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Preface
The sixth edition of Business Forecasting with ForecastX™ builds on the success

of the first five editions. While a number of significant changes have been made in

this sixth edition, it remains a book about forecasting methods for managers, fore-

casting practitioners, and students who will one day become business profession-

als and have a need to understand practical issues related to forecasting. Our

emphasis is on authentic learning of the forecasting methods that practicing fore-

casters have found most useful. Business Forecasting with ForecastX™ is written

for students and others who want to know how forecasting is really done.

The major change to the sixth edition of the text is a new chapter on data min-

ing as a tool in business forecasting. As with the fifth edition, we again use the

ForecastX™ software as the tool to implement the methods described in the text.

This software is included on a CD with each copy of the text and has been made

available through an agreement with John Galt Solutions, Inc. Every forecasting

method discussed in the text can be implemented with this software (the data

mining techniques, however, require separate software). Based on our own expe-

riences and those of other faculty members who have used the fifth edition, we

know that students find the ForecastX™ software easy to use, even without a man-

ual or other written instructions. However, we have provided a brief introduction

to the use of ForecastX™ at the end of each relevant chapter. There is also a User’s

Guide on the CD with the software for those who may want more extensive

coverage, including information on advanced issues not covered in the text, but

included in the software.

John Galt Solutions provides us with the ForecastX software that does con-

tain proprietary algorithms, which in some situations do not match exactly with

the results one would get if the calculations were done “by hand.” Their meth-

ods, however, have proven successful in the marketplace as well as in forecast

competitions.

We are confident that faculty and students will enjoy using this widely adopted,

commercially successful software. However, the text also can be used without re-

liance on this particular package. All data files are provided on the student CD in

Excel format so that they can be easily used with almost any forecasting or statis-

tical software. As with previous editions, nearly all data in the text is real, such as

jewelry sales, book store sales, and total houses sold. In addition, we have contin-

ued the use of an ongoing case involving forecasting sales of The Gap, Inc., at the

end of each chapter to provide a consistent link. Additionally, a number of excel-

lent sources of data are referenced in the text. These are especially useful for stu-

dent projects and for additional exercises that instructors may wish to develop.

Comments from the Field by forecasting practitioners provide quick insights

into issues and problems faced daily by individuals who are actively engaged in

the forecasting process. These offer a practical perspective from the “real world”

to help students appreciate the relevance of the concepts presented in the text. 



Today, most business planning routinely begins with a sales forecast. Whether

you are an accountant, a marketer, a human resources manager, or a financial an-

alyst, you will have to forecast something sooner or later. This book is designed to

lead you through the most helpful techniques to use in any forecasting effort. The

examples we offer are, for the most part, based on actual historical data, much like

that you may encounter in your own forecasts. The techniques themselves are

explained as procedures that you may replicate with your own data.

The Online Learning Center accompanying the book includes all data used in

the text examples and chapter-ending problems. In addition, Excel sheets with

suggested answers to these problems are on this Web site.

The authors would like to thank the students at the University of Notre Dame

and Central Michigan University for their help in working with materials included

in this book during its development. Their comments were invaluable in preparing

clear expositions and meaningful examples for this sixth edition. Comments from

students at other universities both in the United States and elsewhere have also

been appreciated. It has been particularly gratifying to hear from students who

have found what they learned from a course using this text to be useful in their

professional careers.

The final product owes a great debt to the inspiration and comments of our

colleagues, especially Professors Thomas Bundt of Hillsdale College, and Tunga

Kiyak at Michigan State University. In addition, we would like to thank the staff at

John Galt Solutions for facilitating our use of the ForecastX™ software. We also

thank Professor Eamonn Keogh at the University of California, Riverside, for

sharing with us his illuminating examples of data mining techniques.

Adopters of the first five editions who have criticized, challenged, encouraged,

and complimented our efforts deserve our thanks. The authors are particularly

grateful to the following faculty and professionals who used earlier editions of

the text and/or have provided comments that have helped to improve this sixth

edition.
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Chapter One

Introduction to Business
Forecasting

I believe that forecasting or demand management may have the

potential to add more value to a business than any single activity

within the supply chain. I say this because if you can get the

forecast right, you have the potential to get everything else in the

supply chain right. But if you can’t get the forecast right, then

everything else you do essentially will be reactive, as opposed

to proactive planning.

Al Enns, Director of Supply Chain Strategies, Motts North America, Stamford,

Connecticut1

INTRODUCTION

If you are reading this text as part of the course requirements for a college degree,

consider yourself fortunate. Many college graduates, even those with degrees in

business or economics, do not ever study forecasting, except as a sidelight in a

course that has other primary objectives. And yet, we know that forecasting is an

essential element of most business decisions.

The need for personnel with forecasting expertise is growing.2 For example,

Levi Strauss only started its forecast department in 1995 and within four years had

a full-time forecasting staff of thirty. Many people filling these positions have had

little formal training in forecasting and are paying thousands of dollars to attend

educational programs. In annual surveys conducted by the Institute of Business

Forecasting it has been found that there are substantial increases in the staffing of

forecasters in full-time positions within American companies.

If you can get the fore-

cast right, you have the

potential to get every-

thing else in the supply

chain right.

1

1 Sidney Hill, Jr., “A Whole New Outlook,” Manufacturing Systems 16, no. 9 (September

1998), pp. 70–80.
2 Chaman L. Jain, “Explosion in the Forecasting Function in Corporate America,” Journal of

Business Forecasting, Summer 1999, p. 2.



AT&T WIRELESS SERVICES ADDRESSES
CAPACITY PLANNING NEEDS
AT&T Wireless Services is one of the largest wireless

carriers in the United States, offering voice, avia-

tion communications, and wireless data services

over an integrated, nationwide network.

AT&T Wireless sought to redefine its fore-

casting process, as the company had been using

many different data sources—including Oracle 8—

combined with a judgmental process to estimate

its future demand. AT&T Wireless needed to find

an integrated solution that would automate its

sales forecasting process to more effectively man-

age the deployment and utilization of its

infrastructure. The chosen solution would also

need to be easily integrated with AT&T’s existent

sales forecasting process.

After searching for a solution that could be

used to enhance its existing judgmental process

by accounting for marketing promotions, sales

events, and other market factors, AT&T Wireless

decided to implement a scalable solution compris-

ing John Galt Solutions’ ForecastX Wizard product

family. John Galt provided AT&T Wireless with

documentation and working examples that en-

abled the company to visualize and validate the

benefits of ForecastX immediately and throughout

the implementation process. The examples and

help that John Galt extended provided AT&T with

the background the company needed to answer its

questions.

John Galt’s ForecastX gave AT&T powerful

front-end analytical capabilities to utilize batch

forecasting—an automated process that gener-

ates forecasts according to a schedule deter-

mined by the parties responsible for forecasting

within AT&T Wireless. Users simply adjust their

parameters and set the Batch Scheduler, and the

program runs without further user intervention.

At current staffing levels, AT&T Wireless can sup-

port its capacity planning needs, thanks to a

framework and tools that will allow analysts to

focus their attention on business issues. Using

ForecastX, the company can quantify the costs

and benefits that will be obtained from its infra-

structure investments.

Source: http://www.johngalt.com/customers/success.shtml.

Comments from the Field 1

2

QUANTITATIVE FORECASTING HAS BECOME WIDELY ACCEPTED

We might think of forecasting as a set of tools that helps decision makers make

the best possible judgments about future events. In today’s rapidly changing busi-

ness world such judgments can mean the difference between success and failure.

It is no longer reasonable to rely solely on intuition, or one’s “feel for the situa-

tion,” in projecting future sales, inventory needs, personnel requirements, and

other important economic or business variables. Quantitative methods have been

shown to be helpful in making better predictions about the future course of

events,3 and a number of sophisticated computer software packages have been de-

veloped to make these methods accessible to nearly everyone. In a recent survey

it was found that about 80 percent of forecasting is done with quantitative methods.4

3 J. Holton Wilson and Deborah Allison-Koerber, “Combining Subjective and Objective Fore-

casts Improves Results,” Journal of Business Forecasting 11, no. 3 (Fall 1992), pp. 12–16.
4 Chaman Jain, “Benchmarking Forecasting Models,” Journal of Business Forecasting 26, 

no. 4 (Winter 2007–08), p.17.
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5 Barry Keating et al., “Evolution in Forecasting: Experts Share Their Journey,” Journal of

Business Forecasting 25, no. 1 (Spring 2006), p. 15.
6 Kenneth B. Kahn and John Mello, “Lean Forecasting Begins with Lean Thinking on the

Demand Forecasting Process,” Journal of Business Forecasting 23, no. 4 (Winter 2004–05),

pp. 30–32, 40.

Sophisticated software such as ForecastX make it relatively easy to implement

quantitative methods in a forecasting process. There is a danger, however, in using

canned forecasting software unless you are familiar with the concepts upon which

the programs are based.

This text and its accompanying computer software (ForecastX) have been

carefully designed to provide you with an understanding of the conceptual basis

for many modern quantitative forecasting models, along with programs that have

been written specifically for the purpose of allowing you to put these methods to

use. You will find both the text and the software to be extremely user-friendly.

After studying the text and using the software to replicate the examples we

present, you will be able to forecast economic and business variables with greater

accuracy than you might now expect. But a word of warning is appropriate. Do not

become so enamored with quantitative methods and computer results that you fail

to think carefully about the series you wish to forecast. In the evolution of fore-

casting over the last several decades there have been many changes, but the move

to more quantitative forecasting has been the most dramatic. This has been due

primarily to the availability and quality of data and to the increased accessibility

of user-friendly forecasting software.5 Personal judgments based on practical ex-

perience and/or thorough research should always play an important role in the

preparation of any forecast.

FORECASTING IN BUSINESS TODAY

Forecasting in today’s business world is becoming increasingly important as firms

focus on increasing customer satisfaction while reducing the cost of providing

products and services. Six Sigma initiatives and lean thinking are representative

of moves in this direction. The term “lean” has come to represent an approach to

removing waste from business systems while providing the same, or higher, levels

of quality and output to customers (business customers as well as end users).6 One

major business cost involves inventory, both of inputs and of final products.

Through better forecasting, inventory costs can be reduced and wasteful inventory

eliminated.

Two professional forecasting organizations offer programs specifically aimed

at increasing the skills and abilities of business professionals who find forecasting

an important part of their job responsibilities. The International Institute of Fore-

casters (IIF) offers “Forecasting Summits” at which professional forecasters share

ideas with others and can participate in various tutorials and workshops designed

to enhance their skills (see www.forecasting-summit.com). With the leadership of

Personal judgments

based on practical expe-

rience and/or thorough

research should always

play an important role in

the preparation of any

forecast.



Len Tashman, in 2005 the IIF started a new practitioner-oriented journal,

Foresight: The International Journal of Applied Forecasting, aimed at forecast an-

alysts, managers, and students of forecasting.

The Institute of Business Forecasting (IBF) offers a variety of programs for

business professionals where they can network with others and attend seminars

and workshops to help enhance their forecasting skills (see www.ibf.org). Exam-

ples include the “Demand Planning and Forecasting Best Practices Conference,”

“Supply Chain Forecasting Conference,” and “Business Forecasting Tutorials.”

The IBF also provides programs that lead to two levels of certifications in fore-

casting and publishes a journal that focuses on applied forecasting issues (The

Journal of Business Forecasting).

Both IIF and IBF offer forecast certification programs. IIF offers three levels

of certification as a Certified Professional Demand Forecaster (CPDF); see

www.cpdftraining.org. IBF offers two levels of certification as a Certified Profes-

sional Forecaster (CPF); see www.ibf.org/certjbf.cfm. Both organizations present

a variety of workshops and training sessions to prepare business professionals for

certification. After completing this course you will have a good knowledge base to

achieve certification from these organizations.

Business decisions almost always depend on some forecast about the course of

events. Virtually every functional area of business makes use of some type of

forecast. For example:

1. Accountants rely on forecasts of costs and revenues in tax planning.

2. The personnel department depends on forecasts as it plans recruitment of new

employees and other changes in the workforce.

3. Financial experts must forecast cash flows to maintain solvency.

4. Production managers rely on forecasts to determine raw-material needs and the

desired inventory of finished products.

5. Marketing managers use a sales forecast to establish promotional budgets.

Because forecasting is useful in so many functional areas of an organization it

is not surprising that this activity is found in many different areas. Consider the

following survey results concerning where one sample of forecasters resides

within their organizations:7

Marketing/Logistics/Sales 29%

Operations/Production 27%

Forecasting Department 19%

Finance 7%

Strategic Planning 6%

Other 12%

4 Chapter One

7 Chaman Jain, “Benchmarking Forecasting Processes,” Journal of Business Forecasting 26, 

no. 4 (Winter 2007–08), p.12.



The sales forecast is often the root forecast from which others, such as em-

ployment requirements, are derived. As early as the mid-1980s a study of large

American-operated firms showed that roughly 94 percent made use of a sales

forecast.8 The ways in which forecasts are prepared and the manner in which

results are used vary considerably among firms.

As a way of illustrating the application of forecasting in the corporate world,

we will summarize aspects of the forecasting function in eight examples. In these

examples you may see some terms with which you are not fully familiar at this

time. However, you probably have a general understanding of them, and when you

have completed the text, you will understand them all quite well.

Krispy Kreme
During summer 1937 the first Krispy Kreme doughnuts were sold in Winston-

Salem, North Carolina. Since that time the company has grown and spread well

beyond the borders of North Carolina. As we entered the current century, Krispy

Kreme’s operations had expanded to a point that it recognized the need for a new

multiple forecasting system to provide information related to production require-

ments based on demand forecasts and to provide financial forecasts.9 It identified

three major drivers of its business: new stores, new off-premises customers that

make Krispy Kreme products available through retail partners, and seasonal fac-

tors. For new stores, forecast models were developed for the opening week

through sales 18 months out. Sales are related to such factors as general popula-

tion growth, brand awareness, foot traffic, and display locations. Each month a se-

ries of conference calls with market operators are used to gather information for

the forecasting models. Meetings with executive-level managers are also held on

a monthly basis to communicate forecast information. This process has led to

forecasts with errors of only plus or minus 1 percent.

Bell Atlantic
At Bell Atlantic, the forecasting process begins with the collection of historical

data on a monthly basis.10 These data are saved for both service classifications and

geographic regions. The Demand Forecasting Group at Bell Atlantic developed a

data warehouse so that the data can be shared and integrated across the entire cor-

poration. In preparing forecasts, subjective forecasting methods are used along

with time-series methods, and regression modeling based on economic, demo-

graphic, and other exogenous variables. The forecasts are continually monitored

and compared with actual results monthly and annually to ensure that Bell

Atlantic meets customer needs.
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Columbia Gas
Columbia Gas of Ohio (Columbia) is a large natural gas utility that delivers over

300 billions of cubic feet (BCF) of natural gas annually.11 Columbia develops two

kinds of forecasts, which it refers to as the Design Day Forecast and the Daily

Operational Forecast. The former is used to determine gas supply, transportation

capacity, storage capacity, and related measures. This forecast is used primarily

for supply and capacity planning. Over a seven-year period the average mean

absolute percentage error in its Design Day Forecast was 0.4 percent.

The Daily Operational Forecast is used primarily to ensure that supplies are in

balance with demand over five-day spans. As would be expected, the average

errors for these shorter term forecasts have been higher at about 3 percent. The

forecasts are based to a large degree on regression models (see Chapters 4 and 5)

in which demand is a function of such variables as current-day temperatures,

previous-day temperatures, wind speed, and day of the week.

Segix Italia
Segix Italia is a pharmaceutical company in Italy that produces products that

are sold domestically and are exported to countries in Europe, such as Belgium,

Holland, Germany, and England, as well as to African, South American, Asian,

and Middle Eastern countries.12 The forecasting function at Segix is housed

within the marketing group, and forecasts are reviewed by the marketing director

and the sales director, both of whom may make subjective adjustments to the fore-

casts based on market forces not reflected in the original forecasts. The forecasts

are prepared monthly for seven main prescription drug products. The monthly

forecasts are then aggregated to arrive at annual forecasts. These forecasts are

used to develop targets for sales representatives.

Pharmaceuticals in Singapore
In this example we look at some survey results related to forecasting by pharma-

ceutical firms in Singapore.13 The survey included many well-known firms, such

as Glaxo Wellcome, Bayer, Pfizer, Bristol-Myers Squibb, and others. Respondent

forecasters were from across business areas such as management marketing,

finance, and operations. The primary uses of forecasts were found to be allocation

of corporate resources for human resources planning, and for promotions, strate-

gic planning, and setting sales quotas. Both quantitative methods and personal

judgments were found to be important in the development of forecasts.
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Fiat Auto
Top management at Fiat considers the forecasting function as an essential aspect

of its decision-making process.14 Midway through the 1990s Fiat was selling over

2 million vehicles annually and employed some 81,000 people in Italy and about

another 38,000 overseas. All functional areas in the company make use of the

forecasts that are prepared primarily in the Planning, Finance, and Control De-

partment and in the Product Strategy Department. Macroeconomic data such as

gross domestic product, the interest rate, the rate of inflation, and raw-material

prices are important inputs in Fiat’s forecasting process. At Fiat forecasts are first

prepared for total sales of vehicles, engines, and gears, and then broken down to

specific stockkeeping units (SKUs). Sales are measured by orders rather than

shipments because its system is customer-driven.

Brake Parts, Inc.
Brake Parts, Inc. (BPI), is a manufacturer of replacement brake parts for both for-

eign and domestic cars and light trucks.15 It has nine manufacturing plants and

seven distribution centers in the United States and Canada. Overall, BPI has

roughly 250,000 stockkeeping units at various distribution locations (SKULs) to

forecast. The development and implementation of a multiple forecasting system

(MFS) has saved BPI over $6 million per month, resulting from sales not being

lost due to stockouts. The MFS at BPI uses up to 19 time-series forecasting tech-

niques, such as a variety of exponential smoothing methods, and causal regression

models in tandem. Forecasts are first developed with a time-series method, and

then the errors, or residuals, are forecast using regression. The two forecasts are

then added together and provided to management in a form that allows manage-

ment to make subjective adjustments to the forecasts.

Forecasts are evaluated using three measures: percent error (PE), mean ab-

solute percent error (MAPE), and year-to-date mean absolute percent error (YTD

MAPE). The first two of these are common error measures, but the third is some-

what unique. The YTD MAPE is used to give management a feeling for how each

forecast is performing in the most current time frame. The PE and MAPE contain

errors that may have occurred at any time in the historical period and thus may not

reflect how well the method is working currently.

Some Global Forecasting Issues: 
Examples from Ocean Spray Cranberries
Sean Reese, a demand planner at Ocean Spray Cranberries, Inc., has summarized

some issues that are particularly salient for anyone involved in forecasting in a

global environment. First, units of measurement differ between the United States

and most other countries. Where the U.S. uses such measures as ounces, pounds,
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quarts, and gallons, most other countries use grams, kilograms, milliliters, and

liters. Making appropriate conversions and having everyone involved understand

the relationships can be a challenge.16 Second, seasonal patterns reverse between

the northern and southern hemispheres, so it makes a difference whether one is

forecasting for a northern or southern hemisphere market. Third, such cultural dif-

ferences as preference for degree of sweetness, shopping habits, and perception of

colors can impact sales. The necessary lead time for product and ingredient ship-

ments can vary a great deal depending on the geographic regions involved. Fur-

ther, since labels are different, one must forecast specifically for each country

rather than the system as a whole. Consider, for example, two markets that may at

first appear similar: the United States and Canada. These two markets use differ-

ent units of measurement, and in Canada labels must have all information equally

in both French and English. Thus, products destined to be sold in one market can-

not be sold in the other market, so each forecast must be done separately.

These examples illustrate the role forecasting plays in representative firms.

Similar scenarios exist in thousands of other businesses throughout the world and,

as you will see in the following section, in various nonbusiness activities as well.

FORECASTING IN THE PUBLIC AND NOT-FOR-PROFIT SECTORS

The need to make decisions based on judgments about the future course of events

extends beyond the profit-oriented sector of the economy. Hospitals, libraries,

blood banks, police and fire departments, urban transit authorities, credit unions,

and a myriad of federal, state, and local governmental units rely on forecasts of

one kind or another. Social service agencies such as the Red Cross and the Easter

Seal Society must also base their yearly plans on forecasts of needed services and

expected revenues.

Brooke Saladin, working with the research and planning division of the police

department in a city of about 650,000 people, has been effective in forecasting the

demand for police patrol services.17 This demand is measured by using a call-

for-service workload level in units of hours per 24-hour period. After a thorough

statistical analysis, five factors were identified as influential determinants of the

call-for-service work load (W):

POP a population factor

ARR an arrest factor

AFF an affluence factor

VAC a vacancy factor

DEN a density factor
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The following multiple-regression model was developed on the basis of a sample

of 40 cruiser districts in the city:

W  5.66  1.84POP  1.70ARR  0.93AFF  0.61VAC  0.13DEN

Using the remaining 23 cruiser districts to test this model, Saladin found that “the

absolute error in forecasting workload ranged from 0.07827 to 1.49764, with an

average of 0.74618.”18 This type of model is useful in planning the needs for both

personnel and equipment.

In Texas, the Legislative Budget Board (LBB) is required to forecast the

growth rate for Texas personal income, which then governs the limit for state ap-

propriations. The state comptroller’s office also needs forecasts of such variables

as the annual growth rates of electricity sales, total nonagricultural employment,

and total tax revenues. Richard Ashley and John Guerard have used techniques

like those to be discussed in this text to forecast these variables and have found

that the application of time-series analysis yields better one-year-ahead forecasts

than naive constant-growth-rate models.19

Dr. Jon David Vasche, senior economist for the California Legislative Analysis

Office (LAO), is involved with economic and financial forecasting for the state.

He has noted that these forecasts are essential, since the state’s budget of over $70

billion must be prepared long before actual economic conditions are known.20 The

key features of the LAO’s forecasting approach are:

1. Forecasts of national economic variables. The Wharton econometric model is

used with the adaptations that reflect the LAO’s own assumptions about such

policy variables as monetary growth and national fiscal policies.

2. California economic submodel. This model forecasts variables such as trends

in state population, personal income, employment, and housing activity.

3. State revenue submodels. These models are used to forecast the variables that

affect the state’s revenue. These include such items as taxable personal income,

taxable sales, corporate profits, vehicle registrations, and cash available for

investment.

4. Cash-flow models. These models are used to forecast the flow of revenues over

time.

In developing and using forecasting models, “the LAO has attempted to strike a

balance between comprehensiveness and sophistication on the one hand, and

flexibility and usability on the other.”21 LAO’s success is determined by how
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accurately it forecasts the state’s revenues. In the three most recent years reported,

the “average absolute value of the actual error was only about 1.6 percent.”22

Errors of 5 percent or more have occurred when unanticipated movements in

national economic activity have affected the state’s economy.

A multiple-regression forecasting model has been developed to help forecast a

hospital’s nursing staff requirements.23 This model forecasts the number of patients

that need to be served and the nature of care required (e.g., pediatric or orthopedic)

for each month, day of the week, and time of day. Such models have become very

valuable for directors of nursing personnel in determining work schedules.

In a study of a hospital that holds over 300 beds, we have found that the fore-

casting methods discussed in this text are effective in forecasting monthly billable

procedures (BILLPROC) for the hospital’s laboratories.24 The primary purpose of

producing monthly forecasts is to help laboratory managers make more accurate

staffing decisions in the laboratory. Also, an accurate forecast can help in control-

ling inventory costs and in providing timely customer service. This can streamline

operations and lead to more satisfied customers.

For preparing short-term forecasts of billable procedures, two models are used:

a linear-regression model and Winters’ exponential-smoothing model. The linear-

regression model is based on inpatient admissions, a time index, and 11 monthly

dummy variables to account for seasonality. The second model is a Winters’ ex-

ponential smoothing that incorporates a multiplicative seasonal adjustment and a

trend component.

The root-mean-squared error (RMSE) is used to evaluate the accuracy of fore-

cast models at the hospital. The first annual forecast, by month, of billable proce-

dures for the laboratory prepared with these quantitative methods provided good

results. The linear-regression model provided the most accurate forecast, with an

RMSE of 1,654.44. This was about 3.9 percent of the mean number of procedures

per month during that year. The Winters’ model had a higher RMSE of 2,416.91

(about 5.7 percent of the mean number of procedures per month). For the entire

fiscal year in total, the forecast of the annual number of laboratory procedures re-

sulted in an error of only 0.7 percent.

FORECASTING AND SUPPLY CHAIN MANAGEMENT

In recent years there has been increased attention to supply chain management

issues. In a competitive environment businesses are forced to operate with maxi-

mum efficiency and with a vigilant eye toward maintaining firm cost controls,

while continuing to meet consumer expectations in a profitable manner. To be
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successful, businesses must manage relationships along the supply chain more

fully than ever before.25 This can be aided by effectively using the company’s own

sales organization and making forecasting an integral part of the sales and opera-

tions planning (S&OP) process.26

We can think of the supply chain as encompassing all of the various flows

between suppliers, producers, distributors (wholesalers, retailers, etc.), and con-

sumers. Throughout this chain each participant, prior to the final consumer,

must manage supplies, inventories, production, and shipping in one form or an-

other. For example, a manufacturer that makes cellular phones needs a number

of different components to assemble the final product and ultimately ship it to a

local supplier of cellular phone services or some other retailer. One such com-

ponent might be the leather carrying case. The manufacturer of the carrying

case may have suppliers of leather, clear plastic for portions of the case, fasten-

ers, dyes perhaps, and possibly other components. Each one of these suppliers

has its own suppliers back one more step in the supply chain. With all of these

businesses trying to reduce inventory costs (for raw materials, goods in process,

and finished products), reliability and cooperation across the supply chain

become essential.

Forecasting has come to play an important role in managing supply chain rela-

tionships. If the supplier of leather phone cases is to be a good supply chain part-

ner, it must have a reasonably accurate forecast of the needs of the cellular phone

company. The cellular phone company, in turn, needs a good forecast of sales to

be able to provide the leather case company with good information. It is probably

obvious that, if the cellular phone company is aware of a significant change in

sales for a future period, that information needs to be communicated to the leather

case company in a timely manner.

To help make the entire supply chain function more smoothly, many compa-

nies have started to use collaborative forecasting systems in which information

about the forecast is shared throughout the relevant portions of the supply chain.

Often, in fact, suppliers have at least some input into the forecast of a business

further along the supply chain in such collaborative forecasting systems.27 Hav-

ing good forecasts at every stage is essential for efficient functioning of the sup-

ply chain.

At the beginning of the text, at the very start of page 1, you read the following

quote from Al Enns, director of supply chain strategies, at Motts North America:

I believe that forecasting or demand management may have the potential to add

more value to a business than any single activity within the supply chain. I say this
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because if you can get the forecast right, you have the potential to get everything

else in the supply chain right. But if you can’t get the forecast right, then every-

thing else you do essentially will be reactive, as opposed to proactive planning.28

Daphney Barr, a planning coordinator for Velux-America, a leading manufacturer

of roof windows and skylights, has similarly observed that:

Demand planning is the key driver of the supply chain. Without knowledge of de-

mand, manufacturing has very little on which to develop production and inventory

plans while logistics in turn has limited information and resources to develop dis-

tribution plans for products among different warehouses and customers. Simply

stated, demand forecasting is the wheel that propels the supply chain forward and

the demand planner is the driver of the forecasting process.29

These are two examples of the importance business professionals are giving to the

role of forecasting.

There is another issue that is partially related to where a business operates

along the supply chain that is important to think about when it comes to forecast-

ing. As one gets closer to the consumer end of the supply chain, the number of

items to forecast tends to increase. For example, consider a manufacturer that pro-

duces a single product that is ultimately sold through discount stores. Along the

way it may pass through several intermediaries. That manufacturer only needs to

forecast sales of that one product (and, of course, the potentially many compo-

nents that go into the product). But assume that Wal-Mart is one of the stores that

sells the product to consumers throughout the United States. Just think of the tens

of thousands of stockkeeping units (SKUs) that Wal-Mart sells and must forecast.

Clearly the methods that the manufacturer considers in preparing a forecast can be

much more labor intensive than the methods that Wal-Mart can consider. An

organization like Wal-Mart will be limited to applying forecasting methods that

can be easily automated and can be quickly applied.This is something you will want

to think about as you study the various forecast methods discussed in this text.

COLLABORATIVE FORECASTING

The recognition that improving functions throughout the supply chain can be aided

by appropriate use of forecasting tools has led to increased cooperation among sup-

ply chain partners. This cooperative effort, designed by the Voluntary Interindustry

Commerce Standards Association (VICS), has become known as Collaborative

Planning Forecasting and Replenishment (CPFR).30 CPFR involves coordination,

communication, and cooperation among participants in the supply chain.

12 Chapter One

28 Sidney Hill, Jr., “A Whole New Outlook,” Manufacturing Systems 16, no. 9 (September

1998), pp. 70–80. (Emphasis added.)
29 Daphney P. Barr, “Challenges Facing a Demand Planner: How to Identify and Handle Them,”

Journal of Business Forecasting 21, no. 2 (Summer 2002), pp. 28–29. (Emphasis added.)
30 Lisa H. Harrington, “Retail Collaboration: How to Solve the Puzzle,” Transportation and

Distribution, May 2003, pp. 33–37.



In the simplest form the process is as follows: A manufacturer that produces a

consumer good computes its forecast. That forecast is then shared with the retail-

ers that sell that product to end-use consumers. Those retailers respond with any

specific knowledge that they have regarding their future intentions related to pur-

chases based on known promotions, programs, shutdowns, or other proprietary in-

formation about which the manufacturer may not have had any prior knowledge.

The manufacturer then updates the forecast including the shared information. In

this way the forecast becomes a shared collaborative effort between the parties.

Some benefits of collaborative forecasting include:

1. Lower inventory and capacity buffers. The producer can push the forecast

throughout the supply chain resulting in a better match of inventories for all

participants.

2. Fewer unplanned shipments or production runs. When buyers of the product

have swings in their purchasing cycles, sellers find themselves having to rush

material to warehouses. These unplanned shipments usually carry a premium

price.

3. Reduced stockouts. If buyers are ready to buy and the seller doesn’t have the

product, buyers will seek alternative means of meeting their needs. This will

always have a negative impact on the seller due to lost sales and lower customer

satisfaction.

4. Increased customer satisfaction and repeat business. Buyers know that they

sometimes have unusual demand cycles. If the seller can respond quickly to

these cycles, buyers will be that much more satisfied with the producer.

5. Better preparation for sales promotions. Promotions are special demand situa-

tions. No one wants to promote products that cannot be supplied. Meeting the

needs of promotions is another positive input for customer service.

6. Better preparation for new product introductions. New product launches can

be very tricky as sellers attempt to establish the supply chain. Meeting the

needs of new product launches can maximize launch timing and increase speed

to market.

7. Dynamically respond to market changes. Sometimes markets change based on

external factors (popular culture, governmental controls, etc.). Being able to

respond dynamically to these special cases without overstocking or under-

stocking is critical.31

With so much to gain, it’s no wonder that there are many companies that have

successfully implemented collaborative forecasting partnerships. Examples in-

clude Wal-Mart, Target, Kmart, Sears, EMD Chemicals, Whirlpool, Fuji Photo

Film, and Goodyear. Companies that have adopted collaborative forecasting

programs have generally seen very positive results. For example, True Value
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found that service levels to stores improved by between 10 and 40 percent, while

inventory levels decreased 10 to 15 percent.32

The value of information sharing has been documented in many studies.

Consider one such study of a small- to midsized retailer with about $1 billion

in annual sales. This retailer operates at more than 20 locations each with multi-

ple retail outlets including department stores, mass-merchandisers, and conve-

nience stores. As a result of sharing information in the supply chain the retailer

achieved supply chain savings at the two biggest locations of about 15 percent and

33 percent.33

To effectively use CPFR, a company must be prepared to share information

using electronic data transfer via the Internet. A number of software developers

offer programs that are designed to create that data link between parties. It is this

link to electronic data and the use of the Internet that is the first hurdle companies

must overcome when considering CPFR. A company needs to be committed to an

electronic data platform including available hardware, software, and support staff.

Depending on the size of the company and the complexity of the integration, the

amount of resources can vary greatly.

One of the most interesting problems to consider when establishing a collabo-

rative relationship is how to deal with a nonparticipant. That is, if a manufacturer

sells to two customers—one that enters the collaborative relationship and one that

doesn’t—are they both entitled to the benefits that result? At the center of the issue

is the preferential delivery of goods to the customer with the collaborative rela-

tionship. If that customer is guaranteed first delivery of goods over the nonpartic-

ipating customer, then the nonparticipant bears nearly all the risk of stockouts.

Companies with this dilemma have responded in several different ways. Some

companies pass cost savings and reduced price structuring to all their customers.

Some provide preferential delivery and pricing to the collaborative partner alone.

Others simply attempt to drive out the costs of excess inventory and stockouts

while keeping their price structuring the same for all customers.34

In a collaborative environment there is a lot of information that flows between

the two parties. Most of the time, information resides in public forums (computer

servers) with only a software security system protecting it from outsiders. Collab-

orative forecasting does run the risk of loss of confidentiality to outsiders. Pro-

duction forecasts can often be tied to production capacity, which is very critical

information, especially to competitors.

Other information surrounding product launches and special promotions is

also very sensitive and could be at risk. Securing this information and ensuring

that it doesn’t become public knowledge add to the importance of the job of the

software administrator. Information breaches could be an oversight as well. With
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forecasts and production information flowing so freely, parties on either side of

the collaboration might inadvertently mistake sensitive information for common

knowledge. At the very least, the issue of confidentiality must be addressed be-

tween the parties, and proper measures should be put in place to ensure all parties

are satisfied that their interests are protected.

COMPUTER USE AND QUANTITATIVE FORECASTING

In today’s business environment computers are readily available to nearly every-

one. There was a time when only very large business enterprises had the resources

to spend on computer systems, and within those businesses, access to the com-

puter’s power was limited. Today things are quite different. The cost of large-scale

computer systems has dropped significantly, and microcomputers have made

computer technology available to virtually any business professional interested in

utilizing it. As early as 1966 a study reported that 68 percent of the companies sur-

veyed used computers in preparing forecasts.35 In 1986 a survey of economists

found that over 93 percent used a computer in developing forecasts.36 A similar

study of marketing professionals found that about 87 percent were using comput-

ers in forecasting. Just over 30 percent of the marketing professionals surveyed

who use a computer in developing forecasts relied solely on a personal com-

puter.37 It is clear that personal computers are currently the primary computational

tool for the preparation of forecasts.

The widespread availability of computers has contributed to the use of quanti-

tative forecasting techniques, many of which would not be practical to carry out

by hand. Most of the methods described in this text fall into the realm of quanti-

tative forecasting techniques that are reasonable to use only when appropriate

computer software is available. A number of software packages, at costs that range

from about $100 to many thousands of dollars, are currently marketed for use in

developing forecasts. You will find that the software that accompanies this text

will enable you to apply the most commonly used quantitative forecasting tech-

niques to data of your choosing.

The use of personal computers in forecasting has been made possible by rapid

technological changes that have made these desktop (or laptop) computers very

fast and capable of storing and processing large amounts of data. User-friendly

software makes it easy for people to become proficient in using forecasting pro-

grams in a short period of time. Dr. Vasche has said in this regard that “reliance on

such PC systems has given state economists added flexibility in their forecasting

work. By minimizing use of mainframe computers, it has also reduced the state’s
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costs of preparing forecasts.”38 The same is true in most business situations as

well. The dominance of PC forecasting software is clear at the annual meetings of

the major forecasting associations. At these meetings various vendors of PC-

based forecasting software packages display and demonstrate their products.

The importance of quantitative methods in forecasting has been stressed by

Charles W. Chase, Jr., who was formerly director of forecasting at Johnson &

Johnson Consumer Products, Inc., and now is Business Enablement Manager for

SAS Institute, Inc. He says, “Forecasting is a blend of science and art. Like most

things in business, the rule of 80/20 applies to forecasting. By and large, forecasts

are driven 80 percent mathematically and 20 percent judgmentally.”39

QUALITATIVE OR SUBJECTIVE FORECASTING METHODS

Quantitative techniques using the power of the computer have come to dominate

the forecasting landscape. However, there is a rich history of forecasting based on

subjective and judgmental methods, some of which remain useful even today.

These methods are probably most appropriately used when the forecaster is faced

with a severe shortage of historical data and/or when quantitative expertise is not

available. In some situations a judgmental method may even be preferred to a

quantitative one. Very long range forecasting is an example of such a situation.

The computer-based models that are the focal point of this text have less applica-

bility to such things as forecasting the type of home entertainment that will be

available 40 years from now than do those methods based on expert judgments.

In this section several subjective or judgmental forecasting methods are reviewed.

Sales Force Composites
The sales force can be a rich source of information about future trends and

changes in buyer behavior. These people have daily contact with buyers and are

the closest contact most firms have with their customers. If the information avail-

able from the sales force is organized and collected in an objective manner, con-

siderable insight into future sales volumes can be obtained.

Members of the sales force are asked to estimate sales for each product they

handle. These estimates are usually based on each individual’s subjective “feel”

for the level of sales that would be reasonable in the forecast period. Often a range

of forecasts will be requested, including a most optimistic, a most pessimistic, and

a most likely forecast. Typically these individual projections are aggregated by the

sales manager for a given product line and/or geographic area. Ultimately the per-

son responsible for the firm’s total sales forecast combines the product-line and/or

geographic forecasts to arrive at projections that become the basis for a given

planning horizon.
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While this process takes advantage of information from sources very close to ac-

tual buyers, a major problem with the resulting forecast may arise if members of the

sales force tend to underestimate sales for their product lines and/or territories.40

This behavior is particularly likely when the salespeople are assigned quotas on the

basis of their forecasts and when bonuses are based on performance relative to those

quotas. Such a downward bias can be very harmful to the firm. Scheduled produc-

tion runs are shorter than they should be, raw-material inventories are too small,

labor requirements are underestimated, and in the end customer ill will is generated

by product shortages. The sales manager with ultimate forecasting responsibility

can offset this downward bias, but only by making judgments that could, in turn,

incorporate other bias into the forecast. Robin Peterson has developed a way of

improving sales force composite forecasts by using a prescribed set of learned rou-

tines as a guide for salespeople as they develop their forecasts.41

These sets of learned routines are referred to as scripts, which can serve as a

guide in developing an essentially subjective forecast. An example of a hypothet-

ical script adapted from Peterson’s work follows:

Review data on gross domestic product.

Review forecasts of gross domestic product.

Review industry sales data for the preceding year.

Review company sales data for the preceding year.

Review company sales forecasts for the previous years.

Survey key accounts concerning their purchasing plans.

Review last year’s sales data in the salesperson’s territory.

Review the employment situation in the salesperson’s territory.

Do a simple trend projection of sales in the salesperson’s territory.

Examine competitors’ actions in the salesperson’s territory.

Gather internal data about the company’s promotional plans.

Gather internal data about the company’s product introduction plans.

Gather internal data about the company’s customer service plans.

Gather internal data about the company’s credit-granting plans.

Check to see if there are planned changes in the company’s pricing structure.

Evaluate the pricing practices of competitors.

Track the company’s sales promotions.

Track the competitors’ sales promotions.

A script such as this can be developed, based on interviews with successful sales-

people concerning procedures they have used in preparing their forecasts.
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Surveys of Customers and the General Population
In some situations it may be practical to survey customers for advanced informa-

tion about their buying intentions. This practice presumes that buyers plan their

purchases and follow through with their plans. Such an assumption is probably

more realistic for industrial sales than for sales to households and individuals. It is

also more realistic for big-ticket items such as cars than for convenience goods

like toothpaste or tennis balls.

Survey data concerning how people feel about the economy are sometimes

used by forecasters to help predict certain buying behaviors. One of the com-

monly used measures of how people feel about the economy comes from a

monthly survey conducted by the University of Michigan Survey Research Cen-

ter (SRC). The SRC produces an Index of Consumer Sentiment (ICS) based on a

survey of 500 individuals, 40 percent of whom are respondents who participated

in the survey six months earlier and the remaining 60 percent new respondents se-

lected on a random basis. This index has its base period in 1966, when the index

was 100. High values of the ICS indicate more positive feelings about the econ-

omy than do lower values. Thus, if the ICS goes up, one might expect that people

are more likely to make certain types of purchases.

Jury of Executive Opinion
The judgments of experts in any area are a valuable resource. Based on years of

experience, such judgments can be useful in the forecasting process. Using

the method known as the jury of executive opinion, a forecast is developed by

combining the subjective opinions of the managers and executives who are most

likely to have the best insights about the firm’s business. To provide a breadth of

opinions, it is useful to select these people from different functional areas. For

example, personnel from finance, marketing, and production might be included.

The person responsible for making the forecast may collect opinions in indi-

vidual interviews or in a meeting where the participants have an opportunity to

discuss various points of view. The latter has some obvious advantages such as

stimulating deeper insights, but it has some important disadvantages as well. For

example, if one or more strong personalities dominate the group, their opinions

will become disproportionately important in the final consensus that is reached.

The Delphi Method
The Delphi method is similar to the jury of executive opinion in taking advantage

of the wisdom and insight of people who have considerable expertise about the

area to be forecast. It has the additional advantage, however, of anonymity among

the participants. The experts, perhaps five to seven in number, never meet to dis-

cuss their views; none of them even knows who else is on the panel.

The Delphi method can be summarized by the following six steps:

1. Participating panel members are selected.

2. Questionnaires asking for opinions about the variables to be forecast are dis-

tributed to panel members.

3. Results from panel members are collected, tabulated, and summarized.
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4. Summary results are distributed to the panel members for their review and con-

sideration.

5. Panel members revise their individual estimates, taking account of the infor-

mation received from the other, unknown panel members.

6. Steps 3 through 5 are repeated until no significant changes result.

Through this process there is usually movement toward centrality, but there is no

pressure on panel members to alter their original projections. Members who have

strong reason to believe that their original response is correct, no matter how

widely it differs from others, may freely stay with it. Thus, in the end there may

not be a consensus.

The Delphi method may be superior to the jury of executive opinion, since

strong personalities or peer pressures have no influence on the outcome. The

processes of sending out questionnaires, getting them back, tabulating, and sum-

marizing can be speeded up by using advanced computer capabilities, including

networking and e-mail.42

Some Advantages and Disadvantages 
of Subjective Methods
Subjective (i.e., qualitative or judgmental) forecasting methods are sometimes

considered desirable because they do not require any particular mathematical

background of the individuals involved. As future business professionals, like

yourself, become better trained in quantitative forms of analysis, this advantage

will become less important. Historically, another advantage of subjective methods

has been their wide acceptance by users. However, our experience suggests that

users are increasingly concerned with how the forecast was developed, and with

most subjective methods it is difficult to be specific in this regard. The underlying

models are, by definition, subjective. This subjectivity is nonetheless the most im-

portant advantage of this class of methods. There are often forces at work that can-

not be captured by quantitative methods. They can, however, be sensed by experi-

enced business professionals and can make an important contribution to improved

forecasts. Wilson and Allison-Koerber have shown this dramatically in the context

of forecasting sales for a large item of food-service equipment produced by the

Delfield Company.43 Quantitative methods reduced errors to about 60 percent of

those that resulted from the subjective method that had been in use. When the less

accurate subjective method was combined with the quantitative methods, errors

were further reduced to about 40 percent of the level when the subjective method

was used alone. It is clear from this result, and others, that there is often important

information content in subjective methods.

The disadvantages of subjective methods were nicely summarized by Charles

W. Chase, Jr., when he was with Johnson & Johnson Consumer Products, Inc.

He stated that “the disadvantages of qualitative methods are: (1) they are almost
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always biased; (2) they are not consistently accurate over time; (3) it takes years

of experience for someone to learn how to convert intuitive judgment into good

forecasts.”44

NEW-PRODUCT FORECASTING

Quantitative forecasting methods, which are the primary focus of this text, are not

usually well suited for predicting sales of new products, because they rely on a

historical data series for products upon which to establish model parameters.

Often judgmental methods are better suited to forecasting new-product sales be-

cause there are many uncertainties and few known relationships. However, there

are ways to make reasonable forecasts for new products. These typically include

both qualitative judgments and quantitative tools of one type or another. One way

to deal with the lack of known information in the forecasting of new products is to

incorporate a modified version of the Delphi method. This was done by Ken Gold-

fisher while he worked in the Information Services Division of the Nabisco Foods

Group. Goldfisher has also found some relatively simple quantitative methods,

such as moving averages, to be helpful in developing new-product forecasts at

Nabisco.45

Using Marketing Research to Aid New-Product
Forecasting
Various market research activities can be helpful in new-product forecasting. Sur-

veys of potential customers can provide useful preliminary information about the

propensity of buyers to adopt a new product. Test-market results and results from

the distribution of free samples can also provide estimates of initial sales. On the

basis of predictions about the number of initial innovators who will buy a product,

an S-shaped market-penetration curve can be used to forecast diffusion of the new

product throughout the market.

Terry Anderson has described a process for new-product forecasting at

Howmedica that is based on various judgmental factors.46 It begins with an estimate

of the total number of customers, based on a consensus within the marketing and

sales groups. A customer usage rate is derived based on experience with past new

introductions. Inventory requirements are also included in making projections.

Whitlark, Geurts, and Swenson have used customer purchase intention surveys

as a tool to help prepare forecasts of new products.47 They describe a three-step
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process that starts with the identification of a demographic profile of the target

market, then the probability of purchase is estimated from survey data, and finally

a forecast is developed by combining this probability with information on the size

of the target market. A sample of consumers from the target market is asked to re-

spond to an intent-to-purchase scale such as: definitely will buy; probably will

buy; might or might not buy; probably will not buy; and definitely will not buy.

Probabilities are then assigned to each of the intention-to-buy categories, using

empirical evidence from a longitudinal study of members of the target market cov-

ering a length of time comparable to the length of time for the proposed forecast

horizon. An example of these probabilities for a three- and a six-month time hori-

zon is shown in Table 1.1. Note that the probabilities of purchase increase as the

time horizon increases.

Applying this method to two products produced good results. For the first prod-

uct the three-month forecast purchase rate was 2.9 percent compared with an ac-

tual purchase rate of 2.4 percent. In the six-month time horizon the forecast and

actual rates were 15.6 percent and 11.1 percent, respectively. Similar results were

found for a second product. In the three-month horizon the forecast and actual

percents were 2.5 percent versus 1.9 percent, while in the six-month forecast hori-

zon the forecast was 16.7 percent and the actual was 16.3 percent.

The Product Life Cycle Concept
Aids in New-Product Forecasting
The concept of a product life cycle (PLC), such as is shown in Figure 1.1, can be

a useful framework for thinking about new-product forecasting. During the

introductory stage of the product life cycle, only consumers who are classified

as “innovators” are likely to buy the product. Sales start low and increase slowly

at first; then, near the end of this stage, sales start to increase at an increasing

rate. Typically products in this introductory stage are associated with negative

profit margins as high front-end costs and substantial promotional expenses are

incurred.

As the product enters the growth stage of the life cycle, sales are still increas-

ing at an increasing rate as “early adopters” enter the market. Eventually in this

stage the rate of growth in sales starts to decline and profits typically become pos-

itive. Near the end of the growth stage, sales growth starts to level off substantially

as the product enters the maturity stage. Here profits normally reach the maximum
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TABLE 1.1
Probabilities

Assigned to

Purchase-Intention

Categories

Source: Adapted from Whitlark

et al., p. 20.

Intention-to-
Purchase Category

Definitely will buy 64% 75%
Probably will buy 23 53
Might or might not buy 5 21
Probably will not buy 2 9
Definitely will not buy 1 4

Three-Month
Time Horizon

Six-Month
Time Horizon



level. Businesses often employ marketing strategies to extend this stage as long as

possible. However, all products eventually reach the stage of decline in sales and

are, at some point, removed from the market (such as Oldsmobile cars, which had

been in the automobile market for a century).

This notion of a product life cycle can be applied to a product class (such as

personal passenger vehicles), to a product form (such as sport utility vehicles), or

to a brand (such as Jeep Cherokee—whose life cycle ended after many years and

was replaced with the Jeep Liberty). Product life cycles are not uniform in shape

or duration and vary from industry to industry. The Jeep example illustrates a rel-

atively long life cycle. For high-tech electronic products, life cycles may be as

short as six to nine months. An example would be a telephone that has a design

based on a movie character.

The forecasting approach that is best will vary depending on where a product

or product class is in the life cycle. Once the mid-to-late growth stage is reached,

there is probably sufficient historical data to consider a wide array of quantitative

methods. The real forecasting problems occur in the introductory stage (or in the

preintroductory product development stage). Here the forecaster finds traditional

quantitative methods of limited usefulness and must often turn to marketing re-

search techniques and/or qualitative forecasting techniques.

Analog Forecasts
The basic idea behind the analog method is that the forecast of the new product

is related to information that you have about the introduction of other similar

products in the past.48 Suppose that you work for a toy company that sells toys to

children in the 4-to-14 age group. Two years ago for the Christmas season you

introduced a toy that was based on a popular animated Christmas movie. The
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This example shows the new product curve for VCR sales in the United States. Both unit sales and market pen-

etration are illustrated. One might expect high definition DVD player/recorders to follow a similar trend.
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percentage of total market households that purchased that product was 1.3 per-

cent, 60 percent of potential toy stores stocked the product, and your company

spent $750,000 on promotions. Now you have a new toy to bring to market this

Christmas season, and you need some estimate of sales. Suppose that this new

product appeals to a narrower age range such that the likely percentage of house-

holds that would purchase the product is 1.1 percent, and that you can expect com-

parable promotional support as well as comparable acceptance by retailers in

stocking the product. Assuming that the only change is the percentage of house-

holds likely to purchase the product, the relation of sales of the new product to the

old one would be 1.1  1.3 (which equals 0.84615). If the previous product sold

100,000 units in the first quarter of introduction and 120,000 in the second quar-

ter of introduction, you might forecast sales for your new product as 84,615 in the

first quarter and 101,538 in the second quarter. If the size of the relevant popula-

tion, the percentage of stores stocking the product, or the promotional effort

changes, you would adjust the forecast accordingly.

Test Marketing
Test marketing involves introducing a product to a small part of the total market

before doing a full product rollout. The test market should have characteristics

that are similar to those of the total market along relevant dimensions. For exam-

ple, usually we would look for a test market that has a distribution similar to the

national market in terms of age, ethnicity, and income, as well as any other char-

acteristics that would be relevant for the product in question. The test market

should be relatively isolated in terms of the product being tested to prevent prod-

uct and/or information flow to or from other areas. For example, Kansas City, Mis-

souri, would not usually be a good test market because there would be a good deal

of crossover between Kansas City, Missouri, and Kansas City, Kansas. Indianapo-

lis, Indiana, on the other hand, might be a better choice of a test market for many

types of products because it has a demographic mix that is similar to the entire

country and is relatively isolated in the context discussed here.49 Suppose we do a

test market in one or more test cities and sell an average of 1.7 units per 10,000

households. If, in the total market, there are 100 million households, we might

project sales to be 17,000 units ([1.7  10,000]  100,000,000  17,000). The

cost of doing a local rollout is far less than a national rollout and can provide

significant new information.

Product Clinics
The use of product clinics is a marketing research technique in which potential

customers are invited to a specific location and are shown a product mockup or

prototype, which in some situations is essentially the final product. These people
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are asked to “experience the product,” which may mean tasting a breakfast cereal,

using a software product, or driving a test vehicle. Afterwards they are asked to

evaluate the product during an in-depth personal interview and/or by filling out a

product evaluation survey. Part of this evaluation would normally include some

measure of likelihood to purchase the product. From these results a statistical

probability of purchase for the population can be estimated and used to predict

product sales. The use of in-home product evaluations is a similar process. A panel

of consumers is asked to try the product at home for an appropriate period of time

and then is asked to evaluate the product, including an estimate of likelihood to

purchase.

Type of Product Affects New-Product Forecasting
All products have life cycles and the cycles have similar patterns, but there may be

substantial differences from one product to another. Think, for example, about

products that are fashion items or fads in comparison with products that have real

staying power in the marketplace. Fashion items and products that would be con-

sidered fads typically have a steep introductory stage followed by short growth

and maturity stages and a decline that is also very steep.

High-tech products often have life cycles that are relatively short in comparison

with low-technology products. It has been found that “high-technology businesses

show a significant preference for data-less, qualitative, internal judgment fore-

casting methods” in comparison with low-technology businesses, which are more

likely to use external sources such as surveys of consumer-buying intentions.50

The Bass Model for New-Product Forecasting
The Bass model for sales of new products, first published in 1969, is probably the

most notable model for new-product forecasting. Its importance is highlighted by

the fact that it was republished in Management Science in December 2004.51 This

model gives rise to product diffusion curves that look like those illustrated in

Figure 1.2. The Bass model was originally developed for application only to

durable goods. However, it has been adapted for use in forecasting a wide variety

of products with short product life cycles, and new products with limited histori-

cal data.

The model developed by Bass is:

St pm  (q   p)*Yt  (q/m)*Yt
2
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Where:

St Sales at time period t.

p  Probability of initial purchase at time t  0. This reflects the importance

of innovators and is called the coefficient of innovation.

m  Number of initial purchases of product over the life cycle (excludes

replacement purchases).

q  Coefficient of imitation representing the propensity to purchase based on

the number of people who have already purchased the product.

Yt Number of previous buyers at time t.

The values for p, q, and m can be estimated using a statistical tool called

regression analysis, which is covered in Chapters 4 and 5 of this text. The alge-

braic form for the regression model is:

St a  bYt 1 cYt 1
2

From the regression estimates for a, b, and c the values of p, q, and m can be

derived. Note that:

a  pm

b  q  p

c   q/m

Bass shows that:

p  a m q   mc and m  ( b  [b2
 4ac]0.5) 2c

Getting the estimates of the three parameters in the Bass model is the difficult

part. If the product is entirely new and in a prelaunch stage, we might gather data
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These examples of new-product diffusion curves are from http://www.andorraweb.com/bass, a Web site where you

can find such curves for many different products.



for an analogous product for which a sales history is known, such as a previous

model of a cell phone. Once the product has been launched, knowing even four or

five values of sales we can get preliminary estimates of the parameters. As a sales

history develops, these estimates can be refined.52

Forecasting Sales for New Products 
That Have Short Product Life Cycles
In an age of rapid change there are many products that have short product life

cycles (PLC). This is especially true of high-tech products for which technological

change and/or marketing strategies make products obsolete relatively quickly.

Cell phones would be a good example. New cell phones with a variety of en-

hancements seem to appear almost weekly. Such products may have a life cycle of

perhaps 12 to 24 months, which means that there is little time to gather historical

data upon which to base a forecast. It also means that the initial forecasts are

exceptionally important because there is less time to recover from either over- or

underprojecting sales.

The life cycle for this type of situation may look something like that shown in

Figure 1.3. Upon introduction, sales are typically high then drop quickly, level out

to a slower rate of decline for some period, followed by a more rapid drop to the

end of the product’s life cycle (EOL). We illustrate this in Figure 1.3 for a product

with a 20-month PLC. The data shown in such a graph can frequently be devel-

oped by looking at the historic PLC for similar products, such as past generations

of cell phones.53
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Suppose that we know that there has been a seasonal pattern for similar prod-

ucts in the past. Based on this knowledge, a natural bump to sales can be expected

during the back-to-school period in August and September, followed by increased

buying during the holiday season, and another bump when people get tax returns

in March. Based on knowledge from past product introductions, the seasonal in-

dices are estimated to be:

August, 1.15

September, 1.10

November, 1.10

December, 1.30

March, 1.05

You will see how such seasonal indices are computed later in the text. A complete

list of the seasonal indices (SI) for this product are shown in Table 1.2.

We can also incorporate the marketing plans for the product into the PLC

forecast. Suppose that the marketing mix for the product calls for a skimming in-

troductory price followed by a price cut three months after the product launch.

This price cut is expected to increase sales by 15 percent the first month of the

cut (October, in our example), followed by 10 and 5 percent increases in the fol-

lowing two months (November and December), after which time the market has

fully adjusted to the price drop. A similar price cut is planned for the following

July to help prop up sales as the life cycle moves into a more rapid rate of de-

cline. Typically a price cut this late in the PLC has less effect, as can be seen in

Table 1.2.

In addition, two promotional campaigns are planned for the product: one de-

signed to promote the product as a holiday gift, and the other to communicate the

benefits to students of having the product as the school year gets under way. The

holiday promotion is expected to have a 10 percent lift in both the first November

and December and a 5 percent lift the next holiday season. The back-to-school

promotion is expected to add 5 percent to sales the first August and September and

4 percent at the beginning of the following school year.

These seasonal and marketing mix constructs are used to adjust the baseline

new-product life cycle as illustrated in Table 1.2. The baseline forecast is first

multiplied by the seasonal indices, then by the factors representing the expected

effect of each part of the marketing mix. Additional marketing mix relationships,

such as distribution and awareness strategies, could be included in a similar

manner.

The sales forecast based on the seasonal adjustment (the column headed “After

SI Adj”) is found by multiplying the baseline forecast by the seasonal indices (SI).

The baseline forecast and the seasonally adjusted forecast are shown in the top of

Figure 1.4. Each subsequent adjustment for marketing mix elements is done in a

similar manner until the final adjusted forecast is developed. This final forecast is

shown in the right-hand column of Table 1.2. The baseline and final adjusted fore-

cast are shown in the bottom graph of Figure 1.4.
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TWO SIMPLE NAIVE MODELS

The simplest of all forecasting methods is to assume that the next period will be

identical to the present. You may have used this method today in deciding what

clothes to wear. If you had not heard a professional weather forecast, your deci-

sion about today’s weather might be based on the weather you observed yesterday.

If yesterday was clear and the temperature was 70°F, you might assume today to

be the same. If yesterday was snowy and cold, you might expect a similar wintry

day today. In fact, without evidence to suggest otherwise, such a weather forecast

is quite reasonable. Forecasts based solely on the most recent observation of the

variable of interest are often referred to as “naive forecasts.”

In this section we will use such a method, and a variation on it, to forecast the

monthly value of the University of Michigan Index of Consumer Sentiment

(UMICS). For this example we use data from January 2006 through December

2006. These data are given and shown graphically in Figure 1.5. In both forms of

presentation you can see that the UMICS varied considerably throughout this pe-

riod, from a low of 79.1 in May 2006 to a high of 93.6 in October 2006. The fluc-

tuations in most economic and business series (variables) are usually best seen
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after converting the data into graphic form, as you see in Figure 1.5. You should

develop the habit of observing data in graphic form when forecasting.

The simplest naive forecasting model, in which the forecast value is equal to

the previous observed value, can be described in algebraic form as follows:

Ft At 1

where Ft represents the forecast value for time period t and At 1 represents the ob-

served value one period earlier (t   1). In terms of the UMICS data we wish to

forecast, the model may be written as:

UMICSFt UMICSt 1

where UMICSFt is the University of Michigan Index of Consumer Sentiment

naive forecast number 1 at time period t and UMICSt 1 is the observed University

of Michigan Index of Consumer Sentiment one period earlier (t  1). We call this

Naive forecast 1 because we will very shortly look at another naive forecast. This

first naive forecast was done using Excel. The results are shown in Table 1.3 along

with measures of how well the model did. These measures will be discussed

shortly.

Note that each forecast value simply replicates the actual value for the preced-

ing month. These results are presented in graphic form in the upper graph of

Figure 1.6, which clearly shows the one-period shift between the two series. The

forecast for every month is exactly the same as the actual value for the month

before.

We might argue that in addition to considering just the most recent observation,

it would make sense to consider the direction from which we arrived at the latest

observation. If the series dropped to the latest point, perhaps it is reasonable to as-

sume some further drop. Alternatively, if we have just observed an increase, it may

make sense to factor into our forecast some further increase. Such adjustments

can be made in a second naive forecasting model, which includes some proportion
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of the most recently observed rate of change in the series. In general algebraic

terms the model becomes

Ft At 1 P(At 1 At 2)

where Ft is the forecast for period t, At 1 is the actual observation at period 

t  1, At 2 is the observed value at period t  2, and P is the proportion of the

change between periods t 2 and t 1 that we choose to include in the forecast.

Applying this second naive model to the University of Michigan Index of Con-

sumer Sentiment data, we have

UMICSF2t UMICSt 1 P(UMICSt 1 UMICSt 2)

where UMICSF2t represents the modified naive forecast for time period t;

UMICSt 1 and UMICSt 2 are the observed indices one and two periods earlier,

respectively; and P is the fraction of the most recent change in the index that is

now included in our forecast. This is illustrated with P  0.5 in Table 1.3.

Let us look closely at the circled value in Table 1.3 to help you see the exact

calculations that are involved in developing this forecast. To get the forecast for

March 2006 (denoted as MAR06), we take the observed value for February 2006

(Feb-06) and adjust it by including some information from the most recent trend.
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FIGURE 1.6
Two Forecasts of the

University of Michigan

Index of Consumer

Sentiment

Naive forecast1 is

simply the previous

actual value of the

index. That is:

UMICSFt UMICSt 1.

The naive forecast2

takes into account the

change between

previous periods.

It is:

UMICSF2t

 UMICSt 1

 .5 (UMICSt 1

 UMICSt 2)

See Table 1.3 for the

calculated values for

each forecast.

(c1t3&f6)



(For illustrative purposes we have used one-half of that recent change, but we

could try other values to see whether improved forecasts are possible.) Thus, the

forecast for MAR04 is:

UMICSF2MAR06 UMICSFEB06  0.5(UMICSFEB06  UMICSJAN06)

 86.7  .5(86.7  91.2)

 86.7  .5(–4.5)

 86.7  2.25

  84.45

The values for this second naive forecast are shown in graphic form in the lower

graph of Figure 1.6, along with the actual values for each month.

EVALUATING FORECASTS

You have now looked at two alternative forecasts of the University of Michigan

Index of Consumer Sentiment. Which forecast is best depends on the particular

year or years you look at. For example, the first model did a better job of forecast-

ing the index for April-06, whereas the second model did a better job for May-06.

See Table 1.3 for the entire set of forecasts.

In retrospect it is easy to say which forecast was better for any one period.

However, it is rare to find one model that is always best for any given set of busi-

ness or economic data. But we need some way to evaluate the accuracy of fore-

casting models over a number of periods so that we can identify the model that

generally works the best. Among a number of possible criteria that could be used,

seven common ones are the mean error (ME), the mean absolute error (MAE), the

mean percentage error (MPE), the mean absolute percentage error (MAPE), the

mean-squared error (MSE), the root-mean-squared error (RMSE), and Theil’s U.

To illustrate how each of these is calculated, let

At Actual value in period t

Ft Forecast value in period t

n  Number of periods used in the calculation

1. The mean error is calculated as:

ME  

2. The mean absolute error is then calculated as:

MAE  

3. The mean percentage error is calculated as:

MPE  
 [(At  Ft) At]
  

n

  At  Ft 
  

n

 (At  Ft)
  

n
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4. The mean absolute percentage error is calculated as:

MAPE  

5. The mean-squared error is calculated as:

MSE  

6. The root-mean-squared error is:

RMSE    
7. Theil’s U can be calculated in several ways, two of which are shown here.

