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Preface

Modern science has been transformed in recent times. Our thinking, our ways

of analyses, our tools, our experimental systems, and certainly our powers to

probe living systems have fundamentally altered in ways that we never

imagined. Bioinformatics is that one field of science which has admirably

demonstrated what integration and knowledge sharing across different

disciplines can achieve to advance our understanding of complex living systems.

This book is about those fundamental tools and devices that spearheaded

swift changes, which revolutionized biomedical research and enabled us to

perform biology in silico. Today, as a result of these tools (and despite their

limitations), discovering novel coding regions, genes and gene products in a

haystack of unknown sequences, searching for remote homologies between

sequences, etc. are but routine tasks that biologists with little or no background

in computer science can perform effortlessly at the flick of a button. The volume,

the unstructured or the heterogeneous nature of data, is no longer a bottleneck

to scientific research. Instead, scientists can now focus on the more important

and fundamental questions of the molecular basis of disease, and find new

cures for hitherto untreatable ailments.

Part I of the book focuses on a core set of tools that have become indispensable

to scientific discoveries. Part II of the book focuses on how these tools can be

integrated with BioPerl modules programmatically, to enable them in an

enhanced�bioinformatics on steroids�manner.

The first book in the series, Perl Programming for Bioinformatics, introduced

Unix and Perl programming for bioinformatics analysis. The intent of this
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book is to supplement it with the knowledge of bioinformatics tools and BioPerl.

Both books have been written with a grassroots approach based on real-life

experiences from high throughput genome sequencing centers and the pharma

industry. It is hoped that the two books will facilitate the transition a biologist

needs to make into the intriguing and fast-paced world of bioinformatics.

Thank you and happy reading!

HARSHAWARDHAN P. BAL
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CHAPTER

Web-based Sequence Analysis:
BLAST I

 1.1 BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

BLAST is a database search tool, developed and maintained primarily by the

National Center for Biotechnology Information (NCBI). The web-based tool

is available at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST suite of

programs has been designed to find high scoring local alignments between

sequences, without compromising the speed of such searches. BLAST uses a

heuristic algorithm which seeks local as opposed to global alignments and is,

therefore, able to detect relationships among sequences which share only

isolated regions of similarity (Altschul et al., 1990). The first version of BLAST

was released in 1990 and allowed users to perform ungapped searches only.

The second version of BLAST, released is 1997, allowed gapped searches.

 1.2 THE PURPOSE OF BLAST

It is not uncommon nowadays, especially with the large number of genomes
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being sequenced, that a researcher comes across a novel DNA or protein

sequence for which no functional information is available. Some basic infor-

mation on the sequence is necessary before a molecular biologist can even

take the new sequence into the lab and perform meaningful experiments

with it. It would, for example, make the job much easier if it were known

that the new sequence encodes a Repetitive DNA Element (which would

need an entirely different rationale and set of tools for analysis), a metabolic

enzyme or, indeed, a protein that is a putative member of a known super-

family such as immunoglobulins, kinases, etc.

Note

The term protein superfamily was introduced by Margaret O. Dayhoff in 1974.
The term was originally defined as a group of evolutionarily related proteins;
it has also been used to refer to a group of structurally or functionally related
proteins not necessarily of common evolutionary origin.

This is where database searching comes handy. Database searching, in

general and with BLAST in particular, is mainly used to reveal the similarity

between a test sequence (called �query sequence�) that a user wants to find

more information about and other sequences (called �target� sequences) in a

biological database, which may be similar to the query sequence. This is the

basis on which the whole premise of biological sequence analysis is built.

Database searching is, therefore, one of the very first tools that a biologist

uses to analyze a given sequence.

Database searches reveal sequences that have some degree of similarity to

the query sequence. These sequences from the database are commonly re-

ferred to as �hits�. Once such hits are found, users can draw inferences from

the similarity about homology and molecular function. A thumb rule for

drawing inferences is that two sequences that share more than 50 per cent

sequence identity are usually similar in structure and function. Under such

conditions, the major sequence features of the two sequences can be easily

aligned and identified. If there is only a 25 per cent sequence identity, there

will be some structure homology, although in such situations, the domain

correspondence between the two proteins may not be easily apparent. It is

also generally accepted that sequences that are important for function are

generally conserved. We will illustrate this with some examples.
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An example where a database search resulted in an important discovery

was the finding reported by Doolittle et al. (1983) of the similarity between

the oncogene, v-sis, of Simian sarcoma virus (an RNA tumor virus) and the

gene encoding human platelet-derived growth factor (PDGF). The v-sis gene

was the first oncogene to be identified with homology to a known cellular

gene. This discovery provided an early insight into the critical role that

growth factor signaling plays in the process of malignant transformation.

Another example of the value of database searching was the discovery

that the defective gene that causes cystic fibrosis formed a protein that had

similarity to a family of proteins that were involved in the transport of

hydrophilic molecules across the cytoplasmic membrane. Cystic fibrosis is the

most common inherited disease in the Caucasian population and affects the

respiratory, digestive and reproductive systems. It is now known that muta-

tions in the cystic fibrosis gene lead to loss of chloride transport across the

cell membrane, which is the underlying cause of the disease.

 1.3 TERMINOLOGY

Before we proceed with a detailed description of the BLAST algorithm and

how it is used, it is important to understand a few terms that are used

frequently during such analyses.

Identity: When two sequences are compared to each other, identity indicates

the extent to which the two sequences have the exact same composition (i.e.,

nucleotide base or amino acid residue) at equivalent positions, usually ex-

pressed as a percentage.

Similarity: When two genes or proteins are compared with each other, simi-

larity indicates the level of relatedness between the two on the basis of their

primary sequences. For DNA sequences, this is the number of identical bases

at equivalent positions, usually expressed as a percentage.

Note

Depending on the ring structure of the bases, DNA is composed of two types
of nucleotide bases: Purines�Adenine (A) and Guanine (G) are two-ring bases,
and Pyrimidines�Cytosine (C) and Thymine (T) are single-ring bases.
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Two closely related sequences such as the human pancreatic ribonuclease

(HPR) gene and the bovine pancreatic ribonuclease (BPR) gene share a high

degree of similarity when aligned with each other. The figure below shows

the alignment of the first 15 codons of the two enzymes:

HPR: AAG-GAA-TCC-CGG-GCC-AAG-AAA-TTC-CAG-CGG-CAG-CAT-ATG-GAC-TCA
  | | | | | | - | - - - - | | - - - -  | | -  | | - - | | | | | | | | | | - | | | | | | | | -

BPR: AAG-GAA-ACT-GCA-GCA-GCC-AAG-TTT-GAG-CGG-CAG-CAC-ATG-GAC-TCC

The vertical bars and dashes indicate an exact match and a mismatch

respectively. The similarity between the two sequences is fairly evident from

the alignment.

Similarity in the context of protein sequences also means the number of

amino acid residues that are identical at equivalent positions, usually ex-

pressed as a percentage. However, there is an additional parameter to con-

sider when comparing proteins�the nature of the amino acid residues

themselves. Remember that there are 20 amino acids and that each amino

acid is a small chemical entity composed of a common backbone of an or-

ganic carboxylic acid (�COOH) and an amino group (�NH2) attached to a

saturated carbon atom:

H3

+
N—

-COO

C—H
|
R

Carboxyl terminus

a carbon atom
Amino terminus

Side-chain

Amino acids are divided into classes based on their chemical and func-

tional properties. For example, both asparagine (Asn, single amino acid sym-

bol: N) and glutamine (Gln, single amino acid symbol: Q) have uncharged

polar side-chains, and differ only in the presence of an additional methyl

group in glutamine. Both glycine (Gly, single amino acid symbol: G) and

alanine (Ala, single amino acid symbol: A) are small and nonpolar amino

acids. Refer to the single letter codes provided in Table A.1 in the Appendix.

A simple chemical classification of amino acids is as follows:

Based on the nature of side-chains:

l Aliphatic amino acids G, A, V, L, I, P

l Aromatic amino acids F, Y, W
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l Polar amino acids S, T, N, Q

l Sulfur containing amino acids C, M

l Charged amino acids D, E, H, K, R

Note

Aliphatic means that the protein side-chain is composed of only carbon or
hydrogen atoms. Aromatic means that the side-chains contain an aromatic
ring system. Polar amino acids have side-chains that are hydrophilic (i.e.,
water-loving).

Based on hydrophilicity:

l Amino acids with hydrophilic side-chains N, G, Q, R, H, K

l Amino acids with hydrophobic side-chains V, I, L, M, P

(The other amino acids have intermediate hydrophilicities.)

Based on charge:

l Positively charged K, R

l Negatively charged D, E

Note

Amino acids that are hydrophobic in nature are usually buried in the interior
of the protein. Hydrophilic amino acids are more accessible on the surface of
proteins to interact with solvent molecules and take part in electrostatic inter-
actions with positively charged basic amino acids. Aspartate and glutamate
can also take on catalytic roles in the active sites of enzymes and are well
known for their metal ion binding abilities. A Venn diagram that summarizes
these different ways of classification is shown in Figure 1.1.

Coming back to the problem of similarity in proteins, consider the align-

ment of HPR and BPR protein sequences:

HPR: KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNVCFQEK

| | + - | - | | + | | | | | | - + | - + | | | - | | | | | | + - | | + | + - | | | | | | | | | | | - | - | | | - | | - | + -

BPR: KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQKN
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HPR: VTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYVPVHFDASV

| - | | | | | - | | | + | - | + | - | | | | | - | - - | + | | | | | | + | + - - - + | | | | | | | | + | | | | | | | | | | |

BPR: VACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQANKHIIVACEGNPYVPVHFDASV

HPR: EDST

BPR: - - - -

The vertical bars and dashes, as before, represent matches and mismatches

respectively. The �+� sign indicates a conservative replacement: a substitution

by an amino acid with similar properties, for example, serine (S) with threo-

nine (T), arginine (R) with lysine (K), methionine (M) with leucine (L), etc. In

such cases, similarity can be classified as identities (exact same residues at

the equivalent positions) and positives (conservative changes at equivalent

positions).

Homologs: Two sequences are said to be homologous if they are evolution-

arily related. Orthologs and paralogs are two types of homologous sequences.

Orthologs: These are two genes in different species that derive from a com-

mon ancestor. They are derived as a result of vertical descent and typically

have the same domain architecture. For example, mammalian a-hemoglobin

and avian a-hemoglobin are orthologs. Orthologous genes may or may not

have the same function.

Paralogs: These are two genes within a single species that diverged by gene

duplication. (derived from para = in parallel). Paralogs are thus produced by

gene duplication and subsequent divergence within an organismal lineage

such as the individual members of a gene family.

Aliphatic

Tiny

Small

Polar

Charged

PositiveAromatic

Hydrophobic

P
CS–S

A G
I V

L
CSH S

T N

D
M

Y R
F

W H K
E

Q

Fig. 1.1 Venn diagram: classification of amino acids
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 1.4 BLAST ANALYSIS

To use BLAST, you need to select:

1. an input query sequence (this can be a nucleotide or protein)

2. the database to search against (this can be a nucleotide or protein

database)

3. a database search program (any of the five available with BLAST)

The five search programs and their applications are as follows:

Table 1.1 BLAST programs

Program Query Database Comparison Application
sequence of type
of type

BlastN

BlastP

BlastX

TBlastN

DNA

Protein

Protein

DNA

DNA ´ DNA.
Compares a nucleotide
query sequence against a
nucleotide sequence data-
base.

Protein ´ protein.
Compares an amino acid
query sequence against a
protein sequence database.

Protein ´ protein.
Compares a nucleotide
query sequence translated in
all reading frames against a
protein sequence database.

Protein ´ protein.
Compares a protein query
sequence against a nucle-
otide sequence database dy-
namically translated in all
reading frames.

Find DNA se-
quences that match
the query.

Find identical (ho-
mologous) proteins.

Find what protein
the query sequence
codes for.

Find genes in un-
known DNA se-
quences.

DNA

Protein

DNA

Protein
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The query sequence can be a gene or a fragment of a gene that you have discovered
experimentally or computationally, a piece of unfinished genomic DNA, a peptide se-
quence, or a repeat element (DNA).

The database can be any of the DNA or protein sequence databases supported by
NCBI. These include both DNA and nucleotide sequences databases and several data-
bases representing whole genomes of organisms. Some examples are described in Table
1.2.

Table 1.2 BLASTable databases at NCBI

nr* non-redundant protein and nucleotide database of all sequences, exclud-
ing ESTs, STSs, GSSs and Phase 0, 1 or 2 HTG sequences.

est expressed sequence tags. This database is available in three separate
databases of human only, mouse only, and all non-human, non-mouse
ESTs (called est_human, est_mouse, est_others respectively).

gss genomic survey sequences, includes single-pass genomic data, exon-
trapped** sequences, and Alu PCR sequences.

htgs unfinished high throughput genomic sequences***: phases 0, 1 and 2.

pat protein sequences derived from the patent division of GenBank.

yeast Saccharomyces cerevisiae genome and protein sequences.

mito database of mitochondrial sequences.

month all new or revised nucleotide or protein sequences added to nr in the last
30 days (includes GenBank CDS translation + data from PDB, SwissProt,
PIR and PRF).

pdb sequences derived from the three-dimensional structure from Brookhaven
Protein Data Bank.

dbsts database of sequence tagged sites from GenBank+EMBL+DDBJ. STSs are
short (~ 200�500 bp) genomic landmark sequences that are unique in a
genome and, therefore, can be specifically detected in the presence of all
other genomic sequences, and define a specific anchor position on a
physical map.

Table 1.1 (Contd.)

Discover gene struc-
ture. (Find degree of
homology between
the coding region of
the query sequence
and known genes in
the database.)

Protein ´ protein.
Compares the six-frame
translations of a nucleotide
query sequence against the
six-frame translations of a
nucleotide sequence data-
base.

TBlastX DNA DNA
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Table 1.2 (Contd.)

yeast yeast (Saccharomyces cerevisiae) genomic CDS (coding sequence) trans-
lations.

ecoli Escherichia coli genomic CDS translations.

drosophila drosophila genome proteins provided by Celera and Berkeley Drosophila
Genome Project (BDGP).

Notes:

*nr stands for �non-redundant�, which means that two or more sequences that are ex-
actly identical in length and sequence composition (that is, amino acid or nucleotide
base pair) at every position are considered the same and merged into one entry.

**Exon trapping uses splice acceptor sites as identifiers of candidate exons within cloned
mammalian genomic DNA sequences and is a technique that allows for the rapid iden-
tification and cloning of coding regions from cloned eukaryotic genomic DNA.

***The HTG division of GenBank contains �unfinished� DNA sequences generated by the
high-throughput sequencing centers. These are generally first pass sequence data gener-
ated from a single cosmid, BAC, YAC, or P1 clone and together may comprise more than
2 kb of sequences with one or more gaps.

Phase 0 HTG sequences are usually one-to-few pass reads of a single clone, and so are
not usually contigs.

Phase 1 HTG are unfinished sequences and may be unordered, unoriented contigs, with
gaps.

Phase 2 HTG sequences are unfinished, ordered, oriented contigs, with or without gaps.

Phase 3 sequences are finished sequences with no gaps (with or without annotations).
Phase 3 HTG sequences are in nr.

Some specific terms relating to BLAST analysis are as follows:

Affine gap costs: A scoring system for gaps within alignments that charges

a penalty for the existence of a gap and an additional per-residue penalty

proportional to the gap�s length.

Alignment score: A numerical value that describes the overall quality of an

alignment. Higher numbers correspond to higher similarity.

Bit score: A scaled version of an alignment�s raw score that accounts for the

statistical properties of the scoring system used.

E value or Expectation value: The number of distinct alignments, with score

equivalent to or better than the one of interest, that are expected to occur in

a database search purely by chance. The lower the E value, the more signifi-
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cant the score. During a BLAST search, hits with an E value less than 0.0001

are generally considered homologous to the query sequence. When a large

number of hits are found, hits with E values significantly lower (that is, more

closely related) than the other hits are most likely to be orthologs.

Gap: Within an alignment of two sequences, several adjacent null characters

in one sequence aligned with adjacent letters in the other.

Gap score: The score assigned to a gap. A high penalty is used to initiate or

open a gap and a lower penalty is used to extend a gap. These penalties are

called gap opening and extension cost respectively.

Gapped alignment: An alignment in which gaps are permitted. A gapped

alignment is an indication of an insertion or a deletion in one of the two

sequences since their divergence. These are also referred to as indels.

Global alignment: The alignment of two complete nucleic acid or protein

sequences over their entire length. In global alignments, typically, gaps are

added whenever sequences do not match at identical positions. This provides

a better indication of structures of the sequences being compared.

Local alignment: The alignment of segments from two nucleic acid or pro-

tein sequences. Local alignments highlight areas of sequence conservation

and are ideal to locate motifs within sequences that may be important struc-

turally or functionally.

Heuristics: A term in computer science that refers to �guesses� made by a

program to obtain approximately accurate results. Typically, these are used

to increase the speed of a program at the cost of potentially yielding subopti-

mal results. BLAST uses heuristics based on knowledge of how sequences

evolve.

High scoring pair (HSP): An HSP consists of two sequence fragments of

arbitrary but equal length whose alignment is locally maximal and for which

the alignment score meets or exceeds a threshold or cutoff score. Each HSP

consists of a segment from the query sequence and one from a database

sequence.

Substitution Matrices: In aligning two sequences, the method used to score

the alignment of one residue against another is based on the use of substitu-

tion matrices. The choice of the scoring matrix is the most critical parameter

in sequence comparison. The default matrix for BLASTP is BLOSUM62,

developed by Henikoff & Henikoff (1992). Alternative choices include: PAM40,
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PAM120, PAM250, etc. No alternate scoring matrices are available for

BLASTN.

Maximal-scoring Segment Pair (MSP): This is defined by two sequences and

a scoring system and is the highest scoring of all possible segment pairs that

can be produced from the two sequences.

 1.5 BLAST2

We will start with a simple BLAST exercise where we will calculate the level

of similarity between two protein sequences. For this exercise, we will use

Fig. 1.2 The NCBI BLAST website
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the Pair-wise BLAST tool at NCBI (http://www.ncbi.nlm.nih.gov/BLAST/).

See Figure 1.2.

Fig. 1.3 BLAST2

Navigate to the site and select the BLAST2 sequences link that will take

you to the entry page for the tool: http://www.ncbi.nlm.nih.gov/blast/

bl2seq/bl2.html (Figure 1.3).

The most important parameters to consider here are the BLAST program

(box 1), the matrix (box 1), and the expect value (box 2). There are three

choices to enter the two sequences for comparison (box 3)�pasting the se-

1: Choose BLAST program & Substitution Matrix

2: Choose E value

3: Paste/download/Specify GI number
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quences in the boxes, uploading from a local file or simply by specifying their

GI numbers.

In the following examples, we will use the GI numbers for HPR and BPR

protein sequences:

>GI:1350818

kesrakkfqrqhmdsdsspsssstycnqmmrrrnmtqgrckpvntfvheplvdvqnvcfqekvtc

kngqgncyksnssmhitdcrltngsrypncayrtspkerhiivacegspyvpvhfdasvedst

>GI:133198

ketaaakferqhmdsstsaasssnycnqmmksrnltkdrckpvntfvhesladvqavcsqknvac

kngqtncyqsystmsitdcretgsskypncaykttqankhiivacegnpyvpvhfdasv

Fig. 1.4 BLAST2 output
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Since these are protein sequences, we will use the BLASTP program which

compares a protein sequence against another protein sequence. We will use

the E value of 10 and leave the other parameters as their default values.

The output of the alignment is shown in Figures 1.4 and 1.5.

The output provides the following information about the analysis:

1. Values of parameters such as matrix (BLOSUM62), E value (10),

penalties for gap opening (11) and extension (1), etc.

2. GI numbers of the sequences used for the analysis.

3. Hyperlinks for the sequences to the actual GenBank records.

Fig. 1.5 BLAST2 output
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4. A graphic of the alignment (the two blue bars on the left).

5. A plot of the alignment indicating the region of maximum align-

ment.

6. The score, E value, identities and positives for the alignment.

7. The actual alignment, and information on structural elements found�

helices, beta-sheets, disulfide bonds, etc.

The bottom of the output provides information on the length of query

sequence (156), the length of database (315,760,149), etc.

 1.6 AUTOMATED ALIGNMENTS WITH PERL

In this section, we will learn how to use of the LWP::Simple module to

generate automatic alignments of two protein sequences using the NCBI

BLAST2 server.

Remember that the LWP is a collection of Perl modules, which provides a

simple and consistent application programming interface to the World-Wide

Web. We have used the LWP::Simple module earlier. We will now extend it

to do sequence alignments.

The most important aspect of automating alignments using LWP is the

URL that needs to be specified within the program. This is done through the

URLAPI�a standardized application program interface (API) to access the

NCBI BLAST web server. This system uses direct HTTP-encoded requests to

the BLAST2 cgi-bin program at http://www.ncbi.nlm.nih.gov/blast/bl2seq/

wblast2.cgi.

Since these requests are performed directly over the web, users do not

need to download on their local computers the BLAST2 program or the

sequences they want to analyze. The URL can be directly used to specify all

the values and parameters that need to be plugged into the appropriate

places on the web form. For example, the name of the BLAST program, the

GI numbers of the sequences, the E values and so on. If you look at the

source of the BLAST2 page (Figures 1.6 and 1.7), this URL can be ascer-

tained from the name-value pairs that are used to store information about

the various parameters.
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For a protein-protein BLAST2, the various parameters we are interested in

are as follows:

Name of program value = Blastp

Name of matrix value = BLOSUM62

E value value = 10

First sequence name = one

Second sequence name = two

Action (Command) name = submit

The only true variables here are the two sequences (name = one and name

= two) themselves. The rest of the parameters have fixed values. (For ex-

Fig. 1.6 BLAST2 parameters I
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ample, the name of the program can be either BLASTN or BLASTP, the

name of the matrix can be BLOSUM62, PAM30, etc.) Note that these matri-

ces apply only to a protein-protein BLAST2. This information needs to be

specified in a string and appended to the wblast2.cgi script that runs on the

BLAST2 server. The general form of the URL is shown below:

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?parameters

where, as mentioned earlier,

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi.

is the URL for the BLAST2 service itself.

Parameters are a list of values that we want to feed to the URL. The

question mark after the URL indicates the start of parameters, which are

simply name-value pairs. Since there are multiple name-value pairs, the pa-

Fig. 1.7 BLAST2 parameters II
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rameters are specified in the form of a string where the individual name-

value pairs are separated by an ampersand (�&�) sign.

To perform a BLAST2 analysis on protein sequences identified by GI num-

bers 1350818 (human pancreatic ribonuclease) and 133198 (bovine pancre-

atic ribonuclease) with an E value of 10, the program BLASTP and the

matrix BLOSUM62, the parameter string can be constructed as shown be-

low:

expect=10&program=blastp&matrix=BLOSUM62&one=1350818&two=133198

&Action=submit;

The last name-value pair �Action=submit� simply sends the information to

the BLAST2 server for analysis.

The complete URL is

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?expect=10&program=

blastp&matrix=BLOSUM62&one=1350818&two=133198&Action=submit

A more generic URL would be:

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?expect=10&program=

blastp&matrix=BLOSUM62&one=$hprid&two=$bprid&Action=submit

where $hprid and $bprid are the GenBank IDs for HPR and BPR respectively.

The basic script using LWP::Simple is:

#!/usr/bin/perl

$/=undef;

use LWP::Simple;

$url = �http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?expect=$eva

lue&program=$program&matrix=$matrix&one=$hprid&two=$bprid&Action=submit�;

$page = get($url);

print �$page�;

The result of the analysis is shown in Figure 1.4.
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Assignments

1. Read the papers (Altschul et al., 1997 and Henikoff and Henikoff,

1992) and answer the following questions:

(a) Describe the salient features of the BLAST algorithm. How does

the ungapped version differ from the gapped version of BLAST?

(b) What is the rationale for scoring matrices? Describe the work of

Henikoff and Henikoff on the development of matrices.

2. Write a script that generates a pair-wise alignment between a set of

sequences in a multiple Fasta file and parses the output for the

E values, identities and positives. The script should be run as follows:

blast2.pl -p blastp -e 10 -m BLOSUM62 -f filename

where

[-p Program name (any of the five BLAST programs) ]

[-e Expect value ]

[-m substitution matrix, example, BLOSUM62, PAM30, PAM70 etc.

]

[-f any multiple Fasta file containing protein sequences ]

and the output should be two tables:

Table 1       Alignment scores

Program used: Blastp

Matrix used: BLOSUM62/other

E value used: 10/other

ID1  ID2 Score (bits) Expect Identities Positives Gaps

20560806 20542587 176 2e-42 108/285 (37%) 155/285 (53%) 6 0 /
285 (21%)

�

�
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Table 2: Protein sequence data

ID Name Length

20560806 similar to Kinesin-like protein KIF1C [H. sapiens] 1007

20542587 similar to kinesin-like protein GAKIN [H. sapiens] 1118

�

�

If no similarity is found, this should be stated as zero identities, zero

positives, etc.

Appendix I

Table A.1 Amino acids and their three and single letter codes

Ala/A: Alanine Cys/C: Cysteine Asp/D: Aspartic acid Glu/E: Glutamic acid

Phe/F: Phenylalanine Gly/G: Glycine His/H: Histidine Ile/I: Isoleucine

Lys/K: Lysine Leu/L: Leucine Met/M: Methionine Asn/N: Asparagine

Pro/P: Proline Gln/Q: Glutamine Arg/R: Arginine Ser/S: Serine

Thr/T: Threonine Val/V: Valine Trp/W: Tryptophan Tyr/Y: Tyrosine
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CHAPTER

Web-based Sequence Analysis:
BLAST II

 2.1 BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

In the last chapter, we learnt how to use pair-wise BLAST to search for

relationships between a large number of proteins. We used default parameters

such as the BLOSUM62 substitution matrix, open gap (5) and extension gap (2)

penalties, word size (11), etc. to run the program. We will now learn about these

different variables and how they can be manipulated to alter the search. Finally,

to illustrate the concepts we learned, we will take up a practical example with

a nucleotide-protein and a protein-protein search using BLASTN and BLASTP.

A few definitions and concepts are in order before we proceed to study the

details of the BLAST algorithm.

 2.2 SCORING MATRICES

Detection of similarities between protein and DNA sequences are largely based

2
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M
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on score-based methods. In protein sequence comparisons, substitution scores

based on models of amino acid conservation and properties are used. These

scores describe the likelihood that an amino acid residue at a certain position

was replaced or substituted by another amino acid by an evolutionary event.

Stated simply, substitutions between residues that are identical or relatively

similar to one another or substitutions that are observed frequently receive

positive scores while substitutions between residues that are not similar or

substitutions that are not frequently observed receive negative scores. Note

that some amino acid substitutions are more tolerable than others due to

similarity in their physicochemical properties. For example, as we saw in the

previous chapter, the amino acids lysine (K) and arginine (R) are positively

charged and the substitution of one with the other in the human and bovine

pancreatic ribonuclease sequences was considered a conservative replacement

(marked + in the alignment).

This is the basic function of scoring matrices�assigning scores to align any

possible pair of residues from the sequences being compared. In doing so,

substitution scores perform an important role�they provide a measure of the

�trueness� of a match, i.e., a measure of the probability that a match has not

occurred by chance alone.

Scoring matrices are especially important when the relatedness of protein

sequences that are distant in evolution is being studied. The use of better

amino acid substitution weights contained in scoring matrices substantially

improves the performance of such queries. Two commonly used matrices are

the PAM series and the BLOSUM series. The features of these matrices are

described below.

