rather than highlight the distinctions. In such a case, binning the 

data would help, or selecting the top few frequent categories may deliver greater in-

sights. Streaming data can also be visualized by simple counts and averages over time. 

For example, below is a dynamically updated chart that shows up-to-date statistics 

of visitor traffic to the author’s blogsite, anilmah.com. The bar shows the number 

of page views, and the inner darker bar shows the number of unique visitors. The 

 dashboard could show the view by days, weeks, or years also.
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Insights Days Weeks Months Years

Views Visitors

800

400
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VISITORS
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COMMENTS

1

VIEWS

645

FIGURE 1.6 Real-time dashboard for website performance for the author’s blog

Text Data could be combined, filtered, cleaned, thematically analyzed, and visual-

ized in a wordcloud. Here is wordcloud from a recent stream of tweets (i.e. Twitter 

messages) from 2016 US Presidential candidates Hillary Clinton and Donald Trump 

(Figure 1.7). The larger size of words implies greater frequency of occurrence in the 

tweets. This can help understand the major topics of discussion between the two.

FIGURE 1.7 A wordcloud of Hillary Clinton’s and Donald Trump’s tweets
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1.7 TECHNOLOGY CHALLENGES FOR BIG DATA

There are four major technological challenges in managing Big Data. There are four 

matching layers of technologies to overcome those challenges.

1.7.1 Storing Huge Volumes

The first challenge relates to storing huge quantities of data. No computing machine 

is big enough to store the relentlessly growing quantity of data. Therefore, data must 

be stored in several smaller inexpensive machines. However, with a large number 

of machines, there is the inevitable challenge of  machine failure. Each of these com-

modity machines will fail at some point or another. Failure of a machine could entail 

a loss of data stored on it.

The first layer of Big Data technology thus helps store huge volumes of data, at an 

affordable cost, while avoiding the  risk of data loss. It distributes data across a large 

cluster of inexpensive commodity machines. It ensures that every piece of data is 

stored on multiple machines to guarantee that at least one copy is always available.

Hadoop is the most well-known clustering technology for Big Data. Its data storage 

pattern is called  Hadoop Distributed File System (HDFS). This system is built on 

the patterns of  Google’s Big File systems, designed to store billions of pages, and sort 

them to answer user search queries.

1.7.2 Ingesting Streams at an Extremely Fast Pace

The second challenge relates to the Velocity of data, i.e. handling torrential streams 

of data. Some of the data streams may be too large to store, but must still be moni-

tored. The solution lies in creating special scalable ingesting systems that can open 

an unlimited number of channels for receiving data. These systems can hold data 

in queues, from which business applications can read and process data at their own 

pace and convenience.

The second layer of Big Data technology manages this velocity challenge. It uses a 

special  stream-processing engine, where all incoming data is fed into a central queue-

ing system. From there, a fork-shaped system sends data to batch storage as well as 

to stream processing directions. The stream processing engine can do its work while 

the batch processing does its work.  Apache Spark is the most popular system for 

 streaming applications.
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1.7.3 Handling a Variety of Forms and Functions of Data

The third challenge relates to the structuring and access of all varieties of data that 

comprise Big Data. Storing them in traditional flat or relational structures would be 

too impractical, wasteful, and slow. Accessing and analyzing them requires different 

capabilities.

The third layer of Big Data technology solves this problem by storing the data in non-

relational systems that relax many of the stringent conditions of the relational model. 

These are called NoSQL (Not Only SQL) databases. These databases are optimized for 

certain tasks such as query processing, or graph processing, document processing, etc.

HBase and Cassandra are two of the better known NoSQL databases systems. HBase, 

for example, stores each data element separately along with its key identifying infor-

mation. This is called a key-value pair format. Cassandra stores data in a columnar 

format. There are many other variants of NoSQL databases. NoSQL languages, such 

as Pig and Hive, are used to access this data.

1.7.4 Processing Data at Huge Speeds

The fourth challenge relates to moving large amounts of data from storage to the 

processor, as this would consume enormous network capacity and choke the network. 

The alternative and innovative mode would be to do just the opposite, i.e. to move 

the processing to where the data is stored.

The fourth layer of Big Data technology avoids the choking of the network. It distrib-

utes the task logic throughout the cluster of machines where the data is stored. Those 

machines work, in parallel, on the data assigned to them, respectively. A follow-up 

process consolidates the outputs of all the small tasks and delivers the final results.

MapReduce, also invented by Google, is the best-known technology for parallel pro-

cessing of distributed Big Data. Table 1.1 lists technological challenges and solutions 

for Big Data.

Table 1.1 

Technological challenges and solutions for big data

Challenge Description Solution Technology

Volume Avoid risk of data loss from 

machine failure in clusters of 

commodity machines

Replicate segments of data 

in multiple machines; master 

node keeps track of segment 

location

HDFS

(Contd.)
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Challenge Description Solution Technology

Volume & Velocity Avoid choking of network 

bandwidth by moving large 

volumes of data 

Move processing logic to where 

the data is stored; manage 

using parallel processing al-

gorithms

 Map-Reduce

Variety Efficient storage of large and 

small data objects

Columnar databases using 

key-pair values format

HBase, Cassandra

Velocity Monitoring streams too large 

to store

Fork-shaped architecture to 

process data as stream and 

as batch

Spark

Once these major technological challenges arising from the 4 Vs of data are met, all 

traditional analytical and presentation tools can be applied to Big Data. There are 

many additional supportive technologies to make the task of managing Big Data 

easier. For example, there are technologies to monitor the resource usage and load 

balancing of the machines in the cluster.

1.8 CONCLUSION

Big Data is a major social and technological phenomenon that impacts everyone. It 

also provides an opportunity to create new ways of knowing and working. Big Data 

is extremely large, complex, fast, and not always clean as it is data that comes from 

many sources such as people, web, and machine communications. Big Data needs to 

be gathered, organized and processed in a cost-effective way that manages the volume, 

velocity, variety, and veracity of Big Data. Hadoop, MapReduce, NoSQL, and Spark 

systems are popular technological platforms for this purpose.

To summarize, here is a list of the many differences between traditional and Big Data 

(Table 1.2).

Table 1.2

Comparing big data with traditional data

Feature Traditional Data Big Data

Representative Structure Lake/Pool Flowing Stream/river

Primary  Purpose Manage business activities Communicate, Monitor

 Source of data Business transactions, docu-

ments

 Social media, Web access logs, 

machine generated

Volume of data Gigabytes, Terabytes Petabytes, Exabytes

Velocity of data  Ingest level is controlled Real-time unpredictable ingest 

Variety of data Alphanumeric Audio, Video, Graphs, Text

(Contd.)

(Contd.)
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Feature Traditional Data Big Data

Veracity of data Clean, more trustworthy Varies depending on source

Structure of data Well-Structured Semi- or Un-structured

Physical Storage of Data In a Storage Area Network Distributed clusters of commod-

ity computers

Database organization Relational databases NoSQL databases 

Data Access SQL NoSQL such as Pig

Data Manipulation Conventional data processing Parallel processing

Data Visualization Variety of tools Dynamic dashboards with simple 

measures

Database Tools Commercial systems Open-source - Hadoop, Spark

Total Cost of System  Medium to High  high

1.9 ORGANIZATION OF THE REST OF THE BOOK

This book will cover applications, architectures, and the essential Big Data technolo-

gies. The rest of the book is organized as follows.

Section 1 will discuss sources, applications, and architectural topics. Chapter 2 will 

discuss a few compelling business applications of Big Data, based on understanding 

the different sources and formats of data. Chapter 3 will cover some examples of Big 

Data architectures used by leading organizations.

Section 2 will discuss expand on the  Big Data Ecosystem (Figure 1.5). It will have 

six chapters discussing the six major technology elements identified in the ecosys-

tem. Chapter 4 will discuss Hadoop ecosystem and how its Distributed File system 

(HDFS) works. Chapter 5 will discuss MapReduce parallel processing algorithm and 

how it helps accomplish big tasks quickly. An introduction to Hive and Pig program-

ming languages will also be included. Chapter 6 will discuss NoSQL databases to 

learn how to structure Big Data into four major types of databases. In particular, 

HBase and Cassandra databases will be covered in great detail. Chapter 7 will cover 

streaming data, and the systems for ingesting and processing this data. This chapter 

will cover Spark, an integrated, in-memory processing toolset to manage Big Data. 

Chapter 8 will cover Data ingest system, using  Apache Kafka messaging system. 

Finally, Chapter 9 will be a primer on Cloud Computing technologies used for rent-

ing storage and compute capacity at third party networks at a fraction of the cost of 

in-house IT infrastructure.

Section 3 will include applications, primers, and tutorials. Chapter 10 will present 

a case study on “ web log analyzer”, a popular and generic application that ingests 

a log of a large number of web request entries every day and can create summary 

(Contd.)
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and exception reports. Chapter 11 will be a primer on data analytics technologies for 

analyzing data. A full treatment can be found in my book, Data Analytics. Chapter 

12 will be a primer on Big Data languages, Apache Hive and Pig. Appendix A will be 

a tutorial on installing Hadoop cluster on Amazon EC2 cloud. Appendix B will be a 

tutorial on installing and using Spark.

Review Questions

 1. What is Big Data? Why should anyone care?

 2. Describe the 4V model of Big Data.

 3. What are the major technological challenges in managing Big Data?

 4. What are the technologies available to manage Big Data?

 5. What kind of analyses can be done on Big Data?

 6. Watch Cloudera CEO present the evolution of Hadoop at https://www.youtube.

com/watch?v=S9xnYBVqLws . Why did people not pay attention to Hadoop and 

MapReduce when it was introduced? What implications does it have to emerging 

technologies?

True/False Questions

 1. Big Data is an umbrella term for a collection of data sets so large and complex 

that they do not fit into a single file system.

 2. ‘Datafication’ means that ‘increasing’ details about events are being recorded and 

stored.

 3. Data only belongs to the user or the organization that generates it.

 4. Big Data is so precious that multiple copies of data should be maintained.

 5. Big Data includes approximately equal amounts of structured data and unstruc-

tured data.

 6. Social media interactions are a form of big data.

 7. Big Data is growing steadily at an exponential rate.

 8. Big Data at rest means to process the incoming stream of data in real time for 

quick and effective statistics about the data.

 9. The major causes of variety of data are the source, form, and function of data.
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 10. Transactions + Interactions + Observations = Traditional Data.

 11. The primary cause of poor quality of data is because of human error.

 12. There are five different categories of Big Data applications.

 13. Big Data should be used for solving technology-centric applications.

 14. Visualizing Big Data presents no special challenges.

 15. Storing huge volumes of data is solved using MapReduce.

 16. Processing massive data in parallel is solved using NoSQL databases.

 17. Processing massive data in real-time streaming mode is done through Apache 

Spark.

 18. Managing huge variety of data is done through NoSQL databases.

 19. Hadoop is a proprietary Big data technology.

 20. Hadoop Distributed File System (HDFS) was invented by Google.

Liberty Stores Case Exercise: Step B1

Liberty Stores Inc. is a specialized global retail chain that sells organic food, organic clothing, wellness 

products, and education products to enlightened LOHAS (Lifestyles of the Healthy and Sustainable) 

citizens worldwide. The company is 20 years old, and is growing rapidly. It now operates in 5 conti-

nents, 50 countries, 150 cities, and has 500 stores. It sells 20000 products and has 10000 employees. 

The company has revenues of over $5 billion and has a profit of about 5 per cent of its revenue. The 

company pays special attention to the conditions under which the products are grown and produced. 

It donates about one-fifth (20 per cent) from its pre-tax profits from global local charitable causes.

 1. Suggest a comprehensive Big Data strategy for the CEO of the company.

 2. How can a Big Data system such as IBM Watson help this company?





This section covers two important high-level topics.

 ➨ Chapter 2 will cover big data sources, and its varied applications in many 

industries.

 ➨ Chapter 3 will cover examples of Big Data architectures from leading 

organizations.

Section 1





Chapter  2
Big Data Sources and 

Applications

Learning Objectives

 ■ Recognize the three categories of sources of Big Data

 ■ Identify the three categories of applications of Big Data

 ■ Appreciate how  Internet of Things (IoT) is driving Big Data

 ■ Understand how analyzing and interpreting Big Data requires caution

INTRODUCTION

If a traditional software application is a lovely cat, then a Big Data application is a 

fierce tiger. An ideal Big Data application will take advantage of all the richness of 

data and produce relevant information to make the organization responsive and suc-

cessful. Big Data applications can align the organization with the totality of natural 

laws, the source of all sustainable success in the world (Figure 2.1).

Companies like the consumer goods giant, Proctor & Gamble, have inserted Big Data 

into all aspects of its planning and operations. The industrial giant, Volkswagen, 

requires all its business units to identify some realistic initiative using Big Data to 

grow their unit’s sales. The entertainment giant,  Netflix, processes 400 billion user 

actions every day to understand their customers’ needs.

Learning Objectives

■ Recognize the three categories of sources of Big Data

■ Identify the three categories of applications of Big Data

■ Appreciate how Internet of Things (IoT) is driving Big Data

■ Understand how analyzing and interpreting Big Data requires caution
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FIGURE 2.1 Big data architecture

Caselet
Big Data Gets the Flu

Google Flu Trends was an enormously successful influenza forecasting service, pioneered by Google. It 

employed Big Data, such as the stream of search terms used in its ubiquitous Internet search service. 

The program aimed to better predict flu outbreaks using data and information from the U.S. Centers 

for Disease Control and Prevention (CDC). What was most amazing was that this application could 

predict the onset of flu, almost two weeks before CDC saw it coming. From 2004 till about 2012 it 

was able to successfully predict the timing and geographical location of the arrival of the flu season 

around the world.

United States Flu Activity
Influenza estimate Google Flue Trends estimate United States data

See data for: United States

2004 2005 2006 2007 2008 2009

Historical estimates

6,885

5,168

3,442

1,121

FIGURE 2.2 Google flu trends
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However, it failed spectacularly to predict the 2013 flu outbreak. Data used to predict Ebola’s spread 

in 2014–15 yielded wildly inaccurate results, and created a major panic. Newspapers across the globe 

spread this application’s worst-case scenarios for the Ebola outbreak of 2014.

Google Flu Trends failed for two reasons: Big Data hubris, and algorithmic dynamics, (a) The quantity 

of data does not mean that one can ignore foundational issues of measurement and construct valid-

ity and reliability and dependencies among data and (b) Google Flu Trends predictions were based 

on a commercial search algorithm that frequently changes, based on Google’s business goals. This 

uncertainty skewed the data in ways even Google engineers did not understand, even skewing the 

accuracy of predictions. Perhaps the biggest lesson is that there is far less information in the data, 

typically available in the early stages of an outbreak, than is needed to parameterize the test models.

 1. What lessons would you learn from the death of a prominent and highly successful Big Data ap-

plication?

 2. What other Big Data applications can be inspired from the success of this application?

2.1 BIG DATA SOURCES

Big Data is inclusive of all data, about all activities, everywhere. It can thus poten-

tially transform our perspective on life and the universe. It can bring new insights 

in real-time, make life happier, and make the world more productive. Big Data can 

however also bring perils—in terms of violation of privacy, and social and economic 

disruption.

There are three major categories of data sources: people-to-people communications, 

human-machine communications, and machine-machine communications.

2.1.1 People-to-People Communications

People and corporations increasingly communicate instantly over electronic networks. 

Everyone communicates through phone and email. Influential networks have expand-

ed. Distance and time have been annihilated. News travels instantly. The content of 

communication has become richer and multimedia. For example, high-resolution cam-

eras in  mobile phones enable people to record pictures and videos, and instantly share 

them with friends and family. All these communications are stored in the facilities of 

many intermediaries, such as telecom and internet service providers. Social media is 

a new and particularly transformative type of human-human communications.

2.1.1.1 Social Media

Social media platforms such as  Facebook,  Twitter,  LinkedIn,  YouTube,  Flickr,  Tumblr, 

 Skye,  Snapchat, and others have become an increasingly intimate part of modern life. 
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People instantly share messages and pictures through social media such as Facebook 

and YouTube. They share photo albums through Flickr. They communicate in short 

asynchronous messages with each other on Twitter. They make friends on Facebook, 

and follow others on Twitter. They do video conferencing, using Skype and leaders 

deliver messages that sometimes go viral through social media.

FIGURE 2.3 Sampling of major social media

Figure 2.3 shows a few among the hundreds of social media that people use and they 

generate huge streams of text, pictures, videos, logs, and other  multimedia data. All 

these data streams are part of Big Data, and can be monitored and analyzed to un-

derstand many phenomena, such as patterns of communication, as well as the gist of 

the conversations. These media have been used for a wide variety of purposes with 

stunning effects.

2.1.2 People-to-Machine Communications

Sensors and web are two of the kinds of machines that people communicate with. 

Personal assistants such as  Siri and  Cortana are the latest in man–machine com-

munications as they try to understand human requests in natural language, and 

fulfil them. Wearable devices such as  FitBit and smart watch are smart devices that 

read, store and analyze people’s personal data such as blood pressure and weight, 

food and exercise data, and sleep patterns. The world-wide web is like a knowledge 

machine that people interact with to get answers for their queries. They also use the 

web for commerce.
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2.1.2.1 Web Access

The world-wide-web has integrated itself into all parts of human and machine activ-

ity. The usage of the tens of billions of pages by billions of web users generates huge 

amount of enormously valuable  clickstream data. Every time a web page is requested, 

a record of this activity is generated at the webpage provider end. The webpage 

provider tracks the identity of the requesting device and user, and time and spatial 

location of each request. On the  webpage requester side, there are certain small 

pieces of computer code and data called  cookies which track the webpages received, 

date/time of access, and some identifying information about the user. All these web 

access logs, and cookie records, can provide web usage records that can be analyzed 

for discovering opportunities for marketing purposes.

A web log analyzer is an application required to monitor streaming web access logs 

in real-time to check on website health and to flag errors. A detailed case study of a 

practical development of this application is shown in Chapter 10.

2.2 MACHINE-TO-MACHINE (M2M) COMMUNICATIONS

M2M communications is also sometimes broadly called the  Internet of Things (IoT). A 

trillion devices are connected to the internet and they communicate with each other, 

or with some master machines. All this data can be accessed and harnessed by mak-

ers and owners of those machines.

Machines and equipment have many kinds of sensors to measure certain environ-

mental parameters, which can be broadcast to communicate their status.  RFID tags 

and sensors embedded in machines help generate the data. Containers on ships are 

tagged with RFID tags that convey their location to all those who can listen. Simi-

larly, when pallets of goods are moved in warehouses and retail stores, those pallets 

contain electromagnetic (RFID) tags that convey their location. Cars carry an RFID 

transponder to identify themselves to automated tollbooths and pay the tolls. Robots 

in a factory, and internet-connected refrigerators in a house, continually broadcast 

a ‘heartbeat’ that they are functionally normally. Automobiles contain sensors that 

record and communicate operational data. A modern car can generate many mega-

bytes of data every day, and there are more than 1 billion motor vehicles on the road. 

Thus the automotive industry itself generate huge amounts of data.  Self-driving cars 

would only add to the quantity of data generated.  Surveillance videos using commod-

ity cameras are another major source of machine-generated data.
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2.2.1 RFID Tags

An RFID tag (Figure 2.4) is a radio transmitter with 

a little antenna that can respond to and communicate 

essential information to special readers through Radio 

Frequency (RF) channel. A few years ago, major retail-

ers such as Walmart decided to invest in RFID technol-

ogy to take the retail industry to a new level. It forced 

their suppliers to invest in RFID tags on the supplied 

products. Today, almost all retailers and manufacturers 

have implemented RFID-tags based solutions.

Here is how an RFID tag works. When a passive RFID 

tag comes in the vicinity of an RF reader and is ‘tickled’, 

the tag responds by broadcasting a fixed identifying 

code. An active RFID tag has its own battery and stor-

age, and can store and communicate a lot more information. Every reading of mes-

sage from an RFID tag by an RF reader creates a record, or a log entry. Thus there 

is a steady stream of data from every reader as it records information about all the 

RFID tags in its area of influence. The records may be logged regularly, to track the 

location and movement of an item. All the duplicate and redundant records must be 

removed to produce clean, consolidated data about the location and status of items 

in real time.

2.2.2 Sensors

A sensor (Figure 2.5) is a small physi-

cal device that can observe and record 

physical or chemical parameters. Sensors 

are all-pervasive. A photo sensor in the 

elevator or train door can sense if some-

one is moving and to thus keep the door 

from closing. A CCTV camera can record 

a video for surveillance purposes. A GPS 

device can record its geographical loca-

tion every moment. Temperature sensors 

in a car can measure the temperature of 

the engine and the tires and more. The 

thermostat in a building or a refrigerator 

too have temperature sensors. A pressure sensor can measure the pressure inside an 

industrial boiler.

FIGURE 2.4  A small passive 

RFID tag

FIGURE 2.5 An embedded sensor
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2.3 BIG DATA APPLICATIONS

Recording and processing all data requires much talent, resources, and time. The data 

can be use imaginatively and meaningfully to derive business benefit. There are three 

major types of business applications with different levels of transformational potential.

2.3.1 Monitoring and Tracking Applications

These are the first and basic applications of Big Data. They help improve the effi-

ciency of the business, in almost all industries. Here are a few specific applications.

2.3.1.1  Public Health Monitoring

The US government is encouraging all healthcare stakeholders to establish a national 

platform for interoperability and data sharing standards. This would enable secondary 

use of health data, which would advance Big Data analytics and personalized holistic 

precision medicine. This would be a broad-based platform like Google Flu Trends.

2.3.1.2  Consumer Sentiment Monitoring

Social Media has become more powerful than advertising. Many consumer goods 

companies have moved a bulk of their advertising budgets from traditional media 

into social media. They have set up Big Data listening platforms (Figure 2.6), where 

Social Media data streams (including tweets and Facebook posts and blog posts) are 

filtered and analyzed for certain keywords or sentiments, by certain demographics 

and regions. Actionable information from this analysis is delivered to marketing pro-

fessionals for appropriate action, especially when the product is new to the market.

2.3.1.3  Asset Tracking

The US Department of Defense is encouraging the industry to devise a tiny RFID chip that 

could prevent the counterfeiting of electronic parts that end up in avionics or circuit boards for 

other devices. Airplanes are one of the heaviest users of sensors which track every as-

pect of the performance of every part of the plane. The data can be displayed on the 

dashboard, as well as stored for later detailed analysis. Working with communicating 

devices, these sensors can produce a torrent of data.

Theft by shoppers and employees is a major source of loss of revenue for retailers. All 

valuable items in the store can be assigned RFID tags, and the gates of the store can 

be equipped with RF readers. This can help secure the products, and reduce leakage 

(theft) from the store.
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2.3.1.4 Supply Chain Monitoring

All containers on ships communicate their status and location using RFID tags. Thus, 

retailers and their suppliers can gain real-time visibility to the inventory throughout 

the global supply chain. Retailers can know exactly where the items are in the ware-

house, and so can bring them into the store at the right time. This is particularly 

relevant for seasonal items that must be sold on time, or else they will be sold at a 

discount. With item-level RFID tacks, retailers also gain full visibility of each item 

and can serve their customers better.

2.3.1.5 Electricity Consumption Tracking

Electric utilities can track the status of generating and transmission systems and, also, 

measure and predict the consumption of electricity. Sophisticated sensors can help 

monitor voltage, current, frequency, temperature, and other vital operating charac-

teristics of huge and expensive electric distribution infrastructure. Smart meters can 

measure the consumption of electricity at regular intervals of one hour or less. This 

data is analyzed to make real-time decisions to maximize power capacity utilization 

and the total revenue generation.

Collect
Social Media
Blogs
Twitter
News
Product Reviews

Analyze
Enrich and prepare
social media content
with metadata

Index
Enable keyword search
with linguistic analysis.
Search for names with
fuzzy matching

Deliver
Provide marketing
professionals with
instant access to social
media data and analysis

Language
Identification

Document
Clustering

Entity
Extraction

Sentiment
Analysis

Mention Identity

Reporting &
analysis

Brand, product &
entity monitoring

Dashboards

Advanced search &
faceted navigation

FIGURE 2.6 Architecture for a social media listening platform (Source: Intelligenthq.com)
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2.3.1.6 Preventive Machine Maintenance

All machines, including cars and computers, do tend to fail sometimes. This is because 

one or more or their components may cease to function. As a preventive measure, pre-

cious equipment could be equipped with sensors. The continuous stream of data from 

the sensors could be monitored and analyzed to forecast the status of key components, 

and thus, monitor the overall machine’s health.  Preventive maintenance can, thus, 

reduce the cost of downtime.

2.3.2 Analysis and Insight Applications

These are next level of Big Data applications. They can increase the effectiveness of 

business and have transformative potential. Big Data can be structured and analyzed 

to produce insights and patterns that can be used to make business better.

2.3.2.1  Predictive Policing

The Los Angeles Police Department (LAPD) invented the concept of Predictive Polic-

ing. The LAPD worked with UC Berkeley researchers to analyze its large database 

of 13 million crimes recorded over 80 years, and predicted the likeliness of crimes of 

certain types, at certain times, and in certain locations. They identified hotspots of 

crime where crimes had occurred, and where crime was likely to happen in the future 

(Figure 2.7). Crime patterns were mathematically modelled after a simple insight 

borrowed from a metaphor of earthquakes and its aftershocks. The model said that 

once a crime occurred in a location, it represented a certain disturbance in harmony, 

and would thus, lead to a greater likelihood of a similar crime occurring in the local 

vicinity soon. The model showed for each police beat, the specific neighborhood blocks 

and specific time slots, where crime was likely to occur.

FIGURE 2.7 LAPD officer on predicting policing (Source: nbclosangeles.com)
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By aligning the police cars’ patrol schedules in accordance with the model’s predictions, 

the LAPD could reduce crime by 12 per cent to 26 per cent for different categories of 

crime. Recently, the San Francisco Police Department released its own crime data 

for over 2 years, so data analysts could model that data and prevent future crimes.

2.3.2.2 Winning Political Elections

The US President, Barack Obama, was the first major political candidate to use Big 

Data in a significant way, in the 2008 elections. He is the first Big Data president. His 

campaign gathered data about millions of people, including supporters. They invented 

the mechanism to obtain small campaign contributions from millions of supporters. 

They created personal profiles of millions of supporters and what they had done and 

could do for the campaign. Data was used to determine undecided voters who could 

be converted to their side. They provided phone numbers of these undecided voters 

to the volunteers. The results of the calls were recorded in real time using interac-

tive web applications. Obama himself used his twitter account to communicate his 

messages directly with his millions of followers.

After the elections, Obama converted his list of tens of millions of supporters to an 

advocacy machine that would provide the grassroots support for the President’s initia-

tives. Since then, almost all campaigns use Big Data. Senator Bernie Sanders used 

the same Big Data playbook to build an effective national political machine powered 

entirely by small donors.

Elections analyst, Nate Silver, created sophistical predictive models using inputs from 

many political polls and surveys to win pundits to successfully predict winners of the 

US elections. Nate was however, unsuccessful in predicting Donald Trump’s rise and 

ultimate victory, and that shows the limits of Big Data.

2.3.2.3 Personal Health

Correct diagnosis is the sine qua non of effective treatment. Medical knowledge and 

technology is growing by leaps and bounds. IBM’s Watson system is a Big Data Ana-

lytics engine that ingests and digests all the medical information in the world, and 

then applies it intelligently to an individual situation. Watson can provide a detailed 

and accurate medical diagnosis using current symptoms, patient history, medication 

history, and environmental trends, and other parameters. Similar products might be 

offered as an App to licensed doctors, and even individuals, to improve productivity 

and accuracy in health care.
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2.3.3  New Product Development

These applications are totally new concepts that did not exist earlier. These applica-

tions have the transformative potential to disrupt entire industries, and generate new 

avenues of revenue for businesses.

2.3.3.1  Flexible Auto Insurance

An auto insurance company can use the GPS data from cars to calculate the risk of 

accidents based on travel patterns (Figure 2.8). The automobile companies can use 

the car sensor data to track the performance of a car. Safer drivers can be rewarded 

and the errant drivers can be penalized.

FIGURE 2.8 GPS based tracking of vehicles

2.3.3.2  Location-based Retail Promotion

A retailer, or a third-party advertiser, can target customers with specific promotions 

and coupons based on location data obtained through Global Positioning System (GPS) 

the time of day, the presence of stores nearby, and mapping it to the consumer pref-

erence data available from social media databases. Advertisements and offers can be 

delivered through mobile apps, SMS, and email. These are examples of mobile apps.



32 Big Data

2.3.3.3 Recommendation Service

 E-commerce has been a fast growing industry in the last couple of decades. A variety 

of products are sold and shared over the internet. Web users’ browsing and purchase 

history on ecommerce sites is utilized to learn about their preferences and needs, and 

to advertise relevant product and pricing offers in real-time. Amazon uses a personal-

ized recommendation engine system to suggest new additional products to consumers 

based on affinities of various products. Netflix also uses a recommendation engine to 

suggest entertainment options to its users.

2.4 CONCLUSION

Big Data is valuable across all industries. There are three major types of data sources 

of Big Data, viz., people-people communications, people-machine communications, 

and machine-machine communications. Each type has many sources of data. There 

are three types of applications. They are the monitoring type, the analysis type, and 

new product development. They have impact on efficiency, effectiveness, and even 

disruption of industries. This chapter presents a few business applications of each of 

those three types.

Review Questions

 1. What are the major sources of Big Data? Describe a source of each type.

 2. What are the three major types of Big Data applications? Describe two applica-

tions of each type.

 3. Would it be ethical to arrest someone based on a Big Data Model’s prediction of 

that person likely to commit a crime?

 4. An auto insurance company learned about the movements of a person based on 

the GPS installed in the vehicle. Would it be ethical to use that as a surveillance 

tool?

 5. Research can describe a Big Data application that has a proven return on invest-

ment (ROI) for an organization.

True/False Questions

 1. One of the major source of Big Data is man-machine communications.

 2. The more data is available, the most successful with be the business applications.
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 3. RFID tags are a form of man-machine communications.