U    (At  Ft)
2    (At  At 1)

2 

U  RMSE (model)  RMSE (no-change model)

The no-change model used in calculating Theil’s U is the basic naive forecast

model described above, in which Ft At 1.

For criteria one through six, lower values are preferred to higher ones. For

Theil’s U a value of zero means that the model forecast perfectly (no error in the

numerator). If U  1, the model forecasts better than the consecutive-period no-

change naive model; if U  1, the model does only as well as the consecutive-

period no-change naive model; and if U  1, the model does not forecast as well

as the consecutive-period no-change naive model.

The values for these measures, for both forecasts of the University of Michigan

Index of Consumer Sentiment, are shown in Table 1.3. From these results we see

that for all seven measures the first forecast is the more accurate forecast. Often

you can expect mixed results, in which no one model performs best as measured

by all seven measures.

Mean error (ME) and mean percentage error (MPE) are not often used as

measures of forecast accuracy because large positive errors (At  Ft) can be off-

set by large negative errors (At Ft). In fact, a very bad model could have an ME

or MPE of zero. ME and MPE are, however, very useful as measures of forecast

bias. A negative ME or MPE suggests that, overall, the forecasting model over-

states the forecast, while a positive ME or MPE indicates forecasts that are gener-

ally too low.

The other measures (MAE, MAPE, MSE, RMSE, and Theil’s U) are best used

to compare alternative forecasting models for a given series. Because of different

units used for various series, only MAPE and Theil’s U should be interpreted

across series. For example, a sales series may be in thousands of units, while the

prime interest rate is a percentage. Thus, MAE, MSE, and RMSE would be lower

for models used to forecast the prime rate than for those used to forecast sales.54

 (At Ft)
2

  
n

 (At  Ft)
2

  
n

  (At Ft) At 
  

n
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Throughout this text we will focus on root-mean-squared error (RMSE) to

evaluate the relative accuracy of various forecasting methods. The RMSE is easy

for most people to interpret because of its similarity to the basic statistical concept

of a standard deviation, and it is one of the most commonly used measures of fore-

cast accuracy.

All quantitative forecasting models are developed on the basis of historical

data. When measures of accuracy, such as RMSE, are applied to the historical pe-

riod, they are often considered measures of how well various models fit the data

(i.e., how well they work “in sample”). To determine how accurate the models are

in actual forecasts (“out of sample”), a holdout period is often used for evaluation.

It may be that the best model “in sample” may not hold up as the best “out of sam-

ple.”55 Terry Anderson, of Howmedica, has said, “We often test models for their

accuracy by preparing expost forecasts (forecasts for which actuals are known).

This helps us in selecting an appropriate model.”56

USING MULTIPLE FORECASTS

When forecasting sales or some other business or economic variable, it is usually

a good idea to consider more than one model. We know it is unlikely that one

model will always provide the most accurate forecast for any series. Thus, it

makes sense to “hedge one’s bets,” in a sense, by using two or more forecasts. This

may involve making a “most optimistic,” a “most pessimistic,” and a “most likely”

forecast. In our example of forecasting the University of Michigan Index of Con-

sumer Sentiment, using the two naive models described in previous sections, we

could take the lowest forecast value in each month as the most optimistic, the

highest as the most pessimistic, and the average value as the most likely. The lat-

ter can be calculated as the mean of the two other forecast values in each month.

That is:

Most likely forecast 

This is the simplest way to combine forecasts.

The purpose of a number of studies has been to identify the best way to

combine forecasts to improve overall accuracy.57 After we have covered a wider

array of forecasting models, we will come back to this issue of combining

different forecasts (see Chapter 8). For now, we just want to call attention to the

UMICSF1 UMICSF2
   

2
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55 Pamela A. Texter and Peg Young, “How Accurate Is a Model That Fits Best the Historical

Data?” Journal of Business Forecasting 8, no. 4 (Winter 1989–90), pp. 13–16; and Spyros

Makridakis, “Accuracy Measures: Theoretical and Practical Concerns,” International Journal

of Forecasting, December 1993, pp. 527–29.
56 Anderson, “Demand Forecasting at Howmedica,” p. 4.
57 For example, see Wilson and Allison-Koerber, “Combining Subjective and Objective

Forecasts.”
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desirability of using more than one method in developing any forecast. In making

a final forecast, we again stress the importance of using well-reasoned judgments

based on expertise regarding the series under consideration.

SOURCES OF DATA

The quantity and type of data needed in developing forecasts can vary a great deal

from one situation to another. Some forecasting techniques require only the data

series that is to be forecast. These methods include the naive methods discussed in

previous sections as well as more sophisticated time-series techniques such as

time-series decomposition, exponential smoothing, and ARIMA models, which

will be discussed in subsequent chapters of this text. On the other hand, multiple-

regression methods require a data series for each variable included in the fore-

casting model. This may mean that a large number of data series must be main-

tained to support the forecasting process.

The most obvious sources of data are the internal records of the organization

itself. Such data include unit product sales histories, employment and produc-

tion records, total revenue, shipments, orders received, inventory records, and

so forth. However, it is surprising how often an organization fails to keep his-

torical data in a form that facilitates the development of forecasting models.

Often, monthly and/or quarterly data are discarded after three or four years.

Thus, models that depend on such data may be difficult to develop. Another

problem with using internal data is getting the cooperation necessary to make

them available both in a form that is useful and in a timely manner. As better in-

formation systems are developed and made available through computer tech-

nology, internal data will become even more important and useful in the prepa-

ration of forecasts.

For many types of forecasts the necessary data come from outside the firm.

Various trade associations are a valuable source of such data, which are usually

available to members at a nominal cost and sometimes to nonmembers for a fee.

But the richest sources of external data are various governmental and syndicated

services.

You will find a wealth of data available on the Internet.58 Using various search

engines you can uncover sources for most macroeconomic series that are of inter-

est to forecasters.

FORECASTING TOTAL HOUSES SOLD

In each chapter of the text where new forecasting techniques are developed, we

will apply at least one of the new methods to preparing a forecast of total houses

sold (THS). As you will see, there is a fair amount of variability in how well

different methods work for this very important economic series. The data we will
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be using are shown graphically in Figure 1.7. As you see from the graph, we have

monthly THS from January 1978 through July 2007. The data represent sales in

thousands of units and have not been seasonally adjusted.

In this chapter we apply a modified naive model to forecast total houses sold.

The model is:

THSFt  THSt 12

where THSFt is the forecast of sales for time t and THSt 12 is the actual sales 12

months earlier. As seen in Table 1.4, the level of sales for December 2006 was 71.

Thus, our forecast for December 2007 is 71.

Table 1.4 and Figure 1.8 show how this naive model worked for the last year.

The root-mean-squared error for this modified naive model for the period from

August 2006 through July 2007 is 21.01.
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Total Houses Sold

(THS)

This graph shows THS

in thousands of units

per month from

January 1978 through

July 2007. (c1f7)

20

40

60

80

100

120

0

Total Houses Sold (000) THS

Naive Forecast (⫺12) THSF

O
ct

-0
5

D
ec

-0
5

Feb
-0

6

A
pr

-0
6

Ju
n-

06

A
ug

-0
5

A
ug

-0
6

O
ct

-0
6

D
ec

-0
6

Feb
-0

7

A
pr

-0
7

Ju
n-

07

A
ug

-0
7

O
ct

-0
7

D
ec

-0
7

Feb
-0

8

A
pr

-0
8

Ju
n-

08

FIGURE 1.8
Total Houses Sold

(THS) with Naive

Forecast

In this example the

naive forecast is

modified to be the

actual sales

12 months earlier.

THSF  THS(t 12)

(c1t4&f8)



OVERVIEW OF THE TEXT

Business Forecasting has been organized in such a way that by working consecu-

tively through the text, you will gradually develop a sophisticated forecasting capa-

bility. In this first chapter you have been given an introduction to business forecasting

that has included naive models and some introduction to forecasting new products.

Figure 1.9 shows the various methods you will learn as you complete the text.
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Aug-05 110
Sep-05 99
Oct-05 105
Nov-05 86
Dec-05 87
Jan-06 89
Feb-06 88
Mar-06 108
Apr-06 100
May-06 102
Jun-06 98
Jul-06 83
Aug-06 88 110  22 484
Sep-06 80 99  19 361
Oct-06 74 105  31 961 MSE = 441.25
Nov-06 71 86  15 225
Dec-06 71 87  16 256 RMSE = 21.01
Jan-07 66 89  23 529
Feb-07 68 88  20 400
Mar-07 80 108  28 784
Apr-07 83 100  17 289
May-07 80 102  22 484
Jun-07 77 98  21 441
Jul-07 74 83  9 81
Aug-07 88
Sep-07 80
Oct-07 74
Nov-07 71
Dec-07 71
Jan-08 66
Feb-08 68
Mar-08 80
Apr-08 83
May-08 80
Jun-08 77
Jul-08 74

TABLE 1.4
Total Houses Sold

(THS) with Naive

Forecast (c1t4&f8)

In this example the

naïve forecast is

modified to be the

actual sales 12 months

earlier.

THSF  THS(t 12)

Date
Total Houses

Sold (000) THS
Naive Forecast

( 12) THSF Error
Squared

Error



40 Chapter One

Classical time-series decomposition, discussed in Chapter 6, provides accurate

forecasts for many series. In addition, it can be used to develop seasonal indices

that help identify the degree of seasonality in the data. These indices can also be

used to deseasonalize the data series. ARIMA forecasting models are presented in

Chapter 7.

Chapter 8 contains a discussion of alternative methods for combining individ-

ual forecasts to take advantage of information contained in different methods to

improve forecast accuracy. In Chapter 9, a new chapter in this edition, we present

data mining as another useful forecasting tool. Often businesses have huge

amounts of data that can be used to predict sales or other outcomes but the data are

not amenable to standard forecasting methods. Data mining is a tool that has

evolved to help us deal with such situations.

Chapter 10 focuses on how to select appropriate forecasting methods for a

particular situation and how to establish an effective forecasting process. The

The second chapter provides a discussion of data exploration through visuali-

zation, an overview of model-selection criteria, and a review of some statistical

concepts that will be helpful as you learn about additional forecasting methods.

Chapter 3 presents moving-average and exponential smoothing techniques.

These methods are widely used, quite simple from a computational standpoint,

and often very accurate. Chapter 4 provides an explanation of simple linear-

regression analysis and its applications to business forecasting. Both simple trend

models and simple two-variable causal models are presented. In Chapter 5 the

simple regression model is expanded to include more than one independent vari-

able. Multiple-regression models are applied to specific forecasting problems, and

a method for accounting for seasonality is presented.

Qualitative
(Subjective)

Quantitative
(Objective)

Jury of Executive Opinion
Sales Force Composite
Delphi Method
Survey Methods
New-Product Forecasting

Univariate Time Series
 Naive method
 Regression trends
 Exponential smoothing
 Time-series decomposition
 ARIMA
 Event models
 New-product models

Causal Models
 Time-series & cross-
 sectional regression
 Bivariate (simple) regression
 Multiple regression

Forecast
Methods

FIGURE 1.9
An Overview of the

Forecast Methods

Covered in This Text



N. Carroll Mohn, Manager of Field
Services, European Community Group,
in the Corporate Marketing Research
Department of The Coca-Cola Company.

WHY TRY TO FORECAST?
Forecasts are critical inputs to a wide range of busi-

ness decision-making processes. From letters, teach-

ing forecasting, managing the function, and con-

sulting work, I know that many people are striving

to get a practitioner’s grasp of the subject—some

feeling for the applied state of the art and its

science.

As forecasters, at one time or another, we

have to ask ourselves why we should try to fore-

cast in the first place. First, the power of forces

such as economics, competition, markets, social

concerns, and the ecological environment to af-

fect the individual firm is severe and continues

growing. Secondly, forecast assessment is a major

input in management’s evaluation of different

41
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role of judgments based on experience with the series to be forecast is stressed

once more.

At the end of each chapter you will find suggested readings that will provide

additional insight into the topics covered. In addition, a set of exercises in each

chapter will help you validate your understanding of the material. Many of these

exercises will also help you to become proficient in the use of the ForecastX™

software.

PART 1: BACKGROUND OF THE
GAP AND ITS SALES

Throughout the text we will be using The Gap sales in an

integrative case at the end of each chapter. In these

cases, concepts from the chapter will be applied to this

sales series. In this chapter we will apply concepts as

well as provide an overview of the company.

THE GAP: AN INTRODUCTION

Few retailers have accomplished what The Gap has. The

Gap has managed to successfully market its retail stores

and the apparel it carries. In 1992, The Gap was the

number two clothing brand in America, and in 1994 it

placed in the top 25 of the 50 most recognizable brands

in the United States. There are only two private-brand

Integrative Case

Forecasting Sales of The Gap

strategies at business decision-making levels.

Thirdly, the inference of no forecasting is that

the future either contains “no significant change”

or there is ample time to react “after the fact.”

Forecasting is far too important to the organi-

zation not to have appropriate management and

resource backing. Each firm must develop its own

explicit forecast system so that alternative courses

of action can be identified.

We can see the future coming if we know what

to look for because many things often progress in

an astonishingly orderly manner over time. This

consistent progress provides a basis for forecasting.

At the same time, many things respond to needs,

opportunities, and support resources. If these driv-

ing forces can be identified, we believe future

progress can be forecast.

Source: Adapted from an address given at the Fourth
Annual Conference of the International Association of
Business Forecasters, Philadelphia, September 1989.
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retailers that achieved this coveted brand image for their

stores’ products: Victoria’s Secret and The Gap. While

many other retailers, such as The Limited, lost strong

brand images, The Gap continued to redefine its strategy

and managed to maintain market dominance. By the end

of 1995, The Gap operated over 1,500 stores in its four

domestic divisions, which include The Gap, GapKids,

Banana Republic, and the Old Navy Clothing Co. The

Gap’s fifth division, its International Division, operated

164 stores by the end of 1995 in countries such as Canada,

the United Kingdom, France, Germany, and Japan.

The first Gap store was opened in 1969 by founder

Donald Fisher, who decided to open a store after he had

a problem exchanging a pair of Levi’s jeans that were an

inch too short. He felt that there was a need for a store

that would sell jeans in a full array of sizes. He opened

his first store in San Francisco, which advertised that it

had “four tons” of Levi’s. The store was an instant suc-

cess, and The Gap stores were on their way to national

prominence. Levi’s were the mainstay of The Gap’s busi-

ness, and due to Levi Strauss & Co.’s fixed pricing,

Fisher maintained a 50 percent margin on the sales of

these jeans. This changed in 1976, however, when the

Federal Trade Commission prohibited manufacturers

from dictating the price that retailers could charge for

their products. There was suddenly massive discounting

on Levi’s products, which drastically cut The Gap’s mar-

gins. Fisher recognized the need to expand his product

offerings to include higher-margin items, and therefore

began to offer private-label apparel.

In 1983, Fisher recruited Millard Drexler as presi-

dent, with his objective being to revamp The Gap.

Drexler did this by liquidating its existing inventories

and focusing on simpler, more classic styles that offered

the consumer “good style, good quality, good value.”

The Gap started to design its own clothes to fit into this

vision. The Gap already had formed strong relationships

with manufacturers from its earlier entry into the private-

label business. This enabled it to monitor manufacturing

closely, which kept costs low and quality high. The

Gap’s strategy didn’t end with high-quality products.

Drexler paid equally close attention to the visual pres-

ence of the stores. He replaced the old pipe racks and

cement floors with hardwood floors and attractive tables

and shelves with merchandise neatly folded, which

made it easier for the customers to shop. As new mer-

chandise came in, store managers were given detailed

plannograms, which told them precisely where the items

would go. With this control, Drexler ensured that each

Gap store would have the same look, and would there-

fore present the same image to the customer.

The Gap capitalized on these same concepts as it en-

tered the kids’ clothing market. The idea originated after

Drexler was disappointed with the lack of selection he

found while shopping for his own child. Drexler orga-

nized a meeting with his employees who had children to

discuss their thoughts about the children’s clothing mar-

ket. Their mutual frustration with the selection of chil-

dren’s clothing triggered the idea for GapKids. Drexler

and his team believed that they could use the same mer-

chandising principles that made The Gap a success and

apply them to the children’s clothing market. GapKids

was launched in 1986, and was a success in its first year

of operation with sales of $2 million.

Drexler’s retailing prowess also became evident

when he turned around the poor performance of the

Banana Republic division. In 1983, The Gap bought

Banana Republic, which featured the then-popular

safari-style clothing. This trend toward khakis had been

brought on by the popularity of movies such as Raiders

of the Lost Ark and Romancing the Stone. By 1987,

Banana Republic’s sales had reached $191 million. Then

the safari craze ended, and this once popular division

lost roughly $10 million in the two years that followed.

Banana Republic was repositioned as a more upscale

Gap, with fancier decor as well as more updated fash-

ions that offered a balance between sophistication and

comfort. By 1992, the chain was once again profitable,

with about $300 million in sales.

Although these other Gap divisions had grown and

prospered, the traditional Gap stores began to falter in

the early 1990s. Coupled with the effects of a retailing

recession, their strong emphasis on basic styles had

made them a target of competition. The market became

flooded with “Gap-like” basics. Other retailers were also

mimicking their presentation strategy, and started fold-

ing large-volume commodity items such as jeans,

T-shirts, and fleece, some selling them at substantially

lower prices. Drexler and his team recognized that sev-

eral major changes were taking place in the retailing

environment, and they needed to identify ways to respond

to this competition if they were to continue to grow.

One way The Gap responded to increasing competi-

tion was to revise its merchandise mix. Customers were

shifting away from the basics toward more fashion

items, in gender-specific styles. To respond to this trend,

The Gap took advantage of aggressive changes already

under way in its inventory management programs,
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which gave it faster replenishment times. This enabled

The Gap to reduce its inventories in basics by as much as

40 percent, giving it more room for hot-selling, high-

profit items. In addition to shifting to more fashion, The

Gap also fine-tuned its product mix so that merchandise

would be more consistent between stores.

Another way that The Gap responded to increased

competition and changing retailing trends was by enter-

ing into strip malls. This move has been facilitated in

part by the reduction of available spaces in large malls.

As fewer spaces became available, retailers wishing to

expand have had to explore other possible options. Many

strip centers have been upgraded in response to this

trend, and retailers found that they could offer their cus-

tomers easier access to stores and more convenient park-

ing than they could in their traditional mall locations.

With carefully placed geographic locations, retailers

also discovered that they could often do the same vol-

ume that they could in the large malls. Additionally,

strip-center rents are substantially lower than those of

their mall counterparts. Their common charges are

sometimes a mere 25 percent of what they would be in a

typical large mall.

As other retailers and discounters found success by

knocking off The Gap’s classic styles and its presenta-

tion standards, The Gap responded by entering the “dis-

count” market itself in 1993, with the transformation of

48 of its lowest-performance stores into “Gap Ware-

house” stores. By doing so, The Gap capitalized on the

new surge of price-conscious consumers. Gap Ware-

house stores offer Gap-type styles at prices about

30 percent lower than The Gap apparel.

Its success with this discount concept led to the

launch of the Old Navy Clothing Co. in April 1994,

which targeted consumers in households with incomes

between $20,000 and $50,000, who make about one-half

of the nation’s $150 billion apparel purchases each year.

Old Navy stores carry a different assortment of apparel

than traditional Gap stores. They differentiated them-

selves from The Gap stores by offering alternative ver-

sions of basic items, with different fabric blends that en-

able them to charge lower retail prices. In fact, 80 per-

cent of their assortment retailed at $22 or less. There are

other ways in which The Gap differentiates its Old Navy

stores from its traditional Gap stores, however. To help

keep costs down, it also scaled down the decor of these

stores, with serviceable concrete floors and shopping

carts instead of the hardwood floors found in The Gap. It

is venturing away from The Gap’s traditional means of

advertising for these new stores and is offering more

short-term promotions. Old Navy stores are further posi-

tioning themselves as one-stop-shopping stores by offer-

ing clothing for the whole family in one location.

In August 2005 Gap launched “Forth and Towne.”

Forth and Towne was a retail experiment targeted at fe-

male Baby Boomers. Stores featured uniquely located

dressing rooms with three-way mirrors, adjustable light-

ing, and “style consultants” to assist customers with pur-

chasing decisions. Forth and Towne was not well re-

ceived by the market. In February 2007 Gap announced

that it would close all 19 of the concept stores. In 2006

Gap launched “piperlime.com” an online only retail

shoe store. Piperlime.com features men’s and women’s

shoes from over 100 brands as well as insights from

“fashion experts.” Time will reveal if Piperlime will be

as successful as other ventures like Old Navy, or will

suffer the same fate as Forth and Towne.

With its current mix of stores, The Gap has success-

fully carved out a position for itself in every retail cloth-

ing category. Table 1.5 shows the distribution of store

types. Although there have been some hurdles along the

way, The Gap has proven that it has the ability to respond

to changes in the retail environment and has, therefore,

managed to stay in the race. This is evidenced by the in-

creased quarterly sales shown in Table 1.6 and the

graphic in Figure 1.10.

Table 1.6 also has a modified naive forecast for The

Gap sales using a four-quarter lag.

TABLE 1.5
The Gap Store Count

Source: http://www.gapinc.com/

public/Investors/inv  

re  storecount.shtml

(click on Historical

Store Count by country).

Stores Quarter 4, 2007

Gap North America 1,249

Banana Republic North America 555

Old Navy North America 1,059

Forth & Towne 0

International 304

Total 3,167
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TABLE 1.6
The Gap Sales and

a Modified Naive

Forecast 

(Forecast  Sales

[ 4])

(c1t6&f10)

The Gap sales data are

in thousands of dollars

by quarter. The months

indicated in the date

columns represent the

middle month in The

Gap’s financial quarter.

For example, the first

quarter in its fiscal

year includes February,

March, and April.

(continued on next page)

Mar-85 $ 105,715
Jun-85 120,136
Sep-85 181,669
Dec-85 239,813
Mar-86 159,980 $ 105,715
Jun-86 164,760 120,136
Sep-86 224,800 181,669
Dec-86 298,469 239,813
Mar-87 211,060 159,980
Jun-87 217,753 164,760
Sep-87 273,616 224,800
Dec-87 359,592 298,469
Mar-88 241,348 211,060
Jun-88 264,328 217,753
Sep-88 322,752 273,616
Dec-88 423,669 359,592
Mar-89 309,925 241,348
Jun-89 325,939 264,328
Sep-89 405,601 322,752
Dec-89 545,131 423,669
Mar-90 402,368 309,925
Jun-90 404,996 325,939
Sep-90 501,690 405,601
Dec-90 624,726 545,131
Mar-91 490,300 402,368
Jun-91 523,056 404,996
Sep-91 702,052 501,690
Dec-91 803,485 624,726
Mar-92 588,864 490,300
Jun-92 614,114 523,056
Sep-92 827,222 702,052
Dec-92 930,209 803,485
Mar-93 643,580 588,864
Jun-93 693,192 614,114
Sep-93 898,677 827,222
Dec-93 1,060,230 930,209
Mar-94 751,670 643,580
Jun-94 773,131 693,192
Sep-94 988,346 898,677
Dec-94 1,209,790 1,060,230

RMSE  294,790.08
RMSE as % of average  15,77

Date

Gap Sales
(000)

Gap Sales
Modified

Naive
Forecast

Mar-95 $ 848,688 $ 751,670
Jun-95 868,514 773,131
Sep-95 1,155,930 988,346
Dec-95 1,522,120 1,209,790
Mar-96 1,113,150 848,688
Jun-96 1,120,340 868,514
Sep-96 1,383,000 1,155,930
Dec-96 1,667,900 1,522,120
Mar-97 1,231,186 1,113,150
Jun-97 1,345,221 1,120,340
Sep-97 1,765,939 1,383,000
Dec-97 2,165,479 1,667,900
Mar-98 1,719,712 1,231,186
Jun-98 1,904,970 1,345,221
Sep-98 2,399,900 1,765,939
Dec-98 3,029,900 2,165,479
Mar-99 2,277,734 1,719,712
Jun-99 2,453,339 1,904,970
Sep-99 3,045,386 2,399,900
Dec-99 3,858,939 3,029,900
Mar-00 2,731,990 2,277,734
Jun-00 2,947,714 2,453,339
Sep-00 3,414,668 3,045,386
Dec-00 4,579,088 3,858,939
Mar-01 3,179,656 2,731,990
Jun-01 3,245,219 2,947,714
Sep-01 3,333,373 3,414,668
Dec-01 4,089,625 4,579,088
Mar-02 2,890,840 3,179,656
Jun-02 3,268,309 3,245,219
Sep-02 3,644,956 3,333,373
Dec-02 4,650,604 4,089,625
Mar-03 3,352,771 2,890,840
Jun-03 3,685,299 3,268,309
Sep-03 3,929,456 3,644,956
Dec-03 4,886,264 4,650,604
Mar-04 3,667,565 3,352,771
Jun-04 3,720,789 3,685,299
Sep-04 3,980,150 3,929,456
Dec-04 4,898,000 4,886,264
Mar-05 3,626,000 3,667,565
Jun-05 3,716,000 3,720,789
Sep-05 3,860,000 3,980,150

Date
Gap Sales

(000)

Gap Sales
Modified

Naive
Forecast
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FIGURE 1.10
The Gap Sales in

Thousands of Dollars

and a Modified Naive

Forecast

The data are quarterly

so a four-quarter lag

was used for a modi-

fied naive forecast.

(c1t6&f10)

TABLE 1.6
(continued)

Dec-05 $4,821,000 $4,898,000
Mar-06 3,441,000 3,626,000
Jun-06 3,716,000 3,716,000
Sep-06 3,856,000 3,860,000
Dec-06 4,930,000 4,821,000
Mar-07 3,558,000 3,441,000
Jun-07 3,716,000
Sep-07 3,856,000
Dec-07 4,930,000
Mar-08 3,558,000

Date
Gap Sales

(000)

Gap Sales
Modified

Naive
Forecast

1. Based on the tabular and the graphic presentations of The Gap sales data, what do you

think explains the seasonal pattern in its sales data?

2. Using a modified naive forecasting method, such as the one used for total houses sold in

this chapter, make a forecast of The Gap sales for the four quarters from June 2006

through March 2007. Based on inspection of the graph of The Gap sales, what is your

expectation in terms of forecast accuracy?

3. Calculate the RMSE for your forecast of those four quarters, given that the actual sales

were as shown in Table 1.6.
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The RMSE for the entire March-85 through March-07 period was 294,790,08, or

15.77% of the mean. One reason the RMSE was higher in the historic period is that the

increasing trend in the sales series from the mid-1990s through about 2002 meant that

simply using a four-quarter lag to forecast resulted in consistently larger errors during

that time. However, the recent flattening in sales made this less important for the June

2006 to March 2007 forecast.

Data are in the c1 Gap file.

1. The seasonal pattern is one in which sales typically have a small increase from the first

to the second quarter, followed by a considerable increase in the third quarter and yet

another large increase in the fourth quarter. The third quarter increase is related to back-

to-school buying, while the increase in the fourth quarter is caused by the Christmas

shopping season.

2. The model would be: GAPF  GAPSALES( 4). GAPF represents the forecast values,

while GAPSALES( 4) is the actual value four periods earlier. An inspection of The

Gap sales series would lead us to expect that a naive forecasting model with a lag of four

periods would pick up the seasonality as well as the recent flattening of the trend in The

Gap sales. This can be seen in the graph of actual and predicted values in Figure 1.10.

3. The actual and predicted values for June 2006 through March 2007 are shown below.

The RMSE for these four quarters is: RMSE  79,878.1. This is about a 2.0 percent

error, based on the average quarterly sales for the year (4,015,000).

Solutions to
Case
Questions

Jun-05 $3,716,000 na
Sep-05 3,860,000 na
Dec-05 4,821,000 na
Mar-06 3,441,000 na
Jun-06 3,716,000 $3,716,000 0 0
Sep-06 3,856,000 3,860,000 $ 4,000 $ 16,000,000
Dec-06 4,930,000 4,821,000 109,000 11,881,000,000
Mar-07 3,558,000 3,441,000 117,000 13,689,000,000

MSE  6,396,500,000
Jun-06 to Mar-07 Mean  4,015,000 RMSE  79,978.1

RMSE as % of Mean  2.0

Date
Gap Sales

(000)

Gap Sales
Modified

Naive
Forecast Error Squared Error

Case
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PFIZER HARNESSES JOHN GALT FOR
OPTIMIZED SALES FORECASTING
Pfizer Inc. (formerly Warner Lambert & Pfizer Inc.) is

a research-based, global pharmaceutical company,

which discovers and develops innovative, value-

added products that improve the quality of life of

people around the world and help them enjoy

longer, healthier, and more productive lives. The

company has three business segments: health care,

animal health, and consumer health care. Pfizer

products are available in more than 150 countries.

Warner Lambert, Mexico—also now Pfizer—

formed its consensus forecast (CF) team to define a

process to generate comprehensive and accurate

unconstrained forecasts that would improve the

stock-turn rate and reduce returns. The company

needed a solution that could be rolled out across

the entire enterprise to collect data from key stake-

holders within the newly defined area. The CF

team installed John Galt Solutions’ ForecastX

Wizard software to support its process, and engen-

dered positive results.

——. “The Gap: Can the Nation’s Hottest Retailer Stay on Top?” BusinessWeek, March 9,

1992, p. 58.

——. “The Gap Dolls Itself Up.” BusinessWeek, March 21, 1994, p. 46.

——. “A Humbler Neighborhood for The Gap.” BusinessWeek, Aug. 16, 1993, p. 29.

Mui, Ylan Q. “Gap to Close Forth & Towne Stores,” Washington Post, Tuesday, Feb. 27,

2007, p. D01. Available at: http://www.washingtonpost.com/wp-dyn/content/article/

2007/02/26/AR2007022601357.html.

Popiel, Leslie A. “Old Navy Store Is Gap’s Answer to the Penny-Pinching Shopper.”

Christian Science Monitor, Oct. 28, 1994, p. 8.

Street, Pamela. “Old Navy Fills Off-Price Gap for The Gap.” Daily News Record,

March 31, 1994, p. 3.

The Gap, Inc., Annual Reports.

Wilson, Marianne. “The Magic of Brand Identity.” Chain Store Age Executive, Feb. 1994,

p. 66.

http://www.gapinc.com

http://www.gapinc.com/Public/About/abt_faq.shtml

http://money.cnn.com/2005/02/23/news/fortune500/Gap/?cnn5yes

http://www.piperlime.com

http://profile.canadianretail.com/gap/

The company’s demand department uses the

software to forecast sales at the SKU level for up to

18 months at a time. According to the department:

“We have a broad base of seasonal products that

are subject to the effects of several promotions and

particular events. Event modeling has proven to be

the most useful functionality for obtaining accu-

rate forecasts. The results have been very satisfac-

tory. Warner Lambert has been very pleased with

ForecastX. ForecastX provided a very user-friendly,

affordable, well-supported, and fast option for our

sales forecasting needs.”

But the positive report on John Galt ForecastX

did not end there: “It functions very well as a

strong sales forecasting tool that is also very easy

to use,” observed the Warner Lambert Demand

Department. “The fact that you don’t have to be

an expert in statistics is excellent. Everybody under-

stands how to use it and how to manipulate the

data.”

Source: http://www.johngalt.com/customers/success. shtml.



JOHN GALT PARTIAL CUSTOMER LIST

The ForecastX software that accompanies your text is from John Galt Solutions Incorporated. Below is a

partial list of their customers. A more complete list can be found on their Web site: www.johngalt.com.

You can see from this list that John Galt’s forecasting software is widely used in the business community.
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Automotive

Hyundai

Kawasaki

Monroe Muffler/Brake

PepBoys

Volkswagen

Consumer Goods

Gillette

Hartz Mountain

Hasbro Inc

Kitchenaid

Leatherman Tool Group

L’Oreal

Mattel Inc

Nintendo of America

Technology

America Online

ITT Aerospace Controls

Microsoft Corporation

PeopleSoft

Toshiba

Financial

American Express

Bank One

Capital One

Discover Financial Services

Fidelity Investments

TIAA-CREF

Visa International

Food Services

Alaska Brewing Co.

Baskin-Robbins

Dean Foods

Domino’s Pizza

Keebler Company

Starbucks Coffee

Retail

The Container Store

Dockers Khakis

IKEA North American Services

JC Penney

Levis

Liquor Control Board of Ontario

Yankee Candle Co.

Shipping

FedEx

United Parcel Services

Energy/Utilities

BP Amoco

Commonwealth Edison

Duquesne Light Company

Nova Scotia Power & Light

Telecommunications

AT & T Wireless

Bell Canada

Bell South

SBC Communications

Nextel Communications

Pharmaceutical & Health Care

Abbott Laboratories

Baxter International

Biogen

Blue Cross Blue Shield

Eli Lilly Deutschland

GlaxoSmithKline

Novartis AG

Pfizer

Wyeth

Transportation

Royal Caribbean Cruise Lines

Ryder Trucks

Yellow Freight

Manufacturing

Adams Golf

3M Canada

Callaway Golf

Corning

DuPont

Hyundai

In-Sink-Erator

John Deere and Company

Lockheed Martin

Maytag Corp

Remington Arms Corporation

Shell Chemical.

Government

United States Air Force

United States Marine Corps

United States Army

California Dept. of Health

Oregon Dept. of Justice

Universities

Auburn University

Babson College

California State University

Central Michigan University

DePaul University

Drexel University

Duke University

Elon University

Meredith College

Oakland University

Portland State University

Rider University

Southern Illinois University

Suffolk University

University of Alabama

University of California

University of Idaho

University of Massachusetts

University of Notre Dame

University of Southern California

University of Texas

Western Illinois University

Wright State University



AN INTRODUCTION TO FORECASTX 7.0

ForecastX™ is a family of forecasting tools capable of performing the most complex fore-

cast methods and requires only a brief learning curve that facilitates immediate, simple,

and accurate operation regardless of user experience.

FORECASTING WITH THE FORECASTX WIZARD™

The following provides a brief description of some features of the ForecastX Wizard™ and

how to use them while forecasting. A complete manual can be found in the “Wizard 7.0

Users Guide.pdf ” file which is in the Help subfolder of the ForecastX folder within the

Programs folder (or wherever you have installed the software).

Open the “c1 Gap sales new.xls” spreadsheet that is on the CD that came with your

book.

When the spreadsheet opens, click in any cell that contains data.

Click the ForecastX Wizard™ icon to start the Wizard.

USING THE FIVE MAIN TABS ON THE OPENING
FORECASTX SCREEN

Use the Gap sales data you have opened and follow the directions in the following screen

shots to get a first look at how ForecastX works.

The Data Capture Tab

This tab appears when you first start ForecastX.

The purpose of the Data Capture screen is to tell ForecastX™ about your data.
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When the ForecastX Wizard™ captures your data, the Intelligent Data Recognizer deter-

mines the following:

a. Organization: Indicates whether the data is in rows or columns.

b. Data to Be Forecast: Specifies the range of the data to be forecasted.

c. Dates: Specifies whether the data has dates, and the seasonal feature of the dates.

d. Labels: Indicates the number of descriptive labels in the data.

e. Paras (Parameters): Indicates the number of DRP (Distribution Resource Planning)

fields in your data. For the purposes of this text you will not need to use this

functionality.

f. Seasonality: Either you can select the seasonality of the data, or allow ForecastX™ to

determine it. These fields must follow the labels information in your underlying data.

g. Forecast: Set the number of periods to forecast out into the future.

Forecast Method Tab

The ForecastX Wizard™ allows you to select individual forecasting techniques and their

parameters. Selections include time series, promotional, regression, and growth curve

models. To select a Forecasting Technique:

From the Forecasting Technique drop-down menu, select a particular method from over

20 forecasting techniques. For this example just leave the default method “Procast” as

shown above.

The Group by Tab

In this text we only discuss forecasting a single series so you will not need this tab.

However, should you want to forecast product groups see the “Wizard 7.0 Users

Guide.pdf ” file.
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The Statistics Tab

The ForecastX Wizard™ allows you to select statistical analyses to include on the Audit

Trail report. ForecastX™ supports more than 40 statistics from both descriptive and accu-

racy measurement categories. For this example just use the defaults as shown above.

The More Statistics option offers advanced statistics for seasoned statisticians. The

Root Mean Squared Error (RMSE) and the statistics for regression models are located in

this dialog box. To access the Advanced Statistics dialog, click the More Statistics button

on the Statistics screen.

The Report Tab



The ForecastX Wizard™ offers five report choices with specific options for each. Check-

ing any of the report boxes in the upper grouping of check boxes automatically includes it

in the output. You may check more than one if desired. Each type of report will have its own

workbook, but may contain several series within one workbook. Here we only discuss the

most commonly used report tabs. Detailed information about all these tabs can be found in

the “Wizard 7.0 Users Guide.pdf ” file.

Standard Report

The Standard Report is built for speed and handling of large volumes of data. It produces a

side-by-side report listing the actual values compared to the forecasted values. It also in-

cludes selected statistics and a few common statistics: Mean Absolute Percentage Error

(MAPE), R-Squared Value, and Standard Deviation.

Audit Trail Report

The Audit Trail Report produces the most detailed analysis of the forecast. Those who need

to justify their forecasts with statistics generally use the Audit Trail report.

Note: Throughout the text you may find some situations in which the standard calcula-

tions that we show do not match exactly with the ForecastX results.This is because they,

at times, invoke proprietary alterations from the standard calculations.The results are

always very close but sometimes do not match perfectly with “hand” calculations.
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Exercises 1. Write a paragraph in which you compare what you think are the advantages and disad-

vantages of subjective forecasting methods. How do you think the use of quantitative

methods relates to these advantages and disadvantages?

2. Suppose that you work for a U.S. senator who is contemplating writing a bill that would

put a national sales tax in place. Because the tax would be levied on the sales revenue of

retail stores, the senator has asked you to prepare a forecast of retail store sales for year

8, based on data from year 1 through year 7. The data are:

(c1p2) Year Retail Store Sales

1 $1,225

2 1,285

3 1,359

4 1,392

5 1,443

6 1,474

7 1,467
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a. Use the first naive forecasting model presented in this chapter to prepare a forecast

of retail store sales for each year from 2 through 8.

b. Prepare a time-series graph of the actual and forecast values of retail store sales

for the entire period. (You will not have a forecast for year 1 or an actual value for

year 8.)

c. Calculate the root-mean-squared error for your forecast series using the values for

year 2 through year 7.

3. Use the second naive forecasting model presented in this chapter to answer parts

(a) through (c) of Exercise 2. Use P  0.2 in preparing the forecast. Which model do

you think works the best? Explain why. (c1p3)

4. Suppose that you work for a major U.S. retail department store that has outlets nation-

wide. The store offers credit to customers in various forms, including store credit cards,

and over the years has seen a substantial increase in credit purchases. The manager of

credit sales is concerned about the degree to which consumers are using credit and has

started to track the ratio of consumer installment credit to personal income. She calls

this ratio the credit percent, or CP, and has asked that you forecast that series for year 8.

The available data are:

(c1p2) Year CP

1 12.96

2 14.31

3 15.34

4 15.49

5 15.70

6 16.00

7 15.62

a. Use the first naive model presented in this chapter to prepare forecasts of CP for

years 2 through 8.

b. Plot the actual and forecast values of the series for the years 1 through 8. (You will

not have an actual value for year 8 or a forecast value for year 1.)

c. Calculate the root-mean-squared error for your forecasts for years 2 through 7.

5. Go to the library and look up annual data for population in the United States from 1981

through 2004. One good source for such data is the Economic Report of the President,

published each year by the U.S. Government Printing Office. This series is also available

at a number of Internet sites, including http://www.economagic.com.

Plot the actual data along with the forecast you would get by using the first naive

model discussed in this chapter. (c1p5)

6. Pick a corporation you are interested in and go to the library or check online to find

annual reports for that company. Look at five consecutive annual reports and find the

firm’s total revenue for each of those years. Plot the firm’s actual revenue along with

the forecast of revenue you would get by using the first naive model discussed in this

chapter.



7. CoastCo Insurance, Inc., is interested in developing a forecast of larceny thefts in the

United States. It has found the following data:

(c1p8) Year Larceny Thefts* Year Larceny Thefts*

1 4,151 10 7,194

2 4,348 11 7,143

3 5,263 12 6,713

4 5,978 13 6,592

5 6,271 14 6,926

6 5,906 15 7,257

7 5,983 16 7,500

8 6,578 17 7,706

9 7,137 18 7,872

*Data are in thousands.

Plot this series in a time-series plot and make a naive forecast for years 2 through 19.

Calculate the RMSE and MAD for years 2 through 18. On the basis of these measures

and what you see in the plot, what do you think of your forecast? Explain.

8. As the world’s economy becomes increasingly interdependent, various exchange rates

between currencies have become important in making business decisions. For many

U.S. businesses, the Japanese exchange rate (in yen per U.S. dollar) is an important de-

cision variable. This exchange rate (EXRJ) is shown in the following table by month for

a two-year period:

(c1p9) Period EXRJ Period EXRJ

Year 1 Year 2

M1 127.36 M1 144.98

M2 127.74 M2 145.69

M3 130.55 M3 153.31

M4 132.04 M4 158.46

M5 137.86 M5 154.04

M6 143.98 M6 153.70

M7 140.42 M7 149.04

M8 141.49 M8 147.46

M9 145.07 M9 138.44

M10 142.21 M10 129.59

M11 143.53 M11 129.22

M12 143.69 M12 133.89

Prepare a time-series plot of this series, and use the naive forecasting model to forecast

EXRJ for each month from year 1 M2 (February) through year 3 M1 (January). Calcu-

late the RMSE for the period from year 1 M2 through year 2 M12.
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Chapter Two

The Forecast Process,
Data Considerations,
and Model Selection

INTRODUCTION

In this chapter we will outline a forecasting process that is a useful guide to the

establishment of a successful forecasting system. It is important that forecasting

be viewed as a process that contains certain key components. This process

includes the selection of one or more forecasting techniques applicable to the data

that need to be forecast. This selection, in turn, depends on the type of data that are

available. In selecting a forecasting model, one should first evaluate the data for

trend, seasonal, and cyclical components.

In evaluating a data series for its trend, seasonal, and cyclical components, it is

useful to look at the data in graphic form. In this chapter we evaluate data for the

U.S. population, total houses sold, disposable personal income, and The Gap sales

to see which time-series components exist in each. This chapter also includes a

review of statistics and an introduction to the use of autocorrelation coefficients,

which can provide useful information about the underlying components in a time

series.

THE FORECAST PROCESS

The forecast process begins with recognizing the need to make decisions that

depend on the future—and unknown—value(s) of some variable(s). It is impor-

tant for managers who use forecasts in making decisions to have some familiarity

with the methods used in developing the forecast. It is also important for the indi-

viduals involved in developing forecasts to have an understanding of the needs of

those who make decisions based on the forecasts. Thus, good communication

among all involved with forecasting is paramount.



There are a variety of ways in which we could outline the overall forecasting

process. We have found the sequence shown below to be a useful paradigm.

1. Specify objectives.

2. Determine what to forecast.

3. Identify time dimensions.

4. Data considerations.

5. Model selection.

6. Model evaluation.

7. Forecast preparation.

8. Forecast presentation.

9. Tracking results.

This flow of relationships in the forecasting process will be discussed in more de-

tail in Chapter 10, after a base of understanding of quantitative forecasting

methods has been established.

It may seem obvious that the forecasting process should begin with a clear

statement of objectives that includes how the forecast will be used in a decision

context. Objectives and applications of the forecast should be discussed between

the individual(s) involved in preparing the forecast and those who will utilize the

results. Good communication at this phase will help ensure that the effort that

goes into developing the forecast results in improved decision outcomes.

The second step of the process involves specifying explicitly what to forecast.

For a traditional sales forecast, you must decide whether to forecast unit sales or

dollar sales. Should the forecast be for total sales, or sales by product line, or sales

by region? Should it include domestic sales, export sales, or both? A hospital may

want to forecast patient load, which could be defined as admissions, discharges,

patient-days, or acuity-days. In every forecasting situation, care must be taken to

carefully determine exactly what variable(s) should be forecast.

Next, two different issues that relate to the time dimensions of the forecast need

to be considered. One of these dimensions involves the length and periodicity of

the forecast. Is the forecast needed on an annual, a quarterly, a monthly, a weekly,

or a daily basis? In some situations an even shorter time period may be necessary,

such as in forecasting electricity demand for a generating facility. The second time

dimension to be considered is related to the urgency of the forecast. If there is lit-

tle time available before the forecast is needed, the choice of methods that can be

used will be limited. When forecasting is established as an ongoing process, there

should be ample time to plan for the use of any forecasting technique.

The fourth element of the forecasting process involves a consideration of the

quantity and the type of data that are available. Some data may be available inter-

nally, while other data may have to be obtained from external sources. Internal

data are often the easiest to obtain, but not always. Sometimes data are not re-

tained in a form useful for a particular forecast. It is surprising how frequently we

find that data are kept only on an annual basis rather than for shorter periods such

as quarterly or monthly. Similarly, we often run into situations where only dollar
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values are available rather than units. External data are available from a wide

variety of sources, some of which were discussed in Chapter 1. Most external

sources provide data in both printed and electronic form.

Model selection, the fifth phase of our forecasting process, depends on a num-

ber of criteria, including:

1. The pattern exhibited by the data

2. The quantity of historic data available

3. The length of the forecast horizon

Table 2.1 summarizes how these criteria relate to the quantitative forecasting

methods that are included in this text. While all of these criteria are important, the

first is the most important. We will discuss the evaluation of patterns in data and

model selection in greater detail after completing our review of the forecasting

process.

The sixth phase of the forecasting process involves testing the models on the

specific series that we want to forecast. This is often done by evaluating how each

model works in a retrospective sense. That is, we see how well the results fit the

historic data that were used in developing the models. Measures such as the root-

mean-squared error (RMSE) are typically used for this evaluation. We often make
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Forecasting Method

TABLE 2.1 A Guide to Selecting an Appropriate Forecasting Method*

* The methods presented in this table are the most commonly used techniques. There are many other methods available, most of which are included in the

ForecastX™ software that accompanies this text.

Data Pattern
Quantity of Historical Data
(Number of Observations) Forecast Horizon

Naive Stationary 1 or 2 Very short

Regression-based
Trend

Exponential smoothing
Simple Stationary 5 to 10 Short
Adaptive response Stationary 10 to 15 Short
Holt’s Linear trend 10 to 15 Short to medium
Winters’ Trend and seasonality At least 4 or 5 per season Short to medium
Bass model S-curve Small, 3 to 10 Medium to long

Linear and nonlinear trend
with or without seasonality

Minimum of 10 with 4 or 5
per season if seasonality is
included

Short to medium

Time-series
decomposition

Can handle trend, seasonal,
and cyclical patterns

Enough to see two peaks and
troughs in the cycle

Short, medium,
and long

ARIMA Stationary or transformed
to stationary

Minimum of 50 Short, medium,
and long

Causal Can handle nearly all data
patterns

Minimum of 10 per
independent variable

Short, medium,
and long

Moving averages Stationary Number equal to the periods
in the moving average

Very short



a distinction between fit and accuracy in evaluating a forecast model. Fit refers to

how well the model works retrospectively. Accuracy relates to how well the model

works in the forecast horizon (i.e., outside the period used to develop the model).

When we have sufficient data, we often use a “holdout” period to evaluate forecast

accuracy. For example, suppose that you have 10 years of historic quarterly sales

data and want to make a two-year forecast. In developing and evaluating potential

models, you might use just the first eight years of data to forecast the last two years

of the historical series. RMSEs could then be calculated for the two holdout years

to determine which model or models provide the most accurate forecasts. These

models would then be respecified using all 10 years of historic data, and a forecast

would be developed for the true forecast horizon. If the models selected in phase 6

did not yield an acceptable level of accuracy, you would return to step 5 and select

an alternative model.

Phase 7, forecast preparation, is the natural result of having found models that

you believe will produce acceptably accurate results. We recommend that more

than one technique be used whenever possible. When two, or more, methods that

have different information bases are used, their combination will frequently pro-

vide better forecasts than would either method alone. The process of combining

forecasts is sufficiently important that Chapter 8 is devoted to this topic.

The eighth phase of the forecasting process involves the presentation of fore-

cast results to those who rely on them to make decisions. Here, clear communica-

tion is critical. Sometimes technicians who develop forecasts become so enam-

ored with the sophistication of their models that they focus on technical issues

rather than on the substance of the forecast. In both written and oral presentations,

the use of objective visual representations of the results is very important.1

Finally, the forecasting process should include continuous tracking of how well

forecasts compare with the actual values observed during the forecast horizon. Over

time, even the best of models are likely to deteriorate in terms of accuracy and need

to be respecified, or replaced with an alternative method. Forecasters can learn from

their mistakes.A careful review of forecast errors may be helpful in leading to a bet-

ter understanding of what causes deviations between the actual and forecast series.

TREND, SEASONAL, AND CYCLICAL DATA PATTERNS

The data that are used most often in forecasting are time series. For example, you

might have sales data by month from January 1970 through December 2005, or

you might have the number of visitors to a national park every year for a 30-year

period, or you might have stock prices on a daily basis for several years. These

would all be examples of time-series data.

Such time series can display a wide variety of patterns when plotted over time.

Displaying data in a time-series plot is an important first step in identifying
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1 An excellent discussion of how to present information in graphic form can be found in

Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press,

1983).



various component parts of the time series. A time series is likely to contain some,

or all, of the following components:

Trend

Seasonal

Cyclical

Irregular

Let us first define and discuss each of these in general terms, and then we will look

at several specific data series to see which components we can visualize through

graphic analyses.

The trend in a time series is the long-term change in the level of the data. If,

over an extended period of time, the series moves upward, we say that the data

show a positive trend. If the level of the data diminishes over time, there is a neg-

ative trend. Data are considered stationary when there is neither a positive nor a

negative trend (i.e., the series is essentially flat in the long term).

A seasonal pattern occurs in a time series when there is a regular variation in

the level of the data that repeats itself at the same time each year. For example,

ski lodges in Killington, Vermont, have very regular high occupancy rates dur-

ing December, January, and February (as well as regular low occupancy rates in

the spring of the year). Housing starts are always stronger in the spring and

summer than during the fall and winter. Retail sales for many products tend to

peak in November and December because of holiday sales. Most university en-

rollments are higher in the fall than in the winter or spring and are typically the

lowest in the summer. All of these patterns recur with reasonable regularity year

after year. No doubt you can think of many other examples of time-series data

for which you would expect similar seasonal patterns.

A cyclical pattern is represented by wavelike upward and downward move-

ments of the data around the long-term trend. Cyclical fluctuations are of longer

duration and are less regular than are seasonal fluctuations. The causes of cyclical

fluctuations are less readily apparent as well. They are usually attributed to the ups

and downs in the general level of business activity that are frequently referred to

as business cycles.

The irregular component of a time series contains the fluctuations that are not

part of the other three components. These are often called random fluctuations. As

such, they are the most difficult to capture in a forecasting model.

To illustrate these components, let us analyze three specific sets of data. One of

these is a monthly series for the population in the United States (POP), which is an

important driver for many types of business activities. POP tends to increase at a

fairly constant linear rate. The second series is monthly data for total houses sold

(THS), which is also important for many businesses to forecast since it drives so

many other types of sales (such as drapes, furniture, appliances, etc.). THS has a

lot of seasonality, some upward trend, and a cyclical component. The third series is

disposable personal income (DPI, in billions of dollars), which also has a positive

trend, but the trend is slightly nonlinear with DPI increasing at an increasing rate.

DPI is also sometimes referred to as a prime mover because income is the revenue
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source for personal consumption. The integrative case at the end of this chapter

involves a similar evaluation of the sales of The Gap stores.

Figure 2.1 shows a times-series plot of population on a monthly basis starting

with January 1948 and ending with April 2008. From a visual inspection of

this graph, it is fairly easy to see that there has been a positive trend to POP over

the period shown. The long-term trend is shown by the lighter straight line in

Figure 2.1. (In later chapters, you will learn how to determine an equation for this

long-term trend line.) You see that population is nonstationary. Because POP is

nonstationary, some models would not be appropriate in forecasting POP (see

Table 2.1). Later in this chapter we will show one method that could be used to

transform population to a stationary series.

Total houses sold (THS) is plotted in Figure 2.2 for the period from January

1978 through July 2007. Probably the most striking feature of this visualization of

the THS data is the regular and sharp upward and downward movements that re-

peat year after year. This indicates a seasonal pattern, with housing sales reaching

a peak in the spring of each year. Overall, there also appears to be some upward

trend to the data and some cyclical movement as well.

The straight line in Figure 2.2 shows the long-term trend in the THS series. The

third line, which moves above and below the long-term trend but is smoother

than the plot ofTHS, is what theTHS series looks like after the seasonality has been

removed. Such a series is said to be “deseasonalized,” or “seasonally adjusted”
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(SA). By comparing the deseasonalized series with the trend, the cyclical nature of

houses sold becomes clearer.You will learn how to deseasonalize data in Chapter 6.

Now let us turn to a visual analysis of disposable personal income (DPI).

Figure 2.3 shows DPI for January 1978 through June 2007. Clearly, there is an up-

ward trend in the data, and it is a trend that appears to be accelerating slightly (i.e.,

becoming increasingly steep). You will learn to forecast such nonlinear trends

later in this text. There does not appear to be a cyclical component to the series,

and there is no seasonality. You can see in the top graph of Figure 2.3 that the lin-

ear trend would underforecast DPI beyond June 2007. However, the quadratic

(nonlinear) trend in the lower graph provides a better basis for forecasting.

DATA PATTERNS AND MODEL SELECTION

As discussed earlier in this chapter, the pattern that exists in the data is an impor-

tant consideration in determining which forecasting techniques are appropriate.

On the basis only of the pattern of data, let us apply the information in Table 2.1

to determine which methods might be good candidates for forecasting each of the

three specific series just discussed and plotted in Figures 2.1 through 2.3.

For POP, which has a trend but no cycle and no seasonality, the following might

be most appropriate:

Holt’s exponential smoothing

Linear regression trend

Total houses sold (THS) has a trend, seasonality, and a cycle. Therefore, some

likely candidate models for forecasting THS would include:

Winters’ exponential smoothing

Linear regression trend with seasonal adjustment
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FIGURE 2.2
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Causal regression

Time-series decomposition

The existence of a cycle component would suggest that the latter two may be the

best candidates.

For disposable personal income (DPI), there is a nonlinear trend, with no sea-

sonality and no cycle. Thus, the models most likely to be successful are:

Nonlinear regression trend

Causal regression

Holt’s exponential smoothing

In subsequent chapters of the text, we will return to these series from time to

time as examples. By the time you finish with the text, you will be able to develop

good forecasts for series that exhibit a wide variety of data patterns. After a review
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of some statistical concepts, we will return to an evaluation of data patterns that

goes beyond the simple, yet powerful, visualization of data and that will be of ad-

ditional help in selecting appropriate forecasting techniques.

A STATISTICAL REVIEW2

The approach that we will take in this discussion is more intuitive than theoretical.

Our intent is to help you recall a small part of what is normally covered in an in-

troductory statistics course. We begin by discussing descriptive statistics, with an

emphasis on measures of central tendency and measures of dispersion. Next we

review two important statistical distributions. These topics lead to statistical in-

ference, which involves making statements about a population based on sample

statistics. We then present an overview of hypothesis testing and finish with a dis-

cussion of correlation.

Descriptive Statistics
We often want to use numbers to describe one phenomenon or another. For exam-

ple, we might want to communicate information concerning the sales of fast-food

restaurants in a community. Or we might want to describe the typical consumption

of soft drinks in U.S. households. Or we might want to convey to someone the rate

at which sales have been increasing over time. All of these call for the use of de-

scriptive statistics.

When we want to describe the general magnitude of some variable, we can

use one or more of several measures of central tendency. The three most com-

mon measures of central tendency are the mean, median, and mode. To grasp each

of these measures, let us consider the data in Table 2.2. These data represent

25 consecutive months of computer sales for a small office-products retailer. The
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2 Students with a good statistical background may be able to skip this section.

Month Sales Month Sales

1 3 14 4
2 4 15 7
3 5 16 3
4 1 17 4
5 5 18 2
6 3 19 5
7 6 20 7
8 2 21 4
9 7 22 5

10 8 23 2
11 1 24 6
12 13 25 4
13 4

TABLE 2.2
Twenty-Five

Consecutive Months

of Total Sales (c2t2)



mode is the response that occurs most frequently. If you count the number of times

each value for sales is found in Table 2.2, you obtain the following results:

Sales
Number of

Occurrences

1 2
2 3
3 3
4 6
5 4
6 2
7 3
8 1

13 1
Total 25

Since the largest number of occurrences is 6 (for sales of four computers), the

mode is 4.

The median is the value that splits the responses into two equal parts when they

are arrayed from smallest to largest. In this set of data, the median is 4. This is

shown in the following diagram:

Responses Arrayed from Low to High

1 1 2 2 2 3 3 3 4 4 4 4 4 5 5 5 5 6 6 7 7 7 8 13

12 Values ↑ 12 Values

↓

Median

There are 12 numbers to the left of the circled 4, and 12 numbers to the right.

When there are an even number of observations, the median is the midpoint of the

two center values. For example, in the series 1, 4, 6, 10, the median is 5. Note that

the median may be a number that is not actually in the data array.

The mean is the arithmetic average of all the numbers in the data set. To find

the mean, add up all the values and divide by the number of observations. If the

set of numbers is a population, rather than a sample, the mean is designated by the

Greek mu ( ). It is calculated as:

    
N

i 1
Xi N

where the subscript i is used to identify each X value and

 
N

i 1
Xi

means the sum of all the values of Xi, in which i ranges from 1 to N. X is simply a

shorthand way of representing a variable. For the data in Table 2.2, X3  5 and
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X15  7. N represents the total number of elements, or observations, in the popu-

lation. In this case N  25. Adding up all 25 values, we get:

 X   115

Note that we have dropped the subscript here. This will often be done to simplify

the notation. The population mean is then:

    X N  115 25  4.6

If the data represent a sample (i.e., a portion of the entire population), the mean

is designated X and the number of elements in the sample is designated n. Thus, a

sample mean is: 

X    
n

i 1
Xi n

If the data in Table 2.2 represented a sample of months, the mean would be calcu-

lated as:

X   X n  115 25  4.6

All three of these measures of central tendency provide some feel for what we

might think of as a “typical case.” For example, knowing that the median and

mode for sales are both 4 and the mean is 4.6 gives you an idea about what is a

typical month’s sales.

These sales data are plotted over time in Figure 2.4, along with the trend line.

You see in this plot that sales fluctuate around a nearly flat trend. Thus, this sales

series is stationary.

We have seen that for the data in Table 2.2, the mean is 4.6, and both the mode

and the median are 4.0. Note that the mean is above both of the other measures of

central tendency. This can result when there is one relatively large value (in this

example, the 13). That large value pulls up the mean but has little or no effect on

the median or mode. Without that observation the median and mode for this

example would still be 4, but the mean would be 4.25 (4.25  102 24).
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Let us now consider dispersion in data. A measure of dispersion tells us some-

thing about how spread out (or dispersed) the data are. Such information helps us

to gain a clearer picture of the phenomenon being investigated than we get by

looking just at a measure of central tendency. Look, for example, at the following

two data sets marked A and B:

A: 18 19 20 21 22
B: 0 10 20 30 40

In both cases the mean and median are 20. (Since no value occurs more frequently

than the others, there is no mode.) However, the two data sets are really very dif-

ferent. Measures of dispersion can be helpful in conveying such a difference.

The simplest measure of dispersion is the range, which is the difference

between the smallest value and the greatest value. In Table 2.2 the smallest value

is 1 (observations 4 and 11); the greatest is 13 (observation 12). Thus,

Range  Greatest value  Smallest value

 13  1

 12

For the two data sets A and B just given, the range for A is 4 and the range for B is 40.

Think for a moment about the different perception you get from the following

two statements:

“The data set A has a mean of 20 and a range of values equal to 4, from 18 to 22.”

“The data set B has a mean of 20 and a range of values equal to 40, from 0 to 40.”

You can see how much your perception is affected by knowing this measure of

dispersion in addition to the mean.

Two other measures of dispersion, the variance and the standard deviation, are

probably the ones that are most used. The standard deviation is a measure of the

“average” spread of the data around the mean.Thus, it is based on the mean and tells

us how spread out the data are from the mean. The variance is the square of the

standard deviation.

The calculation of sample and population standard deviations and variances

can be shown in the shorthand of mathematical expressions as follows (let Xi

represent the ith observation):
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For a Sample For a Population

Standard deviation S         

Variance S2
  

2
 

 (Xi   )2
  

N
 (Xi  X )2
  

n  1

 (Xi   )2
  

N

 (Xi  X )2

 
n  1



For the computer sales data in Table 2.2, the calculations of the standard devi-

ation and variance are illustrated in Table 2.3. Note that the sum of the unsquared

differences between each observation and the mean is equal to zero. This is always

true. Squaring the differences gets around the problem of offsetting positive and

negative differences. The standard deviation for the sales data is (assuming the

data represent a sample) 2.582 units around a mean of 4.6. That is, the “average”

spread around the mean is 2.582. The corresponding variance is 6.667 “units

squared.” You can see that the interpretation of the variance is a bit awkward. What

is a “squared computer”? Because of this squaring of the units of measurement,
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Observation
Number

TABLE 2.3
Calculation of the

Standard Deviation

and Variance for the

Computer Sales Data

(Assuming a Sample)

(c2t3)

Mean  X     4.6

Variance  S2
   6.667

Standard

deviation  S         12640   5 6.667  2.582
 (Xi X )2

  
n  1

160
 
25  1

 (Xi  X )2

  
n  1

115
 
25

 Xi
 

n

1 3  1.6 2.56
2 4  0.6 0.36
3 5 0.4 0.16
4 1  3.6 12.96
5 5 0.4 0.16
6 3  1.6 2.56
7 6 1.4 1.96
8 2  2.6 6.76
9 7 2.4 5.76

10 8 3.4 11.56
11 1  3.6 12.96
12 13 8.4 70.56
13 4  0.6 0.36
14 4  0.6 0.36
15 7 2.4 5.76
16 3  1.6 2.56
17 4  0.6 0.36
18 2  2.6 6.76
19 5 0.4 0.16
20 7 2.4 5.76
21 4  0.6 0.36
22 5 0.4 0.16
23 2  2.6 6.76
24 6 1.4 1.96
25 4  0.6 0.36
Total 115 0.0 160.00

Computer Sales
(Xi) (Xi  X

_
) (Xi  X

_
)2



the variance is less useful in communicating dispersion than is the standard devi-

ation. In statistical analysis, however, the variance is frequently far more impor-

tant and useful than the standard deviation. Thus, both are important to know and

understand.