 2.3 PAM OR PER CENT ACCEPTED MUTATION MATRICES

l Developed by Margaret Dayhoff (1978).

l Derived from global alignments of sequences that are at least 85 per

cent identical.

l Is based on the observed rate of mutation during the predicted evolu-

tionary changes in a smaller number of protein families.

l Uses a rough measure of how many generations of evolution it would

take to mutate one sequence into another.
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l PAM matrices are identified by numbers and the general notation is

PAM(N). The number �N� provides a measure of evolutionary distance

between the proteins being compared. A bigger number indicates

greater evolutionary (mutational) distance. For example, the PAM1

matrix is calculated from comparisons of sequences that have diverged

only 1 per cent from each other.

l Matrices such as PAM40, PAM100, PAM250, etc. indicate greater evo-

lutionary distances and are derived by extrapolation from those for

lesser ones.

l PAM matrices are most sensitive for alignments of sequences with

evolutionary related homologs.

 2.4 BLOSUM (BLOCKS SUBSTITUTION MATRICES)

l Developed by Jorja Henikoff and Steven Henikoff (1992).

l They are derived from local, ungapped alignments of distantly related

sequences

l All BLOSUM matrices are based on observed alignments; they are not

extrapolated from comparisons of closely related proteins.

l They are based on the concept of �blocks��amino acid patterns de-

rived from ungapped multiple alignments corresponding to the most

conserved regions of a protein. These highly conserved sequences serve

as protein signatures uniquely identifying them as a distinct protein

family.

l They are derived from the observed amino acid substitutions in a

large set of approximately 2000 such conserved patterns representing

over 500 groups of related proteins.

l As with the PAM matrices, BLOSUM matrices are also identified by

numbers. The number after the matrix (e.g., BLOSUM62) refers to the

minimum per cent identity of the blocks used to construct the matrix;

greater numbers mean lesser distances.

l BLOSUM62 is a matrix calculated from comparisons of sequences with

no less than 62 per cent divergence.
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 2.5 THE RELATIONSHIP BETWEEN BLOSUM AND PAM
SUBSTITUTION MATRICES

Remember that while the BLOSUM matrices are derived from alignments of

distantly related sequences, the PAM matrices are derived from alignments of

sequences that are closely related. Stated simply, the �N� in BLOSUM is a

measure of distance whereas the �N� in PAM is a measure of closeness. The

two matrices, therefore, are inversely related.

For closely related sequences, the matrices that would be used are

BLOSUM(high N) and PAM(low N). Conversely, for distantly related proteins,

BLOSUM(low N) and PAM(high N) matrices would be used. Though it is

tailored for comparisons of moderately distant proteins (that is, for detecting

weak protein similarities), BLOSUM62 performs well in detecting closer

relationships.  For long and weak alignments, the BLOSUM45 matrix may

prove superior. The BLOSUM series of matrices generally perform better than

PAM matrices for local similarity searches. Compared to the corresponding

PAM60 matrix, the BLOSUM62 matrix was found to detect more distant rela-

tionships in a BLAST search. The BLOSUM62 matrix is, therefore, highly rec-

ommended for sequence alignment and database searching. It is the default

matrix for BLASTP, BLASTX, TBLASTN and TBLASTX searches. The BLOSUM

series, on the other hand, does not perform well for short queries, so the older

PAM matrices may be used for such searches.

 2.6 WORKING OF THE BLAST ALGORITHM

This is how the BLAST algorithm works:

1. Break the query sequence into words. The word size is typically three

for peptides and 11 for nucleotides.

2. Select words that score above a threshold value when compared to

words from the query sequence. These words serve as seed sequences.

3. Scan database for matches to seeds.

4. Extend all matches in both directions to seek high-scoring segment pairs.

5. Terminate extension when score falls below best score.

6. Return segment pairs scoring at least S (the raw alignment score),

calculated from the scoring matrix and search parameters. The raw



Web-based Sequence Analysis: BLAST II 27

M
K

M
K

score S is computed by adding the substitution and gap scores. BLAST

also returns a bit score S�, which represent bit scores that have been

normalized with respect to the scoring system, so they can be used to

compare alignment scores from different searches. The BLAST Expec-

tation (E) value is the number of alignments with an equal or better

score that are estimated to occur by chance.

The threshold value in step 2 above determines the sensitivity of the BLAST

search. If a small value for the threshold is chosen, the number of words that

qualify as seeds is greater and BLAST has to expend more time searching for

each of them in the database. However, since a larger subset of words is used,

the search is more rigorous and sensitive. Conversely, if the threshold is set

high, there are fewer words to be searched and the search is much faster,

although this means that a lower sensitivity is obtained.

Table 2.1 Peptide sequence databases

nr: all non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF

month: all new or revised GenBank CDS translation+PDB+SwissProt+PIR+PRF
released in the last 30 days

swissprot: last major release of the SWISS-PROT protein sequence database

yeast: yeast (Saccharomyces cerevisiae) genomic CDS translations

E. coli: Escherichia coli genomic CDS translations

mito: mitochondrial sequences

pdb: sequences derived from the three-dimensional structure from
Brookhaven Protein Data Bank

patents: protein sequences derived from the patent division of GenPept

Table 2.2 Nucleotide sequence databases

nr: all GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or
phase 0, 1 or 2 HTGS sequences). No longer �non-redundant�.

est: database of GenBank+EMBL+DDBJ sequences from EST divisions

est_human: human subset of GenBank+EMBL+DDBJ sequences from EST divisions

est_mouse: mouse subset of GenBank+EMBL+DDBJ sequences from EST divisions

est_others: non-mouse, non-human sequences of GenBank+EMBL+DDBJ sequences
from EST divisions
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 2.7 A PRACTICAL BLASTN EXERCISE

We will now use an actual example to understand BLAST and its applications.

Consider the case where routine sequencing of the human genome unearthed

the DNA sequence shown below:

gctggatcca ctggagcagg caagacttca cttctaatgg tgattatggg agaactggag

ccttcagagg gtaaaattaa gcacagtgga agaatttcat tc tgt tc tca g t t t t c c t g g

at tatgcctg gcaccattaa agaaaatatc atct t tggtg t t tcctatga tgaatataga

tacagaagcg tcatcaaagc atgccaacta gaagaggaca tctccaagtt tgcagagaaa

gacaatatag t tc t tggaga aggtggaatc acactgagtg gaggtcaacg agcaagaatt

tc t t tagcaa gagcagtata caaagatgct ga t t tg ta t t tattagactc t cc t t t t g g a

tacctagatg t t t taacaga aaaagaaata tttgaaagct gtgtctgtaa actgatggct

You would like to find out what this sequence is, whether it codes for a

protein and if so, what is its function. The first thing that you can do is a

BLASTN (nucleotide-nucleotide) search. To do this, open the BLAST page at

NCBI: http://www.ncbi.nlm.nih.gov/blast/  and navigate to the BLASTN page

(Figures 2.1 and 2.2).

To perform a BLASTN analysis, paste the sequence into the box called �Search�

(Fig. 2.2).  The search form provides a number of options that you can choose

from to tailor the search as per your requirements. To perform a basic BLASTN

search:

l Set subsequence: Limit matches to a sub-string within the query se-

quence. This is useful if you want to analyze only a portion of the

sequence that, for example, you know beforehand codes for a protein

domain that you are interested in. We want to analyze the entire se-

quence and, therefore, will leave this option blank.

l Choose database: Select a database to search the query sequences

against. This can be any of the databases mentioned in Tables 1.1 and

1.2. For our purposes, we will choose the nr database.

As seen in Figure 2.3, the sequence pasted in the search box need not be

formatted and may contain gaps or numbers. BLAST will also remove any bad

characters present in the sequence (Figure 2.4) before running the analysis.
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Fig. 2.1 NCBI BLASTN

Although BLAST is unaffected by such artifacts, to get accurate results, it is a

good practice to ensure that the sequence is free of errors.

After you submit the search, BLAST responds with a message saying that

the request has been successfully submitted and put into a queue and also

provides an estimate of the time in which the results will become available

(Figure 2.4).

BLAST also provides options to change the way the search results appear on

the screen (Figure 2.5). We will use the default formatting to view the output.
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Fig. 2.2 BLASTN parameters

Fig. 2.3 Pasting a nucleotide sequence

Step 2: Specify boundaries (optional)

Step 3: Select sequence database

Step 1: Paste nucleotide sequence

Step 4: Start search
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Fig. 2.4 Submitting a BLASTN search

To view the results, press Format. If the analysis is not complete, you may

have to wait for the page to be updated until search is done. What follows is a

series of screens that explain the different aspects of the output.

 2.8 EXPLANATION OF THE BLAST OUTPUT

The general layout of the BLAST output is as follows:

l Header: This includes information on the BLASTN version used, a

reference to the original publication on the BLAST algorithm (that the

user should acknowledge in scientific communications), the request

ID for the search, the length of the query sequence and information on

the database used.

l Graphical view of hits: This is an interactive line up of sequences from

the nr database that match the query sequence. The top of the page

indicates the number of sequences found: 186 in this case. Each of the

lines is color-coded and provides an indication of the score for the

Press Format to view results search
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Fig. 2.5 Formatting results

match between the database sequence and the query sequence. Se-

quences on the top are more significant (have higher scores) than

those below. Each of the lines carry information on the sequence that

the search came up with. A mouse-over on the first line indicates that

it is the Homo sapiens cystic fibrosis transmembrane conductance

regulator (CFTR) mRNA with a score of 833 (which in this case is

highly significant) (Figure 2.7).

Clicking on the line takes you to the actual alignment between the input

sequence and the human CFTR gene (Figure 2.8). The alignment page shows

more information on the human CFTR gene (called the subject sequence), such

as the GenBank ID (14753226) and length (6128 nucleotides). This is hyperlinked

to the actual GenBank record (Figure 2.9). The GenBank record lists out all the

information that is known about the structure of the gene (source, functional

domains, allelic variations if present and the sequence itself).
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BASTN version

Request ID

Query length

Database used

Original publication

Mouse-over for

information

Fig. 2.6(A) BLAST output: Graphical view of hits

Fig. 2.7(B) BLAST output: Mouse-over for information
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Fig. 2.7 BLAST output: Mouse-over for information

Fig. 2.8 BLAST output: Sequence alignments

Instead of looking at each alignment separately, you can also view the entire

list of hits. The BLAST output provides such a list directly below the interactive

output shown in Figure 2.6 (Figure 2.10). This page lists the name of the subject

sequence and the score and E value for the match. Note that score and E value

Subject sequence

Score statistics

Sequence alignment
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Fig. 2.9 GenBank record for human CFTR mRNA

are inversely related: higher scores and lower E values indicate more significant

matches. The score (bits) is a value attributed to the alignment but is

independent of the scoring matrix used. The higher this value, the better the

match. The dark and light blue boxes called �L� and �U�, to the right of the E

value column, provide links to LocusLink (or Entrez Gene) and UniGene

respectively (Fig. 2.10).

UniGene consists of a non-redundant set of gene-oriented clusters, each of

which represent a unique gene. LocusLink provides a single query interface to

curated sequences and descriptive information about genetic loci.

 2.9 ADVANCED BLASTN

We will now submit the same sequence using the advanced BLASTN form

(Fig. 2.11). The options that this form provides are as follows:
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Fig. 2.10 BLAST output: List of significant alignments

Fig. 2.11 Advanced BLASTN

l Limit by Entrez Query: This option allows the user to limit searches

by keyword to a certain protein or tissue, molecule or organism type,

e.g., kinase NOT arabidopsis[Organism] will search all kinases, except

Link to LocusLink

Link to UniGene
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those from arabidopsis, and biomol_mrna[PROP] AND brain will limit

search to all mRNAs from brain. Limits to a specific organism can be

set using the pull-down menu and is the option that is more com-

monly used. The entries in this pull-down list cover a large number of

organisms ranging from microbes to mammals. We will limit the search

to human by selecting Homo sapiens from the list. Now the searches

that show up will be limited to human CFTR genes.

l Choose filter: A filter is a tool that flags or masks regions of low

compositional complexity and excludes them from the BLAST search.

This usually eliminates regions that are uninteresting biologically. This

feature is available with BLAST version 2.0. The effect of the masking

is that low complexity regions in the query sequences are replaced

with a string of �N�s (N means �any DNA base�). Only the query

sequence, and not the sequences in the database, is masked. Default

filtering is done with the DUST program for BLASTN and SEG for

other programs. Masking is commonly applied to sequences such as

Alu sequences (a family of repetitive sequences approx. 300 bp in

length), Poly A tails and proline rich sequences which are dispersed

throughout the human genome in large numbers and can return

artificially high scores and produce misleading results. We will use

the default option (DUST) for our search.

l Other advanced options

The default values of these options are as follows:

Cost to open gap

default = 5  for nucleotides 11 proteins

Cost to extend gap

default = 2 nucleotides 1 proteins

Expect value

default = 10

W wordsize

default = 11 nucleotides 3 proteins

The descriptions of these options are as follows:

Gap: A gap is simply a space inserted into a sequence where there is a

residue/base in the corresponding sequence in the alignment. A space is

introduced into an alignment to compensate for insertions and deletions in
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one sequence relative to another. Introduction of a gap results in the deduction

of the gap opening score from the alignment score. In a similar fashion, exten-

sion of the gap to encompass additional nucleotides or amino acids also results

in deduction of the gap extension score from the alignment score. The raw

score of an alignment then is the sum of the scores for aligning pairs of resi-

dues and the scores for gaps. Gapped BLAST uses �affine gap costs� which

charge the score-a for the existence of a gap, and the score-b for each residue

in the gap. A gap of k residues receives a total score of -(a+bk). We will use the

default values for this option.

Some matrices and their open and extended gap penalties are provided in

Table 2.3.

Table 2.3 Matrices and their gap penalties

Matrix Open Gap Extended Gap

BLOSUM45 15 2

BLOSUM62 11 1

BLOSUM80 10 1

PAM30 9 1

PAM70 10 1

Increasing the gap opening cost or the gap extension cost will impose a

greater penalty on the alignment score and increase the stringency of the search.

Fewer but better alignments will be reported.

l Expect value: This is a measure of the probability that a given match

has occurred purely by chance. The default value is 10, meaning that

10 matches are expected to be found merely by chance. If the statisti-

cal significance ascribed to a match is greater (less significant) than

the threshold, the match will not be reported. Increasing the E value

has the effect of allowing less significant and more number of matches

to be reported. A cutoff value of 0.00001 to 0.001 is usually chosen in

most searches. Values higher than these are generally not considered

significant. We will make our search stringent by choosing an E value

of 0.001.

l Word length: As described earlier, BLAST uses �words� to nucleate

regions of similarity. The default word size for a protein sequence is
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three residues and for nucleotide sequences it is 11 bp. Reducing the

word size will increase the number of seed sequences and increase the

time to complete the search. A BLASTN search will not work with a

word size of less than seven. We will use the default values for this

options.

There are no rules that describe how these different parameters need to be

set in order to arrive at an optimal search strategy. This comes largely by

experience and also depends, to a large extent, on the particular sequence

being analyzed. As before, we submit the request by clicking the BLAST! but-

ton. The results of the search are shown below.

Fig. 2.12 Advanced BLASTN (E-value = 0.001)

Note that the stringent search resulted in fewer sequences being returned

(189 at an E value of 10 versus 22 at an E value of 0.001). Note also that the

subject sequences returned by the search are now exclusively human sequences

(Figure 2.13).
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 2.10 BIOLOGICAL ANALYSIS OF BLASTN: CYSTIC FIBROSIS

What kind of inferences can we draw from the BLASTN searches? Almost

every single hit from the BLASTN analysis was related to the cystic fibrosis

transmembrane conductance regulator (CFTR) gene with very significant scores

(high scores and very low E values). It is fairly evident, therefore, that the

query sequence encodes the CFTR gene. Is the query sequence a partial sequence

or the full-length gene? Considering the fact that the size of the CFTR mRNA

is several thousand nucleotides long and our DNA sequence was only 420

bases long, it is obvious that the query sequence was only a fragment of the

full-length gene.

The CFTR gene is important for several reasons. Mutations in the gene are

responsible for the disease cystic fibrosis (CF), one of the most common inherited

disorders in Caucasians, with as many as 1,000 affected individuals being in

the United States each year. The disease is associated with pancreatic

insufficiency, pulmonary infections, intestinal blockages, elevated sweat chloride

levels and male infertility and remains a major health problem.

Fig. 2.13 Advanced BLASTN (Organism = Homo Sapiens)
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The genetic defect responsible for CF is a mutation in the CFTR gene that

causes a deletion of three base pairs eliminating the amino acid phenylalanine

and resulting in the expression of an aberrant form of the protein. The CFTR

gene was discovered in 1989 and represents one of the most important triumphs

in contemporary human genetics.

The human CFTR gene resides on the long arm of chromosome seven, consists

of 27 exons, and encodes a 6,129-bp transcript that encodes a 1,480-aa protein

shown to function as a chloride channel. CFTR belongs to the ATP-binding

cassette (ABC) family of transporters, containing 12 predicted transmembrane

helices and five cytoplasmic domains consisting of two nucleotide-binding

domains and a regulatory domain. CFTR is a cAMP-dependent protein kinase-

activated (PKA), ATP-gated Cl-channel whose channel function is defective in

CF.

 2.11 AUTOMATING BLAST ANALYSES WITH PERL

BLAST analyses can be automated with Perl and this is especially useful when

a large number of sequences need to be searched against database at NCBI. A

script that runs BLAST by sending sequences over the World-Wide Web

proceeds in two steps:

1. Send the request to the NCBI BLAST server

2. Wait for the analysis to complete

3. Retrieve results from the server by using the Request ID

Remember, NCBI servers are used by researchers the world over and, there-

fore, every query is queued into the BLAST system before it can be analyzed.

As a result, there may be a considerable amount of delay before you may be

able to see the output.

A sample script that extracts a DNA sequence from a file and performs a

BLASTN analysis is shown in Listing 1.1 below. The parameters used by the

script are encoded in the URL string that is shown highlighted and are as

follows:

Alignments: 50

Alignment view: Pairwise
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Database: nr

Descriptions: 100

E value: 10

Program: BLASTN

Query sequence: $seq (obtained from file)

Listing 2.1 Sample script for remote BLAST

$/ = undef;

use LWP::Simple;

$file = �c:\perl\seq.txt�;

open(IN, $file) or die �Error opening $file: $!\n�;

$seq = <IN>;

$url =

�http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=put&ALIGNMENTS=50&ALIG

NMENT_VIEW=Pairwise&DATABASE=nr&DESCRIPTIONS=100&ENTREZ_QUERY=(none)&EX

PECT=10&FILTER=L&FORMAT_OBJECT=Alignment&FORMAT_TYPE=HTML&HITLIST_SIZE=

100&NCBI_GI=on&PAGE=Nucleotides&PROGRAM=blastn&SERVICE=plain&QUERY=$seq

�;

$page = get($url);

if ($page =~ /The request ID is.+value=\�(\d+\-\d+\-\d+)/) {

   $rid = $1;

}

if ($page =~ /The results are estimated to be ready in (\d+) seconds/){

   $time = $1;

}

$resulturl =

�http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&RID=$rid�;

sleep($time); ##Wait till analysis completes. Counts time in seconds.

$result = get($resulturl);

print �<br>Result = $result<br>�;
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However, this may not be the most optimal method for database searching

because it depends entirely on the availability of the BLAST server at NCBI.

The script won�t run, for example, when the server is down. In addition, the

script may time-out for rigorous searches such as TBLASTX or TBLASTN. In

the next chapter, we will see how to download a standalone version of BLAST

that can be run locally on your machine.

Assignments

Assignment 1: Given the partial DNA sequence for an unknown gene:

aacccgaaaa tccttccttg caggaaacca gtctcagtgt ccaactctct aaccttggaa

ctgtgagaac tctgaggaca aagcagcgga tacaacctca aaagacgtct gtctacattg

aattgggatc tgattcttct gaagataccg ttaataaggc aacttattgc agtgtgggag

atcaagaatt gttacaaatc acccctcaag gaaccaggga tgaaatcagt ttggattctg

caaaaaaggc tgcttgtgaa ttttctgaga cggatgtaac aaatactgaa catcatcaac

ccagtaataa tgatttgaac accactgaga agcgtgcagc tgagaggcat ccagaaaagt

atcagggtag ttctgtttca aacttgcatg tggagccatg tggcacaaat actcatgcca

gctcattaca gcatgagaac agcagtttat tactcactaa agacagaatg aatgtagaaa

aggctgaatt ctgtaataaa agcaaacagc ctggcttagc aaggagccaa cataacagat

List 3 possible BLAST programs that you can use to analyze this sequence.

Perform each of these analyses separately and compare the first 10 hits from

each of the outputs. Use your knowledge of E values, matrices, gap penalties,

etc. to set parameters that may be optimal for the search. What is the effect of

varying word length and gap penalties on the output? Identify the gene and

describe its structure. What is the significance of this gene and its protein

product?

Assignment 2: Write a Perl script to perform a BLASTP analysis using the nr

database on protein sequences in a multiple Fasta file. Parse the BLAST output

to extract only the top 10 hits for each protein along with the E values and

scores.
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BLAST III

In this chapter, we will learn how to download BLAST from NCBI and run local

queries on your own computer. The advantages of this method are that you do

not have to be limited by the Internet connection that your have access to and do

not have to depend on the availability of the BLAST server at NCBI at the time

you submit your query. With �local� BLAST, your queries are not queued on the

NCBI server; they are performed on your computer and are, therefore, executed

as soon as they are submitted. In addition, this method is secure�this aspect of

a local BLAST is especially important for commercial Biotech firms, that do not

wish to send out their proprietary sequence data over the World Wide Web for

analysis. You need to make sure that you have the latest release of the various

databases. To do this, you may need to download them periodically.

 3.1 STANDALONE BLAST

The executables for standalone versions of BLAST are available from the NCBI

ftp site (ftp://ftp.ncbi.nih.gov) and can be downloaded by anonymous ftp from
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the ftp://ftp.ncbi.nih.gov/blast/executables/ folder. Figure 3.1 shows the

BLAST versions available for the various platforms�some of the common

platforms such as Linux, Mac OS X and Solaris are indicated. The executable

and supporting files for the Windows version of BLAST, called blast-2.2.6-ia32-

win32.exe, is also available as a self-extracting archive from the ftp site.

Fig. 3.1 BLAST standalone versions

Follow the steps shown in Figures 3.2�3.5 to install the BLAST application

on your computer.

Figure 3.6 shows the various programs installed as part of the BLAST suite.

Some of these are explained in Table 3.1.
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Fig. 3.2 Saving the BLAST executable

Fig. 3.3 BLAST installation after download
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Fig. 3.5 Installing the executable
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Fig. 3.6 D:\blast after BLAST installation

Table 3.1 List of programs installed with BLAST

Program Function

blastall Performs local BLAST searches using any of the five algorithms:
BLASTN, BLASTP, BLASTX, TBLASTN or TBLASTX.

blastpgp Performs gapped BLASTP searches and can be used to perform itera-
tive searches using PSI-BLAST (position-specific iterative BLAST) and
PHI-BLAST (pattern-hit iterative BLAST).

Megablast Alignment program for nucleotide sequence where the sequences dif-
fer slightly as a result of sequencing or other similar errors. It is up to
10 times faster than more common sequence similarity programs and,
therefore, can be used to swiftly compare two large sets of sequences
against each other.

bl2seq Performs a local alignment between two sequences using either BLASTN
or BLASTP. Both sequences must be either nucleotides or proteins.
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Table 3.1 (Contd.)

blastclust Clustering program for protein or DNA sequences. Based on pair-wise
matches found using the BLAST algorithm in case of proteins or Mega
BLAST algorithm for DNA.

rpsblast Reversed Position Specific BLAST performs a BLAST search of a pro-
tein sequence vs. a database of conserved protein family domains. Used
to derive putative protein family information for an unknown protein
sequence.

seedtop Performs a search between a sequence and a database of patterns and
identifies which patterns occur in the sequence.

fastacmd Program to retrieve FASTA formatted sequences from a BLAST data-
base.

We have earlier used the bl2seq program at the NCBI site in Chapter 1. We

will be focusing exclusively on the blastall program in this chapter.

 3.2 CONFIGURING blastall

After the executable has been installed, create a file called �ncbi.ini� in the

Windows or WINNT directory on your machine (C:\Windows or C:\WINNT

etc. depending on the version of Windows you are running). The path to the

file will be C:\Windows\ncbi.ini or C:\WINNT\ncbi.ini for the above two ex-

amples. Add the following lines to the ncbi.ini file (Figure 3.7):

[NCBI]

Data=�C:\path\data\�

where,

C:\path\data\

is the path to the location of the standalone BLAST �data� subdirectory which

should be present in the directory where the downloaded file was extracted.

 3.3 DOWNLOADING DATABASES FROM NCBI

To check if the BLAST executable has been installed successfully, download

one of the NCBI databases and do a test search against it. Figure 3.8 shows a

list of databases available for download at NCBI.
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The ftp site is ftp://ftp.ncbi.nih.gov/blast/db/FASTA/. We advise install-

ing a small database such as ecoli.nt or ecoli.aa (the nucleotide and amino acid

databases of the bacterium E. coli respectively) to begin with. To do so, click on

the any of the ecoli.nt.Z or ecoli.aa.Z files and save it on your computer. Fig-

ures 3.9�3.11 illustrate how to download the ecoli.nt database.

Fig. 3.7 Create the nebi-ini file in C:\WINDOWS
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Fig. 3.8 BLASTable databases at the NCBI ftp site

 3.4 FORMATTING NCBI’S DATABASES

You need to format databases before you can run searches on them. NCBI

provides a tool called formatdb, that is part of the BLAST suite of programs, to

create your own BLAST-searchable database. To format a nucleotide database

such as ecoli.nt database, run the following command from the DOS prompt

(Figure 3.12):

C:\blast>formatdb -i ecoli.nt -p F -o T

This is illustrated in Figure 3.12.
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Fig. 3.9 Downloading a sample database: ecoli.nt

Fig. 3.10 Extracting ecoli.nt with WinZip
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Fig. 3.11 D:\blast after downloading ecoli.nt

The corresponding command to format a protein sequence database such as

ecoli.aa is:

C:\blast>formatdb -i ecoli.aa -p T -o T

The options -i, -p and -o used with formatdb are some of the most commonly

used arguments. The individual options are explained in Table 3.2.
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Fig. 3.12 Formatting the database with formatdb

Table 3.2 formatdb arguments

Option Function

-i Input file for formatting

-p Type of file

T � protein sequences (default)
F � nucleotide sequences

-o Parse options

T � True: Parse SeqId and create indexes.
F � False: Do not parse SeqId. Do not create indexes.

-t Title for database file

-n Base name for BLAST files. Produces a database with a different name
than that of the original FASTA file. To create a database called myecoliDB
from ecoli.nt, for example, type:

formatdb -i ecoli.nt -p F -o T -n myecoliDB

-s Create indexes limited only to accessions�sparse [T/F]. Default = F. This
option limits the indices for the string identifiers used by formatdb to
accessions (i.e., no locus names) and is especially useful for sequence sets
like the ESTs where the accession and locus names are identical. formatdb
runs faster and produces smaller temporary files if this option is used. It
is strongly recommended for EST, STS, GSS and HTG sequences.
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Fig. 3.13 c:\blast after formatdb

Some arguments such as title of database, base name of database, etc. are

optional. When a BLAST-searchable database is created, a number of files are

produced. Using formatdb, these files will have extensions .phr, .pin, .psq for

protein databases and .nhr, .nin, .nsq for nucleotide databases (Figure 3.13).

The ecoli.nt file can be removed once formatdb has been run.