 4. Social media are a form of man-machine communications.

 5. A sensor is a device that computes whether the social media message is sensible.

 6. Tracking the location of assets can lead to great efficiencies.

 7. Predictive policing has been shown to reduce crime.

 8. Social media data can be used to design flexible auto insurance policies.

 9. Big Data applications are relevant mostly for knowledge-intensive industries.

 10. Big Data can be used for effective marketing campaigns.

Liberty Stores Case Exercise: Step B2

The Board of Directors asked the company to take concrete and effective steps to become a data-driven 

company. The company wants to understand its customers better. It wants to improve the happiness 

levels of its customers and employees. It wants to innovate on new products that its customers would 

like. It wants to relate its charitable activities to the interests of its customers.

 1. What kind of data sources should the company capture for this?

 2. What kind of Big Data applications would you suggest for this company?



Chapter  3
Big Data Architecture

 

 

 

INTRODUCTION

Big Data Application Architecture is the configuration of tools and technologies to 

accomplish the whole task. An ideal  Big Data architecture would be resilient, secure, 

cost-effective, and adaptive to new needs and environments. This can be achieved by 

beginning with a proven architecture, and creatively and progressively restructuring 

it as additional needs and problems arise. Big Data architectures should ultimately 

align with the architecture of the Universe itself, the source of all invincibility.

Caselet
Google Query Architecture

Google invented the first Big Data architecture. Their goal was to gather all the information on the web, 

organize it, and search it for specific queries from millions of users. An additional goal was to find a way 

to monetize this service by serving relevant and prioritized online advertisements on behalf of clients.

Google developed web crawling agents which would follow all the links in the web and make a copy of 

all the content on all the webpages it visited. Google invented cost-effective, resilient, and fast ways to 

store and process all that exponentially growing data. It developed a scale-out architecture in which it 

could linearly increase its storage capacity by inserting additional computers into its computing network. 

The data files were distributed over the large number of machines in the cluster. This distributed files 

system was called the  Google File system, and was the precursor to Hadoop.

Appreciate the variety of architectures for Big Data ecosystem

■ Explain the many layers of technologies in the Big Data architecture

Analyse how leading organizations are architecting Big Data solutions
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Google would sort or index the data thus gathered so it can be searched efficiently (Figure 3.1). They 

invented the key-pair NoSQL database architecture to store variety of data objects. They developed 

the storage system to avoid updates in the same place. Thus the data was written once, and read 

multiple times.
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FIGURE 3.1  Google query architecture

Google developed the MapReduce parallel processing architecture whereby large datasets could be 

processed by thousands of computers in parallel, with each computer processing a chunk of data, 

to produce quick results for the overall job. The Hadoop ecosystem of data management tools like 

Hadoop distributed file system (HDFS), columnar database system like HBase, a querying tool such as 

Hive, and more, emerged from Google’s inventions. Apache Spark is a streaming data technology to 

produce instant results.

 1. Why should Google publish its File System and the MapReduce parallel programming system and 

send it into open-source system?

 2. What else good can be done with Google’s repository of the entire web’s data?

3.1 STANDARD BIG DATA ARCHITECTURE

Here is the generic Big Data Architecture as introduced in Chapter 1 (shown again 

in Figure 3.2). There are many sources of data. All data is funneled in through an 

ingest system. The data is forked into two sides: a stream processing system and a 

batch processing system. The outcome of these processing can be sent into NoSQL 
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databases for later retrieval, or sent directly for consumption by many applications 

and devices.

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 3.2 Generic big data architecture

A Big Data solution typically comprises these as logical layers. Each layer can be 

represented by one or more available technologies.

Big Data sources layer The choice of sources of data for an application depends 

upon what data is required to perform the kind of analyses you need. Big Data will 

vary in origin, size, speed, form, and function, as described by the 4 Vs in Chapter 

1. The sources of Big Data, as described in Chapter 2, can be internal or external to 

the organization. The scope of access to data available could be limited. The level of 

structure as well as the speed of data and its quantity could be high or low depend-

ing upon the data source.

Data Ingest layer This layer is responsible for acquiring data from the various data 

sources. Incoming data is received through a scalable number of input points, that 

can acquire data at various speeds and in various quantities. The data is sent to a 

batch processing system, or a realtime processing system, or to a storage file system 

such as Hadoop.  Compliance regulations and governance policies impact what data 

can be stored and for how long.

Batch Processing layer The analysis layer receives data from the ingest point or 

from the file system or from the NoSQL databases. Data is processed using parallel 

programming techniques (such as MapReduce) to process it and produce the desired 

results. This batch processing layer thus must understand the data sources and data 
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types, the algorithms that would work on that data, and the format of the desired 

outcomes. The output of this layer could be sent for instant reporting, or be stored in 

NoSQL databases for an on-demand report, for the client.

 Stream Processing layer This technology layer receives data directly from the 

ingest point. Data is processed using parallel programming techniques (such as 

MapReduce) to process it in real time, and produce the desired results. This layer 

thus should understand the data sources and data types extremely well, and the 

super-light algorithms that would work on that data to produce the desired results. 

The outcome of this layer too could be stored in the NoSQL Databases.

 Data Organizing Layer This layer receives data from both the batch and stream 

processing layers. Its objective is to organize the data for easy access. It is represented 

by NoSQL databases. There are a variety of NoSQL databases to suit different needs. 

SQL-like languages like Hive and Pig can be used to access data easily and generate 

reports from these databases.

 Infrastructure Layer At bottom there is a layer that manages the raw resources 

of storage, computation, and communication. This is increasingly provided through 

a cloud computing paradigm.

 Distributed File System Layer This is the heart of a Big Data system. It would 

store huge quantities of data and make it quickly and securely available and accessible 

to the other layers. Hadoop Distributed File System (HDFS) is the primary technology 

in this layer. It would also include supporting applications, such as  YARN (Yet Another 

Resource Manager) that enable the efficient access to data storage and its transfer.

 Data Consumption layer This is the final layer, and it consumes the output pro-

vided by the analysis layers, directly or through the organizing layer. The outcome 

could be standard reports, data analytics, dashboards and other visualization applica-

tions, recommendation engine, on mobile and other devices.

3.2 BIG DATA ARCHITECTURE EXAMPLES

Every major organization and its applications have a unique optimized infrastructure 

to suit its specific needs. Some architecture examples from some very prominent users 

and designers of Big Data applications are as follows.

3.2.1 IBM Watson

IBM Watson uses Spark to manage incoming data streams. It also uses  Spark’s 

Machine Learning library (MLLib) to analyze data and predict diseases (Figure 3.3).
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FIGURE 3.3 The architecture underlying IBM Watson

3.2.2 Netflix

This is one of the largest providers of online video entertainment. They handle more 

than 400 billion online events per day. As a cutting-edge user of Big Data technolo-

gies, they are constantly innovating their mix of technologies to deliver the best per-

formance. They use Apache Kafka as the common messaging system for all incoming 

requests. They use Spark for stream processing and host their entire infrastructure 

on  Amazon Web Services (AWS) cloud service (Figure 3.4). The database system is 

AWS’ S3 as well as Cassandra and Hbase for storing data.

3.2.3 eBay

 eBay is the second-largest e-commerce company in the world. It delivers 800 million 

listings from 25 million sellers to 160 million buyers. To manage this huge stream of 

activity, eBay uses a stack of Hadoop, Spark, Kafka, and other elements (Figure 3.5). 

They think that Kafka is the best new thing for processing data streams.
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FIGURE 3.4 Netflix database processing and storage system

FIGURE 3.5 eBay data stream platforms

3.2.4 VMWare

VMware is a leading provider of virtualization systems used in cloud computing 

systems. VMware’s view of a Big Data architecture is similar to, but more detailed, 

than our main big architecture diagram (Figure 3.6).



40 Big Data

FIGURE 3.6 A holistic view of a big data system in VMWare

3.2.5 The Weather Company

The Weather company serves tens of billions of weather data requests globally through 

websites and mobile apps, everyday. It uses streaming architecture using Apache 

Spark to frame its Big Data infrastructure (Figure 3.7).

3.2.6 TicketMaster

This is the world’s largest company that sells event tickets. Their goal is to make 

tickets available to real fans for purchase, and prevent bad actors from manipulating 

the system to increase the price of the tickets in the secondary markets. They use 

a mix of Hadoop, Spark, and Kafka systems to manage throughput and reliability 

(Figure 3.8).
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FIGURE 3.7  Streaming architecture using Apache Spark to frame Big Data infrastructure of the 

weather company
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3.2.7 LinkedIn

This professional networking company aims to maintain an efficient system for pro-

cessing streaming data and make the link options available in real-time. They use 

Hadoop and Kafka for receiving and storing data, and Samza for stream processing 

(Figure 3.9).

FIGURE 3.9  Mix of Hadoop, Spark, and Kafka systems to manage data storage and Samza for 

stream processing by LinkedIn

3.2.8 Paypal

This payments-facilitation company needs to understand and acquire customers, and 

process a large number of payment transactions. They use Apache Storm for stream 

processing of data. They use Druid for distributed data storage. They also use Apache 

Titan Graphical (NoSQL) database to manage links and relationship among data 

elements (Figure 3.10).
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3.2.9 CERN

This premier high-energy physics research lab computes petabytes of data using 

in-memory stream processing to process data from millions of sensors and devices 

(Figure 3.11).
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FIGURE 3.11 Streaming insights into In-memory operational store in CERN lab
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3.3 CONCLUSION

Big Data architectures are multi-tier designs that use technologies for ingesting, stor-

ing, processing, and delivering data to user applications. Data is ingested and fed into 

both streaming and batch processing engines. Most tools used for big data processing 

are open source tools served through the Apache community.

Review Questions

 1. Describe the Big Data processing architecture.

 2. What are Google’s contributions to Big data processing?

 3. What are some of the hottest technologies visible in Big Data processing?

True/False Questions

 1. The more the sources of Big data included, the more complex will the Big Data 

architecture be.

 2. Big Data architecture includes many kinds of data sources.

 3. Big Data architecture includes transaction processing applications.

 4. A simple Big Data architecture consists of two layers: a data ingest layer, and 

a data consumption layer.

 5. Once established, a company’s Big Data Architecture cannot be changed.

 6. Serving web-based apps is a form of a Big Data application.

 7. Google invented Big Data architecture with Search Query engine.

 8. IBM Watson uses Big Data architecture to do Deep Question-Answer applica-

tions.

 9. Facebook is a not an active user of Big Data architectures.

 10. Government organizations should use a more secure Big Data architecture.

Liberty Stores Case Exercise: Step B3

Liberty wants to build a scalable and futuristic listening platform for understanding its customers and 

other stakeholders.

 1. What kind of Big Data architecture would you suggest for this company?



This section covers the six important Big Data technologies as defined in the Big 

Data architecture (specified in Chapter 3).

 ➨ Chapter 4 will discuss Hadoop and its Distributed File System (HDFS).

 ➨ Chapter 5 will delve into MapReduce parallel processing algorithm. It will 

also cover Pig and Hive languages used for programming as front end to 

MapReduce.

 ➨ Chapter 6 will discuss NoSQL databases, including details of popular co-

lumnar databases HBase and Cassandra.

 ➨ Chapter 7 will highlight Streaming systems using Apache Spark.

 ➨ Chapter 8 will address Data Ingest systems, using Apache Kafka.

 ➨ Chapter 9 will cover Cloud Computing model and its many benefits and 

challenges. 

Section 2





Chapter  4
Distributed Computing 

Using Hadoop

Learning Objectives

 ■ Describe Hadoop as open-source technologies for Big Data processing

 ■ Understand Hadoop Distributed File System (HDFS)

 ■ Appreciate HDFS’ hierarchical master-slave architecture 

 ■ Recognize the two kinds of Hadoop files, Text, and Sequence files 

 ■ View sample code for reading and writing data from HDFS

 ■ Understand the purpose and design of YARN, the Resource Manager

INTRODUCTION

A distributed file storage system is a clever way of storing huge quantities of data, 

securely and cost-effectively, for speed and ease, for retrieval and processing, using a 

networked collection of commodity machines. The ideal distributed file system would 

store infinite amounts of data while making the complexity completely hidden from the 

user, and enabling instant and easy access to the right data. This would be achieved 

by storing sections of data at different locations, and internally managing the lower-

level tasks of integrating and replicating data across the network. The distributed 

system ultimately leads to the creation of the unbounded cosmic computer that is a 

manifestation of all the laws of nature.

Learning Objectives

■ Describe Hadoop as open-source technologies for Big Data processing

■ Understand Hadoop Distributed File System (HDFS)

■ Appreciate HDFS’ hierarchical master-slave architecture

■ Recognize the two kinds of Hadoop files, Text, and Sequence files

■ View sample code for reading and writing data from HDFS

■ Understand the purpose and design of YARN, the Resource Manager
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4.1 Big data architecture

4.1 HADOOP FRAMEWORK

The Apache Hadoop distributed computing framework is composed of the following 

modules:

 1. Hadoop Common – contains libraries and utilities needed by other Hadoop mod-

ules

 2. Hadoop Distributed File System (HDFS) – a distributed file-system that stores 

data on commodity machines, providing very high aggregate bandwidth across 

the cluster

 3. YARN – a resource-management platform responsible for managing computing 

resources in clusters and using them for scheduling of users’ applications, and

 4. MapReduce – an implementation of the MapReduce programming model for large 

scale data processing.

This chapter will cover  Hadoop Common,  HDFS, and  YARN. The next chapter will 

cover  MapReduce. 

4.2 HDFS DESIGN GOALS

The Hadoop distributed file system (HDFS) is a distributed and scalable file-system. 

It is designed for applications that deal with very large data sizes. It is also designed 

to deal with mostly immutable files, i.e. write data once, but read it many times.  
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HDFS has the following major design goals:

 1. Hardware failure management – it will happen, and one must plan for it

 2. Huge volume – create capacity for large number of huge file sizes, with fast read/

write throughput

 3. High speed – create a mechanism to provide low latency access to streaming 

applications

 4. High variety – Maintain simple data coherence, by writing data once but reading 

many times

 5. Plug-and-play – Maintain easy accessibility of data using any hardware, software, 

and database platform

 6. Network efficiency – Minimize network bandwidth requirement, by minimizing 

data movement.

4.3 MASTER-SLAVE ARCHITECTURE

Hadoop is an architecture for organizing computers in a master-slave relationship 

that helps achieve great scalability in processing. A Hadoop cluster has two types of 

 NameNo-

de), and a large number of slave worker nodes (called  DataNodes). A small Hadoop 

cluster includes a single master and multiple worker nodes. A large Hadoop cluster 

would consist of a master and thousands of small ordinary machines as worker nodes 

(Figure 4.1). 

NameNode

DataNode 1 DataNode 2 DataNode 3 DataNode 4

 FIGURE 4.1 Master-slave architecture

In Hadoop system, the master node manages the overall file system, its namespace, 

and controls the access to files by clients. The  master node is aware of the  data-nodes, 

i.e. which blocks of which file are stored on which data node. It also controls the 

processing plan for all applications running on the data on the cluster. There is only 
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one master node. Unfortunately, that makes it a single point of failure. Therefore, 

whenever possible, the master node has its hot backup always ready to take over, 

just in case the master node dies unexpectedly. The master node uses a transaction 

log to persistently record every change that occurs to file system. 

The worker nodes, also called DataNodes, store the data blocks in their storage space, 

as directed by the master node, also called the NameNode. Each worker node typical 

contains many disks to maximize storage capacity and access speed.  Each worker 

node has its own local file system. A worker node has no awareness of the distributed 

file structure. It simply stores each block of data as directed, as if each block were 

a separate file. The DataNodes store and serve up blocks of data over the network 

using a block protocol, under the direction of the NameNode (Figure 4.2). 

HDFS Architecture
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Read Datanodes

Block ops

Replication

Write

Client

Datanodes

Blocks

Rack 2Rack 1

Metadata (Name, replicas, …):
/home/foo/data, 3, …

FIGURE 4.2 Hadoop architecture (Source: Hadoop.apache.org)

The NameNode stores all relevant information about all the DataNodes, and the files 

stored in those DataNodes. The NameNode will know the following:

 ■ For every DataNode, its name, rack, capacity, and health 

 ■ For every File, its name, replicas, type, size, timeStamp, location, health, etc. 

It a DataNode fails, there is no serious problem. The data on the failed DataNode 

will be accessed from its replicas on other DataNodes. The failed DataNode can be 
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automatically recreated on another machine, by writing all those file blocks of from 

the other healthy replicas. Each DataNode sends a heartbeat message to the Na-

meNode periodically. Without this message, the DataNode is assumed to be dead.  The 

DataNode replication effort would automatically kick-in to replace the dead DataNode.  

The Hadoop file system has a set of features and capabilities to completely hide the 

splintering and scattering of data, and enable the user to deal with the data at a 

high, logical level. The NameNode tries to ensure that files are evenly spread across 

the data-nodes in the cluster. That balances the storage and computing load and, 

also, limits the extent of loss from the failure of a node. The NameNode also tries to 

optimize the networking load. When retrieving data or ordering the processing, the 

NameNode tries to pick Fragments from multiple nodes to balance the processing 

load and speed up the total processing effort. The NameNode also tries to store frag-

ments of files on the same node for speed of read and writing. Processing is done on 

the node where the file fragment is stored. 

Any piece of data is stored typically on three nodes: two on the same rack, and one on 

a different rack. DataNodes can talk to each other to rebalance data, to move copies 

around, and to keep the replication of data high. 

4.4 BLOCK SYSTEM

A  block of data is the fundamental storage unit in HDFS. HDFS stores large files 

(typically gigabytes to terabytes) by storing segments (called blocks) of the file across 

multiple machines. Data files are described, read and written in block-sized granular-

ity. All storage capacity and file sizes are measured in blocks. A block ranges from 

16–128MB in size, with a default block size of 64MB. Thus, an HDFS file is chopped 

up into 64 MB chunks, and if possible, each chunk will reside on a different DataNode. 

Every data file takes up a number of blocks depending upon its size. Thus a 100 MB 

file will occupy two blocks (100MB divided by 64MB), with some room to spare. Every 

storage disk can accommodate several blocks depending upon the size of the disk. 

Thus, a 1 Terabyte storage will have 16000 blocks (1TB divided by 64MB). 

Every file is organized as a consecutively numbered sequence of blocks. A file’s blocks 

are stored physically close to each other for ease and speed of access, as far as pos-

sible.  The file’s block size and replication factor are configurable by the application 

that writes the file on HDFS. 
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4.5 ENSURING  DATA INTEGRITY

Hadoop ensures that no data is lost or corrupted during storage or processing. The 

files are written only once, and never updated in place. They can be read many times. 

Only one client can write or append to a file, at a time. No concurrent updates are 

allowed. 

If some data on a DataNode is indeed lost or corrupted, or if a part of the disk gets 

corrupted, a new healthy replica for that lost block will be automatically recreated by 

copying from the replicas on other data-nodes. At least one of the replicas is stored on 

a data-node on a different rack. This guards against the failure of the rack of nodes, 

or the networking router, on it. 

A checksum algorithm is applied on all data written to HDFS. A process of serialization 

is used to turn files into a byte stream for transmission over a network or for writing 

to persistent storage. Hadoop has additional security built in, using Kerberos verifier.

4.6  INSTALLING HDFS

It is possible to run Hadoop on an in-house cluster of machines, or on the cloud inex-

pensively. As an example, The New York Times used 100 Amazon Elastic Compute 

Cloud (EC2) instances (DataNodes) and a Hadoop application to process 4 TB of 

raw image TIFF data stored in Amazon Simple Storage Service (S3) into 11 million 

finished PDFs in the space of 24 hours at a computation cost of about $240 (plus the 

cost of bandwidth).  See Chapter 9 for a primer on Cloud Computing and Appendix 

A for a step-by-step tutorial on installing Hadoop on Amazon EC2. 

Hadoop is written in Java. Hadoop also requires a working Java installation. Most 

access to files is provided through Java abstract class org.apache.hadoop.fs.FileSystem.

Installing Hadoop takes many resources. For example, all information about fragments 

of files needs to be in NameNode memory. A thumb rule is that Hadoop needs ap-

proximately 1GB memory to manage 1 million file fragments. Many easy mechanisms 

exist to install the entire Hadoop stack. Using a GUI such as Cloudera Resources 

Manager to install a  Cloudera Hadoop stack is easy. This stack includes HDFS and 

many other related components, such as HBase, Pig, and YARN. Installing it on a 

cluster on a cloud services provider like AWS is easier than installing  Java Virtual 

Machines (JVMs) on local machines. HDFS can be installed by using Cloudera’s GUI 

Resources Manager.  If installing using command line, download Hadoop from one of 

the Apache mirror sites.
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HDFS can be mounted directly with a Filesystem in Userspace (FUSE) virtual file 

system on Linux and some other Unix systems. File access can be achieved through 

the native Java APIs. Another API, called Thrift, helps to generate a client in the 

language of the users’ choosing (such as C++, Java, Python). When the Hadoop com-

mand is invoked with a classname as the first argument, it launches a JVM to run 

the class, along with the relevant Hadoop libraries (and their dependencies) on the 

classpath. 

HDFS has a UNIX-like command like interface (CLI). Use sh shell to communicate 

with Hadoop. HDFS has UNIX-like permissions model for files and directories. There 

are three progressively increasing levels of permissions: read (r), write (w), and ex-

ecute (x). Create a hduser, and communicate using ssh shell on the local machine. 

% hadoop fs -help    ## get detailed help on every command. 

4.6.1 Reading and Writing Local Files into HDFS 

There are two different ways to transfer data: from the local file system, or form an 

input/output stream. Copying a file from the local filesystem to HDFS can be done by:

% hadoop fs -copyFromLocal path/filename

4.6.2 Reading and Writing Data Streams into HDFS

Read a file from HDFS by using a java.net.URL object to open a stream to read the 

data requires a short script, as below. 

InputStream in = null; 

Start {

instream = new URL(“hdfs://host/path”).openStream();  // details of process in } 

Finish  {  IOUtils.closeStream(instream); }

A simple method to create a new file is as follows: 

public FSDataOutputStream create(Path p) throws IOException

Data can be appended to an existing file using the append() method:

public FSDataOutputStream append(Path p) throws IOException

A directory can be created by a simple method:

public boolean mkdirs(Path p) throws IOException
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List the contents of a directory using:

public FileStatus[] listStatus(Path p) throws IOException 

public FileStatus[] listStatus(Path p, PathFilter filter) throws IOException

4.7  SEQUENCE FILES

The incoming data files can range from very small to extremely large, and with dif-

ferent structures. Big Data files are therefore organized quite differently to handle 

the diversity of file sizes and type. Large files are stored as Text Files, with File 

Fragments distributed across the cluster. However, smaller files should be bunched 

together into single segment for efficient storage.

 Sequence Files are a specialized data structure within Hadoop to handle smaller 

files with smaller record sizes. Sequence File uses a persistent data structure for 

data available in  key-value pair format.  These help efficiently store smaller objects. 

HDFS and MapReduce are designed to work with large files, so packing small files 

into a Sequence File container, makes storing and processing the smaller files more 

efficient for HDFS and MapReduce.

Sequence files are row-oriented file formats, which means that the values for each 

row are stored contiguously in the file. This formats are appropriate when a large 

number of columns of a single row are needed for processing at the same time. There 

are easy commands to create, read and write Sequence File structures.  Sorting and 

merging Sequence Files is native to MapReduce system.  A MapFile is essentially a 

sorted Sequence File with an index to permit lookups by key. 

4.8 YARN

YARN (Yet Another Resource Negotiator) is the architectural centre of Hadoop, it is 

often characterized as a large-scale, distributed operating system for big data appli-

cations. YARN manages resources and monitors workloads, in a secure multi-tenant 

environment, while ensuring high availability across multiple Hadoop clusters. YARN 

also brings great flexibility as a common platform to run multiple tools and applica-

tions such as interactive SQL (e.g. Hive), real-time streaming (e.g. Spark), and batch 

processing (MapReduce), to work on data stored in a single HDFS storage platform 

(Figure 4.3). It brings clusters more scalability to expand beyond 1000 nodes, it also 

improves cluster utilization through dynamic allocation of cluster resources to vari-

ous applications. 
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FIGURE 4.3 Hadoop distributed architecture including YARN

The Resource Manager in YARN has two main components: Scheduler and Applica-

tions Manager. 

YARN Scheduler allocates resources to the various requesting applications. It does 

so based on an abstract notion of a resource Container which incorporates elements 

such as Memory, CPU, Disk storage, Network, etc. Each machine also has a Node-

Manager that manages all the Containers on that machine, and reports status on 

resources and Containers to the YARN Scheduler. 

YARN Applications Manager accepts new job submissions from the client. It then 

requests a first resource Container for the application-specific ApplicationMaster 

program, and monitors the health and execution of the application. Once running, 

the ApplicationMaster directly negotiates additional resource containers from the 

Scheduler as needed.  

4.9 CONCLUSION

Hadoop is the dominant technology for managing Big Data. Hadoop Distributed 

Files system securely stores data on large clusters of commodity machines. A master 

machine controls the storage and processing activities of the worker machines. A 

NameNode controls the namespace and storage information for the file system on the 

DataNodes. A master  JobTracker controls the processing of tasks at the DataNodes. 

YARN is the resources manager that manages all resources dynamically and effi-

ciently across all applications on the cluster. Hadoop File system and other parts of 

the Hadoop stack are distributed by many providers, and can be easily installed on 

cloud computing infrastructure. Hadoop installation tutorial is in Appendix A. 

Review Questions

 1. How does Hadoop differ from a traditional file system?

 2. What are the design goals for HDFS?



56 Big Data

 3. How does HDFS ensure security and integrity of data?

 4. How does a master node differ from the worker node?

True/False Questions

 1. Hadoop is a big project of the open-source Apache series of Big Data products. 

 2. Hadoop Distributed File system is a general purpose file manager for Big data 

projects. 

 3. Hadoop provides unlimited scalability of data storage. 

 4. HDFS uses a ring architecture to organize masses of data and machines.

 5. A name-node is a machine that stores the names of all the data files and their 

locations of the various data storage devices.

 6. If a data-node fails, data may be lost, unless it is backed up by the user. 

 7. HDFS permits dozens of file formats to optimize storage of many different of 

data.

 8. One of the design goals of HDFS is to reduce network bandwidth requirements. 

 9. YARN is the task manager that computes data on a node. 

 10. Hadoop is written in Scala and Python. 



Chapter  5
Parallel Processing with 

Map Reduce

Learning Objectives

 ■ Recognize the need for  parallel processing for Big Data 

 ■ Evaluate the  MapReduce processing paradigm: Map and Reduce programs

 ■ Understand the key-pair data structure necessary for MapReduce 

 ■ Learn the program structure for MapReduce programs

 ■ Analyze the concepts of  Job Tracker and  Task Tracker programs

 ■ Learn how MapReduce executes programs despite  node failures

INTRODUCTION

A parallel processing system is a clever way to process huge amounts of data in a 

short period by enlisting the services of many computing devices to work on differ-

ent parts of the job, simultaneously. The ideal parallel processing system will work 

across any computational problem, using any number of computing devices, across 

any size of data sets, with ease and high programmer productivity. This is achieved 

by framing the problem in a way that it can be broken down into many parts, such 

that  each part can be partially processed independently of the other parts; and then 

the intermediate results from processing the parts can be combined to produce a final 

solution. Infinite parallel processing is the essence of infinite dynamism of the laws 

of nature.

Learning Objectives

■ Recognize the need for parallel processing for Big Data

■ Evaluate the MapReduce processing paradigm: Map and Reduce programs

■ Understand the key-pair data structure necessary for MapReduce

■ Learn the program structure for MapReduce programs

■ Analyze the concepts of Job Tracker and Task Tracker programs

■ Learn how MapReduce executes programs despite node failures
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FIGURE 5.1 Big data architecture

Caselet
How Google search works?

When Google search engine receives a search query, it uses MapReduce algorithm to quickly and ef-

ficiently search and return the right answers to the query.

First, the search term is broken into smaller query using its key words. For example, if one wants to 

search for ‘US Presidential Election’, the search term will be mapped to three sub-queries for each of 

the three words in this query. A Map program is generated for each of these three sub-queries.

The Map program for each sub-query will then be sent out to tens of thousands of data nodes in data-

centers around the world, where the web page data is stored. Each node will process the data and 

return the matching a list of websites for that subquery to the requesting node.

The intermediate results will be gathered, sorted, and then combined by a Reducer program, which 

will also sort the results in order of importance according to certain criteria. The sorted results are sent 

back to the browser. All this back and forth would happen in a fraction of a second. 

5.1 MAPREDUCE OVERVIEW 

MapReduce is a parallel programming framework for speeding up large scale data 

processing for certain types of tasks. It achieves so with minimal movement of data 

on distributed file systems on Hadoop clusters, to achieve near real-time results.  

There are two major pre-requisites for MapReduce programming. (a) The application 

must lend itself to parallel programming. (b) The data for the applications can be 

expressed in key-value pairs. 
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MapReduce processing is similar to UNIX sequence (also called pipe) structure 

e.g. the UNIX command: 

grep | sort | count  myfile.txt

will produce a wordcount in the text document called myfile.txt.

There are three commands in this sequence, and they work as follows: (a) grep is 

a command to read the text file and create an intermediate file with one word on a 

line; (b) sort command will sort that intermediate file, and produce an alphabetically 

sorted list of words in that set; (c) the count command will work on that sorted list, 

to produce the number of occurrences of each word, and display the results to the 

user in a “word, frequency” pair format. 

For example: Suppose myfile.txt contains the following text: 

Myfile: We are going to a picnic near our house. Many of our friends are coming. 

You are welcome to join us. We will have fun. 

The outputs of Grep, Sort and Wordcount will be as follows: 

Grep Sort WordCount

We a A 1

are Are Are 3

going Are Coming 1

to Are Friends 1

a Coming Fun 1

picnic Friends Going 1

near Fun Have 1

our Going House 1

house Have Join 1

Many House Many 1

of Join Near 1

our Many Of 1

friends Near Our 2

are Of Picnic 1

coming Our To 2

You Our Us 1



60 Big Data

are Picnic We 2

welcome To Welcome 1

to To will 1

join Us You 1

us We

we We

will welcome

have Will

fun You

If the file is very large, then it will be take the computer a long time to process it. 