Look back at the two small data sets A and B referred to earlier. For both sets the

mean was 20. Assuming that these are both samples, the standard deviations are:

For A: S  1.58

For B: S  15.8

You see that knowing both the mean and the standard deviation gives you a much

better understanding of the data than you would have if you knew only the mean.

The Normal Distribution
Many statistical distributions are important for various applications. Two of

them—the normal distribution and Student’s t-distribution—are particularly use-

ful for the applications in forecasting to be discussed in this text. In this section we

will describe the normal distribution. We will consider the t-distribution in a later

section.

The normal distribution for a continuous random variable is fully defined by

just two characteristics: the mean and the variance (or standard deviation) of the

variable. A graph of the normal distribution has a bell shape such as the three dis-

tributions shown in Figure 2.5.3 All such normal distributions are symmetrical

around the mean. Thus, 50 percent of the distribution is above the mean and

50 percent is below the mean. It follows that the median must equal the mean

when the distribution is normal.

In Figure 2.5, the top graph represents the normal curve for a variable with a

population mean of 4 and a standard deviation of 2. The middle graph is for a

variable with the same mean but a standard deviation of 3. The lower graph is for

a normal distribution with a mean of 6 and a standard deviation of 2. While each

is unique, the three graphs have similar shapes, and they have an important com-

mon feature: for each of these graphs the shaded area represents roughly 68 per-

cent of the area under the curve.

This brings us to an important property of all normal curves. The area be-

tween one standard deviation above the mean and one standard deviation

below the mean includes approximately 68 percent of the area under the curve.

Thus, if we were to draw an element at random from a population with a normal

distribution, there is a 68 percent chance that it would be in the interval    1 .

This 68 percent is represented by the shaded areas of the graphs in Figure 2.5.
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3 Technically, these are probability density functions, for which the area under the curve

between any two points on the horizontal axis represents the probability of observing an

occurrence between those two points. For a continuous random variable, the probability of

any particular value occurring is considered zero, because there are an infinite number of

possible values in any interval. Thus, we discuss only probabilities that values of the variable

will lie between specified pairs of points.



If you remember that the normal distribution is symmetrical, you will realize

that 34 percent must be in the shaded area to the left of the mean and 34 percent

in the shaded area to the right of the mean. Since the total area to the right (or

left) of the mean is 50 percent, the area in either tail of the distribution must

be the remaining 16 percent (these are the unshaded regions in the graphs in

Figure 2.5).

If you extend the range to plus or minus two standard deviations from the

mean, roughly 95 percent of the area would be in that interval. And if you go out

three standard deviations in both directions from the mean, over 99.7 percent of

the area would be included. These concepts can be summarized as follows:

  1 includes about 68% of the area

  2 includes about 95% of the area

  3 includes over 99% of the area

These three rules of thumb are helpful to remember.

In Figure 2.5 you saw three similar yet different normal distributions. How

many such distributions are there? There may be billions of them. Every variable

or measurement you might consider could have a different normal distribution.

And yet any statistics text you look in will have just one normal distribution. The

reason for this is that every other normal distribution can be transformed easily
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FIGURE 2.5
Three Normal

Distributions
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same mean but differ-

ent standard devia-
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bottom distributions
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means.
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into a standard normal distribution called the Z-distribution. The transformation

is simple:

Z   
X  

 

 
 

In this way any observed value (X) can be standardized to a corresponding

Z-value. The Z-value measures the number of standard deviations by which X dif-

fers from the mean. If the calculated Z-value is positive, then X lies to the right of

the mean (X is larger than  ). If the calculated Z-value is negative, then X lies to

the left of the mean (X is smaller than  ).

The standard normal distribution is shown in Table 2.4. Note that it is centered

on zero. For every value of X there is a corresponding value for Z, which can be

found by using the transformation shown in the preceding equation. For example,

let us calculate the Z-values that correspond to X 40 and to X 65 assuming a

standard deviation of 10:

Z   
X  

 

 
 

For X  40, Z   
40

1

 

0

50
   1

For X  65, Z   
65

1

 

0

50
  1.5

Through this process every normal variable can be transformed to the standard

normal variable Z.

The normal distribution provides a background for many types of data analy-

sis. However, it is not typically appropriate for work with sample data, and in busi-

ness we almost always have sample data. When working with sample data, we use

the t-distribution.

The Student’s t-Distribution
When the population standard deviation is not known, or when the sample size is

small, the Student’s t-distribution should be used rather than the normal distribu-

tion. The Student’s t-distribution resembles the normal distribution but is some-

what more spread out for small sample sizes. As the sample size becomes very

large, the two distributions become the same. Like the normal distribution, the

t-distribution is centered at zero (i.e., has a mean of zero) and is symmetrical.

Since the t-distribution depends on the number of degrees of freedom (df ),

there are many t-distributions. The number of degrees of freedom appropriate

for a given application depends on the specific characteristics of the analysis.

Throughout this text, we will specify the value for df in each application.

Table 2.5 has a t-distribution for 29 different degrees of freedom plus infinity. The

body of this table contains t-values such that the shaded area in the graph is

equal to the subscript on t at the top of each column, for the number of degrees of

freedom (df ) listed along the left.
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Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2109 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549
0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .2051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .49865 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
4.0 .49997

TABLE 2.4 The Standard Normal Distribution*

Source: Adapted from Owen P. Hall, Jr., and Harvey M. Adelman, Computerized Business Statistics (Homewood, Ill.: Richard D. Irwin, 1987), p. 91.

* Z is the standard normal variable. Other variables can be transformed to Z as follows:

Z  

For Z  1.96, the shaded area in the distribution is 0.4750 (found at the intersection of the 1.9 row and the .06 column).

X   
 
 

0 Z



The Forecast Process, Data Considerations, and Model Selection 73

df t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
Inf. 1.282 1.645 1.960 2.326 2.576

*The t-distribution is used for standardizing when the population standard deviation is unknown and the sample standard

deviation is used in its place.

t  
X   
 
s  n 

TABLE 2.5
Student’s

t-Distribution*

Source: Adapted from Owen

P. Hall, Jr., and Harvey M.

Adelman, Computerized Busi-

ness Statistics (Homewood, Ill.:

Richard D. Irwin, 1987), p. 93.

t
 



To learn how to read the t-table, let us consider three examples. First, what

value of t would correspond to 5 percent of the area in the shaded region if there

are 15 degrees of freedom? To answer this, go to the row for 15 degrees of free-

dom, then to the column that has .050 for the subscript on t. The t-value at the

intersection of that row and column is 1.753. Second, if there are 26 degrees of

freedom and the t-value is 2.479, how much area would be in the shaded region?

Looking across the row for 26 degrees of freedom, we see that 2.479 is in the col-

umn for which t is subscripted with .010. Thus, 1 percent of the area would be in

that tail.

For our third example, consider the following question: If there are 85 degrees

of freedom, what value of t would be associated with finding 97.5 percent of the

area in the unshaded portion of the curve? For any number of degrees of freedom

greater than 29, we would use the infinity (Inf.) row of the table. If we want

97.5 percent in the clear area, then 2.5 percent must be in the shaded region. Thus,

we need the column for which t is subscripted with .025. The t-value at the inter-

section of this row and column is found to be 1.960. (Note that this is the same as

the Z-value for which 2.5 percent would be in the tail, or 0.4750 is in the shaded

section of the normal distribution shown in Table 2.4.)

While t-tables are usually limited to four or five areas in the tail of the

distribution and perhaps 30 levels for degrees of freedom, most statistical soft-

ware incorporates the equation for the t-distribution and will give exact areas,

given any t-value and the appropriate number of degrees of freedom. We will rely

on the t-distribution extensively in Chapters 4 and 5 as part of the evaluation of

statistical significance in regression models.

From Sample to Population: Statistical Inference
We are usually much less interested in a sample than in the population from

which the sample is drawn. The reason for looking at a sample is almost always

to provide a basis for making some inference about the whole population. For

example, suppose we are interested in marketing a new service in Oregon and

want to know something about the income per person in the state. Over 3.5 mil-

lion people live in Oregon. Clearly, trying to contact all of them to determine the

mean income per person would be impractical and very costly. Instead we might

select a sample and make an inference about the population based on the

responses of the people in that sample of Oregon residents.

A sample statistic is our best point estimate of the corresponding population

parameter. While it is best, it is also likely to be wrong. Thus, in making an infer-

ence about a population it is usually desirable to make an interval estimate.

For example, an interval estimate of the population mean is one that is centered

on the sample mean and extends above and below that value by an amount that is

determined by how confident we want to be, by how large a sample we have, and

by the variability in the data. These elements are captured in the following equa-

tion for a confidence interval:

  X  t(s  n )
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The ratio s  n is called the standard error of the sample mean and measures dis-

persion for sample means. The t-value is determined from Table 2.5 after choos-

ing the number of degrees of freedom (n  1 in this case), and the level of confi-

dence we desire as reflected by the area in the shaded tail of the distribution.

If we want a 95 percent confidence interval that is symmetrical around the

mean, we would want a total of 5 percent in the two extreme tails of the distribu-

tion. Thus, 2.5 percent would be in each tail. The following diagram will help you

see this:
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95%

 t

.025 .025

X

The t-value that would correspond to 2.5 percent in each tail can be determined

from Table 2.5, given the appropriate number of degrees of freedom. Several

examples follow:

Number of
Degrees of Freedom

t-Value for
95% Confidence Interval

5 2.571
10 2.228
20 2.086
50 1.960

100 1.960

Suppose that a sample of 100 responses gives a mean of $25,000 and a stan-

dard deviation of $5,000. Our best point estimate for the population mean would

be $25,000, and a 95 percent confidence interval would be:

  25,000  1.96(5,000  100 )

 25,000  980

that is,

24,020     25,980

See if you can correctly find the endpoints for a 90 percent confidence interval

given this same set of sample results.4

4 The lower bound is $24,177.5; the upper bound is $25,822.5. Notice that at this lower

confidence level the value of t is smaller (other things equal) and thus the confidence interval

is narrower.



Hypothesis Testing
Frequently we have a theory or hypothesis that we would like to evaluate statisti-

cally. For example, we might hypothesize that the mean expenditure on entertain-

ment in some city is equal to the national average for all age groups. Or we may

theorize that consumption of soft drinks by retired people is less than the national

level. Or we may want to evaluate the assumption that women professionals work

more than the standard 40-hour work week. All of these can be evaluated by using

an appropriate hypothesis testing procedure.

The process begins by setting up two hypotheses, the null hypothesis (desig-

nated H0:) and the alternative hypothesis (designated H1:). These two hypotheses

should be structured so that they are mutually exclusive and exhaustive. For

example, if we hypothesize that the mean expenditure on entertainment by people

in some city is different from the national average, the null and alternative hypothe-

ses would be (let  0 the national average and   this city’s population mean):

Case I  
If we theorize that the consumption of soft drinks by retired people is less than

the national average, the null and alternative hypotheses would be (let  0  the

national average and   the mean for retired people):

Case II  
If we want to evaluate the assumption that women professionals work more

than the standard 40-hour work week, the null and alternative hypotheses would

be (let  0 the standard work week and   the mean for professional women):

Case III  
In each of these cases the null and alternative hypotheses are mutually exclusive

and exhaustive.

In statistical hypothesis testing, the approach is to see whether you find suffi-

cient evidence to reject the null hypothesis. If so, the alternative is found to have

H0:    0

i.e., H0: The mean for professional women is less than
or equal to the standard.

H1:     0

i.e., H1: The mean for professional women is greater

than the standard.

H0:    0

i.e., H0: The mean for retired people is greater than or
equal to the national average.

H1:     0

i.e., H1: The mean for retired people is less than the

national average.

H0:    0

i.e., H0: The city mean equals the national mean.

H1:    0

i.e., H1: The city mean is not equal to the national mean.
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support. For questions of the type we are considering, this is done by using a t-test.

To perform a t-test, we must first determine how confident we want to be in our

decision regarding whether or not to reject the null hypothesis. In most business

applications a 95 percent confidence level is used. A measure that is closely

related to the confidence level is the significance level for the test. The signifi-

cance level, often denoted  (alpha), is equal to 1 minus the confidence level.

Thus, a 95 percent confidence level is the same as a 5 percent significance level.

The significance level is the probability of rejecting the null hypothesis when in

fact it is true.

In testing hypotheses, there are four possible outcomes, two of which are good

and two of which are bad. These are summarized in Table 2.6. If we reject H0:

when in fact it is true, we have what is termed a type I error. The other possible

error results when we fail to reject a null hypothesis that is in fact incorrect. This

is a type II error. These two errors are related in that by reducing the chance of a

type I error we increase the chance of a type II error and vice versa. Most of the

time, greater attention is given to type I errors. The probability of making a type

I error is determined by the significance level ( ) we select for the hypothesis

test. If the cost of a type I error is large, we would use a low  , perhaps 1 percent

or less.

Hypothesis tests may be one- or two-tailed tests. When the sign in the alterna-

tive hypothesis is an unequal sign ( ), the test is a two-tailed test. Otherwise, a

one-tailed test is appropriate. For a two-tailed test the significance level ( ) is split

equally into the two tails of the distribution. For a one-tailed test the entire signif-

icance level ( ) goes in the one tail of the distribution that is indicated by the

direction of the inequality sign in the alternative hypothesis. Consider the three

situations described a few paragraphs back. These are summarized in the follow-

ing diagrams, which show where the significance level would be (a 5 percent

significance level is used in all three cases).

 tTT  tT

2.5% 2.5%

H0:      0    H1:     0

Case I. A two-tailed test

 0
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The Truth
Statistical
Decision H0: Is True H0: Is Not True

Reject H0: Type I error No error
Fail to Reject H0: No error Type II error

TABLE 2.6
Type I and Type II

Errors



The tT values are determined from a t-distribution, such as that in Table 2.5, at the

appropriate number of degrees of freedom (n 1, in the examples used here) and

for the tail areas indicated in these diagrams (  2 for two-tailed tests and  for

one-tailed tests).

For each hypothesis test, a t-value is calculated (tcalc) and compared with the

critical value from the t-distribution (tT). If the calculated value is further into the

tail of the distribution than the table value, we have an observation that is extreme,

given the assumption inherent in H0, and so H0 is rejected. That is, we have suffi-

cient evidence to reject the null hypothesis (H0) when the absolute value of tcalc is

greater than tT. Otherwise we fail to reject the premise in H0.

The calculated t-statistic is found as follows:

tcalc  

where X is our sample mean and our best point estimate of  . The value we

are testing against is  0. The sample standard deviation is s and the sample size

is n.

Let us now apply these concepts to our three situations. Starting with case I,

let us assume that a sample of 49 people resulted in a mean of $200 per month

with a standard deviation of $84. The national average is $220 per month. The

hypotheses are:

H0:   220

H1:   220

X   0
 
s  n 

 tT

5%

H0:      0   H1:      0 ∝

Case III. A one-tailed test (upper tail)

 0

5%

H0:      0   H1:      0

Case II. A one-tailed test (lower tail)

 0 tT
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The calculated value is: 

tcalc      1.67

If we want a 95 percent confidence level (  0.05), the critical or table value of

t is  1.96. Notice that the t.025 column of Table 2.5 was used. This is because we

have a two-tailed test, and the  of 0.05 is split equally between the two tails.

Since our calculated t-value (tcalc) has an absolute value that is less than the criti-

cal value from the t-table (tT), we fail to reject the null hypothesis. Thus, we con-

clude that the evidence from this sample is not sufficient to say that entertainment

expenditures by people in this city are any different from the national average.

This result is summarized in the following diagram:

We see here that the observed mean of $200 or its corresponding t-value ( 1.67)

is not extreme. That is, it does not fall into either of the shaded areas. These shaded

areas taken together are often called the rejection region, because tcalc values in the

shaded areas would call for rejection of H0.

Let us now look at case II. Assume that for a sample of 25 retired people the

mean was 1.2 six-packs per week with a standard deviation of 0.6. The national

average ( 0) is 1.5. The hypotheses are:

H0:   1.5

H1:   1.5

The calculated t-value is:

tcalc      2.50

The critical value from the t-distribution in Table 2.5, assuming a 95 percent con-

fidence level (  0.05), is tT   1.711. Note that there are 24 degrees of free-

dom. Since the absolute value of tcalc is greater than the table value of t, we reject

H0. Thus, we conclude that there is sufficient evidence to support the notion that

retired people consume fewer soft drinks than the national average.

 0.3
 
0.12

1.2  1.5
 
0.6  25 

$220 tT     1.96

2.5% 2.5%

tT    1.96  

$200

tcalc    1.67

Fail to Reject H0

 20
 

12

200  220
  
84  49 
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This result is shown in graphic form as follows:

Here we see that the sample mean of 1.2 is extreme, given   0.05 and df 24,

and so we reject H0. The calculated value of t falls in the rejection region.

Finally, let us consider case III. We will assume that we have a sample of

144 professional women and that the mean number of hours per week worked

for that sample is 45 with a sample standard deviation of 29. The national norm

is the 40-hour work week. The hypotheses are:

H0:   40

H1:   40

Our calculated t-value is: 

tcalc      2.07

The relevant table value is 1.645 (  0.05 and df 143). Since Tcalc tT, we re-

ject the null hypothesis and conclude that the mean for professional women is

greater than 40 hours per week.

This result is shown graphically as follows:

The calculated t-value lies in the shaded (or rejection) region, and so H0 is

rejected.

The t-tests illustrated in this section involved making judgments about a popu-

lation mean based on information from a sample. In each t-test, the calculated

45 hours per week

40

tT    1.645
tcalc   2.07

5%

5
 
2.42

45  40
 
29  144 

1.2 six-packs

1.5

tT     1.711

tcalc    2.50

Reject H0

5%
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value of t was determined by dividing some difference (X   0) by a standard

error (s  n ). All t-statistics are calculated in this general way:

t  

We will use this general form later in this chapter as well as in subsequent chap-

ters of the text when t-tests are appropriate.

There are other statistical tests and other distributions that are applicable to fore-

casting. These include F-tests, Durbin-Watson tests, and chi-square tests, which

will be discussed later in the text as they are applied. If you have a basic under-

standing of the use of t-tests, these other statistical tests will not be difficult to use.

Correlation

It is often useful to have a measure of the degree of association between two vari-

ables. For example, if you believe that sales may be affected by expenditures on

advertising, you might want to measure the degree of association between sales

and advertising. One measure of association that is often used is the Pearson

product-moment correlation coefficient, which is designated  (rho) for a popula-

tion and r for a sample. There are other measures of correlation, but Pearson’s is

the most common and the most useful for the type of data encountered in fore-

casting situations. Thus, when we refer to correlation or a correlation coefficient,

we mean the Pearson product-moment correlation.

There are several alternative ways to write the algebraic expression for the cor-

relation coefficient. For our purposes the following is the most instructive:

r  

where X and Y represent the two variables of interest (e.g., advertising and sales).

This is the sample correlation coefficient. The calculation of the population corre-

lation coefficient ( ) is strictly analogous except that the population means for X

and Y would be used rather than the sample means. It is important to note that the

correlation coefficient defined here measures the degree of linear association

between X and Y.

The correlation coefficient can have any value in the range from  1 to  1. A

perfect positive correlation would be r  1, while a perfect negative correlation

would be r  1. These cases are shown in scatterplots A and B of Figure 2.6. You

can see that when there is a perfect correlation (positive or negative) all of the data

points fall along a straight line.

In scatterplot C it appears that in general when X increases, YC increases as

well. That is, there appears to be a positive (or direct) association between X and

YC. However, all five points do not fall along a single straight line, and so there is

not a perfect linear association. In this case the correlation coefficient is  0.79.

Scatterplot D shows a negative (or inverse) association between X and YD, but one

that is not perfectly linear. For scatterplot D, r   0.89.

 (X  X )(Y  Y )
   
 [ (X   X )2] [  (Y  Y  )2 ]

the difference being evaluated
    
the corresponding standard error
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FIGURE 2.6 Representative Scatterplots with the Corresponding Correlation Coefficients

These scatterplots show correlation coefficients that range from a perfect positive correlation (A) and a perfect

negative correlation (B) to zero correlations (E and F).



The remaining two scatterplots in Figure 2.6 illustrate cases for which the cor-

relation coefficient is zero. In both cases there is no linear association between the

variables. However, note that in panel F there is a clear nonlinear association be-

tween X and YF.

We could perform a hypothesis test to determine whether the value of a sample

correlation coefficient (r) gives us reason to believe that the true population cor-

relation coefficient ( ) is significantly different from zero. If it is not, then there

would be no linear association between the two measures. The hypothesis test

would be:

H0:   0

H1:   0

and t would be calculated as:

t  

where  (1  r 2) (n   2) is the standard error of r.

Let us apply this to the data in scatterplots C and D of Figure 2.6. In both of

these cases, for a two-tailed test, with   0.05 and n  5, the table value of tT
is 3.182 (there are n  2, or 3 degrees of freedom for this test). For panel C the

calculated value of t is:

tcalc  

    2.2318

Since tcalc is in the interval between  tT (i.e.,  3.182), we would fail to reject the

null hypothesis on the basis of a sample of five observations at a 95 percent confi-

dence level (  0.05). Thus, we conclude that there is not enough evidence to say

that  is different from zero. While the r  0.79 is a fairly strong correlation, we

are not able to say it is significantly different from zero in this case, largely be-

cause we have such a small sample. If n  50 and r  0.79, the calculated value

for t would be 26.06, and the table value would be 1.96, so that the null hypothe-

sis would be rejected.

For the data in panel D, the calculated value of t is:

tcalc    3.3808

Since this tcalc is not in the interval between  tT , we would reject H0 and would

conclude that we do have enough evidence to suggest that  is different from zero

(at a 95 percent confidence level, or   0.05, and on the basis of a sample of five

observations).

 0.89  0
   
   (1  0.892)  (5   2)  

0.79
 
 0.1253 

0.79
  
 0.3759  3 

0.79  0
   
 [1   (0.79)2]  (5   2) 

r  0
  
 (1  r 2) (n   2) 
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CORRELOGRAMS: ANOTHER METHOD

OF DATA EXPLORATION

In evaluating a time series of data, it is useful to look at the correlation between

successive observations over time. This measure of correlation is called an

autocorrelation and may be calculated as follows:

rk  

where:

rk  Autocorrelation for a k-period lag

Yt  Value of the time series at period t

Yt k  Value of time series k periods before period t

Y  Mean of the time series

If the time series is stationary, the value of rk should diminish rapidly toward zero

as k increases. If, on the other hand, there is a trend, rk will decline toward zero

slowly. If a seasonal pattern exists, the value of rk may be significantly different

from zero at k  4 for quarterly data, or k  12 for monthly data. (For quarterly

data, rk for k  8, k  12, k  16, . . . may also be large. For monthly data, a large

rk may also be found for k  24, k  36, etc.)

A k-period plot of autocorrelations is called an autocorrelation function

(ACF), or a correlogram. We will look at a number of such graphics as we further

analyze disposable personal income, total houses sold, and The Gap data.

To determine whether the autocorrelation at lag k is significantly different from

zero, the following hypothesis test and rule of thumb may be used:

H0:  k  0

H1:  k  0

For any k, reject H0 if  rk  2  n , where n is the number of observations. This

rule of thumb is for a 95 percent confidence level.5

The use of autocorrelations and correlograms can be illustrated by looking at

some of the data used earlier in this chapter. Let us begin with the disposable

personal income (DPI) data graphed in Figure 2.7. From that plot it is clear that

DPI has a fairly strong positive trend, so that we might expect high autocorrelation

coefficients. The month-to-month change in DPI (ΔDPI) is shown along with DPI

 t 1
n k(Yt k  Y )(Yt  Y )

   

 n
t 1(Yt  Y )2
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In evaluating a time

series of data, it is

useful to look at the

correlation between

successive

observations over time.

This measure of

correlation is called an

autocorrelation.

5 The complete t-test would be to reject H0 if  tcalc  tT, where:

tcalc  

and tT is from the t-table for   2 and n   k degrees of freedom (n  number of observations,

k  period of the lag).

(rk  0)
  

1  (n  k ) 



in Figure 2.7. While there is a great deal of fluctuation in ΔDPI, the series is much

more flat than are the data for DPI.

The autocorrelation structures of DPI and ΔDPI are shown in Figure 2.8.

For DPI 199 observations were used. Thus, 2  n = 2   1 9 9 = 0.142. Since

all of the autocorrelation coefficients in Figure 2.8 are greater than 0.142, we can

conclude, by our rule of thumb, that they are all significantly different from

zero. Therefore, we have additional evidence of a trend in the GDP data.6 The
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FIGURE 2.7
DPI and Change

in DPI

We see that there

is a strong positive

trend in DPI, but the

month-to-month

change has little trend.

(c2f7)

6 The more formal hypothesis test is:

H0:  k  0

H1:  k  0

and the calculated t-ratio is:

tcalc  

For example, for k  12 where rk  0.8124,

tcalc   11.109

which is greater than the table value of 1.96 at   2  0.025 (a 95 percent confidence level).

0.8124  0
   

1  199  12 

rk   0
  

1  n  k 



actual 95 percent confidence interval is shown by the two horizontal lines labeled

“Upper limit” and “Lower limit.”

If we want to try a forecasting method for DPI that requires stationary data, we

must first transform the DPI data to a stationary series. Often this can be done by

using first differences. For DPI, the first differences can be calculated as:

ΔDPIt DPIt  DPIt 1
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FIGURE 2.8
The ACF Graphs for

DPI and  DPI

From the upper graph

we see evidence that

DPI does have a posi-

tive trend. The lower

graph suggests that

DPI is stationary.

(c2f8)

Obs ACF

1 .9837
2 .9679
3 .9520
4 .9362
5 .9202
6 .9044
7 .8887
8 .8731
9 .8580

10 .8427
11 .8275
12 .8124

ACF Values for DPI

Obs ACF

1 –.3272
2 –.0110
3 –.0968
4 –.0335
5 .0278
6 .0439
7 .1867
8 –.2676
9 .1165

10 –.0142
11 –.0171
12 .0864

ACF Values for DPI Change ( DPI)



where ΔDPIt is the first difference (or change) in DPI. We can check for stationar-

ity in ΔDPI by examining the autocorrelation structure for ΔDPI as shown in

Figure 2.8. For ΔDPI the autocorrelations are nearly all within the upper and lower

bounds, so this series is stationary.

TOTAL HOUSES SOLD: EXPLORATORY DATA ANALYSIS
AND MODEL SELECTION

Let us apply exploratory data analysis techniques to the total houses sold data

that were introduced in Chapter 1 and that will be used as a running example

throughout the text. Figure 2.9 shows the raw data for total houses sold (THS)

and a trend line. In this plot we see several things of interest. First, there appear

to be fairly regular, sharp up-and-down movements that may be a reflection of

seasonality in THS. Second, the long-term trend appears positive. The autocorre-

lation structure of THS is shown in Figure 2.10.

We see that the autocorrelations for THS do not fall quickly to zero. The auto-

correlation coefficients are all significantly different from zero. Thus, we have

evidence of a significant trend in THS. We also show the ACF for the month-to-

month change of THS in Figure 2.10.

From this exploratory analysis of the total houses sold, we can conclude that

there is trend and seasonality. From Table 2.1 we can, therefore, suggest the

following as potential forecasting methods for total houses sold:

Winters’ exponential smoothing

Regression trend with seasonality
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FIGURE 2.9
Total Houses Sold

This graph shows total

houses sold (in thou-

sands) by month from

January 1991 through

July 2007, along with

the long-term upward

trend. (c2f9)



Causal regression

Time-series decomposition

ARIMA

Note that ARIMA is included, since the data could be transformed to a stationary

state, as was demonstrated.

88 Chapter Two

 0.2

0.0

0.2

0.6

1

0.4

0.8

1 2 3 4 5 6 7 8 9 10 11 12

ACF Upper limit Lower limit

 0.4

 0.2

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

ACF Upper limit Lower limit

FIGURE 2.10
ACF Values for Total

Houses Sold and

Changes in Total

Houses Sold

All coefficients are

outside the 95 percent

confidence band

indicating the positive

trend in THS.

For the change in THS

the coefficients fall

quickly and are mainly

within the 95 percent

confidence band

indicating no trend in

the month-to-month

changes in THS.

(c2f10)

Obs ACF

1 0.9134
2 0.8286
3 0.7395
4 0.6718
5 0.6526
6 0.6211
7 0.6321
8 0.6330
9 0.6659

10 0.7208
11 0.7646
12 0.7905

ACF Values for Total Houses Sold (000)

ACF Values for THS Change (First Differences)

Obs ACF

1 .0256
2 .0686
3 –.1476
4 –.3378
5 .0844
6 –.3006
7 .0780
8 –.2498
9 –.1337

10 .0650
11 .1061
12 .6161



Charles W. Chase, Jr.

Current literature and experience dictate that

the best forecasting system provides easy access,

review, and modification of forecast results

across all corporate disciplines; provides alterna-

tive modeling capabilities (multidimensional);

includes the ability to create a knowledge base

by which future forecasts can be refined; and

provides timely and accurate automated link/

feed interfaces with other systems such as I.R.I.

(Information Resources Inc.)/Nielsen syndicated

databases and the mainframe shipment database.

The present industry trend has been redirected

away from mainframe systems toward PC-based

software applications due to the lack of flexibility

associated with mainframe access and reporting.

Mainframes are being utilized primarily as storage

bins for PC-based systems to extract and store

information.

Source: Journal of Business Forecasting 11, no. 3 (Fall
1992), pp. 12–13. Reprinted by permission.
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Business Forecasting: A Process,

Not an Application

1

Integrative Case

The Gap

PART 2: DATA ANALYSIS OF THE GAP SALES DATA
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From this graph it is clear that The Gap sales are seasonal and increased until about 2001. There does not appear to be

a cycle. (c2Gap)



90 Chapter Two

Case 
Questions

1. In 2006, The Gap sales by quarter were as given below:

Quarter Gap Sales ($000)

2006Q1 3,441,000

2006Q2 3,716,000

2006Q3 3,856,000

2006Q4 4,930,000

Based on these data, calculate a 95 percent confidence interval for quarterly sales of

The Gap.

2. The Gap sales on an annual basis are shown in the following table.

Date Annual Gap Sales ($000)

Dec-85 701,598

Dec-86 899,089

Dec-87 1,092,309

Dec-88 1,320,674

Dec-89 1,679,039

Dec-90 2,021,712

Dec-91 2,617,457

Dec-92 3,015,125

Dec-93 3,403,769

Dec-94 3,819,955

Dec-95 4,659,714

Dec-96 5,402,426

Dec-97 6,996,351

Dec-98 9,612,504

Dec-99 12,089,654

Dec-00 14,121,126

Dec-01 13,559,057

Dec-02 14,916,640

Dec-03 16,168,584

Dec-04 16,224,939

Dec-05 15,838,000

Dec-06 16,060,000

Plot these data in a time-series plot. Based on this graph, what pattern do you see in The

Gap’s annual sales?

3. Using data for 1985Q1 through 2007Q1, calculate the autocorrelation coefficients for

The Gap’s quarterly sales (the quarterly data are in Table 1.6 and in the C2Gap.xls

data file) using twelve lags, and construct the corresponding correlogram (plot of the

autocorrelations) for lags of 1 through 12. What do the autocorrelation coefficients and

the correlogram tell you about the series?

4. Based on the plot of The Gap sales, on what you learned from question 3, as well as the

information in Table 2.1, what forecasting methods might you suggest if you were to

forecast The Gap’s quarterly sales?
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Solutions to
Case
Questions
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Annual Gap Sales ($000)(c2Gap)

(c2Gap) Obs ACF

1 .9247

2 .8838

3 .8721

4 .9069

5 .8327

6 .7874

7 .7711

8 .7967

9 .7214

10 .6710

11 .6489

12 .6665

3. As you see from the autocorrelations and correlogram below, the autocorrelations

decline gradually. Thus, we have further evidence of a trend in The Gap data.
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1. The 95 percent confidence interval is calculated as:

Mean of The Gap Sales  t(Standard Deviation of The Gap Sales   n )

In this case, n  4 and df  n  1, so df  3 and the corresponding value of t is 3.182

(see Table 2.5).

3,985,750 ± 3.182(652,676.73    4
_
)

3,985,750 ± 1,038,408.68

2,947,341.32 to 5,024,158.68

2. The plot of annual The Gap sales shown below indicates that there is a positive trend to

its sales over time.

ACF for Quarterly Gap Sales ($000)



ANCHORAGE ECONOMIC DEVELOPMENT
CENTER SECURES TIME-SAVING
FORECASTING ACCURACY
AEDC (Anchorage Economic Development Center)

is a private, nonprofit corporation that has been in

operation since 1987, and is seeking to improve the

economic conditions in Anchorage by expanding

value-added industries, increasing business ser-

vices, and developing tourism. The AEDC needed

to accurately forecast the economic outlook for such

industries as mining, government, finance, insur-

ance, real estate, manufacturing, construction,

transportation, communications, utilities, trade,

and services.

Using historical data from the Alaska Depart-

ment of Labor, the AEDC had used ratio-to-moving

averages classical decomposition formulas in Mi-

crosoft Excel to forecast the economic outlook. But

this long and fairly complicated process usually

took about one month to complete. The results,

though complete, were not as accurate as they

should be.

The AEDC determined that John Galt Solutions

could provide software (ForecastX Wizard) that

would more accurately—and efficiently—define

and forecast the economic conditions in Anchor-

age. AEDC wanted a solution that would minimize

its time formatting and forecasting data and allow

more time for analyzing and marketing the results

of the forecasts.

The AEDC found ForecastX to be an easy-to-in-

tegrate tool that required no data preparation.

AEDC was also happy to continue using Microsoft

Excel and still have the ability to use the advanced

forecasting methods. Flawlessly integrated, Fore-

castX Wizard provided the AEDC with Procast (ex-

pert selection); the ability to handle unlimited

amounts of data; and the ability to forecast data

on a monthly, quarterly, or yearly basis.

With the advanced features and functionality

of ForecastX and its ease of use, AEDC was able

to cut its forecasting prep time down to one

week. More time, therefore, could be spent focus-

ing on evaluating the results of forecasts and bring-

ing more businesses to Anchorage. ForecastX

Wizard provided AEDC with the tool it needed

to more efficiently and accurately complete its

forecasts.

Comments from the Field 2

92

4. Based on the plot of The Gap’s quarterly sales, as well as the data analysis from ques-

tion 3, the following forecasting methods might be suggested from the information in

Table 2.1:

Winters’ exponential smoothing

Regression trend with seasonality

Causal regression

Time-series decomposition

ARIMA (if the series is transformed to stationarity and deseasonalized)
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USING FORECASTX™ TO FIND
AUTOCORRELATION FUNCTIONS

The most difficult calculations in this chapter were the autocorrelation coefficients. These

can be calculated easily in the ForecastX™ software that accompanies your text. What fol-

lows is a brief discussion of how to use ForecastX™ for this purpose. This also serves as a

good introduction to the ease of use of ForecastX™.

First, put your data into an Excel spreadsheet in column format such as the sample of

The Gap data shown in Table 2.7. Once you have your data in this format, while in Excel

highlight the data you want to use and then start ForecastX™. The following dialog box

appears:

Date
Quarterly

Gap Sales ($000)

Mar-05 3,626,000

Jun-05 3,716,000

Sep-05 3,860,000

Dec-05 4,821,000

Mar-06 3,441,000

Jun-06 3,716,000

Sep-06 3,856,000

Dec-06 4,930,000

Mar-07 3,558,000

Dates are the middle months of The Gap sales quarters.

The full data set is in c2Gap.

TABLE 2.7
A Sample of The

Gap Data in Column

Format
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Set the Periodicity box to the periodicity of your data (Quarterly for this example), then

click the Forecast Method tab at the top and the following screen appears:

Now click the Analyze button and the following screen appears. Click Export, and the

results will be saved to a new Excel book.

You will have the results shown at the top of the next page (along with some other results)

in that new Excel book.
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Exercises 1. The mean volume of sales for a sample of 100 sales representatives is $25,350 per

month. The sample standard deviation is $7,490. The vice president for sales would

like to know whether this result is significantly different from $24,000 at a 95 percent

confidence level. Set up the appropriate null and alternative hypotheses, and perform

the appropriate statistical test.

2. Larry Bomser has been asked to evaluate sizes of tire inventories for retail outlets of a

major tire manufacturer. From a sample of 120 stores he has found a mean of 310 tires.

The industry average is 325. If the standard deviation for the sample was 72, would you

say that the inventory level maintained by this manufacturer is significantly different

from the industry norm? Explain why. (Use a 95 percent confidence level.)

3. Twenty graduate students in business were asked how many credit hours they were

taking in the current quarter. Their responses are shown as follows:

(c2p3) Student
Number

Student
Number

Credit
Hours

Student
Number

Credit
Hours

1 2 8 8 15 10

2 7 9 12 16 6

3 9 10 11 17 9

4 9 11 6 18 6

5 8 12 5 19 9

6 11 13 9 20 10

7 6 14 13

Credit
Hours

a. Determine the mean, median, and mode for this sample of data. Write a sentence

explaining what each means.

b. It has been suggested that graduate students in business take fewer credits per quar-

ter than the typical graduate student at this university. The mean for all graduate stu-

dents is 9.1 credit hours per quarter, and the data are normally distributed. Set up

the appropriate null and alternative hypotheses, and determine whether the null

hypothesis can be rejected at a 95 percent confidence level.

4. Arbon Computer Corporation (ACC) produces a popular PC clone. The sales manager

for ACC has recently read a report that indicated that sales per sales representative for



other producers are normally distributed with a mean of $255,000. She is interested

in knowing whether her sales staff is comparable. She picked a random sample of

16 salespeople and obtained the following results:
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(c2p4) Person Sales Person Sales

1 $177,406 9 $110,027

2 339,753 10 182,577

3 310,170 11 177,707

4 175,520 12 154,096

5 293,332 13 236,083

6 323,175 14 301,051

7 144,031 15 158,792

8 279,670 16 140,891

At a 5 percent significance level, can you reject the null hypothesis that ACC’s mean

sales per salesperson was $255,000? Draw a diagram that illustrates your answer.

5. Assume that the weights of college football players are normally distributed with a

mean of 205 pounds and a standard deviation of 30.

a. What percentage of players would have weights greater than 205 pounds?

b. What percentage of players would weigh less than 250 pounds?

c. Ninety percentage of players would weigh more than what number of pounds?

d. What percentage of players would weigh between 180 and 230 pounds?

6. Mutual Savings Bank of Appleton has done a market research survey in which people

were asked to rate their image of the bank on a scale of 1 to 10, with 10 being the most

favorable. The mean response for the sample of 400 people was 7.25, with a standard

deviation of 2.51. On this same question a state association of mutual savings banks

has found a mean of 7.01.

a. Clara Wharton, marketing director for the bank, would like to test to see whether

the rating for her bank is significantly greater than the norm of 7.01. Perform the

appropriate hypothesis test for a 95 percent confidence level.

b. Draw a diagram to illustrate your result.

c. How would your result be affected if the sample size had been 100 rather than 400,

with everything else being the same?

7. In a sample of 25 classes, the following numbers of students were observed:

(c2p7) 40 50 42 20 29

39 49 46 52 45

51 64 43 37 35

44 10 40 36 20

20 29 58 51 54

a. Calculate the mean, median, standard deviation, variance, and range for this sample.

b. What is the standard error of the mean based on this information?

c. What would be the best point estimate for the population class size?

d. What is the 95 percent confidence interval for class size? What is the 90 percent

confidence interval? Does the difference between these two make sense?



8. CoastCo Insurance, Inc., is interested in forecasting annual larceny thefts in the United

States using the following data:
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(c2p8)

Year
Larceny
Thefts* Year

Larceny
Thefts*

1972 4,151 1984 6,592

1973 4,348 1985 6,926

1974 5,263 1986 7,257

1975 5,978 1987 7,500

1976 6,271 1988 7,706

1977 5,906 1989 7,872

1978 5,983 1990 7,946

1979 6,578 1991 8,142

1980 7,137 1992 7,915

1981 7,194 1993 7,821

1982 7,143 1994 7,876

1983 6,713

* Data are in thousands.

SOURCE: U.S. Bureau of the Census, at http://www.census.gov.

a. Prepare a time-series plot of these data. On the basis of this graph, do you think

there is a trend in the data? Explain.

b. Look at the autocorrelation structure of larceny thefts for lags of 1, 2, 3, 4, and 5. Do

the autocorrelation coefficients fall quickly toward zero? Demonstrate that the criti-

cal value for rk is 0.417. Explain what these results tell you about a trend in the data.

c. On the basis of what is found in parts a and b, suggest a forecasting method from

Table 2.1 that you think might be appropriate for this series.

9. Use exploratory data analysis to determine whether there is a trend and/or seasonality in

mobile home shipments (MHS). The data by quarter are shown in the following table:

(c2p9) Quarter*

Year Q1 Q2 Q3 Q4

1981 54.9 70.1 65.8 50.2

1982 53.3 67.9 63.1 55.3

1983 63.3 81.5 81.7 69.2

1984 67.8 82.7 79.0 66.2

1985 62.3 79.3 76.5 65.5

1986 58.1 66.8 63.4 56.1

1987 51.9 62.8 64.7 53.5

1988 47.0 60.5 59.2 51.6

1989 48.1 55.1 50.3 44.5

1990 43.3 51.7 50.5 42.6

1991 35.4 47.4 47.2 40.9

1992 43.0 52.8 57.0 57.6

1993 56.4 64.3 67.1 66.4

1994 69.1 78.7 78.7 77.5

1995 79.2 86.8 87.6 86.4

*Data are in thousands.



On the basis of your analysis, do you think there is a significant trend in MHS? Is there

seasonality? What forecasting methods might be appropriate for MHS according to the

guidelines in Table 2.1?

10. Home sales are often considered an important determinant of the future health of

the economy. Thus, there is widespread interest in being able to forecast total houses

sold (THS). Quarterly data for THS are shown in the following table in thousands

of units:

(c2p10)
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Date
Total Houses Sold
(000) per Quarter

Mar-89 161

Jun-89 179

Sep-89 172

Dec-89 138

Mar-90 153

Jun-90 152

Sep-90 130

Dec-90 100

Mar-91 121

Jun-91 144

Sep-91 126

Dec-91 116

Mar-92 159

Jun-92 158

Sep-92 159

Dec-92 132

Mar-93 154

Jun-93 183

Sep-93 169

Dec-93 160

Mar-94 178

Jun-94 185

Sep-94 165

Dec-94 142

Mar-95 154

Jun-95 185

Sep-95 181

Dec-95 145

Mar-96 192

Jun-96 204

Sep-96 201

Dec-96 161

Mar-97 211

Jun-97 212

Sep-97 208

Dec-97 174

Date
Total Houses Sold
(000) per Quarter

Mar-98 220

Jun-98 247

Sep-98 218

Dec-98 200

Mar-99 227

Jun-99 248

Sep-99 221

Dec-99 185

Mar-00 233

Jun-00 226

Sep-00 219

Dec-00 199

Mar-01 251

Jun-01 243

Sep-01 216

Dec-01 199

Mar-02 240

Jun-02 258

Sep-02 254

Dec-02 220

Mar-03 256

Jun-03 299

Sep-03 294

Dec-03 239

Mar-04 314

Jun-04 329

Sep-04 292

Dec-04 268

Mar-05 328

Jun-05 351

Sep-05 326

Dec-05 278

Mar-06 285

Jun-06 300

Sep-06 251

Dec-06 216

Mar-07 214

Jun-07 240



a. Prepare a time-series plot of THS. Describe what you see in this plot in terms of

trend and seasonality.

b. Calculate and plot the first twelve autocorrelation coefficients for PHS. What does

this autocorrelation structure suggest about the trend?

c. De-trend the data by calculating first differences:

DTHSt THSt  THSt 1

Calculate and plot the first eight autocorrelation coefficients for DTHS. Is there a trend

in DTHS?

11. Exercise 8 of Chapter 1 includes data on the Japanese exchange rate (EXRJ) by month.

On the basis of a time-series plot of these data and the autocorrelation structure of

EXRJ, would you say the data are stationary? Explain your answer. (c2p11)
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Chapter Three

Moving Averages and
Exponential Smoothing
Consider the situation facing a manager who must periodically forecast the inven-

tories for hundreds of products. Each day, or week, or month, updated forecasts for

the many inventories are required within a short time period. While it might well be

possible to develop sophisticated forecasting models for each of the items, in many

cases some very simple short-term forecasting tools are adequate for the job.

A manager facing such a task is likely to use some form of time-series smoothing.

All the time-series smoothing methods use a form of weighted average of past

observations to smooth up-and-down movements, that is, some statistical method

of suppressing short-term fluctuations. The assumption underlying these methods

is that the fluctuations in past values represent random departures from some

smooth curve that, once identified, can plausibly be extrapolated into the future to

produce a forecast or series of forecasts.

We will examine five basic smoothing techniques in this chapter. All five of

these have the common characteristic that only a past history of the time series to

be forecast is necessary to produce the forecast. Further, all are based on the con-

cept that there is some underlying pattern to the data; that is, all time-series data

to be forecast are assumed to have some cycles or fluctuations that tend to recur.

The five methods, to be examined in turn, are:

1. Moving averages

2. Simple exponential smoothing

3. Holt’s exponential smoothing

4. Winters’ exponential smoothing

5. Adaptive–response-rate single exponential smoothing

MOVING AVERAGES

The simple statistical method of moving averages may mimic some data better

than a complicated mathematical function. Figure 3.1 shows the exchange rate

between the Japanese yen and the U.S. dollar from 1985Q1 through 2007Q1.

Figure 3.1 does not exhibit a simple linear, exponential, or quadratic trend similar



to those we will examine in Chapters 4 and 5. Instead, the series appears to show

substantial randomness, which we may be able to eliminate with a technique that

averages the most recent values.

To illustrate how a moving average is used, consider Table 3.1, which displays

the exchange rate between the Japanese yen and one U.S. dollar, shown in Fig-

ure 3.1. To calculate the three-quarter moving average first requires that we sum

the first three observations (257.53, 250.81, and 238.38). This three-quarter total

is then divided by 3 to obtain 248.90 (with rounding), which is the first number in

the “Three-Quarter Moving Average” column. This “smoothed” number, 248.90,

becomes the forecast for 1985Q4.

The final value in the “Three-Quarter Moving Average” column (117.82) is the

forecast for 2007Q2; it was arrived at by summing the final three values in the

“Actual” column and then dividing by 3 (353.45 3   117.82).

The five-quarter moving averages displayed in the same table are calculated in

like manner: the first moving average of 228.34 is calculated by summing the first

five actual values and dividing by 5:

  228.34

Thus, 228.34 becomes the forecast for the next period (1986Q2). The five entries

from Mar-06 through Mar-07 in the “Actual” column are averaged to give the final

five-quarter moving average:

  116.96

This final moving average serves as the forecast for 2007Q2.

584.8
 

5
116.87 + 114.48 + 116.30 + 117.75 + 119.40
     

5

1,141.71
 

5
257.53 + 250.81 + 238.38 + 207.18 + 187.81
     

5
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FIGURE 3.1
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TABLE 3.1 Exchange Rate with Japan and Two Moving-Average Forecasts (c3t1)

(continued on next page)

Date Rate
Three-Quarter

Moving Average
Three-Quarter

Forecast
Five-Quarter

Moving Average
Five-Quarter

Forecast

Mar-85 257.53 missing missing missing missing

Jun-85 250.81 missing missing missing missing

Sep-85 238.38 248.90 missing missing missing

Dec-85 207.18 232.12 248.90 missing missing

Mar-86 187.81 211.12 232.12 228.34 missing

Jun-86 169.89 188.29 211.12 210.81 228.34

Sep-86 155.84 171.18 188.29 191.82 210.81

Dec-86 160.46 162.06 171.18 176.23 191.82

Mar-87 153.22 156.51 162.06 165.44 176.23

Jun-87 142.64 152.11 156.51 156.41 165.44

Sep-87 146.97 147.61 152.11 151.83 156.41

Dec-87 135.65 141.76 147.61 147.79 151.83

Mar-88 127.99 136.87 141.76 141.30 147.79

Jun-88 125.72 129.79 136.87 135.80 141.30

Sep-88 133.70 129.14 129.79 134.01 135.80

Dec-88 125.16 128.20 129.14 129.65 134.01

Mar-89 128.55 129.14 128.20 128.23 129.65

Jun-89 137.96 130.56 129.14 130.22 128.23

Sep-89 142.33 136.28 130.56 133.54 130.22

Dec-89 143.14 141.14 136.28 135.43 133.54

Mar-90 147.99 144.49 141.14 139.99 135.43

Jun-90 155.40 148.85 144.49 145.36 139.99

Sep-90 144.98 149.46 148.85 146.77 145.36

Dec-90 130.90 143.76 149.46 144.48 146.77

Mar-91 133.88 136.59 143.76 142.63 144.48

Jun-91 138.36 134.38 136.59 140.70 142.63

Sep-91 136.32 136.18 134.38 136.89 140.70

Dec-91 129.48 134.72 136.18 133.79 136.89

Mar-92 128.67 131.49 134.72 133.34 133.79

Jun-92 130.38 129.51 131.49 132.64 133.34

Sep-92 124.90 127.99 129.51 129.95 132.64

Dec-92 123.03 126.11 127.99 127.29 129.95

Mar-93 120.92 122.95 126.11 125.58 127.29

Jun-93 110.05 118.00 122.95 121.86 125.58

Sep-93 105.68 112.22 118.00 116.92 121.86

Dec-93 108.27 108.00 112.22 113.59 116.92

Mar-94 107.61 107.19 108.00 110.51 113.59

Jun-94 103.25 106.38 107.19 106.97 110.51

Sep-94 99.05 103.31 106.38 104.77 106.97

Dec-94 98.86 100.39 103.31 103.41 104.77

Mar-95 96.18 98.03 100.39 100.99 103.41

Jun-95 84.48 93.17 98.03 96.36 100.99
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TABLE 3.1 (continued)

Date Rate
Three-Quarter

Moving Average
Three-Quarter

Forecast
Five-Quarter

Moving Average
Five-Quarter

Forecast

Sep-95 94.23 91.63 93.17 94.56 96.36

Dec-95 101.54 93.42 91.63 95.06 94.56

Mar-96 105.83 100.53 93.42 96.45 95.06

Jun-96 107.50 104.96 100.53 98.72 96.45

Sep-96 109.00 107.44 104.96 103.62 98.72

Dec-96 112.90 109.80 107.44 107.35 103.62

Mar-97 121.21 114.37 109.80 111.29 107.35

Jun-97 119.71 117.94 114.37 114.06 111.29

Sep-97 118.07 119.66 117.94 116.18 114.06

Dec-97 125.39 121.05 119.66 119.45 116.18

Mar-98 128.16 123.87 121.05 122.51 119.45

Jun-98 135.66 129.74 123.87 125.40 122.51

Sep-98 139.98 134.60 129.74 129.45 125.40

Dec-98 119.47 131.70 134.60 129.73 129.45

Mar-99 116.48 125.31 131.70 127.95 129.73

Jun-99 120.83 118.93 125.31 126.48 127.95

Sep-99 113.15 116.82 118.93 121.98 126.48

Dec-99 104.40 112.79 116.82 114.86 121.98

Mar-00 107.00 108.18 112.79 112.37 114.86

Jun-00 106.69 106.03 108.18 110.41 112.37

Sep-00 107.71 107.13 106.03 107.79 110.41

Dec-00 109.89 108.10 107.13 107.14 107.79

Mar-01 118.14 111.91 108.10 109.89 107.14

Jun-01 122.63 116.88 111.91 113.01 109.89

Sep-01 121.49 120.75 116.88 115.97 113.01

Dec-01 123.82 122.65 120.75 119.19 115.97

Mar-02 132.46 125.92 122.65 123.71 119.19

Jun-02 126.81 127.70 125.92 125.44 123.71

Sep-02 119.32 126.20 127.70 124.78 125.44

Dec-02 122.47 122.87 126.20 124.98 124.78

Mar-03 118.95 120.25 122.87 124.00 124.98

Jun-03 118.53 119.98 120.25 121.22 124.00

Sep-03 117.39 118.29 119.98 119.33 121.22

Dec-03 108.81 114.91 118.29 117.23 119.33

Mar-04 107.17 111.12 114.91 114.17 117.23

Jun-04 109.76 108.58 111.12 112.33 114.17

Sep-04 109.94 108.96 108.58 110.61 112.33

Dec-04 105.76 108.49 108.96 108.29 110.61

Mar-05 104.51 106.74 108.49 107.43 108.29

Jun-05 107.51 105.93 106.74 107.50 107.43

Sep-05 111.27 107.76 105.93 107.80 107.50

Dec-05 117.26 112.01 107.76 109.26 107.80

Mar-06 116.87 115.13 112.01 111.48 109.26

Jun-06 114.48 116.20 115.13 113.48 111.48
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TABLE 3.1 (continued)

Date Rate
Three-Quarter

Moving Average
Three-Quarter

Forecast
Five-Quarter

Moving Average
Five-Quarter

Forecast

Obviously, three- and five-quarter moving averages are not the only kinds of

moving averages. We could calculate seven- or nine-quarter moving averages if

we wished, or eight- or ten-quarter averages, and so on. The choice of the interval

for the moving average depends on the length of the underlying cycle or pattern in

the original data. If we believe the actual data to be exhibiting a cycle that recurs

every four periods, we would choose a four-period moving average in order to best

dampen the short-run fluctuation. The simplest naive model of Chapter 1 used

each period’s actual value as the forecast for the next period; you could correctly

think of this model as a one-period moving average, that is, a special case of the

model we are examining here.

In order to compute whether the three-quarter or five-quarter moving average

is the better forecasting model, it is useful to compute the root-mean-squared error

(RMSE) as we calculated it in Chapter 1. Table 3.1 shows the RMSE for both fore-

casts at the bottom of the table. The RMSE of 13.0 for the three-quarter moving

average is less than the 15.28 calculated for the five-quarter case, and so we might

conclude that the better forecast in this particular case is generated by the three-

quarter model.

In preparing the forecasts for 2007Q2, it was assumed that the actual value

for that quarter was unknown. However, the actual value for that quarter is known

in this situation and is shown in Table 3.1. Thus, we can see which of the two

moving-average forecasts developed above was really the best for 2007Q2. The

forecast for the single quarter (2007Q2) shows that the three-quarter moving

average was slightly more accurate in this instance.

The three- and five-quarter moving averages are shown graphically in

Figures 3.2 and 3.3, respectively. Notice in Figures 3.2 and 3.3 that the peaks and

troughs of the actual series are different from those for either moving average.

This failure of the moving averages to predict peaks and troughs is one of the

shortcomings of moving-average models.

One final and important observation: The moving-average forecasting method

has fooled more than one forecaster by appearing to identify a cycle when, in fact,

no cycle was present in the actual data. Such an occurrence can be understood if

The choice of the

interval for the moving

average depends on

the length of the

underlying cycle or

pattern in the original

data.

Sep-06 116.30 115.88 116.20 115.24 113.48

Dec-06 117.75 116.18 115.88 116.53 115.24

Mar-07 119.40 117.82 116.18 116.96 116.53

Jun-07 120.80* missing 117.82 missing 116.96

* Value assumed not to be known in developing moving-average forecasts.

RMSE for March 1985–March 2007

Three-Quarter Moving-Average Model 13.0

Five-Quarter Moving-Average Model 15.28

The moving-average

forecasting method has

fooled more than one

forecaster by appearing

to identify a cycle.



you think of an actual data series as being simply a series of random numbers.

Since any moving average is serially correlated, because a number of contiguous

periods have been averaged, any sequence of random numbers could appear to ex-

hibit cyclical fluctuation.1
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FIGURE 3.2
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FIGURE 3.3
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1 This incorrect conclusion is sometimes called the Slutsky-Yule effect, named after Eugen

Slutsky and G. Udny Yule, who first pointed out the possibility of making a mistake in this

manner. See Eugen E. Slutsky, “The Summation of Random Causes as the Source of Cyclic

Processes,” Econometrica 5 (1937), pp. 105–46; and G. Udny Yule, “On a Method of

Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot

Numbers,” Royal Society of London, Philosophical Transactions (1927), pp. 267–98.



SIMPLE EXPONENTIAL SMOOTHING

Simple exponential smoothing, like moving averages, uses only past values of a

time series to forecast future values of the same series and is properly employed

when there is no trend or seasonality present in the data. With exponential

smoothing, the forecast value at any time is a weighted average of all the available

previous values; the weights decline geometrically as you go back in time.

Moving-average forecasting gives equal weights to the past values included in

each average; exponential smoothing gives more weight to the recent observations

and less to the older observations. The weights are made to decline geometrically

with the age of the observation to conform to the argument that the most recent

observations contain the most relevant information, so that they should be

accorded proportionately more influence than older observations.

Exponential smoothing proceeds as do moving averages by smoothing past

values of the series; the calculations for producing exponentially smoothed fore-

casts can be expressed as an equation. The weight of the most recent observation

is assigned by multiplying the observed value by  , the next most recent observa-

tion by (1   ) , the next observation by (1   )2 , and so on. The number we

choose for  is called the level smoothing constant.2

The simple exponential smoothing model can be written in the following manner:

Ft 1   Xt  (1   )Ft (3.1)

where2:

Ft 1  Forecast value for period t  1

  Smoothing constant (0     1)

Xt  Actual value now (in period t)

Ft  Forecast (i.e., smoothed) value for period t

In using this equation the forecaster does not need to deal with every actual past

value at every step; only the exponentially smoothed value for the last period and

the actual value for this period are necessary. An alternative way of writing Equa-

tion 3.1 results from rearranging the terms as follows:

Ft 1   Xt  (1   )Ft (3.2)

  Xt  Ft   Ft

 Ft   (Xt  Ft)
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With exponential

smoothing, the

forecast value at any

time is a weighted

average of all the

available previous

values.

2 Our notation throughout the chapter for exponential smoothing follows approximately the

notation found in Everette S. Gardner, “Exponential Smoothing: The State of the Art,” Journal

of Forecasting 4, no. 1 (1985), pp. 1–28. This article contains a very complete description of

different forms of smoothing that are in common use and explains (with advanced

mathematics) that there may be theoretical advantages for employing smoothing in situations

where it can be shown that certain assumptions concerning the probability distribution of the

series are met.

The number we choose

for  is called the level

smoothing constant.



From this form we can see that the exponential smoothing model “learns” from

past errors. The forecast value at period t  1 is increased if the actual value for

period t is greater than it was forecast to be, and it is decreased if Xt is less than Ft.

Forecasting the value for the next period (Ft 1) requires us to know only the actual

value for this period (Xt) and the forecast value for this period (Ft). However, all

historical observations are included, as follows:

Ft 1   Xt  (1   )Ft (3.3)

and Ft   Xt 1  (1   )Ft 1

therefore, Ft 1   Xt  (1   ) Xt 1  (1   )2Ft 1

and Ft 1   Xt 2  (1   )Ft 2

thus, Ft 1   Xt  (1   ) Xt 1  (1   )2 Xt 2  (1   )3Ft 2

We could continue this expansion to include X terms as far back as we have

data, but this is probably far enough to help you see how the weights for

previous time periods become smaller and smaller at a rate that depends on

the value of  , as will be shown in the following tables for two alternative

values of  .

The value of the level smoothing constant  is commonly constrained to be in

the range of zero to one. If a value close to 1 is chosen, recent values of the time

series are weighted heavily relative to those of the distant past when the smoothed

values are calculated. Likewise, if the value of  is chosen close to 0, then the val-

ues of the time series in the distant past are given weights comparable to those

given the recent values. The rate at which the weights decrease can be seen from

their values for an  of 0.1:
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Time
  0.1
Calculation Weight

t 0.1

t  1 0.9  0.1 0.090

t  2 0.9  0.9  0.1 0.081

t  3 0.9  0.9  0.9  0.1 0.073

  

Total 1.000

Regardless of the smoothing constant chosen, the weights will eventually sum

to 1. Whether the sum of the weights converges on 1 quickly or slowly depends on

the smoothing constant chosen. If, for example, we choose a smoothing constant



of 0.9, the sum of the weights will approach 1 much more rapidly than when the

level smoothing constant is 0.1: 
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Time
  0.9
Calculation Weight

t 0.9

t  1 0.1  0.9 0.09

t  2 0.1  0.1  0.9 0.009

t  3 0.1  0.1  0.1  0.9 0.0009

  

Total 1.000

As a guide in choosing  , select values close to 0 if the series has a great deal

of random variation; select values close to 1 if you wish the forecast values to de-

pend strongly on recent changes in the actual values. The root-mean-squared error

(RMSE) is often used as the criterion for assigning an appropriate smoothing con-

stant; the smoothing constant giving the smallest RMSE would be selected as the

model likely to produce the smallest error in generating additional forecasts. In

practice, relatively small values of alpha ( ) generally work best when simple

exponential smoothing is the most appropriate model.

The following example will demonstrate the technique. Suppose we wish

to forecast the University of Michigan Index of Consumer Sentiment for

September 2007 based on data from January 1998 through August 2007. These

values are shown in the “Actual” column of Table 3.2 for January 1998

through August 2007. Since no previous forecast is available for the first

period (January 1998), we have arbitrarily chosen to use 107; thus 107 be-

comes the first entry in the “Forecast” column. This process of choosing an

initial value for the smoothed series is called initializing the model, or

warming up the model.3 All the other values in the “Forecast” column were

calculated by using Equation 3.1 with a level smoothing constant ( ) of 0.88,

which was selected by ForecastX™ to minimize the RMSE. The actual and

forecast values are shown in Figure 3.4.

In practice, relatively

small values of alpha

( ) generally work

best when simple

exponential smoothing

is the most appropriate

model.

3 The choice of a starting value in exponential smoothing models has been a matter of some

discussion, with little empirical evidence favoring any particular approach. R. G. Brown first

suggested using the mean of the data for the starting value, and this suggestion has been

quite popular in actual practice. A linear regression (like that described in Chapter 4) is some-

times used when selecting starting values for seasonal factors, and time-series decomposition

(as discussed in Chapter 6) has also been used. If the data include a trend, backcasting is

sometimes used to select a starting value; but if the trend is erratic, this sometimes leads to

negative starting values, which make little sense. A discussion of the various alternatives

(including using the first value in the series or using the mean of the series, which are both

popular in practice) appears in the Gardner article (footnote 2).