 3.5 RUNNING blastall

To run blastall against the ecoli.nt database, download a test E. coli sequence

from NCBI (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide)

such as the E. coli beta-lactamase nucleotide sequence, save it on your com-

puter and run the following command (Figure 3.14):

C:\blast>blastall -p blastn -d ecoli.nt -i lactamase.txt -o lactamase.out
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Note that you may get the �[NULL_Caption] WARNING: test: Could not find

index files for database� error when blastall cannot find the database you have

specified. If any of these databases or files are on a different directory than

where BLAST is installed, you may need to specify the full path to the data-

base. For example,

c:\blast\blastall -p blastp -d d:\blastdb\nr\nr -i kinase.txt

An explanation of common command-line flags used with the blastall com-

mand is provided in Table 3.3 and Figure 3.15.

Table 3.3 blastall options

Option Function  Values

-p Program name blastn, blastp, blastx, tblastn or tblastx

-d Database name nr, swissprot, est, etc.

-I Input (query) sequence file cftr.txt, etc.

-o BLAST results (output file) cftrout.txt, etc.

-e E value 0.1, 0.01, etc. Default = 10.

-F Filter query sequence T or F (for true or false)

-q Penalty for a nucleotide mismatch integer

Fig. 3.14 Running blastall against ecoli.nt

(Contd.)
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(Contd.)

-r Reward for a nucleotide match integer

-v Number of one line descriptions integer

-b Number of alignments to show integer

-g Perform gapped alignment T or F (for True or False)

-M Matrix matrix name

-W Word size integer

-T Produce HTML output T or F (for True or False)

Fig. 3.15 Blastall comand-line options

To look at the contents of the BLAST results, open the lactamase.out file

using the more command on the DOS command-line or on a text editor such as

Notepad (Figure 3.16).

 3.6 DOWNLOADING PRE-FORMATTED DATABASES

The NCBI ftp site also has a number of formatted databases. There is no need

to run formatdb with such databases. Figures 3.17�3.22 show how to download
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Fig. 3.17 The formatted nr and nt databases
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Fig. 3.19 Saving nr in D:\blastdb
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Fig. 3.21 BLAST of CFTR against nr

Fig. 3.20 The CFTR protein sequence
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the pre-formatted nr database and run a query against it. You should prefer-

ably download the nr database in a separate folder (such as D:\blastdb\, if

using a PC) because of its size (~ 350 MB). At the end of the download, you

should see the following files in the folder:

nr.phr

nr.pin

nr.pnd

nr.pni

nr.psd

nr.psi

nr.psq

nr.ptd

nr.pti

Fig. 3.22 Applying an Evalue to BLAST
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 3.7 fastacmd

fastacmd is a useful tool to retrieve sequences from BLAST databases using the

sequence ID. fastacmd can be used with databases that have been formatted

with the -o option. To retrieve the sequence with GenBank ID 1786181 from the

ecoli.nt database, type:

c:\blast>fastacmd -d ecoli.nt -s 1786181

where,

-d name of database

-s sequence id

The output of the command is shown in Figure 3.23.

The search option (-s) can be GenBank Ids, accession and locus numbers. To

retrieve multiple sequences, supply a file containing GI numbers (one on each

line) with the -i flag:

Fig. 3.23 fastacmd to retrieve sequences
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c:\blast>fastacmd -d ecoli.nt -i list.txt > list.out

The output can be put into another file with the -o option:

c:\blast>fastacmd -d ecoli.nt -i list.txt -o list.out

 3.8 bl2seq

The options used with bl2seq can be listed by typing bl2seq on the command-

line (Figure 3.24).

Fig. 3.24 bl2seq options

As with blastall, the general command for performing a BLAST2 alignment

is:

C:\blast>bl2seq -i seq1 -j seq2 -p program -o outputfile

where,

-i first sequence

-j second sequence
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-p BLASTP for protein and BLASTN for nucleotide sequences

-o output file

 3.9 PERFORMING LOCAL BLAST SEARCHES WITH PERL

The system function in Perl can be used to execute other programs from within

Perl scripts. When external programs are called, the main program is sus-

pended; control returns to the main program after the external program fin-

ishes executing.

The syntax for the system command is:

system(�command�);

where command is the actual command that you want to execute. Written like

this, the command within the double quotes is sent to the system shell for

interpretation. It is the same as executing command on the system command-

line. For example, on DOS, the following line of code will perform blastall

analysis as exactly stated:

system(�blastall -p blastn -d ecoli.nt -i lactamase.txt -o lactamase.out�);

To perform batch blastall analyses with multiple sequences in a multiple

Fasta file, the system command can be used as before except that each se-

quence has to be retrieved from the file in turn and supplied to the command

in a loop.

foreach $seq(@sequences) {

system(�blastall -p $program -d $db -i $file -o $file.out�);

}

where,

$program Specifies BLAST program to use

$db Specifies database to be used

$file file containing a single sequence

$file.out Output file for BLAST results
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 3.10 SEQUENCE ANNOTATION

Sequence annotation is the process of defining the structure and function of a

given sequence. For a raw DNA sequence, this may mean defining what genes,

if any, are present on it, what their intron-exon structures are and, ultimately,

gathering evidence to determine what their function is. For proteins, in a simi-

lar fashion, this means understanding the domains that are present on the

protein and the function of the protein. The evidence that is needed to ascribe a

function to a gene or protein comes from a variety of sources, the most com-

mon one being a BLAST search. In general, the steps towards a programmatic

approach to annotation (using BLAST) are:

1. Extract the genes/proteins that you need to annotate. If they are in a

file, loop through it to create a temporary file and use it to perform a

BLAST.

2. Perform a BLAST search against a set of databases such as nr, nt, EST,

etc.

3. Parse the output of BLAST and find out what the top hits are.

Taking the example of the hypothetical rice protein from the BAC

OSJNBa0058E19 (GI number 13129470):

>gi|13129470|Hypothetical protein [Oryza sativa]

MNLIVVQIRKMKSLFLLHSISSKAAMGLWPSARRCRRQMVTPLGGHRSSASGESEQRMFSGGCACRAIDW

MYPKGCMHGTHRSSDEVRVGLDSDDDAEDVPSALYLLHSNRNRRRDLVAAVHCVRSGAPAGEVAFPPNHC

MIEAEIRGDGTGIERRRWNTREKETIAAQ

a BLASTP search against the nr database gives the following hits:

Sequences producing significant alignments: (bits) Value

gb|AAK13128.1|AC083945_3 (AC083945) Hypothetical protein [Oryza ... 349 6e-096

gb|AAK13125.1|AC080019_17 (AC080019) Unknown protein [Oryza sati... 48 4e-005

ref|NP_566398.1| (NM_112002) expressed protein [Arabidopsis thal... 34 0.77

gb|AAF02137.1|AC009918_9 (AC009918) unknown protein [Arabidopsis... 34 0.77

ref|XP_146511.1| (XM_146511) similar to Circadian  Oscillatory P... 33 1.0

gb|AAF63493.1|AF239684_1 (AF239684) polymerase [green turtle her... 33 1.7

dbj|BAB21235.1| (AP002953) hypothetical protein [Oryza sativa (j... 33 1.7

ref|NP_037202.1| (NM_013070) utrophin (homologous to dystrophin)... 30 8.5

gb|AAF87665.1|AF223648_1 (AF223648) esterase [uncultured bacterium] 30 8.5
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Looking at the output, it appears that the most significant hits (lowest

E values 6e-096, 4e-005) are for hypothetical proteins or unknown proteins,

which is not of great use to us in identifying the function of the rice protein.

The first protein that has a �known function� appears to be �similar to Circa-

dian Oscillatory Protein� (XP_146511.1, highlighted).

If you look further down, where the sequence alignments are provided, you

will see that this is a protein that has been annotated as �similar to Circadian

Oscillatory Protein (SCOP)� and is from Mus musculus (mouse):

>ref|XP_146511.1| (XM_146511) similar to Circadian  Oscillatory Protein (SCOP) [Mus musculus]

          Length = 1177

Score = 33.5 bits (75), Expect = 1.0

Identities = 24/78 (30%), Positives = 33/78 (41%), Gaps = 6/78 (7%)

Query: 83 SSDEVRVGLDSDDDAEDVPSALYLLHSNRNRRRDLVAAVHCVRSGAPAGEVAFPPNHCMI 142

SS++ GLDSDDD + V + R ++ +HC R P      P N

Sbjct: 993 SSNQSDNGLDSDDD-QPVEGVI-----TNGSRVEVEVDIHCCRGREPESSPPLPKNSSNA 1046

Query: 143 EAEIRGDGTGIERRRWNT 160

+E R  G G   RR N+

Sbjct: 1047CSEERARGAGFGIRRQNS 1064

You can also go to http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

db=Protein (Entrez at NCBI) and look up the protein by its ID (XP_146511.1).

Note that the E value is not very significant (E value of 1.0�means that this

could be just a chance, not a true hit). Other hits are even less significant based

on the high E values of 1.7�8.5. A thumb rule is to look at hits with E values

< 0.001.

However, it is possible that one of these low significant hits is a true hit.

This is where biology comes in. The next step would be to look at these hits

and use your knowledge of the protein(s) involved to make a judgement about

the putative function of the protein and design biological experiments to deter-

mine the actual function. Based on the evidence gathered from such studies,

the role of the Bioinformaticist is to provide clues on what the most plausible

function of a given hypothetical protein could be. The Bioinformaticist also

looks at other supporting data, for example, if the gene for this hypothetical

protein was available, what does the results of BLASTN vs. the EST database

indicate for this particular gene? Does it give more information that is not

available with BLASTP?
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Since ESTs are derived from genes that are expressed, significant hits to

ESTs is a strong indication that the protein is expressed in a given organism.

This is important because many of these �hypothetical proteins� are the result

of gene prediction programs such as GenScan, and GenScan makes mistakes in

prediction. It is quite possible that the hypothetical protein is a wrong predic-

tion and that it doesn�t really exist in nature. If all you get is hits to other

hypothetical proteins (which themselves could be predicted by a prediction

program) and no hits at all to ESTs, that is an indication that this could possi-

bly be a spurious prediction. We will learn more about gene prediction in the

next chapter.

Note that the exercise of annotation requires some insight into the protein

that you are studying and also involves some subjective analysis on your part.

There is also a �manual� part involved, in that, at some level you have to look

at the alignments and the evidence to make a judgement. What you can do

with Perl is reduce the manual portion to a minimum by parsing the BLAST

output further.

For example, write a Perl program to extract sequences to be annotated,

BLAST them against a set of databases, parse the BLAST output file to examine

the most significant hits and generate a report for each protein analyzed. Large

Biotech firms have developed a whole �annotation pipeline� that does this on

a regular basis in a high-throughput fashion on all sequences of interest.

Assignments

1. Retrieve the GenBank record for the BACs OSJNBa0058E19 and

OSJNBa0094H10 from PubMed. Write a script that does the following:

l extracts all protein sequences that have been annotated as hypo-

thetical (having no known function). These are marked

/product=�Hypothetical protein�

l performs a local BLASTP and TBLASTN against the databases nr

and EST (For ESTs, download the file est_others.tar.gz - this con-

tains all non-human and non-mouse ESTs from ftp://

ftp.ncbi.nih.gov/blast/db/FormattedDatabases/. This is a format-

ted database so you do not have to run formatdb on it.)

l extracts ALL the sequences producing significant alignments
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Use this information to arrive at the best possible annotation for the

hypothetical proteins.

2. Write a script that automatically retrieves from NCBI protein sequences

corresponding to a given set of GenBank IDs and runs a local BLASTP

against nr to arrive at a plausible annotation. Use the enclosed file of

GenBank IDs for the assignment.



CHAPTER

Web-based Sequence Analysis:
Gene Prediction

 4.1 INTRODUCTION

Gene prediction and annotation are fundamental aspects of genome sequencing

projects. These activities involve determination of complete gene structures

from the raw DNA sequence and attributing functions to them, most commonly,

by way of computational methods. Specifically, these processes try to

understand how the various structural elements such as coding, non-coding

and regulatory elements are organized within genes.

To make predictions about gene structure, gene prediction programs are

designed to recognize genetic signals that are embedded in DNA sequences.

Some of these signals are: promoters, splice sites, exons, introns, transcription

start and end points, poly-adenylation sites, CpG islands and translation start

and stop sites. Some of the terminology associated with biology is presented as

follows:

4
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 4.2 TERMINOLOGY AND CONCEPTS

DNA structure: DNA is composed of monomeric units called nucleotides. A
DNA molecule is, therefore, a �polynucleotide� polymer composed of a long
chain of nucleotides. Each nucleotide is made up of a sugar called deoxyri-
bose, a nitrogen-containing base attached to the sugar, and a phosphate group.
There are four types of nucleotides found in DNA, differing only in the com-
position of the nitrogenous base: Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T). A and G are the purine bases while C and T are the pyrimidine
bases.

DNA double-helix: DNA is actually composed of two such polynucleotide
strands held together by base pairing between the nucleotides. The upper
strand is called the coding strand and the lower or complimentary strand is
called the non-coding strand.

The pairing rules are that A binds to T and C binds to G so that a double-
stranded (ds) DNA molecule can be represented as a linear chain of nucle-
otides paired according to the rules above:

Æ upstream downstream

5¢� �GAATTCCGCGGATATATATATTATACTCTCCTCTAGGAGC� �3¢ [CODING]

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
3¢� �CTTAAGGCGCCTATATATATAATATGAGAGGAGATCCTCG� �5¢ [NON-CODING]

¨

Note, however, that this does not indicate the nature of the bonding be-
tween the pairs of nucleotide and is only a schematic representation. In reality,
A forms two hydrogen bonds with T on the opposite strand, and G forms three
hydrogen bonds with C on the opposite strand, meaning also that greater
energy is required to break a G-C bond than an A-T bond.

Also, the two DNA stands are not linear as shown above. Instead, they are
entwined with each other, forming a right-handed helical structure, much like
a spiral staircase. The two polynucleotide chains run in opposite directions
and this is indicated by the 5¢ and 3¢ notation on the two strands above.

In relation to their location on the strands, elements within DNA are
referred to as upstream and downstream. Upstream elements refer to sequences
closer to the 5¢ end of the DNA and downstream elements refer to sequences
closer to the 3¢ end of the DNA. In the above schematic, the EcoRI enzyme
restriction site (GAATTC) is said to be upstream of the TATA element.
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DNA synthesis: By convention, DNA synthesis always proceeds in the 5¢ Æ 3¢

direction. Figure 4.1 shows the step-wise addition of the four nucleotides in

the 5¢ to 3¢ direction (Steps 1�3) until synthesis is complete (Step 4).

Step 1:

A T G C A T C A T G C A T 3¢

Step 2:

A T G C A T C A T G C A T 3¢

Step 3:

A T G C A T C A T G C A T 3¢

Step 4:

A T G C A T T C A T G C A 3¢

T A C G T A G T A C G T A 5¢

A

C

G

T

A

A

C

G

T

A

A

C

G

T 5¢

T

5¢

5¢

5¢

5¢

5¢

Fig. 4.1 DNA synthesis
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Transcription and translation: Transcription is the process by which a DNA

molecule is copied into an RNA molecule. Translation is the process by which

the RNA sequence is used by the cellular machinery to synthesize a protein.

Transcription may result in one of three types of RNA: Messenger RNA

(mRNA), transfer RNAs (tRNA) or ribosomal RNA (rRNA). mRNA molecules

serve as �messengers� that specify the code for the synthesis of amino acids

(during translation) and, therefore, the name messenger RNA. tRNAs form

covalent attachments to individual amino acids and recognize the encoded

sequences of the mRNAs to allow correct insertion of amino acids into the

elongating polypeptide chain during translation. rRNAs are assembled together

with numerous proteins to form complexes known as ribosomes. Ribosomes

engage mRNAs and form a catalytic domain into which the tRNAs enter with

their attached amino acids. The proteins of the ribosomes catalyze all of the

functions of polypeptide synthesis.

During the process of transcription, the DNA double helix unwinds and one

strand serves as the template for the synthesis of the RNA strand. Either strand

can serve as the template�which strand becomes the template depends on a

combination of transcription initiation and termination signals (such as pro-

moter and enhancer sequences) that are present on the DNA. Transcription is

actually a polymerization reaction in which individual nucleotides are linked

together by an enzymatic reaction (catalyzed by the enzyme RNA polymerase)

into a chain to form another polymer: the RNA.

RNA structure: RNA, like DNA is a polymer composed of four nucleotides.

The difference between RNA and DNA is the nature of the sugar moiety: RNA

has the ribose sugar, while DNA has the deoxyribose sugar. RNA has the same

purine bases as DNA: adenine (A) and guanine (G), and the same pyrimidine

cytosine (C), but instead of thymine (T), it uses the pyrimidine uracil (U). The

same base pairing rules apply so that the appropriate nucleotide is added

based upon the nucleotide on the DNA template.

CpG islands: Regions within DNA that often occur near the beginning of

genes, where the frequency of the dinucleotide CG (that is, the nucleotide

bases cytosine and guanine) is more than in the rest of the genome.

Introns and Exons: Higher organisms (eukaryotes) have what are called split

genes, that is, a large proportion of their genes are not continuous linear entities,

but may be interrupted throughout their length by sequences that do not code
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for protein. A piece of DNA may, therefore, contain coding sequences with

intervening non-coding sequences. The intervening non-coding segments are

called the introns and do not code for protein. The coding sequences are exons

and do code for protein. For example, the cystic fibrosis transmembrane

regulator (CFTR) gene�s coding regions (exons) are scattered over 250,000 base

pairs of genomic DNA and is made up of 27 exons. During transcription,

introns are removed from the CFTR gene and exons are pieced together by a

process known as RNA splicing to form a 6100-bp mRNA transcript that is

translated into the 1480 amino acid sequence of CFTR protein. In contrast, the

384 nucleotide human pancreatic ribonuclease gene is intronless and codes for

a 128 amino acid protein. A highly schematic view of the RNA splicing process

is shown in Figure 4.2.

Genomic DNA

Exon 1

Intron

Exon 2

Intron

Exon 3

Intron

Exon 4

Intron

Exon 5 Exon 27

RNA

splicing

Nuclear RNA 1 2 3 4 5 27

mRNA 1 2 3 4 5 … 27

 4.3 GENE PREDICTION PROGRAMS

There are a large number of gene prediction programs available today (Table 4.1,

not an exhaustive list). Most of these are able to correctly identify nucleotides

that encode proteins 90 per cent of the time or identify exact exon boundaries

(70�75 per cent accuracy). However, they are relatively poor at correctly iden-

tifying complete gene structures (50 per cent accuracy). We are far from achiev-

ing absolute accuracy in computational gene prediction largely because our

understanding of complex underlying genetic processes is far from adequate.

Fig. 4.2 RNA splicing
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Table 4.1 Gene/exon prediction programs

Name URL Organization

1 Gene Recognition http://compbio.ornl.gov/Grail-1.3/ Oak Ridge
and Assembly National
Internet Link Laboratory
Version 1.3 (ORNL)

2 GeneMark http://opal.biology.gatech.edu/GeneMark Georgia
Institute of
Technology

3 GenScan �http://genes.mit.edu/GENSCAN.html� Stanford/MIT

4 Glimmer/ http://www.tigr.org/software/glimmer/ The Institute
GlimmerM of Genomic

Research
(TIGR)

5 NetGene2 http://genome.cbs.dtu.dk/services/NetGene2/ Technical
University of
Denmark

6 HMMgene http://genome.cbs.dtu.dk/services/HMMgene/ Technical
University of
Denmark

7 MZEF http://argon.cshl.org/genefinder/ Cold Spring
Harbor
Laboratory
(CSHL)

8 GeneParser �http://beagle.colorado.edu/~eesnyder/ University of
GeneParser.html� Colorado

9 Genie �http://www.fruitfly.org/seq_tools/genie.html� Lawrence
Berkeley
National
Laboratory

10 FGeneH http://genomic.sanger.ac.uk/gf/gf.shtml Sanger Center

Consequently, the most effective strategy towards gene identification in
unknown DNA sequences is an approach where the results of prediction
programs are combined with the results of similarity or database homology
searches, matches to ESTs, etc. In addition, multiple gene/exon prediction
programs are generally used to minimize the possibility of false positive
predictions�for example, the validity of a prediction is in question when only
one of a set of programs predicts the existence of a certain exon or exons. This
can arise purely by error on part of the prediction program.
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The approach where results of multiple gene prediction programs are

combined with the results of similar searches is not without problems either.

Consider the case where a sequencing experiment gives a piece of DNA that

has no known homologs. In such cases, gene prediction methods that rely only

on information that is encoded in the sequence can be used. These are called

Ab initio (Latin: from the beginning) gene prediction programs and use signals

within DNA such as splice sites, start and stop codons, promoters and termi-

nators of transcription, polyadenylation sites, ribosomal binding sites, CpG

islands, and various transcription factor binding sites. Ab initio methods such

as GenScan rely on probabilistic models known as Hidden Markov Models

(HMMs) to discern patterns within DNA. Others such as GRAIL use neural

networks for gene prediction. Neural networks form an information-process-

ing paradigm based on the densely interconnected, parallel structure of neu-

rons in the mammalian brain. Neural networks are collections of mathematical

models that emulate some of the observed properties of biological nervous

systems and draw on the analogies of adaptive biological learning. Neural

networks are composed of a large number of highly interconnected processing

elements that are analogous to neurons and are tied together with weighted

connections that are analogous to synapses. In the case of GRAIL, seven sepa-

rate sensor algorithms, each designed to provide the coding potential of a

given piece of DNA, form the core of the system. A neural network then

integrates the information from the sensors and predicts the locations of cod-

ing regions. An HMM, on the other hand, models the states that a DNA se-

quence can exist in and the transition probabilities between the states. The

different states are promoter, intron, exon, etc. The term �Hidden� comes from

the fact that the sequence itself is visible but the states are hidden.

 4.4 GENSCAN

To date the most effective among the many prediction programs are the exon

prediction programs. For the purpose of illustration, we will focus on one such

program called GenScan.

GenScan was written by Chris Burge and Samuel Karlin at the Department

of Mathematics, Stanford University. GenScan utilizes the same basic signals

described earlier to build complete gene structures (that is, introns + exons)

from human genomic sequences. Specifically, these include transcriptional,
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translational and splicing signals (including elements present in most eukary-

otic promoters such as the TATA box and cap site), as well as length distribu-

tions and compositional features of exons, introns and intergenic regions.

Importantly, GenScan also makes use of the many substantial differences in

gene density and structure based on GC composition of the human genome.

For example, it is known that gene density in GC rich regions is five times

higher than in regions with moderate GC content and 10 times higher in AT

rich regions. Four categories of DNA were identified based on their GC content:

1. < 43 % GC

2. 43�51 % GC

3. 51�57 % GC

4. > 57 % GC

These are known as isochores. Thus, if the input genomic sequence has a GC

content of 45 per cent, it is said to have an isochore value of two.

A functional classification of the various gene prediction methods along

with the underlying algorithms they use is given in Table 4.2.

Table 4.2 A functional classification of gene prediction methods

Ab initio: HMM methods

FGENEH http://genomic.sanger.ac.uk/gf/gf.shtml

Genie http://www.fruitfly.org/seq_tools/genie.html

GeneID http://www1.imim.es/geneid.html

GeneMark http://genemark.biology.gatech.edu/GeneMark/eukhmm.cgi

GenScan http://genes.mit.edu/GENSCAN.html

HMMGene http://www.cbs.dtu.dk/services/HMMgene/

Ab initio: Neural network methods

GRAIL http://compbio.ornl.gov/Grail-1.3/

NetGene2 http://www.cbs.dtu.dk/services/NetGene2/

Homology based

Genewise http://www.sanger.ac.uk/Software/Wise2

Procrustes http://www-hto.usc.edu/software/procrustes/index.html

Ab initio programs, traditionally, have been poor at predicting genes in regions

containing multiple genes, especially when present on both DNA strands.
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GenScan addresses these problems by using an explicitly double-stranded

genomic sequence model which has the likelihood of genes occurring on both

DNA strands. Second, while most programs assume the presence of exactly

one complete gene in the input sequence, GenScan treats the more general case

in which the sequence may contain a partial gene, a complete gene, multiple

complete (or partial) genes on either strand, or no gene at all. Another significant

difference in GenScan is the incorporation of splice donor signal information

based on the mechanism of donor splice site recognition in pre-mRNA

sequences by U1 small nuclear ribonucleoprotein particle (U1 snRNP).

Notes

1. U1 snRNP is an important component of the RNA splicing machinery
and is the first splicing factor to contact the pre-mRNA. After pre-mRNA
binding, the U1 snRNP interacts with other RNAs and proteins to form a
bridge that brings the ends of the intron together for splicing. The removal
of the intron brings the two neighboring exons together; these are
subsequently pieced together to form one continuous sequence.

2. Most introns start with the sequence GU and end with the sequence AG
and are referred to as the splice donor and splice acceptor sites,
respectively.

 4.5 RUNNING GenScan ANALYSES

Running and interpreting a GenScan analysis is rather straightforward. Point

your browser to the GenScan server at MIT: http://genes.mit.edu/

GENSCAN.html (Figure 4.3). For this exercise, we will use a 175 kilobase

human BAC with the accession number AC092818. Download the BAC and

save it on your computer as AC092818.txt. GenScan has been �trained� to work

with vertebrate, arabidopsis and maize sequences (Figure 4.4). Since we are

analyzing a human BAC, we choose the vertebrate option. We will use the

default sub-optimal exon cutoff value of one for our purposes. This value

defines the threshold which determines whether exons that do not meet the

criteria (sub-optimal exons) will be displayed or not.

You can assign a sequence name if you are analyzing a large number of

sequences and want to label each output by a unique identifier. In this case,

we will just use the BAC accession number (Figure 4.5). The program gives us
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Fig. 4.3 The GenScan web server

an option of printing the predicted proteins alone or the predicted proteins

with their nucleotide sequences. We will choose the latter option (Figure 4.6).

The sequence can be either uploaded or pasted directly in the text box.

Uploading a sequence is more convenient if you are handling very large

sequences, as is the case here (Figure 4.7). Finally, you can specify an email

address if you want to receive the results via email. This is usually the case with

large sequences which may take a while to process. In this case, we will hit the

�Run GenScan� button and wait to see the results in the browser (Figure 4.8).

The results of this analysis are enclosed as a text file (AC092818gsn.txt).

 4.6 ANALYZING GENSCAN OUTPUT

The GenScan header gives information on the input sequence and the
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Fig. 4.4 Setting GenScan parameters

Fig. 4.5 Entering an identifier
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Fig. 4.6 Printing peptides and the corresponding coding sequences (CDS)

Fig. 4.7 Uploading the BAC sequence
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Fig. 4.8 GenScan output: Header information

parameters used, for example, name, size and isochore classification of the

sequence, and the matrix used for the analysis (HumanIso.smat).

The body of the analysis consists of the predicted peptide and the corre-

sponding CDS sequences. As is evident from the output, there were eight

predicted peptides in this sequence. The complete gene structure of each peptide

is listed after the header (Table 4.3).

Table 4.3 Gene structures

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.01 Init+  3609 3682 74 2 2 113 45 48 0.319 3.59

1.02 Intr+  3826 3904 79 1 1 100 43 33 0.019 �1.37

1.03 Intr+  9758 9904 147 1 0 134 35 101 0.071 8.91



82 Bioinformatics: Principles and Applications

M
K

M
K

Table 4.3 (Contd.)