Parallel processing can help here. 

MapReduce speeds up the computation by reading and processing small chunks of file, 

by different computers in parallel. Thus if a file can be broken down into 100 small 

chunks, each chunk can be processed at a separate computer in parallel. The total 

time taken to process the file could be 1/100 of the time taken otherwise. However, 

now the results of the computation on small chunks are residing in a 100 different 

places. These large number of partial results must be combined to produce a composite 

result. The results of the outputs from various chunks will be combined by another 

program called the Reduce program. 

The Map step will distribute the full job into smaller tasks that can be done on sepa-

rate computers each using only a part of the data set. The result of the Map step will 

be considered as intermediate results. The Reduce step will read the intermediate 

results, and will combine all of them and produce the result.  The programmer should 

specify the functional logic for both the map and reduce steps. The sorting, between 

the Map and Reduce steps, does not need to be specified and is automatically taken 

care of the MapReduce system as a standard service provided to every job. The sort-

ing of the data requires a field to sort on. Thus the intermediate results should have 

a key field, and a set of associated non-key attribute(s) for that key (Figure 5.2). 

In practice, to manage the variety of data structures stored in the file system, data is 

stored as one key and one non-key attribute value. Thus the data is represented as a 

key-value pair. The intermediate results, and the results all will also be in key-pair 

format. Thus a key requirement for the use of MapReduce parallel processing system 

is that the input data and output data must both be represented in key-values formats. 

Map step reads data in key-value pair format. The programmer decides what should 

be the characteristics of the key and value fields. The Map step produces results in 
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key-value pair format. However, the characteristics of the keys produced by the Map 

step, i.e. the intermediate results, need not be same keys at the input data. So, those 

can be called key2-value2 pairs. 

The Reduce step reads the key2-value2 pairs, and produces an output using the same 

keys that it read. Only the values associated with those keys will change though as a 

result of processing. Thus the Reducer’s output can be labeled as key2-value3 format. 

5.2 SAMPLE MAPREDUCE APPLICATION:  WORDCOUNT

Suppose we want to identify unique words in a piece of text, and the frequency of 

the occurrence of each word in the text. Suppose the text in the data file myfile.txt 

can be split into 4 approximately equal segments. In this case, it could be done with 

each sentence as a separate piece of text. The four segments will look as following:

Segment1: We are going to a picnic near our house. 

Segment2: Many of our friends are coming. 

Segment3: You are welcome to join us. 

Segment4: We will have fun. 

Each of these 4 segments of data could be processed in parallel. The results of those 

processing could be suitably aggregated to provide results for the text as a whole. 

Thus there will be 4 Map tasks, one for each of the segments of data. Each Map 

process will take in input in a <key-value> pair format. The first column is the key, 

which is the entire sentence in this case. The second column is the value, which in 

this application is the frequency of the sentence. Each Map process will also be ex-

ecuted by a different processor.

K
ey

va
lu
e
Pa

ir
s
(K
,
V
)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

K
ey

va
lu
e
Pa

ir
s
(K

,
V

)

Output
Data
File

Reducer
Sorter
by Key

Mapper

Large
Input
Data
File
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We are going to a picnic near our house. 1

 

Many of our friends are coming. 1

You are welcome to join us. 1

We will have fun. 1

This task can be done in parallel by four processors. Each of this segment will be task 

for a different processor. Thus, each task will produce a file of words, with a count of 

1. There will be four intermediate files, in <key2, value2> pair format, as shown here. 

Key2 Value2 Key2 Value2 Key2 Value2 Key2 Value2

we 1 many 1 you 1 we 1

are 1 Of 1 Are 1 will 1

going 1 Our 1 Welcome 1 have 1

to 1 friends 1 To 1 fun 1

a 1 Are 1 Join 1

picnic 1 coming 1 Us 1

near 1

our 1

house 1

The sort process inherent within MapReduce will sort each of the intermediate files, 

and produce the following sorted key2-value2 pairs:

Key2 Value2 Key2 Value2 Key2 Value2 Key2 Value2

a 1 Are 1 Are 1 fun 1

Are 1 coming 1 Join 1 have 1

Going 1 friends 1 To 1 we 1

House 1 many 1 Us 1 will 1

Near 1 Of 1 welcome 1

Our 1 our 1 you 1

Picnic 1

to 1

We 1
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The Reduce function will read the sorted intermediate files, and combine the counts 

for all the unique words, to produce the following output. The keys remain the same 

as in the intermediate results. However, the values change as counts from each of 

the intermediate files are added up for each key. For example, the count for the word 

‘are’ goes up to 3. 

Key2 Value3

a 1

are 3

coming 1

friends 1

fun 1

going 1

have 1

house 1

join 1

many 1

near 1

of 1

our 2

picnic 1

to 2

us 1

we 2

welcome 1

will 1

you 1

This output will be identical to that produced by the UNIX grep sequence earlier. 

5.3 MAPREDUCE PROGRAMMING

A data processing problem needs to be transformed into the MapReduce model. The 

first step is to visualize the processing plan into a Map and a Reduce step.  When the 

processing gets more complex, this complexity can be generally manifested in having 

more MapReduce jobs, or more complex Map and Reduce jobs.  Having more but sim-

pler MapReduce jobs leads to more easily maintainable Map and Reduce programs. 
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5.3.1 MapReduce Data Types and Formats

MapReduce has a simple model of data processing: inputs and outputs for the map 

and reduce functions are key-value pairs. The map and reduce functions in Hadoop 

MapReduce have the following general form:

map: (K1, V1) Æ list (K2, V2) 

reduce: (K2, list(V2)) Æ list (K2, V3) 

In general, the map input key and value types (K1 and V1) are different from the Map 

output types (K2 and V2). However, the Reduce input must have the same types as the 

Map output, although the Reduce output types may be different again (K2 and V3).

MapReduce can process many different types of data formats, from flat text files to 

databases. An input split is a chunk of the input that is processed by a single Map. 

Each Map processes a single split. Each split is divided into records, and the map 

processes each record—a key-value pair—in turn. Splits and records are logical: and 

may map to a full file, a part of a file, or a collection of files. In a database context, a 

split might correspond to a range of rows from a table and a record to a row in that 

range. 

5.3.2 Writing MapReduce Programming 

It should start by writing pseudocode for the Map and Reduce functions. The pro-

gram code for both the Map and the Reduce function can then be written in Java 

or other languages. In Java, the Map function is represented by the generic Mapper 

class. It uses four parameters: (input key, input value, output key, output value). 

This class uses an abstract map ( ) method.  This method receives the input key and 

input value. It would normally produce and output key and output value. For more 

complex problems, it is better to use a higher-level language than MapReduce, such 

as Pig, Hive, and Spark. 

A Mapper commonly performs input format parsing, projection (selecting the relevant 

fields), and filtering (selecting the records of interest). The Reducer typically combines 

(adds or averages) those values (Figure 5.3). 

Following is the step-by-step logic to do a word count of all unique words in a text. 

 1. The big document is split into many segments. The Map step is run on each 

segment of data. The output will be a set of (key, value) pairs. In this case, the 

key will be a word in the document. 



 Parallel Processing with Map Reduce  65

FIGURE 5.3 MapReduce program flow

 2. The system will gather the (key, value) pair outputs from all the mappers, and 

will sort them by key. The sorted list itself may then be split into a few segments. 

 3. A Reducer task will read the sorted list and produce a combined list of word 

counts. 

Here is the Java code for wordcount:. 

map(String key, String value): 

for each word w in value: 

EmitIntermediate(w, “1”);

reduce(String key, Iterator values): 

int result = 0; 

for each v in values: 

result += ParseInt(v); 

Emit(AsString(result));
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5.3.3 Testing MapReduce Programs

Mapper programs running on a cluster can be complicated to debug. The time-

honoured way of debugging programs is via print statements. However, with the 

programs eventually running on tens or thousands of nodes, it is best to debug the 

programs in stages. Therefore, (a) run the program using small sample datasets to 

ensure that the program is working correctly; (b) Expand the unit tests to cover larger 

dataset and run it on a cluster; (c) Ensure that the Mapper or Reducer can handle 

the inputs correctly. Running against the full dataset is likely to expose some more 

issues, which should be fixed, by altering your Mapper or Reducer to handle the new 

cases. After the program is working, the program may be tuned to make the entire 

MapReduce job run faster.  

It may be desirable to split the logic into many simple Mappers and chaining them into 

a single Mapper using a facility (the ChainMapper library class) built into Hadoop.  

It can run a chain of Mappers, followed by a Reducer and another chain of Mappers, 

in a single MapReduce job.

5.4 MAPREDUCE JOBS EXECUTION

A MapReduce job is specified by the Map program and the Reduce program, along 

with the data sets associated with that job. There is another master program that 

resides and runs endlessly on the NameNode. It is called the Job Tracker, and it 

tracks the progress of the MapReduce jobs from beginning to the completion. Hadoop 

moves the Map and Reduces computation logic to every DataNode that is hosting a 

fragment of the data. The communication between the nodes is accomplished using 

YARN, Hadoop’s native resource manager.

The master machine (NameNode) is completely aware of the data stored on each of the 

worker machines (DataNodes). It schedules the Map or Reduce jobs to Task trackers 

with full awareness of the data location. For example: if node A contains data (x,y,z) 

and node B contains data (a,b,c), the Job tracker schedules node B to perform map 

or Reduce tasks on (a,b,c) and node A would be scheduled to perform Map or Reduce 

tasks on (x,y,z). This reduces the data traffic and prevents choking of the network.  

Each DataNode has a master program called the Task tracker. This program moni-

tors the execution of every task assigned to it by the NameNode. When the task is 

completed, the Task tracker sends a completion message to the Job tracker program 

on the Name Node (Figure 5.4). The jobs and tasks work in a ‘master-slave’ mode.
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FIGURE 5.4 Hierarchical monitoring architecture

When there is more than one job in a MapReduce workflow, it is necessary that they 

be executed in the right order. For a linear chain of jobs, it might be easy while for 

a more complex directed acyclic graph (DAG) of jobs, there are libraries that can 

help orchestrate the workflow. Or one can use Apache Oozie, a system for running 

workflows of dependent jobs. Oozie consists of two main parts: a workflow engine 

that stores and runs workflows composed of different types of Hadoop jobs (MapRe-

duce, Pig, Hive, and so on), and a coordinator engine that runs workflow jobs based 

on predefined schedules and data availability. Oozie has been designed to scale, and 

it can manage the timely execution of thousands of workflows in a Hadoop cluster. 

The dataset for the MapReduce job is divided into fixed-size pieces called input splits, 

or just splits. Hadoop creates one map task for each split, which runs the user-defined 

Map function for each record in the split. The tasks are scheduled using YARN and 

run on DataNodes in the cluster. YARN ensures that if a task fails or inordinately 

delayed, it will be automatically scheduled to run on a different node. The outputs 

of the Map jobs are fed as input to the Reduce job. That logic is also propagated to 

the node(s) that will do the Reduce jobs.  To save on bandwidth, Hadoop allows the 

use of a combiner function on the Map output. Then the combiner function’s output 

forms the input to the Reduce function. 

5.4.1 How MapReduce Works

A MapReduce job can be executed with a single method call: submit ( ) on a Job object. 

When the resource manager receives a call to its submitApplication( ) method, it hands 

off the request to the YARN scheduler. The scheduler allocates a container, and the 

resource manager then launches the application master’s process. The application 

master for MapReduce jobs is a Java application whose main class is MRAppMaster. 

It initializes the job by creating several bookkeeping objects to keep track of the job’s 

progress. It retrieves the input splits computed in the client from the shared filesys-

tem.  It then creates a Map task object for each split, as well as a number of Reduce 

tasks. Tasks are assigned IDs at this point. 
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The application master must decide how to run the tasks that make up the MapReduce 

job. The application master requests containers for all the Map and Reduce tasks in 

the job from the resource manager. Once a task has been assigned resources for a 

container on a particular node by the resource manager’s scheduler, the application 

master starts the container by contacting the node manager. The task is executed by 

a Java application whose main class is YarnChild.

5.4.2 Managing Failures

There can be failures at the level of the entire job or particular tasks. The entire ap-

plication master itself could fail. 

Task failure usually happens when the user code in the map or reduce task throws 

a runtime exception. If this happens, the task JVM reports the error to its parent 

application master, where it is logged into error logs. The application master will 

then reschedule execution of the task on another data node. The entire job, i.e. Ma-

pReduce application master application running on YARN, too can fail. In that case, 

it is started again, subject to a configurable maximum number. 

If a DataNode manager fails by crashing or running very slowly, it will stop sending 

heartbeats to the resource manager (or send them very infrequently). The resource 

manager will then remove it from its pool of nodes to schedule containers on. Any 

task or application master running on the failed node manager will be recovered us-

ing error logs, and started on other nodes. 

The Resource Manager YARN can also fail. That has more severe consequences, as 

the entire cluster is affected.  Therefore, typically, there will be a hot-standby for 

YARN. If the active resource manager fails, then the standby can take over without 

a significant interruption to the client.  The new resource manager can read the ap-

plication information from the state store, and then restart the application that were 

running on the cluster.

5.4.3 Shuffle and Sort

MapReduce guarantees that the input to every Reducer is sorted by a key. The pro-

cess by which the system performs the sort—and transfers the Map outputs to the 

Reducers as inputs—is known as the shuffle.

When the Map function starts producing output, it is not directly written to disk. 

It takes advantage of buffering — writes in memory, and does some presorting for 

efficiency reasons.  Each Map task has a circular memory buffer that it writes the 

output to. Before it writes to disk, the thread first divides the data into partitions 
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corresponding to the Reducers that they will ultimately be sent to. Within each parti-

tion, the background thread performs an in-memory sort by key. If there is a combiner 

function, it is run on the output of the sort so that there is less data to transfer to 

the reducer.

The Reduce task needs the Map output for its particular partition from several Map 

tasks across the cluster. The Map tasks may finish at different times, so the Reduce 

task starts reading their outputs as soon as all the Map programs have successfully 

been executed. When all the Map outputs have been read, the Reduce task merges 

the Map outputs, maintaining their sort ordering.  The Reduce function is invoked 

for each key in the sorted output. The output of this phase is written directly to the 

output filesystem. 

5.4.4 Progress and Status Updates

MapReduce jobs are long-running batch jobs, and take a long time to run. It is im-

portant for the user to get feedback on how the job’s progress. A job and each of its 

tasks have a status value (e.g., running, successfully completed, failed) the progress 

of maps and reduces, the values of the job’s counters. These values are constantly 

communicated back to the client. When the application master receives a notification 

that the last task for a job is complete, it changes the status for the job to “success-

ful.” Job statistics and counters are communicated to the user.

Hadoop comes with a native web-based GUI for tracking the MapReduce jobs. It dis-

plays useful information about a job’s progress such as how many tasks have been 

completed, and which ones are still being executed. Once the job is completed, one 

can view the job statistics and logs.

5.5 HADOOP STREAMING

 Hadoop Streaming uses standard Unix streams as the interface between Hadoop 

and user program. Streaming is an ideal application for text processing. Map input 

data is passed over standard input to your map function, which processes it line by 

line and writes lines to standard output. A Map output key-value pair is written as 

a single tab-delimited line. Input to the Reduce function is in the same format—a 

tab-separated  key-value pair—passed over standard input. The Reduce function reads 

lines from standard input, which the framework guarantees and are sorted by key, 

and writes its results to standard output.
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5.6 HIVE LANGUAGE

Hive is a declarative  SQL-like language for processing queries. Hive was designed to 

appeal to a community that is comfortable with  SQL. Data analysts mainly use it, on 

the server side, for generating reports. It has its own metadata section which can be 

defined ahead of time, i.e.  before the data is loaded. Hive supports Map and Reduce 

transform scripts in the language of the user’s choice, which can be embedded within 

SQL clauses. Hive is best used for producing reports using structured data; it is not 

designed for online transaction processing.

Hive can be used to query data stored in Hbase, which is a key-value store. Hive’s 

 SQL-like structure makes transformation of data to and from an RDBMS is easier. 

Supporting  SQL syntax also makes it easy to integrate with existing  Business Intel-

ligence (BI) tools. Hive needs the data to be first imported (or loaded) and after that it 

can be worked upon. In case of streaming data, one would have to keep filling buckets 

(or files), and then Hive can be used to process each filled bucket, while using other 

buckets to keep storing the newly arriving data. 

Hive  data Columns are mapped to tables in HDFS (Figure 5.5). This mapping is 

stored in Metadata. All HQL queries are converted to MapReduce jobs. A table can 

have one or more partition keys. There are usual SQL data types, and Arrays and 

Maps and Structs to represent more complex types of data. 

Meta Data

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 5.5 Hive architecture

5.6.1 HIVE Language Capabilities

 Hive’s SQL provides almost all basic SQL operations. These operations work on 

tables and (or) partitions. These operations are: SELECT, FROM, WHERE, JOIN, 
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GROUP BY, ORDER BY. It also allows the results to be stored in another table, or 

in a HDFS file.

Hive Relational Database

SQL SQL

Analytics OLTP or analytics

Batch only Real-time or batch

No transactions Transactions

No INSERT or UPDATE 

Adding through partitions

Random INSERT or UPDATE

Distributed processing – 100s of nodes Depends on the system – if available, < 100

Achieve high performance on commodity 

hardware

Achieve high performance on proprietary hardware

Low cost for huge amounts of storage Expensive, limited compared to Hadoop based solutions

The statement to create a page view table would be like:

CREATE TABLE page_view(viewTime INT, userid BIGINT,

               page_url STRING, referrer_url STRING,

               ip STRING COMMENT ‘IP Address of the User’)

COMMENT ‘This is the page view table’

PARTITIONED BY (dt STRING, country STRING)

STORED AS SEQUENCEFILE;

Here is a script for loading data into this file. 

CREATE EXTERNAL TABLE page_view_stg(viewTime INT, userid BIGINT,

              page_url STRING, referrer_url STRING,

              ip STRING COMMENT ‘IP Address of the User’,

              country STRING COMMENT ‘country of origination’)

COMMENT ‘This is the staging page view table’

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘44’ LINES TERMINATED BY ‘12’

STORED AS TEXTFILE

LOCATION ‘/user/data/staging/page_view’;

The table created above can be stored in HDFS as a TextFile or as a SequenceFile. 

An INSERT query on this table will look like:

hadoop dfs -put /tmp/pv_2008-06-08.txt /user/data/staging/page_view

 FROM page_view_stg pvs
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INSERT OVERWRITE TABLE page_view PARTITION(dt=’2008-06-08’, country=’US’)

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url, null, null, pvs.ip

WHERE pvs.country = ‘US’;

5.7 PIG LANGUAGE

Pig is also a high-level scripting language/platform for data manipulation, that is 

used with Hadoop and MapReduce.  Compared with Hive, Pig offers greater proce-

dural control over data flows, and thus excels at solving problems such as  ETL that 

require great control over data flows (Table 5.1). Pig is also used for performing tasks 

involving ad-hoc processing and quick prototyping. For example, to process huge 

data sources such as web logs, and to perform data processing for search engines. 

Pig has a scripting part and an execution part.  Pig Latin is the scripting language 

to develop high-level code. It provides a rich set of data types, functions, and opera-

tors to perform various operations on the data. This script is then parsed, optimized 

and run by  Pig Engine to create MapReduce code which then runs and delivers the 

results to the user. Pig thus helps deliver the power to deliver the insights from big 

data flexibly and efficiently.  

Table 5.1

Comparison between Apache Pig and Apache Hive platforms

Apache Pig Apache Hive

Pig uses a language called Pig Latin. It was origi-

nally created at Yahoo.

Hive uses a language called HiveQL. It was origi-

nally created at Facebook.

Pig Latin is a data flow language. HiveQL is a query processing language.

Pig Latin is a procedural language and it fits in a 

data flow pipeline paradigm.

HiveQL is a declarative language like SQL.

Pig can handle structured, unstructured, and semi-

structured data.

Hive is used mostly for structured data.

The architecture of Apache Pig is shown in Figure 5.6.

The Parser checks the syntax of the Pig Latin script, and produces a DAG (directed 

acyclic graph), which represents the Pig Latin statements and logical operators. In 

the DAG, the logical operators of the script are represented as the nodes and the data 

flows are represented as edges. The Optimizer carries out the logical optimizations 

such as projection and pushdown on the DAG. The Compiler compiles the optimized 

logical plan into a series of MapReduce jobs. The MapReduce jobs are submitted to 

Hadoop in a sorted order. The desired results are returned to the user. 
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Pig Latin
Script

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 5.6 Architecture of Apache Pig

5.7.1 PIG Language Capabilities

Required data manipulations in Hadoop are possible with Pig Latin. It offers greater 

control over data flows, and it can perform all the data manipulation operations 

through MapReduce. Pig is thus very suitable for ETL (Extract, Transform, and 

Load) jobs. An ETL job extracts data from a source, transforms it according to a rule 

set, and then loads it into a datastore. Pig Latin allows splits in the data pipeline. It 

allows developers to store data anywhere in the pipeline. This reduces the need for 

duplicating the read/write code at multiple places, and significantly reduces the overall 

length of the code. Pig reduces the program size by a factor of 10 compared to Java, 

and thus saves development time by a factor of 10, while still delivering comparable 

data manipulation capabilities. 

Pig is also sufficiently SQL-like language that is easy to learn. Anyone with a basic 

knowledge of SQL can work conveniently with Pig. Pig provides many built-in opera-

tors to support data operations like joins, sorts, and filters. Therefore, performing an 

important relational operation like Join is very simple in Pig. Pig has a rich library 

of built-in functions. In addition, it allows the use of User-Defined functions (UDFs), 

that enable sophisticated program logic to be written in Java and other such lan-

guages, and then run from within Pig. Conversely Pig scripts can be executed in other 

languages. Thus one can use Pig to build components of larger and more complex 

applications that tackle real business problems.

Pig works primarily with data stored in Hadoop Distributed File System. It works 

through the MapReduce parallel processing mechanism. Pig can ingest data from files, 

streams, or other sources. Using built-in functions as well as User Defined Functions 

(UDF), the data can be ingested and transformed in very sophisticated ways. The 

results are stored back into HDFS. 
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Pig can handle structured, unstructured, and semi-structured data. Pig enables many 

kinds of data structures such as Atom, Tuple, bag, Map and Relations. A relational 

schema is not necessary for a Pig data structure. The data model in Apache Pig is 

nested-relational. It provides nested data types like tuples, bags, and maps that are 

not available in MapReduce. Pig does not have a dedicated metadata section; the 

schema needs to be defined in the program itself.  Pig can be easier for someone who 

had not earlier experience with SQL.

5.7.2 Pig Script Example

Here is Pig Script for loading sample driver data and producing summary reports. 

# Read file 1 and create a schema

drivers = LOAD ‘drivers.csv’ USING PigStorage(‘,’);

drivers_details = FOREACH drivers GENERATE $0 AS driverId, $1 AS name;

# Read file 2 and create a schema

timesheet = LOAD ‘timesheet.csv’ USING PigStorage(‘,’);

timesheet_logged = FOREACH timesheet GENERATE $0 AS driverId, $2 AS hours_logged, 
$3 AS miles_logged;

# generate summary data and add those fields to schema

grp_logged = GROUP timesheet_logged by driverId;

sum_logged = FOREACH grp_logged GENERATE group as driverId,

SUM(timesheet_logged.hours_logged) as sum_hourslogged,

SUM(timesheet_logged.miles_logged) as sum_mileslogged;

# generate a JOIN of two files and generate a report from it

join_sum_logged = JOIN sum_logged by driverId, drivers_details by driverId;

join_data = FOREACH join_sum_logged GENERATE $0 as driverId, $4 as name, $1 as 
hours_logged, $2 as miles_logged;

# discard the temporary JOIN relation

dump join_data;
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5.8 CONCLUSION

MapReduce is the most popular parallel processing framework for Big Data. It works 

well for applications where the data can be large, divisible into separate sets, and 

represented in <key, value> pair format. The application logic is divided into two parts: 

a Map program and a Reduce Program. Each of these programs can be run in parallel 

using several machines. A Job tracker tracks the processing of the entire MapReduce 

job, while a Task tracker monitors the performs the processing on a data node. Hive 

and Pig are high-level languages that make MapReduce programming easier.

Review Questions

 1. What is MapReduce? What are its benefits?

 2. What is the key-value pair format? How is it different from other data structures? 

What are its benefits and limitations?

 3. What is a Job tracker program? How does it differ from the task tracker program?

 4. What are Hive and Pig? How are they different?

True/False Questions

 1. MapReduce processing is similar to UNIX sequence (also called pipe) structure. 

 2. MapReduce speeds up the computation by reading and processing small chunks 

of file, by different computers in parallel. 

 3. The MapReduce model can be used for any data processing problem.

 4. The Map step reads data in key-value pair format. 

 5. A mapper commonly performs input format parsing, projection, and filtering of 

data.

 6. The Reduce function reads unsorted intermediate files.

 7. One should start MapReduce processing by writing pseudocode for the map and 

reduce functions.

 8. The Task tracker program monitors the progress of the MapReduce jobs from 

beginning to the completion.

 9. One Task Tracker can control many Job Trackers. 

 10. MapReduce was invented by Google.



Chapter  6
NoSQL Databases

Learning Objectives

 ■ Identify key differences between NoSQL and relational databases

 ■ Appreciate the architecture of NoSQL databases

 ■ Describe the major types of NoSQL databases and their features

 ■ Analyze the architecture and processes of Hadoop HBase 

 ■ Analyze the architecture and processes of Cassandra database

INTRODUCTION

A NoSQL database is a clever way of cost-effectively organizing large amounts of 

heterogeneous data for efficient access and updates. An ideal NoSQL database is 

completely aligned with the nature of the problems being solved, and is superfast 

in accomplishing that task. This is achieved by relaxing many of the integrity and 

redundancy constraints of storing data in relational databases. Data is thus stored 

in many innovative formats closely aligned with business need. The diverse NoSQL 

databases will ultimately collective evolve into a holistic set of efficient and elegant 

knowledge stored at the heart of a cosmic computer.

Relational data management systems (RDBMs) are a powerful and universally used 

database technology by almost all enterprises.  Relational databases are structured 

and optimized to ensure accuracy and consistency of data, while also eliminating any 

redundancy of data. These databases are stored on the largest and most reliable of 

computers to ensure that the data is always available at a granular level and at a 

high speed. 

Big data is, however, a much larger and unpredictable stream of data.  Relational 

databases are inadequate for this task, and will also be very expensive for such large 

data volumes. Managing the costs and speed of managing such large and heteroge-

Learning Objectives

■ Identify key differences between NoSQL and relational databases

■ Appreciate the architecture of NoSQL databases

■ Describe the major types of NoSQL databases and their features

■ Analyze the architecture and processes of Hadoop HBase

■ Analyze the architecture and processes of Cassandra database
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neous data streams requires relaxing many of the strict rules and requirements of 

relational database.  Depending upon which constraint(s) are relaxed, a different kind 

of database structure will emerge. These are called NoSQL databases, to differentiate 

them from relational databases that use Structured Query Language (SQL) as the 

primary means to manipulate data. 

NoSQL databases are next-generation databases that are non-relational in their de-

sign. The name NoSQL is meant to differentiate it from antiquated, ‘pre-relational’ 

databases. Today, almost every organization that must gather customer feedback and 

sentiments to improve their business, uses a NoSQL database.  NoSQL is useful when 

an enterprise needs to access, analyze, and utilize massive amounts of either struc-

tured or unstructured data that’s stored remotely in virtual servers across the globe. 

The constraints of a relational database are relaxed in many ways. For example, 

relational databases require that any data element could be randomly accessed and 

its value could be updated in that same physical location. However, the simple phys-

ics of storage says that it is simpler and faster to read or write sequential blocks of 

data on a disk. Therefore, NoSQL database files are written once and almost never 

updated in place. If a new version of a part of the data become available, it would be 

appended to the respective files. The system would have the intelligence to link the 

appended data to the original file.

6.1 RDBMS VS NoSQL 

These differ from each other in many ways. First, NoSQL databases do not support 

relational schema or SQL language. The term NoSQL stands mostly for “Not only 

Data Sources

Human-Human
communications

(e.g. Social Media)

Human-machine
communications

(Web, smart device)

Machine-machine
communications

(Internet of Things)

Business
Transactions

Data
Ingest

Stream
Processing

Batch
Processing

Distributed File System

Compute, Storage, Network
Infrastructure

Data
Organi-
zing

Data Consumption

Data Mining

Data Visualization

Dashboards

Reports

Mobile Access

B I G D A T A E C O S Y S T E M

FIGURE 6.1 Big data architecture
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SQL”.  Second, their transaction processing capabilities are fast but weak, and they 

do not support the  ACID (Atomicity, Consistency, Isolation, Durability) properties 

associated with transaction processing using  relational databases. Instead, they sup-

port  BASE properties (Basically Available, Soft State, and Eventually Consistent). 

NoSQL databases are thus approximately accurate at any point in time, and will be 

eventually consistent. Third, these databases are also distributed and horizontally 

scalable to manage web-scale databases using Hadoop clusters of storage.  Thus, they 

work well with the write-once and read-many storage mechanism of Hadoop clusters. 

Table 6.1 lists comparative features of RDBMS and NoSQL.

Table 6.1

Comparative features of RDBMS and NoSQL.

Feature RDBMS NoSQL

Applications Mostly centralized Applications (e.g. 

 ERP)

Mostly designed for the decentralized appli-

cations (e.g. Web, mobile, sensors)

Rigor Support  ACID properties for Transac-

tion Processing

Support  BASE properties for approximate 

reporting

Availability Moderate to high Continuous availability to receive and serve 

data

Velocity Moderate velocity of data High velocity of data (devices, sensors, social 

media, etc.). Low latency of access. 

Data Volume Moderate size; archived after for a cer-

tain period

Huge volume of data, stored mostly for a 

long time or forever; Linearly scalable DB. 