110 Chapter Three

TABLE 3.2 Simple Exponential Smoothing Forecast of the University of Michigan Index of Consumer

Sentiment (c3t2)

Date Actual Forecast Error

Jan-98 106.6 107.00  0.40

Feb-98 110.4 106.65 3.75

Mar-98 106.5 109.96  3.46

Apr-98 108.7 106.91 1.79

May-98 106.5 108.49  1.99

Jun-98 105.6 106.73  1.13

Jul-98 105.2 105.73  0.53

Aug-98 104.4 105.26  0.86

Sep-98 100.9 104.50  3.60

Oct-98 97.4 101.33  3.93

Nov-98 102.7 97.86 4.84

Dec-98 100.5 102.13  1.63

Jan-99 103.9 100.69 3.21

Feb-99 108.1 103.52 4.58

Mar-99 105.7 107.56  1.86

Apr-99 104.6 105.92  1.32

May-99 106.8 104.76 2.04

Jun-99 107.3 106.56 0.74

Jul-99 106 107.21  1.21

Aug-99 104.5 106.14  1.64

Sep-99 107.2 104.69 2.51

Oct-99 103.2 106.90  3.70

Nov-99 107.2 103.64 3.56

Dec-99 105.4 106.78  1.38

Jan-00 112 105.56 6.44

Feb-00 111.3 111.24 0.06

Mar-00 107.1 111.29  4.19

Apr-00 109.2 107.59 1.61

May-00 110.7 109.01 1.69

Jun-00 106.4 110.50  4.10

Jul-00 108.3 106.88 1.42

Aug-00 107.3 108.13  0.83

Sep-00 106.8 107.40  0.60

Oct-00 105.8 106.87  1.07

Nov-00 107.6 105.93 1.67

Dec-00 98.4 107.40  9.00

Jan-01 94.7 99.46  4.76

Feb-01 90.6 95.26  4.66

Mar-01 91.5 91.15 0.35

Apr-01 88.4 91.46  3.06

May-01 92 88.76 3.24

Jun-01 92.6 91.62 0.98

Jul-01 92.4 92.48  0.08

Aug-01 91.5 92.41  0.91

Date Actual Forecast Error

Sep-01 81.8 91.61  9.81

Oct-01 82.7 82.96  0.26

Nov-01 83.9 82.73 1.17

Dec-01 88.8 83.76 5.04

Jan-02 93 88.21 4.79

Feb-02 90.7 92.43  1.73

Mar-02 95.7 90.90 4.80

Apr-02 93 95.13  2.13

May-02 96.9 93.25 3.65

Jun-02 92.4 96.47  4.07

Jul-02 88.1 92.88  4.78

Aug-02 87.6 88.66  1.06

Sep-02 86.1 87.73  1.63

Oct-02 80.6 86.29  5.69

Nov-02 84.2 81.27 2.93

Dec-02 86.7 83.85 2.85

Jan-03 82.4 86.36  3.96

Feb-03 79.9 82.87  2.97

Mar-03 77.6 80.25  2.65

Apr-03 86 77.91 8.09

May-03 92.1 85.05 7.05

Jun-03 89.7 91.27  1.57

Jul-03 90.9 89.88 1.02

Aug-03 89.3 90.78  1.48

Sep-03 87.7 89.47  1.77

Oct-03 89.6 87.91 1.69

Nov-03 93.7 89.40 4.30

Dec-03 92.6 93.19  0.59

Jan-04 103.8 92.67 11.13

Feb-04 94.4 102.49  8.09

Mar-04 95.8 95.35 0.45

Apr-04 94.2 95.75  1.55

May-04 90.2 94.38  4.18

Jun-04 95.6 90.69 4.91

Jul-04 96.7 95.02 1.68

Aug-04 95.9 96.50  0.60

Sep-04 94.2 95.97  1.77

Oct-04 91.7 94.41  2.71

Nov-04 92.8 92.02 0.78

Dec-04 97.1 92.71 4.39

Jan-05 95.5 96.58  1.08

Feb-05 94.1 95.63  1.53

Mar-05 92.6 94.28  1.68

Apr-05 87.7 92.80  5.10
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TABLE 3.2 (continued)

Date Actual Forecast Error

May-05 86.9 88.30  1.40

Jun-05 96 87.07 8.93

Jul-05 96.5 94.95 1.55

Aug-05 89.1 96.32  7.22

Sep-05 76.9 89.95  13.05

Oct-05 74.2 78.44  4.24

Nov-05 81.6 74.70 6.90

Dec-05 91.5 80.79 10.71

Jan-06 91.2 90.24 0.96

Feb-06 86.7 91.09  4.39

Mar-06 88.9 87.22 1.68

Apr-06 87.4 88.70  1.30

May-06 79.1 87.55  8.45

Jun-06 84.9 80.10 4.80

Jul-06 84.7 84.33 0.37

Date Actual Forecast Error

Aug-06 82 84.66  2.66

Sep-06 85.4 82.31 3.09

Oct-06 93.6 85.04 8.56

Nov-06 92.1 92.59  0.49

Dec-06 91.7 92.16  0.46

Jan-07 96.9 91.75 5.15

Feb-07 91.3 96.29  4.99

Mar-07 88.4 91.89  3.49

Apr-07 87.1 88.81  1.71

May-07 88.3 87.30 1.00

Jun-07 85.3 88.18  2.88

Jul-07 90.4 85.64 4.76

Aug-07 83.4 89.84  6.44

Sep-07 84.16

Level  0.88

Root-mean-squared error (RMSE)  4.15

FIGURE 3.4
A Simple Exponential

Smoothing Forecast

of the University of

Michigan Index of

Consumer Sentiment

(c3t2)

In this forecast an

alpha of 0.88 was

selected to minimize

the root-mean-squared

error (RMSE).
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Let us illustrate the calculation of the forecast value for March 1998 by using

Equation 3.1 as follows:

Ft 1   Xt  (1   )Ft

F2 1   X2  (1   )F2

F3  0.88(110.4)  (1  0.88)(106.65)  109.96



This smoothed value of 109.96 is the forecast for March (t  3). Once actual data

for March become available, the model is used to forecast April, and so on.

Taking this one step further, assume now that the actual sales figure for March

1998 has become available. In Table 3.2 we see that this figure is 106.50. We now

wish to forecast the sales figure for t  4 (April 1998). The technique applied

before is repeated:

Ft 1   Xt  (1   )Ft

F3 1   X3  (1   )F3

F4  0.88(106.50)  (1   0.88)(109.96)  106.91

The error for the March 1998 forecast (rounded) is calculated as:

e3  X3  F3  106.50  109.96   3.46

The error for the April 1998 forecast (rounded) is calculated as:

e4  X4  F4  108.70  106.91  1.79

The predominant reason for using simple smoothing is that it requires a limited

quantity of data and it is simpler than most other forecasting methods. Its limita-

tions, however, are that its forecasts lag behind the actual data and it has no abil-

ity to adjust for any trend or seasonality in the data.

HOLT’S EXPONENTIAL SMOOTHING

Two further extensions of the smoothing model can be used in order to bring

the forecast values closer to the values observed if the data series exhibits

a trend and/or seasonality (the first extension is discussed in this section, and

the second in the following section). In real-world situations one or both

of these techniques are often used because real-world data are not very often

so simple in their patterns that simple exponential smoothing provides an

accurate forecast.

The first extension is to adjust the smoothing model for any trend in the data;

with a trend in the data the simple smoothing model will have large errors that

usually move from positive to negative or vice versa. When a trend exists, the

forecast may then be improved by adjusting for this trend by using a form of

smoothing named after its originator, C. C. Holt. Holt’s two-parameter exponen-

tial smoothing method is an extension of simple exponential smoothing; it adds

a growth factor (or trend factor) to the smoothing equation as a way of adjusting
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Holt’s two-parameter

exponential smoothing

method (called Double

Exponential Smoothing

Holt in ForecastX™)

is an extension of

simple exponential

smoothing; it adds a

growth factor (or trend

factor) to the

smoothing equation as

a way of adjusting for

the trend.



for the trend. Three equations and two smoothing constants are used in the

model.

Ft 1   Xt  (1   )(Ft  Tt) (3.4)

Tt 1   (Ft 1  Ft)  (1   )Tt (3.5)

Ht m  Ft 1  mTt 1 (3.6)

where:

Ft 1  Smoothed value for period t  1

  Smoothing constant for the level (0     1)

Xt  Actual value now (in period t)

Ft  Forecast (i.e., smoothed) value for time period t

Tt 1  Trend estimate

  Smoothing constant for the trend estimate (0     1)

m  Number of periods ahead to be forecast

Ht m  Holt’s forecast value for period t  m

Equation 3.4 adjusts Ft 1 for the growth of the previous period, Tt, by adding Tt to

the smoothed value of the previous period, Ft. The trend estimate is calculated in

Equation 3.5, where the difference of the last two smoothed values is calculated.

Because these two values have already been smoothed, the difference between

them is assumed to be an estimate of trend in the data. The second smoothing con-

stant,  in Equation 3.5, is arrived at by using the same principle employed in sim-

ple exponential smoothing. The most recent trend (Ft 1  Ft), is weighted by

 , and the last previous smoothed trend, Tt, is weighted by (1   ). The sum of the

weighted values is the new smoothed trend value Tt 1.

Equation 3.6 is used to forecast m periods into the future by adding the product

of the trend component, Tt 1, and the number of periods to forecast, m, to the cur-

rent value of the smoothed data Ft 1.

This method accurately accounts for any linear trend in the data.4 Table 3.3

illustrates the application of Holt’s model to consumer credit outstanding. The two

smoothing constants are   0.77 and   0.39. Two starting values are needed:

one for the first smoothed value and another for the first trend value. The initial

smoothed value is often a recent actual value available; the initial trend value is

often 0.00 if no past data are available (see footnote 3). The following naming
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4 All trends, of course, do not have to be linear, and there are smoothing models that can ac-

count for nonlinear trends. In this chapter we are examining only a subset of the number of

possible smoothing models. For a listing of smoothing models, see Carl C. Pegels, “Exponential

Forecasting: Some New Variations,” Management Science 15, no. 12 (1969), pp. 311–15, or

the Gardner article (1985). Both of these articles cover many smoothing models, including

some that are very rarely used in actual practice.
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Dates Original Data Fitted Data Error

Jan-1990 4,757.10 4,766.41  9.31

Apr-1990 4,773.00 4,761.70 11.30

Jul-1990 4,792.60 4,776.21 16.39

Oct-1990 4,758.30 4,799.52  41.22

Jan-1991 4,738.10 4,766.22  28.12

Apr-1991 4,779.40 4,734.64 44.76

Jul-1991 4,800.10 4,772.47 27.63

Oct-1991 4,795.90 4,805.34  9.44

Jan-1992 4,875.00 4,806.87 68.13

Apr-1992 4,903.00 4,888.37 14.63

Jul-1992 4,951.80 4,933.05 18.75

Oct-1992 5,009.40 4,986.48 22.92

Jan-1993 5,027.30 5,049.94  22.64

Apr-1993 5,071.90 5,071.60 0.30

Jul-1993 5,127.30 5,111.00 16.30

Oct-1993 5,172.90 5,167.57 5.33

Jan-1994 5,230.30 5,217.28 13.02

Apr-1994 5,268.00 5,276.78  8.78

Jul-1994 5,305.70 5,316.89  11.19

Oct-1994 5,358.70 5,351.82 6.88

Jan-1995 5,367.20 5,402.70  35.50

Apr-1995 5,411.70 5,410.40 1.30

Jul-1995 5,458.80 5,446.81 11.99

Oct-1995 5,496.10 5,495.02 1.08

Jan-1996 5,544.60 5,535.15 9.45

Apr-1996 5,604.90 5,584.54 20.36

Jul-1996 5,640.70 5,648.38  7.68

Oct-1996 5,687.60 5,688.36  0.76

Jan-1997 5,749.10 5,733.44 15.66

Apr-1997 5,775.80 5,795.81  20.01

Jul-1997 5,870.70 5,824.78 45.92

Oct-1997 5,931.40 5,918.15 13.25

Jan-1998 5,996.80 5,990.32 6.48

Apr-1998 6,092.10 6,059.21 32.89

Jul-1998 6,165.70 6,158.21 7.49

Oct-1998 6,248.80 6,239.89 8.91

Jan-1999 6,311.30 6,325.32  14.02

Apr-1999 6,409.70 6,388.92 20.78

Jul-1999 6,476.70 6,485.49  8.79

Oct-1999 6,556.80 6,556.69 0.11

Jan-2000 6,661.30 6,634.77 26.53

Apr-2000 6,703.30 6,741.08  37.78

Jul-2000 6,768.00 6,786.65  18.65

Oct-2000 6,825.00 6,841.39  16.39

Jan-2001 6,853.10 6,893.00  39.90

Apr-2001 6,870.30 6,914.64  44.34

TABLE 3.3
Personal

Consumption

Expenditures in

Billions of Dollars

(SA) (c3t3)
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Dates Original Data Fitted Data Error

Jul-2001 6,900.50 6,919.67  19.17

Oct-2001 7,017.60 6,938.37 79.23

Jan-2002 7,042.20 7,056.38  14.18

Apr-2002 7,083.50 7,098.28  14.78

Jul-2002 7,123.20 7,135.32  12.12

Oct-2002 7,148.20 7,170.80  22.60

Jan-2003 7,184.90 7,191.49  6.59

Apr-2003 7,249.30 7,222.54 26.76

Jul-2003 7,352.90 7,287.22 65.68

Oct-2003 7,394.30 7,401.40  7.10

Jan-2004 7,475.10 7,457.45 17.65

Apr-2004 7,520.50 7,537.80  17.30

Jul-2004 7,585.50 7,586.10  0.60

Oct-2004 7,664.30 7,647.08 17.22

Jan-2005 7,709.40 7,726.90  17.50

Apr-2005 7,775.20 7,774.79 0.41

Jul-2005 7,852.80 7,836.58 16.22

Oct-2005 7,876.90 7,915.37  38.47

Jan-2006 7,961.90 7,940.62 21.28

Apr-2006 8,009.30 8,018.19  8.89

Jul-2006 8,063.80 8,069.89  6.09

Oct-2006 8,141.20 8,121.94 19.26

Jan-2007 8,215.70 8,199.23 16.47

Apr-2007 8,244.30 8,279.27  34.97

Jul-2007 8,302.20 8,309.31  7.11

Oct-2007 8,341.30 8,358.68  17.38

TABLE 3.3
(continued)

Accuracy Measures Value

AIC 671.12

BIC 675.67

Mean Absolute Percentage Error (MAPE) 0.31%

R-Square 99.95%

Adjusted R-Square 99.95%

Root-Mean-Square-Error 24.87

Theil 0.46

Method Statistics Value

Method Selected Double Holt

Level 0.77

Trend 0.39



conventions are used by ForecastX™ for all smoothing models (simple, Holt’s,

and Winters’):

ForecastX™ Naming Conventions for Smoothing Constants

Alpha ( )  the level smoothing constant

Gamma ( )  the trend smoothing constant

Beta ( )  the seasonal smoothing constant

Thus 0.39 in the ForecastX™ output in Table 3.3 is the trend smoothing constant.

For the personal consumption data, Equations 3.4 through 3.6 can be used to

calculate the Holt’s forecast for April 1990. To do so we will arbitrarily select the

first actual value as our initial smoothed value (F1  4757.1) and 88 as our initial

trend (T1  8). The smoothed value for period 2 (April 1990) is calculated by:

Ft 1   Xt  (1   )(Ft  T1)

F2  0.77(4757.10)  (1  0.77)(4757.1  8)

 3662.967  1095.973

 4758.94

The trend estimate for period 2 is calculated as:

Tt 1   (Ft 1  Ft)  (1   )Tt

T2  0.39(4758.94   4757.10)  (1  0.39)(8)

 0.39(1.84)  (0.61)(8)

 0.7176  4.88

 5.5976

The forecast for period 2 is calculated as:

Ht m  Ft 1  mTt 1

H2  F2  1T2

 4758.94  (1)(5.5976)

 4764.54

Our calculated forecast for April 1990 differs from what you see in Table 3.3. This

is because our arbitrary selection of seed values differs from those selected by

ForecastX™. Over the course of many quarters the effect of differing seed values

would diminish to almost nothing, and if we continued the hand calculations our

final forecasts would be virtually identical to those in Table 3.3.

Figure 3.5 shows a plot of both the actual values and the forecast values gener-

ated by this model. Some commercially available forecasting packages allow the

forecaster to minimize the value of RMSE (or some similar summary statistic) by

automatically adjusting the smoothing constants (ForecastX™ automatically ad-

justs). This, of course, is preferable to making numerous adjustments by hand. We

picked the smoothing constants here using ForecastX™.
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FIGURE 3.5
Personal

Consumption

Expenditures and

Holt’s Forecast 
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Dates Original Data Fitted Data

Jan-1990 4,757.10 4,766.41
Apr-1990 4,773.00 4,761.70
Jul-1990 4,792.60 4,776.21
Oct-1990 4,758.30 4,799.52
Jan-1991 4,738.10 4,766.22
Apr-1991 4,779.40 4,734.64
Jul-1991 4,800.10 4,772.47
Oct-1991 4,795.90 4,805.34
Jan-1992 4,875.00 4,806.87
Apr-1992 4,903.00 4,888.37
Jul-1992 4,951.80 4,933.05
Oct-1992 5,009.40 4,986.48
Jan-1993 5,027.30 5,049.94
Apr-1993 5,071.90 5,071.60
Jul-1993 5,127.30 5,111.00
Oct-1993 5,172.90 5,167.57
Jan-1994 5,230.30 5,217.28
Apr-1994 5,268.00 5,276.78
Jul-1994 5,305.70 5,316.89
Oct-1994 5,358.70 5,351.82
Jan-1995 5,367.20 5,402.70
Apr-1995 5,411.70 5,410.40
Jul-1995 5,458.80 5,446.81
Oct-1995 5,496.10 5,495.02
Jan-1996 5,544.60 5,535.15
Apr-1996 5,604.90 5,584.54
Jul-1996 5,640.70 5,648.38
Oct-1996 5,687.60 5,688.36
Jan-1997 5,749.10 5,733.44
Apr-1997 5,775.80 5,795.81
Jul-1997 5,870.70 5,824.78
Oct-1997 5,931.40 5,918.15
Jan-1998 5,996.80 5,990.32
Apr-1998 6,092.10 6,059.21
Jul-1998 6,165.70 6,158.21
Oct-1998 6,248.80 6,239.89

Dates Original Data Fitted Data

Jan-1999 6,311.30 6,325.32
Apr-1999 6,409.70 6,388.92
Jul-1999 6,476.70 6,485.49
Oct-1999 6,556.80 6,556.69
Jan-2000 6,661.30 6,634.77
Apr-2000 6,703.30 6,741.08
Jul-2000 6,768.00 6,786.65
Oct-2000 6,825.00 6,841.39
Jan-2001 6,853.10 6,893.00
Apr-2001 6,870.30 6,914.64
Jul-2001 6,900.50 6,919.67
Oct-2001 7,017.60 6,938.37
Jan-2002 7,042.20 7,056.38
Apr-2002 7,083.50 7,098.28
Jul-2002 7,123.20 7,135.32
Oct-2002 7,148.20 7,170.80
Jan-2003 7,184.90 7,191.49
Apr-2003 7,249.30 7,222.54
Jul-2003 7,352.90 7,287.22
Oct-2003 7,394.30 7,401.40
Jan-2004 7,475.10 7,457.45
Apr-2004 7,520.50 7,537.80
Jul-2004 7,585.50 7,586.10
Oct-2004 7,664.30 7,647.08
Jan-2005 7,709.40 7,726.90
Apr-2005 7,775.20 7,774.79
Jul-2005 7,852.80 7,836.58
Oct-2005 7,876.90 7,915.37
Jan-2006 7,961.90 7,940.62
Apr-2006 8,009.30 8,018.19
Jul-2006 8,063.80 8,069.89
Oct-2006 8,141.20 8,121.94
Jan-2007 8,215.70 8,199.23
Apr-2007 8,244.30 8,279.27
Jul-2007 8,302.20 8,309.31
Oct-2007 8,341.30 8,358.68



Holt’s form of exponential smoothing is then best used when the data show

some linear trend but little or no seasonality. A descriptive name for Holt’s

smoothing might be linear-trend smoothing.

WINTERS’ EXPONENTIAL SMOOTHING

Winters’ exponential smoothing model is the second extension of the basic

smoothing model; it is used for data that exhibit both trend and seasonality. It is a

three-parameter model that is an extension of Holt’s model. An additional equa-

tion adjusts the model for the seasonal component. The four equations necessary

for Winters’ model are:

Ft   Xt St p  (1   )(Ft 1  Tt 1) (3.7)

St   Xt Ft  (1   )St p (3.8)

Tt   (Ft  Ft 1)  (1   )Tt 1 (3.9)

Wt m  (Ft   mTt) St m p (3.10)

where:

Ft  Smoothed value for period t

  Smoothing constant for the level (0     1) 

Xt  Actual value now (in period t)

Ft 1  Average experience of series smoothed to period t  1

Tt 1  Trend estimate

St  Seasonality estimate

  Smoothing constant for seasonality estimate (0     1) 

  Smoothing constant for trend estimate (0      1)

m  Number of periods in the forecast lead period

p  Number of periods in the seasonal cycle

Wt m  Winters’ forecast for m periods into the future

Equation 3.7 updates the smoothed series for both trend and seasonality; note that

the equation is only slightly different from Equation 3.4 in Holt’s model. In Equa-

tion 3.7, Xt is divided by St p to adjust for seasonality; this operation deseasonal-

izes the data or removes any seasonal effects left in the data. It is easy to see how

this deseasonalizes the data if you consider what happens when St p is greater

than 1, as it would be when the value in period t  p is greater than the average in

its seasonality. Dividing Xt by St p reduces the original value by a percentage

equal to the percentage that the seasonality of the period was above the average.

An opposite adjustment would take place if the period were below the average in

terms of seasonality.
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The seasonality estimate itself is smoothed in Equation 3.8, and the trend esti-

mate is smoothed in Equation 3.9; each of these processes is exactly the same as

in simple exponential smoothing. The final equation, 3.10, is used to compute the

forecast for m periods into the future; the procedure is almost identical to that in

Holt’s model (Equation 3.6).

To illustrate Winters’ exponential smoothing we will use data for the produc-

tion of light trucks in the United States by quarter. Light truck production is quite

seasonal, with quarter 2 typically being the strongest production quarter (this in-

cludes the months of April, May, and June). As you can see in Figure 3.6, there has

been an overall upward trend in the data since our 1986Q1 starting point. You have

seen already how to apply the equations to do a few of the calculations for simple

and Holt’s exponential smoothing. We will not repeat that process for the Winters’

model.

Having ForecastX™ determine the parameters that would minimize the RMSE

results in a level of 0.41, a seasonal of 0.37, and a trend of 0.03. The last period for

this model is 1999Q2.

As with simple and Holt’s exponential smoothing, initial values must be

selected to initialize or warm up the model. Over a long time period, such as in

this example, the particular values selected have little effect on the forecast of

light truck production for 2000. These initial values are also determined within the

software.

The results of the Winters’ exponential smoothing forecast of light truck

production are shown in Table 3.4 and in Figure 3.6. You can see, especially in

the graph, that the model works quite well. The root-mean-squared error

(RMSE) of 16.33 for the forecast period is only about 2.6 percent of the aver-

age quarterly production for the last two quarters of 1999 and the first two

quarters of 2000. (The average quarterly sales for these four quarters was

615.78.)
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FIGURE 3.6
Quarterly Light

Truck Production

in Units (TS) and a
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TABLE 3.4 Winters’Three-Parameter Linear and Seasonal Exponential Smoothing 

for Light Truck Production (c3t4)

Date
Original

Data

Mar-1986 213.83 220.59  6.76

Jun-1986 231.68 234.30  2.62

Sep-1986 205.90 200.72 5.19

Dec-1986 197.82 211.83  14.02

Mar-1987 252.45 232.49 19.95

Jun-1987 249.02 259.55  10.53

Sep-1987 220.37 220.94  0.57

Dec-1987 239.85 225.35 14.49

Mar-1988 271.03 269.32 1.71

Jun-1988 271.92 282.98  11.05

Sep-1988 231.70 242.69  10.99

Dec-1988 269.23 246.17 23.06

Mar-1989 311.13 293.63 17.50

Jun-1989 309.74 311.78  2.04

Sep-1989 240.94 270.41  29.47

Dec-1989 248.50 274.57  26.07

Mar-1990 264.41 300.17  35.76

Jun-1990 322.82 290.63 32.19

Sep-1990 254.99 257.40  2.41

Dec-1990 218.56 272.98  54.42

Mar-1991 194.56 282.58  88.02

Jun-1991 285.71 262.43 23.27

Sep-1991 248.66 223.70 24.96

Dec-1991 271.55 237.01 34.54

Mar-1992 279.71 274.17 5.53

Jun-1992 322.26 326.10  3.84

Sep-1992 271.39 268.52 2.87

Dec-1992 326.65 275.18 51.47

Mar-1993 378.13 315.74 62.39

Jun-1993 391.59 400.91  9.32

Fitted
Data Error

Sep-1993 315.82 330.88  15.07

Dec-1993 394.48 343.51 50.97

Mar-1994 449.78 389.52 60.26

Jun-1994 447.02 465.95  18.93

Sep-1994 376.37 380.11  3.73

Dec-1994 421.07 417.25 3.81

Mar-1995 446.75 448.00  1.25

Jun-1995 460.55 482.79  22.24

Sep-1995 377.20 395.11  17.92

Dec-1995 427.25 428.41  1.17

Mar-1996 448.99 455.79  6.80

Jun-1996 488.18 483.21 4.98

Sep-1996 403.40 404.38  0.98

Dec-1996 452.82 450.24 2.57

Mar-1997 513.58 479.05 34.54

Jun-1997 509.55 529.09  19.54

Sep-1997 437.25 432.84 4.41

Dec-1997 543.44 485.16 58.27

Mar-1998 566.82 548.40 18.42

Jun-1998 535.83 582.86  47.03

Sep-1998 440.15 472.96  32.82

Dec-1998 565.61 524.00 41.60

Mar-1999 632.32 572.19 60.12

Jun-1999 646.66 609.86 36.79

Sep-1999 547.793 526.45

Dec-1999 601.651 620.95

Mar-2000 660.525 660.37

Jun-2000 653.024 668.50

Level  0.41; Seasonal  0.37; Trend  0.03

Historical root-mean-squared error (RMSE)  30.05; holdout  period RMSE  16.33

Mean absolute percentage error (MAPE)  6.64%

Please note carefully that some software packages assign the names Alpha to the simple smoothing factor, Gamma to the smoothing factor for the trend

estimate, and Beta to the smoothing factor for the seasonality estimate.

Date
Original

Data
Fitted
Data Error

The Seasonal Indices
Winters’ exponential smoothing provides forecasters with one additional piece of

information that can often be of value. As part of the calculation with an adjust-

ment for seasonality, seasonal indices are calculated and displayed in most fore-

casting software. ForecastX™ produces seasonal indices with each Winters’
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model. For the quarterly light truck production model we estimated, the seasonal

indices were calculated as:

Seasonal Indices Value

Index 1 1.04

Index 2 1.10

Index 3 0.92

Index 4 0.94

Since our data set began with the first quarter of the year 1986 (i.e., January,

February, and March), index 1 above refers to this first quarter of the year as well.

The remaining three quarters also match the calendar quarters. These indices may

be easily interpreted as percentages. Index 1 is interpreted as indicating that

quarter 1 truck production is usually about 4 percent above an “average quarter.”

An average quarter is the result of adding all four quarters together and dividing

by four.

With this interpretation in mind it becomes easy to see that the “big” quarter

for truck production is quarter 2; quarters 3 and 4 are below-average quarters.

Some products and services will exhibit very strong seasonality, while others may

be affected only to a minor degree. When working with business and economic

data, it is usually a good assumption to expect the data to be seasonal. Computing

a Winters’ model for the data will help the researcher determine the magnitude of

the seasonality and identify precisely when above-average and below-average

occurrences take place.

ADAPTIVE–RESPONSE-RATE SINGLE EXPONENTIAL SMOOTHING

An interesting variant on simple smoothing called adaptive–response-rate single

exponential smoothing (ADRES) has an important advantage over normal

smoothing models because of the manner in which the smoothing constant is cho-

sen. In ADRES smoothing there is no requirement to actually choose an  value!

This is an attractive feature if what you need is a very low cost method of fore-

casting requiring no sophisticated knowledge of the technique. Real-world situa-

tions requiring the frequent forecasting of many items (perhaps thousands) would

be ideal candidates for ADRES smoothing forecasts.

Adaptive-response smoothing does not use one single  value like the simple

exponential smoothing model does. The word adaptive in its name gives a clue to

how the model works. The  value in the ADRES model is not just a single num-

ber, but rather adapts to the data. When there is a change in the basic pattern of the

data, the  value adapts.

For instance, suppose that some data to be forecast fluctuate around a mean

value of m. The best estimate of the next observation of the data might then be

that mean value (m). But suppose further that after some time an outside force

Adaptive-response

smoothing does not

use one single  value

like the simple

exponential smoothing

model does.



changes the mean value of m and the new value is now m . The data then fluctuate

around the new mean value of m . If we had a way of adapting to the new mean

of m , we could then use that adapted estimate as the forecast for future values of

the data. In fact, we would like to be able to adapt each time the mean value of

the data changed; sometimes we would adapt very often, if the mean changed

frequently, and at other times we would adapt very rarely, if the data changed only

infrequently.

Because of the simplicity of the ADRES smoothing model and its ability to

adapt to changing circumstances, it is quite often used in actual practice. Keep in

mind, however, that it is a variant of the simple smoothing model and so assumes

that the data to be forecast have little trend or seasonality (or that the trend or

seasonality in the data has been removed).

The ADRES model looks very much like the simple smoothing model

presented earlier:

Ft 1   tXt  (1   t)Ft (ADRES equation) (3.11)

where:

 t    A
St

t
  (3.12)

St   et  (1   )St 1 (Smoothed error) (3.13)

At    et  (1   )At 1 (Absolute smoothed error) (3.14)

et  Xt  Ft (Error) (3.15)

Note carefully the subscripts on the  term! There may now be a different  value

for each period.

The ADRES equation is the same as the one for simple exponential smooth-

ing with the exception of the manner in which the  value is chosen. In the sim-

ple exponential smoothing model we chose the  value by selecting the value

that minimized the root-mean-squared error associated with the model. But in

simple smoothing we were allowed to choose only a single value for  . In the

ADRES smoothing model we may allow the  value to adapt as the data

change.

The smoothing value ( ) is now given as the absolute value of the smoothed

error divided by the absolute smoothed error. The smoothed error is itself a

smoothed value, with a smoothing factor of  . The absolute smoothed error is

also a smoothed value, again using the smoothing constant  . In most cases,  is

assigned a value of either 0.1 or 0.2. Thus, the first term of both the smoothed

error and absolute smoothed error equations has a lighter weight than the second

term.

To explain ADRES smoothing, consider Table 3.5, which lists 12 values of an

observed data series. We would like to model the series using an adaptive–

response-rate smoothing model. Note that the first six values of the series average
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about 100; the last six values in the series average about 125. This is a situation

similar to that described in the preceding paragraphs and one conducive to the

use of this technique. An adaptive–response-rate model should do quite well in

modeling these data.

For period 5 the computations are as follows (with some rounding difference in

the third decimal place):

F5   4X4  (1   4)F4

 (0.143)(98)  (1  0.143)(102.042)

 14.014  87.450

 101.464 
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1 100

2 96 100.000  4.00  0.800 0.800 1.000

3 107 96.000 11.00 1.560 2.840 0.549

4 98 102.042  4.04 0.440 3.080 0.143

5 103 101.464 1.53 0.659 2.771 0.238

6 99 101.830  2.83  0.039 2.783 0.014

7 126 101.790 24.21 4.811 7.068 0.681

8 128 118.267 9.73 5.795 7.601 0.762

9 122 125.687  3.69 3.899 6.818 0.572

10 130 123.579 6.42 4.403 6.739 0.653

11 125 127.774  2.77 2.968 5.946 0.499

12 124 126.390  2.39 1.896 5.235 0.362

TABLE 3.5
Adaptive-Response

Example (c3t5)
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Once the observed value of 103 becomes available for period 5, it is possible to

make the following computations (assuming   .2):

e5  103  101.464  1.536

S5  (0.2)(1.536)  (1  0.2)(0.440)  0.659

A5  (0.2)( 1.536 )  (1  0.2)(3.080)  2.771

and finally

 5    02
.

.

6

7

5

7

9

1
   0.238

The process continues iteratively for all the remaining values in the example. In

ForecastX™ you will get somewhat different results due to its use of a somewhat

different algorithm.

Perhaps the most important consideration in adaptive–response-rate single

exponential smoothing is the selection of the appropriate  factor. The  factor is

usually set near 0.1 or 0.2 because these values reduce the effects of previous

errors (i.e., they allow adaptation) but the values are small enough that the adap-

tation takes place gradually.

The ADRES model has no explicit way to handle seasonality. There are ways

of using the ADRES model, however, with seasonal data. In fact, simple smooth-

ing, Holt’s smoothing, and the ADRES smoothing model may all be used with

seasonal data. An example follows in the next section.

USING SINGLE, HOLT’S, OR ADRES SMOOTHING
TO FORECAST A SEASONAL DATA SERIES

When data have a seasonal pattern, the Winters’ model provides an easy way to in-

corporate the seasonality explicitly into the model. An alternative method, how-

ever, is widely practiced. This alternative consists of first “deseasonalizing” the

data. Deseasonalizing is a process that removes the effects of seasonality from the

raw data before the forecasting model is employed.5 The forecasting model is then

applied to the deseasonalized data, and finally, the results are “reseasonalized” to

provide accurate forecasts. In sum, the process consists of these steps:

1. Calculate seasonal indices for the series. This can be done in different ways,

one of which is to use the Holt Winters command routine in ForecastX™.

2. Deseasonalize the original data by dividing each value by its corresponding

seasonal index.
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5 A complete description of deseasonalizing and reseasonalizing data appears in Chapter 6.

The results that follow here are computed with ForecastX™ using the Holt Winters command

routine.



3. Apply a forecasting method (such as simple, Holt’s, or adaptive-response ex-

ponential smoothing) to the deseasonalized series to produce an intermediate

forecast of the deseasonalized data.

4. Reseasonalize the series by multiplying each deseasonalized forecast by its

corresponding seasonal index.

Many forecasters have found this method more accurate than using Winters’

smoothing to incorporate seasonality. This method is more flexible than the Win-

ters’ method alone because it allows for the use of simple smoothing in situations

without any trend whatsoever while allowing Holt’s smoothing to be used if a

trend is present. (Recall that Winters’ model assumes that a trend is present.) Fur-

ther, the ADRES model could be used in situations where some adaptation of the

 factor is desirable.

To illustrate this approach to forecasting a seasonal series, let us return to the

light truck production data used in our example of the application of Winters’ ex-

ponential smoothing. Table 3.6 shows seasonally adjusted light truck production

data (TPSA), a Holt’s exponential smoothing forecast of the deseasonalized light

truck production (TPSA_FCST), the seasonal indices (SI) obtained from the Holt

Winters command routine in ForecastX™, and the reseasonalized forecast of

light truck production (TPF). In this table TPSA  TP  SI, and TPF  

TPSA_FCST  SI. You may want to check a couple of these calculations to ver-

ify the process for yourself (you will get slightly different answers due to round-

ing effects).

The results of this forecast of light truck production are shown in Figure 3.7.

The RMSE for the historical period is higher than that from the Winters’ forecast

(see Table 3.4). For this approach the forecast period RMSE is about 5.9 percent

of the average quarterly production for the forecast period compared to 2.6 per-

cent for the Winters’ forecast.

NEW-PRODUCT FORECASTING (GROWTH CURVE FITTING)

For new products, because they typically lack historical data, most forecasting

techniques cannot produce satisfying results. For example, it is typically impossi-

ble for Holt’s exponential smoothing to determine the trend since the data set is

too small. Alternatively, it may only predict a strong trend despite the fact that the

new product has a growth limitation. To overcome this difficulty, forecasters use a

number of models that generally fall in the category called diffusion models (prob-

ably because they described the manner in which technological innovations and

new products “diffused” through an industry). These models are alternatively

called S-curves, growth models, saturation models, or substitution curves. We

have already seen one of these diffusion models in Chapter 1: the Bass model. An

understanding of how to correctly use these models in the forecasting process can

make them important tools for managerial decisions. These models as a group
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TABLE 3.6 Seasonally Adjusted Light Truck Production (TPSA), Holt’s Exponential Smoothing 

Forecast of Seasonally Adjusted Light Truck Production (TPSA_FCST), the Seasonal Indices (SI), and 

the Reseasonalized Forecast of Light Truck Production (TPF) (c3t6)

Date TPSA TPSA_FCST SI TPF Date TPSA TPSA_FCST SI TPF

Mar-1986 204.88 211.66 1.04 220.902

Jun-1986 211.44 213.28 1.10 233.702

Sep-1986 223.58 217.18 0.92 200.012

Dec-1986 210.53 225.01 0.94 211.423

Mar-1987 241.88 222.91 1.04 232.644

Jun-1987 227.25 236.66 1.10 259.325

Sep-1987 239.29 237.06 0.92 218.317

Dec-1987 255.26 242.91 0.94 228.238

Mar-1988 259.68 253.65 1.04 264.733

Jun-1988 248.16 261.53 1.10 286.572

Sep-1988 251.58 260.17 0.92 239.608

Dec-1988 286.54 260.93 0.94 245.171

Mar-1989 298.11 277.99 1.04 290.133

Jun-1989 282.68 292.77 1.10 320.800

Sep-1989 261.62 293.32 0.92 270.129

Dec-1989 264.47 283.35 0.94 266.236

Mar-1990 253.34 279.10 1.04 291.291

Jun-1990 294.61 271.28 1.10 297.257

Sep-1990 276.88 286.68 0.92 264.020

Dec-1990 232.61 286.49 0.94 269.191

Mar-1991 186.42 265.00 1.04 276.576

Jun-1991 260.74 230.90 1.10 253.004

Sep-1991 270.01 247.78 0.92 228.190

Dec-1991 289.01 261.41 0.94 245.627

Mar-1992 268.00 277.94 1.04 290.078

Jun-1992 294.10 276.81 1.10 303.320

Sep-1992 294.69 288.63 0.92 265.812

Dec-1992 347.64 295.29 0.94 277.458

Mar-1993 362.30 324.27 1.04 338.439

Jun-1993 357.37 347.10 1.10 380.334

Sep-1993 342.92 357.12 0.92 328.895

Dec-1993 419.84 355.54 0.94 334.067

Mar-1994 430.95 391.46 1.04 408.558

Jun-1994 407.95 416.35 1.10 456.218

H
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←

←

Sep-1994 408.68 418.79 0.92 385.689

Dec-1994 448.13 420.30 0.94 394.913

Mar-1995 428.05 439.88 1.04 459.101

Jun-1995 420.31 440.80 1.10 483.012

Sep-1995 409.57 437.40 0.92 402.826

Dec-1995 454.71 430.19 0.94 404.214

Mar-1996 430.19 447.74 1.04 467.299

Jun-1996 445.52 445.42 1.10 488.074

Sep-1996 438.03 451.34 0.92 415.662

Dec-1996 481.92 450.82 0.94 423.590

Mar-1997 492.08 471.44 1.04 492.035

Jun-1997 465.02 487.47 1.10 534.146

Sep-1997 474.78 483.09 0.92 444.903

Dec-1997 578.37 485.19 0.94 455.889

Mar-1998 543.09 535.91 1.04 559.328

Jun-1998 489.01 546.63 1.10 598.969

Sep-1998 477.93 526.32 0.92 484.718

Dec-1998 601.96 509.65 0.94 478.870

Mar-1999 605.85 559.88 1.04 584.341

Jun-1999 590.15 589.14 1.10 645.546

Sep-99 594.81214 633.28 0.92 583.223

Dec-99 640.32096 629.27 0.94 591.270

Mar-00 632.87576 639.27 1.04 667.203

Jun-00 595.95967 652.76 1.10 715.263

Holdout-Period Forecast RMSE

Forecast Actual (At  Ft) (At  Ft)
2

583.223 547.793  35.43 1255.27

591.270 601.651 10.38 107.77

667.203 660.525  6.68 44.59

715.263 653.024  62.24 3873.75

Holdout RMSE = 36.34

allow the forecaster to model the characteristic patterns that economists have

identified for a number of processes (most importantly including the introduction

of new products).

In this section we present two new product models. The two diffusion models

are the Gompertz curve and the logistic curve. There are two main differences be-

tween these models. The first difference is in the shapes of the product curve
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(i.e., amount of time that lapses before a product’s growth curve stabilizes). The

second difference lies in the fact that these new-product models may use different

lower and upper limits for the same forecast data.

These models are most commonly used to forecast the sales of new products

and technology life cycles. Just as new products have life cycles, technologies also

have life cycles that follow a common pattern:

1. A period of slow growth just after introduction during an embryonic stage.

2. A period of rapid growth.

3. Slowing growth in a mature phase.

4. Decline.

The forecaster’s task is to identify and estimate the parameters of such a pattern of

growth using the same set of diagnostic statistics we have already learned to use

with smoothing models in general.

Each new-product model has its own lower and upper limit. Expert opinion

is needed to determine the correct upper and lower limits on the growth curves.

In most instances, the lower limitation is 0 (e.g., sales cannot be below zero).

Determining the upper limit is a more complicated undertaking. Regardless of

the complication, diffusion models provide an important technique to use for
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FIGURE 3.7 Light Truck Production and Light Truck Production Forecast Based

on a Holt’s Exponential Smoothing Forecast of Deseasonalized Light Truck Production

(c3t6)

TP  Actual light truck production

TPF  Forecast of light truck production

Historical period: RMSE  32.56

Forecast period: RMSE  36.34

Light truck production was first deseasonalized, then a Holt’s forecast was done, and the

results were reseasonalized.



forecasting when new products or technologies will replace existing products or

technologies.

A significant benefit of using diffusion models in new-product forecasting is to

identify and predict the timing of the four phases of the life cycle. In the late 1990s

the U.S. government decided to adopt a national standard for high-definition tele-

vision (HDTV) and set a timetable for the changeover from analog to HDTV. The

original plan called for broadcasters to begin broadcasting digital signals by 2002

and to turn off their analog transmitters altogether in 2006. This was a very ambi-

tious plan and assumed that the adoption of HDTV by consumers would take

place very quickly. Realizing that the elimination of analog transmissions would

cause hardship if it occurred too early, another provision set forth by the FCC was

that a market needed 85 percent penetration by HDTV before the analog signal

could be eliminated.

Being able to forecast the growth and maturity of HDTV technology would

allow broadcasters the opportunity to see if the 2006 “drop dead” date for analog

television was reasonable. If 85 percent penetration was not reasonably achieved

by this date, then broadcasters would be in the unenviable position of having to

keep two transmitters functioning with, perhaps, two different and costly sets of

programming. The costs in extra electricity, tower rental, and insurance would be

substantial.

Analyses of many technology introductions (like HDTV) have shown that

technology develops initially at a very slow growth rate. But it is also the case

that these same technologies soon begin to grow in predictable patterns such as

the S-curve shown in Figure 3.8.

The usual reason for the transition from very slow initial growth to rapid

growth is often the result of solutions to technical difficulties and the market’s

acceptance of the new technology. But such growth curves also have their limits;

the rapid growth cannot be sustained indefinitely. There are upper limits on the
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adoptions of new technology or the sales of new products. As the upper limit is

reached, a maturity phase occurs in which growth slows and finally ceases.

The economic law of diminishing marginal returns is usually at work in these

processes.

Figure 3.9 contains information on the early years of HDTV shipments in the

United States. During the entire time represented in the graph, there were very few

broadcast stations operating in HDTV mode, but in each year the number of

HDTV broadcasters increased and the hours of HDTV programming available

also increased. This entire four years of data represent the period of experimenta-

tion and slow growth characteristic of all new products and technologies.

When a new technology like HDTV enters the marketplace, we can expect an

S-curve to accurately predict future shipments or sales. There is, however, more

than one technique that could be used to model this S-curve.

Fortunately, ForecastX™ provides flexible settings for a multitude of situa-

tions. If you do not know what the upper limit should be, you can use ForecastX™

to determine the best upper limit to fit your data. Of course, if you know the exact

upper limit, ForecastX™ can use it to determine an optimal model.

The two most common forms of S-curves used in forecasting are the Gompertz

curve and the logistics curve (also called the Pearl curve). A third useful model

called the Bass model was discussed in Chapter 1; we will again cover that model

and provide an example of its use.

Gompertz Curve
The Gompertz curve is named after its developer, Benjamin Gompertz, an English

actuary. Gompertz applied calculus to actuarial questions and is most well known

for Gompertz’s Law of Mortality. Gompertz’s law showed that the mortality rate

increases in a geometric progression. Thus, when death rates are plotted on a log-

arithmic scale, a straight line known as the Gompertz function is obtained. The

Gompertz curve is the most used actuarial function for investigating the process

of aging. The slope of this function is known as the rate of actuarial aging, and dif-

ferences in the longevity between species are the result in large part of differences

in this rate of aging.
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The Gompertz function is given as

Yt  Le–ae–bt

where:

L  Upper limit of Y

e  Natural number 2.718282 . . .

a and b  coefficients describing the curve (estimated by ForecastX™)

The Gompertz curve will range in value from zero to L as t varies from   to  .

The curve is widely used in the fields of biology and demography to model (i.e.,

forecast) the level of populations at a given point in time for plants and animals as

well as many organisms. The Gompertz curve is an elegant way to summarize the

growth of a population with just a few parameters.

Consider the HDTV shipments charted above; the actual figures are given

earlier in Table 3.7.

The Gompertz curve estimated from this data (with the assumption that

248 million televisions is the upper limit) is shown in Figure 3.10. The assumption

of 248 million television sets is used as the upper limit because in the year 2002

this was the total number of televisions of all types in use. This rather generous

assumption reflects the opportunity for every existing television to be converted to

an HDTV. An actual forecaster might choose a different upper limit if another

rationale seemed more plausible.

Note the characteristic S-shape to the curve. In fitting the curve we have used

the first few data points and the known maximum value for television shipments to

estimate a forecast of how HDTV shipments will progress through time. We have
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Date
Cumulative HDTV

Shipments (millions)

12/31/1999 0.12

12/31/2000 0.77

12/31/2001 2.23

12/31/2002 4.76

TABLE 3.7
Data on HDTV

Shipments (c3t7)

FIGURE 3.10
An Estimate of

HDTV Shipments

Using 4 Years of Data

(c3t7)
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ample evidence that this Gompertz function will model the situation well; when

color televisions were introduced in the 1960s, their adoption followed a very sim-

ilar pattern. This form of curve fitting is often used, as it is here, to make forecasts

far into the future. Unlike the moving-average and exponential smoothing models,

growth curves are routinely used to make mid- to long-range forecasts.

In order to use ForecastX™ to make the estimate shown in Figure 3.10, the

Method Selection dialog box would be filled out as shown in Figure 3.11.

The Edit Parameters box is checked in Figure 3.11 and the maximum value of

248 is entered; this, along with the information on the first four years of actual ship-

ments, allows the estimation of the best-fit Gompertz curve shown in Figure 3.10.

The Gompertz curve is best used in situations where it becomes more difficult

to achieve an increase in the growth rate as the maximum value is approached. We

will see that this is the exact opposite of the recommendation for the best situation

in which to use the logistics function. Consider the adoption of color televisions

shown in Table 3.8.

Using only the first five years of data on color television adoptions (and the

assumption of a maximum of 100 percent), it is possible to very closely approxi-

mate the future growth pattern with a Gompertz function. Figure 3.12 shows the

actual and predicted shipments obtained using only the first five data points from

Table 3.8.

Had you been asked in late 1969 to forecast color television adoptions with

only the first five years of annual data, you would have produced very accurate

forecasts if you had used a Gompertz model. The assumption regarding the in-

creased difficulty of obtaining the maximum value as it is approached probably

describes color television adoptions quite well. The same assumption might also

apply to HDTV adoptions and sales since the situation is similar.
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FIGURE 3.11
ForecastX™ Method

Selection Dialog Box

for a Gompertz

Model



132 Chapter Three

Year Percent Adoptions

Dec-65 0

Dec-66 6.145835684

Dec-67 12.72965645

Dec-68 19.64872441

Dec-69 26.77512032

Dec-70 33.96440431

Dec-71 41.06698245

Dec-72 47.94034951

Dec-73 54.46013052

Dec-74 60.52818203

Dec-75 66.07679819

Dec-76 71.06899248

Dec-77 75.49558333

Dec-78 79.37021852

Dec-79 82.72351665

Dec-80 85.59728784

Dec-81 88.03946805

Dec-82 90.10007711

Dec-83 91.82826105

Dec-84 93.27031978

Dec-85 94.46854445

Dec-86 95.46066873

Dec-87 96.27975333

Dec-88 96.95435387

Dec-89 97.50885698

Dec-90 97.96390133

TABLE 3.8
Color Television

Adoption in 

Percentages (c3t8)

FIGURE 3.12
Actual and Predicted

Adoptions of Color

Televisions Obtained

by Using the First

Five Years of Adop-

tions and a Gompertz

Estimate (c3t8)
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Logistics Curve
The logistics curve is a second way of forecasting with sparse data and is also used

frequently to forecast new-product sales. The logistics curve has the following

form:

Yt  

where:

L  Upper limit of Y

e  Natural number 2.718282 . . .

a and b  coefficients describing the curve (estimated by ForecastX™)

Just as in the Gompertz function there is an upper limit to Y called L, and e is

the base of natural logarithms. The logistics curve is symmetric about its point of

inflection (the upper half of the curve is a reflection of the lower half); the Gom-

pertz curve is not necessarily symmetric about its points of inflection. Why would

you use the logistics curve rather than the Gompertz curve?

The answer lies in whether, in a particular situation, it is easier to achieve the

maximum value the closer you get to it, or whether it becomes more difficult to at-

tain the maximum value the closer you get to it. The question of which function to

use in a particular estimate comes down to whether there are factors assisting the

attainment of the maximum value once you get close to it, or whether there are

factors preventing the attainment of the maximum value once it is nearly attained.

If there is an offsetting factor such that growth is more difficult to maintain as

the maximum is approached, then the Gompertz curve will be the best choice. If

there are no such offsetting factors hindering the attainment of the maximum

value, the logistics curve will be the best choice.

A clear case of the appropriate use of a logistics function might be the predic-

tion of U.S. households with telephones. There is a “network effect” at work here

such that, as more people have a telephone, telephones become more useful to

everyone (since you are now able to call a larger number of people). The larger the

network, the greater the advantage to being a member of the network. The more

recent case of the adoption of cellular telephones would likely progress in much

the same manner as the original telephone adoption. The adoption data for cellu-

lar telephones in the United States is presented in Table 3.9.

By fitting a logistics curve to the first five years of cellular telephone data, the

results in Figure 3.13 are calculated.

It is not surprising that a logistics estimate of cellular telephone adoption

works so well; as more individuals have cellular telephones, it becomes more ad-

vantageous to have one yourself. Thus there is a factor assisting the attainment

of the maximum value the closer you get to the maximum value (i.e., the net-

work effect).

Note that there should be some theoretical reason for choosing a logistics func-

tion for your forecast estimate before estimating the model. In the case of cellular

L
  
1  ae bt
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Year
Cellular Telephone

Adoption

12/31/1986 0

12/31/1987 0.989132021

12/31/1988 2.47063319

12/31/1989 4.661420125

12/31/1990 7.840611381

12/31/1991 12.33023714

12/31/1992 18.43261935

12/31/1993 26.3098137

12/31/1994 35.82721276

12/31/1995 46.4488152

12/31/1996 57.30203601

12/31/1997 67.43707273

12/31/1998 76.13611792

12/31/1999 83.07839603

12/31/2000 88.3037847

12/31/2001 92.06622305

12/31/2002 94.68961176

12/31/2003 96.47806155

12/31/2004 97.6786669

TABLE 3.9
Percentage of

Cellular Telephone

Adoption in the

United States (c3t9)

FIGURE 3.13 Actual and Predicted Adoptions of Cellular Telephones in the United States (c3t9)
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12/31/1986 0 0.54

12/31/1987 0.989132021 1.09

12/31/1988 2.47063319 2.20

12/31/1989 4.661420125 4.37

12/31/1990 7.840611381 8.48

12/31/1991 15.84

12/31/1992 27.65

12/31/1993 43.70

12/31/1994 61.18

12/31/1995 78.19

12/31/1996 86.66

12/31/1997 92.96

12/31/1998 96.40

12/31/1999 98.20

12/31/2000 99.10

12/31/2001 99.56

12/31/2002 99.78

12/31/2003 99.89

12/31/2004 99.95

12/31/2005 99.97
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phones the hypothesized existence of a network effect would lead a researcher to

choose a logistics model. The ForecastX™ Method Selection dialog box used to

select the cellular telephone model appears in Figure 3.14.

Let’s generalize our suggestions for employing the Gompertz and logistics

models. Use a Gompertz model when you expect it to be more difficult to attain

constant improvement as the maximum value is approached. On the other hand,

select a logistics model when there are factors that help maintain improvements as

the maximum value is approached. At times it will not be easy to predict which of

the two models may work best; in those instances ForecastX™ allows the choice

of “New Product Forecasting” as a selection in the Method Selection dialog box.

Choosing New Product Forecasting allows ForecastX™ to choose the optimal

model from among three contenders: the logistics model, the Gompertz model,

and a Probit curve.

Bass Model
Named after Professor Frank M. Bass, this model has been used for over 30 years

to forecast the diffusion of innovations, to forecast the penetration of new prod-

ucts in a market, and in a variety of biological, medical, and scientific forecasts.

This is a relatively simple model in which only three parameters are chosen by the

researcher.

As they are used in ForecastX™, the three parameters are p, r, and qbar, where:

p  The innovation rate

r  The imitation rate (called q in the forecasting literature)

qbar  The cumulative value of all the historical values

FIGURE 3.14
ForecastX™ Method

Selection Dialog Box

for a Logistics Model



Christophe Van den Bulte

The United States Department of Energy in 1980

used the Bass model to forecast the adoption of

solar batteries. The DOE used a survey of home

builders to aid in its initial choices for p and q

values. Using these empirically suggested values,

the DOE concluded that solar battery technol-

ogy was not sufficiently robust to encourage

word-of-mouth propagation. Because of their

finding they postponed their proposed wide-scale

introduction of the technology until solar battery

technology had improved to the point that new

users would be satisfied with the technology and

thus the higher q value would predict faster sales

growth.

A decade later in the 1990s DirecTV had

planned a launch of its subscription satellite televi-

sion delivery service. Prudently, it attempted to

obtain a prelaunch forecast for five years into the

future. DirecTV’s forecast was again based on the

Bass model and the p and q values were also ob-

tained from a survey of prospective users; this in-

formation was combined with histories of similar

services. The forecasts produced in 1992 were

quite good from the company’s point of view and,

after the fact, the estimates compared favorably

with the actual 1994 to 1999 experience.

Numerous other firms have reported productive

results using the Bass model. RCA in the mid-1980s

used a modified Bass model to forecast the sales of

music CDs as a function of CD player sales. The

model proved quite accurate. The Bass model is

also used routinely to predict box office revenues

for movies and to make decisions on how many

screens to use for a particular movie.

Source: Excerpted from “Want to Know How
Diffusion Speed Varies across Countries and 
Products? Try Using a Bass Model,” PDMA Visions 26, 
no. 4 (2002), pp. 12–15.

The Bass Model in Action 1
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The Bass model could be called a model of social contagion where the p (the

innovation rate) refers to the probability of initial purchase of a new good

independent of the influence of previous buyers (i.e., with no network effect con-

sidered). The r (the imitation rate) refers to the pressure of imitation on previous

purchasers. The Bass model would appear most often in a graph like the S-curves

we have been examining. As we indicated in Chapter 1, getting the estimates of

the three parameters of the model is the difficult part. We can be helped signifi-

cantly here by using past studies to suggest parameters that may place us in the

ballpark for our own estimates.

Christopher Van den Bulte of the Wharton School has constructed a database

of 1,586 sets of p and q parameters from 113 separate recent articles.6 Some

suggestions from Van den Bulte’s work appear in Table 3.10.

An interesting set of patterns emerges from this large number of p and q

estimations. Recall that the parameter Van den Bulte refers to as q is the r param-

eter (the imitation rate) in ForecastX™. What estimates for p and q would be best

for your product? Van den Bulte took as a baseline durable goods launched in

the United States in 1976. The p factor measures the intrinsic tendency for an

individual to adopt a new product, while the q measures the “word of mouth” or

“social contagion” effect on purchases. Van den Bulte recommends that when a

6 Christophe Van den Bulte, “Want to Know How Diffusion Speed Varies across Countries and

Products? Try Using a Bass Model,” PDMA Visions 26, no. 4 (2002), pp. 12–15.



Moving Averages and Exponential Smoothing 137

90%

p Estimates Best Guess Confidence Interval

Baseline case:

U.S. consumer, durable, launch in 1976 0.409 0.355 (t0) 0.471

For other cases,

multiply by the following factors:

Cellular telephone 0.635 0.465 0.868

Nondurable product 0.931 0.713 1.216

Industrial 1.149 0.909 1.451

Noncommercial innovation 2.406 1.488 3.891

Western Europe 0.949 0.748 1.203

Asia 0.743 0.571 0.966

Other regions 0.699 0.429 1.137

For each year after 1976, multiply by 1.028 1.018 1.039

q Estimates (labeled r in ForecastX)

Baseline case:

U.S. consumer, durable, launch in 1976 0.016 0.012 0.021

For other cases,

multiply by the following factors:

Cellular telephone 0.226 0.125 0.409

Nondurable product 0.689 0.415 1.143

Industrial 1.058 0.679 1.650

Noncommercial innovation 0.365 0.146 0.910

Western Europe 0.464 0.296 0.729

Asia 0.595 0.360 0.981

Other regions 0.796 0.315 2.008

For each year after 1976, multiply by 1.021 1.002 1.041

TABLE 3.10
Van den Bulte’s p and

q Estimates from

Selected Articles

forecaster tries to set the values of p and q in a Bass model, you should use a range

of values within his estimated confidence interval (given in Table 3.10). For coun-

tries with a collectivist mentality (like Japan) as opposed to an individualistic

mentality (like the United States), a higher q value is better. People in collectivist

cultures care more about what others think of them, according to Van den Bulte’s

study. In countries with higher purchasing power, the p tends to be higher. More

disposable income makes it easier to adopt innovations. Finally, products that

exhibit significant network effects or require heavy investment in complementary

infrastructure (like television and the cellular telephone) will have higher values

for q. Van den Bulte has summarized these results in a set of conclusions

presented in Table 3.11.

Table 3.12 presents data for the adoption of telephone-answering devices in the

United States.

Using only the first five observations in Table 3.12, it is possible to accurately

represent the entire adoption cycle for telephone-answering devices. After some
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• There are systematic regional differences in diffusion patterns.

• The average coefficient of innovation p (speed of takeoff) in Europe and Asia

is roughly half of that in the United States.

• The average coefficient of imitation q (speed of late growth) in Asia is roughly

a quarter less than that in the United States and Europe.

• Also, economic differences explain national variations in speed better than

cultural differences do.

• There are systematic product differences in diffusion patterns. For instance,

takeoff is slower for nondurables and products with competing standards that

require heavy investments in infrastructure, while late growth is faster for in-

dustrial products and products with competing standards, which require heavy

investments in infrastructure.

TABLE 3.11
Van den Bulte’s

Conclusions

Regarding p and

qValues

Year Adoption

Dec-84 0

Dec-85 3.030551

Dec-86 7.351138

Dec-87 13.29582

Dec-88 21.08724

Dec-89 30.67365

Dec-90 41.59211

Dec-91 52.98598

Dec-92 63.84035

Dec-93 73.31923

Dec-94 80.98819

Dec-95 86.81843

Dec-96 91.04448

Dec-97 94.00304

Dec-98 96.02418

Dec-99 97.38195

Dec-00 98.28381

Dec-01 98.87837

Dec-02 99.26839

Dec-03 99.52341

Dec-04 99.6898

TABLE 3.12
Adoption of

Telephone-Answering

Devices in the United

States (c3t12)

trial and error the researcher has selected a p value of 0.035 and an r value of

0.406. Note that the r value in ForecastX™ is the same as the q value used for ex-

plaining the imitation rate in the Bass model, as shown in Figure 3.15. The qbar

value is 100 because we are working with percentages.

The resulting plot of actual and predicted values in Figure 3.16 shows a model

that closely approximates the actual occurrence in the United States for answer-

ing-machine adoptions.



Moving Averages and Exponential Smoothing 139

FIGURE 3.15
ForecastX™ Method

Selection Dialog for

the Bass Model

FIGURE 3.16
Bass Model of

Telephone-Answering

Machine Adoptions

in the United States

(c3t12)
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EVENT MODELING

Event modeling is a feature of some exponential smoothing programs such as

ForecastX™. This feature allows the user to specify the time of one or more spe-

cial events, such as irregular promotions and natural disasters, in the calibration

data. For each type of special event, the effect is estimated and the data adjusted

so that the events do not distort the trend and seasonal patterns of the time series.

When forecasting sales or demand in a highly promoted market, using this

smoothing technique will significantly improve forecast accuracy. Consider the

case of a manufacturer of a popular condiment (e.g., ketchup, mustard, steak

sauce, and so on). This type of product tends to be highly seasonal and also tends

to be aggressively promoted by marketers. Is there a method for modeling the

effect of future promotions on the sales or demand for such a product?

When forecasting sales

or demand in a highly

promoted market, using

the smoothing technique

of event modeling will

significantly improve

forecast accuracy.



The answer to this dilemma is event modeling. By using the basic smoothing

models already developed earlier in the chapter as a base, an event model may be

generated to replicate the effects of various promotions and combinations of

promotions.

The method of event modeling follows in the same pattern for the smoothing

models already examined: after the systematic patterns are identified in the his-

torical data, the exponential smoothing method uses smoothing equations for

each component in the series to estimate and build up structural patterns. The

event model adds a smoothing equation for each of the “events” identified as

being important. The weights for each smoothing equation are represented by a

parameter.

Event models are analogous to seasonal models: just as each month is as-

signed its own index for seasonality, so, too, each event type is assigned its own

index for a specific promotional activity. For example, when monthly data are

used, the seasonal index for a particular month is updated at regular intervals,

each time that month recurs. However, event adjustments are created through the

use of an indicator variable that assigns an integer for each event type to the pe-

riod during which it recurs. Thus, one example of integer value assignment

would be that 0 indicates a period where no event has occurred, 1 indicates a pe-

riod where a free-standing insert (FSI) was circulated, 8 indicates a period where

thematic advertising was used, and so on. The event indicator variable must be

defined for each historic period and future period in the forecast horizon. In this

way, the event smoothing equation is used to calculate the historical lift in sales

above baseline that occurred as a result of a particular type of promotion, and

applies that lift to the baseline forecast in the future period where the same pro-

motion is planned.