1.04 Intr+  10302 10435 134 2 2 4 75 63 0.032 �4.88

1.05 Intr+  12763 12979 217 1 1 97 84 78 0.265 5.88

1.06 Intr+  15363 15421 59 2 2 95 46 106 0.088 3.86

1.07 Intr+  18293 18483 191 2 2 39 56 127 0.037 2.91

1.08 Term+  26161 26237 77 2 2 57 43 105 0.020 �0.08

1.09 PlyA+  27474 27479 6 1.05

Fig. 4.9 GenScan output II: predicted sequences

The most important aspects of this table are the gene and exon number, the

type of exon, the strand information (+/�), the start and end positions, the

length of each exon in basepairs, the frame and the scores. The key to the

abbreviations is provided at the end of the output (Table 4.4).
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Table 4.4 Abbreviations and explanations

Gn.Ex : gene number, exon number (for reference)

Type : Init = Initial exon (ATG to 5' splice site)

Intr = Internal exon (3' splice site to 5' splice site)

Term = Terminal exon (3' splice site to stop codon)

Sngl = Single-exon gene (ATG to stop)

Prom = Promoter (TATA box / initation site)

PlyA = poly-A signal (consensus: AATAAA)

S : DNA strand (+ = input strand; � = opposite strand)

Begin : beginning of exon or signal (numbered on input strand)

End : end point of exon or signal (numbered on input strand)

Len : length of exon or signal (bp)

Fr : reading frame (a forward strand codon ending at x has frame x mod 3)

Ph : net phase of exon (exon length modulo 3)

I/Ac : initiation signal or 3' splice site score (tenth bit units)

Do/T : 5' splice site or termination signal score (tenth bit units)

CodRg : coding region score (tenth bit units)

P : probability of exon (sum over all parses containing exon)

Tscr : exon score (depends on length, I/Ac, Do/T and CodRg scores)

Each pair of peptide and CDSs are in Fasta format and have unique identifi-

ers where the sequences are numbered sequentially.

>gi|GENSCAN_predicted_peptide_1|325_aa

MALISFTSPFNFIGKKSWQCITEAGFDKVDETIIFVISQSSRNVIVGEFLQDPCQGLPLL

KDLSSKQAANLFPWQRMEAVACDILLIMQPGHGQPAFLQGMSSRLSGAAEQVGSWSMRSQ

RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLQVLQFWTLGLTSVVCQGLSGLWPQ

IEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTHL

SECSRGGTQTGISGLKTELGAKVARVCQAEYGGESHAEREFWTPTEESLRVYKRGLISSA

SGISVDHGSLPEGLTKTFIPEGYEP

>gi|GENSCAN_predicted_CDS_1|978_bp

atggccctaatcagttttacatctccgtttaattttattggaaagaagagctggcaatgc

atcacagaggccggctttgacaaagtggatgaaacaattatcttcgttatcagccaaagc

agtagaaatgtgatagttggggaatttttgcaggacccatgccagggcttacctctgcta
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aaggatttgtcctcaaagcaggcagcaaatctgttcccttggcagaggatggaagccgtg

gcttgtgacattctcctgataatgcagccaggccacgggcagccagcatttctgcagggg

atgagctccaggctcagtggggcagcagagcaagtggggagctggtccatgaggagtcag

cgtcattccttgctgtggtctgttcctgaaccagtccaacaggctggcttcctgttccca

gaagccctccaaagtgctggatgcttcctgccatcgaacattggactccaagttcttcag

ttttggactcttggacttacatcagtggtttgccagggactctcaggcctttggcctcag

attgaaggctgcactgtcggcttctctacttttgaggttttgggactcggactggcttcc

ttgctcctcagcttgcagacagcctattgtgggacttcaccttgtgatcattccagcagc

ctttcggattccaaagcggctgtcctggaaaatatagggctccttccactaacccacctc

tctgaatgcagcagaggtggaacccagacagggatcagtgggttaaagacagagctggga

gccaaggtagccagagtttgccaggcagagtatggcggagagagccacgcagagagagaa

ttctggacacctacggaggaatctcttcgagtatataaaagaggactgatcagcagtgca

tcaggtatctctgttgatcatggttctttacccgaaggactgactaaaacctttattcct

gaagggtatgaaccatag

 4.7 GENSCAN ANALYSIS WITH LWP::USERAGENT

LWP::UserAgent is a Perl module that is used to send requests to specific

applications on the World Wide Web. This module, along with HTTP::

Request.pm and other modules, forms the core of the libwww-perl library. We

saw an example of another module in the library when we used the

LWP::Simple module. Here, we will learn how to use LWP::UserAgent to per-

form a GenScan analysis over the World-Wide Web.

The LWP::UserAgent module fully exposes the object oriented capabilities

of Perl. As with other object oriented programs, the first step is the creation of

an object of the type LWP::UserAgent. This is done through the �constructor�

which simply creates a new instance of the LWP::UserAgent object using the

new keyword. All this means is that to use an object oriented module, we have

to create an object of the type LWP::UserAgent (in this case), before we can use

its methods:

Step 1: Create an object of type LWP::UserAgent:

$ua = new LWP::UserAgent;



Web-based Sequence Analysis: Gene Prediction 85

M
K

M
K

Step 2: Create an instance of HTTP::Request encoding the GenScan request.

We use the new keyword to create an object of type HTTP::Request. One key

difference between the LWP::Simple and the LWP::UserAgent module that we

have used above is in the way we have formulated the request.

With LWP::Simple, the request is created directly and the various parameters

are visible in the URL. For a BLAST2 operation, for example:

$url = �http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?program=blas

tp&matrix=BLOSUM62&one=$gbid1&two=$gbid2&Action=submit�;

where, $gbid1 and $gbid2 are the two gene IDs.

In contrast, with the LWP::UserAgent module, the data is sent as part of the

HTTP request. The information doesn�t appear in the URL and, therefore, is

more �secure�. In addition, it allows a greater number of parameters to be set.

The code for the instantiation step is as follows:

$request = new HTTP::Request (POST=>�GenScan URL�);

We can use the GenScan server at MIT for this code:

http://genes.mit.edu/cgi-bin/GenScanw.cgi

Next, we formulate the request and specify the various parameters we want

to use:

$request->content(�parameters�);

The parameters are:

Content => [�-o� => �$organism�,

 �-e� => �$evalue�,

�-n� => �$name�,

�-p� => �$option�,

�-u� => [$file], #filename of sequence, OR

 #�-s� => �$seq�, #the sequence itself

]

where,

$organism = Vertebrate/Arabidopsis/Maize (Matrix)
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$evalue = Cutoff E value

$name = Arbitrary sequence name

$option = Print options (Predicted peptides OR Predicted peptides

and CDS)

We also need to specify another piece of information known as the MIME

type or content type. MIME�Multi-purpose Internet Mail Extensions�specify

a standard way of classifying file types on the Internet. The purpose of MIME

types is to enable Internet programs such as web servers and browsers to

transfer files of the same content type in a standardized manner, independent

of the underlying operating system. The MIME type enables programs to

determine how files of a given type are opened, how they are viewed, etc. A

MIME type has two parts: a type and a sub-type. They are separated by a slash

(/). For plain text, for example, the MIME type is simple �text/plain�. Since we

are using the information to plug information into a World Wide Web form,

the MIME type we need is:

�form-data�

This information is specified as follows:

$request->content_type(�form-data�);

The results of the analysis are printed out using the as_string method:

print $req->as_string;

The complete code (with Getopt::Long for command-line arguments) is as fol-

lows:

use LWP::UserAgent;

use Getopt::Long;

use HTTP::Request::Common;

GetOptions(�o|organism=s�=>\$organism, �e|eval=f�=>\$evalue,

�n|name=s�=>\$name, �p|option=s�=>\$option, �f|file=s�=>\$file);

my $ua = LWP::UserAgent->new;

$req = $ua->request(POST �http://genes.mit.edu/cgi-bin/GenScanw.cgi�,
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 Content_Type => �form-data�,

 Content => [�-o� => �$organism�,

 �-e� => �$evalue�,

 �-n� => �$name�,

 �-p� => �$option�,

 �-u� => [$file],

 #�-s� => �$seq�, #the sequence itself

 ]

);

print $req->as_string;

The program can be executed as follows:

>GenScan.pl -f AC090419.txt -e 1 -o vertebrate -n testseq -p �predicted

peptides only�

The output is shown in Figure 4.10.

Assignments

1. As with BLAST, the process of gene prediction with GenScan can be

automated with a Perl script. Download the human BAC AC092818

from NCBI and write a script that sends sequence(s) contained in a

local file to the GenScan server, and performs analysis based on the

parameters specified by the user on the command line:

% GenScan.pl -matrix vertebrate -print peptides -seq AC092818.txt

2. The logical next step after gene prediction is determination of the

function of each of the predicted peptides and this is most commonly

done with BLAST. Extend the previous script to analyze each of the

predicted peptides by a BLASTP against the nr database (performed

either locally or remotely) using an E value of 0.00001. Arrive at the

best annotation for each peptide.

% GenScan.pl -matrix vertebrate -print peptides -p Blastp -e 0.00001

-seq AC092818.txt
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Fig. 4.10 Output of GenScan.pl



CHAPTER

Web-based Sequence Analysis:
HMMER

 5.1 INTRODUCTION

In the previous chapter, we learnt the use of Hidden Markov Models (HMMs)

in gene prediction with the GenScan program. HMMs have been applied to

other problems in biology as well and have been immensely successful in

aiding researchers with Bioinformatics-assisted analyses of biological sequence

information. Here, we will understand how HMMs are applied to sequence

data to discern relationships between protein families. This is based on a set of

programs collectively known as HMMER (pronounced �Hammer�), developed

by Sean Eddy and co-workers at the Department of Genetics at the Washington

University School of Medicine (St. Louis, MO).

 5.2 DOWNLOADING HMMER

The HMMER package can be downloaded (Figure 5.1) from:

ftp://ftp.genetics.wustl.edu/pub/eddy/hmmer/2.2g/
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A number of distributions of the program are available depending on your

platform of choice. Download the version that is appropriate for your operating

system. For Mac OS X, for example, download the hmmer-2.2g.bin.apple-

osx.tar.gz file. We would be using DOS to run HMMER commands and for

this platform, you would need to download hmmer-2.2g.bin.dos-cygwin.zip,

expand the compressed file (using WinZip, for example) and save all the files

(the executables and the cygwin1.dll file) in a directory such as D:\hmmer.

The downloaded package and the component programs should appear as shown

in Figure 5.2. You may also download, for your reference, the User Guide that

comes along with the distribution (Figure 5.1).

Fig. 5.1 The HMMER ftp site

To use the HMMER programs, you would, in addition, need a multiple

sequence alignment program such as ClustalW (Thompson et al., 1994) or

ClustalX (Thompson et al., 1997), which provides a windows interface for
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ClustalW. This can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/

ClustalX/ (although it may be available on other sites too). Again, download

the version that is appropriate for your operating system. For our purposes,

we will download the Windows version: clustalx1.8.msw.zip (Figure 5.3).

Finally, it may also be useful to have a dendrogram viewing program such

as TreeView which plots phylogenetic relationships between proteins. TreeView

is available for Windows/Macintosh/Unix and Linux and can be downloaded

from http://taxonomy.zoology.gla.ac.uk/rod/treeview.html. Extract the zipped

file in the usual manner and store the files in a directory such as D:\treeview.

Install the application by double-clicking the Setup icon.

Uncompress the file as usual and save all the files in a directory such as

D:\clustalw. For DOS, the downloaded files appear as shown in Figure 5.4.

Fig. 5.2 HMMER installation on DOS
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 5.3 WHY USE HMMER?

HMMER is used to perform sensitive database searches to identify distant

members of sequence families. For example, you may be looking for hitherto

unknown novel members of a certain protein family and you may want to

identify all such protein family members that may be present in high-

throughput genomic (HTG) sequences. HMMER allows you to use previously

characterized (known) sequences of a protein family that you are interested in

Fig. 5.3 ClustalX ftp site
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to create a profile or signature of the protein family and to use that profile to

search a set of unknown sequences.

Research laboratories use this approach to identify novel members of their

favorite protein family. This approach is also commonly used by Genomic

companies to identify potential new targets belonging to the highly �druggable�

class of proteins  such as kinases, phosphatases, proteases, etc. (called �tar-

gets�). The term druggable is applied to proteins that take part in important

signaling pathways (viz., via protein-protein interaction that affects a disease

process) and that can be inhibited using small molecule drugs to achieve a

pharmacologic effect. An example of a target protein is the epidermal growth

factor receptor-tyrosine kinase (EGFR), a protein of the kinase family that con-

tributes to a number of processes involved in tumor survival and growth in-

cluding cell proliferation, inhibition of apoptosis, angiogenesis and metastasis.

Small molecule drugs that inhibit growth signals within the cell mediated by

EGFR could potentially be useful for the treatment of cancer. Indeed, a num-

ber of such drugs are currently undergoing pre-clinical and clinical trials in

the US and elsewhere.

Fig. 5.4 ClustalX installation on DOS
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The identification of novel targets, by using Bioinformatics approaches, is

an important aspect of modern Genomics-based drug development and is gen-

erally referred to as �New Target Identification�.

 5.4 RUNNING HMMER COMMANDS

The programs supported in the HMMER 2 package and their common usage is

listed in Table 5.1. The table uses the following files for the sample commands:

proteins.aln Output of ClustalW (contains the multiple sequence

alignment)

proteins.hmm Output of hmmbuild: hmm_output_file (contains the

Hidden Markov Model)

htg.db Database of unknown protein sequences

Table 5.1 HMMER command explanation and usage

hmmbuild Builds an HMM model from a multiple sequence alignment. Takes

a multiple sequence alignment file (file has extension .aln) generated

by a program such as ClustalW as input. The output file has the

extension .hmm for ease of identification.

Usage: hmmbuild hmm_output_file input_file

Example: hmmbuild proteins.hmm proteins.aln

hmmcalibrate Increases the sensitivity of a database search by calculating more

accurate E values. Uncalibrated models may miss remote homologs

and, therefore, this is an important step in the process.

Usage: hmmcalibrate hmm_output_file

Example: hmmcalibrate proteins.hmm

Note: hmmcalibrate proteins.hmm overwrites existing (uncalibrated) hmm file unless
output is directed to a different file using the redirection (>) operator. The uncalibrated
HMM may not be needed and, therefore, it is usually safe to overwrite it.

hmmsearch Searches a sequence database for matches to an HMM.

Usage: hmmsearch hmm_ output_file database

Example: hmmsearch proteins.hmm htg.db

Note: The database can also be a simple Fasta file of sequences.
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Table 5.1 (Contd.)

hmmalign Aligns sequences to an existing model.

hmmconvert Converts a model file into different formats, including a compact
HMMER 2 binary format, and �best effort� emulation of GCG
profiles.

hmmemit Emits sequences probabilistically from a profile HMM.

hmmfetch Gets a single model from an HMM database.

hmmindex Indexes an HMM database.

hmmpfam Searches an HMM database for matches to a query sequence.

HMMER also provides a number of utility programs:

alistat Shows simple statistics about a sequence alignment file. Alistat can,

for example, be run on the output of ClustalW to determine the

numbers of sequences that were present in the multiple Fasta file of

protein sequences that was used as input to the ClustalW command,

the level of identity found between the different proteins in the file,

the average length of sequences, etc.

Usage: alistat alignment_file

Example: alistat proteins.aln

getseq Retrieves a (sub-)sequence from a sequence file.

seqstat Shows some simple statistics about a sequence file.

sreformat Reformats a sequence file into a different format.

Note: Documentation on each command can be invoked by typing the name of the
command followed by -h (for help) as shown in Figure 5.5 for hmmcalibrate.

The steps to build and use an HMM are as follows:

1. Prepare a Fasta file of protein sequences

2. Align the sequences using ClustalW

3. Build the HMM (hmmbuild)

4. Calibrate the HMM (hmmcalibrate)

5. Search a database with the HMM (hmmsearch)

  5.5 HMMER: A PRACTICAL EXAMPLE

Start the multiple sequence alignment program by typing ClustalX on the

command prompt. If you saved the installation in D:\clustalw, this is where
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the command should be issued. This should bring up the graphical ClustalW

interface (Figures 5.6 and 5.7). Download a set of cysteine proteases as a Fasta

file on your system and build a multiple sequence alignment with ClustalX

Fig. 5.5 Invoking help for hmmcalibrate

Fig. 5.6 Starting ClustalX
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(using File Æ Load sequences Æ cproteases.txt). This should bring up the

alignment (Figure 5.8). ClustalX color codes to the alignment assigning the

same colors to residues that have similar properties. For example, the positively

charged residues Lysine (K) and Arginine (R) are colored red, hydrophobic

residues Leucine (L), Valine (V), Alanine (A) and Isoleucine (I) are colored

blue and so on.

Save the alignment by selecting Alignment Æ Do complete alignment and

specifying an output directory for the dendrogram and the sequence alignment.

In this case, both are saved in the D:\sequences directory as cprotease.dnd and

cprotease.aln (Figure 5.9).

You can, at this point, see the phylogenetic relationship between the five

cysteine proteases by viewing the .dnd file in TreeView. Start the program

either on the DOS prompt by typing treev32 or by selecting TreeView from the

start icon (StartÆProgramsÆTreeView). Load the .dnd file and select the Rect-

angular Cladogram option from the menu bar (Figure 5.10). The shape of the

Fig. 5.7 The ClustalX interface
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Fig. 5.8 Multiple sequence alignment with ClustalX

Fig. 5.9 Saving the alignment

tree indicates that the proteins gi:22538442 and gi:22538437 shown as follows

are the most closely related as compared to the others:



Web-based Sequence Analysis: HMMER 99

M
K

M
K

>gi|22538442|ref|NP_001327.2| cathepsin Z preproprotein; cathepsin X precursor;

preprocathepsin P; cathepsin Z precursor [Homo sapiens]

MARRGPGWRPLLLLVLLAGAAQGGLYFRRGQTCYRPLRGDGLAPLGRSTYPRPHEYLSPADLPKSWDWRN

VDGVNYASITRNQHIPQYCGSCWAHASTSAMADRINIKRKGAWPSTLLSVQNVIDCGNAGSCEGGNDLSV

WDYAHQHGIPDETCNNYQAKDQECDKFNQCGTCNEFKECHAIRNYTLWRVGDYGSLSGREKMMAEIYANG

PISCGIMATERLANYTGGIYAEYQDTTYINHVVSVAGWGISDGTEYWIVRNSWGEPWGERGWLRIVTSTY

KDGKGARYNLAIEEHCTFGDPIV

>gi|22538437|ref|NP_680093.1| cathepsin B preproprotein; APP secretase; preprocathepsin B;

cathepsin B1; amyloid precursor protein secretase [Homo sapiens]

MWQLWASLCCLLVLANARSRPSFHPLSDELVNYVNKRNTTWQAGHNFYNVDMSYLKRLCGTFLGGPKPPQ

RVMFTEDLKLPASFDAREQWPQCPTIKEIRDQGSCGSCWAFGAVEAISDRICIHTNAHVSVEVSAEDLLT

CCGSMCGDGCNGGYPAEAWNFWTRKGLVSGGLYESHVGCRPYSIPPCEHHVNGSRPPCTGEGDTPKCSKI

CEPGYSPTYKQDKHYGYNSYSVSNSEKDIMAEIYKNGPVEGAFSVYSDFLLYKSGVYQHVTGEMMGGHAI

RILGWGVENGTPYWLVANSWNTDWGDNGFFKILRGQDHCGIESEVVAGIPRTDQYWEKI

Fig. 5.10 Viewing the tree with TreeView
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Note

A cladogram is simply a phylogenetic tree that describes the relatedness of
the objects being compared.

The next step after the alignment is to build an HMM from the cprotease.aln

multiple sequence alignment file. The command hmmbuild and its output is

shown in Figure 5.11. The hmmcalibrate command next calculates the relevant

parameters and adds them to the HMM file (cprotease.hmm, Figure 5.12).

This, as explained earlier, is needed to make searches with the HMM more

sensitive.

Fig. 5.11 Building an HMM from an alignment
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The next step is to use the calibrated HMM to search a database of sequences.

This, as we mentioned before, is to find sequences in a set of unknown

sequences that may be related to the sequences that we built the HMMs from.

In this case, if we search a set of sequences with cprotease.hmm, we would

expect the search to yield proteins which may be cysteine proteases. For the

purpose of illustration, let�s say we were interested in finding all cysteine

proteases in the worm (C. elegans) genome. Why would anyone want to do

that?

C. elegans is a nematode (of the same class as roundworms and threadworms)

that is widely used in developmental biology studies. It was the first multicel-

lular eukaryote whose genome was completely sequenced (1998, C. elegans

Sequencing Consortium). Despite its small size (< 1 mm in length, total num-

ber of somatic cells: 959), C. elegans emerged as a model organism for the study

of mammalian processes (see magnified image, Figure 5.13). This is because of

the dramatic similarity between many of its genes and human genes. This is

especially true of genes involved in cellular differentiation and development

as they relate to the development and function of the nervous system. Today,

due to the efforts of a large body of developmental biologists around the

world, the developmental origins of each of the 300-odd neurons of C. elegans

is known. A significant number of CNS disorders such as Alzheimer�s disease,

amyotrophic lateral sclerosis, Duchenne muscular dystrophy, neurofibromatosis

Fig. 5.12 Calibrating cprotease.hmm
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type 1, spinal muscular atrophy, etc. that affect human beings are known to

involve genes that have homologs in C. elegans. It is hoped that by identifying

and analyzing the proteins encoded by these genes, from both worm and man,

it will be possible to identify protein targets for the study and treatment of

human neurological diseases.

Now that we have made a case for the study of counterparts of human

proteins in the worm, let�s go ahead and find out how many cysteine proteases

our HMM can identify in the C. elegans genome.

Download the C. elegans amino acid sequences file wormpep_current.tar.gz

from http://www.wormbase.org/downloads.html. Expand the archive and

save the wormpep86 file on your system. The command hmmsearch and a

partial output is shown in Figure 5.14. The output of the command was

redirected to a text file (worm_protease.txt), parts of which are reproduced in

Figures 5.15�5.17.

Some of the relevant information in the figures is boxed; for example, the

header reveals the hmm file (cprotease.hmm) used for the analysis, the sequence

database searched (wormpep86) and also indicates that the hmm was calibrated

(Figure 5.16).

The results of the search (Figure 5.16) are similar to the output of a BLAST

search: top hits are listed in the order of their significance, beginning, with the

lowest E values. The fields on each line are: name of target sequence, descrip-

tion of sequence, raw score (in bits), E value, and the total number of (cysteine

protease) domains detected in the sequence. The next section lists top hits by

domain (Figure 5.17). These are also ranked by E value.

Fig. 5.13 C. elegans—A model organism in developmental biology
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Fig. 5.15 hmmsearch results—Header information

Fig. 5.14 Running hmmsearch on C. elegans peptides
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Fig. 5.16 Top hits yielded by hmmsearch

 5.6 HMMER UTILITIES

Finally, lets take a quick look at two utilities�seqstat and alistat available

with HMMER to generate simple statistical reports on sequence and alignment

files.

Alistat shows simple statistics about a sequence alignment file. Alistat can, for

example, be run on the output of ClustalW to determine the number of se-

quences that were present in the multiple Fasta file of protein sequences used

as input to the ClustalW command, the level of identity found between the

different proteins in the file, the average length of sequences, etc.

Usage: alistat alignment_file

Seqstat shows some simple statistics about a sequence file.

Usage: seqstat sequence_file
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The output of these files is shown in Figures 5.18 and 5.19.

Taking the first line of the output above, the meaning of each of the fields is

explained below:

parsed for domains:

sequence Domain seq-f seq-t hmm-f hmm-t score E value

w07B5.5 1/1 1 343 [. 1 343 [ ] 338.6 2.4e-99

Domain: 1/1 means the first domain of the number of domains detected (1)

seq-f: sequence from (start)

seq-t: sequence to (end)

Fig. 5.17 Domain top hits
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Alignment key:

[ or ] Æ alignment goes all the way to the end of the sequence

. Æ alignment does not go all the way to the end

 [. Æ alignment starts at the beginning of the sequence, but stops before it

ends

.] Æ alignment starts internally and goes all the way to the end

[] Æ alignment spans the entire sequence

.. Æ alignment is local within the sequence

hmm-f: start point of the consensus coordinates of the model

hmm-t: end point of the consensus coordinates of the model

Alignment key (with respect to the model). Here, [] means that complete

matches to the entire model are found.

Assignments

1. Chromosome 21 is the smallest human chromosome. The fact that trisomy

21 (Down�s syndrome), the most frequent genetic disorder associated with

Fig. 5.18 alistat utility
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significant mental retardation, is associated with aberrations of this chromo-

some has given chromosome 21 a prominent position in biomedical research.

Download the peptide sequences: protein.fa.gz from ftp://ftp.ncbi.nih.gov/

genomes/H_sapiens/protein/. . Generate separate HMMs for all the four

protease families following the steps outlined in Section 5.4 and search chro-

mosome 21 peptide sequences for the presence of members of the protease

families. For each of the top 10 hits of the hmmsearch, extract the identifier

from the first column and extract the annotation for the protein from

GenBank.

To create a Fasta file of the proteases, search NCBI Entrez and select ~ 20

representative sequences for all four families. Automate the process of creating

and calibrating an HMM, searching a sequence database and annotating the

top hits using Perl. The command for the program should be something like:

% searchdb.pl -hmmfile aspartyl.hmm -database chr21.txt

Note

If you get a memory error running HMMER commands, divide the
Chromosome 21 sequence into smaller files of ~ 10 Mb each. If you still have
a problem, download a smaller genome, e.g., HIV-1 and perform the same
analysis.

Fig. 5.19 seqstat utility
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CHAPTER

PSI-BLAST

 6.1 INTRODUCTION

Position-Specific Iterated BLAST or PSI-BLAST is a variant of the BLAST

program developed by Altschul et al. in 1997. A position specific scoring matrix,

PSSM, is constructed (automatically) by calculating position-specific scores for

each position in the alignment of a multiple alignment in the highest scoring

hits in an initial BLAST search. The PSS is calculated by assigning high scores

to highly conserved positions and near zero scores to weakly conserved posi-

tions. The profile is then used to perform a second BLAST search and the

results of each �iteration� is used to refine the profile. This iterative searching

strategy results in increased sensitivity. Thus, PSI-BLAST is a highly sensitive

homology search program generally used with a query of amino acid sequence

against an amino acid sequence database.

 6.2 PSI-BLAST AND PROTEIN ANALYSIS

Many functionally and evolutionarily important protein similarities are

recognizable only through comparison of three-dimensional structures. When

6

M
K

M
K



110 Bioinformatics: Principles and Applications

M
K

M
K

such structures are not available, patterns of conservation identified from the

alignment of related sequences can aid the recognition of distant similarities.

In essence, for each position in the derived pattern, every amino acid is assigned

a score. If a residue is highly conserved at a particular position, that residue is

assigned a high positive score, and others are assigned high negative scores.

At weakly conserved positions, all residues receive near zero scores. Position-

specific scores can also be assigned to potential insertions and deletions.

The power of profile methods can be further enhanced through iteration of

the search procedure. After a profile is run against a database, new similar

sequences can be detected. A new multiple alignment, which includes these

sequences, can be constructed, a new profile abstracted, and a new database

search performed. The procedure can be iterated as often as desired or until

convergence, until no new statistically significant sequences are detected.

PSI-BLAST is an example of such a tool.

 6.3 WHEN IS PSI-BLAST BETTER THAN BLASTP?

PSI-BLAST can beat BLASTP if BLASTP finds some reliable alignments to

database sequences. (Moderately distant matches are particularly useful.) Then,

PSI-BLAST (which starts by running BLASTP) can determine the positions, in

the query sequence that are conserved during evolution and devise an appro-

priate position-specific scoring matrix which can be used to identify relatives

at a further evolutionary distance. If the original BLASTP run cannot find any

reliable alignment, PSI-BLAST is powerless.