Data Sources Data arrives from one or few, mostly 

predictable sources

Data arrives from multiple locations and are 

of unpredictable nature

Data type Data are mostly structured Structured or unstructured data

Data Access Primary concern is reading the data Concern is both read and write

Technology Standardized relational schemas; SQL 

language

Many designs with many implementations of 

data structures and access languages

Cost Expensive; commercial Low; open-source software

6.2 TYPES OF NoSQL DATABASES

The variety of big data means that file size and types will vary enormously. Despite 

the name, a NoSQL database does not necessarily prohibit structured query language 

(like SQL). While some of the NoSQL systems are entirely non-relational, others 

just avoid some selected functionality of RDMS such as fixed table schemas and join 
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operations. For NoSQL systems, instead of using tables, the data can be organized 

the data in key/value pair format, and then SQL can be used.  There are specialized 

NoSQL databases to suit different purposes.   

The choice of NoSQL database depends on the system requirements. There are at least 

200 implementations of NoSQL databases of these four types. Visit nosql-database.

org for more. Here are some recent offerings in these categories (Figure 6.2). 

Key/Value Store Columnar or
Extensible record

Document
Store

Graph DB

Memcached

Redis

Tokyo
Cabinet

Dyanamo

Dynomite

Risk

Project
Voldemort

Google
Big Table

HBase

Cassandra

Hyper Table

Couch DB

Mongo DB

Simple DB

Lotus
Domino

Mnesia

Neo4j

Flock DB

Infinite Graph

FIGURE 6.2 Offerings in NoSQL databases

 1. Columnar Databases: These are database structures that include only the rel-

evant columns of the dataset, along with the key-identifying information. These 

are useful in speeding up some oft-sought queries from very large data sets. Sup-

pose there is an extremely large data warehouse of web log access data, which is 

rolled up by the number of web access by the hour. This needs to be queried, or 

summarized often, involving only some of the data fields from the database. Thus 

the query could be speeded up by organizing the database in a columnar format. 

This is useful for content management systems, blogging platforms, maintaining 

counters, expiring usage, heavy write volume such as log aggregation. Column 

family databases for systems well when the query patterns have stabilized. 

  HBase and Cassandra are the two of the more popular Columnar database of-

ferings. HBase was developed at Yahoo, and comes as part of the Hadoop ecosys-

tem. Cassandra was originally developed at Facebook to serve its exponentially 

growing user base, which is now close to 2 billion people. It was open sourced in 

2008. This chapter will discuss both in detail. 
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 2. Key-Value Pair Databases: There could be a collection of many data elements 

such as a collection of text messages, which could also fit into a single physical 

block of storage. Each text message is a unique object. This data would need to 

be queried often. That collection of messages could also be stored in a key-value 

pair format, by combining the identifier of the message and the content of the 

message. Key-value databases are useful for storing session information, user 

profiles, preferences, and shopping cart data. Key-value databases do not work 

so well when we need to query by non-key fields or on multiple key fields at the 

same time.

  Dynamo is a NoSQL highly available key-value structured storage system that 

has properties of both databases and distributed hash tables. Amazon DynamoDB 

is a fully managed NoSQL database service that provides fast and predictable 

performance with seamless scalability. DynamoDB automatically spreads the 

data and traffic for your tables over enough servers to handle your throughput 

and storage requirements, while maintaining consistent and fast performance. 

 3. Document Databases: These databases store an entire document of any size, 

as a single value for a key element. Suppose one is storing a 10GB video movie 

file as a single object. An index could store the identifying information about the 

movie, and the address of the starting block. The system could handle the rest 

of storage details. This storage format would be a called document store format. 

Document databases are generally useful for content management systems, blog-

ging platforms, web analytics, real-time analytics, ecommerce-applications. Docu-

ment databases would not be useful for systems that need complex transactions 

spanning multiple operations or queries against varying aggregate structures.

  MongoDB is an open-source document database that provides high performance, 

high availability, and automatic scaling. A record in MongoDB is a document, 

which is a data structure composed of field and value pairs. The values of fields 

may include other documents, arrays, and arrays of documents. 

 4. Graph Databases: Graph databases are very well suited for problem spaces 

where we have connected data, such as social networks, spatial data, routing 

information, and recommendation engines.  For example, geographic map data 

used in Google Maps is stored in set of relationships or links between points. For 

intensive data relationship handling, graph databases improve performance by 

several orders of magnitude. Tech giants like Google, Facebook, and LinkedIn 

use graph databases to deliver scalable, insightful, and quick service. 

  Neo4j is a highly scalable and most popular ACID-compliant transactional 

database with native graph storage and processing. It is an open-source graph 

database, implemented in Java, and accessible from software written in other 

languages. 
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The first popular NoSQL database was HBase, which is a part of the Hadoop fam-

ily. The most popular NoSQL database used today is Apache Cassandra, which was 

developed and owned by Facebook till it was released as open source in 2008. Other 

NoSQL database systems are SimpleDB, Google’s  BigTable, MemcacheDB, Oracle 

NoSQL, Voldemort, etc. 

6.3 ARCHITECTURE OF NoSQL

One of the key concepts underlying the NoSQL databases is that database manage-

ment has moved to a two-layer architecture; separating the concerns of data modeling 

and data storage (Figure 6.3). The data storage layer focuses on the task of high-

performance scalable data storage for the task at hand. The data management layer 

a variety of database formats, and allows for low-level access to that data through 

specialized languages that are more appropriate for the job, rather than being con-

strained by using the standard SQL format.

Logically consistent
access

FIGURE 6.3 NoSQL databases architecture

NoSQL databases maps the data in the key/value pairs and saves the data in the 

storage unit. There is no storage of data in a centralized tabular form, so the data-

base is highly scalable. The data could be of different forms, and coming from differ-

ent sources, and they can all be stored in similar key/value pair formats. There are 

a variety of NoSQL architectures. Some popular NoSQL databases like MongoDB 

are designed in a master/slave model like many RDBMS. But other popular NoSQL 

databases like Cassandra are designed in a master-less fashion where all the nodes 

in the clusters are the same. So, it is the architecture of the NoSQL database system 
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that determines the benefits of distributed and scalable system and emerges like 

continuous availability, distributed access, high speed, and so on.

NoSQL databases provide developers lot of options to choose from and fine tune the 

system to their specific requirements.  Understanding the requirements of how the 

data is going to be consumed by the system, questions such as is it read heavy vs 

write heavy, is there a need to query data with random query parameters, will the 

system be able handle inconsistent data.

6.4  CAP THEOREM

Data is expected to be accurate and available. In a distributed environment, accuracy 

depends upon the consistency of data.  A system is considered Consistent if all replicas 

of copy contain the same value. The system is considered Available, if the data I is 

available at all points in time. It is also desirable for the data to be consistent and 

available even when a network failure renders the database partitioned into two or 

more islands. A system is considered partition tolerant if processing can continue in 

both partitions in the case of a network failure. In practice it is hard to achieve all 

three. 

The choice between  Consistency and  Availability remains the unavoidable reality for 

distributed data stores. CAP theorem states that in any distributed system one can 

choose only two out of the three ( Consistency,  Availability, and  Partition Tolerance). 

The third will be determined by those choices. 

NoSQL databases can be tuned to suit one’s choice of high consistency or availability. 

For example, for a NoSQL database, there are essentially three parameters:

 ■ N = replication factor, i.e. the number of replicas created for each piece of data

 ■ R = Minimum number of nodes that should respond to a read request for it to 

be considered successful

 ■ W = Minimum number of nodes that should respond to a write request before 

its considered successful.

Setting the values of R and W very high (R=N, and W=N) will make the system more 

consistent. However, it will be slow to report Consistency, and thus Availability will 

be low. On the other end, setting R and W to be very low (such as R=1 and W=1), 

would make the cluster ‘highly’ available, as even a single successful read (or write) 

would let the cluster to report success. However, consistency of data on the cluster 

will be low since many of these may not have yet received the latest copy of the data. 
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If a network gets partitioned because of a network failure, then one has to trade off 

availability versus consistency.  NoSQL database users often choose availability and 

partition tolerance over strong consistency. They argue that short periods of applica-

tion misbehaviour are less problematic than short periods of unavailability.

Consistency is more expensive in terms of throughput or latency, than is Availabil-

ity. However, HDFS chooses consistency – as three failed DataNodes can potentially 

render a file’s blocks completely unavailable. 

6.5 HBASE

Apache HBase is a column-oriented, non-relational, distributed database system 

that runs on top of HDFS.  An HBase system comprises a set of tables; each table 

contains rows and columns, much like a traditional database. Each table must have 

an element defined as a Primary Key; all access to HBase tables is done using the 

Primary Key. An HBase column represents an attribute of an object. For example, if 

the table is storing diagnostic logs from web servers, each row will be a log record. 

Each column in that table will represent an attribute such as the date/time of the 

record, or the server name. HBase permits many attributes to be grouped together 

into a column family, so that all elements of a column family are all stored as es-

sentially a composite attribute.  

Columnar databases are different from a relational database in terms of how the data 

is stored. In the relational database, all the columns/attributes of a given row are 

stored together. With HBase you must predefine the table schema and specify the 

column families. All rows of a column family will be stored sequentially. However, it 

is very flexible in that new columns can be added to families at any time, making the 

schema flexible and, therefore, able to adapt to changing application requirements.

6.5.1 Architecture Overview

HBase is built on master-slave concept. In HBase a master node manages the cluster, 

while the worker nodes (called region servers) store portions of the tables and perform 

the work on the data (Figure 6.4). HBase is designed after Google Bigtable, and of-

fers similar capabilities on top of HDFS. It does consistent reads and writes. It does 

automatic and configurable sharding of tables.  A shard is a segment of the database. 
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FIGURE 6.4 HBASE Architecture

Physically, HBase is composed of three types of servers in a master-slave type of 

architecture.

(a) The NameNode maintains metadata information for all the physical data blocks 

that comprise the files.

(b) Region servers serve data for reads and writes.  

(c) The Hadoop DataNode stores the data that the Region Server is managing. 

HBase Tables are divided horizontally, by row key range, into “Regions.” A region 

contains all rows in the table between the region’s start key and end key. Region as-

signment, DDL (create, delete tables) operations are handled by the HBase Master 

process. Zookeeper, which is part of HDFS, maintains a live cluster state. There is 

an automatic failover support between Region Servers. All HBase data is stored in 

HDFS files. Region Servers are collocated with the HDFS DataNodes, which enable 

data locality (putting the data close to where it is needed) for the data served by the 

Region Servers. HBase data is local when it is written, but when a region is moved, 

it is not local until compaction. Each Region Server creates an ephemeral node. The 

HMaster monitors these nodes to discover available region servers, and it also moni-

tors these nodes for server failures. A master is responsible for coordinating the region 

servers, including assigning regions on startup, load balancing of recovery among 

regions, and monitoring their health. It is also the interface for creating, deleting, 

and updating tables.
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6.5.2 Reading and Writing Data

There is a special  HBase Catalog table called the META table, which holds the loca-

tion of the regions in the cluster.  ZooKeeper stores the location of the META table. 

When the first time a client reads or writes to HBase, the client gets the Region 

server that hosts the META table from ZooKeeper. The client will query the META 

server to get the region server corresponding to the row key it wants to access. The 

client caches this information along with the META table location. It will get the Row 

from the corresponding Region Server. For future reads, the client uses the cache to 

retrieve the META location and previously read row keys. Over time, it does not need 

to query the META table, unless there is a miss because a region has moved; then it 

will re-query and update the cache. 

6.6 CASSANDRA

Apache Cassandra is a more recent and popular scalable open source non-relational 

database that offers continuous uptime, simplicity and easy data distribution across 

multiple data centers and cloud. It is a hybrid between a key-value and a column-

oriented database. It provides many benefits over the traditional relational databases 

for modern online applications like scalable architecture, continuous availability, high 

data protection, multi-data replications over data centers, data compression, SQL like 

language and so on.

6.6.1 Architecture Overview 

Cassandra architecture provides its ability to scale and 

provide continuous availability (Figure 6.5). Rather than 

using master-slave architecture, it has a  master-less “ring” 

design that is easy to set up and maintain. In Cassandra, 

all nodes play an equal role, all nodes communicate with 

one another by a distributed and highly scalable protocol 

called gossip. The read and write processes are summarized 

in Figure 6.6.

So, the Cassandra scalable architecture provides the capac-

ity of handling large volume of data, and large number of 

concurrent users or operations occurring at the same time, 

across multiple data centers, just as easily as a normal op-

eration for the relational databases. To enhance its capacity, one simply needs to add 

new nodes to an existing cluster without taking down the system and designing from 

FIGURE 6.5  Cassandra 

architecture
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the scratch. Also the Cassandra architecture means that unlike other master slave 

systems, it has no single point of failure and thus is capable of offering continuous 

availability and uptime.

6.6.2 Protocols

Cassandra was designed to be fault-tolerant. Its peer-to-peer, distributed system re-

sults in read/write anywhere design. Data is transparently partitioned among all nodes 

in the cluster. All the nodes are similar and equal. Each node communicates with other 

through the GOSSIP protocol, which exchanges information across the cluster every 

second. A commit log is used on each node to capture every write activity. All data 

is written to the commit log first for durability. When multiple updates are applied 

to the same column, Cassandra uses client-provided timestamps to resolve conflicts. 

Data of update/delete operations is written in key/value pairs format to an in-memory 

structure called memTable. The memTable is written to a disk file called a sorted 

string table (SSTable).  An SSTable is an immutable, append-only, data file to which 

Cassandra writes memtables periodically. After all the commit log’s data has been 

flushed from the memtable to the SStable, the it is archived, deleted, or recycled 

(Figure 6.7). 

Cassamdra
Disks
Zone A2

4 2
2

3

5
Cassamdra
Disks
Zone A

Cassamdra
Disks
Zone B

Cassamdra
Disks
Zone B

Cassamdra
Disks
Zone C

Cassamdra
Disks 5
Zone C

Clients

1

3

5

If a node goes offline,
hinted handoff
completes the write
when the node comes
back up.

Requests can choose to
wait for one node, a
quorum, or all nodes to
ack the write

SSTable disk writes and
compactions occur
asynchronously

1. Client Writes to any
Cassandra Node

2. Coordinator Node
replicates to nodes
and Zones

3. Nodes return ack to
coordinator

4. Coordinator returns
ack to client

5. Data written to
internal commit log
disk

Single Region, Multiple Availability Zone

3
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FLUSH

FIGURE 6.7 Cassandra protocols

All data is indexed for faster access. A row in a column family is indexed by its key. 

The index summary is loaded into the memory. A lookup for actual rows can be per-

formed with a single disk seek and by scanning sequentially for the data. Operations 

are provided to look up the value associated with a specific key and to iterate over 

all the column names and value pairs within a specified key range.

6.6.3 Data Model

In Cassandra world, the data model can be seen as a map which is distributed across 

the cluster. In other words, a table in Cassandra is a distributed multi-dimensional 

map indexed by a key.  The data values can be as columns, column family, or Super 

columns families. 

A column is the smallest container in Cassandra world with following properties, 

Name and Value and Timestamp. A Super column is a tuple with Name and Value. 

Thus a value can map to many columns. A Column family is a collection of rows and 

columns (like an entire table in a traditional RDBMS). Each row in a column family 

is uniquely identified by a row key (Figure 6.8). Each row can have multiple columns, 

each of which has a name, value and a timestamp.  Unlike traditional RDBMS, dif-

ferent rows in the same column family need not to share the same set of columns.  

A column may be added to one or multiple rows at any time without affecting the 

complete dataset. In a column family there can be billions of columns.

A super column contains multiple column families. It is a tuple (pair) that consists 

of a key-value pair, where the key is mapped to value which are column families. It 

is something like a “view” on more than one tables. A key space contains the column 

families just like a database contains tables in relational world. They are used to 

group column families together. In traditional relational database analogy key spaces 

can be seen as database schema. It is the outermost grouping of the data in the data 

store. Generally, in a cluster there is one key space per application.
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FIGURE 6.8 Cassandra data model

6.6.4 Cassandra Writes

There are two write modes in Cassandra. A Quorum Write is a synchronous operation 

in which client blocks until the quorum is reached i.e. the data is propagated to all 

the nodes in quorum. An Asynchronous Write sends the request to any node, further 

that node will push the data to appropriate nodes but return to client immediately 

hence client is not blocked in this case. 

In a write operation, the Client sends a write request to a single, random Cassandra 

node. This node writes the data to the cluster. The writes are then replicated to N 

nodes using a configurable replication strategy to minimize the possibility of data loss. 

Cassandra will determine the distance of other nodes from the current node. The clos-

est node is on the same rack. The next distant node is in the same data center. The 

most distant node is in an entirely different data center (Figure 6.9). Consistency can 

be chosen between strong and eventual (from all to any node responding) depending 

on the need. As the data files accumulate over time, they are periodically merged and 

sorted into a new file hence creating new index.

6.6.5 Cassandra Reads

The client can select the strength of the read consistency. A Single Read means the 

client request returns once it gets the first response, even though the data can be 
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stale. In a Quorum Read the request returns only after most of the nodes responded 

with the same value, and this reduces the chances of getting stale data.

A random node receives the read request from the client. This node determines the 

nodes that have copies of data, and then requests the data from each node (Figure 

6.10). When a read request comes in to a node, the data to be returned is merged 

from all the related SSTables and any unflushed memtables.

FIGURE 6.10 Cassandra read process

FIGURE 6.9 Cassandra write process
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6.6.6 Replication

The term replication means how many copies of each piece of data we need in our 

cluster. It is the process of storing copies of data on multiple nodes to ensure reliabil-

ity and fault tolerance. Basically, there are two replication strategies are available. 

A Simple strategy should be used for a single data centre only. It places the first 

replica on a node determined by the partitioner. Additional replicas are placed on the 

next nodes clockwise in the ring without considering topology, i.e. rack or data centre 

location. The total number of replicas across the cluster are referred as the replica-

tion factor. All replicas are equally important for failover as there is no primary or 

master replica in Cassandra.

The partitioner controls how the data is distributed over your nodes. To find a set 

of keys, Cassandra must know what nodes have the range of values client is looking 

for. A partitioner is a hash function for calculating the token or hash of a row key to 

replicate the data in cluster. Each row of data is uniquely identified by a row key and 

distributed across the cluster by the value of the token. The token generated by the 

partitioner is further used by replication strategy to place the replica in the cluster.

Consistency level in Cassandra can be seen as how many replicas must response to 

declare a successful read or write operation. Consistency refers to how up-to-date 

and synchronized a row of Cassandra data is on all  its replicas. Since Cassandra 

extends the concept of eventual consistency by offering tunable consistency, hence 

for any given read or write operation, the client application decides how consistent 

the requested data must be.

Write Syntax

TTransport tr = new TSocket(HOST, PORT);

TFramedTransport tf = new TFramedTransport(tr);   
TProtocol protocal = new TBinaryProtocol(tf);   
Cassandra.Client client = new Cassandra.Client(protocol);  

tf.open();

client.insert(userIDKey, cp,  new Column(“Colume-name”.getBytes(UTF8),  “Colume-
data”.getBytes(), clock), CL);

Read Syntax:

Column col = client.get(userIDKey, colPathName, CL).getColumn();

LOG.debug(“Column name: “ + new String(col.Colume-name, UTF8));  

LOG.debug(“Column value: “ + new String(col.Colume-data, UTF8));
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6.7 CONCLUSION

NoSQL databases emerged in response to the limitations of relational databases in 

handling the sheer volume, nature, and growth of data. NoSQL databases have the 

functionality like MapReduce.  NoSQL database is proving to be a viable solution 

to the enterprise data needs and continue to do so. There are four types of NoSQL 

databases: columnar, Key-pair, document, and graphical databases. Cassandra and 

HBase are among the most popular NOSQL databases. Hive is an SQL-type language 

to access data from NoSQL databases. Pig is a procedural high-language that gives 

greater control over data flows. 

Review Questions

 1. What is a NoSQL database? What are the different types of it?

 2. How does a NoSQL database leverage the power of MapReduce?

 3. What are different kinds of NoSQL databases? What are the advantages of each?

 4. What are the similarities and differences between Hive and Pig?

True/False Questions

 1. Relational databases are better than NoSQL databases in managing large and 

unpredictable streams of data. 

 2. NoSQL databases support the ACID (Atomicity, Consistency, Isolation, Durabil-

ity) properties associated with transaction processing.

 3. Document databases are useful for storing session information, user profiles, 

preferences, and shopping cart data.

 4. Key-value NoSQL Databases are a popular form of NoSQL databases, for content 

management, blogging platforms, etc. 

 5. Graph databases are very well suited for social network analysis applications. 

 6. NoSQL databases have a two-layer architecture, separating the concerns of data 

modeling and data storage. 

 7. All NoSQL databases work in a master/slave model. 

 8. A system is considered consistent only if all replicas of copy contain the same 

value.
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 9. A system is considered partition tolerant if processing can continue in both parti-

tions in the case of a network failure.

 10. Apache HBase is a column-oriented, non-relational, distributed database system.

 11. HBase is built on a master-slave concept.

 12. HBase serves data for reads and writes data through Region Servers. 

 13. Apache Cassandra is a scalable NoSQL database that offers continuous uptime, 

simplicity and easy data distribution across multiple data centers and cloud.

 14. Cassandra was developed at Google. 

 15. Cassandra uses ring-architecture to arrange data servers.

 16. Cassandra looks a “Bloom filter” to speed up data access. 

 17. Pig and Hive are popular languages that work well on NoSQL databases.

 18. Hive was designed by FaceBook. 

 19. Hive allows almost all SQL operations. 

 20. For analytical needs, Pig is preferable over Hive.



Chapter  7
Stream Processing with Spark

Learning Objectives

 ■ Recognize the need for stream processing

 ■ Discuss Apache Spark and its architecture 

 ■ Describe  RDD and  DAG as major features of Spark

 ■ Understand  MLLib and  GraphX libraries within Spark

 ■ Discuss many use cases for Spark

INTRODUCTION

A  stream processing system is a clever way to process large quantities of data from a 

vast set of extremely fast incoming data streams. The ideal stream processing engine 

will capture and report in real time the essence of all data streams, no matter the 

speed or size or number of streams. This can be achieved by using innovative algo-

rithms and filters that relax many computational accuracy requirements, to compute 

simple approximate metrics in real time. Stream processing engine aligns with the 

infinite dynamism of the flow of nature. 

Apache Spark is an integrated, fast, in-memory, general-purpose engine for large-

scale data processing. Spark is ideal for iterative and interactive processing tasks on 

large data sets and streams. Spark achieves 10–100x performance over Hadoop by 

operating with an in-memory data construct called  Resilient Distributed Datasets 

(RDDs).  It helps avoid the latencies involved in disk reads and writes. Spark also 

offers built-in libraries for Machine Learning, Graph Processing, Stream processing 

and SQL to deliver seamless superfast data processing along with high programmer 

productivity. Spark is compatible with Hadoop file systems and tools. Spark is an 

alternative to MapReduce rather than a replacement for Hadoop file system. It has 

Learning Objectives

■ Recognize the need for stream processing

■ Discuss Apache Spark and its architecture

■ Describe RDD and DAG as major features of Spark

■ Understand MLLib and GraphX libraries within Spark

■ Discuss many use cases for Spark
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also become a more efficient and productive alternative for Hadoop ecosystem, and 

is increasing being used in industry. 

 Apache Spark was developed in 2009 in UC Berkeley’s  AMPLab, and open sourced 

in 2010 as an Apache project. It can process data from a variety of data repositories, 

including the Hadoop Distributed File System (HDFS), and NoSQL databases such 

as HBase and  Cassandra. Spark prioritizes in-memory processing to boost the perfor-

mance of big data analytics applications, however, it can also do conventional disk-

based processing when data sets are too large to fit into the available system memory. 

Spark enables applications in  Hadoop clusters to run up to 100 times faster in memory 

and 10 times faster even when running on disk.  Spark gives us a comprehensive, 

unified solution to manage Big Data processing requirements with a variety of use 

cases, and data sets that are diverse in nature (text data, graph data etc.) as well as 

the source of data (batch vs. real-time streaming data). 

7.1 SPARK ARCHITECTURE

The core Spark engine functions partly as an application programming interface (API) 

layer and underpins a set of related tools for managing and analyzing data. These 

include a SQL query engine, a library of machine learning algorithms, a graph pro-

cessing system, and streaming data processing software (Figure 7.2). Spark allows 

programmers to develop complex, multi-step data pipelines using  directed acyclic 

graph (DAG) pattern. It also supports in-memory data sharing across  DAGs, so that 

different jobs can work with the same data. Spark runs on top of existing HDFS in-

frastructure to provide enhanced and additional functionality. 

FIGURE 7.1 Big data architecture
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FIGURE 7.2 Spark architecture

Next, we explain the two important innovations in Spark: RDDs and DAG. 

7.1.1 Resilient Distributed Datasets (RDDs)

RDDs, Resilient Distributed Datasets, is a distributed memory construct. These are 

motivated by two types of applications that current computing frameworks handle 

inefficiently: Iterative algorithms, and Interactive data mining tools. In both cases, 

keeping data in memory can improve performance by an order of magnitude. 

RDDs are immutable and partitioned collection of records. They can only be created 

by coarse grained operations such as map, filter, group by, etc. Coarse grained opera-

tions mean that the operations are applied on all elements in a dataset. RDDs can 

only be created by:

 (a) Reading data from a stable storage such as HDFS or 

 (b) Transformations on existing RDDs.

Once data is read into an RDD object in Spark, a variety of operations can be per-

formed on the RDD by invoking abstract Spark APIs. The two major types of operation 

available are transformations and actions. 

 (a) Transformations return a new, modified RDD based on the original. Several 

transformations are available through the Spark API, including map ( ), filter 

( ), sample ( ), and union ( ). 

 (b) Actions return a value based on some computation being performed on an RDD. 

Some examples of actions supported by the Spark API include reduce ( ), count 

( ), first ( ), and for each ( ).
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7.1.2 Directed Acyclic Graph (DAG)

DAG refers to a Directed Acyclic Graph. This approach is an important feature for 

real-time data processing platforms such as Spark, Storm, and Tez, and helps them 

offer amazing new capabilities for building highly interactive, real-time computing 

systems to power real-time BI, predictive analytics, real-time marketing, and other 

critical systems.

DAG Scheduler is the scheduling layer of Apache Spark that implements stage-

oriented scheduling, i.e. after an RDD action has been called it becomes a job that is 

then transformed into a set of stages that are submitted as task-sets for execution. 

In general, DAG Scheduler does three things in Spark: 

 (a) Computes an execution DAG, i.e. DAG of stages, for a job; 

 (b) Determines the preferred locations to run each task on; 

 (c) Handles failures due to shuffle output files being lost. 

7.2 SPARK ECOSYSTEM

Spark is an integrated stack of tools responsible for scheduling, distributing, and 

monitoring applications consisting of many computational tasks across many worker 

machines, or a computing cluster.  Spark is written primarily in Scala, but includes 

code from  Python,  Java,  R, and other languages. Spark comes with a set of integrated 

tools that reduce learning time and deliver higher user productivity. Spark ecosystem 

includes Mesos resource manager, and other tools. 

Spark has already overtaken Hadoop in general because of benefits it provides in 

terms of faster execution in iterative processing algorithms. 

7.3 SPARK FOR BIG DATA PROCESSING 

Spark support big data mining through many tools such as MLlib, GraphX, SparkR, 

Spark SQL, and Streaming library. 

7.3.1 MLlib 

MLlib is Spark’s machine learning library. It consists of basic machine learning algo-

rithms such as classification, regression, clustering, collaborative filtering, dimension-

ality reduction, lower-level optimization primitives, and higher-level pipeline APIs. 

RDDs help Spark excel at iterative computation, thus enabling MLlib to run fast. 

MLlib contains high-quality algorithms that leverage iteration, and can yield better 
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results than the one-pass approximations sometimes used on MapReduce. In addi-

tion, Spark MLlib is easy to use and it can support Scala, Java, Python, and SparkR.  

For example, decision trees is a popular data classification technique, Spark MLlib 

can support decision trees for binary and multiclass classification, using both continu-

ous and categorical features. The implementation partitions data by rows, allowing 

distributed training with millions of instances. 

7.3.2 Spark GraphX 

Efficient processing of large graphs is another important and challenging issue. 

Many practical computing problems concern large graphs. For example, Google runs 

its PageRank on tens of billions of webpages and maybe a trillion weblinks. GraphX 

is Spark’s component for graphs and graph-parallel computation. At a high level, 

GraphX extends the Spark RDD by introducing a new Graph abstraction: a directed 

multi-graph with properties attached to each vertex and edge. 

To support graph computation, GraphX exposes a set of fundamental operators 

such as subgraph, joinVertices, and aggregateMessages on the basis of an optimized 

variant of the Pregel API (Pregel is the graphs processing system at Google that 

powers PageRank). In addition, GraphX includes a growing collection of graph algo-

rithms and builders to simplify graph analytics tasks. 

FIGURE 7.3 Spark ecosystem
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One can compute the PageRank of nodes in a graph as follows, using Scala on Spark:

//load the edges as a graph object

val graph = GraphLoader.edgeListFile (sc, “outlink.txt”)

// Run Pagerank

val ranks = graph.pagerank(0.0001).vertices

// join the rank with the webpages

val pages = sc.textFile(“pages.txt”).map{line => val fields = line.split(“,”) 
(fields(0).toLong, fields(1)) }

val ranksByPagename = pages.join(ranks).map { case (id, (pagename, rank)) => 
(pagename, rank)}

//print the output

println(rankByPagename.collect().mkString(“\n”))

7.3.3 SparkR

R is a popular statistical programming language with several extensions that support 

data processing and machine learning tasks. However, interactive data analysis in 

R is usually limited as the runtime is single-threaded and can only process data sets 

that fit in a single machine’s memory. SparkR is an R package initially developed at 

the AMPLab to provide an R frontend to Apache Spark. It uses Spark’s distributed 

computation engine to run large scale data analysis from the R shell. SparkR exposes 

the RDD API of Spark as distributed lists in R. 