To illustrate how this method is used in actual practice, we examine some

actual demand data. The product, mustard, is a condiment commonly used in

American households and found at every picnic. The company that produces

and sells mustard uses a number of marketing promotions to enhance sales

and maintain market share. Free-standing inserts are perhaps the most com-

mon of the promotions for this type of product; these are the familiar coupons

found in Sunday newspapers and redeemable when the item is purchased.

These FSIs are often used in conjunction with themed advertising campaigns,

especially during particular seasons of the year. Our condiment manufacturer

uses a separate event value, 7, to stand for the combination of FSIs and an ad-

vertising campaign. On-pack coupons are a separate type of coupon usually

attached to the product packaging itself and redeemed at the cash register at

checkout.

In addition to adjusting the price to the consumer through coupons, the mustard

manufacturer also adjusts the price to the jobber by reducing case prices for a

short period of time. When this takes place it is common for jobbers to stock up

on the reduced price item and delay future purchase. Because of this, the manu-

facturer uses two event values called load and deload to signify periods of reduced

prices and the periods immediately following such a promotion; these are actually

two separate events.
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Event models are

analogous to seasonal

models.
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The event values for this particular condiment manufacturer are listed in the

following table.

Event Indices Legend:

0  Nothing

1  FSI

2  Thematics

3  Big Load

4  After Load

5  Deload

6  Light Load

7  FSI / Act Media

8  Cross Cpn

FSI  free standing inserts. These are off-cents coupons distributed

in newspapers

Thematics  Themed add campaign

Big Load  Large trade promotion—often a deep drop in the case price

for the retailer

Deload  Month after effect of a “load”

Act Media  Radio, television, print ad campaign
Cross Coupons  Cents off coupons placed directly on the packaging of other

goods

Figure 3.17 shows monthly historical demand of mustard over time. Table 3.13

shows the events related to each of these historical months and the company’s

planned promotions for the next six months.

Using a Winters’ smoothing model on these data picks up the implied season-

ality and trend quite well; the calculated level, seasonal, and trend are 0.05,

0.88, and 0.26, respectively. This indicates that there is very little trend in the data

but a high degree of seasonality. Actually, some of the apparent seasonality is not

seasonality at all; instead, it is “induced seasonality” caused by the company’s var-

ious promotions. Using the Winters’ smoothing model again, but with eight event

FIGURE 3.17
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Date Mustard Event Index

Apr-98 50,137 7

May-98 76,030 7

Jun-98 68,590 3

Jul-98 80,681 4

Aug-05 55,228 5

Sep-05 54,577 0

Oct-05 44,384 8

Nov-05 42,337 0

Dec-05 45,512 6

Jan-06 45,798 4

Feb-06 38,045 5

Mar-06 42,127 0

Apr-06 44,422 2

May-06 57,662 1

Jun-06 71,427 6

Jul-06 73,269 5

Aug-06 49,695 8

Sep-06 49,021 1

Oct-06 45,263 0

Nov-06 42,210 1

Dec-06 43,968 6

Jan-07 43,778 4

Feb-07 39,524 0

Mar-07 40,476 0

Apr-07 51,167 2

May-07 51,916 1

Jun-07 62,274 6

Jul-07 4

Aug-07 5

Sep-07 0

Oct-07 2

Nov-07 1

Dec-07 6

Legend:

0  Nothing

1  FSI

2  Thematics

3  Big Load

4  After Load

5  Deload

6  Light Load

7  FSI / Act Media

8  Cross Cpn

FSI  free-standing inserts. These are off-cents coupons distributed in newspapers

Thematics  Themed ad campaign

Big Load  Large trade promotion—often a deep drop in the case price for the retailer

Deload  Month after effect of a “load”

Act Media  Radio, television, print ad campaign

On-Pack Coupons  Cents off coupons placed directly on the packaging

TABLE 3.13
An Event Model

Example (c3t13)



smoothing factors added in as well, the level, seasonal, and trend factors are 0.2,

0.92, and 0.26. By examining these factors we see that there is definitely little

trend, but now the seasonality has also apparently changed.

The seasonality has not disappeared; it is changed by the eight event indices.

Winters’ Model Winters’ Model with
Event Indices

Historical RMSE 4,059 2,526.85

Level Smoothing Factor (alpha) 0.05 0.20

Seasonal Smoothing Factor (beta) 0.88 0.92

Trend Smoothing Factor (gamma) 0.26 0.26

Event Index 1 NA 0.94

Event Index 2 NA 1.16

Event Index 3 NA 0.99

Event Index 4 NA 1.03

Event Index 5 NA 1.00

Event Index 6 NA 0.94

Event Index 7 NA 1.03

Event Index 8 NA 0.99

Note that the RMSE for the event model is much lower than the RMSE for the

Winters’ model (2,526 compared to 4,059). The addition of the events to the

historical period caused a tighter fit between the actual mustard demand and

predicted mustard demand. Using the knowledge of the planned company promo-

tions for the next six months allows the forecaster to calculate a much better

picture of predicted demand than the Winters’ model alone.

In this particular case we used the Winters’model as a base because we believed

the original data had both trend and seasonality. If the data had lacked trend or sea-

sonality, we could have used simple smoothing as the base model. ForecastX™

allows any number of models to be used as the underlying basis for event forecasting.

Ignoring events (usually promotions) that a company has scheduled in advance

will likely lead to poorer forecasts when those events have significant impacts.

However, an event may be any occurrence that has taken place in the historical

period that you believe will either be replicated in the forecast period (such as ad-

vertising promotions) or require adjustment to the parameters because of its large

effect (such as a natural disaster).

FORECASTING JEWELRY SALES AND HOUSES SOLD
WITH EXPONENTIAL SMOOTHING

Jewelry Sales
Let us now look at monthly data on jewelry sales in the United States (in millions

of dollars), which show a great deal of seasonality, some cycle, and a trend, shown

in Figure 3.18.
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In this chapter Winters’exponential smoothing is the only method we have used

so far in which seasonality was explicitly taken into account. Thus, a Winters’

model would appear to be an excellent candidate as a forecasting technique for jew-

elry sales.You might want to go back to Table 2.1, which provided a guide to model

selection, to see how this handy table would help you select Winters’model for this

series. The Holt’s exponential smoothing model might also be a good candidate if

we first deseasonalized the jewelry sales data. You will note that we do not apply

simple or Holt’s exponential smoothing to the jewelry sales data because neither of

those methods would be an appropriate model given the guidelines in Table 2.1.

Applying the Winters’ model, ForecastX™ finds the optimum values for the

weights to be level, 0.31; seasonal, 0.86; trend, 0.16. The historic RMSE for this

Winters’ model is 87.02. The seasonal value shows that we indeed do have a rather

high degree of seasonality, and the trend value indicates trend is also present.

The seasonal indices for this model are quite revealing:

Seasonal Indices Value

Index 1 0.61

Index 2 0.77

Index 3 0.70

Index 4 0.75

Index 5 0.92

Index 6 0.89

Index 7 0.86

Index 8 0.90

Index 9 0.85

Index 10 0.91

Index 11 1.11

Index 12 2.72

FIGURE 3.18
Jewelry Sales
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The dramatic seasonal index of 2.72 for the month of December is likely due to

the gift giving that takes place during the holiday season; even the relatively high

index of 1.11 for the month of November is affected by the holiday season. This

degree of seasonality shows up clearly in the plot of actual and predicted values in

Figure 3.18.

Houses Sold
In Chapter 1 we presented data on total houses sold in the United States; this time

series also exhibits trend, seasonality, and some cycle. The data suggest that a

Winters’ exponential smoothing model might closely approximate the pattern dis-

played in the historical data.

Figure 3.19 displays the results of running a Winters’ model on the houses sold

data from 1990 through 1994. Applying the Winters’ model, ForecastX™ finds the

optimum values for the weights to be level, 0.50; seasonal, 0.30; and trend, 0.00.

The historic RMSE for this Winters’ model is 4.63. The seasonal value shows that

again we have a high degree of seasonality. Note in Figure 3.19 that the housing

data actually has two distinctly different trends; until the middle of 2005 the trend

is clearly upward, while the trend decreases after this point. What we have in this

data is called an inconsistent trend. When this occurs, trend extrapolation (which

is what the Winters’ model uses) is risky. For short-term forecasts it might be bet-

ter for the researcher to use only the most recent data exhibiting the downward

trend. For longer-term estimates some adjustment taking into account the longer-

term trend may be useful.7
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7 For a more detailed description of this difficulty (and some methods for handling it) see 

J. S. Armstrong, M. Adya, and F. Collopy, “Rule-Based Forecasting: Using Judgment in Time-

Series Extrapolation,” in J. S. Armstrong (ed.) Principles of Forecasting (Norwell, MA: Kluwer

Academic Press, 2001).
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Summary If the time series you are forecasting is a stationary one, the moving-average method of

forecasting may accurately predict future values. The moving-average method calculates

the average of the past observations, and this average becomes the forecast for the next

period.

When recent-past observations are thought to contain more information than distant-

past observations, some form of exponential smoothing may be appropriate. Exponential

smoothing provides self-correcting forecasts that adjust so as to regulate the forecast val-

ues by changing them in the opposite direction from recent errors. It is a characteristic of

smoothing models in general, however, that their forecasts lag behind movements in the

original time-series data. Exponential smoothing requires the specification of a smoothing

constant, which determines the relative weights accorded to recent as opposed to more dis-

tant historical observations.

A suggested method for choosing an optimal smoothing constant is to minimize the

root-mean-squared error (RMSE) or the mean absolute percentage error (MAPE).

When some trend is observed in the original time series, simple exponential smoothing

becomes less able to perform accurate prediction; adding a procedure to adjust for the trend

results in Holt’s two-parameter exponential smoothing. Holt’s smoothing adds a growth

factor to the smoothing model to account for trend; in a sense, the growth or trend factor it-

self is smoothed in the same manner as the original data.

When seasonality is also present in the original data, Winters’ three-parameter expo-

nential smoothing adds a correction factor to Holt’s smoothing model to correct for the sea-

sonality. The correction factor is provided by an additional equation.

Adaptive–response-rate single exponential smoothing provides another technique that

can be useful when the “level” of the forecasted variable changes infrequently. Adaptive-

response models adjust the smoothing factor for changing conditions rather than choosing

a constant smoothing factor.

The seasonal indices for the houses sold data provide useful information:

Seasonal Indices Value

Index 1 0.84

Index 2 0.97

Index 3 1.15

Index 4 1.12

Index 5 1.11

Index 6 1.10

Index 7 1.06

Index 8 1.11

Index 9 0.97

Index 10 0.95

Index 11 0.85

Index 12 0.77

Note that the period March through August is above average in seasonality, while

the winter months tend to be below average in houses sold.
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In addition to trying Winters’ exponential smoothing for seasonal data, you might also

deseasonalize the data and then use another forecasting tool to forecast the deseasonalized

series. The deseasonalized forecast can then be reseasonalized by multiplying the desea-

sonalized forecast by the corresponding seasonal indices.
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THE GAP

PART 3: FORECASTING THE GAP SALES DATA WITH
EXPONENTIAL SMOOTHING

The sales of The Gap stores for the 76 quarters covering 1985Q1 through 2004Q4 are once again shown below. From

this graph it is clear that The Gap sales are quite seasonal and are increasing over time. Recall that the 2004 data are

used as a holdout period.

(c3Gap)

1. Using The Gap data, which are not adjusted to remove the seasonality, what exponential

smoothing model do you think would be the most appropriate if you want to develop a

quarterly forecast for 2004 sales? Explain why. Make a forecast for The Gap sales using

the method you selected, and use the RMSE to evaluate your historic fit and your fore-

cast accuracy for the four quarters of 2004. For the entire year of 2004, what percentage

error is there in your forecast?

2. What are the seasonal indices for the The Gap sales, and what do they tell you about this

company’s sales pattern?

Case
Questions
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Solutions
to Case
Questions

1. Of the exponential smoothing models discussed in the text, the one that is most appropri-

ate for the nonseasonally adjusted data is Winters’ exponential smoothing. This model

takes both trend and seasonality into account. Allowing ForecastX™ to determine the

optimal smoothing weights we obtain level 0.68, seasonal 1, and trend 0.25. The

RMSE using the historic period is 114,748, while for the four holdout quarters the RMSE

is 229,426 (remember that our data are in thousands of dollars). If we compare the RMSE

for these last holdout quarters to the mean level of sales for those quarters (4,015,000), we

find that the RMSE is about 5.7 percent of the mean actual quarterly sales.

The original The Gap sales and the Winters’ forecast (fitted) of The Gap sales (in

thousands of dollars) are shown below for the four holdout quarters.

The Gap Sales Forecast

Jun-06 3,716,000 3,519,701.32

Sep-06 3,856,000 3,696,441.80

Dec-06 4,930,000 4,616,218.34

Mar-07 3,558,000 3,338,697.05

The graph below shows actual The Gap sales and the Winters’ forecast of The Gap sales

for both the historical and forecast periods.
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2. The seasonal factors for The Gap sales in quarters one through four are 0.84, 0.80, 1.03,

and 1.33. This indicates strong sales during the fall back-to-school buying season (for

The Gap, the third quarter includes the months of August, September, and October) fol-

lowed by even stronger sales in their fourth quarter due to the Christmas season (the

fourth quarter includes November, December, and January).
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USING FORECASTX™ TO MAKE EXPONENTIAL
SMOOTHING FORECASTS

What follows is a brief discussion of how to use ForecastX™ for preparing an exponential

smoothing forecast. This also serves as a further introduction to the ease of use of Fore-

castX™. The illustration used here is for a forecast of The Gap data that has trend and sea-

sonality.

First, put your data into an Excel spreadsheet in column format, such as the sample of

The Gap data shown in the table below. Once you have your data in this format, while in

Excel highlight the data you want to use, then start ForecastX™. The dialog box to the right

of the data table appears.

A Sample of the Gap Data in Column Format

Date Gap Sales (000)

Mar-85 105,715

Jun-85 120,136

Sep-85 181,669

Dec-85 239,813

Mar-86 159,980

Jun-86 164,760

Sep-86 224,800

Dec-86 298,469

Mar-87 211,060

Jun-87 217,753

Sep-87 273,616

Dec-87 359,592

Mar-88 241,348

Jun-88 264,328

Sep-88 322,752

Dec-88 423,669

Mar-89 309,925

Jun-89 325,939

Sep-89 405,601

Dec-89 545,131

Mar-90 402,368

Jun-90 404,996

Sep-90 501,690

Dec-90 624,726

Set the Dates window to the periodicity of your data (Quarterly for this example), then

click the Forecast Method tab at the top. The following screen appears.

Click the down arrow in the Forecasting Technique window and select Holt Winters,

which is what ForecastX™ calls what we have referred to as simply Winters’ in this chap-

ter. This would be an appropriate method for data such as The Gap series. You can enter de-

sired weights or you can leave those spaces blank and let ForecastX™ select the best set of

values.
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Next, click the Statistics tab and the following dialog box will appear.

Here you select the statistics you want to have reported. You will want to experiment

with various selections.

Next click the Reports tab and the Report Options dialog box will appear.

As you place a check next to each of the five boxes for various reports, the options avail-

able in that report will appear below. For example, in the Audit report box you will nor-

mally check Fitted Values Table.

Again you will want to experiment with the various reports to get a feel for the ones that

will give you the output you want for your specific application. After you click Finish! in

the lower right corner, reports will be put in new Excel workbooks—Book 2, Book 3, and
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so forth. The book numbers will vary depending on how many books have previously been

opened.
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Exercises 1. Assume you were to use  values of 0.1, 0.5, and 0.9 in a simple exponential smooth-

ing model. How would these different  values weight past observations of the variable

to be forecast? How would you know which of these  values provided the best fore-

casting model? If the   0.9 value provided the best forecast for your data, would this

imply that you should do anything else? Does exponential smoothing place more or

less weight on the most recent data when compared with the moving-average method?

What weight is applied to each observation in a moving-average model? Why is

smoothing (simple, Holt’s, and Winters’) also called exponential smoothing?

2. Under what conditions would you choose to use simple exponential smoothing, Holt’s

exponential smoothing, and Winters’ exponential smoothing? Are these the only

smoothing models possible to construct? If there are other possible models, suggest

one that might be useful.

3. Exponential smoothing is meant to be used with time-series data when the data are

made up of some or all of the basic components of average, trend, seasonality, and

error. If the data series only fluctuates about an average with no trend and no seasonal-

ity, which form of smoothing would you employ? If the data include all of these com-

ponents, which form of smoothing would you employ? How should the correct

smoothing factors be chosen?

4. The smoothing factor chosen in simple exponential smoothing determines the weight

to be placed on different terms of time-series data. If the smoothing factor is high

rather than low, is more or less weight placed on recent observations? If  is .3, what

weight is applied to the observation four periods ago?

5. Consider the following rates offered on certificates of deposit at a large metropolitan

bank during a recent year:

Month Rate (%) Month Rate (%)

January 7.025 July 7.575

February 9.047 August 8.612

March 8.280 September 8.985

April 8.650 October 9.298

May 9.714 November 7.454

June 8.963 December 8.461

Use a three-month average to forecast the rate for the following January.

6. The following inventory pattern has been observed in the Zahm Corporation over

12 months:

Month Inventory Month Inventory

January 1,544 July 1,208

February 1,913 August 2,467

March 2,028 September 2,101

April 1,178 October 1,662

May 1,554 November 2,432

June 1,910 December 2,443
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Use both three-month and five-month moving-average models to forecast the inven-

tory for the next January. Use root-mean-squared error (RMSE) to evaluate these two

forecasts.

7. Consider the following data on full-service restaurant sales. Calculate both the three-

month and five-month moving averages for these data, and compare the forecasts

by calculating the root-mean-squared errors and MAPEs. The data are in millions of

dollars.

U.S. Retail Sales at Full-Service Restaurants (in Millions of Dollars, NSA)

Date Sales (000,000) Date Sales (000,000)

Jan-92 6,910

Feb-92 6,959

Mar-92 7,268

Apr-92 7,023

May-92 7,555

Jun-92 7,021

Jul-92 7,297

Aug-92 7,558

Sep-92 6,945

Oct-92 7,464

Nov-92 7,138

Dec-92 7,355

Jan-93 6,854

Feb-93 6,699

Mar-93 7,324

Apr-93 7,514

May-93 7,898

Jun-93 7,814

Jul-93 8,049

Aug-93 8,322

Sep-93 7,730

Oct-93 8,049

Nov-93 7,449

Dec-93 7,774

Jan-94 6,998

Feb-94 7,275

Mar-94 8,177

Apr-94 8,143

May-94 8,364

Jun-94 8,292

Jul-94 8,689

Aug-94 8,661

Sep-94 8,080

Oct-94 8,264

Nov-94 7,822

Dec-94 8,352

Jan-95 7,507

Feb-95 7,341

Mar-95 8,243

Apr-95 8,269

May-95 8,615

Jun-95 8,549

Jul-95 8,902

Aug-95 9,035

Sep-95 8,271

Oct-95 8,328

Nov-95 7,987

Dec-95 8,383

Jan-96 7,532

Feb-96 7,943

Mar-96 8,685

Apr-96 8,502

May-96 8,977

Jun-96 8,716

Jul-96 8,978

Aug-96 9,548

Sep-96 8,675

Oct-96 9,032

Nov-96 9,005

Dec-96 8,921

Jan-97 8,688

Feb-97 8,640

Mar-97 9,592

Apr-97 9,332

May-97 9,976

Jun-97 9,460

Jul-97 10,071

Aug-97 10,517

Sep-97 9,539

Oct-97 9,850

Nov-97 9,227

Dec-97 9,699

Jan-98 9,147

Feb-98 9,114

Mar-98 9,972

Apr-98 9,825

May-98 10,423

Jun-98 10,203

(continued on next page)
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Date Sales (000,000) Date Sales (000,000)

Jul-98 10,458

Aug-98 10,541

Sep-98 9,844

Oct-98 10,455

Nov-98 9,715

Dec-98 10,338

Jan-99 9,583

Feb-99 9,515

Mar-99 10,385

Apr-99 10,571

May-99 10,792

Jun-99 10,553

Jul-99 11,083

Aug-99 10,939

Sep-99 10,297

Oct-99 11,056

Nov-99 10,229

Dec-99 10,703

Jan-00 10,092

Feb-00 10,532

Mar-00 11,464

Apr-00 11,240

May-00 11,393

Jun-00 11,332

Jul-00 11,752

Aug-00 11,581

Sep-00 11,257

Oct-00 11,447

Nov-00 10,742

Dec-00 11,372

Jan-01 10,726

Feb-01 10,691

Mar-01 11,919

Apr-01 11,312

May-01 12,002

Jun-01 12,191

Jul-01 12,374

Aug-01 12,797

Sep-01 11,292

Oct-01 11,523

Nov-01 11,259

Dec-01 12,596

Jan-02 11,520

Feb-02 11,414

Mar-02 12,696

Apr-02 12,140

May-02 12,857

Jun-02 12,685

Jul-02 12,873

Aug-02 13,357

Sep-02 11,743

Oct-02 12,129

Nov-02 12,003

Dec-02 12,794

Jan-03 11,811

Feb-03 11,523

Mar-03 12,957

Apr-03 12,423

May-03 13,741

Jun-03 13,250

Jul-03 13,673

Aug-03 14,329

Sep-03 12,465

Oct-03 13,026

Nov-03 12,606

Dec-03 13,281

Jan-04 12,953

Feb-04 12,926

Mar-04 13,709

Apr-04 13,324

May-04 14,042

Jun-04 13,669

Jul-04 14,572

Aug-04 14,149

Sep-04 13,268

Oct-04 13,918

Nov-04 12,992

Dec-04 14,312

Jan-05 13,202

Feb-05 13,260

Mar-05 14,359

Apr-05 14,368

May-05 14,687

Jun-05 14,445

Jul-05 15,142

Aug-05 14,905

Sep-05 13,982

Oct-05 14,575

Nov-05 13,838

Dec-05 15,478

Restaurants Sales (continued)
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8. Forecasters at Siegfried Corporation are using simple exponential smoothing to fore-

cast the sales of its major product. They are trying to decide what smoothing constant

will give the best results. They have tried a number of smoothing constants with the

following results:

Which smoothing constant appears best from these results? Why? Could you perhaps

get even better results given these outcomes? How would you go about improving the

RMSE?

9. The number of tons of brake assemblies received at an auto parts distribution center

last month was 670. The forecast tonnage was 720. The company uses a simple expo-

nential smoothing model with a smoothing constant of 0.6 to develop its forecasts.

What will be the company’s forecast for the next month?

10. The number of service calls received at LaFortune Electric during four months is

shown in the following table:

Smoothing Constant RMSE

0.10 125

0.15 97

0.20 136

0.25 141

Month
Number of

Service Calls

April 19

May 31

June 27

July 29

Forecast the number of service calls in August by using a simple exponential

smoothing model with a smoothing constant of 0.1. (Assume the forecast for April

was 21.)

11. a. Plot the data presented in Exercise 7 to examine the possible existence of trend and

seasonality in the data.

b. Prepare four separate smoothing models to examine the full-service restaurant sales

data using the monthly data.

1. A simple smoothing model

2. Holt’s model

3. Winters’ model

c. Examine the accuracy of each model by calculating the root-mean-squared error

for each during the historical period. Explain carefully what characteristics of

the original data led one of these models to minimize the root-mean-squared

error.



12. The data in the table below represent warehouse club and superstore sales in the United

States on a monthly basis.
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U.S. Retail Sales at Warehouse Clubs and Superstores (in Millions of Dollars, NSA)

Date Sales Date Sales

Jan-92 2,580

Feb-92 2,616

Mar-92 2,838

Apr-92 2,985

May-92 3,258

Jun-92 3,107

Jul-92 3,097

Aug-92 3,288

Sep-92 3,077

Oct-92 3,429

Nov-92 4,011

Dec-92 5,739

Jan-93 2,877

Feb-93 2,885

Mar-93 3,259

Apr-93 3,454

May-93 3,771

Jun-93 3,667

Jul-93 3,743

Aug-93 3,792

Sep-93 3,699

Oct-93 4,082

Nov-93 4,727

Dec-93 6,672

Jan-94 3,560

Feb-94 3,575

Mar-94 4,220

Apr-94 4,282

May-94 4,594

Jun-94 4,691

Jul-94 4,629

Aug-94 4,795

Sep-94 4,632

Oct-94 5,067

Nov-94 5,746

Dec-94 7,965

Jan-95 4,317

Feb-95 4,118

Mar-95 4,855

Apr-95 4,999

May-95 5,343

Jun-95 5,392

Jul-95 5,274

Aug-95 5,435

Sep-95 5,217

Oct-95 5,460

Nov-95 6,288

Dec-95 8,403

Jan-96 4,758

Feb-96 4,914

Mar-96 5,431

Apr-96 5,474

May-96 6,124

Jun-96 6,027

Jul-96 5,914

Aug-96 6,244

Sep-96 5,808

Oct-96 6,373

Nov-96 6,994

Dec-96 9,018

Jan-97 5,694

Feb-97 5,431

Mar-97 6,240

Apr-97 6,101

May-97 6,849

Jun-97 6,694

Jul-97 6,815

Aug-97 6,948

Sep-97 6,450

Oct-97 7,190

Nov-97 7,738

Dec-97 9,769

Jan-98 6,665

Feb-98 6,400

Mar-98 7,277

Apr-98 7,584

May-98 8,169

Jun-98 8,179

Jul-98 8,118

Aug-98 8,284

Sep-98 7,962

Oct-98 8,636

Nov-98 9,433

Dec-98 11,786

Jan-99 8,082

Feb-99 7,761

Mar-99 8,994

Apr-99 8,803

May-99 9,712

Jun-99 9,843
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Date Sales Date Sales

Jul-99 9,769

Aug-99 9,944

Sep-99 9,582

Oct-99 10,209

Nov-99 11,115

Dec-99 14,995

Jan-00 9,183

Feb-00 9,478

Mar-00 10,751

Apr-00 10,518

May-00 11,349

Jun-00 11,728

Jul-00 11,590

Aug-00 11,871

Sep-00 11,336

Oct-00 11,986

Nov-00 13,130

Dec-00 16,694

Jan-01 11,195

Feb-01 10,919

Mar-01 12,389

Apr-01 12,619

May-01 13,489

Jun-01 13,620

Jul-01 13,438

Aug-01 14,084

Sep-01 13,172

Oct-01 14,040

Nov-01 15,759

Dec-01 19,992

Jan-02 13,162

Feb-02 13,394

Mar-02 15,285

Apr-02 14,467

May-02 16,086

Jun-02 16,027

Jul-02 15,622

Aug-02 16,360

Sep-02 14,714

Oct-02 15,894

Nov-02 18,152

Dec-02 22,089

Jan-03 15,161

Feb-03 15,342

Mar-03 16,997

Apr-03 16,623

May-03 18,064

Jun-03 17,605

Jul-03 17,746

Aug-03 18,907

Sep-03 16,735

Oct-03 18,146

Nov-03 20,336

Dec-03 24,665

Jan-04 17,686

Feb-04 17,908

Mar-04 18,691

Apr-04 19,030

May-04 20,623

Jun-04 19,596

Jul-04 20,122

Aug-04 20,029

Sep-04 18,669

Oct-04 20,518

Nov-04 21,967

Dec-04 27,584

Jan-05 19,315

Feb-05 19,186

Mar-05 21,211

Apr-05 20,985

May-05 22,385

Jun-05 22,223

Jul-05 22,602

Aug-05 22,456

Sep-05 21,418

Oct-05 23,092

Nov-05 24,598

Dec-05 30,706

Jan-06 21,692

Feb-06 21,699

Mar-06 23,402

Apr-06 24,046

May-06 24,881

Jun-06 24,602

Jul-06 24,631

Aug-06 24,831

Sep-06 23,603

Oct-06 24,608

Nov-06 26,705

Dec-06 34,023

Jan-07 23,837

Feb-07 23,438

Mar-07 26,305

Apr-07 25,429

May-07 27,152

Jun-07 27,218

Jul-07 26,722



a. Prepare a time-series plot of the data, and visually inspect that plot to determine the

characteristics you see in this series.

b. Use a smoothing model to develop a forecast of sales for the next 12 months, and

explain why you selected that model. Plot the actual and forecast values. Determine

the RMSE for your model during the historical period.

13. The data in the table below are for retail sales in book stores by quarter.

158 Chapter Three

U.S. Retail Sales in Book Stores (in Millions of Dollars, NSA)

Date Sales Date Sales

Mar-92 1,866

Jun-92 1,666

Sep-92 2,351

Dec-92 2,455

Mar-93 2,169

Jun-93 1,815

Sep-93 2,498

Dec-93 2,637

Mar-94 2,326

Jun-94 2,020

Sep-94 2,858

Dec-94 2,915

Mar-95 2,725

Jun-95 2,283

Sep-95 3,134

Dec-95 3,066

Mar-96 2,876

Jun-96 2,445

Sep-96 3,190

Dec-96 3,407

Mar-97 3,197

Jun-97 2,575

Sep-97 3,290

Dec-97 3,693

Mar-98 3,273

Jun-98 2,713

Sep-98 3,514

Dec-98 3,794

Mar-99 3,480

Jun-99 2,943

Sep-99 3,654

Dec-99 4,108

Mar-00 3,628

Jun-00 3,203

Sep-00 4,051

Dec-00 4,010

Mar-01 3,719

Jun-01 3,084

Sep-01 4,234

Dec-01 4,073

Mar-02 3,983

Jun-02 3,132

Sep-02 4,328

Dec-02 4,007

Mar-03 3,969

Jun-03 3,257

Sep-03 4,824

Dec-03 4,129

Mar-04 4,298

Jun-04 3,312

Sep-04 4,811

Dec-04 4,336

Mar-05 4,261

Jun-05 3,278

Sep-05 4,991

Dec-05 4,447

a. Plot these data and examine the plot. Does this view of the data suggest a particu-

lar smoothing model? Do the data appear to be seasonal? Explain.

b. Use a smoothing method to forecast the next four quarters. Plot the actual and fore-

cast values.

14. The United States Department of Agriculture’s Child and Adult Care Food Program

(CACPF) plays a vital role in improving the quality of day care and making it more af-

fordable for many low-income families. Each day, 2.9 million children receive nutri-

tious meals and snacks through CACFP. The program also provides meals and snacks

to 86,000 adults who receive care in nonresidential adult day care centers. CACFP

reaches even further to provide meals to children residing in emergency shelters, and



snacks and suppers to youths participating in eligible afterschool care programs.8

Many will know of the School Lunch Program that is a part of the CACFP.

We will use data from the Child Care Center program of CACFP. “Eligible public

or private nonprofit child care centers, outside-school-hours care centers, Head Start

programs, and other institutions which are licensed or approved to provide day care

services may participate in CACFP, independently or as sponsored centers. For profit

centers must receive Title XX funds for at least 25 percent of enrolled children or li-

censed capacity (whichever is less) or at least 25 percent of the children in care must

be eligible for free and reduced price meals. Meals served to children are reimbursed

at rates based upon a child’s eligibility for free, reduced price, or paid meals.”9

Monthly data from March 2004 through September 2007 is provided below. You

are charged with making a 12-month forecast of the meals to be served. Begin by

plotting the data and examining it for the patterns of trend and seasonality. Choose an

appropriate model for the data and forecast for the next 12 months.
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8 http://www.fns.usda.gov/cnd/Care/CACFP/aboutcacfp.htm.
9 Ibid.

Meals Served In:

Month Child Care Month Child Care
Year Center Year Center

Mar-04 108,371,749

Apr-04 99,199,094

May-04 92,195,689

Jun-04 81,447,374

Jul-04 72,792,981

Aug-04 78,931,911

Sep-04 89,982,843

Oct-04 96,761,533

Nov-04 92,772,827

Dec-04 83,103,478

Jan-05 93,109,115

Feb-05 93,267,674

Mar-05 105,290,897

Apr-05 103,625,467

May-05 100,549,323

Jun-05 85,155,854

Jul-05 71,406,448

Aug-05 85,623,392

Sep-05 94,828,432

Oct-05 97,917,922

Nov-05 95,753,418

Dec-05 83,145,194

Jan-06 98,887,496

Feb-06 96,477,065

Mar-06 114,094,756

Apr-06 96,093,092

May-06 107,527,897

Jun-06 87,135,336

Jul-06 72,397,374

Aug-06 88,657,480

Sep-06 94,566,627

Oct-06 106,889,806

Nov-06 97,638,605

Dec-06 83,280,944

Jan-07 102,522,133

Feb-07 95,537,211

Mar-07 111,462,237

Apr-07 103,542,365

May-07 111,242,080

Jun-07 85,765,747

Jul-07 78,943,762

Aug-07 89,965,185

Sep-07 92,934,809
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Chapter Four

Introduction to
Forecasting with
Regression Methods
In this chapter the fundamentals of bivariate regression analysis are presented in

the context of forecasting applications. Regression models are developed for jew-

elry sales (JS) and disposable personal income (DPI), based on quarterly data.

These regression models are then used to make forecasts of each series. At the end

of the chapter, we return to our continuing examples of forecasting total houses

sold and to the continuing The Gap case study.

THE BIVARIATE REGRESSION MODEL

Bivariate regression analysis (also called simple linear least-squares regression) is a

statistical tool that gives us the ability to estimate the mathematical relationship be-

tween a dependent variable (usually called Y ) and a single independent variable

(usually called X ) .1 The dependent variable is the variable for which we want to de-

velop a forecast. While various nonlinear forms may be used, simple linear regres-

sion models are the most common. Nonlinear models will be discussed in Chapter 5.

In using regression analyses we begin by supposing that Y is a function of X.

That is:

Y  f (X )

Since we most often begin by using linear functions, we may write the population

regression model as:

Y   0   1X   

where  0 represents the intercept of the regression line on the vertical (or Y ) axis

and  1 is the slope of the regression line. Thus,  1 tells us the rate of change in

Y per unit change in X. The intercept ( 0) is the value that the dependent variable

1 For a more detailed discussion of the regression model, including underlying assumptions,

see Bruce Bowerman and Richard T. O’Connell, Business Statistics in Practice, 4th ed. (Burr

Ridge, IL: McGraw-Hill/Irwin, 2007).



would have if X  0. While this is a correct interpretation from an algebraic per-

spective, such an interpretation is often not valid in applications, since a value of

X  0 is frequently not in the relevant range of observations on X. The  in this

model represents an error term. That is, every Y is not likely to be predicted

exactly from the values of  0 and  1X. The resulting error is  .

We would like to estimate values of  0 and  1 such that the resulting equation

best fits the data. To do so we need to decide on a criterion against which the fit of

the estimated model can be evaluated. The most common such rule is called the

ordinary least-squares (OLS) criterion. This rule says that the best model is the

one that minimizes the sum of the squared error terms.

The unobserved model that describes the whole population of data is expressed as

Y   0   1X   

These values of the intercept ( 0) and slope ( 1) are population parameters that

are typically estimated using sample data. The corresponding sample statistics are

b0 and b1. The estimated regression model is expressed as

Ŷ  b0  b1X

Deviations of predicted values (Ŷ ) from the actual values of Y are called residuals

or errors and are denoted by e, where

e  Y  Ŷ

or,

e  Y  b0  b1X

The ordinary least-squares method seeks to find estimates of the slope and

intercept parameters that minimize the sum of squared residuals:

Minimize  e2
  (Y  b0  b1X )2

By taking partial derivatives of the sum of squared residuals with respect to b0 and

b1, setting the partial derivatives equal to zero, and solving the two equations

simultaneously, we obtain estimating formulas:

b1  ( XY  nX Y ) ( X 2
 nX 2)

b0  Y
 
 b1X

 

These formulas could be used to calculate b0 and b1 by hand. However, even for

simple regression, a computer program is normally used for such calculations.

VISUALIZATION OF DATA: AN IMPORTANT
STEP IN REGRESSION ANALYSIS

There was a time when regression lines were estimated in a rather ad hoc manner,

based solely on an analyst’s visual interpretation of the data. The analyst would

plot the data by hand and would “eyeball” the resulting scatter of points to

determine the position of a straight line that was believed to “best” represent the
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general relationship between Y and X. Such a straight line was then drawn through

the scatterplot and, by selecting two points from the line, its algebraic equation

was calculated (i.e., values for b0 and b1 were estimated). One obvious problem

with such a procedure is that different analysts would almost surely come up with

differing estimates of b0 and b1.

Today it is doubtful that anyone would take this approach to estimating a

regression equation. Modern computer technology makes it very easy to obtain

the OLS equation without ever looking at the data. This equation is best, accord-

ing to the ordinary least-squares criterion, and numerous evaluative statistics can

be simultaneously determined. Every analyst obtains precisely the same results,

and those results are easily replicated. Thus it may appear that computer-based

regression analysis is a clearly superior method. However, something is lost.

Analysts may just enter data, issue appropriate commands, get the corresponding

statistical results, and run off to apply the model in some decision-based context

such as forecasting. In the process, they would never have looked at the data. Such

blind attention to statistical estimates can be dangerous.

To illustrate this point, consider the four data sets in Table 4.1. For all four of the

data sets in Table 4.1, the calculated regression results show an OLS equation of:

Ŷ  3  0.5X

It might also be noted that the mean of the X’s is 9.0 and the mean of the Y’s is 7.5

in all four cases. The standard deviation is 3.32 for all of the X variables and 2.03

for all of the Y variables. Similarly, the correlation for each pair of X and Y

variables is 0.82.2
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TABLE 4.1
Four Dissimilar Data

Sets with Similar

Regression Results

(c4t1)

Set A Set B Set C Set D

X Y X Y X Y X Y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Source: F. J. Anscombe,

“Graphs in Statistical Analysis,”

American Statistician 27

(February 1973), pp. 17–21, as

reported in Edward R. Tufte,

The Visual Display of

Quantitative Information,

(Cheshire, CT: Graphics Press,

1983), p. 13.

2 Many statistical diagnostics on the regression equations, which we will cover later in this

chapter, are also equal. These include standard errors of the regression, t-ratios for the

coefficients, R-squared, and the regression sum of squares. Statistics related to the evaluation

of residuals, such as the Durbin-Watson statistic, show some differences.
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From these results, an analyst who looks only at these summary statistics

would likely conclude that the four data sets are identical or, at the very least, quite

similar. But, oh, how wrong this conclusion would be. If you take the time to pre-

pare a scattergram of each of the four data sets, dramatic differences become

apparent. In Figure 4.1 we have plotted each XY pair in a separate plot, along with

the corresponding OLS regression lines (all four of the regression lines have the

same equation:Ŷ  3  0.5X ).

Visualization of these data allows us to see stark differences that would not

be apparent from the descriptive statistics we have reviewed. The regression

line is most clearly inappropriate for the data in the lower right plot. The lower

left plot has, with the exception of one outlier, a perfectly linear relationship

between Y and X, which is not so clear without visual inspection of the data.

The upper right plot of data suggests that a nonlinear model would fit

the data better than a linear function. Only the upper left plot suggests a data

set that is a good candidate for a linear regression model. Visually, these data

sets are quite dissimilar even though they have some very similar statistical

properties.

Forecasters can benefit from this example.
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FIGURE 4.1

Scatterplots of Four

XY Data Sets That

Have Very Similar

Statistical Properties

but Are Visually

Quite Different

(c4f1)

For each of the data

sets, the OLS

regression equation is

Y  3  0.5X

It is important to look at

the data before plunging

into data analysis and

the selection of an

appropriate set of

forecasting techniques.



A PROCESS FOR REGRESSION FORECASTING

It is useful to have a plan at hand when approaching any task. And so it is with de-

veloping a regression-based forecast. In this section we suggest one such plan,

or process, that helps to organize the task of preparing a regression forecast. What

we say here is not separate from the forecast process discussed in Chapter 2.

Rather, it complements that process, especially data considerations, model selec-

tion, model evaluation, and forecast preparation.

We begin with data considerations, which become somewhat more complex

for regression models. Not only do we need to pay attention to the dependent

variable, the series to be forecasted, but we must also consider the independent

variable(s) that will drive the regression forecast. We should utilize graphic tech-

niques to inspect the data, looking especially for trend, seasonal, and cyclical

components, as well as for outliers. This will help in determining what type of

regression model may be most appropriate (e.g., linear versus nonlinear, or trend

versus causal).

Next we must make a forecast of the independent variable(s). This becomes a

separate, yet related, forecasting effort. Each potential independent variable

should be forecast using a method that is appropriate to that particular series, tak-

ing into account the model-selection guidelines discussed in Chapter 2 and sum-

marized in Table 2.1.

Once the data have been thoroughly reviewed and the type of regression

model has been selected, it is time to specify the model. By model specifica-

tion, we mean the statistical process of estimating the regression coefficients

(b0 and b1, in simple bivariate regression models). In doing so we recommend

using a holdout period for evaluation. Thus, if you have 10 years of quarterly

data (n  40), you might use 9 years of data (n  36) to estimate the regres-

sion coefficients. Initial evaluation of regression models (based on diagnostic

statistics we will discuss shortly) can be done on this subsample of the histor-

ical data. However, the real test of a forecasting model is in the actual forecast.

Thus, if you have set aside a holdout period of data, you can then test the

model in this period to get a truer feel for how well the model meets your

needs.

This relates to our discussion of fit versus accuracy in Chapter 2. When the

model is evaluated in comparison with the data used in specifying the model,

we are determining how well the model “fits” the data. This is a retrospective

approach, often called an in-sample evaluation. By using a holdout period, we

have an opportunity to evaluate the model “out of sample.” That is, we can de-

termine how “accurate” the model is for an actual forecast horizon. After an

evaluation of fit and accuracy, a forecaster should respecify the best of the mod-

els using the entire span of data that are available. The newly specified model is

then used to forecast beyond the frontier of what is known at the time of the

forecast.
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The forecaster should

utilize graphic

techniques to inspect

the data, looking

especially for trend,

seasonal, and cyclical

components, as well as

for outliers.
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FORECASTING WITH A SIMPLE LINEAR TREND3

It is sometimes possible to make reasonably good forecasts on the basis of a

simple linear time trend. To do so we set up a time index (T) to use as the inde-

pendent or X variable in the basic regression model, where T is usually set equal

to 1 for the first observation and increased by 1 for each subsequent observation.

The regression model is then:

Ŷ  b0  b1(T )

where Y is the series we wish to forecast.

To illustrate this process, consider the data in Table 4.2. DPI is disposable

personal income in billions of dollars and is given from January 1993 through

July 2007. Only data though December 2006 will be used to develop a forecast so

3 Throughout this chapter you may find some situations in which the standard calculations that

we show do not match exactly with the ForecastX results. This is because, at times, they invoke

proprietary alterations from the standard calculations. The results are usually very close but

may not match perfectly with “hand” calculations.

TABLE 4.2 Disposable Personal Income in Billions of Dollars, January 1993 through July 2007 (c4t2&f2)

Date DPI
Time
Index

Jan-93 4,800.90 1
Feb-93 4,803.90 2
Mar-93 4,800.10 3
Apr-93 4,887.40 4
May-93 4,909.90 5
Jun-93 4,906.10 6
Jul-93 4,909.30 7
Aug-93 4,931.40 8
Sep-93 4,932.10 9
Oct-93 4,951.00 10
Nov-93 4,974.30 11
Dec-93 5,137.00 12
Jan-94 4,955.90 13
Feb-94 5,003.30 14
Mar-94 5,037.00 15
Apr-94 5,057.20 16
May-94 5,143.50 17
Jun-94 5,153.50 18
Jul-94 5,172.10 19
Aug-94 5,195.00 20
Sep-94 5,225.30 21

Date DPI
Time
Index

Oct-94 5,281.40 22
Nov-94 5,288.10 23
Dec-94 5,309.80 24
Jan-95 5,337.30 25
Feb-95 5,350.00 26
Mar-95 5,365.50 27
Apr-95 5,335.10 28
May-95 5,389.00 29
Jun-95 5,404.90 30
Jul-95 5,415.10 31
Aug-95 5,424.00 32
Sep-95 5,442.30 33
Oct-95 5,458.20 34
Nov-95 5,475.40 35
Dec-95 5,502.20 36
Jan-96 5,524.50 37
Feb-96 5,580.90 38
Mar-96 5,618.00 39
Apr-96 5,594.30 40
May-96 5,671.30 41
Jun-96 5,704.30 42

Date DPI
Time
Index

Jul-96 5,702.60 43
Aug-96 5,725.70 44
Sep-96 5,754.20 45
Oct-96 5,768.60 46
Nov-96 5,794.70 47
Dec-96 5,822.50 48
Jan-97 5,847.40 49
Feb-97 5,876.60 50
Mar-97 5,908.30 51
Apr-97 5,915.50 52
May-97 5,934.40 53
Jun-97 5,960.10 54
Jul-97 5,986.60 55
Aug-97 6,023.40 56
Sep-97 6,052.30 57
Oct-97 6,081.50 58
Nov-97 6,123.30 59
Dec-97 6,156.60 60
Jan-98 6,216.30 61
Feb-98 6,256.60 62
Mar-98 6,294.90 63

(continued on next page)



Date DPI
Time
Index

Apr-98 6,323.30 64
May-98 6,360.10 65
Jun-98 6,389.60 66
Jul-98 6,418.60 67
Aug-98 6,452.90 68
Sep-98 6,472.70 69
Oct-98 6,497.70 70
Nov-98 6,526.30 71
Dec-98 6,542.20 72
Jan-99 6,571.20 73
Feb-99 6,588.50 74
Mar-99 6,600.50 75
Apr-99 6,616.40 76
May-99 6,639.70 77
Jun-99 6,659.80 78
Jul-99 6,679.70 79
Aug-99 6,718.50 80
Sep-99 6,726.50 81
Oct-99 6,790.80 82
Nov-99 6,840.30 83
Dec-99 6,907.60 84
Jan-00 7,009.70 85
Feb-00 7,060.40 86
Mar-00 7,107.50 87
Apr-00 7,110.80 88
May-00 7,138.70 89
Jun-00 7,174.20 90
Jul-00 7,242.40 91
Aug-00 7,265.00 92
Sep-00 7,291.80 93
Oct-00 7,309.20 94
Nov-00 7,306.60 95
Dec-00 7,312.10 96
Jan-01 7,377.8 97
Feb-01 7,392.0 98
Mar-01 7,406.6 99
Apr-01 7,394.7 100
May-01 7,402.3 101
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Date DPI
Time
Index

Jun-01 7,425.7 102
Jul-01 7,550.9 103
Aug-01 7,686.3 104
Sep-01 7,631.3 105
Oct-01 7,506.3 106
Nov-01 7,523.5 107
Dec-01 7,544.7 108
Jan-02 7,718.9 109
Feb-02 7,751.7 110
Mar-02 7,784.0 111
Apr-02 7,827.3 112
May-02 7,840.3 113
Jun-02 7,857.4 114
Jul-02 7,845.1 115
Aug-02 7,842.3 116
Sep-02 7,848.9 117
Oct-02 7,864.2 118
Nov-02 7,877.1 119
Dec-02 7,903.7 120
Jan-03 7,945.8 121
Feb-03 7,972.4 122
Mar-03 8,008.3 123
Apr-03 8,041.7 124
May-03 8,094.3 125
Jun-03 8,126.9 126
Jul-03 8,240.4 127
Aug-03 8,311.0 128
Sep-03 8,231.6 129
Oct-03 8,271.2 130
Nov-03 8,335.8 131
Dec-03 8,370.9 132
Jan-04 8,428.8 133
Feb-04 8,478.1 134
Mar-04 8,517.1 135
Apr-04 8,559.3 136
May-04 8,615.5 137
Jun-04 8,640.6 138
Jul-04 8,669.8 139

Date DPI
Time
Index

Aug-04 8,727.4 140
Sep-04 8,729.4 141
Oct-04 8,804.1 142
Nov-04 8,828.6 143
Dec-04 9,171.9 144
Jan-05 8,873.5 145
Feb-05 8,908.3 146
Mar-05 8,941.3 147
Apr-05 9,001.4 148
May-05 9,030.8 149
Jun-05 9,083.6 150
Jul-05 9,147.4 151
Aug-05 8,928.3 152
Sep-05 9,239.7 153
Oct-05 9,277.3 154
Nov-05 9,309.0 155
Dec-05 9,362.9 156
Jan-06 9,442.9 157
Feb-06 9,467.3 158
Mar-06 9,495.5 159
Apr-06 9,535.7 160
May-06 9,555.9 161
Jun-06 9,627.1 162
Jul-06 9,639.8 163
Aug-06 9,675.3 164
Sep-06 9,712.1 165
Oct-06 9,755.7 166
Nov-06 9,787.5 167
Dec-06 9,854.4 168
Jan-07 9,934.7 169
Feb-07 10,013.3 170
Mar-07 10,095.5 171
Apr-07 10,082.9 172
May-07 10,123.1 173
Jun-07 10,159.6 174
Jul-07 10,216.9 175

that we can evaluate it against actual data for the first seven months of 2007. This

is an important economic series, since income is an important determinant for

many kinds of sales. The linear time-trend model for DPI is:

D̂PI  b0  b1(T )

TABLE 4.2 (continued)



Introduction to Forecasting with Regression Methods 167

You see in Table 4.2 that T (time) equals 1 for January 1993 and 168 for December

2006.

It is usually a good idea to look at data such as those given in Table 4.2 in

graphic form before beginning to do any regression analysis. A visual inspection

of the data can be helpful in deciding whether a linear or nonlinear model would

be most appropriate. A graph of DPI versus T is shown in Figure 4.2. From this

graph you can get a good feel for how this important measure of income has

increased over the period presented. All observations do not fall on a single

straight line. However, it does appear that a linear trend line would fit the data

well. The positive trend to DPI is more easily seen in the graphic form of Fig-

ure 4.2 than in the tabular form of Table 4.2.

Suppose that you are asked to forecast DPI for the first seven months of 2007,

using a simple linear trend, based only on data through 2006. The first thing you

would do is to use the linear regression part of your regression software to provide

the estimates of b0 and b1 for the following model:

DPI  b0  b1(T )

The regression results from Forecast X and from Excel are shown at the bottom of

Figure 4.3. From those results we see that the intercept (b0) is 4,478.265 and that

the coefficient on T (b1, or the slope) is 30.11. Thus, the regression forecast model

may be written as:

D̂PI  4,478.265  30.11(T )

The slope term in this model tells us that, on average, disposable personal income

increased by 30.11 billion dollars per month. The other statistical results shown at

the bottom of Figure 4.3 are helpful in evaluating the usefulness of the model.

Most of these will be discussed in detail in the section “Statistical Evaluation of

Regression Models,” later in this chapter. Our discussion of others will be held in

abeyance until Chapter 5. For now we will just comment that statistical evaluation

suggests that this linear equation provides a very good fit to the data.

Disposable Personal Income (DPI)
January 1993 to July 2007 ($ Billions) 
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FIGURE 4.2
Graph of Disposable

Personal Income

(DPI) over Time

While DPI does not

follow a perfectly

linear path, it does

follow a trend that is

very close to linear.

(c4t2&f2)
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Disposable Personal Income and a Trend Forecast ($ Billions) 
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FIGURE 4.3
Disposable Personal

Income (DPI) with a

Linear Trend Line

Forecast

The linear trend

follows the actual DPI

quite well and provides

a forecast for 2004 that

looks very reasonable.

The trend equation is:

DPI  4,478.265 

  30.11(T)

(c4t3&f3)

These results are from the ForecastX Audit Trail Report (F value added) when

Trend (Linear) Regression is selected as the forecast method.

Audit Trail--ANOVA Table (Trend (Linear) Regression Selected)

Source of

Variation SS df MS F SEE

----------------------------------------------------------------------

Regression 358,218,615.21 1 358,218,615.21 18796.156

Error 3,163,640.99 166 19,058.08 138.05

Total 361,382,256.20 167

Audit Trail--Statistics

Accuracy Measures Value

---------------------------------------------    ----------------------------

Mean Absolute Percentage Error (MAPE) 1.68%

R-Square 99.12%

Root Mean Square Error 137.23

Method Statistics Value

---------------------------------------------

Method Trend (Linear) Regression

Selected

Forecast Statistics Value

Durbin Watson (1) 0.18

These results are from Excel. The actual regression equation comes from the

Coefficients column and is: DPI  4478.265  30.110*(Time Index).

Regression Statistics

Multiple R 0.9956

R Square 0.9912

Adjusted R Square 0.9912

Standard Error 138.05

Observations 168



To use this equation to make a forecast for the first seven months of 2007, we

need only substitute the appropriate values for time (T). These are 169 through

175 as seen in Table 4.2. The trend estimates of DPI for three representative

months follow:

January 2007: DPI  4,478.265  30.11(169)  9,566.9

June 2007: DPI  4,478.265  30.11(172)  9,657.2

December 2007: DPI  4,478.265  30.11(175)  9,747.5

You can see in Figure 4.3 that the simple linear trend line does fit the actual

data quite well and provides a reasonable forecast for the first seven months of

2007.

The actual values of DPI are shown in Table 4.3 along with the trend values in

order to determine the root-mean-squared error (RMSE) for the historic and fore-

cast periods. The calculation of the RMSE is done by subtracting the forecast val-

ues from the actual values and then squaring the difference. The average of the

squared differences is called the mean-squared error (MSE). The square root of

the MSE is the root-mean-squared error (RMSE).

We see that the long-term linear trend forecasts of DPI are quite accurate over-

all. The RMSE is about 4.3 percent of the mean for DPI during the forecast period.

The RMSE for this method could be compared with that of other techniques to de-

termine the most appropriate method to use.4

Trend models such as this can sometimes be very helpful in forecasting, and, as

you see, they are easy to develop and to implement. In such models we simply

track the past time trend and project it forward for the forecast horizon of interest.

Introduction to Forecasting with Regression Methods 169

4 For example, based on 1993 through 2006 data, the optimal Holt’s exponential smoothing

model for DPI (alpha  0.50, gamma  0.03) produces a forecast that has an RMSE for the

forecast period of 103.6 (i.e., the smoothing model would be a better model because of the

lower RMSE).

ANOVA

Significance

df SS MS F F

--------------------------------------------------------------------------------------

Regression 1 358,218,615.210 358,218,615.210 18,796.156 0.000

Residual 166 3,163,640.988 19,058.078

Total 167 361382256.2

--------------------------------------------------------------------------------------

-----------------------------------------------------------------------

Coefficients Standard Error t Stat P-value

-----------------------------------------------------------------------

Intercept 4,478.265 21.397 209.292 0.000

Time Index 30.110 0.220 137.099 0.000
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TABLE 4.3 Disposable Personal Income with Linear Trend Forecast

The squared errors, mean-squared errors, and root-mean-squared errors are shown for both historic and

forecast periods. The RMSE is only about 4.3 percent of the mean DPI for the first seven months of 2007.

(c4t3&f3)

Date DPI
ForecastX

Results Error
Error

Squared

Jan-93 4,800.9 4,508.4 292.5 85,571.1

Feb-93 4,803.9 4,538.5 265.4 70,445.4 Historic Period

Mar-93 4,800.1 4,568.6 231.5 53,594.9 Mean Squared Error 

Apr-93 4,887.4 4,598.7 288.7 83,345.3 (MSE) 18,831.20

May-93 4,909.9 4,628.8 281.1 79,009.3

Jun-93 4,906.1 4,658.9 247.2 61,096.0 Root Mean Sq. Error

Jul-93 4,909.3 4,689.0 220.3 48,517.2 (RMSE) 137.23

Aug-93 4,931.4 4,719.1 212.3 45,052.8

Sep-93 4,932.1 4,749.3 182.8 33,432.9

Oct-93 4,951 4,779.4 171.6 29,459.2

Nov-93 4,974.3 4,809.5 164.8 27,167.9

Dec-93 5,137 4,839.6 297.4 88,456.9
. . . . .
. . . . .
. . . . .

Jan-06 9,442.9 9,205.5 237.4 56,354.0

Feb-06 9,467.3 9,235.6 231.7 53,675.7

Mar-06 9,495.5 9,265.7 229.8 52,794.4

Apr-06 9,535.7 9,295.8 239.9 57,533.1

May-06 9,555.9 9,325.9 230.0 52,877.3

Jun-06 9,627.1 9,356.1 271.0 73,463.1

Jul-06 9,639.8 9,386.2 253.6 64,328.7

Aug-06 9,675.3 9,416.3 259.0 67,092.0

Sep-06 9,712.1 9,446.4 265.7 70,602.5

Oct-06 9,755.7 9,476.5 279.2 77,953.5

Nov-06 9,787.5 9,506.6 280.9 78,900.1

Dec-06 9,854.4 9,536.7 317.7 100,921.7
. . . . .
. . . . .
. . . . .

Jan-07 9,934.7 9,566.9 367.9 135,329.8

Feb-07 10,013.3 9,596.9 416.4 173,357.4 Forecast Period (Holdout Period)

Mar-07 10,095.5 9,627.0 468.5 219,447.5

Apr-07 10,082.9 9,657.2 425.7 181,256.6 Mean Squared Error

May-07 10,123.1 9,687.3 435.8 189,950.1 (MSE) 187,892.98

Jun-07 10,159.6 9,717.4 442.2 195,561.0 Root Mean Sq. Error

Jul-07 10,216.9 9,747.5 469.4 220,348.5 (RMSE) 433.47

Mean
2007 10,089.43

2007 RMSE as % of Mean 4.30
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Note that we do not imply any sense of causality in such a model. Time does not

cause income to rise. Income has increased over time at a reasonably steady rate

for reasons not explained by our model.

USING A CAUSAL REGRESSION MODEL TO FORECAST

Trend models, such as the one we looked at in the previous section for disposable

personal income, use the power of regression analysis to determine the best linear

trend line. However, such uses do not exploit the full potential of this powerful

statistical tool. Regression analysis is especially useful for developing causal

models.

In a causal model, expressed as Y  f ( X ) , a change in the independent vari-

able (X ) is assumed to cause a change in the dependent variable (Y ) . The selec-

tion of an appropriate causal variable (X ) should be based on some insight that

suggests that a causal relationship is reasonable. A forecaster does not arbitrarily

select an X variable, but rather looks to past experience and understanding to iden-

tify potential causal factors. For example, suppose that you were attempting to

develop a bivariate regression model that might be helpful in explaining and

predicting the level of jewelry sales in the United States. What factors do you

think might have an impact on jewelry sales? Some potential causal variables that

might come to mind could include income, some measure of the level of interest

rates, and the unemployment rate, among others.

Discussions with knowledgeable people in the jewelry industry would help you

determine other variables and would be helpful in prioritizing those that are iden-

tified. Library research in areas related to jewelry sales and to consumer behavior

may turn up yet other potential X variables. One thing you would learn quickly is

that there is a substantial seasonal aspect to jewelry sales.

It is important that the independent variable be selected on the basis of a logi-

cal construct that relates it to the dependent variable. Otherwise you might find a

variable through an arbitrary search process that works well enough in a given his-

torical period, more or less by accident, but then breaks down severely out of sam-

ple. Consider, for example, William Stanley Jevons’ sunspot theory of business

cycles. For a certain historical period a reasonably strong correlation appeared to

support such a notion. Outside that period, however, the relationship was quite

weak. In this case it is difficult to develop a strong conceptual theory tying busi-

ness cycles to sunspot activity.

To illustrate the use of a causal model, we will consider how well jewelry sales

(JS) can be forecast on the basis of disposable personal income, as a measure of

overall purchasing power.

Before we start to develop a forecast of jewelry sales, we should take a look at

a time-series plot of the series. In this example we will use monthly data for jew-

elry sales from January 1994 through December 2004 and we want to forecast JS

for each of the 12 months of 2005. A time-series plot of JS is found in Figure 4.4,

and the raw data are in Table 4.4.
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TABLE 4.4 Jewelry Sales in Millions of Dollars

The 2005 values are held out in developing forecasts so that we can evaluate our results out of sample. (c4t4&f4)

Date
Jewelry Sales
($ Millions) Date

Jewelry Sales
($ Millions) Date

Jewelry Sales
($ Millions)

Jan-94 904 Jan-98 1,119 Jan-02 1,304
Feb-94 1,191 Feb-98 1,513 Feb-02 2,004
Mar-94 1,058 Mar-98 1,238 Mar-02 1,612
Apr-94 1,171 Apr-98 1,362 Apr-02 1,626
May-94 1,367 May-98 1,756 May-02 2,120
Jun-94 1,257 Jun-98 1,527 Jun-02 1,667
Jul-94 1,224 Jul-98 1,415 Jul-02 1,554
Aug-94 1,320 Aug-98 1,466 Aug-02 1,746
Sep-94 1,246 Sep-98 1,372 Sep-02 1,503
Oct-94 1,323 Oct-98 1,506 Oct-02 1,662
Nov-94 1,731 Nov-98 1,923 Nov-02 2,208
Dec-94 4,204 Dec-98 5,233 Dec-02 5,810
Jan-95 914 Jan-99 1,163 Jan-03 1,361
Feb-95 1,223 Feb-99 1,662 Feb-03 2,019
Mar-95 1,138 Mar-99 1,402 Mar-03 1,477
Apr-95 1,204 Apr-99 1,468 Apr-03 1,616
May-95 1,603 May-99 1,877 May-03 2,071
Jun-95 1,388 Jun-99 1,635 Jun-03 1,711
Jul-95 1,259 Jul-99 1,596 Jul-03 1,677
Aug-95 1,393 Aug-99 1,617 Aug-03 1,761
Sep-95 1,325 Sep-99 1,530 Sep-03 1,629
Oct-95 1,371 Oct-99 1,653 Oct-03 1,759
Nov-95 1,867 Nov-99 2,179 Nov-03 2,291
Dec-95 4,467 Dec-99 6,075 Dec-03 6,171
Jan-96 1,043 Jan-00 1,253 Jan-04 1,461
Feb-96 1,439 Feb-00 1,991 Feb-04 2,344
Mar-96 1,316 Mar-00 1,510 Mar-04 1,764
Apr-96 1,359 Apr-00 1,570 Apr-04 1,826
May-96 1,768 May-00 2,139 May-04 2,226
Jun-96 1,408 Jun-00 1,783 Jun-04 1,882
Jul-96 1,375 Jul-00 1,643 Jul-04 1,787
Aug-96 1,477 Aug-00 1,770 Aug-04 1,794
Sep-96 1,332 Sep-00 1,705 Sep-04 1,726
Oct-96 1,462 Oct-00 1,681 Oct-04 1,845
Nov-96 1,843 Nov-00 2,174 Nov-04 2,399
Dec-96 4,495 Dec-00 5,769 Dec-04 6,489
Jan-97 1,041 Jan-01 1,331 Jan-05 1,458
Feb-97 1,411 Feb-01 1,973 Feb-05 2,394
Mar-97 1,183 Mar-01 1,580 Mar-05 1,773
Apr-97 1,267 Apr-01 1,545 Apr-05 1,909
May-97 1,597 May-01 1,992 May-05 2,243
Jun-97 1,341 Jun-01 1,629 Jun-05 1,953
Jul-97 1,322 Jul-01 1,530 Jul-05 1,754
Aug-97 1,359 Aug-01 1,679 Aug-05 1,940
Sep-97 1,344 Sep-01 1,394 Sep-05 1,743
Oct-97 1,406 Oct-01 1,586 Oct-05 1,878
Nov-97 1,813 Nov-01 2,152 Nov-05 2,454
Dec-97 4,694 Dec-01 5,337 Dec-05 6,717
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Seasonally adjusted jewelry sales

Jewelry sales ($ Millions)
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FIGURE 4.4
Jewelry Sales in

Millions of Dollars

Here we see clearly the

seasonality of jewelry

sales in the raw data

(dashed line). The

deseasonalized data

(solid line) helps us

see the upward trend

more clearly.