 6.4 THE DESIGN OF PSI-BLAST

Iterated profile search methods have led to biologically important observations,

but, for many years, were quite slow and generally did not provide precise

means to evaluate the significance of their results. This limited their utility in

the systematic mining of protein databases. The principal design goals in

developing the PSI-BLAST program were speed, simplicity and automatic

operation.
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The procedure PSI-BLAST uses can be summarized in five steps:

1. PSI-BLAST takes as �input� a single protein sequence and compares it

to a protein database, using the gapped BLAST program.

2. The program constructs a multiple alignment, and then a profile, from

any significant local alignments found. The original query sequence

serves as a template for the multiple alignment and profile, whose

lengths are identical to that of the query. Different numbers of

sequences can be aligned in different template positions.

3. The profile is compared to the protein database, again seeking local

alignments. After a few minor modifications, the BLAST algorithm

can be used for this directly.

4. PSI-BLAST estimates the statistical significance of the local alignments

found. Because profile substitution scores are constructed to a fixed

scale and gap scores remain independent of position, the statistical

theory and parameters for gapped BLAST alignments remain applicable

to profile alignments.

5. Finally, PSI-BLAST iterates, by returning to step 2, until convergence

(when further iterations do not produce better results).

Profile alignment statistics allow PSI-BLAST to proceed as a natural extension

of BLAST; the results produced in iterative search steps are comparable to

those produced from the first pass. Unlike most profile-based search methods,

PSI-BLAST runs as one program, starting with a single protein sequence, and

the intermediate steps of multiple alignment and profile construction are

invisible to the user.

 6.5 ADVANTAGES OF PSI-BLAST

PSI-BLAST offers exciting opportunities to discover new types of relationships

in protein databases and use them to infer evolutionary origins of proteins.

PSI-BLAST will search a protein sequence database with a query sequence

motif, a matrix with rows representing sequence positions and columns

representing variations in that position. The motif represents the observed

variations in the alignment of a set of related proteins. PSI-BLAST has been

engineered to find database matches almost as rapidly as BLASTP finds matches
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to a query sequence. However, there are some differences between the motifs

found by PSI-BLAST. First, the motif covers the entire sequence length, whereas

motifs usually cover only a short stretch of the sequences. Second, the same

gap penalties are used throughout the procedure and there is no position-

specific penalty as in other programs. Third, each subsequent motif is based

on using the query sequence as a master template to produce a multiple

sequence alignment of the same length as the query sequence. Columns in the

alignment involve varying numbers of sequences depending on the extent of

the local alignment of each sequence with the query, and columns with gaps

in the query sequence are ignored. Sequences >98 per cent and similar to the

query are not included in order to avoid biasing the motif. Thus, the alignment

is a compilation of the pair-wise alignments of each matching database sequence

with the query sequence.

 6.6 LIMITATIONS OF PSI-BLAST

The main difficulty with searching for subtle sequence relationships based on

similarity is determining the significance of the motifs that are found. Such

similarities may be evidence of structural or evolutionary relationships but

they could also be due to matching of random variations that have no common

origin or function. Protein structures are, in general, comprised of a tightly

packed core and outside loops. Amino acid substitutions within the core are

common but only certain substitutions will work at a given amino acid position

in a given structure. Thus, sequence similarity is not usually a good indicator

of structural similarity and the motifs found need to be carefully evaluated

before any firm conclusions can be drawn. Another difficulty with the PSI-

BLAST approach is that the procedure follows a type of algorithm called a

�greedy� algorithm. Put simply, once additional sequences that match the query

are found, they influence the finding of more sequences like themselves, and

so on. If a different set of query sequences were initially used, a different

group with the possible overlaps with the first set may be found. Thus, there is

no guarantee that the group finally discovered authentically represents a

functional group.
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 6.7 EXAMPLE OF A PSI-BLAST SEARCH

6.7.1 Example #1: ATP-dependent Lon Protease
(Wigglesworthia brevipalpis)

We shall now illustrate how to run PSI-BLAST using a protease protein from

Wigglesworthia brevipalpis, a bacteria, as an example. The protein sequence of

the ATP-dependent Lon protease is as follows:

>gi|24324229|ref|NP_715593.1| ATP-dependent Lon protease, bacterial type

[Wigglesworthia brevipalpis]

MNPEHSQQIDIPVLPLRDVVVYPHMVVPLFVGREKSIRCLEISMDKDKKIMLIAQKEASKDEPNIDDLFL

VGTISSILQMLKLPDGTVKVLVEGISRARIISLKNNGDYFTAEANYFNTTSVNEQEQEVLIRATINQFEN

YIKLNKKIPTEVLSSLSSINDAARLADTIASHMPLKLSGKQAVLEMISVAERLEYLMAMMESEMDLLQIE

KRIRNRVKKQMEKSQREYYLNEQIKAIQKELGEMEDNPDEHESLKRKIELSKMPKEVKKKADSELQKLKM

MSPMSAEATVVRGYIDWMISVPWHNRSKIKKNLSIAQKILDKDHYGLKKVKDRILEYLAVQSRVLKIKGP

ILCLMGPPGVGKTSLGQSIAKATGRKYIRMALGGMRDEAEIRGHRRTYIGSMPGKIIQKMSKVGVKNPLF

LLDEIDKMSTDMRGDPASALLEVLDPEQNIAFNDHYLEVDYDLSDVMFVATSNSMRIPAPLLDRMEVIRL

SSYTEDEKLNIARKHLFPKQVNRNALKENEIYVEDNALMGIIRYYTREAGVRNLEREISKLCRKSVKIIL

MNKNINRIKINKKNLKDFLGVKKFDYGKAEIENKIGQVIGLAWTEVGGDLLTIETACVPGKGKLIYTGSL

GEVMQESIQAALTVVRSRANKLGIKSDFYEKNDIHVHVPEGSTPKDGPSAGIAMCTALVSCLTKNPVNSS

LAMTGEITLRGQILPIGGLKEKLLAAHRGGIKTVLIPYENKRNLENMPENVIKELNIHPVKIIDEVFNIS

LQDSIF

We employ the World Wide Web version of PSI-BLAST. The URL is as

follows:

http://www.ncbi.nlm.nih.gov/blast/

The steps to perform a PSI-BLAST with the above protein as a query sequence

are as follows:

1. Connect to the above-mentioned URL and open the BLAST page of

NCBI

2. Choose the PSI and PHI-BLAST (arrow) option [refer Figure 6.1]

3. Paste the above sequence in the �search� section [Figure 6.2].

Alternatively you can simply write the GI number of the protein.
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4. Scroll down the page to the format section to set formatting param-

eters for the PSI-BLAST. In this case, we want to find very distant

relatives of a common protein-protease. Therefore, I have selected the

number of descriptions to be 250 [Figure 6.3, Box A]. You can choose

to see a lower number of descriptions if the expected number of initial

BLAST hits is low. This will help you save time as you will not have to

go through a large number of hits to select the one you want to in-

clude in the second round of iteration.

5. The threshold values to include protein hits is determined by how

divergent the proteins you are interested in finding are. In this case,

Fig. 6.1 The PSI-BLAST service at NCBI
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we want to find a mammalian ortholog of a bacterial protein. Since the

distance between the two is expected to be large, the threshold value

is set at 10 [Figure 6.3, Box B]. If the divergence sought is small, say

between two different species of bacteria, or if the number of hits

expected is below 10, the default value setting for the threshold (0.005)

is used. In general, the value is set between 0.01 and 10. The exact

value comes from experience and an understanding of the biology of

the query.

6. The rest of the parameters are generally used at the set default settings.

7. Click on the �BLAST� button [Figure 6.3, Box C] to initiate the first

round of PSI-BLAST search.

8. On clicking the �BLAST� option, your browser window connects to

the BLAST server and begins running the algorithm. You are brought

to the new page, which gives you a �request ID�. This simply means

that your request is in queue and is being processed.

Fig. 6.2 Preparing a sequence for PSI-BLAST
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Fig. 6.3 Configuring PSI-BLAST parameters

9. Click on the format button [Figure 6.4, arrow] to get the results of the

first PSI-BLAST in formatted readout.

10. Figure 6.5 shows the result of the first iteration. As seen in the figure,

the first few hits are exact matches of the protein query with an

E value of 0. De-select those that do not fit your search criteria (in this

case, hits of non-mammalian proteins), leaving those that do (proteins

of mammalian origin) as selected [Figure 6.6, arrow]. Note that you

may have to open the selected protein to confirm its origin (in this

case, mammalian). In some cases, the first round of iteration results in

convergence with respect to proteins hits having an E value higher

than the threshold, but does not include proteins of biological interest

to you. You would then have to select proteins that have a lower

alignment score than the set threshold value (See for example #2).
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Fig. 6.4 First PSI-BLAST iteration

Fig. 6.5 Hits from the first PSI-BLAST iteration
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Fig. 6.6 Selecting hits from the first iteration of PSI-BLAST

11. Go to the bottom of the page and click on the �Run PSI-BLAST itera-

tion 2� button to run the selected proteins through the second round

of iteration [Figure 6.7, arrow].

12. Your browser window now shows the result of the second round of

iteration through PSI-BLAST. It is important to understand the legend

on top of the hit list [Figure 6.8, arrow].

The legend will help you determine the significance of the hits from

the second round of iteration. As one would expect, the hits contain

three classes of hits:

(a) Some hits from the previous iteration. These are represented by a

green dot next to them � �.

(b) Some new hits that have an E value higher than the threshold set

(i.e. these are new proteins that have high similarity to the new set

of collective query from the previous iteration).
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Fig. 6.7 Results of the second iteration of PSI-BLAST

(c) some new hits that have an E value lower than the set threshold

limit (i.e. these are proteins that although are similar, are distant in

relation to alignment scores. These are represented by the letters

�Ea� in a yellow background � �.

The criteria to select the proteins that will form the query set for the

third round of iteration will depend on your ultimate goal of the PSI-

BLAST search. If you are searching for orthologs or analogs of closely

related species, or organisms that are not very divergent, say, between

two bacteria or between a bacteria and a virus, then it may be safe to

select only those protein hits that have a high E value. On the other

hand, if the search is for very distant or divergent relationships (in

this case, bacterial to mammalian), it would be advisable to include

those that have a lower E value but may be significant with respect to

the proteins sought in the search. Ultimately, the proteins that will

constitute the query set for your next round of iteration will depend
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Fig. 6.8 Results of the 2nd iteration of PSI-BLAST

on the biological question you are looking to answer. Since, in our

case, we are looking to find orthologs of a bacterial protein within a

distant mammalian species, we shall be including proteins with an

E value lower than the threshold value, as long as they are of mamma-

lian origin. As seen in Figure 6.9, we have selected some hits from the

pervious iterations and included those that have an E value lower and

above the set threshold value.

13. Go to the bottom of the screen and click on the �run PSI-BLAST itera-

tion 3� button to run the selected proteins though the third round of

iteration [Figure 6.10, arrow].

14. You would now repeat steps 12 and 13 till a convergence of proteins is

achieved or no further convergence is possible. In our example, the

highest convergence was with a serine protease (gi:21396489) of hu-

man origin, localized on chromosome 19.
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6.7.2 Example #2: Repair Endonuclease of
Arabidopsis thaliana

The protein used in this case is a repair endonuclease of Arabidopsis thaliana.

The sequence of the protein is as follows:

>gi|6013183|gb|AAF01274.1|AF160500_1 repair endonuclease [Arabidopsis thaliana]

MALKYHQQIISDLLEDSNGGLLILSSGLSLAKLIASLLILHSPSQGTLLLLLSPAAQSLKSRIIHYISSL

DSPTPTEITADLPANQRYSLYTSGSPFFITPRILIVDLLTQRIPVSSLAGIFILNAHSISETSTEAFIIR

IVKSLNSSAYIRAFSDRPQAMVSGFAKTERTMRALFLRKIHLWPRFQLDVSQELEREPPEVVDIRVSMSN

Fig. 6.9 Third round of PSI-BLAST iteration
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Fig. 6.10 Third iteration of PSI-BLAST

YMVGIQKAIIEVMDACLKEMKKTNKVDVDDLTVESGLFKSFDEIVRRQLDPIWHTLGKRTKQLVSDLKTL

RKLLDYLVRYDAVSFLKFLDTLRVSESYRSVWLFAESSYKIFDFAKKRVYRLVKASDVKSKEHVKNKSGK

KRNSKGETDSVEAVGGETATNVATGVVVEEVLEEAPKWKVLREILEETQEERLKQAFSEEDNSDNNGIVL

VACKDERSCMQLEDCITNNPQKVMREEWEMYLLSKIELRSMQTPQKKKQKTPKGFGILDGVVPVTTIQNS

EGSSVGRQEHEALMAAASSIRKLGKTTDMASGNNNPEPHVDKASCTKGKAKKDPTSLRRSLRSCNKKTTN

SKPEILPGPENEEKANEASTSAPQEANAVRPSGAKKLPPVHFYALESDQPILDILKPSVIIVYHPDMGFV

RELEVYKAENPLRKLKVYFIFYDESTEVQKFEASIRRENEAFESLIRQKSSMIIPVDQDGLCMGSNSSTE

FPASSTQNSLTRKAGGRKELEKETQVIVDMREFMSSLPNVLHQKGMKIIPVTLEVGDYILSPSICVERKS

IQDLFQSFTSGRLFHQVEMMSRYYRIPVLLIEFSQDKSFSFQSSSDISDDVTPYNIISKLSLLVLHFPRL

RLLWSRSLHATAEIFTTLKSNQDEPDETRAIRVGVPSEEGIIENDIRAENYNTSAVEFLRRLPGVSDANY

RSIMEKCKSLAELASLPVETLAELMGGHKVAKSLREFLDAKYPTLL

The sequence of the Arabidopsis XPF DNA repair gene was used to query

the Swissprot database, with an E value setting of 0.01, requesting 10
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descriptions and alignments with otherwise the recommended default program

settings. The initial iteration found three matching sequences, and these were

used to enter iteration 1. Iteration 1 did not produce any additional matches at

the chosen level of significance, and the program indicated that the search had

converged with no more sequences at the chosen level of significance. Therefore,

for iteration 2, the sequences scoring worse than the threshold were used.

Since only those lower scoring sequences that have an alignment with the

query could influence the result, this option could potentially find additional

sequences. A yeast transport protein was then reported. With another iteration

using the four sequences above threshold, another set of sequences were now

pulled into the high scoring group. This search, therefore, revealed that the

Swissprot database has three other sequences strongly related to the query

sequence but that other sequences of lower scoring similarity were also present.

Step 1: PSI-BLAST initial iteration

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 504 e-142

sp|P06777|RAD1_YEAST DNA REPAIR PROTEIN RAD1 300 6e-81

sp|P36617|RA16_SCHPO DNA REPAIR PROTEIN RAD16 231 3e-60

Step 2: PSI-BLAST iteration 1 (with sequences scoring better than E threshold)

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1020 0.0

sp|P06777|RAD1_YEAST DNA REPAIR PROTEIN RAD1 953 0.0

sp|P36617|RA16_SCHPO DNA REPAIR PROTEIN RAD16 897 0.0

Step 3: PSI-BLAST iteration 2 (with sequences scoring worse than E threshold)

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1020 0.0

sp|P06777|RAD1_YEAST DNA REPAIR PROTEIN RAD1 967 0.0

sp|P36617|RA16_SCHPO DNA REPAIR PROTEIN RAD16 939 0.0

sp|P25386|USO1_YEAST INTRACELLULAR PROTEIN TRANSPORT PROTEIN USO1 53 3e-06

Step 4: PSI-BLAST iteration 3 (with sequences scoring better than E threshold)

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1007 0.0

sp|P06777|RAD1_YEAST DNA REPAIR PROTEIN RAD1 950 0.0

sp|P36617|RA16_SCHPO DNA REPAIR PROTEIN RAD16 884 0.0

sp|P25386|USO1_YEAST INTRACELLULAR PROTEIN TRANSPORT PROTEIN USO1 294 5e-79

sp|Q08696|MST2_DROHY AXONEME-ASSOCIATED PROTEIN MST101(2) 52 4e-06

sp|Q62209|SCP1_MOUSE SYNAPTONEMAL COMPLEX PROTEIN 1 (SCP-1 PROT... 49 5e-05

sp|Q03410|SCP1_RAT SYNAPTONEMAL COMPLEX PROTEIN 1 (SCP-1 PROTEIN) 49 5e-05

sp|Q02224|CENE_HUMAN CENTROMERIC PROTEIN E (CENP-E PROTEIN) 45 5e-04

You can continue the steps until you reach convergence. The results of the

above iterations with the selected proteins allow the user to successively

converge on the sequences of interest. The subset of proteins on convergence

is representative of the distant relatives of the plant protein.
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Assignments

1. The following is a sequence from the Rattus norvegicus (Norway rat)

genome that was predicted automated computational analysis using

GenomeScan. The protein has the GenBank ID (gi) number 27721631

and is annotated as �similar to hypothetical protein KIAA0527�human

(fragment)�. The complete GenBank record for the protein is available at

Entrez (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=

Nucleotide).

Perform a PSI-BLAST analysis and provide your analysis of the

putative function of the protein. Support your answer with an analysis

of the different domains present in the protein.

1 msagpqwpap rslpalcaal lllalqpppv raegklfvld sqngsqgldl etarqscksr

61 gahlvsagel krvvqdcasa vcttgwladg tlgttvcskg sgeqpvlrai dvtidshpvp

121 gakynalcik deerpcgdpp sfphtilqgr tglemgdell yvcvpgsvtg hretaftllc

181 nscgewyglv qacgkdeaea hidyeenfpd drsvsfrelm edsraegeke kaqedasdet

241 pkqdrlvfts vskeniaqek afvpttglpg agssfhtdwp rsrlhrkysl wfpaetfhks

301 elekdvddet keplpardth sdekpapees etrlvyatty spsepfadrn dskaedigvs

361 ssddswldgy pvtdgawrkv eagqeddedk gdgsvgpdds vlmspdqpik nvtvissesv

421 iyssispsqm ldvealvpgp invseterph tgdadltnyq stiprrvttq qspmatspse

481 lttsttqetv lttlqpthkh spssnveatq ppaevtapev qdnfpyllse dflgqegpgp

541 gaseerllpt lapcvgdecp sfrkgpviat ivtvlcllfl lavsgavwgy rrcqhkssvy

601 klnvgqrqar hyhqqiemek v

2. PSI-BLAST was used to analyze members of the BRCT superfamily in

the paper by Altschul et al. (Stephen F. Altschul, Thomas L. Madden,

Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller and

David J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. (1997) Nucleic Acids Research,

25(17): 3389�3402). Describe the rationale and the findings of the study.
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CHAPTER

Accessing Sequence Information
Using BioPerl

 7.1 BIOPERL INSTALLATION

We will begin the chapter by learning how to install BioPerl on Windows. The

assumption here is that you already have Perl (version 5.005 or 5.6) running on

your system. If not, please download Perl (for example, from the ActiveState

website: http://aspn.activestate.com/ASPN/Perl/Downloads/), before pro-

ceeding.

Most Perl installations come with an in-built mechanism to download Perl

modules. For the ActiveState Perl installation, this is called the Programmer�s

Package Manager (PPM). PPM provides a command-line interface for search-

ing, installing, updating or removing modules from your system. We will use

PPM to install the BioPerl package.

PPM makes the job of installing BioPerl very straightforward. All you need

to do is point it to the source of the distribution, search for the particular

package you want to install and issue the install command. PPM does the rest

7
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K

M
K
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for you. These steps are illustrated in Figures 7.1 to 7.7. To invoke the

Programmer�s Package Manager, start the DOS prompt, change directory to

where Perl is installed (for example, C:\Perl) and just type ppm (lower or

upper case). This will bring you to the PPM interactive shell with the ppm>

prompt (Figure 7.1).

Fig. 7.1 Invoking PPM

Next, specify the location (URL for the repository) of the package that you

want to download. The command for this is:

ppm> set repository name location

In our case, the location has the URL: http://bioperl.org/DIST/ and the

command, therefore, becomes (Figure 7.2):

ppm> set repository bioperl http://bioperl.org/DIST/

Next, we search for bioperl with the search command:

ppm> search bioperl

which gives us a list of available packages (Figure 7.3).

At this point, typing:

ppm> install bioperl
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will install the package on to your computer (Figures 7.4�7.6).

You can return to the DOS prompt with the quit command (Figure 7.7).

The messages that appear during the installation indicate where the pack-

age has been installed�in this case it is the D:\Perl\site\lib\ directory; it may be

in a different drive on your computer, for example, C:\Perl\site\lib\ etc. The

Fig. 7.2 Specifying a repository to use

Fig. 7.3 Searching for available packages
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Fig. 7.4 Installing BioPerl

Fig. 7.5 Installing BioPerl

BioPerl modules however, will always be stored in a sub-directory called Bio,

which means that to use them, you have to include the following statement in

your scripts:

use Bio::module;
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Modules in Perl end with the extension pm (for Perl module). For the mod-

ule called SeqIO.pm, for example, the use statement becomes:

use Bio::SeqIO;

Note that by convention, the extension pm is omitted from the use state-

ment. The use statement simply provides Perl an indication of where the mod-

ules are located. In reality,

Fig. 7.6 Installing BioPerl

Fig. 7.7 Quitting PPM
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use Bio::SeqIO

translates to:

use Bio/SeqIO.pm

where Bio/SeqIO.pm is simply the path to the SeqIO.pm file in the directory

Bio. You don�t need to use the full path because that is already stored in a

special Perl array variable called @INC that contains the list of directories that

Perl should search (for modules) while executing scripts. To find what is stored

in the variable you can run a simple one-line script that prints the variable out:

print �@INC\n�;

On my system, this prints out:

D:/Perl/lib D:/Perl/site/lib

as expected.

Note

If, for some reason, you have downloaded the (BioPerl) modules in a direc-
tory other than the default location, Perl will not be able to find them and
you will get an error that may look like this:

Can�t locate Bio/SeqIO.pm in @INC (@INC contains: D:/Perl/lib D:/Perl/
site/lib.) at C:\perl\getids.pl line 6.

BEGIN failed�compilation aborted at C:\perl\getids.pl line 6.

To avoid the error, you should explicitly tell Perl where to look for the

modules by using the �use lib� statement. If you have stored the modules in

D:\myModules\, then you should include the following statements at the top of

the script. For Windows:

use lib �D:\myModules\�;

use Bio::SeqIO;

If you are on Unix, the statement should be placed after the #!/usr/bin/perl

(or its equivalent on your system) line:

#!/usr/bin/perl

use lib �/home/myModules/�;

use Bio::SeqIO;
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 7.2 BIOPERL MODULES

If the BioPerl installation has been completed, without any errors, you will see

the following 25-odd directories on your computer (in the D:\perl\lib\site direc-

tory, for example):

Align AlignIO Annotation

Biblio DB Event

Factory Graphics Index

LiveSeq Location Map

MapIO Root Search

SearchIO Seq SeqFeature

SeqIO Structure Symbol

Tools Tree TreeIO

Variation

Each of these represents a top level folder containing several BioPerl mod-

ules. For example, the Seq directory contains the following modules:

LargePrimarySeq.pm

LargeSeq.pm

PrimaryQual.pm

QualI.pm

RichSeq.pm

RichSeqI.pm

SeqWithQuality.pm

Each of these modules, in turn, carry out a specific function. A list of the

commonly used modules and their functions are outlined in Table 7.1. We will

add to this list of modules in later chapters.
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Table 7.1 BioPerl modules

Top-level Modules Function
folder

Align AlignI Provides an interface to describe sequence align-
ments

AlignIO bl2seq Provides methods for sequence alignments

clustalw.pm Provides methods to read and write ClustalW
flat file databases

emboss.pm Provides parsing and writing pair-wise se-
quence alignments from the EMBOSS suite

fasta.pm Provides fasta sequence input/output stream
methods

meme.pm Provides methods to manipulate meme output

pfam.pm Provides methods to transform Bio::SimpleAlign
objects to and from pfam flat file databases

phylip.pm Provides methods to transform Bio::SimpleAlign
objects to and from interleaved phylip format

psi.pm Provides methods to read and write PSI-BLAST
profile alignment files

prodom.pm Provides methods to read and write Prodom
flat file databases

DB GenBank.pm Allows the dynamic retrieval of sequence ob-
jects (Bio::Seq) from the  GenBank database at
NCBI, via an Entrez query

EMBL.pm Allows the dynamic retrieval of sequence ob-
jects from the EMBL database using the dbfetch
script at EBI: http://www.ebi.ac.uk/cgi-bin/
dbfetch

Fasta.pm Provides indexed access to one or more Fasta
files allowing the retrieval of very large se-
quences

Seq LargePrimarySeq.pm Stores a very large sequence (100s of MB long)
LargeSeq.pm as a series of files in a temporary directory

PrimaryQual.pm Associates sequences with their corresponding
SeqWithQuality.pm quality values
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(Contd.)

RichSeq.pm Implements a sequence and an interface for se-
quences created from a rich sequence database

RichSeqI.pm such as EMBL, GenBank and SwissProt

SeqFeature FeaturePair.pm Holds information about a sequence feature on
two coordinates: the genomic sequence and the
corresponding protein sequence.

Generic.pm Provides all information for a feature on a se-
quence

Similarity.pm Provides information on sequence features
based on similarity, for example bit score, %
identity, etc.

SimilarityPair.pm Provides information on the similarity between
two sequences

SeqFeature:: Exon.pm/ExonI.pm Implements a feature representing an exon, an
Intron.pm intron, a gene structure, a transcript, a poly
GeneStructure.pm/ adenylation site, an untranslated region respec-
GeneStructureI.pm tively
Transcript.pm/

TranscriptI.pm

Poly_A_site.pm

UTR.pm

SeqIO ace.pm Handles interconversions for Bio::Seq objects to
bsml.pm and from the ace, BSML*, EMBL, Fasta, GCG,
embl.pm GenBank, SwissProt and raw file format respec-
fasta.pm tively
gcg.pm

genbank.pm

swiss.pm

raw.pm

MultiFile.pm Joins a large number of files of a particular for-
mat (e.g., Fasta) into a single stream

*Bioinformatic Sequence Markup Language or BSML is an extensible language specifi-
cation based on XML (Extensible Markup Language) and SGML (Standard Generalized
Markup Language) for the storage, display and dissemination of bioinformatic data. It
enables the integration of data of a diverse kind: sequence, annotation, images, etc. into
one standard format.
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 7.3 OBJECT ORIENTED PROGRAMMING

The use of BioPerl modules requires a basic understanding of object oriented

programming (OOP). Some essential concepts are outlined below.

The object�which is at the heart of OOP�is simply a term used to visualize

the entity being modeled or programmed. The idea is that if you can visualize

the object, it is easier to build a program that mimics the properties and the

behaviors of the object. Virtually anything you see around you can be an

object�a calculator, your telephone, computer, etc. As is perhaps obvious,

each such object has some general and some unique characteristics associated

with it�every calculator, for example, has buttons for numbers and math-

ematical operations and a display that allows you to see the results of a com-

putation. However, calculators can be of different types�you may have a

simple calculator that just does additions, subtractions, multiplications and

divisions. On the other hand, you may have a specialized calculator with ad-

vanced mathematical software that allows you to solve algebraic expressions

or a calculator that print results on paper tape.