For example, one can read an input file from HDFS and process every line using lap-

ply on a RDD, to compute space-separated words per line.

sc<- sparkR.init(“local”)

lines <- textFile(sc, “hdfs://data.txt”)

wordsPerLine <- lapply(lines, function(line)) { length(unlist(strsplit(line,” “)))}

In addition to lapply, SparkR also allows closures to be applied on every partition using 

lapplyWithPartition. Other supported RDD functions include operations like reduce, 

reduceByKey, groupByKey and collect.

7.3.4 SparkSQL

Spark SQL is a language provided to deal with the structured data. Using this one 

can run queries on the data and get some meaningful result. It supports queries 

through SQL as well as HiveQL (Apache’s Hive version of SQL).
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7.3.5 Spark Streaming

Spark Streaming gains data streams from input sources, processes them in a cluster, 

and pushes out to databases/ dashboards. Spark further chops up data streams into 

batches of few seconds. Spark treats each batch of data as RDDs and processes them 

using RDD operations. The processed results are pushed out as batches.

7.4 SPARK APPLICATIONS

Some real uses cases that are solved well by a tool like Apache Spark include:

 1. Real-time Log Data monitoring. 

 2. Massive Natural Language Processing. 

 3. Large Scale Online Recommendation Systems.  

A simple Wordcount application can be run in Spark shell as below. 

val textFile = sc.textFile(“C:\\Users\\MyName\\Documents\\obamaSpeech.txt”)

//Comment: saves the text file as textFile 

val counts = textFile.flatMap(line => line.split(“ “)).map(word => (word, 1)) 
.reduceByKey(_ + _)

//Comment: Calculate the total words by splitting by space

counts.count();

//Results the output as below

Long = 52

counts.saveAsTextFile(“C:\\Users\\MyName\\Desktop\\counts1”)

//Comment: saves the file on Desktop

7.4.1 Spark vs Hadoop

Spark and Hadoop are both popular top-level Apache projects dedicated to Big Data 

processing. For many years, Hadoop was the leading open source Big Data platform, 

and many companies already use a distributed computing framework, e.g.  Hadoop 

based on MapReduce. However, Spark is gradually gaining attention, and has acquired 

more than 50% market share. Table 7.1 provides a comparison between Hadoop and 

Spark. 
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Table 7.1 

Comparison between Hadoop and Spark

Feature Hadoop Spark

Purpose Resilient cost-effective storage and 

processing of large data sets

Fast general-purpose engine for large-

scale data processing

Core component Hadoop Distributed File system 

(HDFS)

Spark Core, the in-memory processing 

engine 

Storage HDFS manages massive data collec-

tions across multiple nodes within a 

cluster of commodity servers.

Spark doesn’t do distributed storage. It 

operates on distributed data collections 

Fault tolerance Hadoop uses replication to achieve 

fault tolerance 

Spark uses RDD for fault tolerance that 

minimizes network I/O

Nature of processing Accompanied by MapReduce, it in-

cludes batch processing of this data 

in parallel mode

Batch as well as stream processing 

Sweet spot Batch processing Iterative and interactive processing jobs, 

that can fit in the memory

Processing speed Map Reduce is slow Spark can be up to 10x faster than Ma-

pReduce for batch processing and up to 

100x faster for stream processing

Security More secure Less secure

Failure recovery Hadoop can recover from system 

faults or failures since data are writ-

ten to disk after every operation

With Spark, data objects are stored in 

RDD. These can be reconstructed after 

faults or failures

Analytics tools Separate engine Built-in MLLib (Machine Learning) and 

GraphX (Graph Processing) libraries

Compatibility Primary storage model is HDFS Compatibility with HDFS and other 

storage formats

Language support Java Scala is native language. APIs for py-

thon, java, R, others 

Driving organization Yahoo AMPLabs from UCBerkeley

Technology owners Apache, Open-source, free Open-source, free

Key distributors Cloudera, Horton, MapR Databricks, AMPLabs

Cost of system  Medium to High  Medium to High
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7.5 CONCLUSION

Spark is a new integrated system for Big Data processing. Its most important core 

abstraction is Resilient Distributed Datasets (RDDs), an in-memory construct that 

provides 10–100x processing speed over Hadoop. Directed Acyclic Graphs (DAG) based 

execution engine delivers superior execution speed. Important libraries like MLlib and 

GraphX make Spark  a powerful open source processing engine that delivers speed, 

ease of use, and sophisticated analytics. 

Review Questions

 1. Describe the Apache Spark ecosystem.

 2. Compare Spark and Hadoop in terms of their ability to do stream computing?

 3. What is an RDD? How does it make Spark faster?

 4. Describe three major capabilities in Spark for data analytics.

True/False Questions

 1. Apache Spark is an integrated, in-memory, general-purpose engine for batch 

processing.

 2. Spark achieves 10–100x performance over Hadoop by operating with an in-

memory construct called ‘Resilient Distributed Datasets’.

 3. Spark has built-in libraries for Machine Learning and Graph Processing.

 4. DAG is a directed acyclic graph for Apache Spark that implements stage-oriented 

scheduling.

 5. Spark is written primarily in R, but includes code from Python, Java, Scala, and 

other languages.

 6. Spark excels at iterative computation, enabling MLlib to run fast.

 7. GraphX extends the Spark RDD by introducing a new Graph abstraction: a di-

rected multi-graph.

 8. Spark Streaming gains data streams from input sources, processes them in a 

cluster, and pushes out the data directly to the users.  

 9. Spark was developed at the MIT’s High Performance Computing Lab.  

 10. Apache Spark is a good system for transaction processing.
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New Ingesting Data

Learning Objectives

 ■ Recognize need for a Big Data ingest system 

 ■ Describe messaging system architectures

 ■ Analyze Kafka system, its architecture, and key concepts of producers, consumers, brokers, and topics 

 ■ Understand the use cases of Kafka

 ■ Know Zookeeper and its support role for Kafka

INTRODUCTION

Big Data arrives at unpredictable speeds and quantities. An ingest system receives 

data and communicates it to target applications. All data should be smoothly received, 

and made available for target applications to access securely and reliably at their 

own convenience. An ideal ingest system would be flexible and scalable to receive 

data from all types of sources, at any time and speed and in any quantity; and make 

it available to all target applications without loss of data or speed. 

A Data ingest system is a reliable and efficient point of reception for all data coming 

into a system.  Incoming data is treated like messages, and is put into an organized 

set of locations, from where the target applications can fetch them when they are 

ready.  An effective data ingest mechanism is achieved by creating a fast and flexible 

buffer for receiving and storing all incoming streams of data. The data in the buffer is 

stored in a sequential manner, and its contents are made available to all consuming 

applications in a fast and orderly manner. 

Learning Objectives

■ Recognize need for a Big Data ingest system

■ Describe messaging system architectures

■ Analyze Kafka system, its architecture, and key concepts of producers, consumers, brokers, and topics

■ Understand the use cases of Kafka

■ Know Zookeeper and its support role for Kafka
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B I G D A T A E C O S Y S T E M

8.1 MESSAGING SYSTEMS 

A Messaging System is an asynchronous mode of communicating data between ap-

tem, and a  publish-subscribe (pub-sub) system. Most of the  messaging patterns now 

follow  pub-sub model. 

With huge amounts of data coming in from different sources, and many more consum-

ing applications, a point-to-point system of delivering messages from source to target, 

becomes inadequate and slow. Alternatively, incoming data can be categorized into 

certain subjects or topics, and it could be stored in the respective location or loca-

tions for those topics. Now the data is available for consumption by any application 

that is interested in data related to a topic. Each consuming application can choose 

to read data about one or more topics of its interest. This is called the publish-and-

subscribe system. 

8.1.1  Point to Point Messaging System 

In a point-to-point system, every message is directed at a particular receiver. A com-

mon queue can receive messages from many producers or messages. Any particular 

message can be received and consumed by only one receiver. Once that target con-

sumer reads a message in the queue, that message disappears from that queue. The 

typical example of this system is an Order Processing System, where each order will 

be processed by one Order Processor. 

FIGURE 8.1 Big data architecture
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8.1.2  Publish-Subscribe Messaging System 

In a pub-sub messaging system, the applications publish their output to a standard 

messaging queue. The target recipient will only need to know where to get the mes-

sage, whenever it is ready to pick up the message. Applications thus can ignore the 

mechanics of interaction with other applications, and simply care about the message 

itself. This is especially valuable when there may be many target recipients for a 

message.  In a pub-sub system, messages are entered into the messaging queue asyn-

chronously from client applications. A pub-sub system needs to be fast and secure to 

serve many applications, both producers and subscribers. Messages are also replicated 

across multiple locations for reliability of data.

8.2 DATA INGEST SYSTEMS 

There are two popular Data ingesting systems used in Big Data. An older system, 

called  Apache Flume, is closely tied to the Hadoop.  Flume is a simple, robust, and 

extensible tool for data ingestion from various data producers and storing into Hadoop 

distributed file system. Flume agents collect data from data sources, aggregate it, 

and pushed into a centralized store such as HDFS or HBase.

A new and more popular system is a general-purpose pub-sub system called Apache 

Kafka.  It can connect to all types of sources and target applications. In this chapter 

we will discuss the new system, Kafka. 

8.3 APACHE KAFKA

 Apache Kafka is an open source publish-and-subscribe message broker system. Kafka 

aims to provide an integrated high-throughput, low- latency messaging platform for 

handling real-time data feeds. In the abstract, it is a single point of contact between 

all producers and consumers of data. All producers of data send data to Kafka. All 

consumers of data read data from Kafka (Figure 8.2).

Kafka is a distributed, partitioned, scalable, replicated messaging system, with a 

simple but unique design.  It was initially developed by LinkedIn and was open sourced 

to Apache in 2011. It is written in  Scala programming language. Kafka is a valuable 

for an enterprises level infrastructure because of its simplicity and scalability. 
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FIGURE 8.2 Kafka core idea

8.4 USE CASES

The very general nature of Kafka’s design makes it suitable for many use cases. 

1. Messaging

Kafka is a very good alternative for a traditional messaging system because Kafka 

messaging system has better throughput, built in partitioning, replication, and bet-

ter fault tolerance. Kafka is very good solution for a large scale message processing 

applications.

2. Website Activity Tracking

Website Activity Tracking was one of initial use cases for Kafka for LinkedIn. Users’ 

online activity tracking pipeline was rebuilt as a set of real time data feeds. Web ac-

tivity tracking includes very large volume of data, and Kafka is very good at handling 

huge volumes of data. User activity types such as page view, searches, clicks, etc. 

can be designated as central topics, and the activity data can be published to those 

topics. Those events are available for real time or offline processing and reporting. 

3. Stream Processing 

Popular frameworks such as Storm and Spark Streaming can read data from a Kafka 

topic, process it, and send to other users and consumer applications. They may even 

write it back to Kafka to a new topic. Kafka’s strong durability is also very useful 

for stream processing.

4. Log Aggregation

Log aggregation typically gathers physical log files from many servers and puts them 

all in a central location for processing. Kafka can abstract away the details of the 



106 Big Data

files, and provide a clean abstraction of log data as a stream of messages. Kafka then 

allows for lower-latency processing and easier support for multiple data sources and 

distributed consumption of this data. Unlike dedicated log-centric systems, Kafka of-

fers higher performance and stronger durability guarantees due to data replication. 

5. Commit Log

Kafka can be used as external commit log for a distributed database system. This 

audit log can help to re-sync data between the failed nodes to restore their data. The 

log compaction in Kafka helps to achieve this feature more efficiently.

8.5 KAFKA ARCHITECTURE 

In the abstract, Kafka is a  master broker (or a collection of brokers) that deals with 

all producers and consumers of data. A producer pushes data into Kafka system at 

its own speed, scale and convenience. A consumer pulls data out of the system at 

its own speed, scale and convenience. All the received data in Kafka is organized by 

categories, called topics.  Incoming data is sorted and stored into topic servers. The 

topic servers are replicated for reliability and ease of access. The  consumers of data 

can subscribe to one or more topics (Figure 8.3). 
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FIGURE 8.3 Kafka ecosystem

In practice, there are many brokers (also called servers, or partitions) for each topic, 

for reliability of the messaging system. Thus two or more brokers will store data on 

each topic. One broker is assigned as a leader for a topic. Only one broker can be 

leader at any given time. In the lead broker fails, then a second one can automatically 

take over as the leader and prevent the loss of access to data. 
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Kafka is designed for distributed high throughput systems. In comparison to other 

messaging systems, Kafka allows almost no processing of data in its servers. That 

gives it high throughput. It has built-in partitioning to provide infinite scalability. 

Adding new broker is as simple as adding new partitions on new storage. It has built-

in replication of data, and thus delivers fault-tolerance. All these features make it a 

good fit for large-scale message processing applications. Kafka is very fast and can 

perform 2 million writes/second. It also guarantees zero downtime and zero data loss.

Kafka also can handle many diverse consumers. It integrates very well with Apache 

Storm, Spark, and other real-time streaming data applications. There are many 

contributing organizations helping to improve the Kafka open-source system. It has 

very well documented online resources.  Many big organizations have used it such 

as LinkedIn, Cisco, Spotify, PayPal, HubSpot, Shopify, Uber and more. HubSpot, for 

example, uses Kafka to deliver real time notification of when a recipient opens their 

email. 

8.5.1 Producers

A data producer is responsible for selecting the topic, and partition, the message that 

it wants to convey. The producer can use round-robin algorithm to balance the load 

among partitions. There can be both synchronous and asynchronous producers of mes-

sages. All the messages are published to the partition. It is automatically replicated 

to other partitions. 

8.5.2 Consumers 

A data consumer is responsible for reading the data about the topic that it has sub-

scribed. The consumer is responsible for reading the data within a reasonable period 

of time, before the queues are emptied for efficient management of storage. Different 

consuming applications can read the data at different times. Kafka has stronger or-

dering guarantees than a traditional messaging system. A consumer needs to know 

how far it has read in that queue, so as to avoid duplicates or lose some data. 

8.5.3 Broker

A broker is a server in a Kafka cluster. The cluster may have many servers or brokers. 

Each broker can serve one of more producers, and one or more topics. 

8.5.4 Topic 

A topic is a category of messages, into which incoming messages are published. For 

each topic there is a separate partition log for storage of messages. Each partition 
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has an ordered sequence of messages for that topic. Each message in the partition 

is assigned a unique sequential number, also called the offset. This offset helps to 

identify each message within the partition (Figure 8.4).

FIGURE 8.4 Anatomy of a topic

The consumer reads the data sequentially according to offset numbers. The consumer 

is responsible for maintaining the offset to remember how far it has read. Generally, 

the offset increases linearly as messages are consumed. However, a consumer can 

reset offset to access the data gain and reprocess it as needed. 

The Kafka cluster retains all the published messages whether or not they have been 

consumed, for a configurable period or not. For example, if the log retention is set 

to seven days, then for the seven days after publishing, the message is available for 

consumption. After seven days, Kafka discards the messages to free up space. 

Kafka’s performance is not affected by the size of data. Each partition must fit on the 

servers that host it, but a topic may have multiple partitions. This enables Kafka to 

manage an arbitrary amount of data. Also, it acts as the unit of parallelism. 

8.5.5 Summary of Key Attributes

 1. Disk based: Kafka works on a cluster of disks. It keeps writing to the disk to 

make the storage permanent.

 2. Fault tolerant: Data in Kafka is replicated across multiple brokers. When any 

leader broker fails, a follower broker takes over as leader and everything con-

tinues to work normally.

 3. Scalable: Kafka can scale up easily by adding more partitions or more brokers. 

More brokers help to spread the load and this provides greater throughput.
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 4. Low latency: Kafka does very little processing on the data. Thus it has very low 

latency rate. Messages produced by the consumer are published and available 

to the consumer within a few milliseconds. 

 5. Finite Retention:  Kafka by default keeps the message in the cluster for a week. 

After that the storage is refreshed. Thus the data consumers have up to a week 

to catch up on data, in case they fall behind for any reason.

8.5.6 Data Replication 

The Kafka cluster maintains multiple servers over the distributed network. The par-

titions of the log are maintained over this network. Each server handles data and 

requests for a share of the partitions. Each partition is replicated across a configurable 

number of servers for fault tolerance. But one of the server for each partition acts as 

the main server also called “leader” while it may or may not have one or more second-

ary server also known as “followers”. The leader server is responsible for handling all 

the read and write operation for the partition while the followers silently replicates 

the leader. The follower server becomes very helpful when the leader server fails. 

The follower server automatically becomes the leader and then handles the failure. 

One server can be a leader for some of the partitions on it, while it may be follower 

for other partitions. Thus one server can act as both leader and follower. This helps 

to balance the work load on the servers within the cluster. 

8.5.7 Guarantees 

Data sent always maintain the order they were sent. For example, if a message M1 

and M2 were sent by the same producer and M1 was sent first then the message M1 

will have lower offset than message M2. Therefore, M1 will always appear before the 

M2 for the consumer. 

Each topic has a replication factor N and the system can tolerate up to N-1 server 

failures without losing any messages committed to the log.

8.5.8 Client Libraries 

Kafka supports following client libraries:

 1. Python: Pure python implementation with full protocol support 

 3. C: High performance C library with full protocol support

 3. C++, Ruby, JavaScript and more.
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8.6 APACHE ZOOKEEPER

Kafka is built on top of  ZooKeeper. Apache Zookeeper is a distributed configuration 

and synchronization service in Hadoop clusters. It serves as the coordination inter-

face between the Kafka brokers and data consumers. The Kafka servers stores basic 

metadata in Zookeeper and shares information about topics, brokers, and consumer 

offsets (queue readers) and so on.

Since Zookeeper does its own layer of replication, the failure of a Kafka broker does 

not affect the state of the Kafka cluster. Even if Zookeeper fails, Kafka will restore 

the state, once the Zookeeper restarts. This gives zero downtime for Kafka. Zookeeper 

also manages the alternative leader broker selection, in case of a Kafka leader failure.

8.6.1 Kafka Producer Example in Java

//Configure

Properties config =  new Properties();

config.setProperty(ProducerConfig.BOOTSTRAP_SERVER_CONFIG, “localhost:8082”);

KafkaProducer producer = new KafkaProducer(config);

ProducerRecord record= new ProducerRecord(“topic”, “key”.getBytes(), ”value”.
getBytes());

Future<RecordMetaData>  response = producer.send(record);

8.7 CONCLUSION

Big data is ingested using a dedicated system. Publish-and-subscribe systems are 

efficient ways of delivering data from many sources to many targets, in a reliable, 

secure, and efficient way. Kafka is an open-source, reliable, secure, and scalable data 

publish-subscribe messaging system. It is a set of brokers that deal with producers as 

well as consumers of data. Messages are published to a set of central topics. Consumer 

can subscribe to topics. Kafka uses a leader-follower system of managing replicated 

partitions for the same set of data, to ensure full reliability and zero downtime. 

Review Questions

 1. What is a data ingest system? Why is it an important topic?

 2. What are the two ways of delivering data from many sources to many targets?
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 3. What is Kafka? What are its advantages? Describe 3 use cases of Kafka.

 4. What is a topic? How does it help with data ingest management? 

True/False Questions

 1. A dedicated ingest system is needed to accept the data because Hadoop cannot 

directly receive data.  

 2. Point-to-point messaging systems are not suitable for large volumes of data.

 3. Kafka is a pub-sub messaging system.

 4. Kafka is used mostly for batch processing systems.

 5. A data producer is a source of incoming data.

 6. Kafka can handle up to 64 data sources.

 7. Kafka consumers can read the data anytime in the future. 

 8. Kafka organizes data in terms of categories called Topics. 

 9. Data for every topic is stored in a separate server.

 10. A consumer can subscribe up to 64 Topics.

 11. A Kafka broker is dedicated to a particular topic. 

 12. Kafka guarantees the order of sequence of messages will be in the order in which 

they were received.

 13. ZooKeeper provides support services to Kafka brokers and data producers and 

consumers. 

 14. Kafka uses a leader-follower system to manage multiple partitions for a topic.

 15. Kafka was developed at Facebook.



Chapter  9
 Cloud Computing

Learning Objectives

 ■ Know key concepts of cloud computing 

 ■ Examine its technical and business benefits

 ■ Understand the concept of  virtualization and  hypervisors

 ■ Analyze different cloud computing models 

 ■ Be aware of the myths and challenges of cloud computing

INTRODUCTION

Cloud computing is a cost-effective and flexible mode of delivering IT infrastructure 

over internet, as a service to clients on a metered basis. The cloud computing model 

offers clients enormous flexibility to use as much IT capacity – compute, storage, net-

work –  as needed without having to invest in a dedicated IT capacity on one’s own. 

The IT usage can be scaled up or down in minutes. The complex IT infrastructure 

management skills are all owned by the cloud computing provider, and any problems 

can be resolved much faster. The client can simply access a smoothly running IT 

infrastructure over a fast internet connection. IT capacity in the cloud can also be 

purchased as a custom package depending upon one’s needs in terms of average and 

peak IT requirements. The  computing cloud is the ultimate cosmic computer aligned 

with all laws of nature. 

Managing large and fast  data streams is a huge challenge. It requires making criti-

cal decisions about its storage, structure, and access. This data would be stored in 

large clusters of hundreds or thousands of inexpensive computers. Such clusters of 

machines are also called  server farms.  The location and size of such clusters impacts 

Learning Objectives

■ Know key concepts of cloud computing

■ Examine its technical and business benefits

■ Understand the concept of virtualization and hypervisors

■ Analyze different cloud computing models

■ Be aware of the myths and challenges of cloud computing
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costs. The server farms may be located in an organization’s own data centers, or they 

may be rented from specialized third-party organizations called cloud computing 

service providers.  

Cloud computing provides an organization’s IT leadership a cost-effective and pre-

dictable solution for reliably meeting their large data management needs. There are 

many cloud computing vendors offering this service. Prices are dropping regularly, 

because per-unit IT components are getting cheaper by the day. In addition, there is 

growing volume of business and, also, effective competition. With cloud computing, the 

IT expense becomes an operating expense rather than a capital expense. The costs of 

IT become aligned with revenue streams and makes cash flow management easier.

Another major reason for enterprises moving to cloud computing is to experiment 

with new and risky projects. This flexible model makes it much easier to launch 

new products and services, without being exposed to the risk of a heavy loss in IT 

infrastructure. For example, a new Hollywood movie’s site will have millions of visi-

tors to its website for a month before and for a month after the movie’s release date. 

After that the visits to the website will drop dramatically. The website owner would 

benefit enormously from using a cloud computing model where they pay for the peak 

web usage capacity for those few months, and much less as the usage drops down. 

More importantly, the flexibility ensures that their website will not crash just in 

case the movie becomes a super-hit and attracts unusually large number of visitors 

to the website. 
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FIGURE 9.1 Big data architecture
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9.1 CLOUD COMPUTING CHARACTERISTICS 

Here are the major characteristics of a cloud computing model.

 1.  Flexible Capacity: The capacity can scale up rapidly. One can expand and reduce 

resources according to one’s specific service requirements, as and when needed.  

The cloud infrastructure internally does regular workload balancing among the 

needs of millions of clients, and this helps bring down costs for everyone. 

 2. Attractive payment model: Cloud computing works on a pay-per-use model. i.e. 

one pays only for what one uses, and for how long one uses it.  IT costs become 

an expense rather than a capital expense for the client. The resource prices may 

be negotiated at long-term contract rates, and can also be purchased at spot 

market rates.

 3.  Resiliency and  Security: The failure of any individual server and storage 

resources does not impact the user.  The servers and storage for all clients are 

isolated to maximize security of data. 

9.1.1 In-house Storage

Most organizations have their dedicated data centres for running their regular IT 

operations. An organization may decide to expand its own data centre to store large 

streams of data.  The organization can ensure complete security and privacy of its data 

if it keeps all the data in-house. However, the costs and complexity of managing this 

data infrastructure are increasing, and it is not cost-effective for every organization 

to manage huge data centres. Hiring and retaining scarce  advanced skills to manage 

such data centres would also be a challenge. 

9.2 CLOUD STORAGE

It is now becoming a trend for organizations to choose to store their data in massive 

data centers owned by other specialized companies. Their data and processing capac-

ity resides in some sort of a huge cloud out there, which is accessible from anywhere 

anytime through a simple internet connection (Figure 9.2). 

Companies like  Amazon,  Google,  Microsoft,  Apple, and  IBM are among the major 

providers of cloud storage and computing services around the world. They own and 

operate data centers with millions of computers in them. 

Commercially,  cloud service providers can consolidate the requirements of thousands 

or millions of customers, and supply flexible amounts of data storage and computing 
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facility available to clients on a per-usage basis. This pay model is similar to how 

electric utility companies charge consumers for their usage of electricity in homes and 

offices. Cloud computing offers much lower costs per use, just like using the electric 

utility costs much less than owning and operating one’s own electricity generators 

(Figure 9.3).

FIGURE 9.3 A cloud computing data center

FIGURE 9.2 Cloud storage system
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A major disadvantage of  cloud storage is that the data is stored away from one’s physi-

cal control. Thus security of precious data is left to the hands of the cloud computing 

provider. While the security protocols are rapidly improving, however, there are no 

failsafe methods for securing data in the cloud. 

There is also a risk of being locked into one provider’s infrastructure. The cost-benefit 

tradeoffs have definitely tilted towards using cloud computing providers. At some 

future point in time, the cloud services providers might be heavily regulated like the 

electric utilities. 

9.3  CLOUD COMPUTING: EVOLUTION OF  VIRTUALIZED 
ARCHITECTURE

Cloud computing is essentially a commercial model for virtualized server infrastruc-

ture. IBM began to offer time-sharing services on its mainframe computers beginning 

in the 1960s. That same resource-sharing technology has been offered on networks 

of small machines through the virtualization process. 

Virtualization assumes that logical machines can be differentiated from physical 

machines. A physical server could run multiple  Virtual Machines (VMs). One virtual 

machine may span multiple physical servers. The virtualization software is called a 

hypervisor. It abstracts all machines into Virtual Machines, using easy GUI interface 

(Figure 9.4). A virtualization software can typically run on a heterogeneous physical 

FIGURE 9.4 Virtualized architecture of cloud computing
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Cloud Computing Service Models
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 1. The range of cloud computing services from a cloud computing provider, fall in 

three broad buckets: 

 (a) Infrastructure as a service: This is the lowest level of services, and in-

cluded only raw capacity of compute, storage, and networking. The price for 

this services is the lowest. 

 (b) Platform as a service: This includes IaaS, along with other technologies 

and services. These are still very general tools such open source Hadoop or 

Spark or Cassandra implementation, along with certain monitoring tools. 

The costs are a little higher because of the additional management and 

monitoring services provided by the provider. 

infrastructure, and convert all IT capacity into a single unified capacity. This capacity 

can then be provisioned in slices and packages. The user applications are not aware 

that they are running in a virtualized environment; so they run as if running on a 

dedicated machine. The applications can also run on top of their own native operat-

ing systems. 

Cloud Service Models

There are two major dimensions to conceptualize the Cloud computing models: the 

scope of services received; and the control over and cost of those services (Figure 9.5).
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 (c)  Software as a service: This includes the computing platform as well as 

business applications that get work done. For example, salesforce.com was 

one of the first  CRM application sold only on a SaaS model. Google’s email 

service is sold to organizations on a per-user-per-year basis. The costs of 

this service model are higher than the platform-as-a-service model.  

 2. The other way the cloud services differ is in terms of the ownership and control.

 (a)  Public cloud: This will be a large shared infrastructure made available to 

all, in a low-cost and multi-tenancy model. The client can access it using 

any device.  The downside is that the data also resides on the cloud, and 

thus could be vulnerable to theft or hacking.  The costs to client are low, 

and variable depending upon use. 

 (b)  Private cloud: This is a cloud version of an in-house IT infrastructure. The 

organization will have exclusive control over the entire infrastructure. The 

costs would be fixed and higher. 

 (c)  Hybrid cloud: This is a mix of flexibility of capacity, and much control 

over some key aspects of it. One could retain complete control over critical 

applications, while using shared infrastructure for non-critical applications. 

All levels of infrastructure and pay serve different levels of needs for client organi-

zations. However, most of the recent growth in cloud computing is happening in the 

public cloud model because of the attractiveness of the dramatically lower prices. 

9.4 CLOUD COMPUTING MYTHS

There are a couple of misconceptions about the costs and benefits of cloud computing. 

 1. Myth: Public Cloud computing would satisfy all the requirement: scalability, 

flexibility, pay per use, resilience, multitenancy, and security. Depending upon 

the type of service selected (SaaS, IaaS, or PaaS), the service can satisfy specific 

subsets of these requirements. 

 2. Myth: Cloud computing would be useful only if you are outsourcing your IT func-

tions to an external service provider. One could use a private cloud computing 

model for a section of IT applications to offer on-demand, scalable, and pay-per-

use deployments within your enterprise’s own data center.

9.5 CLOUD COMPUTING: GETTING STARTED

Learn more about the context for getting benefits from cloud computing. Select the 

right model and level of cloud capacity. Set up the applications and a monitoring 
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system for those application and the total cloud footprint. Choose a service provider, 

say  Amazon Web Services, the leading provider of cloud computing (Figure 9.6). Use 

Appendix A to install Hadoop on AWS EC2 public cloud infrastructure.

FIGURE 9.6 AWS cloud adoption framework

9.6 CONCLUSION

Cloud computing is a business model to provide shared, flexible, cost-effective IT 

infrastructure to get started quickly on building an application. For Big Data applica-

tions, it can be even more attractive to test the system using rented facilities, before 

making the determination of investing in dedicated IT infrastructure. 

Review Questions

 1. Describe Cloud Computing model. 

 2. What are the advantages of cloud computing over in-house computing.

 3. Describe the technical architecture for Cloud computing.

 4. Name a few major providers of cloud computing services. 



120 Big Data

True/False Questions

 1. Cloud computing simplifies computing for the end-users.

 2. Cloud computing is essentially a business model.

 3. Cloud computing offers instant scalability in data storage. 

 4. Virtualization is a model of creating flexible units of computing and storage.

 5. Cloud model offers lower costs of computing.

 6. Data security is not an issue in cloud computing.

 7. There are two kinds of cloud computing ownership models.

 8. Cloud computing models can differ based on the range of services offered.

 9. Google is the largest public cloud computing provider.

 10. Cloud computing model can be implemented in-house also.



This section covers the other relevant concepts and tutorials for effectively man-

aging and utilizing Big Data.