(c4t4&f4)

A JEWELRY SALES FORECAST BASED ON
DISPOSABLE PERSONAL INCOME

If we hypothesize that disposable personal income (DPI) is influential in deter-

mining JS, we might initially want to look at a scattergram of these two variables.

This is shown in Figure 4.5, where JS is plotted on the vertical axis and DPI is on

the horizontal axis. You can see that higher values of JS appear to be associated

with higher incomes. All observations do not fall on a single straight line. In the

top graph you can see the effect of seasonality in a dramatic way. The 12 highest

points are all December data points due to high holiday season sales.

In the lower graph the JS data are shown after the seasonality has been re-

moved. In Chapter 6 you will learn how to deseasonalize data and how to find sea-

sonal indices. In the bottom graph you can see that a straight line through those

points could provide a reasonably good fit to the data. You also can see that all of

these observations are well away from the origin. The importance of this observa-

tion will be apparent as we discuss the regression results below.

The bivariate regression model for JS as a function of DPI may be written as:

JS  b0  b1(DPI)

The JS data used to estimate values for b0 and b1 are given in Table 4.4 and the

data for DPI are in Table 4.2. The basic regression results are shown in Figure 4.6,

along with a graph of the actual and predicted values based on this model. To use

this model to forecast for 2005, a Holt’s exponential smoothing forecast of DPI

was used. On the basis of these results the forecast model (equation) for jewelry

sales as a function of disposable personal income per capita is:

JS  125.57  0.26(DPI)
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Data for 1994–2004 were used to estimate this model. The positive slope (0.26)

indicates that, on average, JS increases by 0.26 million dollars for each additional

1 billion dollar increase in disposable personal income. A major problem with this

model is apparent in Figure 4.6. It is clear from the graph of actual and predicted

retail sales that this model fails to deal with the seasonality in JS.

The failure of this model to deal well with the seasonal nature of jewelry sales

suggests that either we should use a model that can account for seasonality di-

rectly or we should deseasonalize the data before developing the regression fore-

casting model. In Chapter 3 you learned how to forecast a seasonal series with

Winters’ exponential smoothing. In the next chapter you will see how regression

methods can also incorporate seasonality, and in Chapter 6 you will see how a sea-

sonal pattern can be modeled using time-series decomposition. We will now de-

velop a model based on seasonally adjusted jewelry sales data (SAJS) and then

reintroduce the seasonality as we develop forecasts.
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Jewelry Sales

Forecast as a

Function of DPI

We see that the upward

trend in jewelry sales

is accounted for by the

regression model but

the seasonality is not

taken into account.

Thus, for any given

month in 2005 the

forecast is likely to be

substantially incorrect.

The December 2005

forecast is surely much

too low. (c4f6)

Multiple Regression--Result Formula

Jewelry Sales ($Millions) = 125.57 + ((DPI) * 0.259512)

Forecast--Multiple Regression Selected

Forecast

----------------------------------------------

Date Monthly Quarterly Annual

-----------------------------------------------------------

Jan-2005 2,516.26

Feb-2005 2,526.73

Mar-2005 2,537.20 7,580.20

Apr-2005 2,547.68

May-2005 2,558.15

Jun-2005 2,568.62 7,674.44

Jul-2005 2,579.09

Aug-2005 2,589.56

Sep-2005 2,600.03 7,768.69

Oct-2005 2,610.51

Nov-2005 2,620.98

Dec-2005 2,631.45 7,862.93 30,886.27

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS Overall F-test SEE

-------------------------------------------------------------------  --------

Regression 11,261,517.30 1 11,261,517.30 9.78

Error 149,658,345.67 130 1,151,218.04 1,072.95

-------------------------------------------------------------------  --------

Total 160,919,862.97 131
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Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in model Coefficient

Standard

error T-test P-value

-----------------------------------------------------------------------------

Jewelry Sales Dependent 125.57 571.02 0.22 0.83

DPI Yes 0.26 0.08 3.13 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------    ----------------------------------

Mean Absolute Percentage

Error (MAPE) 26.99%

R-Square 7.00%

Durbin Watson (1) 1.99

Root Mean Square

Error 1,064.79

When jewelry sales are seasonally adjusted, the following seasonal indices are

found (arithmetically normalized to average 1):

January 0.63
February 0.92
March 0.75
April 0.78
May 1.01
June 0.83
July 0.79
August 0.84
September 0.77
October 0.83
November 1.08
December 2.77

Note that the seasonal index is highest during the holiday shopping months

of November and December. The index of 2.77 for December indicates that

December sales are typically 2.77 times the monthly average for the year. There

are several ways to calculate seasonal indices. The method used here is described

in Chapter 6 using time-series decomposition.5 In Chapter 3 you saw similar

indices based on Winters’ exponential smoothing.

When we regress the seasonally adjusted values of jewelry sales (SAJS) as

a function of disposable personal income using data for 1994–2004, we get the

results shown at the bottom of Figure 4.7 and summarized by the following

equation:

SAJS  313.84  0.23(DPI)

5 In ForecastX use the “Decomposition” forecast method. Then for “Type” select “Multiplica-

tive” and for “Decomposed Data” select “Trend (Linear) Regression.”
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The upward trend in

SAJS is seen clearly

in this graph. The

forecast values for

2005, however, now

need to be readjusted

to put the seasonality

back into the forecast.

This is done for 2005

in Figure 4.8. 

(c4f7)

Multiple Regression--Result Formula

Seasonally Adjusted Jewelry Sales = 313.84 + ((DPI) * 0.234484)

Forecast--Multiple Regression Selected

Forecast

-------------------------------------------------

Date Monthly Quarterly Annual

---------------------------------------------------------------

Jan-2005 2,473.96

Feb-2005 2,483.42

Mar-2005 2,492.89 7,450.27

Apr-2005 2,502.35

May-2005 2,511.81

Jun-2005 2,521.27 7,535.43

Jul-2005 2,530.73

Aug-2005 2,540.19

Sep-2005 2,549.66 7,620.58

Oct-2005 2,559.12

Nov-2005 2,568.58

Dec-2005 2,578.04 7,705.74 30,312.02

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS Overall F-test SEE

-------------------------------------------------------------------  --------

Regression 9,194,067.24 1 9,194,067.24 787.42

Error 1,517,899.59 130 11,676.15 108.06

-------------------------------------------------------------------  --------

Total 10,711,966.83 131
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We can substitute values of DPI into this equation to get predictions for seasonally

adjusted jewelry sales (SAJS).

These values, as well as the values the model predicts for the historical period,

are plotted in Figure 4.7, along with the actual data for 1994 through 2004. Dur-

ing the historical period, actual values of DPI were used to calculate SAJS, while

in the forecast period (2005) forecast values of DPI using Holt’s exponential

smoothing were used.

Then, multiplying SAJS by the seasonal index for each quarter, we obtain a pre-

diction of the unadjusted jewelry sales for each quarter. This process is illustrated

in Figure 4.8 along with a graph of the actual and forecast values for jewelry sales

for 2005. The RMSE for 2005 for the final forecast is 227.61, which is 9.7 percent

of the actual sales for that 12-month period. The comparison between actual and

forecast values for 2005 is shown in the graph at the bottom of Figure 4.8.

STATISTICAL EVALUATION OF REGRESSION MODELS

Now that you have a basic understanding of how simple bivariate regression mod-

els can be applied to forecasting, let us look more closely at some things that

should be considered in evaluating regression models. The three regression mod-

els developed above will be used as the basis for our initial discussion. These are

reproduced in Table 4.5. After evaluating these models in more detail, we will turn

our attention to the use of bivariate regression models to forecast total houses sold

and the sales of The Gap.

Basic Diagnostic Checks for Evaluating Regression Results
There are several things you should consider when you look at regression results.

First, ask yourself whether the sign on the slope term makes sense. There is almost

always an economic or business logic that indicates whether the relationship

between the dependent variable (Y) and the independent variable (X) should be

positive or negative.

Audit Trail--Coefficient Table (Multiple Regression Selected)

SAJS=Seasonally Adjusted Jewelry Sales

Series

Description

Included

in model Coefficient

Standard

error T-test P-value

-----------------------------------------------------------------------------

SAJS Dependent 313.84 57.51 5.46 0.00

DPI Yes 0.23 0.01 28.06 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

--------------------------------------    -----------------------------------

Mean Absolute Percentage

Error (MAPE) 4.28%

R-Square 85.83%

Durbin Watson (1) 0.78

Root Mean Square Error

107.23

First, ask yourself

whether the sign on the

slope term makes sense.
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FIGURE 4.8
Jewelry Sales Final

Forecast for 2005

The final forecast

was found by first

forecasting the trend

for seasonally adjusted

jewelry sales (SAJS).

These values were then

multiplied by the

seasonal indices to

get the final forecast.

Actual and forecast

values are shown in the

graph for each month

of 2005. (c4f8)

Date Actual SAJS
SAJS Trend

Forecast Error Squared

Jan-05 2,301.31 2,473.96 29,808.31
Feb-05 2,601.46 2,483.42 13,931.98
Mar-05 2,368.89 2,492.89 15,374.44
Apr-05 2,445.54 2,502.35 3,227.12
May-05 2,231.30 2,511.81 78,683.88
Jun-05 2,342.79 2,521.27 31,855.04
Jul-05 2,220.57 2,530.73 96,202.60
Aug-05 2,308.28 2,540.19 53,784.93
Sep-05 2,252.70 2,549.66 88,183.83
Oct-05 2,272.84 2,559.12 81,955.47
Nov-05 2,276.38 2,568.58 85,380.47
Dec-05 2,425.01 2,578.04 23,419.05

MSE  50,150.59

RMSE  223.94

MSE  51,804.47

RMSE  227.61

Date
SAJS Trend

Forecast
Seasonal
Indices

Re-seasonalized
Forecast Actual JS

Error
Squared

Jan-05 2,473.96 0.63 1,567.38 1458 11,964.70
Feb-05 2,483.42 0.92 2,285.38 2394 11,798.53
Mar-05 2,492.89 0.75 1,865.80 1773 8,612.45
Apr-05 2,502.35 0.78 1,953.34 1909 1,966.43
May-05 2,511.81 1.01 2,524.98 2243 79,511.05
Jun-05 2,521.27 0.83 2,101.78 1953 22,136.84
Jul-05 2,530.73 0.79 1,999.00 1754 60,023.08
Aug-05 2,540.19 0.84 2,134.91 1940 37,991.62
Sep-05 2,549.66 0.77 1,972.77 1743 52,793.17
Oct-05 2,559.12 0.83 2,114.55 1878 55,954.08
Nov-05 2,568.58 1.08 2,769.00 2454 99,224.32
Dec-05 2,578.04 2.77 7,140.88 6717 179,677.45
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TABLE 4.5 Basic Results for Three Bivariate Regression Models (c4t5)

Model 1. DPI  4,478.26  30.11 (Time Index)

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series Description Coefficient Standard error T-test P-value

---------------------------------------------------------------------

DPI 4,478.26 21.40 209.29 0.00

Time Index 30.11 0.22 137.10 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

-------------------------------------------------        ---------------------------------

Mean Absolute Percentage Error (MAPE) 1.68% Durbin Watson (1) 0.18

R-Square 99.12% Root Mean Square Error 137.23

SEE 138.05

Model 2. Jewelry Sales ($ Millions)  125.57  0.259512(DPI)

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series Description Coefficient Standard error T-test P-value

---------------------------------------------------------------------

Jewelry Sales 125.57 571.02 0.22 0.83

DPI 0.26 0.08 3.13 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

-------------------------------------------------        -----------------------------------

Mean Absolute Percentage Error (MAPE) 26.99% Durbin Watson (1) 1.99

R-Square 7.00% Root Mean Square Error 1,064.79

SEE 1,072.95

Models 3. Seasonally Adjusted Jewelry Sales (SAJS)  313.84  0.234484(DPI)

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series Description Coefficient Standard error T-test P-value

---------------------------------------------------------------------

SAJS 313.84 57.51 5.46 0.00

DPI 0.23 0.01 28.06 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

-------------------------------------------------        ---------------------------------

Mean Absolute Percentage Error (MAPE) 4.28% Durbin Watson (1) 0.78

R-Square 85.83% Root Mean Square Error 107.23

SEE 108.06
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In the examples considered in this chapter, a positive sign makes sense. In the

first model we know that disposable personal income in the United States has

generally increased over time. There have been some short periods of decline

but such periods have been exceptions. Thus, we would expect the positive sign

on the coefficient for the time index in the trend model for DPI. In the other

examples, where jewelry sales (JS) and seasonally adjusted jewelry sales

(SAJS) are modeled as a function of disposable personal income (DPI), a posi-

tive sign is also logical. For most goods and services, sales can be expected to

increase as income increases.

What if the signs do not make sense? This is a clear indication that something

is wrong with the regression model. It may be that the model is incomplete and

that more than one independent variable is needed. In such a case the model is said

to be underspecified. If so, a multiple-regression model may be appropriate. (Such

models will be discussed in Chapter 5.) It would not be wise to use regression

models that have coefficients with signs that are not logical.

The second thing that should be considered in an initial evaluation of a regres-

sion model is whether or not the slope term is significantly positive or negative. If

not, then there is probably no statistical relationship between the dependent and

independent variables. If the slope is zero, the regression line is perfectly hori-

zontal, indicating that the value of Y is independent of the value of X (i.e., there is

probably no relationship between X and Y ) .

But how far from zero need the slope term be? In the first example in Table 4.5

the slope is 30.11, in the second it is 0.26, and in the third model the slope is 0.23.

The first is a relatively large number in terms of how much above zero it is, but we

must be cautious about evaluating just the size of the slope term. To determine if

the slope is significantly greater or less than zero, we must test a hypothesis con-

cerning the true slope. Remember that our basic regression model is:

Y   0   1X   

If  1  0, then Y   0 regardless of the value of X.

When we have a predisposition about whether the coefficient should be posi-

tive or negative based on our knowledge of the relationship, a one-tailed hypothe-

sis test is appropriate. If our belief suggests a positive coefficient, the hypothesis

would be set up as follows:

H0:   0

H1:   0

This form would be correct for the three cases in Table 4.5, since in all these cases

a direct (positive) relationship is expected.

When our belief suggests a negative coefficient, the hypothesis would be set up

as follows:

H0:   0

H1:   0

This form would be correct when an inverse (negative) relationship is expected.

It would not be wise to

use regression models

that have coefficients

with signs that are not

logical.

The second thing that

should be considered in

an initial evaluation of 

a regression model is

whether or not the slope

term is significantly pos-

itive or negative.
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In some situations we may not have a specific expectation about the direction

of causality, in which case a two-tailed hypothesis test is used. The hypothesis

would be set up as follows:

H0:   0

H1:   0

The appropriate statistical test is a t-test, where the calculated value of t (tcalc) is

equal to the slope term minus zero, divided by the standard error of the slope.6

That is:

tcalc  (b1  0) (s.e. of b1) 

It is typical to use a 95 percent confidence level (an  , or significance level, of 

5 percent) in testing this type of hypothesis. The appropriate number of degrees of

freedom in bivariate regression is always n – 2, where n is the number of observations

used in estimating the model. As described above, when we have a greater-than or

less-than sign in the alternative hypothesis, a one-tailed test is appropriate.

For our present examples there are 130 degrees of freedom (132 – 2). From the

t-table on page 73 we find the critical value of t (such that 0.05 is in one tail) to be

1.645 (using the infinity row). The calculated values of t are:

6 The standard error of the estimated regression coefficient measures the sampling variability

of b1 about its expected value  1, the true population parameter.
7 A phenomenon known as serial correlation (which we will discuss shortly) may cause

coefficients to appear significantly different from zero (as measured by the t-test) when in

fact they are not.
8 Remember that the confidence level and the significance level add to one. Thus, if we know

one of these, we can easily determine the other.

For all three cases the calculated values are larger (more positive) than the crit-

ical, or table, value so we can reject H0 in all cases and conclude that the regres-

sion coefficients are significantly greater than zero. If this statistical evaluation of

the coefficients in a regression analysis results in failure to reject the null hypoth-

esis, then it is probably not wise to use the model as a forecasting tool.7 However,

it is not uncommon to relax the criterion for evaluation of the hypothesis test to a

90 percent confidence level (a 10 percent significance level).

In determining whether or not to reject H0, an alternative to comparing t-values

is to consider the significance level (often called the P-value) given in most com-

puter output. Let us assume that we desire a 95 percent confidence level. This is

the equivalent of saying that we desire a 5 percent significance level.8

The t-values shown here are from Table 4.5. If you do these calculations by hand, results will differ from the values shown

here and in Table 4.5 due to rounding.

For the DPI
Trend Model

For the JS  f(DPI)
Causal Model

For the SAJS  f(DPI)
Causal Model

tcalc  (30.11  0) 0.22
 137.1

tcalc  (0.26  0) 0.08
 3.13

tcalc  (0.23  0) 0.01
 28.06
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For a two-tailed hypothesis test (H1:  1  0), we can then reject H0 if the re-

ported two-tailed significance level9 in the output is less than 0.05. For a one-

tailed hypothesis test (H1:  1 < 0 or H1:  1 > 0), we can reject H0 if one-half of the

reported two-tailed significance level is less than 0.05.

In all three of the examples in Table 4.5 the two-tailed significance levels asso-

ciated with the calculated t-ratios are 0.00. Clearly, one-half of 0.00 is less than

0.05, so it is appropriate to reject H0 in all three cases. Note that we reach the same

conclusion whether we evaluate the hypotheses by comparing the calculated and

table t-ratios or by looking at the significance levels.

The third check of regression results is to evaluate what percent of the variation

(i.e., up-and-down movement) in the dependent variable is explained by variation

in the independent variable. This is evaluated by interpreting the R-squared value

that is reported in regression output. R-squared is the coefficient of determination,

which tells us the fraction of the variation in the dependent variable that is explained

by variation in the independent variable. Thus, R-squared can range between zero

and one. Zero would indicate no explanatory power, while one would indicate that

all of the variation in Y is explained by the variation in X. (A related statistic,

adjusted R-squared, will be discussed in Chapter 5.)

Our trend model for disposable personal income (DPI) has an R-squared of .9912.

Thus, 99.12 percent of the variation in disposable personal income is accounted for

by this simple linear trend model. The causal model for jewelry sales as a function

of DPI has an R-squared of .07, which suggests that 7.0 percent of the variation in

jewelry sales is explained by variations in disposable personal income. The model

for seasonally adjusted jewelry sales as a function of DPI has an R-squared of

.8583. Thus, variations in the DPI explain only 85.83 percent of the variation in

seasonally adjusted jewelry sales.

It is possible to perform a statistical test to determine whether the the coeffi-

cient of determination (R2) is significantly different from zero. The hypothesis test

may be stated as:

H0: R2
 0

H1: R2
 0

The appropriate statistical test is an F-test, which will be presented in Chapter 5.

With bivariate regression it turns out that the t-test for the slope term in the re-

gression equation is equivalent to the F-test for R-squared. Thus, we will wait until

we explore multiple-regression models to discuss the application of the F-test.

Before considering other statistical diagnostics, let us summarize these three

initial evaluative steps for bivariate regression models:

1. Ask whether the sign for the slope term makes sense.

2. Check to see whether the slope term is statistically positive or negative at the

desired significance level by using a t-test.

9 In ForecastX™, as well as most other statistical packages, two-tailed significance levels are

reported. These are frequently referred to as P-values, as is the case in ForecastX™.

The third check of re-

gression results is to

evaluate what percent 

of the variation (i.e., up-

and-down movement) in

the dependent variable is

explained by variation in

the independent variable.
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3. Evaluate how much of the variation in the dependent variable is explained by

the regression model using the R-squared (R2) value.

These three items can be evaluated from the results presented in standard com-

puter output, such as those shown in Table 4.5.

USING THE STANDARD ERROR OF THE ESTIMATE

The forecasts we made in the preceding pages—using a simple linear trend

model and the two causal regression models—were point estimates. In each case

we substituted a value for the independent variable into the regression equation

to obtain a single number representing our best estimate (forecast) of the dependent

variable. It is sometimes useful to provide an interval estimate rather than a point

estimate.

The standard error of the estimate (SEE) can be used to generate approximate

confidence intervals with relative ease. The SEE is often also called the standard

error of the regression. The confidence intervals we present here are approximate

because the true confidence band is not parallel to the regression line but rather

bows away from the regression line at values of Y and X far from the means. This

is illustrated in Figure 4.9. The approximate 95 percent confidence interval can be

calculated as follows:10

Point estimate  2 (standard error of the estimate)

10 The true 95 percent confidence band for predicting Y for a given value of X (X0) can be

found as follows:

ˆ
Y  t(SEE) 1  (1 n)  [(X0  X

–
)2  (X  X

–
)2]

where t is the appropriate value from the t-distribution at n – 2 degrees of freedom and the

desired significance level, SEE is the standard error of the estimate, and Ŷ is the point estimate

determined from the estimated regression equation.

Approximate 

95 percent

confidence band

True 95 percent

confidence band

Y

X

Y
–

X
–

FIGURE 4.9

Confidence Bands

around a Regression

Line

The true confidence

band bows away from

the regression line. An

approximate 95 per-

cent confidence band

can be calculated by

taking the point esti-

mate for each X, plus

or minus 2 times the

standard error of the

estimate.
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The value of 2 is used as an easy approximation for the correct t-value. Recall that

if there are a large number of degrees of freedom, t  1.96.

Representative calculations of approximate 95 percent confidence bands for

the regression forecasts developed for DPI and SAJS are shown in Table 4.6. The

standard errors of the regressions are taken from Table 4.5, while the point esti-

mates for each model and each quarter are those that were found in the previous

sections “Forecasting with a Simple Linear Trend” and “Using a Causal Regres-

sion Model to Forecast.”

SERIAL CORRELATION

Business and economic data used in forecasting are most often time-series data.

The retail sales data and the real disposable personal income data used in this

chapter are typical of such time series. In using regression analysis with time-

series data, the problem known as serial correlation (also called autocorrelation)

can cause some difficulty.

One of the assumptions of the ordinary least-squares regression model is that

the error terms are independent and normally distributed, with a mean of zero and

a constant variance. If this is true for a particular case, we would not expect to find

any regular pattern in the error terms. When a significant time pattern that violates

the independence assumption is found in the error terms, serial correlation is

indicated.

Figure 4.10 illustrates the two possible cases of serial correlation. In the left-

hand graph, the case of negative serial correlation is apparent. Negative serial cor-

relation exists when a negative error is followed by a positive error, then another

negative error, and so on. The error terms alternate in sign. Positive serial correla-

tion is shown in the right-hand graph in Figure 4.10. In positive serial correlation,

positive errors tend to be followed by other positive errors, while negative errors

are followed by other negative errors.

When serial correlation exists, problems can develop in using and interpreting

the OLS regression function. The existence of serial correlation does not bias the

TABLE 4.6
Representative

Calculations of

Approximate 

95 Percent Confidence

Intervals: Point 

Estimate  2  

Standard Error of

the Estimate (SEE)*

For DPI:
2  SEE  2  138.05  276.1

Period 95 Percent Confidence Interval Actual DPI

January 2007 9,934.7  276.1  9,658.6 to 10,210.8 9,934.7

For SAJS:
2  SEE  2  108.06  216.12

Period 95 Percent Confidence Interval Actual SAJS†

December 2005 2,578.04  216.12  2,361.92 to 2,794.16 2,424.9

* Point estimates have been rounded to integers.
† Note that this is for jewelry sales seasonally adjusted.
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coefficients that are estimated, but it does make the estimates of the standard er-

rors smaller than the true standard errors. This means that the t-ratios calculated

for each coefficient will be overstated, which in turn may lead to the rejection of

null hypotheses that should not have been rejected. That is, regression coefficients

may be deemed statistically significant when indeed they are not. In addition,

the existence of serial correlation causes the R-squared and F-statistics to be

unreliable in evaluating the overall significance of the regression function (the

F-statistic will be discussed in Chapter 5).

There are a number of ways to test statistically for the existence of serial cor-

relation. The method most frequently used is the evaluation of the Durbin-Watson

statistic (DW). This statistic is calculated as follows:

DW  

where et is the residual for the time period t, and et–1 is the residual for the pre-

ceding time period (t – 1). Almost all computer programs for regression analysis

include the Durbin-Watson statistic, so you are not likely to have to calculate it

directly.

The DW statistic will always be in the range of 0 to 4. As a rule of thumb, a

value close to 2 (e.g., between 1.50 and 2.50) indicates that there is no serial cor-

relation. As the degree of negative serial correlation increases, the value of the

DW statistic approaches 4. If positive serial correlation exists, the value of DW

approaches 0.

To be more precise in evaluating the significance and meaning of the calculated

DW statistic, we must refer to a Durbin-Watson table, such as Table 4.7. Note that

 (et et 1)
2

   

 e
2
t

FIGURE 4.10 Negative and Positive Serial Correlation

The left-hand graph shows an example of negative serial correlation; the right-hand graph illustrates positive serial

correlation. The latter is common when dealing with business data.

XX

YY
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for each number of independent variables (k), two columns of values labeled dl and

du are given. The values in these columns for the appropriate number of observations

(N) are used in evaluating the calculated value of DW according to the criteria shown

in Figure 4.11.

k  1 k  2 k  3 k  4 k  5

N dl du dl du dl du dl du dl du

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.53 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

TABLE 4.7
The Durbin-Watson

Statistic

Source: J. Durbin and G. S.

Watson, “Testing for Serial

Correlation in Least Squares

Regression,” Biometrika 38

(June 1951), p. 173.

k  the number of independent variables; N  the number of observations used in the regression.
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To illustrate, let us consider the simple trend regression for disposable personal

income (DPI). From Table 4.5 (see page 180) you see that the calculated Durbin-

Watson statistic is 0.18. Using Table 4.7, we find for k  1 and N  168 that:

dl 1.65

du  1.69

For a sample size not in this table, use the closest value. For example, in the above

case in which N  168 we use the row for N  100.

Using these values and our calculated value, we can evaluate the criteria in

Figure 4.11:

Since our result is in region E, we can conclude that positive serial correlation ex-

ists in this case.11 You can see evidence of this positive serial correlation if you

look in Figure 4.3 (page 168) at how the regression line (fitted) is at first below,

then above, and then below the actual data in a recurring pattern.

You might well ask: What causes serial correlation and what can be done

about it? A primary cause of serial correlation is the existence of long-term cycles

and trends in economic and business data. Such trends and cycles are particularly

11 Check for serial correlation in the regression of SAJS as a function of DPI. You should find

that with a calculated Durbin-Watson statistic of 0.78, with k  1, and using N  100, the

criterion in region E is satisfied, indicating positive serial correlation.

A primary cause of

serial correlation is the

existence of long-term

cycles and trends in

economic and business

data.

FIGURE 4.11
A Schematic for

Evaluating Serial

Correlation Using

the Durbin-Watson

Statistic

du  Upper value of

Durbin-Watson

from Table 4.7

dl Lower value of

Durbin-Watson

from Table 4.7

H0:   0 (i.e., no

serial

correlation) 

H1:   0 (i.e., serial

correlation

exists)

Value of Calculated 

Durbin-Watson Result

Region

Designator

A

B

C

D

E

Region Comparison Result

A 4  0.18  (4  1.65) False
B (4  1.65)  0.18  (4  1.69) False
C (4  1.69)  0.18  1.69 False
D 1.69  0.18  1.65 False
E 1.65  0.18  0 True

4

4 – dl

4 – du

2

du

dl

0
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likely to produce positive serial correlation. Serial correlation can also be caused

by a misspecification of the model. Either leaving out one or more important

variables or failing to include a nonlinear term when one is called for can be a

cause.

We can try several relatively simple things to reduce serial correlation. One is

to use first differences of the variables rather than the actual values when perform-

ing the regression analysis. That is, use the change in each variable from period to

period in the regression. For example, we could try the following:

 Y  b0  b1( X )

where  means “change in” and is calculated as follows:

 Yt  Yt Yt 1

 Xt  Xt Xt 1

This process of “first-differencing” will be seen again in Chapter 7, when we dis-

cuss ARIMA forecasting models.

Other approaches to solving the serial correlation problem often involve moving

into the realm of multiple regression, where there is more than one independent

variable in the regression model. For example, it may be that other causal factors

account for the differences between the actual and predicted values. For example,

in the jewelry sales regression, we might add the interest rate and the unemploy-

ment rate as additional independent variables.

A third, and somewhat related, approach to dealing with serial correlation is to

introduce the square of an existing causal variable as another independent vari-

able. Also, we might introduce a lag of the dependent variable as an independent

variable. Such a model might look as follows:

Yt b0  b1Xt  b2Yt 1

where t represents the current time period and t – 1 represents the previous time

period.

There are other procedures, based on more sophisticated statistical models,

that are helpful in dealing with the problems created by serial correlation. These

are typically based on an extension of the use of first differences in that they in-

volve the use of generalized differencing to alter the basic linear regression model

into one for which the error terms are independent of one another (i.e.,   0,

where  [rho] is the correlation between successive error terms).

The basic regression model is:

Yt  0   1Xt  t

and since this is true for all time periods, it follows that:

Yt 1  0   1Xt 1  t 1

Multiplying the second of these equations by  and subtracting the result from the

first yields the following generalized-differencing transformed equation:

Y*
t (1   ) 0   1X

*
t vt
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where:

Y*
t Yt  Yt 1

X*
t Xt  Xt 1

vt  t   t 1

It can be shown that the resulting error term, vt, is independently distributed with

a mean of zero and a constant variance.12 The problem with this generalized-

differencing model is that we do not know the correct value for  . Two common

methods for estimating  and the corresponding regression model are the

Cochrane-Orcutt procedure and the Hildreth-Lu procedure.13

The Cochrane-Orcutt procedure uses an iterative approach to estimate the

value for  , starting with the standard OLS regression model, from which

the residuals (et) are used to estimate the equation et   et–1 + vt. The estimated

value of  is then used to perform the generalized-differencing transformation,

and a new regression is run. New error terms result and are used to make another

estimate of  . This process continues until the newest estimate of  differs from

the previous one by a prescribed amount (such as 0.01).

HETEROSCEDASTICITY

One of the assumptions of regression analysis is that the error terms in the popu-

lation regression ( i) have a constant variance across all values of the independent

variable (X). When this is true, the model is said to be homoscedastic, and if this

assumption is violated, the model is termed heteroscedastic. With heteroscedas-

ticity, the standard errors of the regression coefficients may be underestimated,

causing the calculated t-ratios to be larger than they should be, which may lead us

to conclude incorrectly that a variable is statistically significant. Heteroscedastic-

ity is more common with cross-sectional data than with time-series data.

We can evaluate a regression model for heteroscedasticity by looking at a scat-

terplot of the residuals (on the vertical axis) versus the independent variable (on

the horizontal axis). In an ideal model, the plot of the residuals would fall within

a horizontal band, as shown in the top graph of Figure 4.12. This graph illustrates

a residual pattern representative of homoscedasticity. A typical heteroscedastic

situation is shown by the funnel-shaped pattern of residuals in the lower graph of

Figure 4.12.

One common way to reduce or eliminate a problem of heteroscedasticity is to

use the logarithm of the dependent variable in the estimation of the regression

model. This often works because the logarithms will have less overall variability

12 Most econometrics books describe the underlying statistical theory as well as the two cor-

rection procedures we include herein. For example, see Pindyck and Rubinfeld, Econometric

Models and Economic Forecasts, 3rd ed., 1991, pp. 137–47.
13 While these methods help solve the serial-correlation problem, they are not often used in

practice for forecasting, largely due to their added complexity and inability to produce fore-

casts beyond a very short time frame.
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than the raw data. A second possible solution would be to use a form of regression

analysis other than the ordinary least-squares method. Discussion of such methods

is beyond the scope of this text but can be found in many econometric texts.

To illustrate the evaluation of a specific model for heteroscedasticity, let us

look at the model of seasonally adjusted jewelry sales (SAJS) as a function of dis-

posable personal income (DPI). The top graph in Figure 4.13 shows a scattergram

of the residuals from that model. There does appear to be a systematic pattern to

the residuals that would lead us to suspect heteroscedasticity in this case. How-

ever, when the natural logarithm of SAJS is used as the dependent variable, the

pattern of residuals is much better.

CROSS-SECTIONAL FORECASTING

While most forecasting is based on time-series data, there are situations in

which cross-sectional analysis is useful. In cross-sectional analysis the data all

pertain to one time period rather than a sequence of periods. Suppose, for exam-

ple, that you are the sales manager for a firm that sells small specialty sand-

wiches through convenience stores. You currently operate in eight cities and are

FIGURE 4.12
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considering expanding into another. You have the data shown at the top of Table 4.8

for the most recent year’s sales and the population of each city. You may try to pre-

dict sales based on population by using a bivariate regression model. The model

may be written as:

Sales b0  b1(POP)

Regression results for this model, given the eight data points just shown, are pre-

sented in Table 4.8.

These results show the expected positive sign for the coefficient of population.

The critical value of t from the t-table at six degrees of freedom (n – 2  6) and a

5 percent significance level (one-tailed test) is 1.943. Since the calculated value

for population is greater (8.00 > 1.943), we conclude that there is a statistically

significant positive relationship between sales and population. The coefficient of

Residuals from  SAJS = f (DPI)
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FIGURE 4.13
Scatterplot of the

Residuals from the

Regression of SAJS

with DPI

The top scatterplot

shows a pattern that

would suggest het-

eroscedasticity. The

lower graph, in which

logarithms are used,

has a more desirable

pattern. (c4f13)
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determination (R-squared) is 0.914, which tells us that 91.4 percent of the varia-

tion in sales is explained by the variation in population.

Now suppose that the city that you are considering expanding into has a popu-

lation of 155,000. You can use the regression results to forecast sales as follows:

Sales 37.02  0.67(POP)

 37.02  0.67(155)

 140.87

Remember that sales are in thousands, so this is a point estimate of 140,870 sand-

wiches.An approximate 95 percent confidence band could be constructed as follows:

Point estimate  2(standard error of regression)  140.870  2(32.72)

 140.870  65.44

 75.43 to 206.31

That is, about 75,430 to 206,310 sandwiches.

FORECASTING TOTAL HOUSES SOLD 
WITH TWO BIVARIATE REGRESSION MODELS

You may recall that the total houses sold (THS) series that we forecast in Chapters

1 and 3 showed quite a bit of variability, including a substantial seasonal com-

ponent. Therefore, you might expect that it would be difficult to forecast such a

series based on a simple regression equation with one causal variable. One thing

that would make the process more workable would be to deseasonalize the THS

data prior to attempting to build a regression model. The original THS data and the

seasonal indices are shown in Table 4.9.

Population (000) Sales (000)
-----------------------------------

505 372

351 275

186 214

175 135

132 81

115 144

108 90

79 97

Regression Statistic
--------------------------

Multiple R 0.956

R-Square 0.914

Standard error 32.72

Observations 8

Coefficient Standard Error T-test P-value
-------------------------------------------------------------------

Intercept 37.02 20.86 1.77 0.126

Population (000) 0.67 0.08 8.00 0.000

TABLE 4.8
Regression Results

for Sales as a Func-

tion of Population

The Durbin-Watson statistic is not shown because it is not relevant for cross-sectional data. Indeed, the order

in which the data are placed will change the Durbin-Watson statistics.
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Date

TABLE 4.9
Data and Seasonal

Indices for Forecast-

ing Total Houses

Sold (THS)

Data for 1993

through 2006 are

used to make a

forecast for the first

7 months of 2007.

The trend regression

results for seasonally

adjusted THS are

shown in Figure 4.14.

The forecast for the

first 7 months of

2007 are shown in

Figure 4.15. (c4t9)

Total
Houses

Sold (000) Date

Total
Houses

Sold (000) Date

Total
Houses

Sold (000) Date

Total
Houses

Sold (000)

Jan-93 44 Jan-97 61

Feb-93 50 Feb-97 69

Mar-93 60 Mar-97 81

Apr-93 66 Apr-97 70

May-93 58 May-97 71

Jun-93 59 Jun-97 71

Jul-93 55 Jul-97 69

Aug-93 57 Aug-97 72

Sep-93 57 Sep-97 67

Oct-93 56 Oct-97 62

Nov-93 53 Nov-97 61

Dec-93 51 Dec-97 51

Jan-94 46 Jan-98 64

Feb-94 58 Feb-98 75

Mar-94 74 Mar-98 81

Apr-94 65 Apr-98 82

May-94 65 May-98 82

Jun-94 55 Jun-98 83

Jul-94 52 Jul-98 75

Aug-94 59 Aug-98 75

Sep-94 54 Sep-98 68

Oct-94 57 Oct-98 69

Nov-94 45 Nov-98 70

Dec-94 40 Dec-98 61

Jan-95 47 Jan-99 67

Feb-95 47 Feb-99 76

Mar-95 60 Mar-99 84

Apr-95 58 Apr-99 86

May-95 63 May-99 80

Jun-95 64 Jun-99 82

Jul-95 64 Jul-99 78

Aug-95 63 Aug-99 78

Sep-95 54 Sep-99 65

Oct-95 54 Oct-99 67

Nov-95 46 Nov-99 61

Dec-95 45 Dec-99 57

Jan-96 54 Jan-00 67

Feb-96 68 Feb-00 78

Mar-96 70 Mar-00 88

Apr-96 70 Apr-00 78

May-96 69 May-00 77

Jun-96 65 Jun-00 71

Jul-96 66 Jul-00 76

Aug-96 73 Aug-00 73

Sep-96 62 Sep-00 70

Oct-96 56 Oct-00 71

Nov-96 54 Nov-00 63

Dec-96 51 Dec-00 65

Jan-01 72 Jan-05 92

Feb-01 85 Feb-05 109

Mar-01 94 Mar-05 127

Apr-01 84 Apr-05 116

May-01 80 May-05 120

Jun-01 79 Jun-05 115

Jul-01 76 Jul-05 117

Aug-01 74 Aug-05 110

Sep-01 66 Sep-05 99

Oct-01 66 Oct-05 105

Nov-01 67 Nov-05 86

Dec-01 66 Dec-05 87

Jan-02 66 Jan-06 89

Feb-02 84 Feb-06 88

Mar-02 90 Mar-06 108

Apr-02 86 Apr-06 100

May-02 88 May-06 102

Jun-02 84 Jun-06 98

Jul-02 82 Jul-06 83

Aug-02 90 Aug-06 88

Sep-02 82 Sep-06 80

Oct-02 77 Oct-06 74

Nov-02 73 Nov-06 71

Dec-02 70 Dec-06 71

Jan-03 76

Feb-03 82

Mar-03 98

Apr-03 91

May-03 101

Jun-03 107

Jul-03 99

Aug-03 105

Sep-03 90

Oct-03 88

Nov-03 76

Dec-03 75

Jan-04 89

Feb-04 102

Mar-04 123

Apr-04 109

May-04 115

Jun-04 105

Jul-04 96

Aug-04 102

Sep-04 94

Oct-04 101

Nov-04 84

Dec-04 83

Jan-07 66

Feb-07 68

Mar-07 80

Apr-07 83

May-07 80

Jun-07 77

Jul-07 74

Seasonal Indices

1.02

1.05

0.95

0.94

0.85

0.81

0.89

1.02

1.18

1.09

1.11

1.07
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What are the causal factors that you think would influence the sales of houses?

You might come up with a fairly long list. Some of the variables that might be on

such a list are:

Income

Unemployment rate

Interest or mortgage rates

Consumer attitudes14

Housing prices

In this section we will first prepare a forecast of THS based solely on a simple lin-

ear trend; then we will do a second forecast using disposable personal income as

a causal variable.

When seasonally adjusted monthly data for total houses sold (SATHS) are

regressed as a function of a time index, where t  1 for January 1993, the

results are as shown in Figure 4.14. Data used to develop the model and fore-

cast were from January 1991 through December 2006. The forecast was made

through the first seven months of 2007. The equation for seasonally adjusted

total houses sold is:

SATHS  50.25  0.30(Time)

The positive slope for time of 0.30 is logical, and from the t-ratio (27.13) we see

that the slope is quite statistically significant in this model (the significance level,

or p-value, is .000—even at a two-tailed level). The R-squared (R2) tells us that

81.60 percent of the variation in seasonally adjusted total houses sold is explained

by this model. We see that the Durbin-Watson test for serial correlation indicates

positive serial correlation (D-W  0.45).

14 Consumer attitudes are often measured by the University of Michiganís Index of Consumer

Sentiment. This is an index that is released each month by the University of Michigan Survey

Research Center. Each month 500 respondents in a national survey are interviewed about a

variety of topics. There are five specific questions in the survey that go into the calculation of

the Index of Consumer Sentiment, which has been adjusted to a base of 100 for 1966. Those

five questions are: 

1. We are interested in how people are getting along financially these days. Would you say

that you (and your family living there) are better off or worse off financially than you

were a year ago?

2. Now looking ahead—do you think that a year from now you (and your family living

there) will be better off financially, or worse off, or about the same as now?

3. Now turning to business conditions in the country as a whole—do you think that during

the next 12 months we’ll have good times financially, or bad times, or what?

4. Looking ahead, which would you say is more likely—that in the country as a whole we’ll

have continuous good times during the next five years or so, or that we will have

periods of widespread unemployment or depression, or what?

5. About the big things people buy for their homes—such as furniture, a refrigerator,

stove, television, and things like that. Generally speaking, do you think now is a good or

bad time for people to buy major household items?

The way in which the index is computed makes it higher when people’s responses to these

questions are more positive.
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FIGURE 4.14
Trend Forecast for

Seasonally Adjusted

Total Houses Sold

(000)

The straight line in this

graph represents the

forecast values. It is

solid in the 2007

forecast horizon. Data

from 1993 through

2006 were used to

develop the forecast.
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SATHS

Multiple Regression--Result Formula

SATHS = 50.25 + ((Time) * 0.301306)

Forecast--Multiple Regression Selected

Forecast
---------------------

Date Monthly Quarterly
-------------------------------------

Jan-2007 101.17

Feb-2007 101.47

Mar-2007 101.77 304.40

Apr-2007 102.07

May-2007 102.37

Jun-2007 102.67 307.11

Jul-2007 102.97

Audit Trail--Coefficient Table (Multiple Regression Selected)

Description Coefficient error T-test P-value
----------------------------------------------------

SATHS 50.25 1.08 46.44 0.00

Time 0.30 0.01 27.13 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value
----------------------------------------------    ---------------------------

Mean Absolute Percentage Error (MAPE) 6.93% Durbin Watson (1) 0.45

R-Square 81.60% SEE 6.98

Root Mean Square Error 6.94



To make a forecast of SATHS for 2004 with this model, we use time index val-

ues of 169 for January 2007 through 175 for July 2007. Doing so gives us the the

solid portion of the straight line in Figure 4.14. These are values for the seasonally

adjusted total houses sold in the first 7 months of 2007.

To get the forecast of nonseasonally adjusted values we multiply the seasonally

adjusted values by the corresponding seasonal index for each month.15 This is

shown in Figure 4.15 along with the calculation of the root-mean-squared error

(RMSE) for the seven 2007 monthly forecasts.

FIGURE 4.15 The Trend Forecast for Total Houses Sold

The reseasonalized forecast is calculated by multiplying each seasonal index by the trend

forecast of seasonally adjusted total houses sold for the corresponding month. The error is

Actual minus Forecast. (c4f15)
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Date
THS

(Actual)*
Seasonal
Indices

Trend
Forecast
of SATHS

Reseasonalized
Forecast

Jan-07 66 0.89 101.17 90.08
Feb-07 68 1.02 101.47 103.92
Mar-07 80 1.18 101.77 119.84
Apr-07 83 1.09 102.07 111.74
May-07 80 1.11 102.37 113.47
Jun-07 77 1.07 102.67 110.06
Jul-07 74 1.02 102.97 105.48

Error
Squared
(A – F)2

579.86
1290.03
1587.09
825.79

1120.00
1092.95
990.89

* 2007 data not used in developing the 2007 forecast. MSE = 1069.52

RMSE = 32.70

RMSE as % of Actual = 43.4%

15 The seasonal indices used are from a time-series decomposition of the data using

ForecastX™. This will be discussed in Chapter 6.
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Multiple Regression--Result Formula

SATHS  6.29 + ((DPI) * 0.009885

Forecast--Multiple Regression Selected

Forecast
---------------------

Date Monthly Quarterly
-------------------------------------

Jan-2007 103.92
Feb-2007 104.29
Mar-2007 104.66 312.88
Apr-2007 105.03
May-2007 105.39
Jun-2007 105.76 316.18
Jul-2007 106.13

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series Description Coefficient Standard error T-test P-value
---------------------------------------------------------------------

SATHS 6.29 2.72 2.31 0.02
dpi 0.01 0.00 26.04 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value
----------------------------------------------    ---------------------------

Mean Absolute Percentage Error (MAPE) 7.09% Durbin Watson(1) 0.41
R-Square 80.33% Mean 75.71
Root Mean Square Error 7.17 SEE 7.22

FIGURE 4.16
Forecast of Season-

ally Adjusted Total

Houses Sold as a

Function of Dispos-

able Personal Income

(DPI)

Data for 1993 through

2006 were used to de-

velop the forecast. For

2007 Holti’s exponen-

tial smoothing was

used to forecast DPI.
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SATHS

To develop a forecast of THS as a function of disposable personal income

(DPI), the THS data were again deseasonalized; then those values were regressed

as a function of DPI. These results are shown in Figure 4.16. The slope of 0.01 is

logical since you would expect that more new houses would be sold as income

increases. The t-value of 26.04 is very significant, as indicated by the two-tailed
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P-value of 0.00. The R2 indicates that 80.33 percent of the variation in new houses

sold is explained by this model. The equation for SATHS is:

Seasonally adjusted total houses sold (000)  6.29  0.01(DPI)

as shown in Figure 4.16.

The seasonally adjusted forecast for the first seven months of 2007 was then

multiplied by each month’s seasonal index to get nonseasonally adjusted fore-

casts. This is shown in Figure 4.17. The dotted line in this graph represents the

forecast for THS, while the solid lines are the values that were actually observed

in the first seven months of 2007 (these 2007 values were not used in developing

the forecast).

FIGURE 4.17 A Forecast of Total Houses Sold (THS) as a Function of Disposable

Personal Income

For each month the seasonal index is multiplied by the forecast values for the seasonally

adjusted total home sales to get the final forecast for THS. Error is Actual minus Forecast.

(c4f17)
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THS

(Actual)*
Seasonal
Indices

DPI
Forecast
of SATHS

Reseasonalized
Forecast

Jan-07 74.1 0.89 103.92 92.54
Feb-07 66.4 1.02 104.29 106.81
Mar-07 67.9 1.18 104.66 123.24
Apr-07 75.8 1.09 105.03 114.97
May-07 72.2 1.11 105.39 116.82
Jun-07 71.8 1.07 105.76 113.37
Jul-07 72.2 1.02 106.13 108.71

Error
Squared
(A – F)2

339.08
1,633.22
3,058.75
1,533.15
1,992.87
1,725.73
1,330.08

*2007 data not used in developing the 2007 forecast. MSE = 1,658.98

RMSE = 40.73

RMSE as % of Actual = 57.0%
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While working for Dow Plastics, a business group

of the Dow Chemical Company, Jan Neuenfeldt re-

ceived on-the-job training while assisting others in

developing forecasts. This led her to enroll in an

MBA forecasting class in which she obtained formal

training in quantitative forecasting methods.

The methodology that Jan uses most is regres-

sion analysis. On occasion she also uses exponential

smoothing models, such as Winters’. However, the

marketing and product managers who use the

forecasts usually are interested in why as well as in

the forecast values. Most of the forecasts Jan

prepares are on a quarterly basis. It is fairly typical

for annual forecasts one year out to be within a

5 percent margin of error. For large-volume items

in mature market segments the annual margin for

error is frequently only about 2 percent.

Each quarter, Jan reports forecast results to man-

agement, using a newsletter format. She begins

with an exposition of the results, followed by the

supporting statistical information and a graphic

presentation of the forecast. She finds that graph-

ics are extremely useful as she prepares forecasts,

as well as when she communicates results to end

users.

Source: This comment is based on an interview with Jan
Neuenfeldt.

Comments from the Field

Integrative Case

The Gap

PART 4: FORECASTING THE GAP SALES DATA WITH
A SIMPLE REGRESSION MODEL

The sales of The Gap stores for the period covering 1985Q1 through 2005Q4 are shown in the graph below. From this

graph it is clear that The Gap sales are quite seasonal and have generally increased over time. The dashed line repre-

sents actual sales, while the solid line shows the deseasonalized sales for each quarter. March is the middle month of

The Gap’s first quarter of its fiscal year.
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1. Do you think that the general growth path of The Gap sales has followed a linear path

over the period shown? As part of your answer, show a graph of the deseasonalized The

Gap sales along with a linear trend line. What does this graph suggest to you about the

results you might expect from using a linear trend as the basis of a forecast of The Gap

sales for 2006?

2. Use a regression of deseasonalized The Gap sales as a function of disposable personal

income as the basis for a forecast of The Gap sales for 2006. Be sure to reseasonalize

your forecast; then graph the actual The Gap sales along with your forecast. What do

you think would happen to the accuracy of your forecast if you extended it out through

2010? Why?

3. Calculate the root-mean-squared errors for both the historical period and for the

2006Q1 through 2006Q4 forecast horizon.

Case 
Questions

Solutions 
to Case 
Questions

1. When The Gap sales data are deseasonalized and a linear trend is plotted through the

deseasonalized series, it becomes clear that the trend in sales was increasing at an in-

creasing rate during much of the 1985 through 2001 period. This can be seen in the

graph below, in which actual sales (seasonally adjusted) are at first above the trend line,

then fall below the linear trend, then are again greater than the trend, and most recently

are below the trend. The trend would fall below zero for the four quarters of 1985, but

we know negative sales do not make sense. It might be expected based on this graph that

a forecast based on a linear trend would overestimate sales for the coming quarters

because sales have become more flat. This graph also suggests that a regression trend

model would have positive serial correlation.
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2. The Gap sales data were deseasonalized using the following seasonal indices: Q1  

0.86, Q2  0.87, Q3  1.03, and Q4  1.24. The deseasonalized sales data for 1985Q1

through 2005Q4 were then regressed against disposable personal income (DPI). The re-

gression results are shown in the following graph.
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Actual Forecast Fitted values

(c4Gap)

Included

in model Coefficient

Standard

Error T-test P-value

-----------------------------------------------------------------------------

SAGap Dependent –2,712,019.94 123,826.68 –21.90 0.00

dpi Yes 781.02 20.70 37.73 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

--------------------------------------     ---------------------------------

Mean Absolute Percentage

Error (MAPE) 31.85%

R-Square 95.17%

Root Mean Square Error 317,216.89

Durbin Watson(1) 0.24

Mean 1,743,941.12

SEE 321,062.09

Multiple Regression--Result Formula

SAGap = -2,712,019.94 + ((DPI)*781.02)

Forecast--Multiple Regression Selected

Forecast

--------------------------------

Date Quarterly Annual

---------------------------------------------

Mar-2006 4,624,470.78

Jun-2006 4,709,103.16

Sep-2006 4,793,735.54

Dec-2006 4,878,367.92 19,005,677.40

Mar-2007 4,963,000.30

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description
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The equation is: SAGap  –2,712,019.94 + 781.02(DPI). All of the diagnostic sta-

tistics for this model look good (t-ratio  37.73 and R-squared  95.17 percent) except

for the Durbin-Watson statistic (DW  0.24). From the DW tests it is determined that

this model does exhibit positive serial correlation. In this situation the positive serial

correlation looks to be caused by the nonlinearity in the data. (In Chapter 5 you will

learn how to account for such a nonlinearity using more advanced regression methods.)

The predicted values of SAGap were multiplied by the seasonal indices to get the

forecast values graphed below.
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The actual and forecast The Gap sales (in thousands of dollars) are shown below for the

four quarters of 2006 and the first quarter of 2007.

Date Forecast Actual

Mar-06 3,989,182.9 3,441,000

Jun-06 4,104,738.6 3,716,000

Sep-06 4,916,380.8 3,856,000

Dec-06 6,049,812.4 4,930,000

Mar-07 4,281,206.8 3,558,000

If this model were used to forecast through 2010, it is likely that low forecasts would

result if The Gap sales resume their historic rate of growth.

3. The RMSEs for the historical period and the forecast horizon are:

Sep 1987–Dec 2005 Root-mean-squared error  337,449.3

Note that for the historic period only results from September 1987 forward are used

because prior to that forecasts would have been negative.

Mar 2006–Mar 2007 Root-mean-squared error  818,906.3

If we compare the RMSE for these last five quarters to the mean level of sales for those

quarters (3,900,200), we find that the RMSE is about 21 percent of the mean actual

quarterly sales.
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WELLS’ DAIRY MAKERS OF BLUE BUNNY
DAIRY PRODUCTS
Wells’ Dairy manufactures Blue Bunny® branded

dairy products, including ice cream and frozen nov-

elties. Wells’ Dairy was founded in 1913 and is the

largest family-owned and managed dairy processor

in the United States. Due to capital investment and

the labor-intensive and seasonal nature of the

dairy industry, it was critical for the demand plan-

ners Wells’ Dairy to create an accurate forecast at

the annual level and by product family.

Previously, Wells’ Dairy did not have a formal

demand planning process. The company was look-

ing for a solution that could not only be imple-

mented quickly, but would also give its forecasts

more credibility at every level. Wells’ Dairy chose

John Galt Solutions’ ForecastX Wizard as its base

forecasting solution, due to its high value, flexibil-

ity, and ease of implementation.

With the John Galt solution implemented, the

demand planners at Wells’ Dairy were able to pro-

duce forecasted figures with the ForecastX Wizard,

meet with the sales staff to review projections, and

then reconcile the numbers. The Wizard has also

given Wells’ Dairy the ability to forecast at hierar-

chical levels, allowing for an increase in both visi-

bility and accountability.

“It’s a great product and it has worked,” said

a demand planner for Wells’ Dairy. He added,

“Within a week, I was able to complete my first

forecast. We now have some solid numbers to base

our decisions on.” With the implementation of the

Wizard as a part of its forecasting process, Wells’

Dairy was able to reduce its forecast percentage

error from 13.9 percent to 9.5 percent.

With the ability to put full confidence in the re-

sults, Wells’ Dairy demand planners were able to

create a collaborative yearly forecast based upon

the forecasted numbers for each product family.

The 90 percent accuracy of the yearly forecast has

allowed Wells’ Dairy to focus on enhancing its

process and growing its business.

Source: http://www.johngalt.com.

Comments from the Field 2



Verify the periodicity of your data (Quarterly for this example); then click

the Forecast Method tab at the top and the following screen appears.
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USING FORECASTX™ TO MAKE REGRESSION
FORECASTS

What follows is a brief discussion of how to use ForecastX™ for making a forecast based

on a regression model. This will increase your familiarity with the of use of ForecastX™.

The illustration used here is for a trend forecast.

First, put your data into an Excel spreadsheet in column format, such as the sample of

The Gap data shown in the table below. Once you have your data in this format, while in

Excel highlight the data you want to use, then start ForecastX™. The following dialog box

appears.

A Sample of The Gap Data in

Column Format

Date
The Gap

Sales ($000)

Mar-1994 751,670

Jun-1994 773,131

Sep-1994 988,346

Dec-1994 1,209,790

Mar-1995 848,688

Jun-1995 868,514

Sep-1995 1,155,930

Dec-1995 1,522,120

Mar-1996 1,113,150

Jun-1996 1,120,340

Sep-1996 1,383,000

Dec-1996 1,667,900

Mar-1997 1,231,186

Jun-1997 1,345,221

Sep-1997 1,765,939

Dec-1997 2,165,479

Mar-1998 1,719,712

Jun-1998 1,904,970

Sep-1998 2,399,900

Dec-1998 3,029,90
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Click the down arrow in the Forecasting Technique window, and select Trend (Linear)

Regression. The following window will result. In the terminology used by ForecastX™,

linear regression refers to a method that makes a regression trend forecast. If you want to

develop a causal regression model, select Multiple Regression. (See “Further Comments

on Regression Models” on page 210.)

After selecting Trend (Linear) Regression, the dialog box will then look like the one below.

Now you are ready to click the Statistics tab, which will take you to the next dialog box.
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Here you want to select the desired statistics. Often the ones selected in this example

would be what you would want for simple regression models.

In addition, you will want to click the More Statistics button at the bottom and check

the box for P-value (in Coeff table) under the Regression tab. Look at the other tabs in this

box and select desired statistics such as the RMSE in the Accuracy tab. Then click OK and

you return to the Statistics box. These are shown in the following:



Next click the Reports tab to get the Reports dialog box. The default looks as follows:

208 Chapter Four

This is where you select the particular reports and report contents that you want. Some

exploration and experimentation with these options will help you see what each option

leads to in terms of results. Clicking on the Audit report yields the following:



After you click Finish! in the lower right corner, reports will be put in new Excel

workbooks—Book 2, Book 3, and so forth. The book numbers will vary depending on what

you have been doing in Excel up to that point.
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FURTHER COMMENTS ON REGRESSION MODELS

Causal Models

To do a causal regression model and forecast, select the columns in the data file with the

period, the independent variable (DPI in this example), and the dependent variable you

want to forecast (SAGap, in this example). Then open ForecastX™.

A Sample of Seasonally Adjusted Gap

Data and DPI.

Date SAGap DPI

Mar-85 122,550.4 3,032.2

Jun-85 137,824.3 3,117.5

Sep-85 177,137.0 3,115.4

Dec-85 193,377.2 3,172.2

Mar-86 185,457.2 3,233.4

Jun-86 189,018.6 3,269.1

Sep-86 219,192.1 3,307.2

Dec-86 240,675.5 3,330.7

Mar-87 244,671.9 3,397.1

Jun-87 249,814.0 3,389.4

Sep-87 266,790.3 3,484.5

Dec-87 289,963.1 3,562.1

Mar-88 279,783.3 3,638.5

Jun-88 303,246.5 3,711.3

Sep-88 314,700.6 3,786.9

Dec-88 341,632.6 3,858.2

In the Data Capture tab of the Data Capture window look at the default selection. If it

is not the columns you want, click inside the Data To Be Forecast window on the _ button

to the right of the Data to Be Forecast box. In the following window, highlight the data

columns you want, then click OK.

Next click the Forecast Method tab and select Multiple Regression in the Forecasting

Technique window. In the Dependent Series window select the variable you want to fore-

cast (SAGap in this example).



From this point on you follow the same selections as described above for regression

trend forecasts.

You are probably wondering how you forecast the independent variable into the fu-

ture and unknown forecast horizon. You can use any acceptable method to do this, but

ForecastX™ makes it easy by doing an automated forecast using a procedure called

ProCast™.

Deseasonalizing Data

The following is a review of what was covered in Chapter 3. To deseasonalize data in Fore-

castX™ we use a method called decomposition (this method of forecasting will be dis-

cussed in detail in Chapter 6). For now we will simply look at the portion of the method and

results that we need to take the seasonality out of a data series.

Begin by opening your data file in Excel, then start the ForecastX™ software and cap-

ture the desired data. In the Method Selection dialog box select Decomposition as the

Forecasting Technique, check Multiplicative, and select Trend (Linear) Regression, as

the Forecast Method for Decomposed Data.
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Then click the Reports tab, and select only the Audit report.
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Now click Finish!and you will get results that will include the following:

Components of Decomposition

Original
Date Data
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Forecasted
Data

Centered
Moving Average

CMA
Trend

Seasonal
Indices

Mar-1985 105,715.00  527,508.23  611,515.31 0.86

Jun-1985 120,136.00  483,559.98  554,757.32 0.87

Sep-1985 181,669.00  510,740.39 168,616.38  497,999.33 1.03

Dec-1985 239,813.00  547,196.81 180,977.50  441,241.35 1.24

Mar-1986 159,980.00  331,664.86 191,946.88  384,483.36 0.86

Jun-1986 164,760.00  285,665.22 204,670.25  327,725.37 0.87

Sep-1986 224,800.00  277,899.95 218,387.25  270,967.39 1.03

Dec-1986 298,469.00  265,647.59 231,396.38  214,209.40 1.24

Mar-1987 211,060.00  135,821.49 244,122.50  157,451.42 0.86

Jun-1987 217,753.00  87,770.47 257,864.88  100,693.43 0.87

Sep-1987 273,616.00  45,059.51 269,291.25  43,935.44 1.03

Dec-1987 359,592.00 15,901.62 278,899.13 12,822.54 1.24

Mar-1988 241,348.00 60,021.88 290,863.00 69,580.53 0.86

Jun-1988 264,328.00 110,124.28 305,014.63 126,338.51 0.87

Sep-1988 322,752.00 187,780.93 321,596.38 183,096.50 1.03

Dec-1988 423,669.00 297,450.84 337,869.88 239,854.49 1.24

Mar-1989 309,925.00 255,865.26 355,927.38 296,612.47 0.86

Jun-1989 325,939.00 308,019.03 381,466.25 353,370.46 0.87

Sep-1989 405,601.00 420,621.37 408,204.38 410,128.44 1.03

Dec-1989 545,131.00 579,000.06 429,641.88 466,886.43 1.24

The “Seasonal Indices” column is in bold here but will not be in bold in your output. These

are the indices that you will use to deseasonalize the original data and to reseasonalize re-

sults. You should copy this column of seasonal indices and paste it into your Excel work-

book along with your original data.

You can now calculate a deseasonalized series by dividing the original data by the sea-

sonal indices.

Deseasonalized series  Original series ÷ Seasonal indices

To reseasonalize results, reverse the process.

Reseasonalized results  Deseasonalized results  Seasonal indices
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Exercises 1. What are the steps that should be used in evaluating regression models? Write each

step in the order it should be evaluated, and following each one write a sentence or two

in your own words to explain its importance.

2. In this chapter a number of graphic displays have been presented. What advantage(s)

do you see in showing data in graphic form rather than, or in addition to, tabular

form?

3. In evaluating regression models, we have tested a hypothesis to determine whether the

slope term is significantly different from zero. Why do we test this hypothesis? Why do

we not test the comparable hypothesis for the intercept?

4. The following regression results relate to a study of the salaries of public school teach-

ers in a midwestern city:

Variable Coefficient
Standard

Error t-ratio

Constant 20,720 6,820 3.04

EXP 805 258

R-squared  0.684; n  105.

Standard error of the estimate  2,000.