A class is a container that contains the object. It is the OOP way of repre-

senting an object. In the above example, the calculator is a class that represents

the object of type calculator. The general methods that are common to all

objects of a certain type are called the class methods. The ability to perform a

basic operation such as adding two numbers is a fundamental operation and

an example of a class method. Every object of the class calculator will have this

method. On the other hand, the ability to solve complex algebraic expressions

is a specialized operation that may be present on some but not all calculators.

This is an example of a method that is associated with a particular type of

calculator. Such methods are called instance methods because they are specific

to a particular �instance� of an object of the class calculator.

Similarly, properties of an object�for example, the ability to print calcula-

tions on a paper tape that makes a calculator unique (as compared to an in-

strument that outputs results on an electronic display)�are called instance

variables, i.e., the variables associated with an object. When the entire class, its

methods and variables are stored in one file with the same name as the class, it

becomes a Perl module. For example, for the class calculator, the file (the

module) will be called calculator.pm.
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Once a class that models the behavior of a certain object is created, how is
the object used in code? This is done by a process known as instantiation
because it creates an instance of the class. The OOP keyword to do this is the
term �new�. When a new object of a class is instantiated, the function is called
class constructor. These terms will become clearer as we work with some ex-
amples.

We will begin with the Bio::SeqIO module which handles IO functions and
is commonly used to interconvert sequences from one format into another, for
example, fasta into EMBL. The module also provides methods for a large num-
ber of operations that can be performed on sequences. We will understand
how to perform percentage GC calculation on a DNA sequence in a Fasta file
using the Bio::SeqIO module.

It would be helpful to see how this operation is performed using standard
Perl for a single sequence file (Listing 7.1).

Listing 7.1 Using standard Perl for per cent GC calculation

#!/usr/bin/perl

$/ = undef;

use Getopt::Long;

(GetOptions(�f|filename=s� => \$file));

open (IN, $file) or die �Cannot read $file: $!\n�;

$line = <IN>;

$a = ($line =~ tr/A//);

$t = ($line =~ tr/T//);

$g = ($line =~ tr/G//);

$c = ($line =~ tr/C//);

$total = ($a + $t + $g + $c);

$gc = (($g+$c)/$total)*100;

print �A : $a\n�;

print �T : $t\n�;

print �G : $g\n�;

print �C : $c\n�;

print �Total : $total\n\n�;

printf �GC content : %.1f%\n�, $gc;
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 7.4 USING BIOPERL

The steps to write a program using the BioPerl module are fairly straightfor-

ward.

1. Include the BioPerl module in the program: As with standard Perl

modules, BioPerl modules are included in programs with the use state-

ment:

use Bio::SeqIO;

2. Instantiate an object of the class. The new() class method instantiates a

new Bio::SeqIO object:

$filestream = Bio::SeqIO->new(-file => $filename, -format => �fasta�);

This line of code requests a stream object for a particular format (in

this case Fasta). The newly created object can then be used to manipu-

late sequence information. In this case, new() accepts the following

parameters:

file: A file path to be opened for reading or writing.

The following conventions apply:

�file� : open file for reading

�>file� : open file for writing

�>>file� : open file for appending

�+<file� : open file read/write

You can specify the $filename parameter through the Getopt::Long

module via the Getoptions() function or on the command-line using

the $ARGV[0] variable.

format: The file format can be EMBL, Fasta, SwissProt, GenBank, etc.

3. Call the methods provided by the object. Each stream object has the

following functions:

$stream->next_seq();

This function reads the next sequence object in the stream.

In addition, once you create a sequence object $seq from the input stream,

you can use the moltype, desc, id, and seq methods to extract information

about the current sequence being read:
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$seq = $filestream->next_seq();

$type = $seq->moltype();

$id = $seq->id();

$desc = $seq->desc();

$dnaseq = $seq->seq();

The right arrow notation invokes the object method and substitutes the pa-

rameter to the left of the arrow as the first parameter passed to the object

method.

For a DNA sequence in Fasta format:

>gi|153423|gb|M88615.1|STMRIBON S. aureofaciens ribonuclease gene, complete cds

CGGCGGAACGGACAACGGCGTCCGTCCCGCCCGGCCGTACGTCCTTGTGGTGTCGGCGGGCGGTGCCCGT

CGCGTGGTGCTCGTCGTGTGGTGTCCGTCATGTGTGGGACACGGCCGGCCGGCGCGGGCGCCTGCCAAGC

TGGACCGCATGACCAGAAGCAAGAGCCCGCTCGTCGTCGGGGCCGTCCTGATCCTGGCCGTGCTCGCCGG

GGTTGGGTACCTGCTCGCCGGCAGGGGCGGCAGCACCCACCCCAAGGCCGCCGCGAGCTCCGCCGCCGCG

GGCACCTCGGCCCCCAAATCCTCGGCTCCCAAGCCGTCCCCGCCCGCCGGCGGCGCCTGGACGCCCGCCG

ACCCGGCGCTGGCCGACGTCTGCCGCACCAAGCTGCCCAGCCAGGCCCAGGACACCCTCGCCCTGATCGC

CAAGAACGGCCCCTACCCGTACAACCGGGACGGCGTCGTCTTCGAGAACCGCGAGAGCCGCCTGCCGAAG

AAGGGCAACGGCTACTACCACGAGTTCACCGTGGTCACCCCCGGCTCCAACGACCGAGGCACCCGACGGG

TCGTCACCGGCGGCTACGGCGAGCAGTACTGGTCCCCGGACCACTACGCGACCTTCCAGGAGATCGACCC

GCGCTGCTGAGCGCTGGCCTCACAGAAAATACTTTCCAACCTGGAAAGGTCGTGGCACAGTGGAGCCACC

GTCACTTTCCGAGGGGGAAACATGAGTGACTCCGCTCCCACCCCGCCGTCCGCCGCCGAGGCACGGCCTG

CCGACCGGGCCGGCGCGGCTGCCCGGCGCCCGGGCGAGCTGCCCCGCTGGTACGGGCCGGCCTTCGCCTT

CGCCTTCGCGCTCTACGGCCTGGGGATCGGCCACGTCATCGAGACCGGGCAGATCGCCGTGATCGGCGGG

CTCGCGCTTCGCCGCCCTGACCGGTGGCCTCGCGGCCTTCGCCATGCGCAGCGACGGCATCGTCCGC

the Bio::SeqIO module provides the following methods:

moltype* : Type of molecule (DNA or protein)

desc : Description of the molecule (from the Fasta header)

display_id** : Sequence identifier (from the Fasta header)

seq : The actual sequence itself
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*moltype has been replaced by a new method: alphabet(). If you are using an

older version of BioPerl, you may get an error saying:

�moltype: prev1.0 method. Calling alphabet() instead�.

In this case, use alphabet().

**The display_id field is the common name or the identifier of the sequence.

This is the LOCUS field of the GenBank/EMBL databanks and the ID field of

the SwissProt/sptrembl database.

The values of the individual fields (for the Streptomyces aureofaciens ribonu-

clease gene) are:

moltype : DNA

desc : S. aureofaciens ribonuclease gene, complete cds

display_id : gi|153423|gb|M88615.1|STMRIBON

and the sequence,

seq :

CGGCGGAACGGACAACGGCGTCCGTCCCGCCCGGCCGTACGTCCTTGTGGTGTCGGCGGGCGGTGCCCGTC

GCGTGGTGCTCGTCGTGTGGTGTCCGTCATGTGTGGGACACGGCCGGCCGGCGCGGGCGCCTGCCAAGCTG

GACCGCATGACCAGAAGCAAGAGCCCGCTCGTCGTCGGGGCCGTCCTGATCCTGGCCGTGCTCGCCGGGGT

TGGGTACCTGCTCGCCGGCAGGGGCGGCAGCACCCACCCCAAGGCCGCCGCGAGCTCCGCCGCCGCGGGCA

CCTCGGCCCCCAAATCCTCGGCTCCCAAGCCGTCCCCGCCCGCCGGCGGCGCCTGGACGCCCGCCGACCCG

GCGCTGGCCGACGTCTGCCGCACCAAGCTGCCCAGCCAGGCCCAGGACACCCTCGCCCTGATCGCCAAGAA

CGGCCCCTACCCGTACAACCGGGACGGCGTCGTCTTCGAGAACCGCGAGAGCCGCCTGCCGAAGAAGGGCA

ACGGCTACTACCACGAGTTCACCGTGGTCACCCCCGGCTCCAACGACCGAGGCACCCGACGGGTCGTCACC

GGCGGCTACGGCGAGCAGTACTGGTCCCCGGACCACTACGCGACCTTCCAGGAGATCGACCCGCGCTGCTG

AGCGCTGGCCTCACAGAAAATACTTTCCAACCTGGAAAGGTCGTGGCACAGTGGAGCCACCGTCACTTTCC

GAGGGGGAAACATGAGTGACTCCGCTCCCACCCCGCCGTCCGCCGCCGAGGCACGGCCTGCCGACCGGGCC

GGCGCGGCTGCCCGGCGCCCGGGCGAGCTGCCCCGCTGGTACGGGCCGGCCTTCGCCTTCGCCTTCGCGCT

CTACGGCCTGGGGATCGGCCACGTCATCGAGACCGGGCAGATCGCCGTGATCGGCGGGCTCGCGCTTCGCC

GCCCTGACCGGTGGCCTCGCGGCCTTCGCCATGCGCAGCGACGGCATCGTCCGC

The code to read a complete DNA sequence file and to calculate its GC

content using the Bio::SeqIO module is as follows (Listing 7.2).
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Listing 7.2 Calculating per cent GC using BioPerl

use Bio::SeqIO;

use Getopt::Long;

GetOptions(�f|filename=s�=>\$filename);

$filestream = Bio::SeqIO->new(-file => $filename, -format => �fasta�);

my $seq = $filestream->next_seq();

$id     = $seq->id();

$desc   = $seq->desc();

$type   = $seq->moltype();

print �ID: $id\nMolecule type: $type\nName: $desc\n\n�;

$dnaseq = $seq->seq();

$a = ($dnaseq =~ tr/[Aa]//);

$t = ($dnaseq =~ tr/[Tt]//);

$g = ($dnaseq =~ tr/[Gc]//);

$c = ($dnaseq =~ tr/[Cc]//);

$total = ($a + $t + $g + $c);

$gc = (($g+$c)/$total)*100;

print �A : $a\n�;

print �T : $t\n�;

print �G : $g\n�;

print �C : $c\n�;

print �Total : $total\n\n�;

printf �GC content : %.1f%\n�, $gc;

The execution and output of the script is shown in Figure 7.8.

C:\perl>atgc.pl -f sa_rnase.txt

where, sa_rnase.txt is a file that contains the ribonuclease gene from S.

aureofaciens (gi 153423) in Fasta format.
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The write_seq() function:

$stream->write_seq($seq);

writes a sequence object to a user specified location. An application of the

above function is to interconvert sequences from one format to another. For

example, the script in Listing 7.3 will change a Fasta format file into an EMBL

format file.

Listing 7.3 Converting a Fasta file into EMBL format

use Bio::SeqIO;

use Getopt::Long;

GetOptions(�i|infilename=s�=>\$infilename,

�o|outfilename=s�=>\$outfilename);

$instream  = Bio::SeqIO->new(-file => $infilename, -format => �fasta�);

$outstream = Bio::SeqIO->new(-file => �>$outfilename�, -format => �EMBL�);

Fig. 7.8 Running atgc.pl with such sa_rnase.txt as input file

(contd.)
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(contd.)

while(my $seq = $instream->next_seq()) {

$outstream->write_seq($seq);

}

Let us see the output of this program using a Fasta file of two Zebrafish

(Danio rerio)  kinase sequences:

>gi|28856247|gb|BC048050.1| Danio rerio, Similar to creatine kinase, mi-

tochondrial 1 (ubiquitous), clone MGC:55538 IMAGE:2642172, mRNA,

complete cds

GTACAGCACCACACTTGAGAAGACCAACTTCTGCTGGATTCAGAAGCATCTGACCACATTCATCTGGAGT

GCTCTGTTCTGCGGTTGAGGTGTTAAAATGGCAAGCAGCTTCGCACGGATTTTGTCAGGTAACAGGAAGG

TTGGCATCTTGTCGCTGGTCGGTGCGGGATCTCTGACCGTCGGGTTCTTCTTGAACAGGGAGCAGCATGT

CAGCGCAGGATCGAGCGTCCGGAGAATCTATCCCCCGAGTGCTGAATATCCAGATTTGCGTAAGCACAAT

AACTGTATGGCCAGTCACCTGACTCCTGCCGTATACGCAAAGCTGTGTGATAAATCCACTCCGAACGGTT

ACACTTTGGACGAAGCCATTCAGACTGGCGTGGACAATCCAGGTCATCCTTTCATAAAGACAGTAGGAAT

GGTGGCAGGAGATGAAGAGTCATATGAGGTTTTTGCTGACATCTTCAACCCAGTCATCAAAGAAAGGCAC

AATGGTTATGACCCCTGCAACATGAAACACCCCACTGACCTGGATTCCAGTAAGATACGAGGAGGCATGT

TTGATGAGAAGTACGTGCTGTCTTCTCGAGTCAGGACGGGCAGGAGTATCCGAGGCCTGAGTCTCCCCCC

GGCCTGCACCCGTGCTGAGCGCAGAGAGGTGGAGAGGGTTGTGGTTGATGCTTTGGCAGGCCTAAAAGGG

GATTTGACTGGAAAATACTACAGCCTGACTGTAATGACTGAACAGGAGCAGCAGCAGCTTATTGATGATC

ACTTCCTGTTTGATAAACCTGTATCGCCATTGCTGACATGTGCGGGTATGGCTCGAGATTGGCCTGACGC

TAGAGGCATCTGGCACAACAATGAGAAAACCTTCCTGGTGTGGATCAACGAGGAAGATCACACCCGTGTG

ATCTCCATGGAGAAGGGAGGCAACATGAGAAGGGTCTTTGAGCGTTTCTGCAAGGGTCTCCAAGAGGTTG

AGAGACTAATTCAGGAGAAGGGTTGGGAATTCATGTGGAATGAGCGTCTGGGTTACATTCTCACCTGTCC

GTCAAACCTGGGCACTGGGCTGCGAGCTGGAGTCCATGTTAATCTTCCTCGCCTCAGCAAGGACCCTCGC

TTTTCTAAAATCCTGGATAACCTGCGGCTCCAGAAAAGAGGGACTGGAGGAGTGGACACGGCTGCTGTTG

GAAGCACTTTTGATATTTCCAATCTGGACAGGCTGGGCCAATCAGAGGTCCAGCTGGTGCAGACTGTGAT

AGACGGAGTGAACTATCTCATTGAATGTGAGAGGAAACTGGAGAAAGGCCAAGACATCAAAATCCCCGCC

CCCATCAGCCAGTTTAAATAGACTGGGTGGTCTTTCGTAGCTCCTCCCTCTCTCCTGGCTCCACCCTCTC

GTGTGCTCCTCCCACCTTAAAATATTCCGCTAAAACCGATCCATAAAGCATGCCTCTGTGTTACATCCGA

CATATTCGACACTCCAGTATAACGCAGGAGTGAATGTATCGTACATCATGATTGTGTTCATTTGTGGCGT

TAATGATTTGTCACAATGTATCTAACTTGATTGTGTTGCAATAACGTTATTAGAGCCATTGCTGAAAATT
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GCCTCAGGTGTACAAGAATTAAACAGGTTTTTGTGGAAGATGCTGATGATATAACTTGCTGACGGATCCT

GAGAGTGTTTATTGTGTGCTTCACTGATGTTATACTTAAAGGAAGTGCTTTAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

>gi|28856170|gb|BC048055.1| Danio rerio, Similar to NIMA (never in mito-

sis gene a)-related kinase 2, clone MGC:55602 IMAGE:2643611, mRNA,

complete cds

GTTTTCTCAACTCACAAAATACGTACACGCGTTTTAACTAAGGGTAAACAATAAAACACACTGGCAGTAA

AACCACAGCGTTCAAGTAGTGAGTGAGTTACGTGTGTTTGGATCTGCTGAGTTGCTGTTGAACGCGATGC

CATCCAAAACTGAAGACTACGAGGTGCTGCTCACCATAGGATGTGGATCTTATGGAAAATGCCAGAAAAT

CAAGAGGAAATCCGATGGAAAGATTCTGGTCTGGAAGGTTCTGGACTATGGCACTATGGCCGAGGGAGAG

AAACAGATGCTGGTGTCAGAAGTCAACTTGCTCCGTGAGCTGAAGCACCCAAATATCGTCCGATACCATG

ACCGAATTATTGACAGAACGAACACGACATTATATATAGTGATGGAATACTGTGAGGGTGGAGATCTCGC

CAGCCTCATCAACAGAAGCATCAAAGACAAGCGATACCTGGAGGAAGAATTCATCCTCCGTGTGATGGCA

CAGTTGTCTCTGGCGTTAAAAGAATGCCATGGTAGGAGTAACGGCAGCAGTACAGTTCTGCACCGAGACC

TGAAACCAGCAAACATCTTTCTGGATGCCAAACAGAATGTAAAGCTTGGCGATTTCGGTTTAGCTCGCAT

ACTAAACCACGATACAAGCTTTGCTAAAACGTTTGTTGGAACGCCATATTACATGTCGCCAGAACAAATG

AATCGCATGTCCTATAATGAGAAATCGGATATATGGTCTTTAGGGTGTTTACTCTATGAACTATGTGCTT

TATCGCCCCCATTTACAGCATACAACCAGACAGAGCTGGCTCGAAAAATCAGAGAAGGCAGATTTCGAAG

AATCCCATACCGATACTCGGATGAGCTAAACACACTGCTTTCAAAAATGCTCAACTTAAAGGATTATCTG

AGGCCCTCTGTGGAGTCCATCCTGCAGAATGGTTTGATCTCCGGTTATGTGGCCCTCGAGCAGAAGAGGC

TCCAGGAGAAACAGCGGCGCAGATCAGATGAGGCAGAGCAGCCCAAACATCCAGAGTCACCACTTCTGGC

AGAGCTGCGGCTTAAAGAGCAGATTCTCCGAGAGCGAGAGCAGGCCCTCAAAGAGCGAGAGCAGCGGCTA

GAGCAAAGGGAACAAGAACTGTGTGTCCGAGAACAGCAAACTAATGAAAAGCTGGTCAGAGCCGAGAGCA

TGTTGAAGGCGTTTAATCTGATTCGACAGCAGAGGGCGCTATCTCTGCTCAGCGCCAGCGACACAGAGAA

TGAAGAGAACATCTCTCCAGGGAAAAAGAGGGTTCACTTTGCAGGAGACGGGAAGGAGAACGGCAGACTG

ATCATGAAACCTCAGGAGCACATCCTTGAGAAGAGACACCAGCTGATGAACAAGCGCATACAGACACTCG

GAGAGGAGGAGAAGATGATCCACTCGCCAAAACACAGAGAAATGCAGGGAATCCGCTAGCCTTCAAAGAC

ACTGCCAGTGTGGTCAATCACGTCGAGAGGATTTCGTCTAGTTGTGTATATTAAGAGATAGATTCCTGCT

TTAATTTATTTGCTGCAGCATTTGTACAGTACACTGGAGCATTTCATTTAAAGGGACAGCTAACCCCAAA

TTCAAAACTCTCTTATCATTTATTCACCCTCCAATTTTTCCAAACCTGTTCGTTTCTTTTTTTATTTTCT

GATCACACAGAAATGAAGATATTTAGAGAAATGTTGGGAATCAGTAGCCATTAACTTTAATAAAATTTGT

TATATCCCACTTTAGATGTCTGACTATCAATTACAAACATTCTTCCAAATATCTCCTTTTGTGAAGAGAA

AGGGAACATCTTGAGGGTGAATAAATGGTAAGTAATGTTTTATTTTGGGTGAACTGTCTTTTTAATGTGC

ATTACACTGGACTATTATATAATAGCATTTTATGGATGTTTTATTGCTAGAAGCATTGTTTTTATTTGGA

ATAAATAAATGAATAATGGTTGCAAAAAAAAAAAAAAA
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To run the program, save the sequences in a file called kinase.fasta, save the

script as fasta2embl.pl and specify the input and output files as in Figure 7.9.

Figure 7.9 also shows the output in EMBL format using the above script (only

the first sequence is shown).

Assignments

1. Download a set of kinases from GenBank and store them as a multiple

Fasta file. Write a program to calculate the GC content of each of the

sequences.

Fig. 7.9 kinase.embl (EMBL format)
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2. Write two separate scripts, one using the Bio::SeqIO module and one

using standard Perl, to break up a multiple Fasta file into individual

files, each containing a single sequence in Fasta format. The resulting

files should be named by the gi or accession number of the DNA

sequence it contains.
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Appendix I: Installing External Modules

BioPerl has external package dependencies. This means it needs additional

packages to provide functionality that it does not have on its own. Some ex-

amples are the IO::Scalar and IO::String modules. These are available as the

Bundle-BioPerl package and should be downloaded along with your BioPerl

installation. Search for �BioPerl� at the ppm prompt and use the install com-

mand as illustrated in Figure 7A below:

Fig. 7A Installing BioPerl modules

Appendix II: Upgrading BioPerl

BioPerl may have released a new version since you last downloaded it on your

system. The steps below illustrate the method to check for new updates and

install a recent version.

Step 1: Check for availability of a new version:

ppm>verify bioperl

If an upgrade is available, ppm will respond with:

�An upgrade to package bioperl is available�

Step 2: To install it, do:

ppm> verify �upgrade bioperl

After it has been installed, ppm will end with a message saying:

�Package bioperl upgraded to version x.x.x.x�
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Appendix III: Testing for Availability of Individual Modules

To test for the presence of individual modules on your system, issue the fol-

lowing command on the command-line

 > perl -e �use Module�

The > sign represents the command prompt (which could be > or %, etc. on

Unix or simply, C:\Perl> on Windows). To check for Bio::SeqIO.pm, for ex-

ample, the command would be:

> perl -e �use Bio::SeqIO�

If this statement exits without errors, the module has been loaded properly.

If not, you will get an error message saying:

Can�t locate Bio/SeqIO.pm in @INC (@INC contains: D:/Perl/lib

D:/Perl/site/lib) at -e line 1.

BEGIN failed�compilation aborted at -e line 1.

The actual directory paths would be different though. The useful piece of

information here is the �(@INC contains: D:/Perl/lib D:/Perl/site/lib)� part which

identifies the location where you should place all Perl modules. The above

error messages indicate, for example, that there are two locations: D:/Perl/lib

and D:/Perl/site/lib where modules can be placed.

     If you get the �Can�t locate�� error, you should try to reload the module or

manually place it in one of the directories listed in @INC.
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CHAPTER

Bio::DB::GenBank

 8.1 INTRODUCTION

In this chapter we will learn how to automate sequence downloads from

GenBank with the Bio::DB::GenBank module. Sequences in GenBank can be

accessed via a number of different identifiers such as accession numbers,

GenInfo Identifier (GI) numbers and version numbers. There are important

differences in these various identifiers.

Accession numbers are unique identifiers for a sequence record and do not

change even if the information in the record changes. Accession numbers are

combinations of letter(s) and numbers. The accession number for some rice

BACs from chromosome 10, for example, are AC080019, AC078839 and

AC083945. On the other hand, both the GI number and the version numbers

change whenever the sequences change. Sequences are continually submitted

to GenBank and as they are updated with more accurate versions, they are

assigned a new GenBank number and a new version number. However, they

retain the same accession number.
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 8.2 STRUCTURE OF A GENBANK RECORD

Before we get into the Bio::DB::GenBank module, we will see how a GenBank

record looks and understand what different elements a typical GenBank record

consists of. The steps to download the GenBank record for the accession number

AC080019 are described below.

1. Open the Entrez server at <http://www.ncbi.nlm.nih.gov/entrez/

query.fcgi> (Figure 8.1).

Fig. 8.1 Entrez web-server at NCBI

Note

Entrez is a common gateway that provides free access to molecular biology
resources such as sequence and structure data and scientific publications. It
is a service developed and maintained by the National Center for
Biotechnology Information (NCBI). NCBI was founded in 1988, as a division
of the National Library of Medicine, under the aegis of the National Institutes
of Health (NIH)�the apex body that regulates scientific research in the
United States. GenBank, likewise, is a searchable central repository of
annotated nucleotide sequences derived from data submitted by researchers
from all over the world. Make a permanent link to this site on your computer
since you will be using it frequently.
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2. From the drop-down box called Search on the left, select �Nucleotide�

since you will be downloading DNA sequences (Figure 8.1) for this

example.

3. Enter the accession number of the BAC (AC080019) in the �Search for�

box and press enter. The sequence record should appear as in Figure 8.2.

View the sequence data by clicking the accession number that is

hyperlinked to the sequence record. The page you get represents what

a typical GenBank record looks like (Figure 8.3).

Fig. 8.2 Displaying the AC080019 entry in GenBank

Note some of the useful information present in the header (shown boxed)

such as:

l Definition Genomic sequence for Oryza sativa,

Nipponbare strain clone OSJNBa0094H10,

from chromosome X, complete sequence.

l Accession number AC080019

l Total size of BAC 149654 basepairs (bp)

l Chromosomal location Chromosome X
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Fig. 8.3 Displaying the AC080019 record

l Clone name OSJNBa0094H10

l Version number AC080019.7

l GI number 13112226

l Source organism Oryza sativa

Scroll down the record to see the actual BAC nucleotide sequence (Figure 8.4)

and its base composition (Base Count). Alternatively, select Fasta from the

dropdown box next to �Display� on the left (Figure 8.5) and press the Display

button to see the sequence in Fasta format (Figure 8.6).

A record such as this with a header beginning with only a �>� sign on the

first line and followed by the complete sequence starting from the second line

is called a Fasta record or file.

Note the sequence of the BAC (Figure 8.6) with a single header line that reads:

>gi|13112226|gb|AC080019.7|AC080019 Genomic sequence for Oryza

sativa, Nipponbare strain clone OSJNBa0094H10, from chromosome X,

complete sequence
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Fig. 8.4 AC080019 nucleotide sequence

GenBank uses a number of different identifiers to refer to the entry above. The

identifiers are listed below:

GI 13112226

Accession number AC080019.7 (Version number 7)

Clone name OSJNBa0094H10

A little later in the chapter, we will use each of these to access this entry

using the Bio::DB::GenBank module.

For short sequences, you can copy and paste the sequence in a text editor in

the usual manner. For a large sequence such as this, use the �Send to Text�

button to download the sequence on your computer (Figure 8.7).

When you view this document in a text editor, the first few lines look like

Figure 8.8 (Notepad on Windows). Here, even though the header overflows on

two lines, it is really just one line.
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Fig. 8.5 Selecting Fasta format

 8.3 THE BIO::DB::GENBANK MODULE

In its simplest form, Bio::DB::GenBank provides methods to retrieve from

GenBank sequences identified by GI accession numbers, etc. The general usage

is as follows:

use Bio::DB::GenBank;

$gb = new Bio::DB::GenBank;

$seqobj = $gb->get_Seq_by_id(�identifier�);

where, identifier = a unique ID

or,

$seqobj = $gb->get_Seq_by_acc(�accession�);

where, accession = accession number
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Fig. 8.6 AC080019 sequence in Fasta format

Once you get the $seqobj object, you can use the same methods we used

earlier in Chapter 1 to retrieve information about the GenBank entry:

$type = $seqobj->moltype(); #DNA, RNA or protein?