 ➨ Chapter 10 will bring all the tools together in a case study of developing 

web log analyzer, as an example of a useful Big Data application.

 ➨ Chapter 11 will cover the overall view of Data Mining tools and techniques 

to extract benefit from Big Data.

 ➨ Chapter 12 will be a primer on Big data programming languages, Hive and 

Pig.

 ➨ Appendix 1 will present the systematic way to install a Hadoop cluster on 

a local machine and to run a sample Word count application.

 ➨ Appendix 2 will display systematic way to install a Hadoop cluster on a 

cloud computing platform and to run a sample Word count application.

 ➨ Appendix 3 will demonstrate a tutorial on installing and running Spark.

Section 3





Chapter  10
Web Log Analyzer 

Application Case Study

Learning Objectives

 ■ Understand the architecture of a typical big data application

 ■ Learn the design elements of a Web log analyzer application

 ■ Develop the sample code and outputs for such an application

INTRODUCTION

A web log analyzer is an automated software tool that helps to analyze and make 

decisions on several issues regarding web application server logs. An ideal web log 

analyzer would analyze unlimited streams of data and help keep the entire universe 

running smoothly and without fault. This would be done by eliminating the need for 

manually accessing the logs, automating the flow of information, and alerting the 

system administrator as needed.

10.1 CLIENT-SERVER ARCHITECTURE

Every web-based application runs on a client-server architecture. Clients are entities 

that access servers, and servers are entities that respond to the client with a solu-

tion. Many clients simultaneously try to access servers. The servers may be database 

server, network server, the application server, or any server in the n-tier architecture. 

For each request, a log entry is generated. The speed of access requests determined 

the stream of log entries. This leads to a potentially huge log over time. The log can 

be processed as stream of data. This log can also be stored on the servers for later 

analysis.

Learning Objectives

■ Understand the architecture of a typical big data application

■ Learn the design elements of a Web log analyzer application

■ Develop the sample code and outputs for such an application
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Logs can be used for monitoring, audit, and analysis purposes. It can help with error 

diagnostics in case a website becomes slow or it goes down. Logs can be analyzed to 

detect hacking activity. They can also be analyzed to summarize the popularity of 

webpages, and the distribution of the page requesters. It can help with access volumes, 

and for scaling up or down the infrastructure.

10.2 WEB LOG ANALYZER

The log analyzer received streaming logs from a server location, and analyzes multiple 

things using many algorithms to generate the desired results. The system is completely 

automated. The log is produced, and it is consumed to make real-time reports. It is 

easy to imagine the massive dataflow produced by the log in the server environment 

while it is also being analyzed simultaneously on the administrator side. `

10.2.1 Requirements

This is a log analyzer to analyze a web application hosted on a server. It is a busy 

application owned by a big company. It receives more than 15000 web access requests 

per hour. All the access requests need to be logged, and dumped to Hadoop File sys-

tem periodically. The analyzer is required to ingest real-time log data, and filter out 

a part of data for analyzing and dumping to HDFS. It has to do streaming data flow 

management as well as batch processing. The analyzer needs to process the data 

before it is dumped into HDFS, and also after it is put into HDFS. The system ad-

ministrators should be alerted in real time about possible threats, overloads, delays, 

potentials errors, and any other damages. The results of all the analyses must be 

stored in a database for later presentation in a graphical format. The results must 

be made available for any period, without any missing time values. The log data has 

to be preserved for future without losing any log data.

10.2.2 Solution Architecture

Get streaming data using Apache Flume, and send it to HDFS. Use Apache Spark for 

data flow management platform and processing engine. Store the results of analysis 

in MongoDB. This is a safe solution, because the data gets stored into Hadoop cluster 

and is available for future requirements, even while it is being analyzed in real time. 

The results of real-time processing also go into MongoDB. Figure 10.1 presents web 

log analyzer architecture.
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FIGURE 10.1 Web log analyzer architecture

10.2.3 Benefits of Such Solution

The advantages of such solution are:

 1. Real-time logging and analysis data generated on server. It is streamed directly 

to HDFS by Flume agent without delay. Every log entry generated over every 

single point of time is analyzed and used for monitoring and decision making.

 2. Automatic log handling and storage. Loading data into HDFS normally requires 

manually running certain Hadoop commands. This log analyzer uses a Flume 

agent or spark streaming to handle all data on its own, without any externally 

managed efforts.

 3. Easy and convenient to implement: It is made possible by using built-in and 

easy-to-customize machine learning algorithms in Spark.

 4. Easy error handling, server request handling, and overall server performance 

optimization. It makes server smarter by keeping track of almost every aspects 

of server.
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10.3 TECHNOLOGY STACK

The technology stack used for this application is shown below. A brief of each com-

ponent follows.

 1. Apache Spark v2

 2. Hadoop 2.6.0 cdh5

 3. Apache Flume

 4. Scala, Java

 5. MongoDB

 6. RestFul Webservices

 7. Front UI tools

 8. Linux Shell Scripts

10.3.1 Apache Spark

Spark is fast in-memory-based cluster computing technology, designed for fast and 

streaming computation. It is built on top of Hadoop and MapReduce system, and it 

extends MapReduce model to use more types of computation, which includes interac-

tive queries and stream processing. It has lot of libraries and packages like machine 

learning (MLLib), graph computation (GraphX) etc. It claims to execute 10 to 100 

times faster than Hadoop because of its in-memory computation model. It also sup-

ports multiple languages such as Scala, Python, Java, and R.

10.3.2 Spark Deployment

 1. Standalone

 2. Hadoop YARN

 3. SIMR: Spark in mapReduce //Mesos

10.3.3 Components of Spark

Spark Sql: Data abstraction called schemaRDD, which provides support for structured 

and semi-structured data.

Spark Streaming: Ingests data in mini batch and perform RDD transformation on 

those mini-batches. Streaming data analytics using RDD.
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MLLib (Machine learning): It is a distributed machine learning framework, which 

operates in-memory at high speed, and offers many ML algorithms.

GraphX: This distributed graph processing framework provides API for many graph 

computation algorithms.

Spark Core: This is a general execution engine for spark platform upon which all 

other functionality is built. It takes care of task dispatching and scheduling, and 

basic I/O functionalities.

Spark-shell: It is a powerful tool to analyze data interactively. It is available on scala 

and python. Spark’s primary data abstraction is an in-memory collections of items 

called RDD. It can be created from Hadoop input formats like HDFS, and by trans-

forming existing RDDs using filters and maps into new RDDs.

Scripting and Programming model using Spark Context: One can use an IDE to 

develop and test the analytics code. One can then create a jar to run the analytics 

using Hadoop architecture. The jar can also be submitted using spark-submit utility 

to the Spark engine. For example:

spark-submit --class apache.accesslogs.ServerLogAnalyzer --master

* local ScalaSpark/Scala1/target/scala-2.10/Scala1-assembly-1.0.jar > output.txt

10.4 HDFS

HDFS is a distributed file system, that is at the core of Hadoop system.

 ■ Deployed on low cost commodity hardware

 ■ Fault tolerant

 ■ Supports Batch Processing

 ■ Designed for large dataset or large files

 ■ Maintains coherence through write once read many times

 ■ Moving computation to the location of the data.

10.5 MONGODB

It is a free and open-source cross-platform document-oriented database. It came into 

existence as a NoSQL database and is classified as a NoSQL database program. 

MongoDB supports field, range queries, regular expression searches.
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10.6 APACHE FLUME

Flume is an open source tool for handling streaming logs or data. It is a distributed 

and reliable system for efficiently collecting, aggregating and moving large amount 

of data from many different sources to a centralized data store. It is a popular tool to 

assist with data flow and storage to HDFS. Flume is not restricted to log data. The 

data sources are customizable so it might be any source like event data, traffic data, 

social media data, or any other data source. The major Components of Flume are:

 ■ Event

 ■ Agent

 ■ Data Generators

 ■ Centralized Stores

10.7 OVERALL APPLICATION LOGIC

The system reads access logs and presents the results in tabular and graphical form 

to end users. This system provides the following major functions:

 1. Calculate content size

 2. Count Response code

 3. Analyze requesting IP-address

 4. Manage End points

10.8 TECHNICAL PLAN FOR THE APPLICATION

Technically, the project follows the following structure:

 1. Flume takes streaming log from running application server and stores in HDFS. 

Flume uses compression to store huge log files to speed up the data transfer and 

for storage efficiency.

 2. Apache Spark uses HDFS as input source and analyzes data using MLLib. Apache 

Spark stores analyzed data in MongoDB.

 3. RESTful java service presents JSON objects fetching from MongoDB and sending 

to Front end. Graphical tools are used to present data.
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10.9 SCALA SPARK CODE FOR LOG ANALYSIS

Note: This application is written in Scala language. Below is the operative part of 

the code. Visit github link below for the complete Scala code for this application.

//calculates size of log, and provides min, max and average size

// caching is done for repeatedly used factors

def calcContentSize(log: RDD[AccessLogs]) = {

 val size = log.map(log => log.contentSize).cache()

 val average = size.reduce(_ + _) / size.count()

 println(“ContentSize:: Average :: “ + average + “ “ +

 “ || Maximum :: “ + size.max() + “ || Minimum ::” + size.min() )

 }

//Send all the response code with its frequency of occurrence as Output

def responseCodeCount(log: RDD[AccessLogs]) = {

 val responseCount = log.map(log => (log.responseCode, 1))

 .reduceByKey(_ + _)

 .take(1000)

 println(s”””ResponseCodes Count : ${responseCount.mkString(“[“, “,”, “]”)} “””)

 }

//filters ipaddresses that have more then 10 requests in server log

 def ipAddressFilter(log: RDD[AccessLogs]) = {

 val result = log.map(log => (log.ipAddr, 1))

 .reduceByKey(_ + _)

 .filter(count => count._2 > 1)

 // .map(_._1).take(10)

 .collect()

 println(“IP Addresses Count :: ${result.mkString(“[“, “,”, “]”)}” )

 } }
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10.10 SAMPLE LOG DATA

10.10.1 Sample Input Data

Input Fields (Selected Fields)

Certain fields have been omitted to make the code clear. The response code has been 

colored in red as it is the basis of the major reports.

 1. ipAddress: String,

 2. dateTime: String,

 3. method: String,

 4. endPoint: String,

 5. protocol: String,

 6. responseCode: Long,

 7. contentSize: Long

Sample Input Rows of Data

64.242.88.10 [07/Mar/2014:16:05:49 -0800] “GET
/twiki/bin/edit/Main/Double_bounce_sender?topicparent=Main.ConfigurationVariables 
HTTP/1.1” 401 12846

64.242.88.10 [07/Mar/2014:16:06:51 -0800] “GET
/twiki/bin/rdiff/TWiki/NewUserTemplate?rev1=1.3&rev2=1.2 HTTP/1.1” 200 4523

64.242.88.10 [07/Mar/2014:16:10:02 -0800] “GET
/mailman/listinfo/hsdivision HTTP/1.1” 200 6291

64.242.88.10 [07/Mar/2014:16:11:58 -0800] “GET
/twiki/bin/view/TWiki/WikiSyntax HTTP/1.1” 200 7352

64.242.88.10 [07/Mar/2014:16:20:55 -0800] “GET
/twiki/bin/view/Main/DCCAndPostFix HTTP/1.1” 200 5253

64.242.88.10 [07/Mar/2014:16:23:12 -0800] “GET
/twiki/bin/oops/TWiki/AppendixFileSystem?template=oopsmore&param1=1.12&param2=1.12 
HTTP/1.1” 200 11382
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10.11 SAMPLE OUTPUT OF WEB LOG ANALYSIS

ContentSize:: Average:: 10101 || Maximum :: 138789 || Minimum ::0

ResponseCodes Count: [(401,113), (200,591), (302,1)]

IP Addresses Count:: [(127.0.0.1, 31), (207.195.59.160, 15), (67.131.107.5, 3), 
(203.147.138.233, 13), (64.242.88.10, 452), (10.0.0.153, 188)]

EndPoints :: [(/wap/Project/login.php,15),(/cgi-bin/mailgraph.cgi/mailgraph_2.png,12),
(/cgi-bin/mailgraph.cgi/mailgraph_0.png,12),(/wap/Project/loginsubmit.php,12),(/cgi-
bin/mailgraph.cgi/mailgraph_2_err.png,12),(/cgi-bin/mailgraph.cgi/mailgraph_1.png,12),
(/cgi-bin/mailgraph.cgi/mailgraph_0_err.png,12),(/cgi-bin/mailgraph.cgi/mailgraph_1_err.
png,12),(/cgi-bin/mailgraph.cgi/mailgraph_3_err.png,12),(/cgi-bin/mailgraph.cgi/mail-
graph_3.png,12)]

Intermediate data is stored in Hadoop File System in CSV format

To see detailed code, visit: https://github.com/databricks/reference-apps/blob/master/

logs_analyzer/chapter1/scala/src/main/scala/com/databricks/apps/logs/chapter1/LogA-

nalyzer.scala

Top 10 Requests
/

FIGURE 10.2 A pie chart showing top ten requests of web log analyzer

This web log analyzer (Figure 10.2) can be enhanced in many ways. For example, it 

can analyze history of logs from previous years and discover web access trends. This 

application can also be made to discard data older than 5 years into permanent and 

backup storage.
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10.12 CONCLUSION

This application shows how to create a simple but useful application using Apache 

Spark for getting useful value out of Big Data. It also showed how the analyzed data 

can be visualized for easy decision making. One can experiment with other tools to 

enhance this application. 

Review Questions

 1. Describe the advantages of a web log analyzer.

 2. Describe the major challenges in developing this application.

 3. Identify 3–4 major lessons learned from the code.

 4. How can this code be improved?

True/False Questions

 1. A web application follows a client-server architecture.

 2. A web log analyzer is a very specialized application that differs for every client.

 3. The web log application architecture definitely needs Spark for data ingest.

 4. HDFS is used in this application for processing data.

 5. Many kinds of reports can be produced from web log analysis.
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Data Mining Primer

Learning Objectives

 ■ Understand the concept and process of data mining

 ■ Know the process of gathering and selecting data for mining

 ■ Represent many outputs of data mining

 ■ Evaluate the results of data mining

 ■ Learn many techniques for data mining

INTRODUCTION

Data mining is the art and science of discovering knowledge, insights, and patterns in 

data. It is the act of extracting useful patterns from an organized collection of data. 

Patterns must be valid, novel, potentially useful, and understandable. The implicit 

assumption is that data about the past can reveal patterns of activity that can be 

projected into the future.

Business Intelligence

Data Mining

FIGURE 11.1 Data analytics architecture

Learning Objectives

■ Understand the concept and process of data mining

■ Know the process of gathering and selecting data for mining

■ Represent many outputs of data mining

■ Evaluate the results of data mining

■ Learn many techniques for data mining
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Data mining is a multidisciplinary field that borrows techniques from a variety of 

fields. It utilizes the knowledge of data quality and data organizing from the data-

bases area. It draws modeling and analytical techniques from statistics and computer 

science (artificial intelligence) areas. It also draws the knowledge of decision-making 

from the field of business management.

The field of data mining emerged in the context of pattern recognition in defense, 

such as identifying a friend-or-foe on a battlefield. Like many other defense-inspired 

technologies, it has evolved to help gain a competitive advantage in business.

For example, “customers who buy cheese and milk also buy bread 90 per cent of the 

time” would be a useful pattern for a grocery store, which can then stock the products 

appropriately. Similarly, “people with blood pressure greater than 160 and an age 

greater than 65 were at a high risk of dying from a heart stroke” is of great diagnos-

tic value for doctors, who can then focus on treating such patients with urgent care 

and great sensitivity.

Past data can be of predictive value in many complex situations, especially where 

the pattern may not be so easily visible without the modeling technique. Here is a 

dramatic case of a data-driven decision-making system that beats the best of human 

experts. Using past data, a decision tree model was developed to predict votes for 

Justice Sandra Day O’Connor, who had a swing vote in a 5–4 divided US Supreme 

Court. All her previous decisions were coded on a few variables. What emerged from 

data mining was a simple four-step decision tree that was able to accurately predict 

her votes 71 per cent of the time. In contrast, the legal analysts could at best predict 

correctly 59 per cent of the time.

11.1 GATHERING AND SELECTING DATA

To learn from data, quality data needs to be effectively gathered, cleaned and orga-

nized, and then efficiently mined. One requires the skills and technologies for con-

solidation and integration of data elements from many sources.

Gathering and curating data takes time and effort, particularly when it is unstruc-

tured or semi-structured. Unstructured data can come in many forms like databases, 

blogs, images, videos, audio, and chats. There are streams of unstructured social 

media data from blogs, chats, and tweets. There are streams of machine-generated 

data from connected machines, RFID tags, the internet of things, and so on. Eventu-

ally the data should be rectangularized, that is, put in rectangular data shapes with 

clear columns and rows, before submitting it to data mining.
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Knowledge of the business domain helps select the right streams of data for pursu-

ing new insights. Only the data that suits the nature of the problem being solved 

should be gathered. The data elements should be relevant, and suitably address the 

problem being solved. They could directly impact the problem, or they could be a 

suitable proxy for the effect being measured. Select data could also be gathered from 

the data warehouse. Every industry and function will have its own requirements 

and constraints. The health care industry will provide a different type of data with 

different data names. The HR function would provide different kinds of data. There 

would be different issues of quality and privacy for these data.

11.2 DATA CLEANSING AND PREPARATION

The quality of data is critical to the success and value of the data mining project. 

Otherwise, the situation will be of the kind of garbage in and garbage out (GIGO). The 

quality of incoming data varies by the source and nature of data. Data from internal 

operations is likely to be of higher quality, as it will be accurate and consistent. Data 

from social media and other public sources is less under the control of business, and 

is less likely to be reliable.

Data almost certainly needs to be cleansed and transformed before it can be used for 

data mining. There are many ways in what data may need to be cleansed – filling 

missing values, reigning in the effects of outliers, transforming fields, binning continu-

ous variables, and much more – before it can be ready for analysis. Data cleansing 

and preparation is a labor-intensive or semi-automated activity that can take up to 

60–80% of the time needed for a data mining project.

11.3 OUTPUTS OF DATA MINING

Data mining techniques can serve different types of objectives. The outputs of data 

mining will reflect the objective being served. There are many ways of representing 

the outputs of data mining.

One popular form of data mining output is a decision tree. It is a hierarchically 

branched structure that helps visually follow the steps to make a model-based decision. 

The tree may have certain attributes, such as probabilities assigned to each branch. 

A related format is a set of business rules, which are if-then statements that show 

causality. A decision tree can be mapped to business rules. If the objective function 

is prediction, then a decision tree or business rules are the most appropriate mode 

of representing the output.
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The output can be in the form of a regression equation or mathematical function that 

represents the best fitting curve to represent the data. This equation may include 

linear and nonlinear terms. Regression equations are a good way of representing the 

output of classification exercises. These are also a good representation of forecasting 

formulae.

Population “centroid” is a statistical measure for describing central tendencies of a 

collection of data points. These might be defined in a multidimensional space. For 

example, a centroid could be “middle-aged, highly educated, high-net worth profes-

sionals, married with two children, living in the coastal areas”. Or a population of 

“20-something, ivy-league-educated, tech entrepreneurs based in Silicon Valley”. Or 

it could be a collection of “vehicles more than 20 years old, giving low mileage per 

gallon, which failed environmental inspection”. These are typical representations of 

the output of a cluster analysis exercise.

Business rules are an appropriate representation of the output of a market basket 

analysis exercise. These rules are if-then statements with some probability parameters 

associated with each rule. For example, those that buy milk and bread will also buy 

butter (with 80 per cent probability).

11.4 EVALUATING DATA MINING RESULTS

There are two primary kinds of data mining processes: supervised learning and un-

supervised learning. In supervised learning, a decision model can be created using 

past data, and the model can then be used to predict the correct answer for future 

data instances. Classification is the main category of supervised learning activity. 

There are many techniques for classification, decision trees being the most popular 

one. Each of these techniques can be implemented with many algorithms. A common 

metric for all of classification techniques is predictive accuracy.

11.4.1 Predictive Accuracy = (Correct Predictions)/Total Predictions

Suppose a data mining project has been initiated to develop a predictive model for 

cancer patients using a decision tree. Using a relevant set of variables and data in-

stances, a decision tree model has been created. The model is then used to predict 

other data instances. When a true positive data point is positive, that is a correct 

prediction, called a true positive (TP). Similarly, when a true negative data point 

is classified as negative, that is a true negative (TN). On the other hand, when a 
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true-positive data point is classified by the model as negative, that is an incorrect 

prediction, called a false negative (FN). Similarly, when a true-negative data point 

is classified as positive, that is classified as a false positive (FP). This is represented 

using the confusion matrix (Figure 11.2).

FIGURE 11.2 Confusion matrix

Thus, the predictive accuracy can be specified by the following formula.

Predictive Accuracy = (TP +TN) / (TP + TN + FP + FN).

All classification techniques have a predictive accuracy associated with a predictive 

model. The highest value can be 100%. In practice, predictive models with more than 

70% accuracy can be considered usable in business domains, depending upon the 

nature of the business.

There are no good objective measures to judge the accuracy of unsupervised learning 

techniques such as Cluster Analysis. There is no single right answer for the results 

of these techniques. For example, the value of the segmentation model depends upon 

the value the decision-maker sees in those results.

11.5 DATA MINING TECHNIQUES

Data may be mined to help make more efficient decisions in the future. Or it may be 

used to explore the data to find interesting associative patterns. The right technique 

depends upon the kind of problem being solved (Figure 11.3). 
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Data Mining Techniques

Supervised Learning

(Predictive ability

based on past data)

Classification

Machine Learning

Classification
Statistics

Unsupervised Learning

(Exploratory analysis to

discover patterns)

Clustering Analysis

Association Rules

Decision Trees

Neural Networks

Regression

FIGURE 11.3 Important data mining techniques

The most important class of problems solved using data mining are classification 

problems. Classification techniques are called supervised learning as there is a way 

to supervise whether the model is providing the right or wrong answers. These are 

problems where data from past decisions is mined to extract the few rules and pat-

terns that would improve the accuracy of the decision making process in the future. 

The data of past decisions is organized and mined for decision rules or equations, 

that are then codified to produce more accurate decisions.

Decision trees are the most popular data mining technique, for many reasons.

 1. Decision trees are easy to understand and easy to use, by analysts as well as 

executives. They also show a high predictive accuracy.

 2. Decision trees select the most relevant variables automatically out of all the 

available variables for decision making.

 3. Decision trees are tolerant of data quality issues and do not require much data 

preparation from the users.

 4. Even non-linear relationships can be handled well by decision trees.

There are many algorithms to implement decision trees. Some of the popular ones 

are C5, CART and CHAID.

Regression is a most popular statistical data mining technique. The goal of regres-

sion is to derive a smooth well-defined curve to best the data. Regression analysis 

techniques, for example, can be used to model and predict the energy consumption 

as a function of daily temperature. Simply plotting the data may show a non-linear 
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curve. Applying a non-linear regression equation will fit the data very well with high 

accuracy. Once such a regression model has been developed, the energy consumption 

on any future day can be predicted using this equation. The accuracy of the regres-

sion model depends entirely upon the dataset used and not at all on the algorithm 

or tools used.

Artificial Neural Networks (ANN) is a sophisticated data mining technique from 

the Artificial Intelligence stream in Computer Science. It mimics the behavior of hu-

man neural structure: Neurons receive stimuli, process them, and communicate their 

results to other neurons successively, and eventually a neuron outputs a decision. A 

decision task may be processed by just one neuron and the result may be communi-

cated soon. Alternatively, there could be many layers of neurons involved in a deci-

sion task, depending upon the complexity of the domain. The neural network can be 

trained by making a decision repeatedly with many data points. It will continue to 

learn by adjusting its internal computation and communication parameters based on 

feedback received on its previous decisions. The intermediate values passed within 

the layers of neurons may not make any intuitive sense to an observer. Thus, the 

neural networks are considered a black-box system.

Cluster Analysis is an exploratory learning technique that helps in identifying a set 

of similar groups in the data. It is a technique used for automatic identification of 

natural groupings of things. Data instances that are similar to (or near) each other 

are categorized into one cluster, while data instances that are very different (or far 

away) from each other are categorized into separate clusters. There can be any number 

of clusters that could be produced by the data. The K-means technique is a popular 

technique and allows the user guidance in selecting the right number (K) of clusters 

from the data. Clustering is also known as the segmentation technique. It helps divide 

and conquer large data sets. The technique shows the clusters of things from past 

data. The output is the centroids for each cluster and the allocation of data points 

to their cluster. The centroid definition is used to assign new data instances can be 

assigned to their cluster homes. Clustering is also a part of the artificial intelligence 

family of techniques.

Association rules are a popular data mining method in business, especially where 

selling is involved. Also known as market basket analysis, it helps in answering ques-

tions about cross-selling opportunities. This is the heart of the personalization engine 

used by ecommerce sites like Amazon.com and streaming movie sites like Netflix.com. 

The technique helps find interesting relationships (affinities) between variables (items 

or events). These are represented as rules of the form X  Æ Y, where X and Y are sets 

of data items. A form of unsupervised learning, it has no dependent variable; and 

there are no right or wrong answers. There are just stronger and weaker affinities. 
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Thus, each rule has a confidence level assigned to it. A part of the machine learning 

family, this technique achieved legendary status when a fascinating relationship was 

found in the sales of diapers and beers.

11.6 MINING BIG DATA

As data grows larger and larger, there are a few ways in which analyzing Big data 

is different.

11.6.1 From  Causation to  Correlation

There is more data available than there are theories and tools available to explain 

it. Historically, theories of human behaviour, and theories of universe in general, 

have been intuited and tested using limited and sampled data, with some statistical 

confidence level. Now that data is available in extremely large quantities about many 

people and many factors, there may be too much noise in the data to articulate and 

test clean theories. In that case, it may suffice to value co-occurrences or correlation 

of events as significant without necessarily establishing strong causation.

11.6.2 From  Sampling to the Whole

Pooling all the data together into a single big data system can help discover events, 

that help bring about a fuller picture of the situation, and highlight threats or op-

portunities that an organization faces. Working from the full dataset can enable 

discovering remote but extremely valuable insights. For example, an analysis of the 

purchasing habits of millions of customers and their billions of transactions at their 

thousands of stores can give an organization a vast, detailed and dynamic view of 

sales patterns in their company, which may not be available from the analysis of 

small samples of data by each store or region.

11.6.3 From Dataset to Data Stream

A flowing stream has a perishable and unlimited connotation to it, while a dataset 

has a finitude and permanence about it. With any given infrastructure, one can only 

consume so much data at a time. Data streams are many, large and fast. Thus one 

has to choose which of the many streams of data does one want to engage with. It 

is equivalent to deciding which stream to fish in. The metrics used for analysis of 

streams tend to be relatively simple and relate to time dimension. Most of the metrics 

are statistical measures such as counts and means. For example, a company might 

want to monitor customer sentiment about its products. So they could create a social 

media listening platform that would read all tweets and blogposts about them in 
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real-time. This platform would (a) keep a count of positive and negative sentiment 

messages every minute, and (b) flag any messages that merit attention such as send-

ing an online advertisement or purchase offer to that customer.

11.7 DATA MINING BEST PRACTICES

Effective and successful use of data mining activity requires both business and technol-

ogy skills. The business aspects help understand the domain and the key questions. 

It also helps one imagine possible relationships in the data, and create hypotheses 

to test it. The IT aspects help fetch the data from many sources, clean up the data, 

assemble it to meet the needs of the business problem, and then run the data mining 

techniques on the platform.

An important element is to go after the problem iteratively. It is better to divide and 

conquer the problem with smaller amounts of data, and get closer to the heart of the 

solution in an iterative sequence of steps. There are several best practices learned 

from the use of data mining techniques over a long period of time. The Data Mining 

industry has proposed a  Cross-Industry Standard Process for Data Mining (CRISP-

DM). It has six essential steps (Figure 11.4):

Data

Deployment

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

FIGURE 11.4 CRISP-DM data mining cycle
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 1. Business Understanding: The first and most important step in data mining 

is asking the right business questions. A question is a good one if answering it 

would lead to large payoffs for the organization, financially and otherwise. In 

other words, selecting a data mining project is like any other project, in that it 

should show strong payoffs if the project is successful. There should be strong 

executive support for the data mining project, which means that the project 

aligns well with the business strategy. A related important step is to be creative 

and open in proposing imaginative hypotheses for the solution. Thinking outside 

the box is important, both in terms of a proposed model as well in the data sets 

available and required.

 2. Data Understanding: A related important step is to understand the data avail-

able for mining. One needs to be imaginative in scouring for many elements of 

data through many sources in helping address the hypotheses to solve a problem. 

Without relevant data, the hypotheses cannot be tested.

 3. Data Preparation: The data should be relevant, clean and of high quality. It’s 

important to assemble a team that has a mix of technical and business skills, 

who understand the domain and the data. Data cleaning can take 60–70% of the 

time in a data mining project. It may be desirable to continue to experiment and 

add new data elements from external sources of data that could help improve 

predictive accuracy.

 4. Modeling: This is the actual task of running many algorithms using the avail-

able data to discover if the hypotheses are supported. Patience is required in 

continuously engaging with the data until the data yields some good insights. A 

host of modeling tools and algorithms should be used. A tool could be tried with 

different options, such as running different decision tree algorithms.

Model Evaluation: One should not accept what the data says at first. It is better to 

triangulate the analysis by applying multiple data mining techniques, and conducting 

many what-if scenarios, to build confidence in the solution. One should evaluate and 

improve the model’s predictive accuracy with more test data. When the accuracy has 

reached some satisfactory level, then the model should be deployed.

Dissemination and rollout: It is important that the data mining solution is presented 

to the key stakeholders, and is deployed in the organization. Otherwise the project 

will be a waste of time and will be a setback for establishing and supporting a data-

based decision-process culture in the organization. The model should be eventually 

embedded in the organization’s business processes.
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11.8 CONCLUSION

Data Mining is like diving into the rough material to discover a valuable finished 

nugget. While the technique is important, domain knowledge is also important to 

provide imaginative solutions that can then be tested with data mining. The business 

objective should be well understood and should always be kept in mind to ensure that 

the results are beneficial to the sponsor of the exercise.