EXP is the experience of teachers in years of full-time teaching.

a. What is the t-ratio for EXP? Does it indicate that experience is a statistically sig-

nificant determinant of salary if a 95 percent confidence level is desired?

b. What percentage of the variation in salary is explained by this model?



c. Determine the point estimate of salary for a teacher with 20 years of experience.

d. What is the approximate 95 percent confidence interval for your point estimate

from part (c)?

5. Nelson Industries manufactures a part for a type of aircraft engine that is becoming ob-

solete. The sales history for the last 10 years is as follows:

(c4p5) Year Sales Year Sales

1998 945 2003 420

1999 875 2004 305

2000 760 2005 285

2001 690 2006 250

2002 545 2007 210

a. Plot sales versus time.

b. Estimate the regression model for a linear time trend of sales.

c. What is the root-mean-squared error of the linear regression estimates for these

10 years?

d. Using this model, estimate sales for year 11.

6. Mid-Valley Travel Agency (MVTA) has offices in 12 cities. The company believes that

its monthly airline bookings are related to the mean income in those cities and has col-

lected the following data:

(c4p6) Location Bookings Income

1 1,098 $43,299

2 1,131 45,021

3 1,120 40,290

4 1,142 41,893

5 971 30,620

6 1,403 48,105

7 855 27,482

8 1,054 33,025

9 1,081 34,687

10 982 28,725

11 1,098 37,892

12 1,387 46,198

a. Develop a linear regression model of monthly airline bookings as a function of

income.

b. Use the process described in the chapter to evaluate your results.

c. Make the point and approximate 95 percent confidence interval estimates of

monthly airline bookings for another city in which MVTA is considering opening a

branch, given that income in that city is $39,020.

7. Barbara Lynch is the product manager for a line of skiwear produced by HeathCo

Industries and privately branded for sale under several different names, including

Northern Slopes and Jacque Monri. A new part of Ms. Lynch’s job is to provide a
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quarterly forecast of sales for the northern United States, a region composed of

27 states stretching from Maine to Washington. A 10-year sales history is shown:

(c4p7) Sales ($000)

Year
1st

Quarter
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2nd
Quarter

3rd
Quarter

4th
Quarter

1998 $ 72,962 $ 81,921 $ 97,729 $ 142,161

1999 145,592 117,129 114,159 151,402

2000 153,907 100,144 123,242 128,497

2001 176,076 180,440 162,665 220,818

2002 202,415 211,780 163,710 200,135

2003 174,200 182,556 198,990 243,700

2004 253,142 218,755 225,422 253,653

2005 257,156 202,568 224,482 229,879

2006 289,321 266,095 262,938 322,052

2007 313,769 315,011 264,939 301,479

a. Because Ms. Lynch has so many other job responsibilities, she has hired you to help

with the forecasting effort. First, she would like you to prepare a time-series plot of

the data and to write her a memo indicating what the plot appears to show and

whether it seems likely that a simple linear trend would be useful in preparing

forecasts.

b. In addition to plotting the data over time, you should estimate the least-squares

trend line in the form:

SALES  a  b(TIME)

Set TIME  1 for 1994Q1 through TIME  40 for 2003Q4. Write the trend

equation:

SALES  ________  / ________(TIME)

(Circle  or  as appropriate)

c. Do your regression results indicate to you that there is a significant trend to the

data? Explain why or why not.

d. On the basis of your results, prepare a forecast for the four quarters of 2008.

Period TIME Sales Forecast (F1)

2008Q1 41 __________________

2008Q2 42 __________________

2008Q3 43 __________________

2008Q4 44 __________________

e. A year later, Barbara gives you a call and tells you that the actual sales for the four

quarters of 2008 were: Q1  334,271, Q2  328,982, Q3  317,921, and Q4  

350,118. How accurate was your model? What was the root-mean-squared error?



8. Dick Staples, another product manager with HeathCo (see Exercise 7), has mentioned

to Barbara Lynch that he has found both the unemployment rate and the level of in-

come to be useful predictors for some of the products under his responsibility.

a. Suppose that Ms. Lynch provides you with the following unemployment data for

the northern region she is concerned with:

(c4p8) Unemployment Rate (%)

Year
1st

Quarter
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2nd
Quarter

3rd
Quarter

4th
Quarter

1998 8.4% 8.2% 8.4% 8.4%

1999 8.1 7.7 7.5 7.2

2000 6.9 6.5 6.5 6.4

2001 6.3 6.2 6.3 6.5

2002 6.8 7.9 8.3 8.0

2003 8.0 8.0 8.0 8.9

2004 9.6 10.2 10.7 11.5

2005 11.2 11.0 10.1 9.2

2006 8.5 8.0 8.0 7.9

2007 7.9 7.9 7.8 7.6

b. Plot a scattergram of SALES versus northern-region unemployment rate (NRUR).

Does there appear to be a relationship? Explain.

c. Prepare a bivariate regression model of sales as a function of NRUR in the follow-

ing form:

SALES  a  b(NRUR)

Write your answer in the following equation:

SALES  ________  / ________(NRUR)

(Circle  or  as appropriate)

d. Write a memo to Ms. Lynch in which you evaluate these results and indicate how

well you think this model would work in forecasting her sales series.

e. Use the model to make a forecast of sales for each quarter of 2008, given the fore-

cast for unemployment (FNRUR) that HeathCo has purchased from a macroeco-

nomic consulting firm (MacroCast):

Period FNRUR Sales Forecast (F2)

2008Q1 7.6% __________________

2008Q2 7.7 __________________

2008Q3 7.5 __________________

2008Q4 7.4 __________________

f. For the actual sales given in Exercise 7(e), calculate the root-mean-squared error for

this model. How does it compare with what you found in Exercise 7(e)?



g. Barbara Lynch also has data on income (INC), in billions of dollars, for the region

as follows:

(c4p8) Income ($ Billions)

1st
Year Quarter
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2nd
Quarter

3rd
Quarter

4th
Quarter

1998 $ 218 $ 237 $ 263 $ 293

1999 318 359 404 436

2000 475 534 574 622

2001 667 702 753 796

2002 858 870 934 1,010

2003 1,066 1,096 1,162 1,187

2004 1,207 1,242 1,279 1,318

2005 1,346 1,395 1,443 1,528

2006 1,613 1,646 1,694 1,730

2007 1,755 1,842 1,832 1,882

Plot a scattergram of SALES with INC. Does there appear to be a relationship?

Explain.

h. Prepare a bivariate regression model of SALES as a function of income (INC) and

write your results in the equation:

SALES  a  b(INC)

SALES  ________  / ________(INC)

(Circle  or  as appropriate)

i. Write a memo to Ms. Lynch in which you explain and evaluate this model, indicat-

ing how well you think it would work in forecasting sales.

j. HeathCo has also purchased a forecast of income from MacroCast. Use the follow-

ing income forecast (INCF) to make your own forecast of SALES for 2008:

Period INCF Sales Forecast (F3)

2008Q1 $1,928 __________________

2008Q2 1,972 __________________

2008Q3 2,017 __________________

2008Q4 2,062 __________________

k. On the basis of the actual sales given in Exercise 7(e), calculate the root-mean-squared

error for this model. How does it compare with the other two models you have used to

forecast sales?

l. Prepare a time-series plot with actual sales for 1998Q1 through 2007Q4 along with

the sales forecast you found in part (j) of this exercise. To accompany this plot, write

a brief memo to Ms. Lynch in which you comment on the strengths and weaknesses

of the forecasting model.



9. Carolina Wood Products, Inc., a major manufacturer of household furniture, is inter-

ested in predicting expenditures on furniture (FURN) for the entire United States. It

has the following data by quarter for 1998 through 2007:

(c4p9) FURN (in $ Billions)

1st
Year Quarter
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2nd
Quarter

3rd
Quarter

4th
Quarter

1998 $ 98.1 $ 96.8 $ 96.0 $ 95.0

1999 93.2 95.1 96.2 98.4

2000 100.7 104.4 108.1 111.1

2001 114.3 117.2 119.4 122.7

2002 125.9 129.3 132.2 136.6

2003 137.4 141.4 145.3 147.7

2004 148.8 150.2 153.4 154.2

2005 159.8 164.4 166.2 169.7

2006 173.7 175.5 175.0 175.7

2007 181.4 180.0 179.7 176.3

a. Prepare a naive forecast for 2008Q1 based on the following model (see Chapter 1):

NFURNt FURNt 1

Period Naive Forecast

2008Q1 _______________

b. Estimate the bivariate linear trend model for the data where TIME  1 for 1998Q1

through TIME  40 for 2007Q4.

FURN  a  b(TIME)

FURN  ________  / ________(TIME)

(Circle  or  as appropriate)

c. Write a paragraph in which you evaluate this model, with particular emphasis on its

usefulness in forecasting.

d. Prepare a time-trend forecast of furniture and household equipment expenditures

for 2008 based on the model in part (b).

Period TIME Trend Forecast

2008Q1 41 __________________

2008Q2 42 __________________

2008Q3 43 __________________

2008Q4 44 __________________

e. Suppose that the actual values of FURN for 2008 were as shown in the following

table. Calculate the RMSE for both of your forecasts and interpret the results. (For

the naive forecast, there will be only one observation, for 2008Q1.)



10. Fifteen midwestern and mountain states have united in an effort to promote and fore-

cast tourism. One aspect of their work has been related to the dollar amount spent per

year on domestic travel (DTE) in each state. They have the following estimates for dis-

posable personal income per capita (DPI) and DTE:

(c4p10)
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Period
Actual FURN
($ Billions)

2008Q1 177.6

2008Q2 180.5

2008Q3 182.8

2008Q4 178.7

State DPI
DTE

($ Millions)

Minnesota $17,907 $4,933

Iowa 15,782 1,766

Missouri 17,158 4,692

North Dakota 15,688 628

South Dakota 15,981 551

Nebraska 17,416 1,250

Kansas 17,635 1,729

Montana 15,128 725

Idaho 15,974 934

Wyoming 17,504 778

Colorado 18,628 4,628

New Mexico 14,587 1,724

Arizona 15,921 3,836

Utah 14,066 1,757

Nevada 19,781 6,455

a. From these data estimate a bivariate linear regression equation for domestic travel

expenditures (DTE) as a function of disposable income per capita (DPI):

DTE  a  b(DPI)

DTE  ________  / ________(DPI)

(Circle  or  as appropriate)

Evaluate the statistical significance of this model.

b. Illinois, a bordering state, has asked that this model be used to forecast DTE for Illi-

nois under the assumption that DPI will be $19,648. Make the appropriate point

and approximate 95 percent interval estimates.

c. Given that actual DTE turned out to be $7,754 (million), calculate the percentage

error in your forecast.

11. Collect data on population for your state (http://www.economagic.com may be a good

source for these data) over the past 20 years and use a bivariate regression trend line to

forecast population for the next five years. Prepare a time-series plot that shows both

actual and forecast values. Do you think the model looks as though it will provide rea-

sonably accurate forecasts for the five-year horizon? (c4p11)



12. AmerPlas, Inc., produces 20-ounce plastic drinking cups that are embossed with the

names of prominent beers and soft drinks. It has been observed that sales of the cups

match closely the seasonal pattern associated with beer production, but that, unlike

beer production, there has been a positive trend over time. The sales data, by month, for

2004 through 2007 are as follows:

(c4p12)
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Period T Sales Period T Sales

2004M01 1 857 2006M01 25 1,604

2004M02 2 921 2006M02 26 1,643

2004M03 3 1,071 2006M03 27 1,795

2004M04 4 1,133 2006M04 28 1,868

2004M05 5 1,209 2006M05 29 1,920

2004M06 6 1,234 2006M06 30 1,953

2004M07 7 1,262 2006M07 31 1,980

2004M08 8 1,258 2006M08 32 1,989

2004M09 9 1,175 2006M09 33 1,897

2004M10 10 1,174 2006M10 34 1,910

2004M11 11 1,123 2006M11 35 1,854

2004M12 12 1,159 2006M12 36 1,957

2005M01 13 1,250 2007M01 37 1,955

2005M02 14 1,289 2007M02 38 2,008

2005M03 15 1,448 2007M03 39 2,171

2005M04 16 1,497 2007M04 40 2,202

2005M05 17 1,560 2007M05 41 2,288

2005M06 18 1,586 2007M06 42 2,314

2005M07 19 1,597 2007M07 43 2,343

2005M08 20 1,615 2007M08 44 2,339

2005M09 21 1,535 2007M09 45 2,239

2005M10 22 1,543 2007M10 46 2,267

2005M11 23 1,493 2007M11 47 2,206

2005M12 24 1,510 2007M12 48 2,226

a. Use these data to estimate a linear time trend as follows:

SALES  a  b(T )

SALES  ________  / ________(T )

(Circle  or  as appropriate)

Do your regression results support the notion that there has been a positive time

trend in the SALES data? Explain.

b. Use your equation to forecast SALES for the 12 months of 2008:

Period
SALES

Forecast Period

2008M01 _______ 2008M07 _______

M02 _______ M08 _______

M03 _______ M09 _______

M04 _______ M10 _______

M05 _______ M11 _______

M06 _______ M12 _______

SALES
Forecast
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c. Actual SALES for 2008 are:

Period
Actual
SALES Period

2008M01 2,318 2008M07 2,697

M02 2,367 M08 2,702

M03 2,523 M09 2,613

M04 2,577 M10 2,626

M05 2,646 M11 2,570

M06 2,674 M12 2,590

Actual
SALES

On the basis of your results in part (b) in comparison with these actual sales, how

well do you think your model works? What is the RMSE for 2008?

d. Prepare a time-series plot of the actual sales and the forecast of sales for 2004M01

through 2008M12. Do the same for just the last two years (2007M01 to 2008M12).

Do your plots show any evidence of seasonality in the data? If so, how might you

account for it in preparing a forecast?

13. Alexander Enterprises manufactures plastic parts for the automotive industry. Its sales

(in thousands of dollars) for 2003Q1 through 2007Q4 are as follows:

(c4p13) Period Sales Period Sales

2003Q1 3,816.5 2006Q1 4,406.4

Q2 3,816.7 Q2 4,394.6

Q3 3,978.8 Q3 4,422.3

Q4 4,046.6 Q4 4,430.8

2004Q1 4,119.1 2007Q1 4,463.9

Q2 4,169.4 Q2 4,517.8

Q3 4,193.0 Q3 4,563.6

Q4 4,216.4 Q4 4,633.0

2005Q1 4,238.1 2008Q1 NA

Q2 4,270.5 Q2 NA

Q3 4,321.8 Q3 NA

Q4 4,349.5 Q4 NA

You are asked to forecast sales for 2008Q1 through 2008Q4. 

a. Begin by preparing a time-series plot of sales. Does it appear from this plot that a

linear trend model might be appropriate? Explain.

b. Use a bivariate linear regression trend model to estimate the following trend equation:

SALES a  b(TIME)

Is the sign for b what you would expect? Is b significantly different from zero? What

is the coefficient of determination for this model? Is there a potential problem with

serial correlation? Explain.

c. Based on this model, make a trend forecast of sales (SALESFT) for the four

quarters of 2008.

d. Given that actual sales (SALESA) for the four quarters of 2008 are:

2008Q1 4,667.1

2008Q2 4,710.3

2008Q3 4,738.7

2008Q4 4,789.0



calculate the root-mean-squared error for this forecast model in the historical period

(2003Q1–2007Q4) as well as for the forecast horizon (2008Q1–2008Q4). Which of

these measures accuracy and which measures fit?

14. The following data are for shoe store sales in the United States in millions of dollars

after being seasonally adjusted (SASSS).

(c4p14) Date SASSS Date SASSS Date SASSS Date SASSS

Jan-92 1,627 Jan-96 1,745 Jan-00 1,885 Jan-04 1,969
Feb-92 1,588 Feb-96 1,728 Feb-00 1,885 Feb-04 1,989
Mar-92 1,567 Mar-96 1,776 Mar-00 1,925 Mar-04 2,040
Apr-92 1,578 Apr-96 1,807 Apr-00 1,891 Apr-04 1,976
May-92 1,515 May-96 1,800 May-00 1,900 May-04 1,964
Jun-92 1,520 Jun-96 1,758 Jun-00 1,888 Jun-04 1,947
Jul-92 1,498 Jul-96 1,784 Jul-00 1,865 Jul-04 1,961
Aug-92 1,522 Aug-96 1,791 Aug-00 1,921 Aug-04 1,931
Sep-92 1,560 Sep-96 1,743 Sep-00 1,949 Sep-04 1,960
Oct-92 1,569 Oct-96 1,785 Oct-00 1,923 Oct-04 1,980
Nov-92 1,528 Nov-96 1,765 Nov-00 1,922 Nov-04 1,944
Dec-92 1,556 Dec-96 1,753 Dec-00 1,894 Dec-04 2,014
Jan-93 1,593 Jan-97 1,753 Jan-01 1,908 Jan-05 2,013
Feb-93 1,527 Feb-97 1,790 Feb-01 1,855 Feb-05 2,143
Mar-93 1,524 Mar-97 1,830 Mar-01 1,858 Mar-05 2,002
Apr-93 1,560 Apr-97 1,702 Apr-01 1,941 Apr-05 2,090
May-93 1,575 May-97 1,769 May-01 1,938 May-05 2,104
Jun-93 1,588 Jun-97 1,793 Jun-01 1,901 Jun-05 2,114
Jul-93 1,567 Jul-97 1,801 Jul-01 1,964 Jul-05 2,124
Aug-93 1,602 Aug-97 1,789 Aug-01 1,963 Aug-05 2,098
Sep-93 1,624 Sep-97 1,791 Sep-01 1,838 Sep-05 2,105
Oct-93 1,597 Oct-97 1,799 Oct-01 1,877 Oct-05 2,206
Nov-93 1,614 Nov-97 1,811 Nov-01 1,927 Nov-05 2,232
Dec-93 1,644 Dec-97 1,849 Dec-01 1,911 Dec-05 2,194
Jan-94 1,637 Jan-98 1,824 Jan-02 1,962 Jan-06 2,218
Feb-94 1,617 Feb-98 1,882 Feb-02 1,980 Feb-06 2,271
Mar-94 1,679 Mar-98 1,859 Mar-02 1,955 Mar-06 2,165
Apr-94 1,607 Apr-98 1,831 Apr-02 1,967 Apr-06 2,253
May-94 1,623 May-98 1,832 May-02 1,940 May-06 2,232
Jun-94 1,619 Jun-98 1,842 Jun-02 1,963 Jun-06 2,237
Jul-94 1,667 Jul-98 1,874 Jul-02 1,920 Jul-06 2,231
Aug-94 1,660 Aug-98 1,845 Aug-02 1,937 Aug-06 2,278
Sep-94 1,681 Sep-98 1,811 Sep-02 1,867 Sep-06 2,259
Oct-94 1,696 Oct-98 1,898 Oct-02 1,918 Oct-06 2,231
Nov-94 1,710 Nov-98 1,878 Nov-02 1,914 Nov-06 2,217
Dec-94 1,694 Dec-98 1,901 Dec-02 1,931 Dec-06 2,197
Jan-95 1,663 Jan-99 1,916 Jan-03 1,867
Feb-95 1,531 Feb-99 1,894 Feb-03 1,887
Mar-95 1,707 Mar-99 1,883 Mar-03 1,939
Apr-95 1,707 Apr-99 1,871 Apr-03 1,860
May-95 1,715 May-99 1,918 May-03 1,898
Jun-95 1,735 Jun-99 1,943 Jun-03 1,924
Jul-95 1,692 Jul-99 1,905 Jul-03 1,967
Aug-95 1,695 Aug-99 1,892 Aug-03 1,994
Sep-95 1,721 Sep-99 1,893 Sep-03 1,966
Oct-95 1,698 Oct-99 1,869 Oct-03 1,943
Nov-95 1,770 Nov-99 1,867 Nov-03 1,973
Dec-95 1,703 Dec-99 1,887 Dec-03 1,976
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a. Make a linear trend forecast for SASSS though the first seven months of 2007.

Given that the actual seasonally adjusted values for 2007 were the following, cal-

culate the RMSE for 2007.
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c. Plot the final forecast along with the actual sales data. Does the forecast appear rea-

sonable? Explain.

d. Why do you think the April, May, August, and December seasonal indices are

greater than 1?

Date SASSS

Jan-07 2,317

Feb-07 2,224

Mar-07 2,279

Apr-07 2,223

May-07 2,250

Jun-07 2,260

Jul-07 2,305

b. Reseasonalize the 2007 forecast and the 2007 actual sales using the following

seasonal indices:

Month SI

Jan 0.74

Feb 0.81

Mar 1.00

Apr 1.03

May 1.04

Jun 0.98

Jul 0.98

Aug 1.23

Sep 0.96

Oct 0.94

Nov 0.98

Dec 1.31



Chapter Five

Forecasting with 
Multiple Regression
In this chapter we will build on the introduction to the use of regression in

forecasting developed in Chapter 4. We will model new houses sold (NHS) with

multiple independent variables. We will also forecast total houses sold (THS). We

will examine the mortgage rate as a causal factor. In addition we will add variables

to account for seasonality in the data and also consider the effect that consumer

sentiment has on our ability to forecast THS. We will continue with our ongoing

example of forecasting The Gap sales at the end of this chapter. These extensions

of the bivariate regression model take us into the realm of multiple regression, so

let us begin by looking at the general multiple-regression model.

THE MULTIPLE-REGRESSION MODEL

Multiple regression is a statistical procedure in which a dependent variable (Y ) is

modeled as a function of more than one independent variable (X1, X2, X3,…, Xn).
1

The population multiple-regression model may be written as:

Y  f (X1, X2, X3, . . . , Xn)

  0   1X1   2X2  3X3  
. . .   kXk  

where  0 is the intercept and the other  i’s are the slope terms associated with the

respective independent variables (i.e., the Xi’s). In this model  represents the pop-

ulation error term, which is the difference between the actual Y and that predicted

by the regression model (Ŷ ).

The ordinary least-squares (OLS) criterion for the best multiple-regression

model is that the sum of the squares of all the error terms be minimized. That is,

we want to minimize   2, where

  2
  (Y  Ŷ )2
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1 For more detailed discussions of the multiple-regression model, see the following: John Neter,

William Wasserman, and Michael H. Kutner, Applied Linear Regression Models (New York:

McGraw-Hill, 1996), and Damodar N. Gujarati, Basic Econometrics (New York: McGraw-Hill,

2003). The latter is particularly recommended.



Thus, the ordinary least-squares criterion for multiple regression is to minimize:

 (Y   0   1X1   2X2   3X3  
. . .   kXk )2

The process of achieving this is more complicated than in the bivariate regression

case and involves the use of matrix algebra.

Values of the true regression parameters ( i) are typically estimated from sam-

ple data. The resulting sample regression model is:

Ŷ  b0  b1X1  b2X2  b3X3  
. . .  bkXk

where b0, b1, b2, b3, and so on, are sample statistics that are estimates of the corre-

sponding population parameters  0,  1,  2,  3, and so on. Deviations between the

predicted values based on the sample regression (Ŷ ) and the actual values (Y) of the

dependent variable for each observation are called residuals and are equal to 

(Y Ŷ ). The values of the sample statistics b0, b1, b2, b3, and so on, are almost always

determined for us by a computer software package. Standard errors, t-ratios, the mul-

tiple coefficient of determination, the Durbin-Watson statistic, and other evaluative

statistics, as well as a table of residuals, are also found in most regression output.

SELECTING INDEPENDENT VARIABLES

As with bivariate regression, the process of building a multiple-regression model

begins by identifying the dependent variable. In our context, that is the variable

that we are most interested in forecasting. It may be some “prime mover” such as

disposable personal income or another macroeconomic variable, or it may be total

company sales, or sales of a particular product line, or the number of patient-days

for a hospital, or state tax revenues.

Once the dependent variable is determined, we begin to think about what factors

contribute to its changes. In our bivariate example of new houses sold (NHS) we will

use disposable personal income per capita (DPIPC) as an explanatory variable. In this

chapter, as we think of other potential independent variables that might improve that

model, we want to think of other things that influence NHS but that do not measure

the same basic relationship that is being measured by DPIPC. Think, for example, of

the possibility of adding GDP to the model. Both GDP and DPIPC are measures of

aggregate income in the economy, so there would be a lot of overlap in the part of the

variation in NHS they explain. In fact, the correlation between GDP and DPIPC is

 0.99. A similar overlap would result if population and DPIPC were used in the

same model. There is a high correlation between population size and real disposable

personal income per capita (approximately   0.95), and so they would have a lot of

overlap in their ability to explain variations in NHS. Such overlaps can cause a prob-

lem known as multicollinearity, which we will discuss later in this chapter.2
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As with bivariate regres-

sion, the process of

building a multiple-

regression model begins

by identifying the

dependent variable.

2 Note that multicollinearity in regression analysis is really just strong correlation between two

or more independent variables. Correlation here is measured just as we did in Chapter 2 with

the Pearson product-moment correlation coefficient.



Thus, in considering the set of independent variables to use, we should find

ones that are not highly correlated with one another. For example, suppose that

we hypothesize that at least some portion of NHS may be influenced by the

mortgage interest rate, since many purchases are financed. It seems less likely

that there would be a stronger correlation between personal income and the

mortgage interest rate than between personal income and either GDP or popula-

tion size. The correlation between the mortgage interest rate and disposable per-

sonal income turns out to be just  0.65, so there is less overlap between those

two variables.

Sometimes it is difficult, or even impossible, to find a variable that measures

exactly what we want to have in our model. For example, in the NHS model we

might like to have as a measure of the interest rate a national average of the rate

charged on installment loans. However, a more readily available series, the mort-

gage interest rate (IR), may be a reasonable proxy for what we want to measure,

since all interest rates tend to be closely related.

Later in this chapter in our model of total houses sold (THS), we will also begin

looking at the relationship between THS and the mortgage rate. However, in plot-

ting the data you will see that there is a regular seasonal pattern in THS that is not

accounted for by the mortgage rate. You will want to consider adding another vari-

able (or set of variables) to account for the seasonality in THS. But how do we

measure spring, or fall, or summer, or winter? The seasons are qualitative attrib-

utes that have no direct quantitative counterpart. We will see (in the section

“Accounting for Seasonality in a Multiple-Regression Model”) that a special kind

of variable, known as a dummy variable, can be used to measure such a qualitative

attribute as spring.

FORECASTING WITH A MULTIPLE-REGRESSION MODEL

Our first example of a multiple-regression model in forecasting will involve new

houses sold (NHS) using data from which seasonality has been removed.

The quarterly data for NHS from 1992Q1 through 2004Q4 are shown in 

Figure 5.1. Our beginning bivariate regression forecasting model is:

NHSF  b0  b1(IR)

 5,543.74  415.90(IR)

where NHSF stands for the forecast of new houses sold (NHS) and IR is the mort-

gage interest rate.

Now we will expand this model to include disposable personal income per

capita (DPIPC) as a second independent variable. We will let NHSF2 represent

the second forecasting model for NHS.

NHSF2  b0  b1(DPIPC)  b2(IR)

Before running the regression, think about what signs should be expected for b1

and b2. Business and economic logic would suggest that b1 should be positive 
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Period IR DPIPC

2004Q1 5.89 26,984.00
2004Q2 5.85 27,106.17
2004Q3 5.82 27,228.35
2004Q4 5.79 27,350.53

(b1  0) and that b2 should be negative (b2 0). As shown in Table 5.1, the regres-

sion results support this notion. The model estimate is:

NHSF2   324.33  0.17(DPIPC)  168.13(IR)

The raw data for this model, along with the complete regression results, are

shown in Table 5.1. Statistical evaluation of this model, based on the information

provided in Table 5.1, will be considered in the next section. For now, we can see

that at least the signs for the coefficients are consistent with our expectations.

To use this model to forecast retail sales for 2004, we must first forecast the

independent variables: real disposable personal income (DPIPC) and the mortgage

interest rate (IR). Forecasts for the four quarters of 2004 for these two independent

variables, based on Holt’s exponential smoothing models, are:
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FIGURE 5.1
New Houses Sold

(NHS) in Thousands

of Units Seasonally

Adjusted (c5t1)

Source: The Bureau of the

Census (http://www.census.gov)

Our multiple-regression forecasts of new houses sold (NHSF2) can be found as

follows (using our Holt’s model estimates of DPIPC and IR):

NHSF2   324.33  0.17 (DPIPC)  168.13 (IR)

2004Q1

NHSF2   324.33  0.17 (26,984.00)  168.13 (5.89)  3,255.31
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TABLE 5.1
Data and Regression

Results for New

Houses Sold (NHS)

as a Function of

Disposable Income

per Capita (DPIPC)

and the Mortgage

Interest Rate (IR)

(c5t1)

(continued on next page)

Date NHS IR DPIPC

Mar-92 1,869 8.71 21,417

Jun-92 1,696 8.676667 21,505

Sep-92 1,913 8.01 21,514

Dec-92 1,885 8.206667 21,757

Mar-93 1,802 7.733333 21,279

Jun-93 1,980 7.453333 21,515

Sep-93 2,026 7.08 21,469

Dec-93 2,285 7.053333 21,706

Mar-94 2,052 7.296667 21,468

Jun-94 2,004 8.44 21,797

Sep-94 1,961 8.586667 21,870

Dec-94 1,990 9.1 22,106

Mar-95 1,801 8.813333 22,180

Jun-95 2,020 7.95 22,100

Sep-95 2,144 7.703333 22,143

Dec-95 2,069 7.353333 22,191

Mar-96 2,204 7.243333 22,385

Jun-96 2,203 8.106667 22,506

Sep-96 2,366 8.16 22,624

Dec-96 2,296 7.713333 22,667

Mar-97 2,462 7.79 22,823

Jun-97 2,297 7.923333 22,944

Sep-97 2,460 7.47 23,129

Dec-97 2,457 7.2 23,361

Mar-98 2,574 7.053333 23,798

Jun-98 2,676 7.093333 24,079

Sep-98 2,586 6.863333 24,265

Dec-98 2,837 6.766667 24,380

Mar-99 2,586 6.88 24,498

Jun-99 2,729 7.206667 24,464

Sep-99 2,619 7.796667 24,507

Dec-99 2,608 7.833333 24,789

Mar-00 2,629 8.26 25,274

Jun-00 2,491 8.32 25,380

Sep-00 2,647 8.03 25,633

Dec-00 2,796 7.643333 25,599

Mar-01 2,838 7.01 25,620

Jun-01 2,676 7.13 25,450

Sep-01 2,599 6.966667 26,081

Dec-01 2,774 6.783333 25,640

Mar-02 2,751 6.966667 26,249

Jun-02 2,871 6.816667 26,366

Sep-02 3,014 6.29 26,181

Dec-02 3,078 6.076667 26,123

Mar-03 2,939 5.836667 26,179

Jun-03 3,314 5.506667 26,392

Sep-03 3,472 6.013333 26,842

Dec-03 3,347 5.92 26,862

Mar-04 3,590 5.61 26,964
Jun-04 3,618 6.13 27,088
Sep-04 3,464 5.893333 27,214 <- Holdout
Dec-04 3,703 5.733333 27,691



2004Q2

NHSF2   324.33  0.17 (27,106.17)  168.13 (5.85)  3,282.73

2004Q3

NHSF2   324.33  0.17 (27,228.35)  168.13 (5.82)  3,308.47

2004Q4

NHSF2   324.33  0.17 (27,350.53)  168.13 (5.79)  3,334.2

The precision of the regression coefficients may cause a small difference between

the results above and those calculated with truncated coefficients.
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Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

TABLE 5.1 (continued)

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity
---------------------------------------------------------------------------------------

NHS Dependent  324.33 483.01  0.67 0.51 0.45 259.83

IR Yes  168.13 29.29  5.74 0.00 32.95  0.51

DPIPC Yes 0.17 0.01 12.93 0.00 167.28 1.64

Audit Trail--Correlation Coefficient Table

Series

Description

Overall

F-test

Included

in Model NHS IR DPIPC
--------------------------------------------------

NHS Dependent 1.00  0.79 0.93

IR Yes  0.79 1.00  0.65

DPIPC Yes 0.93  0.65 1.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

------------------------------------------------  ------------------------------------

AIC 599.11 Durbin Watson(4) 1.50

BIC 600.99 Mean 2,451.94

Mean Absolute Percentage Error (MAPE) 4.17% Max 3,472.00

R-Square 92.03% Min 1,696.00

Adjusted R-Square 91.68% Sum Squared Deviation 8,910,888.81

Root Mean Square Error 121.63 Range 1,776.00

Theil 0.80 Ljung-Box 20.06



These values are plotted in Figure 5.2 along with the values predicted by the

equation for the historical period. The forecasts here were produced in ForecastX™

and the calculations involve more significant digits than shown here.
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FIGURE 5.2
New Houses Sold and

Forecast of New

Houses Sold (NHSF2)

in Thousands of Units

(c5t1)

Date NHS NHSF2

Mar-1992 1,869.00 1,838.41
Jun-1992 1,696.00 1,858.92
Sep-1992 1,913.00 1,972.53
Dec-1992 1,885.00 1,980.62
Mar-1993 1,802.00 1,979.24
Jun-1993 1,980.00 2,066.29
Sep-1993 2,026.00 2,121.26
Dec-1993 2,285.00 2,165.88
Mar-1994 2,052.00 2,084.67
Jun-1994 2,004.00 1,948.16
Sep-1994 1,961.00 1,935.87
Dec-1994 1,990.00 1,889.53
Mar-1995 1,801.00 1,950.26
Jun-1995 2,020.00 2,081.86
Sep-1995 2,144.00 2,130.61
Dec-1995 2,069.00 2,197.58
Mar-1996 2,204.00 2,248.93
Jun-1996 2,203.00 2,124.28
Sep-1996 2,366.00 2,135.29

(continued on next page)



In Figure 5.2 the dark line shows actual values of new houses sold (NHS) for

1992Q1 through 2004Q4. The light line shows the values predicted by this model

for 1992Q1 through 2004Q4 (NHSF2). For the historical period, actual values for

the independent variables were used in determining NHSF2. In the holdout

period, forecast values (from smoothing models) for DPIPC and IR, as shown on

page 228, were used to calculate NHSF2.

Actual and forecast values of retail sales for the four quarters of 2004 are

shown, along with the calculation of the root-mean-squared error (RMSE) for the
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Date NHS NHSF2

Dec-1996 2,296.00 2,217.67
Mar-1997 2,462.00 2,231.20
Jun-1997 2,297.00 2,229.28
Sep-1997 2,460.00 2,336.83
Dec-1997 2,457.00 2,421.51
Mar-1998 2,574.00 2,520.18
Jun-1998 2,676.00 2,561.04
Sep-1998 2,586.00 2,631.21
Dec-1998 2,837.00 2,666.94
Mar-1999 2,586.00 2,667.87
Jun-1999 2,729.00 2,607.19
Sep-1999 2,619.00 2,515.28
Dec-1999 2,608.00 2,556.87
Mar-2000 2,629.00 2,567.28
Jun-2000 2,491.00 2,575.14
Sep-2000 2,647.00 2,666.74
Dec-2000 2,796.00 2,725.99
Mar-2001 2,838.00 2,836.03
Jun-2001 2,676.00 2,787.06
Sep-2001 2,599.00 2,921.39
Dec-2001 2,774.00 2,877.53
Mar-2002 2,751.00 2,949.84
Jun-2002 2,871.00 2,994.87
Sep-2002 3,014.00 3,052.09
Dec-2002 3,078.00 3,078.13
Mar-2003 2,939.00 3,127.97
Jun-2003 3,314.00 3,219.52
Sep-2003 3,472.00 3,210.55
Dec-2003 3,347.00 3,229.63

(continued)

Mar-2004 3,590.00 3,255.31
Jun-2004 3,618.00 3,282.73
Sep-2004 3,464.00 3,308.47 <- Holdout period
Dec-2004 3,703.00 3,334.20



forecast period:
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This RMSE is about 9 percent of the mean for NHS during these four quarters.

The total for NHS in 2004 was 14,375, and the total of the four quarterly forecasts

was 13,181, so the error for the year was  1,194, or about 8.3 percent.

The Regression Plane
In our three-variable case (with NHS as the dependent variable and with IR and

DPIPC as independent variables), three measured values are made for each sam-

ple point (i.e., for each quarter). Table 5.1 shows these three measured values for

every quarter. In the period 1992Q1, for instance, the three values are 1,869 for

NHS, 8.71 for IR, and 21,417 for DPIPC. These observations can be depicted in a

scatter diagram like those in Chapter 2, but the scatter diagram must be three-

dimensional. Figure 5.3 shows the new houses sold (NHS) of any observation as

measured vertically from the DPIPC/IR plane. The value of IR is measured along
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FIGURE 5.3
New Houses Sold

(NHS) in Thousands

of Units Viewed in

Three Dimensions

Holdout Period (2004) Forecast RMSE

Forecast Actual (At  Ft) (At  Ft)
2

3,255.31 3,590.00 334.69 112,014.9944
3,282.73 3,618.00 335.27 112,406.5545
3,308.47 3,464.00 155.53 24,191.11415
3,334.20 3,703.00 368.80 136,012.6956

RMSE  310



the “IR” axis and the value of DPIPC is measured along the “DPIPC” axis. All 52

observations are represented as points in the diagram.

In multiple-regression analysis, our task is to suspend a linear three-dimensional

plane (called the regression plane) among the observations in such a way that the

plane best represents the observations. Multiple-regression analysis estimates an

equation (Y  a  b1X  b2Z) in such a manner that all the estimates of Y made

with the equation fall on the surface of the linear plane. The exact equation we es-

timated for retail sales,

NHS   324.33  0.17(DPIPC)  168.13(IR)

is graphed as the plane shown in Figure 5.4. This regression plane, like the simple

bivariate regression line of Chapter 4, is drawn in such a way as to minimize the

sum of the squared vertical deviations between the sample points and the esti-

mated plane. Some of the actual points lie above the regression plane, while other

actual points lie below the regression plane.

Note that the b1 estimate indicates how NHS changes with respect to DPIPC

while IR is held constant. If the sign of b1 is positive, as it is in this example, then

NHS increases as DPIPC increases (with all other variables held constant). Look-

ing at Figure 5.4 again, note that the plane “tilts up” as you move from 23,000 to

28,000 along the DPIPC axis. Clearly, the regression plane is reacting to the pos-

itive relationship between NHS and DPIPC.

Similarly, the sign for b2 in this regression represents the relationship between

IR and NHS while DPIPC is held constant. Since the estimated sign of b2 is neg-

ative, we should expect that as IR increases in value, all else being equal, NHS

will decrease. This is also easily seen by examining the regression plane. Note that
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the plane is tilted in such a way that higher interest rates (IR) are associated with

lower new homes sold (NHS) values.

Finally, if all the actual data points were to lie very close to the regression plane,

the adjusted R-squared of the equation would be very high. If, on the other hand,

most of the actual points were far above and below the regression plane, the ad-

justed R-squared would be lower than it otherwise would be. Normally, regression

packages do not have a provision for the graphing of output in three-dimensional

form. This is because relatively few of the problems faced in the real world

involve exactly three variables. Sometimes you are working with only two vari-

ables, while at other times you will be working with more than three. Thus, while

the three-dimensional diagram will be useful only in a few cases, it is instructive

to see it once in order to understand that a regression package is simply estimat-

ing the equation of a plane in three-dimensional space when multiple regression is

used. The plane is a normal plane when there are two independent variables, and

it is called a hyperplane (more than three-dimensional) when there are more than

two independent variables.

STATISTICAL EVALUATION OF 
MULTIPLE-REGRESSION MODELS

The statistical evaluation of multiple-regression models is similar to that discussed

in Chapter 4 for simple bivariate regression models. However, some important

differences will be brought out in this section. In addition to evaluating the multiple-

regression model, we will be comparing these results with a corresponding bivariate

model. Thus, in Table 5.2 you see the regression results for both models. The multiple-

regression results appear at the bottom of the table.

Three Quick Checks in Evaluating 
Multiple-Regression Models
As suggested in Chapter 4, the first thing you should do in reviewing regression

results is to see whether the signs on the coefficients make sense. For our current

model, that is:

NHS  b0  b1(DPIPC)  b2(IR)

we have said that we expect a negative relationship between NHS and the interest

rate, and a positive relationship between disposable personal income and NHS.

Our expectations are confirmed, since:

b1  0.17  0

b2  168.17  0

The second thing to consider is whether these results are statistically signif-

icant at our desired level of confidence. We will follow the convention of using
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TABLE 5.2 Regression Results for Multiple- and Bivariate-Regression Models of New Homes Sold (NHS) (c5t1)

Bivariate Regression

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS SEE
---------------------------------------------------------------------------------------

Regression 5,560,860.59 1 5,560,860.59

Error 3,350,028.22 46 72,826.70 269.86

Total 8,910,888.81 47

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test
---------------------------------------------------------------------------------------

NHS Dependent 5,543.74 355.96 15.57 0.00 242.55 76.36

IR Yes  415.90 47.59  8.74 0.00 76.36  1.26

Audit Trail--Correlation Coefficient Table

Series

Description

Included

in Model NHS IR
---------------------------------------------------------------------------------------

NHS Dependent 1.00  0.79

IR Yes  0.79 1.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value
-----------------------------------------------    ------------------------------------

AIC 673.58 Durbin Watson(4) 1.24

BIC 675.45 Mean 2,451.94

Mean Absolute Percentage Error (MAPE) 9.04% Max 3,472.00

R-Square 62.41% Min 1,696.00

Adjusted R-Square 61.59% Sum Squared Deviation 8,910,888.81

Root Mean Square Error 264.18 Range 1,776.00

Theil 1.88 Ljung-Box 81.83

Multiple Regression

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity
Overall

F-test
---------------------------------------------------------------------------------------

NHS Dependent  324.33 483.01  0.67 0.51 0.45 259.83

IR Yes  168.13 29.29  5.74 0.00 32.95  0.51

DPIPC Yes 0.17 0.01 12.93 0.00 167.28 1.64

Audit Trail--Correlation Coefficient Table

Series

Description

Included

in Model NHS IR DPIPC
--------------------------------------------------------------------------------------- 

NHS Dependent 1.00  0.79 0.93

IR Yes  0.79 1.00  0.65

DPIPC Yes 0.93  0.65 1.00



For DPIPC For IR

tcalc  12.93 tcalc   5.74
 tcalc   tT  tcalc   tT

12.93  1.645   5.74  1.645
 Reject H0  Reject H0

For DPIPC For IR

H0:  1  0 H0:  2  0
H1:  1  0 H1:  2  0

a 95 percent confidence level, and thus a 0.05 significance level. The hypothe-

ses to be tested are summarized as follows:
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These hypotheses are evaluated using a t-test where, as with bivariate regression,

the calculated t-ratio is found by dividing the estimated regression coefficient by its

standard error (i.e., tcalc bi/s.e. of bi). The table value of t ( tT) can be found from

Table 2.5 (page 71) at n   (K  1) degrees of freedom, where n  the number of

observations and K the number of independent variables. For our current problem

n 48 (recall the holdout period) and K 2, so df  48   (2  1)  45. We will

follow the rule that if df  30 the infinity row of the t-table will be used. Thus, the

table value is 1.645. Note that we have used the 0.05 column, since we have one-

tailed tests, and in such cases the entire significance level (0.05) goes in one tail.

Remember that since the t-distribution is symmetrical, we compare the absolute

value of tcalc with the table value. For our hypothesis tests, the results can be sum-

marized as follows:

In both cases, the absolute value of tcalc is greater than the table value at   0.05

and df  33. Thus we reject the null hypothesis at the 0.05 level for the DPIPC co-

efficient, and we are also able to reject the null hypothesis for the IR coefficient.

By setting the 95 percent confidence level as our criterion, we are at the same

time saying that we are willing to accept a 5 percent chance of error or, alterna-

tively, that we set a 5 percent desired significance level.

TABLE 5.2 (continued)

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

------------------------------------------–--- –-----------------------------------

AIC 599.11 Durbin Watson(4) 1.50

BIC 600.99 Mean 2,451.94

Mean Absolute Percentage Error (MAPE) 4.17% Max 3,472.00

R-Square 92.03% Min 1,696.00

Adjusted R-Square 91.68% Sum Squared Deviation 8,910,888.81

Root Mean Square Error 121.63 Range 1,776.00

Theil 0.80 Ljung-Box 20.06



The third part of our quick check of regression results involves an evaluation of

the multiple coefficient of determination, which, you may recall, measures the

percentage of the variation in the dependent variable that is explained by the

regression model. In Chapter 4 we designated the coefficient of determination as

R-squared. If you look at the second ForecastX™ output in Table 5.2, you will

see that in addition to R-squared there is another measure called the adjusted R-

squared. (See “Adjusted R-Square  91.68%.”) In evaluating multiple-regression

equations, you should always consider the adjusted R-squared value. The reason

for the adjustment is that adding another independent variable will always increase

R-squared even if the variable has no meaningful relation to the dependent vari-

able. Indeed, if we added enough independent variables, we could get very close

to an R-squared of 1.00—a perfect fit for the historical period. However, the

model would probably work very poorly for values of the independent variables

other than those used in estimation. To get around this and to show only meaning-

ful changes in R-squared, an adjustment is made to account for a decrease in the

number of degrees of freedom.3 The adjusted R-squared is often denoted R 2

(called R-bar-squared or the multiple coefficient of determination).

For our multiple-regression model of new homes sold (NHS), we see, in

Table 5.2, that the adjusted R-squared is 91.68 percent. Thus, this model explains

91.68 percent of the variation in new homes sold. This compares with an adjusted

R-squared of 61.59 percent for the bivariate model (using only IR as an independent

variable).

In looking at regression output, you often see an F-statistic. This statistic can

be used to test the following joint hypothesis:

H0:  1   2   3  
. . .   k 0 or H0 : R2

 0

(i.e., all slope terms are simultaneously equal to zero);

H1: All slope terms are not simultaneously equal to zero or H1 : R2
 0

If the null hypothesis is true, it follows that none of the variation in the dependent

variable would be explained by the regression model. It follows that, if H0 is true,

the true coefficient of determination would be zero.

The F-statistic is calculated as follows:

F 

The F-test is a test of the overall significance of the estimated multiple regres-

sion. To test the hypothesis, this calculated F-statistic is compared with the 

F-value from Table 5.3 at K degrees of freedom for the numerator and n (K 1)

degrees of freedom for the denominator.4 For our current regression, K  2 and

Explained variation K
    
Unexplained variation [n  (K  1)]
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3 These concepts are expanded in J. Scott Armstrong, Long-Range Forecasting (New York: 

John Wiley & Sons, 1978), pp. 323–25, 466.
4 This F-table corresponds to a 95 percent confidence level (  0.05). You could use any  

value and the corresponding F-distribution.



[n  (K  1)]  45, so the table value of F is 3.23 (taking the closest value). In

using an F-test, the criterion for rejection of the null hypothesis is that Fcalc  FT

(the calculated F must be greater than the table value). In this case the calculated

value is 259.83, so we would reject H0 (i.e., our equation passes the F-test).
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TABLE 5.3 Critical Values of the F-Distribution at a 95 Percent Confidence Level (  .05)

1* 2 3 4 5 6 7 8 9

1
†

161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

* Degrees of freedom for the numerator  K
† Degrees of freedom for the denominator  n  (K  1)



Multicollinearity
In multiple-regression analysis, one of the assumptions that is made is that the in-

dependent variables are not highly linearly correlated with each other or with lin-

ear combinations of other independent variables. If this assumption is violated, a

problem known as multicollinearity results. If your regression results show that

one or more independent variables appear not to be statistically significant when

theory suggests that they should be, and/or if the signs on coefficients are not log-

ical, multicollinearity may be indicated. Sometimes it is possible to spot the cause

of the multicollinearity by looking at a correlation matrix for the independent

variables.

To illustrate the multicollinearity problem, suppose that we model new homes

sold (NHS) as a function of disposable personal income (DPIPC), the mortgage

interest rate (IR), and the gross domestic product (GDP). The model would be:

NHS  b0  b1(DPIPC)  b2(GDP)  b3(IR)

Business and economic logic would tell us to expect a positive sign for b1, a pos-

itive sign for b2, and a negative sign for b3. The actual regression results are:

240 Chapter Five

In multiple-regression

analysis, one of the

assumptions that is

made is that the

independent variables

are not highly linearly

correlated with each

other or with linear

combinations of other

independent variables. 

If this assumption is 

violated, a problem

known as 

multicollinearity

results.

We see that the coefficient for DPIPC is negative, which does not make sense. It

would be difficult to argue persuasively that NHS would fall as DPIPC rises.

If we look at the correlations between these variables, we can see the source of

the problem. The correlations are:

Clearly there is a very strong linear association between GDP and DPIPC. In this

case both of these variables are measuring essentially the same thing. There are no

firm rules in deciding how strong a correlation is too great. Two rules of thumb,

however, provide some guidance. First, we might avoid correlations between in-

dependent variables that are close to 1 in absolute value. Second, we might try to

avoid situations in which the correlation between independent variables is greater

(c5t1)
Coefficient t-Ratio

Constant 1,884 2.09
DPIPC  0.01  0.21
GDP 0.23 2.83
IR  147.82  5.25

DPIPC GDP IR

DPIPC 1
GDP 0.99 1
IR  0.65  0.67 1



In early 2002 hospitals in New Jersey were begin-

ning to experience difficulty in budgeting for regis-

tered nurses (RNs) because of uncertainty about

the number of RNs needed in future years. Dr. Geri

Dickson, RN, authored a demand study for nurses

in New Jersey using multiple regression as its pri-

mary statistical tool.

The New Jersey model is a multiple regression

that forecasts the demand for RNs at the state

and county level; demand is used in the study to

mean the number of nurses that employers

would hire given their availability. An important

feature of the study was that it was based upon a

longitudinal (sometimes called panel) set of data

that held constant many economic variables that

might have been thought to change over the

time period.

There was a need to use some independent vari-

ables that themselves had to be forecast in order to

produce the final RN forecast. For instance, the

total number of HIV/AIDs patients was found to be

a significant predictor of nursing demand; the

growth rate in HIV/AIDs was predicted to be 7 per-

cent over the forecast horizon using time-series

forecasting methods applied to past HIV/AIDs data.

Likewise, the rate of HMO penetration into the

New Jersey market was also found to be a predic-

tor of nursing demand. Once again time-series

methods were used to make forecasts of this inde-

pendent variable; since this variable was growing

at a nonlinear rate, a nonlinear model was used to

forecast future penetration.

Some variables the researchers considered as

independent variables in the forecasting model

turned out to be insignificant. For example, the

mortality rate and per capita income in New

Jersey seemed to have little effect on nursing

demand. The model estimated for predicting hos-

pital employment of registered nurses (in full-time

equivalents, or FTEs) is shown below.

It is easy to see that some of the variables

seem to make economic sense. The “population

over 65 rate” increases as those over age 65

increase relative to the general population; since

this is the group that most often requires exten-

sive hospital stays, we would expect a positive

sign on the variable. Likewise, if the “birthrate”

increases, we could expect the demand for RNs’

services to increase, and so we would expect this

variable also to have a positive sign. In the

equation above both these variables have the ex-

pected sign and both variables are significant at

the 99 percent confidence level (as shown by the

P-value).
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Dependent Variable—Hospital Employment of Registered Nurses (FTEs)

Variable Coefficient Std. Dev. T-statistic P-value

Constant  0.947 0.415  2.278 0.023*
HIV/AIDS rate 0.001 0.000 4.180 0.000*
Employment/population  0.543 0.732  0.742 0.458
Ratio
HMO penetration rate 0.024 0.006 4.304 0.000*
Population over 65
Rate 0.064 0.017 3.743 0.000*
Birthrate 0.093 0.018 5.103 0.000*
Surgery rate 0.010 0.003 3.753 0.000*
Inpatient days rate 0.853 0.162 5.278 0.000*

R-squared  0.861

Adjusted R-squared  0.848

* Significant at the 99 percent confidence level

(continued on next page)



The author points out that the most useful char-

acteristic of using multiple regression as the fore-

casting technique is the ability to conduct what-if

exercises with the prediction model. For instance,

in the forecast period the ratio of employment to

population in the state of New Jersey is expected

to increase. But what if this prediction proves un-

founded and the ratio actually falls by 1 percent?

Multiple-regression models allow the researcher to

use the coefficient on this ratio (here it is  0.543 in

the forecasting model) to predict that as the ratio

falls there will be increased demand for registered

nurses; the researcher is even able to place a mag-

nitude on the increased demand if the change in

the ratio is known.

Sources: Geri Dickson, “Forecasting The Demand for
Nurses in New Jersey” (March 2002), New Jersey
Collaborating Center for Nursing (http://www.njccn.org);
and M. Biviano, T. M. Dall, M. S. Fritz, and W. Spencer,
“What Is Behind HRS’s Projected Supply, Demand, and
Shortage of Registered Nurses” (September 2004),
National Center for Workforce Analysis, Bureau of
Health Professions, Health Resources and Services
Administration.
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than the correlation of those variables with the dependent variable. One thing to do

when multicollinearity exists is to drop all but one of the highly correlated variables.

The use of first differences can also help when there is a common trend in the two

highly correlated independent variables.

Serial Correlation: A Second Look
The problem known as serial correlation (or autocorrelation) was introduced in

Chapter 4, where we indicated that serial correlation results when there is a sig-

nificant time pattern in the error terms of a regression analysis that violates the

assumption that the errors are independent over time. Positive serial correlation,

as shown in the right-hand graph of Figure 4.10 (page 186), is common in busi-

ness and economic data.

A test involving six comparisons between table values of the Durbin-Watson

statistic and the calculated Durbin-Watson statistic is commonly used to detect se-

rial correlation. These six comparisons are repeated here, where dl and du repre-

sent the lower and upper bounds of the Durbin-Watson statistic from Table 4.7

(page 187) and DW is the calculated value:

Serial correlation 

results when there is

a significant time 

pattern in the error

terms of a regression

analysis.

Test
Value of

Calculated DW Conclusion

1 dl  DW  du Result is indeterminate.
2 0  DW  dl Positive serial correlation exists.
3 2  DW  (4  du)  No serial correlation exists.
4 du  DW  2
5 (4  dl)  DW  4 Negative serial correlation exists.
6 (4  du)  DW  (4  dl) Result is indeterminate.



In Table 5.2 you see that for the bivariate regression of NHS with IR, the DW is

1.24, indicating positive serial correlation.

For the multiple regression of NHS with DPIPC and IR, the calculated Durbin-

Watson statistic is approximately 1.5. (See Table 5.2, which has DW for both the

bivariate and the multiple regressions.) This satisfies the region “1” test:

dl  DW  du

1.46  1.5  1.63

where du and dl were found from Table 4.7 for k 2 and N 50 (approximately).

Thus, we conclude that the result is indeterminate. This illustrates one possible so-

lution to the serial-correlation problem. Our bivariate model was underspecified:

An important independent variable was missing. In this case it was disposable per-

sonal income (DPIPC). While the addition of this variable did not definitively

solve the problem in this case, the DW statistic did move in the correct direction.

The careful reader will have noted that the Durbin-Watson statistic reported in

Table 5.2 for the NHS regressions is labeled as Durbin Watson (4). This is a

fourth-order Durbin-Watson statistic. In practice it is often assumed that a first-

order check for autocorrelation of the residuals will suffice. Remember that the

normal Durbin-Watson statistic checks the error terms for autocorrelation by

comparing errors that are lagged a single period. When a regression fails the

Durbin-Watson test, the usual interpretation is that this represents the effect of an

omitted or unobservable variable (or variables) on the dependent variable. The

easiest correction is to collect data on the omitted variable and include it in a new

formulation of the model; if the correct variable is added, the serial correlation

problem will disappear.

When quarterly data are employed, however, the presence of nonsystematic

seasonal variation, or an incomplete accounting for seasonality by the included

variables, will produce seasonal effects in the error terms, with the consequence

that the fourth-order autocorrelation will be significant. The same argument can

be made when monthly data are employed for twelfth-order autocorrelation.

The Durbin-Watson statistic has then been generalized to test for such upper-

order instances of autocorrelation in the error terms. The fourth-order test statis-

tic has a distribution that differs from that of the normal Durbin-Watson statistic

and tables of its critical values as presented in Table 4.7. However, the differences

are small, and the user may wish to simply use Table 4.7 to interpret the upper-

order Durbin-Watson statistics.5

When a regression with quarterly data fails the DW(4) test for fourth-order cor-

relation among the error terms, the usual culprit is that the seasonality in the data

has not been fully accounted for by the variables included.
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5 For a table showing the exact critical values of the Durbin-Watson statistic for quarterly data

(both with and without seasonal dummy variables), see the K. F. Wallis article in the Suggested

Readings list at the end of this chapter.



SERIAL CORRELATION AND THE 
OMITTED-VARIABLE PROBLEM

Table 5.4 presents quarterly data for a firm’s sales, the price the firm charges for

its product, and the income of potential purchasers. The most common reason for

serial correlation is that an important explanatory variable has been omitted. To

address this situation, it will be necessary at times to add an additional explana-

tory variable to the equation to correct for serial correlation.

In the first regression displayed in Table 5.4, price is used as the single inde-

pendent variable to explain the firm’s sales. The results are somewhat less than sat-

isfactory on a number of accounts. First, the R-squared is quite low, explaining

only about 39 percent of the variation in sales. More importantly, the sign on the

price coefficient is positive, indicating that as price increases, sales also increase.

This does not seem to follow economic theory.

The problem may be that an important variable that could account for the large

errors and the incorrect sign of the price coefficient has been omitted from the re-

gression. The second regression in Table 5.4 adds income as a second explanatory

variable. The results are dramatic. The adjusted R-squared shows that the model

now accounts for about 96 percent of the variation in sales. The signs of both the

explanatory variable coefficients are as expected. The price coefficient is negative,

indicating that sales decrease as price increases, while the income coefficient is

positive, indicating that sales of the good rise as incomes increase (which would

be reasonable for a “normal” economic good).

The Durbin-Watson statistic is within the rule-of-thumb 1.5 to 2.5 range. There

does not seem to be serial correlation (and so the R-squared and t-statistics are

probably accurate). The formal test for serial correlation requires us to look for the

upper and lower values in the Durbin-Watson table (Table 4.7). Note carefully that

the appropriate values are 0.95 and 1.54 (i.e., N  15 and column k  2).

Using these values and our calculated value, we can evaluate each of the six

tests explained earlier.
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Since our result is true for test number 4, we conclude that no serial correlation is

present. Apparently, the addition of the second explanatory variable explained the

pattern in the residuals that the Durbin-Watson statistic identified.

Test Value Conclusion

1 .95  1.67  1.54 False
2 0  1.67  0.95 False
3 2  1.67  2.46 False
4 1.54  1.67  2 True
5 3.05  1.67  4 False
6 2.46  1.67  3.05 False
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Period Sales Price Income

Mar-02 80 5 2,620
Jun-02 86 4.87 2,733
Sep-02 93 4.86 2,898
Dec-02 99 4.79 3,056
Mar-03 106 4.79 3,271
Jun-03 107 4.87 3,479
Sep-03 109 5.01 3,736
Dec-03 110 5.31 3,868
Mar-04 111 5.55 4,016
Jun-04 113 5.72 4,152
Sep-04 110 5.74 4,336
Dec-04 112 5.59 4,477
Mar-05 131 5.5 4,619
Jun-05 136 5.48 4,764
Sep-05 137 5.47 4,802
Dec-05 139 5.49 4,916

TABLE 5.4 Data for a Firm’s Sales, the Price the Firm Charges for Its Product,

and the Income of Potential Purchasers (c5t4)

Bivariate Regression

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test

----------------------------------------------------------------------------------------------------

Sales Dependent  51.24 54.32  0.94 0.36 0.89 8.98

Price Yes 30.92 10.32 3.00 0.01 8.98 1.46

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------    -----------------------------------------

AIC 130.02 Durbin Watson (1) 0.34

BIC 130.80 Standard Deviation 17.49

Mean Absolute Percentage Error (MAPE) 10.67% Ljung-Box 16.57

R-Square 39.07%

Adjusted R-Square 39.07%

Root Mean Square Error 13.22

Theil 1.78

Multiple Regression

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test

----------------------------------------------------------------------------------------------------

Sales Dependent 123.47 19.40 6.36 0.00 40.51 154.86

Price Yes  24.84 4.95  5.02 0.00 25.17  1.17

Income Yes 0.03 0.00 13.55 0.00 183.62 1.06

(continued on next page)



Alternative-Variable Selection Criteria
There is a strong tendency for forecasters to use a single criterion for deciding

which of several variables ought to be used as independent variables in a regres-

sion. The criterion many people use appears to be the coefficient of determina-

tion, or R-squared. Recall that R-squared is a measure of the proportion of total

variance accounted for by the linear influence of the explanatory variables (only

linear influence is accounted for, since we are using linear least-squares regres-

sion). The R-squared measure has at least one obvious fault when used in this

manner: it can be increased by simply increasing the number of independent vari-

ables. Because of this, we proposed the corrected or adjusted R-squared, which

uses unbiased estimators of the respective variances. Most forecasters use the

adjusted R-squared to lead them to the correct model by selecting the model that

maximizes adjusted R-squared. The adjusted R-squared measure is based on

selecting the correct model by using a quadratic form of the residuals or squared

errors in which the true model minimizes those squared errors. But the adjusted

R-squared measure may not be the most powerful of the measures involving the

squared errors.

There are two other model-specification statistics reported by ForecastX™ and

other statistical packages that can be of use in selecting the “correct” independent

variables. These are the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC).6

The Akaike information criterion selects the best model by considering the ac-

curacy of the estimation and the “best” approximation to reality. The statistic

(which is minimized by the best model) involves both the use of a measure of the

accuracy of the estimate and a measure of the principle of parsimony (i.e., the

concept that fewer independent variables are better than more, all other things
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6 The Bayesian information criterion is also called the Schwarz information criterion, after its

creator.

TABLE 5.4 (continued)

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------     ------------------------------------------

AIC 86.56 Durbin Watson (1) 1.67

BIC 87.34 Standard Deviation 17.49

Mean Absolute Percentage Error (MAPE)        2.22% Ljung-Box 9.27

R-Square 95.97%

Adjusted R-Square 95.97%

Root Mean Square Error 3.40

Theil 0.53



being equal). The calculation of the AIC is detailed in Judge et al.7 We can say that

the statistic is constructed so that, as the number of independent variables

increases, the AIC has a tendency to increase as well; this means that there is a

penalty for “extra” independent variables that must be sufficiently offset by an

increase in estimation accuracy to keep the AIC from increasing. In actual prac-

tice, a decrease in the AIC as a variable is added indicates that accuracy has in-

creased after adjustment for the rule of parsimony.

The Bayesian criterion is quite similar to the AIC. The BIC uses Bayesian

arguments about the prior probability of the true model to suggest the correct

model. While the calculation routine for the BIC is quite different from that for the

AIC, the results are usually quite consistent.8 The BIC is also to be minimized, so

that, if the BIC decreases after the addition of a new independent variable, the re-

sulting model specification is seen as superior to the prior model specification.