$id = $seqobj->id(); #id

$description = $seqobj->desc(); #description

$dnaseq = $seqobj->seq(); #DNA or protein sequence

$length = $seqobj->length(); #length of sequence

The get_Seq_by_id method retrieves a Bio::Seq object by a unique ID such

as  its GI number and returns a Bio::Seq object. If the ID is not found, the
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Fig. 8.7 Saving the AC080019 Fasta sequence to file

method displays an �ID does not exist� exception. This method works for

IDs that uniquely identify the sequence entry. For example, all the three IDs

below will give the same information because they uniquely identify the

sequence record:

By Accession number:

$seqobj = $gb->get_Seq_by_id(�AC080019�);

By Accession + version number:

$seqobj = $gb->get_Seq_by_id(�AC080019.7�);

By gi number:

$seqobj = $gb->get_Seq_by_id(�13112226�);
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Fig. 8.8 AC080019 Fasta file in Notepad

By clone name:

$seqobj = $gb->get_Seq_by_id(�OSJNba0094H10�);

To test this, let�s write a small script that takes the ID from the command-

line and see what output we get for the different identifiers.

use Bio::DB::GenBank();

$gb = new Bio::DB::GenBank();

$seqobj = $gb->get_Seq_by_id(�$ARGV[0]�);

$id = $seqobj->id();

$description = $seqobj->desc();

$moltype = $seqobj->moltype();

$length = $seqobj->length();
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$dnaseq = $seqobj->seq();

print �ID: $id\n�;

print �Description: $description\n�;

print �Molecule type: $moltype\n�;

print �Sequence: $dnaseq\n�;

print �Length: $length\n�;

Note that $ARGV[0] is a sequence identifier, not a multiple Fasta file saved

locally. As explained earlier, $ARGV[0] could be the accession number, GI

number, etc. Try the above code with the different identifiers. The output

should be the same in each case.

Similarly, the get_Seq_by_acc method retrieves a Bio::Seq object by its

accession number and returns a Bio::Seq object. If the accession number is not

found, the method displays an �ID does not exist� exception.

If you want to obtain just a part of the sequence, you can use the subseq

method and supply the start and end nucleotide positions of the sequences

that you want to extract.

use Bio::DB::GenBank();

$gb = new Bio::DB::GenBank();

$seqobj  = $gb->get_Seq_by_id(�$ARGV[0]�);

#get description

$description = $seqobj->desc();

print �Description: $description\n�;

#get a subsequence

$subseq = $seqobj->subseq(1, 100);

print �Sequence from 1 to 100:\n$subseq\n�;

This will give only the sequence from nucleotide positions 1 to 100. The

command for the script (called getSequence.pl) run with the accession num-

ber and its output is shown in Figure 8.9.
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Fig. 8.9 Extracting subsequences

Assignments

1. Download and uncompress the nr.Z database from NCBI (ftp://

ftp.ncbi.nih.gov/blast/db/). Write a script to download all rat se-

quences (Rattus norvegicus) from nr in Fasta format. How many rat

sequences are present in the current release of nr?

2. For each of the rat sequences, write a script to parse the GenBank

record and create an HTML table containing the following information:

GI number

Accession number

Protein product name

Complete protein sequence

Domain information (see below)

For example, the GenBank record for rat protein �delayed rectifier

potassium channel Kv4� (gi 111574) contains the following informa-

tion as identified by the Features list:

Parse each of the �Region� entries and add it to the Domain infor-

mation field in the following manner:
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Region name: Transmembrane

Coordinates: 191�209

Subsequence: YVAFASLFFILVSITTFCL



9
CHAPTER

Accessing GenBank Data

 9.1 INTRODUCTION

In the last chapter we saw how a GenBank record is structured and how we

can use the Bio::DB::GenBank module to extract basic information on sequence

data using unique identifiers such as the accession number, GI number or

clone name. In this chapter, we will learn how to use the methods provided by

the Bio::SeqI, Bio::SeqIO and Bio::SeqFeatureI packages to access further

information from a GenBank record.

 9.2 GENBANK TAGS

Before we do so, we need to understand how BioPerl views a GenBank record.

If you remember, the GenBank record consists of a header portion at the top

which provides such information on the sequence such as the locus, definition,

accession number, the source organism, the authors, etc. (Figure 9.1).

The record then provides information on the sequence itself in extensive

detail (especially if it is a fully annotated record). These are listed under the

M
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M
K
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Fig. 9.1 GenBank header for rice BAC AC0080019

title �Features� and include such information as the source of the sequence

(viz., the name of the organism it is derived from, its chromosomal location,

etc.) and the genes, repeat regions and proteins found on the sequence

(Figure 9.2), with specific details on each of the features.

BioPerl calls these features �tags� (Figure 9.3). All the main headings under

Features such as source, repeat_region, gene, CDS, etc. are called Primary

tags. Each Primary tag has a value and, in addition, carries information below

it in the form of sub-tags. For example, the first Primary tag �gene� in Figure

9.3 has a value of 55..1885, which is just the start and stop coordinates of the

gene and has sub-tags called �gene� and �note� appended with a/sign. Each

of these sub-tags, in turn, have values, which, in this case, describe the identifier

and the definition of the gene: �OSJNBa0094H10.1� and �Hypothetical protein�

respectively. Some examples of Primary and sub-tags and their corresponding

values as represented in the AC080019 GenBank record for Rice BAC

OSJNBa0094H10 are presented in Table 9.1. In each case, the primary features

are highlighted.
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Fig. 9.2 Sequence features on a GenBank record

Fig. 9.3 Tag-value pairs in a GenBank record
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Table 9.1 Tag-value pairs in the AC080019 GenBank record

Tag type Tag name Tag value

1 Primary Source 1..149654

àSub-tag Organism Oryza sativa (japonica cultivar-group)

àSub-tag mol_type genomic DNA

àSub-tag cultivar Nipponbare

àSub-tag db_xref taxon:39947

àSub-tag chromosome X

àSub-tag clone OSJNBa0094H10

àSub-tag clone_lib HindIII

2 Primary repeat_region 1..4272

àSub-tag note Retrosat2 Ty3-Gypsy_retroelement

3 Primary gene 55..1885

àSub-tag gene OSJNBa0094H10.1

àSub-tag note Hypothetical protein

4 Primary CDS complement(join(35752..36640,36704..36883,

37831..37865))

àSub-tag gene OSJNBa0094H10.6

àSub-tag codon_start 1

àSub-tag product Hypothetical protein

àSub-tag protein_id AAK13109.1

àSub-tag db_xref GI:13129451

àSub-tag translation MKVEKGRDAPKVPLPSLPVVP � LSFPRLVAWW

 9.3 EXTRACTING TAGS AND THEIR VALUES

BioPerl provides mechanisms to access both the Primary tag and each of the

sub-tags below it. These methods are derived from the Bio::SeqFeatureI mod-

ule and are described in Table 9.2.
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Table 9.2 Bio::SeqFeatureI methods

Method name Function Usage

start Start coordinate of feature $featureàstart

end End coordinate of feature $featureàend

strand Orientation of feature (1 for the $featureàstrand

forward strand, -1 for the reverse

strand, 0 if not relevant)

length Length of feature $featureàlength

all_tags Extracts all tags for a feature $featureàall_tags

each_tag_value Extracts all values for a tag $featureàeach_tag_value

has_tag Checks if a tag is present $featureàhas_tag

source_tag Extracts the source tag for a feature $featureàsource_tag

(i.e., where the feature comes from,

e.g., BLAST, GenScan, etc.

The use of these methods in actual code is illustrated below.

As always we begin with a use statement that includes the Bio::SeqIO module

in our program.

use Bio::SeqIO;

We then create a new instance of the Bio::SeqIO object by invoking the

new() class method, and assign it to $infile.

my $instream= Bio::SeqIO->new(-file => $ARGV[0], -format => �Genbank�);

Note that this statement can also be written as:

my $instream= new Bio::SeqIO(-file => $ARGV[0], -format => �Genbank�);

As we saw in Chapter 7, new() accepts two parameters:

l file (path to file to be opened for reading or writing)

l format (the file format: EMBL, Fasta, SwissProt, GenBank, etc.)

In this case, we have simply chosen to provide the file name on the com-

mand-line ($ARGV[0]); the format of the input file is GenBank.

We can now create a $seq object and extract the DNA sequence from the

BAC along with other header information such as the accession number, the

primary ID, the display ID and description.
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my $seq = $instream->next_seq()

$accession = $seq->accession_number();

$seq = $seq->seq();

$desc = $seq->desc(); # Description

$dnaseq = $seq->seq(); # DNA sequence

$did = $seq->display_id(); # Display ID

$pid = $seq->primary_id(); # Primary ID

The subseq() method can be used to obtain a subsequence:

 $substr = $seq->subseq(start,end); #Obtain a subsequence

where start and stop represent the required start and end coordinates.

In addition, once we have the $seq object, we can extract information on the

species to which the sequence belongs using the methods provided by the

Bio::Species module. These methods are described in Table 3.3.

Table 9.3 Bio::Species methods

Method name Function Usage

common_name The common name of the organism $speciesàcommon_name

genus Extracts the genus of the organism $featureàgenus

binomial The full scientific name of the $featureàbinomial
organism

classification Returns the classification list in the
object as an array in the order
species, genus, �, kingdom. $featureàclassification

The classification method yields an array of terms used to describe the

taxonomy of the organism. In the case of rice, the classification is:

�sativa�,

�Oryza�,

�Oryzeae�,

�Ehrhartoideae�,
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�Poaceae�,

�Poales�,

�Liliopsida�,

�Magnoliophyta�,

�Spermatophyta�,

�Tracheophyta�,

�Embryophyta�,

�Streptophyta�,

�Viridiplantae�,

�Eukaryota�

which simply means that rice (Oryza sativa) belongs to the Kingdom

Viridiplantae (which represents green plants and green algae), the Phylum

Magnoliophyta (representing flowering plants), the Class Monocotyledoneae

(also called Liliopsida for the grasses), the Family Poaceae, the Tribe Oryzeae,

the Genus Oryza and the Species sativa.

If the BAC represented a human sequence, the corresponding classification

would be:

�sapiens�,

�Homo�,

�Hominidae�,

�Catarrhini�,

�Primates�,

�Eutheria�,

�Mammalia�,

�Euteleostomi�,

�Vertebrata�,

�Craniata�,

�Chordata�,
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�Metazoa�,

�Eukaryota�

which has a similar connotation.

The methods are used as follows:

my $organism = $species->common_name; # Organism

my $genus = $species->genus; # Genus

my $name = $species->binomial(); # Full scientific name

my @class = $species->classification(); # Full taxonomy

Importantly, we can now extract the tags from the BAC along with their

values. To get all the features, viz., gene, mRNA, repeat_region, CDS, etc., use

the all_seqFeatures() method from the Bio::SeqI package (which provides an

abstract interface of annotated sequence):

@features = $seq->all_SeqFeatures();

which returns an array of all the features associated with the sequence. Now,

we can iterate over the array and retrieve all the associated values:

foreach my $feat(@features) {

print �Feature = �, $feat->primary_tag,

�\nStrand = �, $feat->strand,

�\nFrom = �, $feat->start,

� to = �, $feat->end,

�\nSource = �, $feat->source_tag(), �\n�;

}

This will give only the information associated with the Primary tag. To get

all the sub-tags and their values, we need to iterate over each of the tags:

@tags = $feat->all_tags();

foreach $tag(@tags) {

@values = $feat->each_tag_value($tag);

print $tag, � = �, @values, �\n�;

}
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To get all tags of the type �translation�, we can use the has_tag() method to

check for the presence of that string.

 #get all translations

 if ($feat->has_tag(�translation�)) {

@proteinids = $feat->each_tag_value(�translation�);

print �@proteinids\n�;

 }

Similarly, to get all the gene names in the BAC (eg., OSJNBb0076H04.1,

OSJNBb0076H04.2, etc ), check for the tag �gene�.

#get all genes

if ($feat->has_tag(�gene�)) {

@geneids = $feat->each_tag_value(�gene�);

print �@geneids\n�;

}

 9.4 SAMPLE SCRIPTS

A few sample scripts and their outputs are shown here to illustrate the use of

the methods described above.

Listing 9.1 Sample script 1

use Bio::SeqIO;

my $instream = new Bio::SeqIO(-file => $ARGV[0],� format => �Genbank�);

my $seq = $instream->next_seq();

my $accession = $seq->accession_number();

my $dnaseq = $seq->seq();

my $did = $seq->display_id();

my $pid = $seq->primary_id();

(Contd.)



170 Bioinformatics: Principles and Applications

M
K

M
K

(Contd.)

my $desc = $seq->desc();

my $substr = $seq->subseq(10,50);

my $species = $seq->species();

my $organism = $species->common_name;

my $genus = $species->genus;

my $name = $species->binomial();

my @class = $species->classification();

print �class = @class\n�;

print �

Description = $desc

Organism = $organism

Genus = $genus

Scientific name = $name

Accession number = $accession

Display ID = $did

Primary ID = $pid

Subsequence = $substr�;

Fig. 9.4 Output of Listing 3.1



Accessing GenBank Data 171

M
K

M
K

Listing 9.2 Sample script 2 (Extract Primary tags only)

use Bio::SeqIO;

my $instream = new Bio::SeqIO(-file => $ARGV[0], -format => �Genbank�);

my $seq = $instream->next_seq();

@feats = $seq->all_SeqFeatures();

foreach my $feat (@feats) {

 $count++;

 print �$count] Feature = �, $feat->primary_tag,

�\nStrand = �, $feat->strand,

�\nFrom = �, $feat->start,

� to = �, $feat->end,

�\nLength = �, $feat->length,

�\nSource = �, $feat->source_tag(),

�\n�;

}

Listing 9.3 Sample script 3 (Extract all tags)

use Bio::SeqIO;

my $instream = new Bio::SeqIO(-file => $ARGV[0], -format => �Genbank�);

my $seq = $instream->next_seq();

@feats = $seq->all_SeqFeatures();

foreach my $feat (@feats) {

 $count++;

 print �$count]

Feature = �, $feat->primary_tag,

�\nStrand = �, $feat->strand,

�\nFrom = �, $feat->start,

� to = �, $feat->end,

�\nLength = �, $feat->length,

(Contd.)
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Fig. 9.5 Output of sample script 2

(Contd.)

�\nSource = �, $feat->source_tag(),

�\n�;

#get all tags for all primary features viz., gene, mRNA,

@tags = $feat->all_tags();

foreach $tag (@tags) {

@values = $feat->each_tag_value($tag);

print �Tag: �, $tag, �= �, @values, �\n�;

}

 print �\n�;

}
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Assignments

Download a fully annotated BAC sequence for a sequence from Rattus

norvegicus. Write a script to parse the GenBank record and create an HTML

table containing the following information (wherever available):

GI number

Accession number

Protein product name

Fig. 9.6 Output of sample script 3
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Complete protein sequence

Domain information (see below)

For example, the GenBank record for rat protein �delayed rectifier potassium

channel Kv4� (GI 111574) contains the following information as identified by

the Features list:

Parse each of the �Region� entries and add it to the Domain information

field in the following manner:

Region name: Transmembrane

Coordinates: 191�209

Subsequence: YVAFASLFFILVSITTFCL



CHAPTER

BioPerl BLAST Modules

 10.1 INTRODUCTION

In this chapter, we will introduce the Basic Local Alignment Search Tool

(BLAST) that is commonly used in sequence analysis and demonstrate how the

searches can be automated usings both conventional Perl modules and BioPerl

modules.

In Chapter 1, we had used BLAST to find high scoring local alignments

between an input sequence and sequences in NCBI database through the web-

based tool that is available through their website at http://

www.ncbi.nlm.nih.gov/BLAST/. We had also demonstrated how to perform

automated BLAST analyses using standard Perl code. In this chapter, we will

learn how to run searches using standard Perl as well as the direct use of

specialized BioPerl modules.

 10.2 BLAST PROGRAMS

There are a number of variants of the BLAST algorithm and the choice of a

10
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BLAST2

BLASTN

BLASTP

BLASTX

TBLASTN

DNA or
protein

DNA

Protein

DNA

Protein

DNA or
protein

DNA

Protein

Protein

DNA

Find level of seque-
nce similarity or
identity between the
input nucleotide  or
protein sequences.

Find DNA sequen-
ces that match the
query.

Find identical (hom-
ologous) proteins.

Find what protein
the query sequence
codes for.

Find genes in
unknown DNA
sequences.

DNA ´ DNA
or
Protein ´ protein
Compares a nucleotide or
a protein query sequence
against another nucleo-
tide or protein sequence.

DNA ´ DNA
Compares a nucleotide
query sequence against a
nucleotide sequence data-
base.

Protein ´ protein
Compares an amino acid
query sequence against a
protein sequence data-
base.

Protein ´ protein
Compares a nucleotide
query sequence translat-
ed in all reading frames
against a protein sequ-
ence database.

Protein ´ protein
Compares a protein
query sequence against a
nucleotide sequence data-
base dynamically transla-
ted in all reading frames.

particular algorithm primarily depends on the type of sequence to be analyzed

(that is, nucleotide or protein).

The search programs and their applications are described in Table 10.1.

Table 10.1 BLAST programs

Program Query Database Comparison Application

sequence of type

of type
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Table 10.1 (Contd.)

DNA DNA Protein ´ protein
Compares the six-frame
translations of a nucleotide
query sequence against the
six-frame transla tions of a
nucleotide sequence data-
base.

Discover gene struc-
ture. (Find degree of
homology between
the coding region of
the query sequence
and known genes in
the database.)

TBLASTX

 10.3 BLAST2

We will begin the exercise with the BLAST2 algorithm which is used to per-

form a search between two input sequences. This is also known as a �pair-

wise� search and its purpose is to examine the level of identity between the

input sequences. This analysis is performed at the nucleotide or amino acid

level and both sequences need to be either DNA or protein sequences.

This program is available on the NCBI site and can be accessed at:

http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html

To perform a BLAST2 analysis, you need to specify:

1. Two input sequences (nucleotide or protein) or their GI numbers.

2. The BLAST program to use (BLASTN or BLASTP for a nucleotide or

protein sequence respectively).

3. The matrix (we will use the default BLOSUM62 for BLASTP).

4. Parameters such as gap and extension gap penalties, etc. (we will use

the default settings).

The parameters and their values (for a protein-protein BLAST2) are as

follows:

Name of program value = BLASTP

Name of matrix value = BLOSUM62

First sequence name = one

Second sequence name = two

Action (Command) name = submit



178 Bioinformatics: Principles and Applications

M
K

M
K

 10.4 PERL MODULES FOR BLAST2

You can use the standard Perl modules LWP::Simple and LWP::UserAgent to

perform BLAST2.

The basic code using the modules for a pair-wise BLAST between two
sequences with GenBank IDs $gbid1 and $gbid2 is shown below:

1. Using LWP::Simple:

#!/usr/bin/perl

$/=undef;

use LWP::Simple;

$url =

�http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?program=blas

tp&matrix=BLOSUM62&one=$gbid1&two=$gbid2&Action=submit�;

$page = get($url);

print �$page�;

Fig. 10.1 BLAST2 at NCBI
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Of course, the matrix can be changed to any of the available options (PAM40,
PAM120, PAM250, BLOSUM50, BLOSUM62 and BLOSUM90) depending on
the specific purpose of the analysis. No alternate scoring matrices are available
for a nucleotide-nucleotide BLAST2.

Now, let�s see the equivalent code using the LWP::UserAgent module. Unlike
LWP::Simple, the LWP::UserAgent module provides an object oriented interface
to the World Wide Web (WWW). It provides the user with methods to create
an agent (hence the name �UserAgent�) which in turn is used to issue requests
(for example, perform a pair-wise BLAST) to specific services (e.g., the NCBI
BLAST2 server) on the WWW and obtain a response (the result of the BLAST2
analysis). Both of these latter functions (formulating a request and obtaining a
response) are handled by a different class. These are called HTTP::Request
and HTTP::Response respectively.

As with other object oriented programs, the first step is the creation of an
object of the type LWP::UserAgent. This is done through the �constructor� which
simply creates a new instance of the LWP::UserAgent object using the new
keyword:

Step 1: Create an object of type LWP::UserAgent:

$ua = new LWP::UserAgent;

Step 2: Create an instance of HTTP::Request encoding the BLAST2 request.
Again, we use the new keyword to create an object of type HTTP::Request.
One key difference between the LWP::Simple and the LWP::UserAgent mod-
ules that we have used above is in the way we have formulated the request.

With LWP::Simple, the request is created directly and the various param-
eters are visible in the URL:

$url =

�http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?program=blas

tp&matrix=BLOSUM62&one=$gbid1&two=$gbid2&Action=submit�;

In contrast, with the LWP::UserAgent module, the data is sent as part of the
HTTP request. The information doesn�t appear in the URL and, therefore, is
more �secure�. In addition, it also allows a greater number of parameters to be
set. The code for the instantiation step is as follows:

$request = new HTTP::Request

(POST=>�http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi�);
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Next, we formulate the request and specify the various parameters we want
to use:

$request->

content(�program=blastp&matrix=BLOSUM62&one=1350818&two=133198&
Action=submit�);

Here, we have used the GenBank IDs 1350818 and 133198.

We also need to specify another piece of information known as the MIME
type or content type. MIME�Multi-purpose Internet Mail Extensions�specify
a standard way of classifying file types on the Internet. The purpose of MIME
types is to enable Internet programs such as Web servers and browsers to
transfer files of the same content type in a standardized manner, independent
of the underlying operating system. The MIME type enables programs to de-
termine how to open files of a given type, how to view them, etc. A MIME
type has two parts: a type and a sub-type. They are separated by a slash (/).
For plain text, for example, the MIME type is simply �text/plain�.

Since we are using the information to plug information into a WWW form,
the MIME type we need is:

application/x-www-form-urlencoded

This information is specified as follows:

$request->content_type(�application/x-www-form-urlencoded�);

This request is then passed through the UserAgent request() method, which
dispatches it using the relevant protocol, and returns an HTTP::Response object:

$response = $ua->request($request);

Finally, if the request is properly processed, we can obtain the response
from the server:

if ($response->is_success()) {

print $response->content();

}

else { warn �Unsuccessful attempt at Blast2!\n�; }

The complete code is as follows:

2] Using LWP::UserAgent:

#!/usr/bin/perl

$/ = undef;
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use LWP::UserAgent;

#1

$ua = new LWP::UserAgent;

#2

$request = new HTTP::Request

(POST=>�http:\/\/www.ncbi.nlm.nih.gov\/blast\/bl2seq\/wblast2.cgi�);

#3

$request->

co n t e n t ( � p r o g r a m = b l a s t p & m a t r i x= B L O S U M 6 2 & o n e = 1 3 5 0 8 1 8 &
two=133198&Action= submit�);

#4

$request->content_type(�application/x-www-form-urlencoded�);

#5

$response = $ua->request($request);

if ($response->is_success()) {

print $response->content();

}

else { warn �Unsuccessful attempt at Blast2!\n�; }

Save the program as blast2.pl. Run the program and capture the information
as a HTML file:

C:\perl> Blast2.pl > blast2.html

Open the output file using a web browser and the result should appear as

shown in Figure 10.2.

The HTML file can be parsed using regular expressions to extract relavant

information.

 10.5 USING BIOPERL FOR BLAST2

We will now see how the same operation can be performed using a BioPerl

module. For this, we need to use the Bio::Tools::Run::StandAloneBlast module.
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Fig. 10.2 Blast2.pl output

Check if this module is present on your system with the following command:

perl -e �use Bio::Tools::Run::StandAloneBlast�

If the command exits without issuing any error messages, the module has

been installed. If you get an error message saying,

�Can�t locate Bio/Tools/Run/StandAloneBlast.pm in @INC (@INC contains:

D:/Perl/lib D:/Perl/site/lib .)�

then you need to download it to the appropriate directory on your system as

explained in Chapter 1.

You also need to install on your computer the blastall executable from the

NCBI ftp site. The next few sections explain how this is done.
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 10.6 STANDALONE BLAST

The executables for Standalone versions of BLAST are available from the NCBI

ftp site (ftp://ftp.ncbi.nih.gov/blast/executables/snapshot/2004-07-25/) and

can be downloaded by anonymous ftp. Figure 10.3 shows the BLAST versions

available for the various platforms. The executable for the Windows version of

BLAST, called blast-20040725-ia32-win32.exe, is available as a self-extracting

archive from the ftp site (indicated in the figure).

Fig. 10.3 Standalone versions of BLAST at NCBI

To install blastall on Windows, download the executable and extract its

contents into an appropriate location such as C:\blast. Figure 10.4 shows the

various programs installed as part of the BLAST suite. Some of these are

explained in Table 10.2.
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Table 10.2 List of programs installed with BLAST

Program Function

Blastall Performs local BLAST searches using any of the five algorithms:
BLASTN, BLASTP, BLASTX, TBLASTN or TBLASTX.

Blastpgp Performs gapped BLASTP searches and can be used to perform it-
erative searches using PSI-BLAST (Position-Specific Iterative BLAST)
and PHI-Blast (Pattern-Hit Iterative BLAST).

Megablast Alignment program for nucleotide sequence where the sequences
differ slightly as a result of sequencing or other similar errors. It
is upto 10 times faster than more common sequence similarity
programs and, therefore, can be used to swiftly compare two large
sets of sequences against each other.

Fig. 10.4 Blast suite of programs
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Table 10.2 (Contd.)

bl2seq Performs alocal alignment between two sequences using either
BLASTN or BLASTP. Both sequences must be either nucleotide or
protein sequences.

Blastclust Clustering program for protein or DNA sequences based on pair-
wise matches found using the BLAST algorithm in case of proteins
or Mega BLAST algorithm for DNA.

Rpsblast Reversed Position-Specific Blast. RPSBLAST performs a BLAST search
of a protein sequence vs. a database of conserved protein family
domains. Used to derive putative protein family information for an
unknown protein sequence.

Seedtop Performs a search between a sequence and a database of patterns
and identifies which patterns occur in the sequence.

Fastacmd Program to retrieve FASTA formatted sequences from a BLAST da-
tabase.

Formatdb Program to format BLASTable databases downloaded from NCBI.

 10.7 CONFIGURING blastall

After the executable has been installed, create a file called �ncbi.ini� in the

Windows or WINNT directory on your machine (C:\Windows or C:\WINNT,

etc. depending on the version of Windows you are running). The path to the

file will be C:\Windows\ncbi.ini or C:\WINNT\ncbi.ini for the above two ex-

amples. Add the following lines to the ncbi.ini file:

[NCBI]

Data=�C:\path\data\�

where,

C:\path\data\

is the path to the location of the Standalone BLAST �data� subdirectory which
should be present in the directory where the downloaded file was extracted. To
check if everything has been installed properly, test the bl2seq command as
follows:

C:\blast>bl2seq.exe -i c:\perl\hpraa.txt -j c:\perl\bpraa.txt -p blastp

Where hpraa.txt and bpraa.txt are the protein sequences of the Human and
Bovine pancreatic ribonuclease respectively:
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>GI:1350818

malekslvrllllvlillvlgwvqpslgkesrakkfqrqhmdsdsspsssstycnqmmrr

rnmtqgrckpvntfvheplvdvqnvcfqekvtckngqgncyksnssmhitdcrltngsry

pncayrtspkerhiivacegspyvpvhfdasvedst

>GI:133198

malkslvllsllvlvlllvrvqpslgketaaakferqhmdsstsaasssnycnqmmksrn

ltkdrckpvntfvhesladvqavcsqknvackngqtncyqsystmsitdcretgsskypn

caykttqankhiivacegnpyvpvhfdasv

If the command succeeds, you should get the following output (Figure 10.5).