Review Questions

 1. What is data mining? What are supervised and unsupervised learning techniques?

 2. Describe the key steps in the data mining process. Why is it important to follow 

these processes?

 3. What is a confusion matrix?

 4. Why is data preparation so important and time consuming?

 5. What are some of the most popular data mining techniques?

 6. How is mining Big data different from traditional data mining?

True/False Questions

 1. Data mining is a multidisciplinary field that borrows techniques from a variety 

of fields.

 2. Past data can be of predictive value in many complex situations.

 3. Knowledge of the business domain is irrelevant to selecting the right streams of 

data.

 4. Garbage in and garbage out (GIGO) states that the quality of data is critical to 

the success and value of the data mining project.

 5. Data preparation is a labour-intensive activity that can take up to 60–80 per cent 

of the time needed for a data mining project.

 6. There are two primary kinds of data mining processes: supervised learning and 

unsupervised learning.

 7. A decision tree is a hierarchically branched structure that helps visually follow 

the steps to make a model-based decision.

 8. A population “centroid” is a statistical measure for describing central tendencies 

of a collection of data points.
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 9. A common metric for all of classification techniques is predictive accuracy which 

is defined at (Correct Predictions) / Total Predictions

 10. Clustering Analysis is an unsupervised form of learning

 11. Artificial Neural Networks (ANN) is a data mining technique that mimics the 

behavior of human neural structure.

 12. Association rules are the heart of the personalization engine used by ecommerce 

sites like Amazon.com.

 13. Pooling all the data together can better highlight threats or opportunities that 

an organization faces.

 14. CRISP-DM is called so, because the process is very crisp and clear.

 15. Mining data is like searching for diamond in a mine.



Chapter  12
Big Data Programming Primer

Learning Objectives

 ■ Understand the languages used to process Big Data

 ■ Understand the differences between Pig and Hive

 ■ Understand the design and structure of Hive

 ■ Learn Hive commands to access and analyze Hadoop data

 ■ Understand the design and structure of Pig

 ■ Learn Pig commands to access and analyze Hadoop data

INTRODUCTION

The Hadoop ecosystem includes many language tools such as Hive and Pig to easily 

access and speedily managing large diverse distributed data systems to produce re-

ports and insights. Hive and Pig languages offer easy high-level SQL-like commands, 

supplemented by complex computation using user-defined functions, and managing 

partitioned data in Hadoop Distributed File system. These languages ultimately 

generate code for MapReduce, that does parallel processing to compute the data with 

great speed. Using these languages greatly helps increase programmer productivity.

This chapter will offer a short primer on both Hive and Pig. It will include detailed 

listing of functions and features of both languages.

12.1 COMPARING HIVE AND PIG

Hive uses Hive Query Language (HiveQL or HQL), to offer a SQL-like language plat-

form to develop scripts for MapReduce operations for structured, semi-structured, and 

unstructured data. Hive is convenient since it does not necessarily require knowledge 

Learning Objectives

■ Understand the languages used to process Big Data

■ Understand the differences between Pig and Hive

■ Understand the design and structure of Hive

■ Learn Hive commands to access and analyze Hadoop data

■ Understand the design and structure of Pig

■ Learn Pig commands to access and analyze Hadoop data
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of Java, and can thus be used for ad-hoc analyses. Hive works well with partitioned 

time series data. Multiple analysts can simultaneously use the database structure to 

do their work. Hive can use partitions to speed up queries.

Apache Pig includes Pig Latin, a SQL-like high level, yet procedural, language plat-

form that is more suited for developing a script for control of data flows in MapReduce 

operations to process structured and semi-structured data. Pig is a better choice for 

doing ETL (Extract-Transform-Load) work, or where one need more control over data 

flows such as when the data does not cleanly fit into rows and columns. Pig also al-

lows for partitioned data.

Both Apache Pig and Hive create MapReduce jobs at the backend (Table12.1). Hive 

operates on HDFS in a similar way Apache Pig does. The following table lists a few 

significant points to compare Hive and Pig.

Table 12.1

A comparative analysis of Hive and Pig

Tool Key 

Compo-

nent

Capabilities Ease of use Learning 

Curve

Data 

Handling

Execution 

platform

Apache 

Hive

HiveQL SQL-like capabili-

ties for data access 

& reporting

Transferrable 

skills from 

SQL

Easy Mostly 

structured 

data

MapReduce

Apache 

Pig

Pig Latin Procedural Java-like 

control, useful for 

ETL operations

Java-like 

detailed 

programming

Takes 

more effort

Structured 

& unstruc-

tured data

MapReduce

12.2 APACHE HIVE

Hive is a tool to process structured data in HDFS. It resides on top of HDFS to help 

summarize and analyze data. Hive was designed and developed at Facebook. It was 

turned over to the open source Apache Software Foundation. It is highly scalable, and 

is used widely. It is also available on most cloud infrastructure such as Amazon EC2.

Hive is not a relational database. It is not a tool for transaction processing. Like with 

almost all Hadoop-based tools, it is not a tool for data updates in place. Hive is useful 

mostly for Analytical Processing. Hive works through a schema that maps HDFS files 

into a database structure. This data schema can then be used to access data through 

SQL-like easy commands.



 Big Data Programming Primer 147
Visit apache.org to install Hive. Ensure that Linux and Java and Hadoop have been 

installed.

12.2.1 Architecture of Hive

The component diagram presented in Figure 12.1 depicts the architecture of Hive:

Meta Data

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 12.1 Apache Hive architecture

Hive supports Web UI, command line, and other user interfaces. Hive stores the 

schema of tables, the databases, columns in a table, their data types, and HDFS 

mapping in Metadata server. Writing HiveQL is similar to using SQL for querying on 

schema info on the Metastore. Hive is a replacement for MapReduce programming. 

Instead of writing MapReduce program in Java, one can write an HQL query. The 

Hive Execution engine processes the query and generates results just as MapReduce 

would. The results are sent to the user, or written back into HDFS as needed.

12.2.2 Working of Hive

Hive interpreter chains pre-built binaries together to create and run a MapReduce 

job to perform the query. Hive table structures are internal to it, but its data will be 

stored in HDFS. Hive assumes that no other system is using these internal tables. 

Thus dropping a table would not affect others. External tables can also be used, and 

can be defined as such by specifying an HDFS directory path.

Figure 12.2 depicts the workflow between Hive and Hadoop.
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FIGURE 12.2 Workflow between Hive and Hadoop

Here is how Hive interacts with Hadoop framework. The first step is the writing of the 

Hive query using one of the user interfaces. The Driver parses the query statements 

to check the syntax. The compiler then requests the Metadata store for relevant meta-

data for interpreting the query. The compiler then checks requirement and resends 

the execution plan to the driver. The execution plan is a MapReduce job. The driver 

sends the execution plan to the execution engine. The execution engine sends the job 

to JobTracker, which runs on the Namenode. The parts of the job are assigned to 

TaskTrackers, which run on the Data nodes. Once the MapReduce job is completed, 

the results are returned to the Hive User Interface.

Not unlike SQL, there are two essential aspects of using Hive.

 ■ The first step is to create a database, and to create tables in the database. This 

also includes defining the structure of partitions to store the data. This is the 

Data Definition part.

 ■ The second step is to access and manipulate the data to generate reports and 

queries. This includes generating views and indexes. This is the Data Manipula-

tion part.
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12.2.3 Hive Data Definition

Hive is a database technology that can define databases and tables to analyze struc-

tured data. The theme for structured data analysis is to store the data in a tabular 

manner, and pass queries to analyze it. This section explains how to create a Hive 

database and tables.

Hive permits data of all types supported by SQL. These include Numeric, Floating, 

String, Date, DateStamp. NULL values. In addition, Hive permits many complex data 

types such as a Union. A Union is a collection of heterogeneous data types such as 

Array types, Maps, Struct, and others.

CREATE DATABASE is a statement used to create a database in Hive. A database 

in Hive is a namespace, and a collection of tables. The syntax is:

CREATE DATABASE|SCHEMA [IF NOT EXISTS] <database name>

Drop Database is the opposite of Create statement, in that it drops all the tables and 

deletes the database. Its syntax is as follows:

DROP DATABASE StatementDROP (DATABASE|SCHEMA) [IF EXISTS] database_name

[RESTRICT|CASCADE];

The conventions of creating a table in HIVE are similar to those for creating a table 

in SQL. CREATE TABLE is a statement used to create a table in Hive. The syntax 

is as follows:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.] table_name

[ROW FORMAT row_format]

[STORED AS file_format]

The following query creates a table named customer with a few fields.

hive> CREATE TABLE IF NOT EXISTS customer (eid int, name String,

> salary String, destination String)

> COMMENT ‘customer details’

> ROW FORMAT DELIMITED

> FIELDS TERMINATED BY ‘\t’

> LINES TERMINATED BY ‘\n’

> STORED AS TEXTFILE;
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Data is inserted in SQL tables using the Insert statement. However, in Hive, data is 

inserted more often using the LOAD DATA statement, especially when loading bulk 

records.

There are two ways to load data: one is from local file system and second is from 

Hadoop file system. The syntax for load data is as follows:

LOAD DATA [LOCAL] INPATH ‘filepath’ [OVERWRITE] INTO TABLE tablename

[PARTITION (partcol1=val1, partcol2=val2 ...)]

LOCAL is identifier to specify the local path. It is optional.

OVERWRITE is optional to overwrite the data in the table.

PARTITION is optional.

The following query loads the given text into the table.

hive> LOAD DATA LOCAL INPATH ‘/home/user/sample.txt’

> OVERWRITE INTO TABLE customer;

The table structures can be altered using the ALTER commands. It is used to alter 

the attributes of a table such as changing its table name, changing column names, 

adding columns, and deleting or replacing columns in Hive. Here is the syntax.

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

For example, the following query renames the table from customer to cust, and 

changes the name and types of fields, and adds a new field.

hive> ALTER TABLE customer RENAME TO cust;

hive> ALTER TABLE customer CHANGE name cname String;

hive> ALTER TABLE customer CHANGE cred_llimit Double;

hive> ALTER TABLE customer ADD COLUMNS (state STRING);

Tables can also be dropped or deleted. When a table is dropped from Hive Metastore, 

it removes the table/column data and their metadata. It can be a normal table (stored 

in Metastore) or an external table (stored in local file system); Hive treats both in the 

same manner, irrespective of their types.

DROP TABLE [IF EXISTS] table_name;
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12.2.4 Hive Partitioning

Consistent with the underlying data storage in HDFS, Hive organizes tables into 

partitions. It is a way of dividing a table into related parts based on the values of 

partitioned columns such as date and state. Using partition, it is easy to query a 

portion of the data.

Tables or partitions are sub-divided into buckets, to provide extra structure to the 

data that may be used for more efficient querying. Bucketing works based on the 

value of hash function of some column of a table.

For example, a table named Tab1 contains customer data. Suppose you need to re-

trieve the details of all customers from a particular year. A query searches the whole 

table for the required information. However, if you partition the customer data with 

the year and store it in a separate file, it reduces the query processing time.

The following example shows how to partition a file and its data:

The following file contains customer data table.

/table1/ customer /file1

id, name, state, year

The above data is partitioned into two files using year.

/table1/ customer /2015/file2

/table1/ customer /2016/file3

Partitions are added by altering the table.

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec

[LOCATION ‘location1’] partition_spec [LOCATION ‘location2’] ...;

The following query is used to add a partition to the customer table. And to rename 

a partition. And to drop a partition.

> ALTER TABLE customer

> ADD PARTITION (year=’2015’)

> location ‘/2015/part2015’;
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ALTER TABLE customer PARTITION (year=’2015’)

 > RENAME TO PARTITION (Year = ‘2015’);

ALTER TABLE customer DROP [IF EXISTS]

 > PARTITION (year=’2015’);

12.2.5 Hive Data Manipulation

The Hive Query Language (HiveQL) is a query language for Hive to process and ana-

lyze structured data. SELECT statement is used to retrieve the data from a table or 

a set of tables. This section shows how to use the SELECT statement and its various 

clauses.

Here is the syntax of the SELECT query:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]]

[LIMIT number];

The WHERE clause works similar to a condition. It filters the data using the condi-

tion and gives you a finite result. The built-in operators and functions generate an 

expression, which fulfils the condition.

Hive also offers a rich set of SQL-like operators. There are four types of operators 

in Hive:

Relational Operators such as EQUAL, GREATER, etc.

Arithmetic Operators, such as +, -, /, etc.

Logical Operators, such as AND, OR, NOT, etc.

Complex Operators such as Arrays, Key-value pairs, and Structs.

The following complex operators provide an expression to access the elements of 

Complex Types. Examples of such functions is shown later. 
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Operator Description

A[n] It returns the nth element in the array A. The first element 

has index 0.

M[key] It returns the value corresponding to the key in the 

M<key,value> map.

S.x It returns the x field of S.

The following query retrieves the customer details

hive> SELECT * FROM customer WHERE state=”CA”;

The following queries retrieve the customer details and orders them by state, and 

groups the counts by state.

hive> SELECT Id, Name, state FROM customer ORDER BY state;

hive> SELECT count(*) FROM customer GROUP BY state;

JOIN is a clause that is used for combining specific fields from two tables by using 

values common to each one. It is used to combine records from two or more tables in 

the database, just like SQL JOINS. There are different types of joins:

JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

A JOIN is same as OUTER JOIN in SQL. A JOIN condition is to be raised using the 

primary keys and foreign keys of the tables.

Join_table:

 table_reference JOIN table_factor [join_condition]

 | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference

 join_condition

 | table_reference LEFT SEMI JOIN table_reference join_condition

 | table_reference CROSS JOIN table_reference [join_condition]



154 Big Data

As an example, the following query executes JOIN on the CUSTOMER and ORDER 

tables, and retrieves the records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

 > FROM CUSTOMERS c JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

A LEFT JOIN returns all the values from the left table, plus the matched values 

from the right table, or NULL in case of no matching JOIN predicate. The following 

query demonstrates LEFT OUTER JOIN between CUSTOMER and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > LEFT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

A RIGHT JOIN returns all the values from the right table, plus the matched values 

from the left table, or NULL in case of no matching join predicate. The following query 

demonstrates RIGHT OUTER JOIN between the CUSTOMER and ORDER tables.

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > RIGHT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

The HiveQL FULL OUTER JOIN combines the records of both the left and the right 

outer tables that fulfil the JOIN condition. The joined table contains either all the 

records from both the tables, or fills in NULL values for missing matches on either 

side. The following query demonstrates FULL OUTER JOIN between CUSTOMER 

and ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > FULL OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

Hive Built-in functions

Hive supports the following built-in functions (Table 12.1). The functions look quite 

similar to SQL functions.
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Table 12.1 

 Hive built-in functions and descriptions

Command Description

Numeric 

functions 

round(n) returns the rounded value of the n.

floor(n) returns the maximum value that is equal or less than n.

ceil(n) returns the minimum value that is equal or greater than n.

rand() returns a string of random numbers that change from row to row.

String  

functions

concat(A, B) returns the string resulting from concatenating B after A.

substr(A, n) returns the substring of A starting from position n till the end of A.

upper(A) returns a string a all characters of A in upper case.

lower(A) returns a string a all characters of B in lower case.

trim(A) returns a string after trimming spaces from both ends of A.

ltrim(A) returns the string after trimming spaces from the left side of A.

rtrim(A) returns the string after trimming spaces from the right side of A.

Date from_unixtime (n) converts the number of seconds from Unix era (1970-01-01 00:00:00) 

to a date string in the in the format of “1970-01-01 00:00:00”.

to_date(string 

timestamp)

returns the date part of a timestamp string: to_date(“2010-01-01 

00:00:00”) = “2010-01-01”.

year(string date) returns the year part of a date or a timestamp string.

month 

(string date)

returns the month part of a date or a timestamp string.

day(date) returns the day part of a date or a timestamp string.

Array  

functions

Size (Map<K.V>) returns the number of elements in the map type.

Size (A) returns the number of elements in the array type.

cast(<expr> as 

<type>)

converts the results of the expression expr to <type>. Returns NULL 

if the conversion does not succeed.

The following queries demonstrate built-in functions:

hive> SELECT round(2.6) from temp;

hive> SELECT upper(name) from customer;

hive> SELECT month(order_date) from orders;
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12.2.6 Hive View and Indexes

Views are generated based on user requirements. You can save any result set data 

as a view. The usage of view in Hive is same as that of the view in SQL. It is a

One can create a view at the time of executing a SELECT statement.

CREATE VIEW [IF NOT EXISTS] view_name [(column_name [COMMENT column_comment], ...) ]

[COMMENT table_comment]

AS SELECT ...

The following query retrieves customer details:

hive> CREATE VIEW cust_CA AS

 > SELECT * FROM customer

 > WHERE state=”CA”;

One can drop this view with:

hive> DROP VIEW cust_CA;

An Index is a pointer on a particular column of a table. Creating an index means 

creating a pointer on a particular column of a table. Its syntax is as follows:

CREATE INDEX index_name

ON TABLE base_table_name (col_name, ...)

AS ‘index.handler.class.name’

[WITH DEFERRED REBUILD]

[IDXPROPERTIES (property_name=property_value, ...)]

[IN TABLE index_table_name]

[PARTITIONED BY (col_name, ...)]

[

 [ ROW FORMAT ...] STORED AS ...

 | STORED BY ...

]

[LOCATION hdfs_path]

[TBLPROPERTIES (...)]

The following query creates an index:

hive> CREATE INDEX index_state ON TABLE customer(state)

 > AS ‘org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler’;
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It is a pointer to the state column. If the column is modified, the changes are stored 

using an index value.

The index can be deleted with a DROP INDEX command.

12.3  APACHE PIG

Pig is a high-level procedural language/platform used for programming on Hadoop 

and MapReduce. Pig helps to create a step-by-step flow of data to do processing. It 

operates mostly on the client side of the cluster. Pig has two major components.

 ■ Pig Latin is a high-level language that provides various operators using which 

programmers can develop their own functions for reading, writing, and process-

ing data.

 ■ Pig Engine then converts Pig Latin scripts into MapReduce jobs, and optimizes 

their execution automatically.

Pig Latin follows a procedure programming model and is more natural to use to build 

a data pipeline, such as for an ETL job. It gives full control over how the data flows 

through the pipeline, when to checkpoint the data in pipeline, and it support DAGs in 

pipeline such as split, and gives more control over optimization. Pig works well with 

unstructured data. For complex operations such as analyzing matrices, or search for 

patterns in unstructured data, Pig gives greater control and options. Pig works well 

for programmers who are not so good at Java, and yet want detailed control over 

data flows. Compared with Java, Pig reduces the length of codes by a factor of 10, 

and thus drastically reduces development time.

Pig allows one to load data and user code at any point in the pipeline. This can be 

important for ingesting streaming data from satellites or instruments. Pig also uses 

lazy evaluation. It is faster in the data import but slower in actual execution than an 

RDBMS friendly language like Hive. Pig is well suited to parallelization and so it is 

better suited for very large datasets throughput (amount of data processed) is more 

important than latency (speed of response).

Pig Latin is the language used to write code to analyze data in Hadoop using Pig. It 

is a high-level data processing language which provides a rich set of data types and 

operators to perform various operations on the data. The Pig Latin scripts are then 

executed using any of the execution mechanisms (Grunt Shell, UDFs, Embedded). 

Internally, Apache Pig converts these scripts into a series of MapReduce jobs, and 

thus, it makes the programmer’s job easy.
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Architecture

The architecture of Apache Pig is shown in Figure 12.3.

Pig Latin
Script

HIVEHIVE
Command

Line Interface
Web

Interface

Driver
Compiler, Optimizer, Executor

MapReduce
Hadoop

FIGURE 12.3 The architecture of Apache Pig

The programmer uses one of the Pig interfaces to communicate Pig Latin commands 

or a script. The parser checks the syntax of the Pig Lain script, and data type check-

ing. The output of the parser will be a DAG (directed acyclic graph), which represents 

the Pig Latin statements and logical operators. The logical execution plan (DAG) is 

passed to the logical optimizer, which carries out the logical optimizations such as 

projection and pushdown. The compiler compiles the optimized logical plan into a 

series of MapReduce jobs. The MapReduce jobs are submitted to Hadoop in a sorted 

order. These MapReduce jobs are executed on Hadoop and the desired results are 

returned to the user.

12.3.1 Running Pig

It is essential that Hadoop and Java are installed on the system before installing 

Apache Pig. Download and install the latest version of Apache Pig from https://pig.

apache.org/

Pig can be run in two modes, Local and HDFS. In the local mode, all the files are 

installed and run from your local host and local file system. There is no need of Ha-

doop or HDFS. This mode is generally used for testing purpose.

$ ./pig –x local

MapReduce mode is where we load or process the data that exists in the Hadoop 

File System (HDFS) using Apache Pig. In this mode, whenever we execute the Pig 



 Big Data Programming Primer 159
Latin statements to process the data, a MapReduce job is invoked in the back-end to 

perform operations on the data that resides on HDFS.

$ ./pig -x mapreduce

Pig Latin scripts can be executed in three ways, namely, interactive mode, batch 

mode, and embedded mode. In the Interactive Mode, Pig runs using the Grunt shell. 

In this shell, you can enter the Pig Latin statements and get the output.

grunt> customers = LOAD ‘customers.txt’ USING PigStorage(‘,’);

In the Batch Mode (Script), Pig Latin script is a single file with .pig extension. It 

Defined Functions) in programming languages such as Java, and using them in the 

Pig script.

customer = LOAD ‘hdfs://localhost:9000/pig_data/customer.txt’ USING

 PigStorage(‘,’) as (id:int,name:chararray,city:chararray);

The Grunt shell of Apache Pig is mainly used to write Pig Latin scripts. It also pro-

vides a set of utility commands. These include utility commands such as clear, help, 

history, quit, and set; and commands such as exec, kill, and run to control Pig from 

the Grunt shell.

12.3.2 Pig Latin Data Model

Pig Latin supports many basic data types including int, long, float, chararray, byte-

array, Boolean, DateType. It also supports many complex data types such as Tuple, 

Bag and Relation and also map.

Atom: Any single value in Pig Latin, is known as an Atom. It is stored as a string 

variable. A simple atomic value is also known as a field.

Tuple: A tuple of record is an ordered set of fields. The fields can be of any type. A 

tuple is like a row in an RDBMS table.

Bag: A bag is an unordered set of tuples. Each tuple can have any number of fields 

(flexible schema). A bag is represented by ‘{  }’. Unlike a table in RDBMS, however, it 

is not necessary that every tuple contain the same number of fields or that the fields 

in the same position (column) have the same type.

Relation: A relation is a bag of tuples. The relations in Pig Latin are unordered. There 

is no assurance that tuples will be processed in a particular order.
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Map: A data map is a set of key-value pairs. The key is to be of type char-array and 

should be unique. The value might be of any data type.

12.3.3 Pig Latin Operators

Pig also offer Type construction operators such as ( ) for Tuple, { } for Bag, and [ ] for 

Map. Pig also supports all the standard arithmetic operators, comparison operators, 

and the loop operators (CASE), and WHEN-THEN-ELSE decision-making constructs.

Pig Latin supports many Relational operations. Some of the more important ones are 

shown in Table 12.2.

Table 12.2  

Important relational operations supported by Pig Latin operators

Type Operator Description

Data Definition LOAD Load the data from the file system (local/HDFS) 

into a relation.

STORE Save a relation to the file system (local/HDFS).

Filtering FILTER Remove unwanted rows from a relation.

DISTINCT Remove duplicate rows from a relation.

FOREACH, GENERATE Generate data transformations based on columns 

of data.

Grouping,  

joining,  

combining

JOIN Join two or more relations.

GROUP Group the data in a single relation.

COGROUP Group the data in multiple relations.

CROSS Create the cross product of two or more relations.

UNION Combine two or more relations into one relation.

SPLIT Split a single relation into two or more relations.

Sorting ORDER To arrange a relation in a sorted order based on one 

or more fields (ascending or descending).

LIMIT Limit the number of tuples from a relation.

Diagnostic DUMP Print the contents of a relation on the console.

DESCRIBE Describe the schema of a relation.

EXPLAIN View the logical, physical, or MapReduce execution 

plans to compute a relation.

ILLUSTRATE View the step-by-step execution of a series of state-

ments.
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12.3.4 Pig Data Definition

In general, Apache Pig works on top of Hadoop Distributed File System. To analyze 

data using Apache Pig, one needs to load the data into Pig. In MapReduce mode, Pig 

reads (loads) data from HDFS and stores the results back in HDFS. The input file 

of Pig contains each tuple/record in individual lines. And, the entities of the record 

are separated by a delimiter.

In the local file system, create an input file customer_data.txt. Then move the file 

from the local file system to HDFS using put command as shown below. (Alternatively, 

one can use copyFromLocal command as well.)

$ cd $HADOOP_HOME/bin

$ hdfs dfs -put /home/Hadoop/Pig/Pig_Data/customer_data.txt dfs://localhost:9000/

pig_data/

Use the cat command to verify whether the file has been moved into the HDFS, as 

shown below.

$ cd $HADOOP_HOME/bin

$ hdfs dfs -cat hdfs://localhost:9000/pig_data/customer_data.txt

One can also load data into Apache Pig from the file system (HDFS/Local) using 

LOAD operator of Pig Latin. The left-hand side of the load statement is the name 

of the relation where we want to store the data. On the right-hand side, we define 

how to store the data. The syntax is as following:

Relation_name = LOAD ‘Input file location’ USING function as schema;

Where:

Input file location is the HDFS directory where the file is stored in MapReduce mode.

-

age, TextLoader).

 ■

One can load the data from the file customer_data.txt into Pig by executing the 

following Pig Latin statement in Grunt shell.

grunt> customer = LOAD ‘hdfs://localhost:9000/pig_data/customer_data.txt’ USING 

PigStorage(‘,’)as

( id:int, name:chararray, phone:chararray, state:chararray );
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One can also store the loaded data in the file system using the store operator. For 

example, store the relation in the HDFS directory “/pig_Output/” as shown below.

grunt> STORE customer INTO ‘ hdfs://localhost:9000/pig_Output/ ‘ USING PigStorage 

(‘,’);

12.3.5 Pig Diagnostic Operators

One can verify the execution of the Load and other statements, using Diagnostic 

 ■ Dump operator

 ■ Describe operator

 ■ Explanation operator

 ■ Illustration operator

The Dump operator is used to display the results on the screen.

grunt> Dump Relation_Name

for example, the following command will list the contents of the customer table.

grunt> Dump customer

The Describe operator is used to view the schema of a relation. The following state-

ment will produce the following output.

grunt> describe customer;

grunt> customer: { id: int, name: chararray, phone: chararray, state: chararray }

The Explain operator is used to display the logical, physical, and MapReduce execu-

tion plans of a relation.

grunt> explain customer;

The Illustrate operator gives you the step-by-step execution of a sequence of state-

ments.

grunt> illustrate customer;

12.3.6 Pig Data Manipulation

The GROUP operator is used to group the data in one or more relations. It summa-

rizes the data having the same key value.
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grunt> customer_by_state = GROUP customer by state;

We can also group the relation by multiple fields.

The COGROUP operator works with statements involving two or more relations. The 

co-group operator groups the tuples from each relation according to common field.

The JOIN operator is used to combine records from two or more relation n a shared 

key fields. When these keys match, the two particular tuples are matched, else the 

records are dropped. Joins can be of the following types based on the level of partici-

pation of the two relations:

Self-join

Inner-join

Assume again that there are two files namely customers.txt and orders.txt in the /

pig_data/ directory of HDFS as shown below. And you have loaded these two files 

into Pig with the relations customers and orders as shown below.

grunt> customers = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING 

PigStorage(‘,’)

 as (id:int, name:chararray, phone:int, address:chararray, state:chararray);

grunt> orders = LOAD ‘hdfs://localhost:9000/pig_data/orders.txt’ USING PigStor-

age(‘,’)

 as (oid:int, date:chararray, customer_id:int, amount:int);

Self-join is used to join a table with itself as if the table were two relations, temporar-

ily renaming at least one relation.

To perform self-join, the same data will be loaded multiple times, under different 

aliases (names). Therefore, let us load the contents of the file customers.txt as two 

tables as shown below.

grunt> customers1 = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING 

PigStorage(‘,’)

 as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> customers2 = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING 

PigStorage(‘,’)
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 as (id:int, name:chararray, age:int, address:chararray, salary:int);

Let us perform self-join operation on the relation customers, by joining the two rela-

tions customers1 and customers2 as shown below.

grunt> customers3 = JOIN customers1 BY id, customers2 BY id;

Inner Join is used quite frequently; it is also referred to as equijoin. An inner join 

returns rows when there is a match in both tables.

Outer Join: Unlike inner join, outer join returns all the rows from at least one of the 

 1. Left outer join

 2. Right outer join

 3. Full outer join

The left outer join operation returns all rows from the left table, even if there are 

no matches in the right relation.

grunt> outer_left = JOIN customers BY id LEFT OUTER, orders BY customer_id;

The right outer join operation returns all rows from the right table, even if there 

are no matches in the left table.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

The full outer join operation returns rows when there is a match in one of the relations.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

The CROSS operator computes the cross-product of two or more relations.

The UNION operator of Pig Latin helps merge the content of two relations with 

identical structure. i.e. their columns and domains must be identical.

grunt> Relation_name3 = UNION Relation_name1, Relation_name2;

The SPLIT operator is used to split a relation into two or more relations.

grunt> SPLIT Relation1_name INTO Relation2_name IF (condition1), Relation2_name 

(condition2),

The FILTER operator is used to select the required tuples from a relation based on 

a condition.

grunt> Relation2_name = FILTER Relation1_name BY (condition);
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The DISTINCT operator is used to remove redundant (duplicate) tuples from a rela-

tion.

grunt> Relation_name2 = DISTINCT Relatin_name1;

The FOREACH operator is used to generate specified data transformations based on 

the column data.

grunt> Relation_name2 = FOREACH Relatin_name1 GENERATE (required data);

The ORDER BY operator is used to display the contents of a relation in a sorted order 

based on one or more fields.

grunt> Relation_name2 = ORDER Relatin_name1 BY (ASC|DESC);

12.3.7 Pig Built-in Functions

Apache Pig provides various built-in functions namely eval, load, store, math, string, 

bag and tuple functions.

Table 12.3 provides a representative list of Pig Latin functions.

Table 12.3 

A representative list of Pig Latin functions

Type Function Name Description

Bag AVG( ) Compute the average of the numerical values within a bag.

SUM( ) Get the total of the numeric values of a column in a single-

column bag.

COUNT( ) Get the number of elements in a bag, while counting the 

number of tuples in a bag.

COUNT_STAR( ) Get the number of elements in a bag.

IsEmpty( ) Check if a bag or map is empty.

MAX( ) Get the highest value for a column (numeric values or cha-

rarrays) in a single-column bag.

MIN( ) Get the lowest value (numeric or chararray) for a certain 

column in a single-column bag.

PluckTuple( ) Filter the columns in a relation beginning with the given 

prefix.

SIZE( ) Compute the number of elements of any Pig data type.

(Contd.)



166 Big Data

Type Function Name Description

SUBTRACT( ) Subtract two bags. Returns a bag which contains the tuples 

of the first bag that are not in the second bag.

BagToString( ) Concatenate the elements of a bag into a string. 

CONCAT( ) Concatenate two or more expressions of same type.

TOKENIZE( ) Split a string in a single tuple and return a bag which con-

tains the output of the split operation.

PigStorage( ) Load and store structured files.

TextLoader( ) Load unstructured data into Pig

BinStorage( ) Load and store data using machine readable format.

TOBAG( ) Convert two or more expressions into a bag.

TOP( ) Get the top N tuples of a relation.

TOTUPLE( ) Convert one or more expressions into a tuple.

TOMAP( ) Convert the key-value pairs into a Map.

String ENDSWITH  

(string, test)

Verify whether a given string ends with a test substring.

STARTSWITH  

(string, test) 

Accept two string parameters and verifies whether the first 

string starts with the test substring.

SUBSTRING 

(string, startIndex,  

stopIndex) 

Return a substring from a given string.

EqualsIgnoreCase 

(string1, string2) 

Compare two stings ignoring the case.

INDEXOF 

(string, ‘character’,  

startIndex) 

Return the first occurrence of a character in a string, search-

ing forward from a start index.

LCFIRST(expression) Convert the first character in a string to lower case.

UCFIRST(expression) Return a string with the first character converted to upper 

case.

UPPER(expression) Return a string converted to upper case.

LOWER(expression) Return a string converted to lower case.

REPLACE(string, ‘old-

Char’,  

‘newChar’); 

Replace existing characters in a string with new characters.

(Contd.)

(Contd.)
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Type Function Name Description

STRSPLIT 

(string, expr, limit) 

Split a string around matches of a given regular expression.

STRSPLITTOBAG 

(string, regex, limit) 

Similar to the STRSPLIT() function, it splits the string by 

given delimiter and returns the result in a bag.

TRIM(expression) Returns a copy of a string with leading and trailing 

whitespaces removed.

LTRIM(expression) Returns a copy of a string with leading whitespaces removed.

RTRIM(expression) Returns a copy of a string with trailing whitespaces removed.

Date ToDate(milliseconds) This function returns a date-time object according to the 

given parameters. The other alternative for this func-

tion are ToDate(iosstring), ToDate(userstring, format), 

ToDate(userstring, format, timezone).

CurrentTime( ) returns the date-time object of the current time.

GetDay(time) Returns the day of a month from the date-time object.

GetHour(time) Returns the hour of a day from the date-time object.

GetMinute(time) Returns the minute of an hour from the date-time object.

GetSecond(time) Returns the second of a minute from the date-time object.

GetMilliSecond(time) Returns the millisecond of a second from the date-time object.

GetYear(time) Returns the year from the date-time object.

GetMonth(time) Returns the month of a year from the date-time object.

GetWeek(time) Returns the week of a year from the date-time object.

AddDuration 

(time, duration) 

Returns the result of a date-time object along with the dura-

tion object.

SubtractDuration 

(time, duration)

Subtracts the Duration object from the Date-Time object and 

returns the result.

Numeric ABS(expression) To get the absolute value of an expression.

CEIL(expression) This function is used to get the value of an expression 

rounded up to the nearest integer.

FLOOR  

(expression)

To get the value of an expression rounded down to the near-

est integer.

LOG (expression) To get the natural logarithm (base e) of an expression.

(Contd.)

(Contd.)
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Type Function Name Description

RANDOM( ) To get a pseudo random number (type double) greater than 

or equal to 0.0 and less than 1.0.

ROUND  

(expression) 

To get the value of an expression rounded to an integer (if 

the result type is float) or rounded to a long (if the result 

type is double).

SQRT (expression) To get the positive square root of an expression.

12.3.8 Pig User Defined Functions

In addition to the built-in functions, Pig provides extensive support for User Defined 

Functions (UDF’s). The UDF support is provided in six programming languages, 

namely, Java, Jython, Python, JavaScript, Ruby and Groovy. Complete support is 

provided for writing UDFs in Java. Limited support is provided in all the remaining 

languages. Using Java, one can write UDF’s involving all parts of the processing like 

data load/store, column transformation, and aggregation. Since Pig has been written 

primarily in Java, the UDF’s written using Java language work efficiently compared 

to other languages.

While writing UDF’s using Java, we can create and use the following three types of 

 ■ Filter Functions

These functions accept a Pig value as input and return a Boolean value.

 ■ Evaluation Functions -

ERATE statements. These functions accept a Pig value as input and return a 

Pig result.

 ■ Algebraic Functions -

GENERATE statement. These functions are used to perform full MapReduce 

operations on an inner bag.

In Apache Pig, there is a ready Java repository for UDF’s named Piggybank. Using 

Piggybank, one can access Java UDF’s written by others, and also share our own 

UDF’s.

12.3.9 Running Pig Scripts

Here is a sample Pig Script.

grunt> customers = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING 

PigStorage(‘,’)

(Contd.)
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as (id:int, name:chararray, phone:int, address:chararray, state:chararray);

customer_order = ORDER customer BY state DESC;

customer_limit = LIMIT customer_order 5;

Dump customer_limit;

This file contains statements performing operations and transformations on the 

customer relation, as shown below. This script will print the top 5 tuples of the 

customer relation.

There are two ways to run Pig scripts: Batch Mode and HDFS mode.

While executing in batch mode, write all the required Pig Latin statements in a single 

file and save it as .pig file. One can execute it from the Grunt shell using the exec 

command as shown below.

grunt> exec /sample_script.pig

When executing a Pig script in HDFS, upload the script to HDFS, and then execute it.

$./pig -x mapreduce hdfs://localhost:9000/pig_data/sample_script.pig

12.4 CONCLUSION

Hive and Pig are major data access languages in the Hadoop ecosystem. Both are 

easy-to-use high-level SQL-like languages that ultimately generate MapReduce com-

mands to generate reports. Hive is easier to use but works only on structured data; 

while Pig is more procedural and offers greater control over data flows. Both offer 

User-Defined functions to apply complex logic on the data. Both can be operated upon 

from a command-line interface as well as GUI modes. Both offer rich sets of commands 

and functions for data definition and data manipulation. This chapter listed many of 

the operators and built-in functions available in each of the language.

Review Questions

 1. What is Apache Hive? Describe its architecture.

 2. What is Apache Pig? Describe its architecture.

 3. Compare SQL with Hive and Pig.

 4. What are the major Data definition commands for Hive?

 5. How is data definition done in Pig?
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 6. How is data manipulation done in Hive?

 7. How is data manipulation done in Pig?

True/False Questions

 1. Hive is primarily a data definition language.

 2. Hive is a more powerful language than SQL.

 3. Hive is a substitute for MapReduce programming.

 4. Hive works only on HDFS.

 5. Hive does not need partitions of data.

 6. Hive SELECT statements are very different from those of SQL.

 7. Hive creates indexes very similar to those of SQL.

 8. Hive is more suitable for transaction processing jobs.

 9. Hive is primarily a data definition language.

 10. Hive offers a FOREACH command for data transformation.

 11. Pig is a substitute for Java programming.

 12. Pig works only in HDFS.

 13. Pig does not need partitions of data.

 14. Pig views are very dissimilar to those of SQL.

 15. Pig is more suitable for ETL jobs.

 16. Pig script can work from a command-line interface.

 17. A bag in pig is an unordered collection of tuples.

 18. A Map type in Pig is a collection of <key,value> pairs.

 19. A user defined function can be very complex, and yet be easily run in Pig.

 20. The DUMP operator in Pig is a way to delete a table.



Appendix  1
Installing Hadoop Using 
Cloudera on Virtual Box

This tutorial is designed to provide a capability to run Hadoop on local machines, 

using the Oracle VirtualBox application. Cloudera’s Hadoop stack is installed. Then 

a Wordcount application is written in Java and run on this Hadoop installation. The 

results are ported back to local mode.

A1.1 HIGH LEVEL SUMMARY

Check the Prerequisites:

 1. 64 bit OS, 8 GB RAM

 2. At least 10–20 GB free space on hard disk

 3. Need Virtualization (VTx) enabled

Download and install VirtualBox software:

Link: https://www.virtualbox.org/wiki/Downloads

Download Cloudera Quickstart:

Link: http://www.cloudera.com/downloads/quickstart_vms/5-8.html

Start Cloudera Quickstart in VirtualBox:

Unzip the “cloudera-quickstart-vm-5.8.0-0-virtualbox” directory

Import from VirtualBox

Create and Run a Wordcount project in Cloudera and in Hadoop
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Step 1: Check the Prerequisites

For OS and RAM checking, go to Start Menu -> Settings -> System -> About

 1. For hard disk checking:
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 2. For Virtualization (VTx) making enabled:

Step 1: Press “ESC” to go to BIOS

Step 2: Press “F10” for BIOS Setup
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Step 3: Select “System Configuration”

Step 4: Press “Enter” and change it to “Enabled” then press “Enter” again
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Step 5: Press “F10” then press “Yes” to save the settings.

Step 2: Download and install VirtualBox software:

 1. Download from the link: https://www.virtualbox.org/wiki/Downloads
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 2. Install the VirtualBox by following all the steps

 3. Start the VirtualBox
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Download Cloudera Quickstart:

 1. Download from the link following the SIGN IN steps: http://www.cloudera.com/

downloads/quickstart_vms/5-8.html

Step 3: Start Cloudera Quickstart in VirtualBox

 1. Unzip the downloaded “cloudera-quickstart-vm-5.8.0-0-virtualbox” directory

 2. Import from VirtualBox:

Step 1: Select “Import Appliance…”
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Step 2: Choose the “cloudera-quickstart-vm-5.8.0-0-virtualbox” (.vmx) file

Step 3: Click on Next
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Step 4: Click on Import

Step 5: Start Cloudera image after selecting it.
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Step 6: Wait and do the needful until starting Cloudera.

Then see the Cloudera
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Step 4: Word Count Project

Programming Language:

Java using Eclipse IDE

Add external jars to the build path of the project:

File System/usr/lib/hadoop

File System/usr/lib/hadoop/client-0.20

File System/usr/lib/hadoop/lib

Step 1: Run Eclipse form Cloudera Desktop

Step 2: Create a project named “CS488” from “File->New->Java Projecct
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Step 3: Add external jars to the build path of the project

Then



 Installing Hadoop Using Cloudera on Virtual Box  183
Then click on OK button after selecting all the jars

Then do same for
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And

Step 4: Create a Java Class named “WordCount”

* Then Copy, Paste and save the below code in the “WordCount” class file
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import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class WordCountMapper

        extends Mapper<LongWritable, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);

    private Text word = new Text();

    @Override

    public void map( LongWritable key, Text value, Context context

                 ) throws IOException, InterruptedException {

      StringTokenizer itr = new StringTokenizer(value.toString());

      while (itr.hasMoreTokens()) {

        word.set(itr.nextToken());

        context.write(word, one);

      }

    }

  }
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  public static class WordCountReducer

       extends Reducer<Text,IntWritable,Text,IntWritable> {

    private IntWritable result = new IntWritable();

    @Override

    public void reduce(Text key, Iterable<IntWritable> values, Context context

  ) throws IOException, InterruptedException {

      int sum = 0;

      for (IntWritable val : values) {

        sum += val.get();

      }

      result.set(sum);

      context.write(key, result);

    }

  }

  public static void main(String[] args) throws Exception {

    Configuration conf = new Configuration();

    Job job = Job.getInstance(conf, “word count”);

  

     job.setJarByClass(WordCount.class);

    FileInputFormat.addInputPath(job, new Path(“input”));

    FileOutputFormat.setOutputPath(job, new Path(“output”));

    job.setMapperClass(WordCountMapper.class);

    job.setCombinerClass(WordCountReducer.class);

    job.setReducerClass(WordCountReducer.class);

    job.setOutputKeyClass(Text.class);

    job.setOutputValueClass(IntWritable.class);

     System.exit(job.waitForCompletion(true) ? 0 : 1);

  }

}
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Step 5: Create “input” directory in the workspace->CS488

Step 6: Create a sample file with sample data named “TestWC.txt” in “input” directory
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Step 7: Run the Java Application

Step 8: Refresh the project
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Step 9: Check the input and output

Step 5: Create a Jar File to Run the Application in Hadoop

Step 1: To run the application again Delete the “output” directory
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Step 2: Click on “Export” to create a jar file

Then click Next
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Then do the next steps to finish the jar file creation

Step 6: Create a Directory and Upload Sample Data File in Hadoop:

Run the commands to create a directory and upload sample data file into Hadoop

Step 1: Click on Terminal icon to start
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Step 2: Run the command “hadoop fs –mkdir /user/cloudera/input” to creatre “input” 

directory in Hadoop

Step 3: Create the “TestWC.txt” file in Cloudera Desktop
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Step 4: Run the command “hadoop fs –put /home/cloudera/Desktop/TestWC.txt /user/

cloudera/input” to upload “TestWC.txt” file to Hadoop

Check Hadoop file system to see the upload file

Step 1: Click on “HDFS NameNode”
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Step 2: Click on “Browse the file system”

Step 3: Click on “user”

Step 4: Click on “cloudera”
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Step 5: We can see the our uploaded “Test.txt” file in “input” directory of Hadoop

Step 7: Run the Application in Hadoop

Step 1: Run the command “hadoop jar /home/cloudera/workspace/myproject.jar Word-

Count /user/cloudera/input /user/cloudera/output” to rut the application in Hadoop

Step 2: Check the output in the Hadoop in browser
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Step 3: Run the command “hadoop fs –get /user/cloudera/output” to download the 

“output” directory with output file from Hadoop

Step 4: We can see the output

Note:

 1. VirtualBox is a separate virtual machine, so to get a file in VirtualBox from 

Windows, one can do it through email or FTP or TeamViewer.

 2. From Windows, login to email through browser then attach the input files and 

send it to youself.

 3. In VirtualBox, login to email through browser then download the attached file 

in Cloudera to use.



Appendix  2
Installing Hadoop on Amazon 

Web Services (AWS) Elastic 
Compute Cluster (EC2)

A2.1  CREATING CLUSTER SERVER ON AWS, INSTALL HADOOP 
FROM CLOUDERA

The objective of this tutorial is to set up a big data processing infrastructure using 

cloud computing, and Hadoop and Spark software.

Step 1: Creating Amazon EC2 Servers.

 1. Open https://aws.amazon.com/

 2. Click on Services

 3. Click on EC2
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You can see the below result once you click on EC2. If you already have a server you 

can see the number of running servers, their volume and other information.

 4. Click on Launch Instance Button. 

1
2

3

 5. Click on AWS MarketePlace

 6. Type Ubuntu in search text box.
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 7. Click on Select button

 8. Ubuntu is free so you don’t have to worry about the service price Click on Con-

tinue button.
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 9. Choose General.purpose m1.large and click on Next:Configurare Instance 

Details (Do not choose the Micro Instances t1.micro it is free but it will not 

able to handle the installation.)

 10. Click on Next: Add Storage
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 11. Specify the volume size 20GB (Default will be 8 but it will not sufficient) and 

Click on Next: Tag Instance

 12. Type the name cs488-master (This is for label to know which one is master and 

slave) and click on Next: Security Group

 13. We need to open our server to the world including most of the port cause cloudera 

need to add more port.

  Specify the group name

  Type: Choose Custom TCP Rule

  Port Range 0-65500 

  Source : AnyWhere 

  And Click on Review Instance
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 14. The message shows the warning this is only that we open our server to world, 

So ignore it for now. Click on Launch button.

 15. Type the key pair name and Click on Download Key Pair button (remember the 

location of downloaded file we need this file to log in to the server.) and Click on 

Launch Instances.

 16. Now the master server is created.

  Now, we need four more servers to make the clustering for that we don’t need to 

do these process four times. We just increase the value of no of instance we need 

and we got the 4 servers.
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  Now we are going to launch 4 more server which is slaves.

  Please repeat step 4-9

  Go to amazon market place, choose Ubuntu, select the instance type (General.

purpose)

 17. Type 4 in Number of Instances. Which will create the 4 more server for us.

 18. Name the server cs488-slave
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 19. Select the previous created security group.

 20. It is important that you need to choose the existing key pair for these server too.

  If everything goes well, you can see have 5 instances, 5 volumes, 1 key pair, 1 

or 2 security groups.

  We are now successfully created 5 servers.

Step 2: Connecting Server and Installing Required Cloudera Distribution of 

Hadoop

First, take a note for all your server details, IP Address, DNS address. Master and 

slaves.
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Master Public DNS Address: ec2-54-200-210-141.us-west-2.compute.amazonaws.com

Master Private IP Address: 172.31.20.82

Slave 1 Private IP: 172.31.26.245

Slave 2 Private IP: 172.31.26.242

Slave 3 Private IP: 172.31.26.243

Slave 4 Private IP: 172.31.26.244

Once you have these in recorded, you can connect to the server. If you are using linux 

as operating system you can use ssh command from terminal to connect it.

Connecting the server (Windows)

 1. Download the ssh software (Putty) (http://www.chiark.greenend.org.uk/~sgtatham/

putty/download.html)

  Also download puttygen to convert our authentication file .pem to .ppk
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 2. Open puttygen load the authentication file 

  Click on Save Private Key

Original File from amazon

Convert from puttygen
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 3. Open Putty type the master public dns address in host name and then click on 

SSH from left panel > Click on Auth >> Select the recent converted authentica-

tion file (.ppk) and finally click on Open button.
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 4. Now you will able to connect the server please type “ubuntu” the default user-

name to login to the system.

 5. Once you connect type the following command into the terminal

 6. sudo aptitude update

 7. cd /usr/local/src/

 8. sudo wget http://archive.cloudera.com/cm4/installer/latest/cloudera-manager-

installer.bin

 9. sudo chmod u+x cloudera-manager-installer.bin

 10. sudo ./cloudera-manager-installer.bin
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 11. There is 4 more step where you click on Next and Yes for license agreement. 

Once you finish the installation you need to restart the service.

 12. sudo service cloudera-scm-server restart

  You are now able to connect the cloudera from your browser. The address will be 

http://<YOUR PUBLIC DNS SERVER>:7180 e.g. http://ec2-54-200-210-141.us-

west-2.compute.amazonaws.com:7180 and default username and password is 

admin/admin to login to the system.
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  Once restart the server it will open the login screen again. The same username 

and password (admin/admin) is used to login to the system.

 13. Click on Launch the Classic wizard
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 14. Click on Continue

 15. Provide all the Private IP address of master and slaves computers and click on 

Search button.
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 16. Click on Continue button.

 17. Choose None for SOLR1…. And None for IMPAL…. And Click on Continue 

button.
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 18. Click on Another User >> Type “ubuntu” and select All hosts accept same 

private key >> upload the authentication file .pem and click on Continue but-

ton.

 19. Now cloudera will install the software for each of our server.

 20. Once the installation is complete click on continue button.
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 21. Once it reaches to 100% click on continue button. Do not disconnect internet nor 

shut the machine, If the process will not complete that we need to re-create the 

whole process. Click on continue button.
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 22. Click on Continue.

 23. Choose Core Hadoop and Click on Inspect Role Assignments button
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 24. Now for you master IP it should have only Name Node selection and unchecked 

in Data Node. This is important to make the master and slave server.

 25. Now the cloudera will install the all the services for your future use; you can 

record the username and password of each services. Click on Test Connection
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 26. Click on Continue
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 27. Now all the installation is complete you can now have 1 master node 4 data node.
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 28. You should see the dashboard.

Step 3: WordCount using MapReduce

 29. Now login to master server from putty.

 30. Run the following command

 31. cd ~/

 32. mkdir code-and-data

 33. cd code-and-data

 34. sudo wget https://s3.amazonaws.com/learn-hadoop/hadoop-infiniteskills-richmor-

row-class.tgz

 35. sudo tar -xvzf hadoop-infiniteskills-richmorrow-class.tgz

 36. cd data

 37. sudo -u hdfs hadoop fs -mkdir /user/ubuntu

 38. sudo -u hdfs hadoop fs -chown ubuntu /user/ubuntu

 39. hadoop fs -put shakespeare shakespeare-hdfs

 40. hadoop version

 41. hadoop fs -ls shakespeare-hdfs
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 42. sudo hadoop jar /opt/cloudera/parcels/CDH-4.7.1-1.cdh4.7.1.p0.47/share/hue/apps/

oozie/examples/lib/hadoop-examples.jar wordcount shakespeare-hdfs wordcount-

output

 43. hadoop jar /opt/cloudera/parcels/CDH-4.7.1-1.cdh4.7.1.p0.47/share/hue/apps/oozie/

examples/lib/hadoop-examples.jar sleep -m 10 -r 10 -mt 20000 -rt 20000
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Appendix  3
Spark Installation and Tutorial

A3.1 SPARK INSTALLING AND RUNNING

This tutorial will help install Spark and get it running on a standalone machine. It 

will then help develop a simple analytical application using R language.

Step 1: Verifying Java Installation

Java installation is one of the mandatory things in installing Spark. Try the following 

command to verify the JAVA version.

$java -version

java version “1.7.0_71”

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

In case you do not have Java installed on your system, then Install Java before pro-

ceeding to next step.

Step 2: Verifying Scala installation

Verify Scala installation using following command.

$scala -version

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

In case you don’t have Scala installed on your system, then proceed to next step for 

Scala installation.
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Step 3: Downloading Scala

Download the latest version of Scala by visit the following link Download Scala. For 

this tutorial, we are using scala-2.11.6 version. After downloading, you will find the 

Scala tar file in the download folder.

Step 4: Installing Scala

Follow the below given steps for installing Scala.

Extract the Scala tar file

Type the following command for extracting the Scala tar file.

$ tar xvf scala-2.11.6.tgz

Move Scala software files

Use the following commands for moving the Scala software files, to respective direc-

tory (/usr/local/scala).

$ su –

Password:

# cd /home/Hadoop/Downloads/

# mv scala-2.11.6 /usr/local/scala

# exit

Set PATH for Scala

Use the following command for setting PATH for Scala.

$ export PATH = $PATH:/usr/local/scala/bin

Verifying Scala Installation

After installation, it is better to verify it. Use the following command for verifying 

Scala installation.

$scala -version

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL
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Step 5: Downloading Spark

Download the latest version of Spark. For this tutorial, we are using spark-1.3.1-

bin-hadoop2.6 version. After downloading it, you will find the Spark tar file in the 

download folder.

Step 6: Installing Spark

Follow the steps given below for installing Spark.

Extracting Spark tar

The following command for extracting the spark tar file.

$ tar xvf spark-1.3.1-bin-hadoop2.6.tgz

Moving Spark software files

The following commands for moving the Spark software files to respective directory (/

usr/local/spark).

$ su –

Password:

# cd /home/Hadoop/Downloads/

# mv spark-1.3.1-bin-hadoop2.6 /usr/local/spark

# exit

Setting up the environment for Spark

Add the following line to ~/.bashrc file. It means adding the location, where the spark 

software file are located to the PATH variable.

export PATH = $PATH:/usr/local/spark/bin

Use the following command for sourcing the ~/.bashrc file.

$ source ~/.bashrc

Step 7: Verifying the Spark Installation

Write the following command for opening Spark shell.

$spark-shell

If spark is installed successfully then you will find the following output.



 Spark Installation and Tutorial 225
Spark assembly has been built with Hive, including Datanucleus jars on classpath

Using Spark’s default log4j profile: org/apache/spark/log4j-defaults.properties

15/06/04 15:25:22 INFO SecurityManager: Changing view acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: Changing modify acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: SecurityManager: authentication disabled;

 ui acls disabled; users with view permissions: Set(hadoop); users with modify per-
missions: Set(hadoop)

15/06/04 15:25:22 INFO HttpServer: Starting HTTP Server

15/06/04 15:25:23 INFO Utils: Successfully started service ‘HTTP class server’ on port 
43292.

Welcome to Spark version 1.4.0

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71)

Type in expressions to have them evaluated.

Spark context available as sc

scala>

Here you can see the video:

How to install Spark

You might encounter “file specified not found error” when you are first installing 

SPARK stand alone:

To fix this you have to set up your JAVA_HOME

Step 1: Start->run->command prompt(cmd)
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Step 2: Determine where is your JDK is located, by default it is in your C:\program 

files

Step 3: Select your JDK to use in my case, I will use my JDK_8
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Copy the directory to your clipboard and go to your CMD. And press enter.

Step 4: Add it to general PATH

And press enter.
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Now go to your spark folder and go to BIN\spark_shell

You have installed spark let’s try to use it.

Step 8: Application: WordCount in Scala

Now we will do an example of word count in Scala:

text_file = sc.textFile(“hdfs://...”)

counts = text_file.flatMap(lambda line: line.split(“ “)) \

    .map(lambda word: (word, 1)) \

    .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile(“hdfs://...”)

NOTE: If you are working on a stand-alone Spark:

This counts.saveAsTextFile(“hdfs://...”) command will give you an error of 

NullPointerException.

Solution: counts.coalesce(1).saveAsTextFile()

For implementing word cloud we could use R in our spark console:

However, if you click on SparkR straight away you will get an error.

To fix this:

Step 1: Set up the environment variables.

In the PATH Variable add your path : I added -> ;C:\spark-1.5.1-bin-hadoop2.6\

spark-1.5.1-bin-hadoop2.6\;C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-hadoop2.6\

sbin;C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-hadoop2.6\bin

Step 2: Install R software and Rstudio. Then add the path of R software path to the 

PATH variable.

I added this to my existing path -> ;C:\Program Files\R\R-3.2.2\bin\x64\ (Remem-

ber each path that you add must be separated by semicolon and no spaces please)

Step 3: Run command prompt as an administrator.

Step 4: Now execute the command > “SparkR” from the command prompt. If suc-
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cessful, you should see message “Spark context is available ... “ as seen below. If you 

path is not set correctly, you can alternatively navigate to the location where you 

have downloaded SparkR. In my case (C:\spark-1.5.1-bin-hadoop2.6\spark-1.5.1-bin-

hadoop2.6\bin) and execute “SparkR” Command.

 Step 5: Configuration inside the RStudio to connect to Spark!

Execute the below three commands in Rstudio everytime:

# Here we are setting up SPARK_HOME environment variable

Sys.setenv(SPARK_HOME = “C:/spark-1.5.1-bin-hadoop2.6/spark-1.5.1-bin-

hadoop2.6”)

# Set the library path

.libPaths(c(file.path(Sys.getenv(“SPARK_HOME”),”R”,”lib”), .libPaths()))

# Loading the SparkR Libary

library(SparkR)
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If you see the below message then you are all set to start working with SparkR

Now let’s Start Coding in R:

lords <- Corpus (DirSource(“temp/”))

To see what’s in that corpus, type the command

inspect(lords)

This should print out contents on the main screen. Next, we need to clean it up. Ex-

ecute the following in the command line, one line at a time:

lords <- tm_map(lords, stripWhitespace)

lords <- tm_map(lords, tolower)

lords <- tm_map(lords, removeWords, stopwords(“english”))

lords <- tm_map(lords, stemDocument)

The tm_map function comes with the tm package. The various commands are self-ex-

planatory: strip unnecessary white space, convert everything to lower case (otherwise 

the wordcloud might highlight capitalised words separately), remove English common 

words like ‘the’ (so-called ‘stopwords’), and carry out text stemming for the final tidy-

up. Depending on what you want to achieve you could also explicitly remove numbers 

and punctuation with the removeNumbers and removePunctuation arguments.

It is possible that you may get error messages whilst executing some of the commands, 

e.g. missing packages. If so install these as outlined above in Step 4, and repeat

If all is well then you should now be ready to create your first wordcloud! Try this:
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wordcloud(lords, scale=c(5,0.5), max.words=100, random.order=FALSE,rot.

per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, “Dark2”))



Additional Resources

Here are some other books and other resources, for learning more about the topics 

covered in this book.

 1. Mayer-Schonberger, Viktor; Cukier, Kenneth (2013). Big Data: A Revolution That 

Will Transform How We Live, Work, and Think . Houghton Mifflin Harcourt.

 2. McKinsey Global Institute Report (2011). Big Data: The Next Frontier For In-

novation, Competition, and Productivity. Mckinsey.com

 3. Marz, Nathan, and James Warren (2015). Big Data: Principles and Best Practices 

of Scalable Realtime Data Systems. Manning Publications.

 4. Sandy Ryza, Uri Laserson et.al (2014). Advanced-Analytics-with-Spark. OReilley.

 5. White, Tom (2014). Mastering Hadoop. OReilley.

Websites:

 1. Apache Hadoop resources: https://hadoop.apache.org/docs/r2.7.2/

 2. Apache HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

 3. Hadoop API site: http://hadoop.apache.org/docs/current/api/

 4. NoSQL databases: http://nosql-database.org/

 5. Apache Spark: http://spark.apache.org/docs/latest/

 6. Tutorials on Big Data technologies: https://www.tutorialspoint.com/
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