Fig. 10.5 Pair-wise BLAST output
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 10.8 Bio::Tools::Run::StandAloneBlast

We are now ready to use the Bio::Tools::Run::StandAloneBlast module to run
the pair-wise BLAST we performed on the command-line. The basic code for
the operation is as follows:

use Bio::Tools::Run::StandAloneBlast;

$seqobj = Bio::SeqIO->new(-file=>�c:\perl\kinesins.txt� ,

�-format� => �Fasta� );

$seq1 = $seqobj->next_seq();

$seq2 = $seqobj->next_seq();

@params = (�program�=> blastp, �outfile� => �c:\perl\bl2seq.txt�);

$factory = Bio::Tools::Run::StandAloneBlast->new(@params);

$bl2seq_report = $factory->bl2seq($seq1, $seq2);

As before, the output is directed to the file defined in the parameter list

(bl2seq.txt). An alternate way is to provide the sequences on the command-

line:

 use Bio::Tools::Run::StandAloneBlast;

 @params = (�program�=> blastp, �outfile� => �c:\perl\bl2seq.txt�);

 $factory = Bio::Tools::Run::StandAloneBlast->new(@params);

 $seqfile1 = Bio::SeqIO->newFh ( -file => $ARGV[0],

-format => �fasta� );

 $seq1 = <$seqfile1>;

 $seqfile2 = Bio::SeqIO->newFh ( -file => $ARGV[1],

-format => �fasta� );

 $seq2 = <$seqfile2>;

 $report = $factory->bl2seq($seq1, $seq2);

Save this script as bl2seq.pl and run it as follows:

C:\perl> bl2seq.pl hpraa.txt bpraa.txt
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 10.9 PERFORMING BLAST SEARCHES

BLASTing a sequence against a database can be done in a similar manner. The

only difference is that you must have a database locally installed on your

computer to run the local BLAST. The next few sections will explain how to

download and format databases.

Figure 10.6 shows a list of databases available for download at NCBI. The

ftp site is ftp://ftp.ncbi.nih.gov/blast/db/FASTA/. We advise installing a small

database such as ecoli.nt or ecoli.aa (the nucleotide and amino acid databases

of the bacterium E. coli respectively) to begin with. To do so, click on any of

the ecoli.nt.Z or ecoli.aa.Z files and save it on your computer.

Fig. 10.6 NCBI databases
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 10.10 FORMATTING NCBI’S DATABASES

You need to format databases before you can run searches on them. NCBI

provides a tool called formatdb that is part of the BLAST suite of programs to

create your own BLAST-searchable database. To format a nucleotide database

such as ecoli.nt database, run the following command from the DOS prompt:

C:\blast>formatdb -i ecoli.nt -p F -o T

The corresponding command to format a protein sequence database such as

ecoli.aa is:

C:\blast>formatdb -i ecoli.aa -p T -o T

The options -i, -p and -o used with formatdb are some of the most commonly

used arguments. The individual options are explained in Table 10.3.

Table 10.3 formatdb arguments

Option Function

-i Input file for formatting

-p Type of file

T � protein sequences (default)

F � nucleotide sequences

-o Parse options

T � True: Parse SeqId and create indexes.

F � False: Do not parse SeqId. Do not create indexes.

-t Title for database file

-n Base name for BLAST files. Produces a database with a different
name than that of the original FASTA file. To create a database called
myecoliDB from ecoli.nt, for example, type:

formatdb -i ecoli.nt -p F -o T -n myecoliDB

-s Create indexes limited only to accessions�sparse [T/F]. Default = F.
This option limits the indices for the string identifiers used by
formatdb to accessions (i.e., no locus names) and is especially useful
for sequences sets like the ESTs where the accession and locus names
are identical. formatdb runs faster and produces smaller temporary
files if this option is used. It is strongly recommended for EST, STS,
GSS and HTG sequences.
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Some of these arguments such as title of database, base name of database,

etc. are optional. When a BLAST-searchable database is created, a number of

files are produced. Using formatdb, these files will have extensions .phr, .pin,

.psq for protein databases and .nhr, .nin, .nsq for nucleotide databases. The

ecoli.nt file can be removed once formatdb has been run.

 10.11 RUNNING blastall

To run blastall against the ecoli.nt database, download a test E. coli sequence

from NCBI (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide) such

as the E. coli beta-lactamase nucleotide sequence, save it on your computer and

run the following command:

C:\blast>blastall -p blastn -d ecoli.nt -i lactamase.txt -o lactamase.out

Note that you may get the �[NULL_Caption] WARNING: test: Could not find

index files for database� error message when blastall cannot find the database

you have specified. If any of these databases or files is on a different directory

than where BLAST is installed, you may need to specify the full path to the

database. For example,

c:\blast\blastall -p blastp -d d:\blastdb\nr\nr -i kinase.txt

An explanation of common command-line flags used with the blastall com-

mand is provided in Table 10.4.

Table 10.4 blastall options

Option Function Values

-p Program name blastn, blastp, blastx, tblastn or tblastx

-d Database name nr, swissprot, est, etc.

-I Input (query) sequence file cftr.txt, etc.

-o BLAST results (output file) cftrout.txt, etc.

-e E value 0.1, 0.01, etc. Default = 10.

-F Filter query sequence T or F (for true or false)

-q Penalty for a nucleotide mismatch integer



BioPerl BLAST Modules 191

M
K

M
K

Table 10.4 (Contd.)

-r Reward for a nucleotide match integer

-v Number of one line descriptions integer

-b Number of alignments to show integer

-g Perform gapped alignment T or F (for True or False)

-M Matrix matrix name

-W Word size integer

-T Produce HTML output T or F (for True or False)

To look at the contents of the BLAST results, open the lactamase.out file

using the more command on the DOS command-line or with a text editor such

as Notepad.

 10.12 RUNNING BLAST WITH
BIO::TOOLS::RUN::STANDALONEBLAST

The code to run BLAST using Bio::Tools::Run::StandAloneBlast is as follows:

use Bio::Tools::Run::StandAloneBlast;

@params = (�database� => �ecoli\ecoli.aa�, �program�=> blastp,

�outfile� => �c:\perl\blastout.txt�, �_READMETHOD� => �Blast�);

$factory = Bio::Tools::Run::StandAloneBlast->new(@params);

#Blast a sequence against a database:

$seqfile = Bio::SeqIO->new(-file=>�c:\perl\kinesins.txt� ,

�-format� => �Fasta� );

$seq = $seqfile->next_seq();

$blast_report = $factory->blastall($seq);

Note

The location of the database should be C:\blast\data. This is assuming you
have downloaded the blastall executable in C:\blast. The database location
specified as �ecoli\ecoli.aa� actually means:
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�C:\blast\data\ecoli\ecoli.aa�

The BLAST output is directed to the file specified in the parameters list.

Note that this is the raw BLAST output that can be viewed with a text editor

such as Notepad. In the next chapter, we will see how to parse BLAST reports

generated by these scripts.

Assignments

1. Write a script that generates a pair-wise alignment between a set of

sequences in a multiple Fasta file and parses the output for the

E values, Identities and Positives. Vary the matrix used and find out

the difference in the output obtained.

The script should be run as follows:

blast2.pl -p blastp -m Blosum62 -f filename

where

[-p Program name (any of the five BLAST programs) ]

[-m substitution matrix, example., Blosum62, PAM30 ]

[-f Fasta file, use zfkinase.txt ]

and the output should be two tables:

Table1: Alignment scores

Program used: Blastp

Matrix used: Blosum62/other

E value used: 10/other

ID1  ID2 Score (bits) Expect Identities Positives Gaps

�

�

Table 2: Protein sequence data

ID Name  Length

�
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Note that if no similarity is found, this should be stated as zero identities,

zero positives, etc.

2. Given the partial DNA sequence for an unknown gene:

aacccgaaaa tccttccttg caggaaacca gtctcagtgt ccaactctct aaccttggaa

ctgtgagaac tctgaggaca aagcagcgga tacaacctca aaagacgtct gtctacattg

aattgggatc tgattcttct gaagataccg ttaataaggc aacttattgc agtgtgggag

atcaagaatt gttacaaatc acccctcaag gaaccaggga tgaaatcagt ttggattctg

caaaaaaggc tgcttgtgaa ttttctgaga cggatgtaac aaatactgaa catcatcaac

ccagtaataa tgatttgaac accactgaga agcgtgcagc tgagaggcat ccagaaaagt

atcagggtag ttctgtttca aacttgcatg tggagccatg tggcacaaat actcatgcca

gctcattaca gcatgagaac agcagtttat tactcactaa agacagaatg aatgtagaaa

aggctgaatt ctgtaataaa agcaaacagc ctggcttagc aaggagccaa cataacagat

List three possible BLAST programs that you can use to analyze

this sequence. Perform each of these analyses separately and compare

the first 10 hits from each of the outputs. Use your knowledge of

E values, matrices, gap penalties, etc. to set parameters that may be

optimal for the search. What is the effect of varying word length and

gap penalties on the output? Identify the gene and describe its struc-

ture. What is the significance of this gene and its protein product?



CHAPTER

Parsing BLAST Output

In the last chapter, we learnt how to perform a local BLAST using the

Bio::Tools::Run::StandAloneBlast.pm module. All the programs yielded the raw

BLAST output which, you must have realized, can be quite verbose, complex

and difficult to interpret. This is because it generally holds a lot of data on the

different aspects of the hits that the search reveals. It would be easier if there

was a way to parse the output so that only the most relevant pieces of

information could be extracted and presented in a more readable form. In this

chapter, we will learn how to apply BioPerl methods to parse these raw files

and utilize the information more effectively. In particular, we will use the

Bio::Tools::Blast module. Bio::Tools::Blast supports NCBI Blast1.x, Blast2.x, and

WashU-Blast2.x, including both gapped and ungapped alignments.

 11.1 GENERATING A RAW BLAST REPORT

Let�s first set up a simple BLAST analysis to generate a raw BLAST output file.

Figure 11.1 shows the result of a protein-protein BLAST done with the human

pancreatic ribonuclease (HPR):

11
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>gi|1350818|sp|P07998|RNP_HUMAN Ribonuclease pancreatic precursor (RNase 1) (RNase A) (RNase

UpI-1) (RIB-1)

MALEKSLVRLLLLVLILLVLGWVQPSLGKESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKP

VNTFVHEPLVDVQNVCFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEG

SPYVPVHFDASVEDST

The command was run with the following parameters:

Database nr

Input file hpraa.txt (the HPR amino acid sequence)

Program BlastP

and the output was redirected to a file called hprout.txt:

blastall -d d:\blastdb\nr\nr -i c:\perl\hpraa.txt -o hprout.txt -p blastp

The raw BLAST results performed on the command-line and through the

NCBI website are shown in Figures 11.2 and 11.3.

Fig. 11.1 BLASTP search with HPR sequence
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Fig. 11.2 Raw BLAST output (hprout.txt)

 11.2 THE BIO::TOOLS::BLAST MODULE

The minimal code to parse a BLAST report using the use Bio::Tools::Blast

module is as follows:

use Bio::Tools::Blast;

%parameters = ( specify parameters );

$blastObj = Bio::Tools::Blast->new(%parameters);

foreach $hit($blastObj->hits) { extract data }

where,

%parameters [parameters for parsing Blast reports ]
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Fig. 11.3 Output of BLASTP performed at NCBI

$blastobj [an instance of Bio::Tools::Blast ]

$hit [each sequence element returned by BLAST ]

As always, a BLAST object can be instantiated using the new keyword in this

manner as well:

$blastobj = new Bio::Tools::Blast (%parameters);

The parameters for parsing a BLAST report file are presented in the form of

a hash (key and value pairs) and are used to specify information shown in

Table 11.1.
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Table 11.1 Parameters for parsing BLAST

Parameter (key) Function (value)

-file name of file containing BLAST report

-signif cutoff E value. Hits with E value greater that this will be ignored

-filt_func Subroutine added to filter output by special criteria, e.g.,  gaps < 10

-check_all_hits 0 or 1. If set to 1 (true), all hits will be parsed to check if they meet
the significance criteria specified by the parameters -signif and
-filt_func. The default = 0 (or false), which means parsing of hits will
stop when the significance criteria fail. This speeds the parsing
process.

-stats 0 or 1. If set to 1, the program will collect information on the matrix,
filters, etc. used in the BLAST report. Default = false.

-best 0 or 1. If set to 1, the program will only process the best hit for each
report. Default = false.

-strict 0 or 1. If set to 1, uses strict mode for all BLAST objects created to
enhance error trapping.

The signif can be a float (e.g., 0.001) or a number in scientific notation (e.g.,

1e-10). In addition, a parameter called �parse�, with a value of 1, must be

specified for the parse to work:

parse [boolean, (=1) to parse the BLAST report ]

Note that all the parameters are specified in the form of a hash which is

nothing but a Perl data type that holds variables and their corresponding

values written as pairs separated by a delimiter (commonly =>):

%parameters = ( -file => �path_to_BLAST_report�,

-parse => 1,

-filt_func => \&filter_function

);

The Perl shorthand to represent a hash is a % sign, thus the name

%parameters for the hash above.
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Note

We have used hashes (also called associative arrays) in previous chapters
(although, perhaps, without explicitly stating so). The function GetOptions()
from the module Getopt::Long, for example, uses a hash to obtain command-
line arguments that you want to plug into the code at run-time. To search a
file with a given search term, for example, the hash key-value pairs can be
set up as follows:

GetOptions(�f|filename=s�=>\$filename, �s|searchterm =s�=>\$searchterm);

Here the keys are filename and searchterm and their values are \$filename
and \$searchterm respectively (Table 11.2).

Table 11.2 Key-value pairs in a hash

Key Delimiter Value

F|filename=s => \$filename

S|searchterm=s => \$searchterm

The �=s� after each variable, as we have seen earlier, means that a string is
expected (rather than, say, an integer or a float). Adding a back-slash (\)
before a variable creates a reference to that variable and here it means that
the value of each of the keys is a reference to the variables $filename and
$searchterm respectively. The actual string values of the variables (the file
name and the search term itself) are obtained by the GetOptions() function
(by a process called dereferencing) when the code executes.

The methods provided by Bio::Tools::Blast to extract information about the

individual hits (matches found to the query sequence in the database) and the

corresponding code are shown in Table 11.3.

Table 11.3 Bio::Tools::Blast methods

Methods to extract top-level information on every hit

Method Code

Sequence identifier of a hit $hit->name;



200 Bioinformatics: Principles and Applications

M
K

M
K

Table 11.3 (Contd.)

E value of a hit $hit->expect;

Number of high scoring pairs for each hit $hit->num_hsps;

Number of identities between query and $hit->frac_identical;
subject sequence

Number of gaps in the alignment between $hit->gaps;
query and subject sequence

Most significant hit $hit   = $blastObj->hit;

E value of most significant hit $eval = $blastObj>lowest_expect;
(for NCBI BLAST2 reports only) or,

$eval = $blastObj->hit->expect;

P value of most significant hit $pval = $blastObj->lowest_p;
(for BLAST1/WashU-BLAST2 reports or,
only. P values are not reported in NCBI $pval = $blastObj->hit->p;
BLAST2 reports)

Start coordinates of hit (subject) sequence $sbjct->start(�query�);

End coordinates of hit (subject) sequence $sbjct->end(�sbjct�);

Get both query and subject in array ($query_start, $subject_start) =
context $sbjct->start();

($query_end, $subject_end) =
$sbjct->end();

Methods to obtain information on high scoring pairs (HSPs) for each hit

E value of HSP $hsp->expect

Raw score of HSP $hsp->score

Score in bits $hsp->bits

The fraction of identical positions within $hsp->frac_identical
the given HSP. Returns a float with a
two-decimal precision.

Get the fraction of conserved positions

(�positives�) within the given HSP.

Returns a float with a two-decimal precision. $hsp->frac_conserved

The number of gaps in the query. $hsp->gaps(�query�)

The number of gaps in the subject (hit) $hsp->gaps(�sbjct�)

The full query sequence as a string $hsp->seq_str(�query�);

The full subject sequence as a string $hsp->seq_str(�sbjct�);
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Note

To recap what we have learnt in earlier chapters, the significance of hits
returned by BLAST is gauged with the help of two numbers: the bit score
and the E value. The bit score is defined as

S� (bits) =  [l * S  -  ln K] / ln 2

where,

S� [bit score ]

S [raw score ]
and,

l (lambda) and K are Karlin-Altschul parameters

The conversion of the raw score into a normalized bit score makes it
independent of the matrix used (e.g., BLOSUM62). The larger the bit score,
the greater the significance of the hit.

The E value, on the other hand, is an estimate of the statistical significance
of the match, specifying the number of matches, with a given score, that are
expected to occur in a search of a database of a particular size purely by
chance alone. An E value of 0.001, for example, means that there is a chance
of 1 in 1000 that the match has occurred by chance. One would also expect
that as the size of a database increases, there is more likelihood of getting
hits with a certain score that occur by chance alone. For this reason, the
E value depends on the size of the database searched. It is easy to see that as
the E value for a particular match decreases, the significance of the match
increases�that is, we are more confident that the match is real. Thus, the
smaller the E value, the greater the significance of the hit.

Methods for obtaining data on high-scoring segment Pairs or HSPs are pro-

vided by the Bio::Tools::Blast::HSP module. However, Bio::Tools::Blast::HSP

methods are accessed not directly but through the Bio::Tools::Blast module as

follows:

use Bio::Tools::Blast;

%parameters = ( ... );

$blastObj = Bio::Tools::Blast->new(%parameters);

$hit = $blastObj->hit; #obtain data on top hit

$hsp = $blastObj->hit->hsp; #obtain data on HSPs for top hit
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Each of these objects are hashes representing a Bio::Tools::Blast::Sbjct and a

Bio::Tools::Blast::HSP object.

To get all hits, use a foreach loop to iterate through the BLAST output:

foreach $hit($blastObj->hits) {

printf �%s\t�, $hit->name;

printf �%.1e\t�, $hit->expect;

printf �%d\t�, $hit->num_hsps;

printf �%.2f\t�, $hit->frac_identical;

printf �%d\n�, $hit->gaps;

}

The printf function is used in place of the standard print function to format

the individual variables as needed. For example, %s is used to format the hit

name since it is a string. %e is used to format the E values in scientific notation

while frac_identical is formatted as a float with two decimal points with %.2f.

The separate printf statements can also be written as one combined statement:

foreach $hit($blastObj->hits) {

  printf �%s\t %.1e\t %d\t %.2f\t %d\n�,

    $hit->name, $hit->expect, $hit->num_hsps,

    $hit->frac_identical, $hit->gaps;

}

Similarly, a foreach loop is used to obtain all the HSPs for each hit:

foreach $hsp ($hit->hsps) {

printf �%.1e\t %d\t %.1f\t %.2f\t %.2f\t %d\t %d\n�,

$hsp->expect, $hsp->score, $hsp->bits,

$hsp->frac_identical, $hsp->frac_conserved,

$hsp->gaps(�query�), $hsp->gaps(�sbjct�);

}

Since each hit may have one or more HSPs, the above code needs to be

placed inside the foreach loop for the individual hits:
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foreach $hit ($blastObj->hits) {

printf �%s %d�, $hit->name, $hit->num_hsps;

print �\n�;

  foreach $hsp ($hit->hsps) {

printf �%.1e\t %d\t %.1f\t %.2f\t %.2f\t %d\t %d\n�,

$hsp->expect, $hsp->score, $hsp->bits,

$hsp->frac_identical, $hsp->frac_conserved,

$hsp->gaps(�query�), $hsp->gaps(�sbjct�);

  }

}

To output the parameters and filters used to parse the BLAST output, use

the display() function:

$blastObj->display(-SHOW=>�stats�);

 11.3 PARSING THE HPR BLAST REPORT

Let�s parse the HPR BLAST output with a program that incorporates what we

have learnt so far (Listing 11.1).

Listing 11.1 parseblast1.pl

use Getopt::Long;

use Bio::Tools::Blast;

GetOptions(�b|blastfile=s�=>\$blastfile, �e|evalue=f�=>\$evalue);

%parameters = ( -file => �$blastfile�,

-parse => 1,

-signif => �$evalue�,

);

$blastObj = Bio::Tools::Blast->new(%parameters);

$blastObj->display(-SHOW=>�stats�);
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Save this program on your computer and run it with an E value of 1e-60.

The command used is:

C:\perl>parseblast1.pl -b d:\blast\hprout.txt -e 1e-60

The output is shown in Figure 11.4.

Fig. 11.4 parseblast1.pl output

The output of the display() function lists the relevant information about the

BLAST search as well as the parameters used for parsing, and extracts the

values specified (sequence name, description and input file, BLAST program

and database used, cutoff E value and number of significant hits obtained at

the cutoff E value used, etc.). This information serves as a handy record about

the BLAST search, especially if you are performing a large number of searches.

Try to match the output in Figure 11.4 versus the parameters list in Table 11.1.

You will notice that since we did not specify a filter function or set the
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(Contd.)

check_all_hits parameter to 1 (parse all hits), the values of both parameters in

Figure 11.4 are �No� (see arrows, Figure 11.4). Note also that the value of the

Total Hits is equal to the value of Signif Hits (23). This indicates that, indeed,

the parsing was limited only to the significant hits. To turn the check_all_hits

parameter on, simply change the parameters list to the following:

%parameters = ( -file => �$blastfile�,

-parse => 1,

   -check_all_hits => 1,

-signif => �$evalue�,

);

Run the script again. This time the program will check all the hits and the

check_all_hits parameter will be set to �Yes�. Note now that the value of Total

Hits changes (359) while the Signif Hits remains at 23.

Let�s now enhance the functionality of the program to extract some

information on individual hits and their HSPs. Run the code shown in

Listing 11.2 to see this in effect.

Listing 11.2 parseblast2.pl

use Getopt::Long;

use Bio::Tools::Blast;

GetOptions(�b|blastfile=s�=>\$blastfile, �e|evalue=f�=>\$evalue);

%parameters = ( -file => �$blastfile�,

-parse => 1,

-signif => �$evalue�

);

$blastObj = Bio::Tools::Blast->new(%parameters);

$blastObj->display(-SHOW=>�stats�);

print �Hit #\tSeq Id\t# of hsps\te-value\tRaw score\tBit

score\tFractionIdentical\tPositives\tGaps(query)\tGaps(subject)\n�;

foreach $hit ($blastObj->hits) {

$count++;
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print �$count] �;

printf �%s %d�, $hit->name, $hit->num_hsps;

foreach $hsp ($hit->hsps) {

printf � %.1e\t %d\t %.1f\t %.2f\t %.2f\t %d\t %d\n�,

$hsp->expect, $hsp->score, $hsp->bits,

$hsp->frac_identical, $hsp->frac_conserved,

$hsp->gaps(�query�), $hsp->gaps(�sbjct�);

}

}

The output of the script is shown in Figure 11.5.

Fig. 11.5 parseblast2.pl output
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We will now see how we can specify additional filters to process the BLAST

results.

 11.4 SPECIFYING A FILTER FUNCTION

An example of how a filter function (-filt_func) can be used to parse a BLAST

report is as follows:

1. Create the subroutine (called filterBLAST here) containing the filtering

criteria (here we will use the condition gaps = 0 to filter the BLAST

report):

sub filterBlast {

$hit=shift;

return ($hit->gaps == 0);

}

(the shift function is used to make the subroutine iterate through each

hit)

2. Plug the subroutine into the parameters hash:

 %parameters = ( -file => �path_to_BLAST_report�,

-parse => 1,

-filt_func => \&filterBlast

);

3. Specify the parameters to the BLAST object using the new keyword:

$blastObj = Bio::Tools::Blast->new(%parameters);

When the code runs, the BLAST object checks for matches to the speci-

fied criteria by calling the &filterBlast($hit) subroutine for each hit. The

subroutine returns false and stops when a hit fails the criteria. Run the

code shown in Listing 11.3 to see this in effect.
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Listing 11.3 parseblast3.pl

use Getopt::Long;

use Bio::Tools::Blast;

GetOptions(�b|blastfile=s�=>\$blastfile, �e|evalue=f�=>\$evalue);

sub filterBlast {

  $hit=shift;

  return ($hit->bits > 250);

}

%parameters = ( -file => �$blastfile�,

-parse => 1,

-filt_func => \&filterBlast,

-signif => �$evalue�,

);

$blastObj = Bio::Tools::Blast->new(%parameters);

$blastObj->display(-SHOW=>�stats�);

print �Hit #\tSeq Id\t# of hsps\te-value\tRaw score\tBit

score\tFractionIdentical\tPositives\tGaps(query)\tGaps(subject)\n�;

foreach $hit ($blastObj->hits) {

$count++;

print �$count] �;

printf �%s %d�, $hit->name, $hit->num_hsps;

foreach $hsp ($hit->hsps) {

printf � %.1e\t %d\t %.1f\t %.2f\t %.2f\t %d\t %d\n�,

$hsp->expect, $hsp->score, $hsp->bits,

$hsp->frac_identical, $hsp->frac_conserved,

$hsp->gaps(�query�), $hsp->gaps(�sbjct�);

}

}

The output is shown in Figure 11.6. Note that the filter function value is

now set to �Yes� and that there are now only 15 significant hits in place of 23

(see arrows) due to the additional $hit->bits > 250 criteria applied to process

the report.
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Fig. 11.6 Output of parseblast3.pl

 11.5 FORMATTING PARSING RESULTS INTO A TABLE OR HTML

The parsed output can still be a little verbose and messy, especially if the input

sequence has a large number of hits. Fortunately, for easy navigation of the

search results, using a web browser, the Bio::Tools::Blast module also pro-

vides methods to create formatted output of filtered data in the form of a table

or HTML. The code to achieve this is quite simple. To create a table, add the

following line at the end of the program:

print $blastObj->table;
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The output can then be redirected to a file:

C:\perl>parseblast4.pl -b d:\blast\hprout.txt -e 1e-60 > hpr_table.txt

The output is shown in Figure 11.7.

To create an HTML output, add this line at the end of the program:

$blastObj->to_html();

as shown in Listing 11.4.

Listing 11.4 Creating an HTML output of parse results

use Getopt::Long;

use Bio::Tools::Blast;

Fig. 11.7 Parsed results in table format

(Contd.)
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GetOptions(�b|blastfile=s�=>\$blastfile, �e|evalue=f�=>\$evalue);

sub filterBlast {

$hit=shift;

return ($hit->bits > 250);

}

%parameters = ( -file => �$blastfile�,

-parse => 1,

-filt_func => \&filterBlast,

-signif => �$evalue�,

);

$blastObj = Bio::Tools::Blast->new(%parameters);

$blastObj->to_html();

Now, run the program and redirect the output to a file with a .html extension

using the �>� operator. For example,

C:\perl>parseblast4.pl -b d:\blast\hprout.txt -e 1e-60 > hpr_blast.html

The output of parseblast4.pl is shown in Figure 11.8. Note the hyperlinks on

the sequence identifiers and the E values that allow easy access to additional

information about the hits.

Assignments

1. A recent microarray-based experiment on the analysis of DNA copy

numbers in human breast cancers indicated that alterations in DNA

copy numbers has a direct effect on deregulation of gene expression

and may contribute to the development of cancer. The chip used for

the study contained several thousand genes, many of which had un-

known functions. A partial list of genes used in the study is provided

in a file called hypothetical.txt. Create a pipeline that performs the

following functions:

(a) Extracts only the hypothetical proteins from the list. How many

hypothetical proteins are there in the file?
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(b) Performs a BLASTP for each sequence in an automated fashion

against the nr database with an E value of 0.001.

(c) Parses the top 10 hits and their associated HSPs. How many top

hits are of human origin? How many are non-human origin?

2. Use the information from Assignment 1 to arrive at an annotation of a

plausible function (wherever possible) for each of the unknown

proteins. Can you think of any obvious relationships to cancer for

these genes?

Fig. 11.8 HTML formatted parse results
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