Often, AIC and BIC lead to the same model choice.

In a study of the model-selection process, Judge and coauthors created five in-

dependent variables that were to be used to estimate a dependent variable. Two of

the five independent variables were actually related to the dependent variable,

while the remaining three were extraneous variables. Various combinations of the

five independent variables were used to estimate the dependent variable, and three

measures were used to select the “best” model. The three measures used were the

adjusted R-squared, the AIC, and the BIC.

The correct model containing only the two variables actually related to the

dependent variable was chosen 27 percent of the time in repeated experiments by

the adjusted R-squared criterion. The AIC chose the correct model in 45 percent

of the cases, and the BIC chose the correct model in 46 percent of the cases. The

results should make the forecaster wary of accepting only the statistical results of

what constitutes the best model without some economic interpretation of why a

variable is included. It should be clear, however, that the adjusted R-squared crite-

rion is actually quite a poor judge to use in model selection; either the AIC or the

BIC is far superior. The same study also showed that in 9 percent of the repeated

trials the adjusted R-squared criterion chose the model with all five variables (i.e.,

the two “correct” ones and the three extraneous ones). The AIC and the BIC made

the same incorrect choice in only 3 percent of the cases.

Examine the ForecastX™ output in Table 5.2, which includes the calculated

AIC and BIC criteria. In the upper half of Table 5.2, the new homes sold (NHS)

regression includes only the mortgage interest rate (IR) as an independent vari-

able. For this specification of the model, the AIC is 673.58, while the BIC is

675.45. When the disposable personal income (DPIPC) variable is added to the

regression, the AIC decreases to 599.11 and the BIC decreases to 600.99. These
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7 For a complete description of the calculation routine, see George G. Judge, R. Carter Hill,

William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee, Introduction to the Theory and

Practice of Econometrics, 2nd ed., (New York: John Wiley & Sons, 1988), Chapter 20.
8 Again see Judge et al. for a complete description of the calculation routine.

In actual practice, a

decrease in the AIC as

a variable is added

indicates that accuracy

has increased after

adjustment for the 
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changes in the AIC and BIC indicate that the addition of DPIPC to the model was

probably a correct choice.

In Table 5.4 we added a second variable to a regression. When both price and

income were included, the AIC decreased to 86.56 from 130.02 and the BIC

decreased to 87.34 from 130.80. Apparently, the inclusion of income as a variable

was also likely a correct choice.

How much of a decrease in the Akaike information criterion (AIC) constitutes

a “better” model? According to Hirotugu Akaike, there is a clear indication of a

better identified model if the two competing models differ by more than 10 in their

AIC score. If the difference is between 4 and 7, there is much less certainty that a

clear winner has emerged. If the difference in AIC scores is 2 or less, then both

candidate models have strong support. In both instances above, the differences in

the Akaike scores between the candidate models exceeded 10, and therefore one

model was clearly chosen as the best identified model.

The researcher should not compare the AIC or BIC of one series with the AIC

or BIC of another series; the assumption is that models with identical dependent

variables are being compared. There is no easy interpretation of the magnitude of

the AIC and BIC, nor is one necessary. Only the relative size of the statistics is

important.

ACCOUNTING FOR SEASONALITY 
IN A MULTIPLE-REGRESSION MODEL

Many business and economic data series display pronounced seasonal patterns

that recur with some regularity year after year. The pattern may be associated with

weather conditions typical of the four seasons of the year. For example, sales of

ski equipment would be expected to be greater during the fall and winter (the

fourth and first quarters of the calendar year, respectively) than during the spring

and summer (the second and third quarters).

Other regular patterns that would be referred to as seasonal patterns may have

nothing to do with weather conditions. For example, jewelry sales in the United

States tend to be high in November and December because of Christmas shopping

and gift giving, and turkey sales are also highest in these months because of tradi-

tional Thanksgiving and Christmas dinners.

Patterns such as these are not easily accounted for by the typical causal vari-

ables that we use in regression analysis. However, a special type of variable known

as a dummy variable can be used effectively to account for seasonality or any

other qualitative attribute. The dependent variable in a regression is often influ-

enced not only by continuous variables like income, price, and advertising expen-

ditures, but also by variables that may be qualitative or nominally scaled (such as

the season of the year). A dummy variable typically takes on a value of either 0 or

1. It is 0 if the condition does not exist for an observation, and it is 1 if the condi-

tion does exist.
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Suppose that we were studying monthly data on turkey sales at grocery stores

and we would like to include the November and December seasonality in our

model. We could define a dummy variable called M11, for the eleventh month, to

be equal to 1 for November observations and 0 otherwise. Another dummy vari-

able, M12, could be defined similarly for December. Thus, for every year these

variables would be as follows:
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In the regression results, the coefficients for M11 and M12 would reveal the

degree of difference in sales for November and December, respectively, compared

to other months of the year. In both of these cases we would expect the coefficients

to be positive (indicating that sales in these two months were higher, on average,

than in the remaining months of the year).

To illustrate very specifically the use of dummy variables to account for

and measure seasonality, let us use new cars sold (NCS) in the United States

measured in millions of dollars (not seasonally adjusted). These data are plot-

ted for Jan-97 through Dec-07 in Figure 5.5. To help you see the seasonality,



each January is marked with the number 1. You see in this figure that through

the 11 years, there are typically fewer new cars sold during January than in the

other months of the year; in most years there is a peak in sales sometime dur-

ing the summer months. This pattern is reasonably consistent, although there

is variability in the degree of seasonality and some deviation from the overall

pattern.

To account for and measure this seasonality in a regression model, we will use

11 dummy variables: These will be coded as follows:

feb  1 for February and zero otherwise

mar  1 for March and zero otherwise

apr  1 for April and zero otherwise

may  1 for May and zero otherwise

jun  1 for June and zero otherwise

jul  1 for July and zero otherwise

aug  1 for August and zero otherwise

sep  1 for September and zero otherwise

oct  1 for October and zero otherwise

nov  1 for November and zero otherwise

dec  1 for December and zero otherwise

Data for new cars sold (NCS), a time index, the University of Michigan Index of

Consumer Sentiment (ICS), the bank prime loan rate (Prime), and these seasonal

dummy variables are shown in Table 5.5. Examine the data carefully to verify your

understanding of the coding of the dummy variables.

Since we have assigned dummy variables for each month except January, the

first month (January) is the base month for our regression model. Any month

could be used as the base month, with dummy variables to adjust for differences

attributed to the other months. The number of seasonal dummy variables to use

depends upon the data. There is one important rule (the Iron Rule of Dummy

Variables):

If we have P states of nature, we cannot use more than P 1 dummy variables.

In our current example P 12, since we have monthly data, and so we would use

only 11 seasonal dummy variables at a maximum. There are 12 states of nature:

the 12 months in the year. We could use fewer than 11 if we found that all 11 were

unnecessary by evaluating their statistical significance by t-tests. But, if we violate

the rule and use 12 dummy variables to represent all the months, we create a situ-

ation of perfect multicollinearity (because there is more than one exact relation-

ship among the variables).

Let us now add these dummy variables to the regression model for new cars

sold (NCS). Our regression model will include the index of time variable (Time),
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TABLE 5.5 Data for New Car Sales (NCS), the Time Index (Time), the Index of Consumer Sentiment

(ICS), the Prime Rate (Prime), and Seasonal Dummy Variables (c5t5)

Date NCS Time ICS Prime feb mar apr may jun jul aug sep oct nov dec

Jan-97 38,922 1 97.4 8.25 0 0 0 0 0 0 0 0 0 0 0

Feb-97 40,002 2 99.7 8.25 1 0 0 0 0 0 0 0 0 0 0

Mar-97 45,926 3 100.0 8.3 0 1 0 0 0 0 0 0 0 0 0

Apr-97 44,068 4 101.4 8.5 0 0 1 0 0 0 0 0 0 0 0

May-97 45,638 5 103.2 8.5 0 0 0 1 0 0 0 0 0 0 0

Jun-97 45,170 6 104.5 8.5 0 0 0 0 1 0 0 0 0 0 0

Jul-97 46,076 7 107.1 8.5 0 0 0 0 0 1 0 0 0 0 0

Aug-97 46,084 8 104.4 8.5 0 0 0 0 0 0 1 0 0 0 0

Sep-97 43,646 9 106.0 8.5 0 0 0 0 0 0 0 1 0 0 0

Oct-97 44,164 10 105.6 8.5 0 0 0 0 0 0 0 0 1 0 0

Nov-97 38,715 11 107.2 8.5 0 0 0 0 0 0 0 0 0 1 0

Dec-97 40,561 12 102.1 8.5 0 0 0 0 0 0 0 0 0 0 1

Jan-98 39,755 13 106.6 8.5 0 0 0 0 0 0 0 0 0 0 0

Feb-98 39,981 14 110.4 8.5 1 0 0 0 0 0 0 0 0 0 0

Mar-98 47,285 15 106.5 8.5 0 1 0 0 0 0 0 0 0 0 0

Apr-98 47,102 16 108.7 8.5 0 0 1 0 0 0 0 0 0 0 0

May-98 48,975 17 106.5 8.5 0 0 0 1 0 0 0 0 0 0 0

Jun-98 51,208 18 105.6 8.5 0 0 0 0 1 0 0 0 0 0 0

Jul-98 46,200 19 105.2 8.5 0 0 0 0 0 1 0 0 0 0 0

Aug-98 44,939 20 104.4 8.5 0 0 0 0 0 0 1 0 0 0 0

Sep-98 44,531 21 100.9 8.49 0 0 0 0 0 0 0 1 0 0 0

Oct-98 46,710 22 97.4 8.12 0 0 0 0 0 0 0 0 1 0 0

Nov-98 41,922 23 102.7 7.89 0 0 0 0 0 0 0 0 0 1 0

Dec-98 43,951 24 100.5 7.75 0 0 0 0 0 0 0 0 0 0 1

Jan-99 42,026 25 103.9 7.75 0 0 0 0 0 0 0 0 0 0 0

Feb-99 45,217 26 108.1 7.75 1 0 0 0 0 0 0 0 0 0 0

Mar-99 53,829 27 105.7 7.75 0 1 0 0 0 0 0 0 0 0 0

Apr-99 50,675 28 104.6 7.75 0 0 1 0 0 0 0 0 0 0 0

May-99 53,276 29 106.8 7.75 0 0 0 1 0 0 0 0 0 0 0

Jun-99 54,568 30 107.3 7.75 0 0 0 0 1 0 0 0 0 0 0

Jul-99 54,028 31 106.0 8 0 0 0 0 0 1 0 0 0 0 0

Aug-99 55,562 32 104.5 8.06 0 0 0 0 0 0 1 0 0 0 0

Sep-99 51,577 33 107.2 8.25 0 0 0 0 0 0 0 1 0 0 0

Oct-99 49,387 34 103.2 8.25 0 0 0 0 0 0 0 0 1 0 0

Nov-99 47,703 35 107.2 8.37 0 0 0 0 0 0 0 0 0 1 0

Dec-99 48,319 36 105.4 8.5 0 0 0 0 0 0 0 0 0 0 1

Jan-00 47,038 37 112.0 8.5 0 0 0 0 0 0 0 0 0 0 0

Feb-00 53,507 38 111.3 8.73 1 0 0 0 0 0 0 0 0 0 0

Mar-00 59,385 39 107.1 8.83 0 1 0 0 0 0 0 0 0 0 0

(continued on next page)
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TABLE 5.5 (continued)

Date NCS Time ICS Prime feb mar apr may jun jul aug sep oct nov dec

Apr-00 51,686 40 109.2 9 0 0 1 0 0 0 0 0 0 0 0

May-00 57,483 41 110.7 9.24 0 0 0 1 0 0 0 0 0 0 0

Jun-00 57,237 42 106.4 9.5 0 0 0 0 1 0 0 0 0 0 0

Jul-00 52,953 43 108.3 9.5 0 0 0 0 0 1 0 0 0 0 0

Aug-00 56,929 44 107.3 9.5 0 0 0 0 0 0 1 0 0 0 0

Sep-00 52,109 45 106.8 9.5 0 0 0 0 0 0 0 1 0 0 0

Oct-00 50,740 46 105.8 9.5 0 0 0 0 0 0 0 0 1 0 0

Nov-00 46,452 47 107.6 9.5 0 0 0 0 0 0 0 0 0 1 0

Dec-00 44,604 48 98.4 9.5 0 0 0 0 0 0 0 0 0 0 1

Jan-01 47,298 49 94.7 9.05 0 0 0 0 0 0 0 0 0 0 0

Feb-01 49,242 50 90.6 8.5 1 0 0 0 0 0 0 0 0 0 0

Mar-01 56,665 51 91.5 8.32 0 1 0 0 0 0 0 0 0 0 0

Apr-01 52,329 52 88.4 7.8 0 0 1 0 0 0 0 0 0 0 0

May-01 58,137 53 92.0 7.24 0 0 0 1 0 0 0 0 0 0 0

Jun-01 57,020 54 92.6 6.98 0 0 0 0 1 0 0 0 0 0 0

Jul-01 54,087 55 92.4 6.75 0 0 0 0 0 1 0 0 0 0 0

Aug-01 58,126 56 91.5 6.67 0 0 0 0 0 0 1 0 0 0 0

Sep-01 48,656 57 81.8 6.28 0 0 0 0 0 0 0 1 0 0 0

Oct-01 65,956 58 82.7 5.53 0 0 0 0 0 0 0 0 1 0 0

Nov-01 52,701 59 83.9 5.1 0 0 0 0 0 0 0 0 0 1 0

Dec-01 49,196 60 88.8 4.84 0 0 0 0 0 0 0 0 0 0 1

Jan-02 48,169 61 93.0 4.75 0 0 0 0 0 0 0 0 0 0 0

Feb-02 49,618 62 90.7 4.75 1 0 0 0 0 0 0 0 0 0 0

Mar-02 54,935 63 95.7 4.75 0 1 0 0 0 0 0 0 0 0 0

Apr-02 55,013 64 93.0 4.75 0 0 1 0 0 0 0 0 0 0 0

May-02 55,706 65 96.9 4.75 0 0 0 1 0 0 0 0 0 0 0

Jun-02 55,398 66 92.4 4.75 0 0 0 0 1 0 0 0 0 0 0

Jul-02 60,611 67 88.1 4.75 0 0 0 0 0 1 0 0 0 0 0

Aug-02 63,691 68 87.6 4.75 0 0 0 0 0 0 1 0 0 0 0

Sep-02 51,564 69 86.1 4.75 0 0 0 0 0 0 0 1 0 0 0

Oct-02 52,236 70 80.6 4.75 0 0 0 0 0 0 0 0 1 0 0

Nov-02 47,693 71 84.2 4.35 0 0 0 0 0 0 0 0 0 1 0

Dec-02 51,125 72 86.7 4.25 0 0 0 0 0 0 0 0 0 0 1

Jan-03 49,072 73 82.4 4.25 0 0 0 0 0 0 0 0 0 0 0

Feb-03 47,557 74 79.9 4.25 1 0 0 0 0 0 0 0 0 0 0

Mar-03 55,849 75 77.6 4.25 0 1 0 0 0 0 0 0 0 0 0

Apr-03 55,593 76 86.0 4.25 0 0 1 0 0 0 0 0 0 0 0

May-03 59,308 77 92.1 4.25 0 0 0 1 0 0 0 0 0 0 0

Jun-03 57,881 78 89.7 4.22 0 0 0 0 1 0 0 0 0 0 0

Jul-03 61,200 79 90.9 4 0 0 0 0 0 1 0 0 0 0 0

Aug-03 61,111 80 89.3 4 0 0 0 0 0 0 1 0 0 0 0
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Date NCS Time ICS Prime feb mar apr may jun jul aug sep oct nov dec

Sep-03 55,067 81 87.7 4 0 0 0 0 0 0 0 1 0 0 0

Oct-03 52,839 82 89.6 4 0 0 0 0 0 0 0 0 1 0 0

Nov-03 48,326 83 93.7 4 0 0 0 0 0 0 0 0 0 1 0

Dec-03 53,082 84 92.6 4 0 0 0 0 0 0 0 0 0 0 1

Jan-04 47,627 85 103.8 4 0 0 0 0 0 0 0 0 0 0 0

Feb-04 50,313 86 94.4 4 1 0 0 0 0 0 0 0 0 0 0

Mar-04 60,297 87 95.8 4 0 1 0 0 0 0 0 0 0 0 0

Apr-04 55,239 88 94.2 4 0 0 1 0 0 0 0 0 0 0 0

May-04 58,950 89 90.2 4 0 0 0 1 0 0 0 0 0 0 0

Jun-04 56,874 90 95.6 4.01 0 0 0 0 1 0 0 0 0 0 0

Jul-04 60,424 91 96.7 4.25 0 0 0 0 0 1 0 0 0 0 0

Aug-04 58,803 92 95.9 4.43 0 0 0 0 0 0 1 0 0 0 0

Sep-04 57,519 93 94.2 4.58 0 0 0 0 0 0 0 1 0 0 0

Oct-04 52,694 94 91.7 4.75 0 0 0 0 0 0 0 0 1 0 0

Nov-04 50,286 95 92.8 4.93 0 0 0 0 0 0 0 0 0 1 0

Dec-04 56,868 96 97.1 5.15 0 0 0 0 0 0 0 0 0 0 1

Jan-05 47,268 97 95.5 5.25 0 0 0 0 0 0 0 0 0 0 0

Feb-05 50,452 98 94.1 5.49 1 0 0 0 0 0 0 0 0 0 0

Mar-05 60,854 99 92.6 5.58 0 1 0 0 0 0 0 0 0 0 0

Apr-05 57,975 100 87.7 5.75 0 0 1 0 0 0 0 0 0 0 0

May-05 58,902 101 86.9 5.98 0 0 0 1 0 0 0 0 0 0 0

Jun-05 64,957 102 96.0 6.01 0 0 0 0 1 0 0 0 0 0 0

Jul-05 68,573 103 96.5 6.25 0 0 0 0 0 1 0 0 0 0 0

Aug-05 61,927 104 89.1 6.44 0 0 0 0 0 0 1 0 0 0 0

Sep-05 52,666 105 76.9 6.59 0 0 0 0 0 0 0 1 0 0 0

Oct-05 47,549 106 74.2 6.75 0 0 0 0 0 0 0 0 1 0 0

Nov-05 49,323 107 81.6 7 0 0 0 0 0 0 0 0 0 1 0

Dec-05 55,280 108 91.5 7.15 0 0 0 0 0 0 0 0 0 0 1

Jan-06 49,726 109 91.2 7.26 0 0 0 0 0 0 0 0 0 0 0

Feb-06 50,426 110 86.7 7.5 1 0 0 0 0 0 0 0 0 0 0

Mar-06 61,857 111 88.9 7.53 0 1 0 0 0 0 0 0 0 0 0

Apr-06 55,942 112 87.4 7.75 0 0 1 0 0 0 0 0 0 0 0

May-06 60,066 113 79.1 7.93 0 0 0 1 0 0 0 0 0 0 0

Jun-06 59,569 114 84.9 8.02 0 0 0 0 1 0 0 0 0 0 0

Jul-06 61,067 115 84.7 8.25 0 0 0 0 0 1 0 0 0 0 0

Aug-06 62,997 116 82.0 8.25 0 0 0 0 0 0 1 0 0 0 0

Sep-06 55,016 117 85.4 8.25 0 0 0 0 0 0 0 1 0 0 0

Oct-06 52,740 118 93.6 8.25 0 0 0 0 0 0 0 0 1 0 0

Nov-06 51,072 119 92.1 8.25 0 0 0 0 0 0 0 0 0 1 0

Dec-06 54,991 120 91.7 8.25 0 0 0 0 0 0 0 0 0 0 1

(continued on next page)
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the Index of Consumer Sentiment (ICS), the prime rate (Prime), and the 11

dummy variables for seasonality as independent variables. The model is:

NCS  b0  1b1(Time)  b2(ICS)  b3(Prime)   b4(feb)  b5(mar)

 b6(apr)   b7(may)  b8(jun)  b9(jul)  b10(aug)

 b11(sep)  b12(oct)  b13(nov)  b14(dec)

In this model we would expect b1 to have a positive sign (because sales are gener-

ally rising over time), and we would expect b2 (the Index of Consumer Sentiment)

to have a positive sign. We should expect b3 to have a negative sign (as the prime

rate rises, cars essentially become more expensive). We would expect b4 through

bl4 (the seasonal dummy variables) to have signs representing their relationship to

the omitted, or base, month (i.e., January). Since January is, on average, the worst

month of the year for sales, we would expect all the seasonal dummy variables to

exhibit positive coefficients.

Regression results for this model are shown in Table 5.6 along with the

results for NCS  f (Prime), where the prime rate (Prime) is the only inde-

pendent variable; this model is labeled NCSF1. Also shown is the result for

NCS  f (Time, ICS, Prime), where Time is the index of time and ICS is the

Index of Consumer Sentiment. Both models hold out the 2007 year data for

these estimations. This second model is labeled NCSF2. The final model

(NCSF3) displayed in Table 5.6 includes all 11 dummy variables for all the

months except January.

The two models that exclude the seasonal dummy variables (NCSF1 and

NCSF2) are shown here to facilitate comparison. Looking at the output at the top

of Table 5.6, you see that the signs for the coefficients are all consistent with our

expectations.

Date NCS Time ICS Prime feb mar apr may jun jul aug sep oct nov dec

Jan-07 51,064 121 96.9 8.25 0 0 0 0 0 0 0 0 0 0 0

Feb-07 53,428 122 91.3 8.25 1 0 0 0 0 0 0 0 0 0 0

Mar-07 63,804 123 88.4 8.25 0 1 0 0 0 0 0 0 0 0 0

Apr-07 57,967 124 87.1 8.25 0 0 1 0 0 0 0 0 0 0 0

May-07 63,714 125 88.3 8.25 0 0 0 1 0 0 0 0 0 0 0

Jun-07 59,607 126 85.3 8.25 0 0 0 0 1 0 0 0 0 0 0

Jul-07 59,933 127 90.4 8.25 0 0 0 0 0 1 0 0 0 0 0

Aug-07 64,575 128 83.4 8.25 0 0 0 0 0 0 1 0 0 0 0

Sep-07 56,349 129 83.4 8.03 0 0 0 0 0 0 0 1 0 0 0

Oct-07 56,855 130 80.9 7.74 0 0 0 0 0 0 0 0 1 0 0

Nov-07 51,856 131 76.1 7.5 0 0 0 0 0 0 0 0 0 1 0

Dec-07 54,106 132 75.5 7.33 0 0 0 0 0 0 0 0 0 0 1

TABLE 5.5 (continued)
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TABLE 5.6 Regression Results for New Car Sales (NCS) (c5t5)

Single Independent Variable Regression NCSF1

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS SEE

----------------------------------------------------------------------------

Regression 672,100,235.96 1 672,100,235.96

Error 4,062,420,183.96 118 34,427,289.69 5,867.48

----------------------------------------------------------------------------

Total 4,734,520,419.93 119

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in model Coefficient

Standard    

error T-test Elasticity

Overall

F-test
------------------------------------------------------------------------------------

NCS Dependent 60,915.30 2,038.53 29.88 19.52

Prime Yes  1,273.75 288.28  4.42  0.17

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------     -----------------------------------------

AIC 2,423.05 Durbin Watson (12) 0.48

BIC 2,425.84 Mean 52,224.73

Mean Absolute Percentage Error (MAPE) 9.41% Standard Deviation 6,307.61

R-Square 14.20% Ljung-Box 364.24

Adjusted R-Square 14.20%

Root Mean Square Error 5,818.38

Theil 1.24

Two-Independent Variable Regression NCSF2

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

variation SS df MS SEE

--------------------------------------------------------------------------

Regression 1,918,975,688.04 3 639,658,562.68

Error 2,815,544,731.88 116 24,271,937.34 4,926.66

--------------------------------------------------------------------------

Total 4,734,520,419.93 119

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in model Coefficient

Standard

error T-test P-value F-test Elasticity

Overall

F-test
----------------------------------------------------------------------------------------------------

NCS Dependent 37,947.63 7,653.65 4.96 0.00 24.58 26.35

Time Yes 121.52 18.85 6.45 0.00 41.56 0.14

ICS Yes 99.95 75.69 1.32 0.19 1.74 0.18

Prime Yes  389.44 301.70  1.29 0.20 1.67  0.05

(continued on next page)



256 Chapter Five

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------     -----------------------------------------

AIC 2,379.06 Durbin Watson (12) 0.52

BIC 2,381.84 Standard Deviation 6,307.61

Mean Absolute Percentage Error (MAPE) 7.61% Ljung-Box 47.26

R-Square 40.53%

Adjusted R-Square 40.53%

Root Mean Square Error 4,843.85

Theil 1.03

Regression with Seasonal Dummy Variables NCSF3

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

variation SS df MS SEE

--------------------------------------------------------------------------

Regression 3,653,230,823.64 14 260,945,058.83

Error 1,081,289,596.28 105 10,297,996.16 3,209.05

--------------------------------------------------------------------------

Total 4,734,520,419.93 119

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

TABLE 5.6 (continued)

Included

in model Coefficient

Standard

error T-test P-value F-test Elasticity

Overall

F-test

---------------------------------------------------------------------------------------------------- 

NCS Dependent 33,384.54 5,236.70 6.38 0.00 40.64 25.34

Time Yes 119.10 12.39 9.61 0.00 92.43 0.14

ICS Yes 86.53 50.64 1.71 0.09 2.92 0.16

Prime Yes  403.93 198.28  2.04 0.04 4.15  0.05

feb Yes 1,955.09 1,436.77 1.36 0.18 1.85 0.00

mar Yes 9,935.26 1,437.75 6.91 0.00 47.75 0.02

apr Yes 6,706.77 1,437.92 4.66 0.00 21.76 0.01

may Yes 9,640.32 1,436.97 6.71 0.00 45.01 0.02

jun Yes 9,777.64 1,436.28 6.81 0.00 46.34 0.02

jul Yes 10,205.05 1,437.06 7.10 0.00 50.43 0.02

aug Yes 10,767.27 1,440.24 7.48 0.00 55.89 0.02

sep Yes 5,069.01 1,451.44 3.49 0.00 12.20 0.01

oct Yes 5,258.81 1,455.79 3.61 0.00 13.05 0.01

nov Yes 789.44 1,440.40 0.55 0.58 0.30 0.00

dec Yes 3,033.16 1,440.46 2.11 0.04 4.43 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------     -----------------------------------------

AIC 2,264.22 Durbin-Watson (12) 1.34

BIC 2,267.00 Standard Deviation 6,307.61

Mean Absolute Percentage Error (MAPE) 4.23% Ljung-Box 46.26

R-Square 77.16%

Adjusted R-Square 77.16%

Root Mean Square Error 3,001.79

Theil 0.65



where:

NCS  Actual new cars sold

NCSF1  Forecasts of NCS using only the prime rate as an independent

variable

NCSF2  Forecasts of NCS using the prime rate, a time index, and the

Index of Consumer Sentiment as independent variables

NCSF3  Forecasts of NCS with the seasonal dummies included

Note that ForecastX™ produced these estimates by first forecasting the inde-

pendent variables and then using these estimates with the estimated regression

model to produce the forecasts of NCS. The forecasts of all three models for the
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Date NCS NCSF1 NCSF2 NCSF3

Jan-07 51064 50,400.88 58,605.53 52,399.32
Feb-07 53428 50,394.89 58,725.01 54,471.41
Mar-07 63804 50,388.89 58,844.49 62,568.58
Apr-07 57967 50,382.90 58,963.97 59,457.09
May-07 63714 50,376.91 59,083.45 62,507.65
Jun-07 59607 50,370.92 59,202.94 62,761.97
Jul-07 59933 50,364.92 59,322.42 63,306.38
Aug-07 64575 50,358.93 59,441.90 63,985.60
Sep-07 56349 50,352.94 59,561.38 58,404.34
Oct-07 56855 50,346.94 59,680.86 58,711.14
Nov-07 51856 50,340.95 59,800.34 54,358.77
Dec-07 54106 50,334.96 59,919.82 56,719.50

A comparison of the three regression results shown in Table 5.6 shows that im-

portant improvements result from adding the seasonal dummy variables. Note that

the model with the seasonal dummy variables explains about 77.16 percent of the

variation in new cars sold (see the adjusted R-squared), which is a considerable

improvement over the two other models’ adjusted R-squareds of 14.20 percent and

40.53 percent. The AIC and BIC for NCSF3 both fall by more than 10 when com-

pared to NCSF2, reflecting substantial improvement from the addition of the

seasonal dummy variables. Also, the standard error of the regression (labeled SEE

in ForecastX™) has fallen from 4,926.66 to 2,309.05. The Durbin-Watson

twelfth-order DW (12) statistic shows improvement as the seasonal dummy vari-

ables are added. Apparently, some of the serial correlation present in the simpler

models was as a result of not accounting for the rather heavy seasonal variation in

the dependent variable. In the next section, we will work further with this NCS

model and see further improvement in the Durbin-Watson statistic.

Let us now use these models to make forecasts for each of the 12 months of

2007. The independent variables in the forecast period are automatically estimated

using exponential smoothing by ForecastX™.



historical period (i.e., 1997 through 2006) are plotted in Figure 5.6 along with the

actual and fitted values. If you examine Figure 5.6, you will see how much better

the multiple-regression model with the seasonal dummies appears to be in

comparison with the other two models of new cars sold. To see whether the

model with the seasonal dummies (NCSF3) actually did provide better forecasts

for the 12 months of 2007, let us look at the root-mean-squared error (RMSE) for

these models:
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Holdout Period (2007) Forecast RMSE for NCSF1

Forecast Actual (At  Ft) (At  Ft)
2

Jan-07 50,400.88 51,064 663.12 439,727.68

Feb-07 50,394.89 53,428 3,033.11 9,199,772.22

Mar-07 50,388.89 63,804 13,415.11 179,965,058.25

Apr-07 50,382.90 57,967 7,584.10 57,518,551.12

May-07 50,376.91 63,714 13,337.09 177,878,010.77

Jun-07 50,370.92 59,607 9,236.08 85,305,257.10

Jul-07 50,364.92 59,933 9,568.08 91,548,106.70

Aug-07 50,358.93 64,575 14,216.07 202,096,659.10

Sep-07 50,352.94 56,349 5,996.06 35,952,776.57

Oct-07 50,346.94 56,855 6,508.06 42,354,798.02

Nov-07 50,340.95 51,856 1,515.05 2,295,374.57

Dec-07 50,334.96 54,106 3,771.04 14,220,760.29

RMSE  8,654

Holdout Period (2007) Forecast RMSE for NCSF2

Forecast Actual (At  Ft) (At   Ft)
2

Jan-07 58,605.53 51,064  7,541.53 56,874,687.68

Feb-07 58,725.01 53,428  5,297.01 28,058,333.17

Mar-07 58,844.49 63,804 4,959.51 24,596,713.81

Apr-07 58,963.97 57,967  996.97 993,956.06

May-07 59,083.45 63,714 4,630.55 21,441,953.38

Jun-07 59,202.94 59,607 404.06 163,268.38

Jul-07 59,322.42 59,933 610.58 372,812.77

Aug-07 59,441.90 64,575 5,133.10 26,348,747.42

Sep-07 59,561.38 56,349  3,212.38 10,319,370.90

Oct-07 59,680.86 56,855  2,825.86 7,985,476.99

Nov-07 59,800.34 51,856  7,944.34 63,112,529.96

Dec-07 59,919.82 54,106  5,813.82 33,800,507.12

RMSE  4,779
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The RMSE of 2,052 for NCSF3 (the model with seasonal dummies) compares fa-

vorably with an RMSE of 8,654 for NCSF1 (the model using only the prime rate

as an independent variable) and an RMSE of 4,779 for NCSF2 (the model using

the time index, the prime rate, and the Index of Consumer Sentiment as inde-

pendent variables). The conclusion is that adding the seasonal dummy variables

significantly increased both the accuracy and the fit of the model.

FIGURE 5.6
New Cars Sold (NCS)

with Three Forecast-

ing Models: NCSF1,

NCSF2, and NCSF3

(c5t5)

NCS NCSF1 NCSF2 NCSF3
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Holdout Period (2007) Forecast RMSE for NCSF3

Forecast Actual (At  Ft) (At   Ft)
2

Jan-07 52,399.32 51,064  1,335.32 1,783,078.88

Feb-07 54,471.41 53,428  1,043.41 1,088,699.48

Mar-07 62,568.58 63,804 1,235.42 1,526,269.17

Apr-07 59,457.09 57,967  1,490.09 2,220,372.89

May-07 62,507.65 63,714 1,206.35 1,455,291.94

Jun-07 62,761.97 59,607  3,154.97 9,953,807.01

Jul-07 63,306.38 59,933  3,373.38 11,379,668.74

Aug-07 63,985.60 64,575 589.40 347,395.37

Sep-07 58,404.34 56,349  2,055.34 4,224,418.99

Oct-07 58,711.14 56,855  1,856.14 3,445,250.10

Nov-07 54,358.77 51,856  2,502.77 6,263,874.44

Dec-07 56,719.50 54,106  2,613.50 6,830,364.91

RMSE  2,052
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EXTENSIONS OF THE MULTIPLE-REGRESSION MODEL

In some situations nonlinear terms may be called for as independent variables in a

regression analysis. Why? Business or economic logic may suggest that some

nonlinearity is expected. A graphic display of the data may be helpful in deter-

mining whether the nonlinearity occurs over time. One common cause for nonlin-

earity is diminishing returns. For example, the effect of advertising on sales may

diminish on a dollar-spent basis as increased advertising is used. Another com-

mon cause is referred to an Engel’s law: As an individual’s income doubles, the

amount spent on food usually less than doubles (i.e., the proportion spent on food

decreases). Both these situations are properly modeled as nonlinearities. In this

section we will add the square of the time index as an independent variable to the

multiple-regression model that includes seasonal dummy variables and investigate

if the growth rate in new car sales is diminishing over time (i.e., if new car sales is

growing at a slower rate over the time period of our data).

Some common forms of nonlinear functions are the following:

Y  b0  b1(X)  b2(X
2)

Y  b0  b1(X) b2(X
2)  (X3)

Y  b0  b1(1 X)

Y  B0X
b1

Where B0  eb0, based on the regression of ln Y  f (ln X )  b0  b1(ln X ).

The first of these will be shown later in this section. In these examples only one

independent variable (X ) is shown but other explanatory variables could be used

in each model as well. To illustrate the use and interpretation of a nonlinear term,

let us return to the problem of developing a forecasting model for new car sales

(NCS). So far we have estimated three models:

NSC  b0  1b1(Prime)

and

NSC  b0  1b1(Time)  b2(ICS)  b3(Prime)

and

NSC  b0  1b1(Time)  b2(ICS) b3(Prime)  b4(feb)  b5(mar) 

 b6(apr) b7(may)  b8(jun)  b9(jul)  b10(aug) 

 b11(sep)  b12(oct)  b13(nov)  b14(dec)

Where Time  the index of time, Prime  the bank prime loan rate, ICS  the

Index of Consumer Sentiment, and feb, mar, and so on are dummy variables for

the months of the year. Our results have been encouraging, the best of these—in

terms of adjusted R-squared and RMSE (NCSF3)—explaining about 77 percent

of the variation in NCS during the historical period but with some twelfth-order

serial correlation. Results for an additional regression model for NCS labeled

NCSF4 are summarized in Table 5.7.
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TABLE 5.7 Estimated Regression with Nonlinear Independent Variable

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS SEE

-----------------------------------------------------------------------------

Regression 3,928,895,790.97 14 280,635,413.64

Error 805,624,628.95 105 7,672,615.51 2,769.95

-----------------------------------------------------------------------------

Total 4,734,520,419.93 119

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test
----------------------------------------------------------------------------------------------------

NCS Dependent 27,092.58 4,639.49 5.84 0.00 34.10 36.58

Time Yes 313.96 31.41 10.00 0.00 99.94 0.36

ICS Yes 79.23 40.96 1.93 0.06 3.74 0.15

T Sq Yes -1.53 0.24  6.44 0.00 41.50  0.14

feb Yes 1,912.75 1,239.87 1.54 0.13 2.38 0.00

mar Yes 9,863.83 1,240.43 7.95 0.00 63.23 0.02

apr Yes 6,605.96 1,240.32 5.33 0.00 28.37 0.01

may Yes 9,522.60 1,239.61 7.68 0.00 59.01 0.02

jun Yes 9,650.62 1,239.43 7.79 0.00 60.63 0.02

jul Yes 10,048.15 1,239.87 8.10 0.00 65.68 0.02

aug Yes 10,574.82 1,240.70 8.52 0.00 72.65 0.02

sep Yes 4,852.32 1,247.27 3.89 0.00 15.13 0.01

oct Yes 5,066.98 1,250.89 4.05 0.00 16.41 0.01

nov Yes 641.37 1,241.46 0.52 0.61 0.27 0.00

dec Yes 2,891.75 1,241.57 2.33 0.02 5.42 0.00

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------        -----------------------------------------

AIC 2,228.90 Durbin Watson (12) 1.72

BIC 2,231.69 Standard Deviation 6,307.61

Mean Absolute Percentage Error (MAPE) 3.40% Ljung-Box 6.25

R-Square 82.98%

Adjusted R-Square 82.98%

Root Mean Square Error 2,591.05

Theil 0.54

It is in this fourth model (NCSF4) that we introduce a nonlinear term into the

regression. The square of the time index variable (T Sq) is included in the regres-

sion model and the prime rate variable is removed. The t-statistic for the time

squared variable (T Sq) is  6.44. This fourth model increases the adjusted

R-squared to 82.98 percent. The standard error of the estimate falls to 2,769.95

and the DW(12) increases to 1.72.

The values for actual new car sales and the forecast for this model are plot-

ted in Figure 5.7. The forecast values (NCSF4) are seen to follow the actual

data quite well throughout the historical period. If you compare the forecast
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NCS

NCSF4
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FIGURE 5.7
New Car Sales (NCS)

with Fitted Values

(NCSF4) (c5t5)

values in Figures 5.6 and 5.7, you can see the improvement between NCSF3

and NCSF4 visually. This graphic comparison should reinforce the statistical

findings for the two models presented in Table 5.7. Note also that the AIC has

decreased to 2,228.90 in NCSF4 from 2,264.22 in NCSF3. Data that were

used in all of the regression models for new car sales (NCS) are shown in

Table 5.8.

ADVICE ON USING MULTIPLE REGRESSION IN FORECASTING

Multiple-regression models are a very important part of the set of tools available

to anyone interested in forecasting. Apart from their use in generating forecasts,

they have considerable value in helping us to uncover structural relationships be-

tween the dependent variable and some set of independent variables. Knowing

such relationships helps the forecaster understand the sensitivity of the variable to

be forecast to other factors. This enhancement of our understanding of the busi-

ness environment can only serve to improve our ability to make judgments about

the future course of events. It is important not to downplay the role of judgments

in forecasting. No one should ever rely solely on some quantitative procedure in

developing a forecast. Expert judgments are crucial, and multiple-regression

analyses can be helpful in improving your level of expertise.

In developing forecasts with regression models, perhaps the best advice is to

follow the “KIS” principle: keep it simple.9 The more complex the model be-

comes, the more difficult it is to use. As more causal variables are used, the cost of

maintaining the needed database increases in terms of both time and money. Fur-

ther, complex models are more difficult to communicate to others who may be the

9 This is also called the principle of parsimony by Box and Jenkins. G. E. P. Box and G. M. Jenkins,

Time Series Analysis: Forecasting and Control, 2nd ed. (San Francisco: Holden Day, 1976).
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actual users of the forecast. They are less likely to trust a model that they do not

understand than a simpler model that they do understand.

In evaluating alternative multiple-regression models, is it better to compare ad-

justed R-squared values, or root-mean-squared errors? Remember that R-squared

relates to the in-sample period, that is, to the past. A model may work well for the

in-sample period but not work nearly so well in forecasting. Thus, it is usually best

to focus on RMSE or MAPE for actual forecasts (note that we say “focus on” and

not “use exclusively”). You might track the RMSE or MAPE for several alterna-

tive models for some period to see whether any one model consistently outper-

forms others in the forecast horizon. Use the AIC and BIC measures to help select

appropriate independent variables. It is also desirable periodically to update the

regression models to reflect possible changes in the parameter estimates.

FORECASTING JEWELRY SALES 
WITH MULTIPLE REGRESSION

In this section we apply the concepts covered in this chapter to the problem of

forecasting jewelry sales by using a multiple-regression model. The explanatory

variables selected are based on business logic and are ones for which data are

readily available, should you want to look up the most recent data to update the re-

sults shown here. Explanatory variables used in the multiple regression are:

DPI  Disposable personal income in constant 1996 dollars (expected sign of

coefficient is positive)

UR  The unemployment rate (expected sign negative)

911  Dummy variable equal to 1 for September and October 2001 (expected 

sign negative)

feb through dec  Dummy variable equal to 1 for that month and zero otherwise

(expected sign thought positive in all months because January is the excluded

month)

Two regressions for jewelry sales (JS) are presented in Table 5.9. The data used

to generate both regressions appear in Table 5.10.

At the top of Table 5.9 is the regression JS with only disposable personal in-

come (DPI) and the unemployment rate (UR) used as independent variables (2005

data is held out). The overall regression has an adjusted R-squared of only 10.57

percent. The Durbin-Watson(12) statistic is at 0.02.10 The signs of the coefficient

are, however, as expected. JS decreases as DPI falls and as UR increases. The UR

variable is, however, insignificant. We show this regression because it is again

possible to examine a figure showing the data points with the regression plane

superimposed.

10 While the DW(1) calculated value of 2.01 indicates no first-order serial correlation, note that

calculating the DW(12) produces a result of 0.02. This would seem to indicate that seasonality

is not accounted for by the model.
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TABLE 5.9 Regression Results for Jewelry Sales (c5t10)

Regression with Two Independent Variables

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS SEE

----------------------------------------------------------------------

Regression 19,030,298.69 2 9,515,149.34

Error 160,943,032.31 153 1,051,915.24 1,025.63

----------------------------------------------------------------------

Total 179,973,330.99 155

Audit Trail--Coefficient Table (Multiple Regression Selected) 

Series

Description

Included

in model Coefficient

Standard    

error T-test Elasticity

Overall

F-test
-----------------------------------------------------------------------------------

JS Dependent 537.90 820.49 0.66 9.05

dpi Yes 0.25 0.07 3.46 0.90

UR Yes  66.97 90.41  0.74  0.20

-----------------------------------------------------------------------------------

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

----------------------------------------------------    --------------------------------------------

AIC 2,604.79 Durbin Watson (12) 0.02

BIC 2,607.84 Mean 1,800.66

Mean Absolute Percentage Error (MAPE) 26.51% Standard Deviation 1,077.55

R-Square 10.57% Ljung-Box 439.06

Adjusted R-Square 10.57%

Root Mean Square Error 1,015.72

Theil 0.96

Regression with Additional Variables

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source of

Variation SS df MS SEE

--------------------------------------------------------------------

Regression 173,202,541.94 14 12,371,610.14

Error 6,770,789.06 141 48,019.78 219.13

--------------------------------------------------------------------

Total 179,973,330.99 155

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in model Coefficient

Standard    

error T-test Elasticity

Overall

F-test

------------------------------------------------------------------------------------

JS Dependent 66.70 184.21 0.36 257.64

dpi Yes 0.22 0.02 13.95 0.78

UR Yes  59.46 19.33  3.08  0.18

911 Yes  222.41 162.02  1.37 0.00

feb Yes 476.46 85.95 5.54 0.02
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TABLE 5.9 (continued)

Series

Description

Included

in model Coefficient

Standard    

error T-test Elasticity

Overall

F-test

------------------------------------------------------------------------------------ 

mar Yes 185.51 85.96 2.16 0.01

apr Yes 250.96 85.96 2.92 0.01

may Yes 621.25 85.97 7.23 0.03

jun Yes 361.80 85.98 4.21 0.02

jul Yes 284.94 85.99 3.31 0.01

aug Yes 353.42 86.00 4.11 0.02

sep Yes 260.87 86.86 3.00 0.01

oct Yes 350.36 86.88 4.03 0.02

nov Yes 783.11 86.03 9.10 0.04

dec Yes 3,884.49 86.08 45.13 0.18

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

----------------------------------------------------    --------------------------------------------

AIC 2,110.52 Durbin Watson (1) 1.88

BIC 2,113.57 Mean 1,800.66

Mean Absolute Percentage Error (MAPE) 6.78% Standard Deviation 1,077.55

R-Square 96.24% Ljung-Box 141.10

Adjusted R-Square 96.24%

Root Mean Square Error 208.33

Theil 0.23

TABLE 5.10 Jewelry Sales Data Used for Regressions In Table 5.9 (c5t10)

Date JS
DPI

($000) UR 911 feb mar apr may jun jul aug sep oct nov dec

Jan-92 803 0.0 7.3 0 0 0 0 0 0 0 0 0 0 0 0
Feb-92 1,030 4,658.4 7.4 0 1 0 0 0 0 0 0 0 0 0 0
Mar-92 922 4,676.5 7.4 0 0 1 0 0 0 0 0 0 0 0 0
Apr-92 977 4,696.2 7.4 0 0 0 1 0 0 0 0 0 0 0 0
May-92 1,182 4,718.6 7.6 0 0 0 0 1 0 0 0 0 0 0 0
Jun-92 1,104 4,733.5 7.8 0 0 0 0 0 1 0 0 0 0 0 0
Jul-92 1,046 4,750.8 7.7 0 0 0 0 0 0 1 0 0 0 0 0
Aug-92 1,100 4,777.9 7.6 0 0 0 0 0 0 0 1 0 0 0 0
Sep-92 1,043 4,777.2 7.6 0 0 0 0 0 0 0 0 1 0 0 0
Oct-92 1,132 4,807.4 7.3 0 0 0 0 0 0 0 0 0 1 0 0
Nov-92 1,376 4,818.3 7.4 0 0 0 0 0 0 0 0 0 0 1 0
Dec-92 3,469 4,983.1 7.4 0 0 0 0 0 0 0 0 0 0 0 1
Jan-93 802 4,800.9 7.3 0 0 0 0 0 0 0 0 0 0 0 0
Feb-93 1,002 4,803.9 7.1 0 1 0 0 0 0 0 0 0 0 0 0
Mar-93 902 4,800.1 7 0 0 1 0 0 0 0 0 0 0 0 0
Apr-93 1,007 4,887.4 7.1 0 0 0 1 0 0 0 0 0 0 0 0
May-93 1,246 4,909.9 7.1 0 0 0 0 1 0 0 0 0 0 0 0
Jun-93 1,270 4,906.1 7 0 0 0 0 0 1 0 0 0 0 0 0
Jul-93 1,278 4,909.3 6.9 0 0 0 0 0 0 1 0 0 0 0 0
Aug-93 1,270 4,931.4 6.8 0 0 0 0 0 0 0 1 0 0 0 0

(continued on next page)
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TABLE 5.10 (continued)

Date JS
DPI

($000) UR 911 feb mar apr may jun jul aug sep oct nov dec

Sep-93 1,191 4,932.1 6.7 0 0 0 0 0 0 0 0 1 0 0 0
Oct-93 1,213 4,951.0 6.8 0 0 0 0 0 0 0 0 0 1 0 0
Nov-93 1,561 4,974.3 6.6 0 0 0 0 0 0 0 0 0 0 1 0
Dec-93 3,829 5,137.0 6.5 0 0 0 0 0 0 0 0 0 0 0 1
Jan-94 904 4,955.9 6.6 0 0 0 0 0 0 0 0 0 0 0 0
Feb-94 1,191 5,003.3 6.6 0 1 0 0 0 0 0 0 0 0 0 0
Mar-94 1,058 5,037.0 6.5 0 0 1 0 0 0 0 0 0 0 0 0
Apr-94 1,171 5,057.2 6.4 0 0 0 1 0 0 0 0 0 0 0 0
May-94 1,367 5,143.5 6.1 0 0 0 0 1 0 0 0 0 0 0 0
Jun-94 1,257 5,153.5 6.1 0 0 0 0 0 1 0 0 0 0 0 0
Jul-94 1,224 5,172.1 6.1 0 0 0 0 0 0 1 0 0 0 0 0
Aug-94 1,320 5,195.0 6 0 0 0 0 0 0 0 1 0 0 0 0
Sep-94 1,246 5,225.3 5.9 0 0 0 0 0 0 0 0 1 0 0 0
Oct-94 1,323 5,281.4 5.8 0 0 0 0 0 0 0 0 0 1 0 0
Nov-94 1,731 5,288.1 5.6 0 0 0 0 0 0 0 0 0 0 1 0
Dec-94 4,204 5,309.8 5.5 0 0 0 0 0 0 0 0 0 0 0 1
Jan-95 914 5,337.3 5.6 0 0 0 0 0 0 0 0 0 0 0 0
Feb-95 1,223 5,350.0 5.4 0 1 0 0 0 0 0 0 0 0 0 0
Mar-95 1,138 5,365.5 5.4 0 0 1 0 0 0 0 0 0 0 0 0
Apr-95 1,204 5,335.1 5.8 0 0 0 1 0 0 0 0 0 0 0 0
May-95 1,603 5,389.0 5.6 0 0 0 0 1 0 0 0 0 0 0 0
Jun-95 1,388 5,404.9 5.6 0 0 0 0 0 1 0 0 0 0 0 0
Jul-95 1,259 5,415.1 5.7 0 0 0 0 0 0 1 0 0 0 0 0
Aug-95 1,393 5,424.0 5.7 0 0 0 0 0 0 0 1 0 0 0 0
Sep-95 1,325 5,442.3 5.6 0 0 0 0 0 0 0 0 1 0 0 0
Oct-95 1,371 5,458.2 5.5 0 0 0 0 0 0 0 0 0 1 0 0
Nov-95 1,867 5,475.4 5.6 0 0 0 0 0 0 0 0 0 0 1 0
Dec-95 4,467 5,502.2 5.6 0 0 0 0 0 0 0 0 0 0 0 1
Jan-96 1,043 5,524.5 5.6 0 0 0 0 0 0 0 0 0 0 0 0
Feb-96 1,439 5,580.9 5.5 0 1 0 0 0 0 0 0 0 0 0 0
Mar-96 1,316 5,618.0 5.5 0 0 1 0 0 0 0 0 0 0 0 0
Apr-96 1,359 5,594.3 5.6 0 0 0 1 0 0 0 0 0 0 0 0
May-96 1,768 5,671.3 5.6 0 0 0 0 1 0 0 0 0 0 0 0
Jun-96 1,408 5,704.3 5.3 0 0 0 0 0 1 0 0 0 0 0 0
Jul-96 1,375 5,702.6 5.5 0 0 0 0 0 0 1 0 0 0 0 0
Aug-96 1,477 5,725.7 5.1 0 0 0 0 0 0 0 1 0 0 0 0
Sep-96 1,332 5,754.2 5.2 0 0 0 0 0 0 0 0 1 0 0 0
Oct-96 1,462 5,768.6 5.2 0 0 0 0 0 0 0 0 0 1 0 0
Nov-96 1,843 5,794.7 5.4 0 0 0 0 0 0 0 0 0 0 1 0
Dec-96 4,495 5,822.5 5.4 0 0 0 0 0 0 0 0 0 0 0 1
Jan-97 1,041 5,847.4 5.3 0 0 0 0 0 0 0 0 0 0 0 0
Feb-97 1,411 5,876.6 5.2 0 1 0 0 0 0 0 0 0 0 0 0
Mar-97 1,183 5,908.3 5.2 0 0 1 0 0 0 0 0 0 0 0 0
Apr-97 1,267 5,915.5 5.1 0 0 0 1 0 0 0 0 0 0 0 0
May-97 1,597 5,934.4 4.9 0 0 0 0 1 0 0 0 0 0 0 0
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Date JS
DPI

($000) UR 911 feb mar apr may jun jul aug sep oct nov dec

Jun-97 1,341 5,960.1 5 0 0 0 0 0 1 0 0 0 0 0 0

Jul-97 1,322 5,986.6 4.9 0 0 0 0 0 0 1 0 0 0 0 0

Aug-97 1,359 6,023.4 4.8 0 0 0 0 0 0 0 1 0 0 0 0

Sep-97 1,344 6,052.3 4.9 0 0 0 0 0 0 0 0 1 0 0 0

Oct-97 1,406 6,081.5 4.7 0 0 0 0 0 0 0 0 0 1 0 0

Nov-97 1,813 6,123.3 4.6 0 0 0 0 0 0 0 0 0 0 1 0

Dec-97 4,694 6,156.6 4.7 0 0 0 0 0 0 0 0 0 0 0 1

Jan-98 1,119 6,216.3 4.6 0 0 0 0 0 0 0 0 0 0 0 0

Feb-98 1,513 6,256.6 4.6 0 1 0 0 0 0 0 0 0 0 0 0

Mar-98 1,238 6,294.9 4.7 0 0 1 0 0 0 0 0 0 0 0 0

Apr-98 1,362 6,323.3 4.3 0 0 0 1 0 0 0 0 0 0 0 0

May-98 1,756 6,360.1 4.4 0 0 0 0 1 0 0 0 0 0 0 0

Jun-98 1,527 6,389.6 4.5 0 0 0 0 0 1 0 0 0 0 0 0

Jul-98 1,415 6,418.6 4.5 0 0 0 0 0 0 1 0 0 0 0 0

Aug-98 1,466 6,452.9 4.5 0 0 0 0 0 0 0 1 0 0 0 0

Sep-98 1,372 6,472.7 4.6 0 0 0 0 0 0 0 0 1 0 0 0

Oct-98 1,506 6,497.7 4.5 0 0 0 0 0 0 0 0 0 1 0 0

Nov-98 1,923 6,526.3 4.4 0 0 0 0 0 0 0 0 0 0 1 0

Dec-98 5,233 6,542.2 4.4 0 0 0 0 0 0 0 0 0 0 0 1

Jan-99 1,163 6,571.2 4.3 0 0 0 0 0 0 0 0 0 0 0 0

Feb-99 1,662 6,588.5 4.4 0 1 0 0 0 0 0 0 0 0 0 0

Mar-99 1,402 6,600.5 4.2 0 0 1 0 0 0 0 0 0 0 0 0

Apr-99 1,468 6,616.4 4.3 0 0 0 1 0 0 0 0 0 0 0 0

May-99 1,877 6,639.7 4.2 0 0 0 0 1 0 0 0 0 0 0 0

Jun-99 1,635 6,659.8 4.3 0 0 0 0 0 1 0 0 0 0 0 0

Jul-99 1,596 6,679.7 4.3 0 0 0 0 0 0 1 0 0 0 0 0

Aug-99 1,617 6,718.5 4.2 0 0 0 0 0 0 0 1 0 0 0 0

Sep-99 1,530 6,726.5 4.2 0 0 0 0 0 0 0 0 1 0 0 0

Oct-99 1,653 6,790.8 4.1 0 0 0 0 0 0 0 0 0 1 0 0

Nov-99 2,179 6,840.3 4.1 0 0 0 0 0 0 0 0 0 0 1 0

Dec-99 6,075 6,907.6 4 0 0 0 0 0 0 0 0 0 0 0 1

Jan-00 1,253 7,009.7 4 0 0 0 0 0 0 0 0 0 0 0 0

Feb-00 1,991 7,060.4 4.1 0 1 0 0 0 0 0 0 0 0 0 0

Mar-00 1,510 7,107.5 4 0 0 1 0 0 0 0 0 0 0 0 0

Apr-00 1,570 7,110.8 3.8 0 0 0 1 0 0 0 0 0 0 0 0

May-00 2,139 7,138.7 4 0 0 0 0 1 0 0 0 0 0 0 0

Jun-00 1,783 7,174.2 4 0 0 0 0 0 1 0 0 0 0 0 0

Jul-00 1,643 7,242.4 4 0 0 0 0 0 0 1 0 0 0 0 0

Aug-00 1,770 7,265.0 4.1 0 0 0 0 0 0 0 1 0 0 0 0

Sep-00 1,705 7,291.8 3.9 0 0 0 0 0 0 0 0 1 0 0 0

Oct-00 1,681 7,309.2 3.9 0 0 0 0 0 0 0 0 0 1 0 0

Nov-00 2,174 7,306.6 3.9 0 0 0 0 0 0 0 0 0 0 1 0

Dec-00 5,769 7,312.1 3.9 0 0 0 0 0 0 0 0 0 0 0 1

Jan-01 1,331 7,377.8 4.2 0 0 0 0 0 0 0 0 0 0 0 0

Feb-01 1,973 7,392.0 4.2 0 1 0 0 0 0 0 0 0 0 0 0

(continued on next page)
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Date JS
DPI

($000) UR 911 feb mar apr may jun jul aug sep oct nov dec

Mar-01 1,580 7,406.6 4.3 0 0 1 0 0 0 0 0 0 0 0 0

Apr-01 1,545 7,394.7 4.4 0 0 0 1 0 0 0 0 0 0 0 0

May-01 1,992 7,402.3 4.3 0 0 0 0 1 0 0 0 0 0 0 0

Jun-01 1,629 7,425.7 4.5 0 0 0 0 0 1 0 0 0 0 0 0

Jul-01 1,530 7,550.9 4.6 0 0 0 0 0 0 1 0 0 0 0 0

Aug-01 1,679 7,686.3 4.9 0 0 0 0 0 0 0 1 0 0 0 0

Sep-01 1,394 7,631.3 5 1 0 0 0 0 0 0 0 1 0 0 0

Oct-01 1,586 7,506.3 5.3 1 0 0 0 0 0 0 0 0 1 0 0

Nov-01 2,152 7,523.5 5.5 0 0 0 0 0 0 0 0 0 0 1 0

Dec-01 5,337 7,544.7 5.7 0 0 0 0 0 0 0 0 0 0 0 1

Jan-02 1,304 7,718.9 5.7 0 0 0 0 0 0 0 0 0 0 0 0

Feb-02 2,004 7,751.7 5.7 0 1 0 0 0 0 0 0 0 0 0 0

Mar-02 1,612 7,784.0 5.7 0 0 1 0 0 0 0 0 0 0 0 0

Apr-02 1,626 7,827.3 5.9 0 0 0 1 0 0 0 0 0 0 0 0

May-02 2,120 7,840.3 5.8 0 0 0 0 1 0 0 0 0 0 0 0

Jun-02 1,667 7,857.4 5.8 0 0 0 0 0 1 0 0 0 0 0 0

Jul-02 1,554 7,845.1 5.8 0 0 0 0 0 0 1 0 0 0 0 0

Aug-02 1,746 7,842.3 5.7 0 0 0 0 0 0 0 1 0 0 0 0

Sep-02 1,503 7,848.9 5.7 0 0 0 0 0 0 0 0 1 0 0 0

Oct-02 1,662 7,864.2 5.7 0 0 0 0 0 0 0 0 0 1 0 0

Nov-02 2,208 7,877.1 5.9 0 0 0 0 0 0 0 0 0 0 1 0

Dec-02 5,810 7,903.7 6 0 0 0 0 0 0 0 0 0 0 0 1

Jan-03 1,361 7,945.8 5.8 0 0 0 0 0 0 0 0 0 0 0 0

Feb-03 2,019 7,972.4 5.9 0 1 0 0 0 0 0 0 0 0 0 0

Mar-03 1,477 8,008.3 5.9 0 0 1 0 0 0 0 0 0 0 0 0

Apr-03 1,616 8,041.7 6 0 0 0 1 0 0 0 0 0 0 0 0

May-03 2,071 8,094.3 6.1 0 0 0 0 1 0 0 0 0 0 0 0

Jun-03 1,711 8,126.9 6.3 0 0 0 0 0 1 0 0 0 0 0 0

Jul-03 1,677 8,240.4 6.2 0 0 0 0 0 0 1 0 0 0 0 0

Aug-03 1,761 8,311.0 6.1 0 0 0 0 0 0 0 1 0 0 0 0

Sep-03 1,629 8,231.6 6.1 0 0 0 0 0 0 0 0 1 0 0 0

Oct-03 1,759 8,271.2 6 0 0 0 0 0 0 0 0 0 1 0 0

Nov-03 2,291 8,335.8 5.8 0 0 0 0 0 0 0 0 0 0 1 0

Dec-03 6,171 8,370.9 5.7 0 0 0 0 0 0 0 0 0 0 0 1

Jan-04 1,461 8,428.8 5.7 0 0 0 0 0 0 0 0 0 0 0 0

Feb-04 2,344 8,478.1 5.6 0 1 0 0 0 0 0 0 0 0 0 0

Mar-04 1,764 8,517.1 5.8 0 0 1 0 0 0 0 0 0 0 0 0

Apr-04 1,826 8,559.3 5.6 0 0 0 1 0 0 0 0 0 0 0 0

May-04 2,226 8,615.5 5.6 0 0 0 0 1 0 0 0 0 0 0 0

Jun-04 1,882 8,640.6 5.6 0 0 0 0 0 1 0 0 0 0 0 0

Jul-04 1,787 8,669.8 5.5 0 0 0 0 0 0 1 0 0 0 0 0

Aug-04 1,794 8,727.4 5.4 0 0 0 0 0 0 0 1 0 0 0 0

Sep-04 1,726 8,729.4 5.4 0 0 0 0 0 0 0 0 1 0 0 0

TABLE 5.10 (continued)



Figure 5.8 depicts the data points for the 156 observations and the estimated

regression plane. It is easy to see in the figure that, as the unemployment rate

increases, jewelry sales decrease. This can clearly be seen by looking at the edge

of the regression plane along which DPI equals 4,000; as UR increases from 3

to 8, the regression plane slopes downward. Remember that the “height” of the

regression plane is the measure of jewelry sales, so that as the plane slopes

downward, JS is decreasing. Thus, as UR increases (while DPI is held constant),

JS decreases.

Forecasting with Multiple Regression 273

Date JS
DPI

($000) UR 911 feb mar apr may jun jul aug sep oct nov dec

Oct-04 1,845 8,804.1 5.4 0 0 0 0 0 0 0 0 0 1 0 0

Nov-04 2,399 8,828.6 5.4 0 0 0 0 0 0 0 0 0 0 1 0

Dec-04 6,489 9,171.9 5.4 0 0 0 0 0 0 0 0 0 0 0 1

Jan-05 1,458 8,873.5 5.2 0 0 0 0 0 0 0 0 0 0 0 0
Feb-05 2,394 8,908.3 5.4 0 1 0 0 0 0 0 0 0 0 0 0
Mar-05 1,773 8,941.3 5.2 0 0 1 0 0 0 0 0 0 0 0 0
Apr-05 1,909 9,001.4 5.1 0 0 0 1 0 0 0 0 0 0 0 0
May-05 2,243 9,030.8 5.1 0 0 0 0 1 0 0 0 0 0 0 0
Jun-05 1,953 9,083.6 5 0 0 0 0 0 1 0 0 0 0 0 0
Jul-05 1,754 9,147.4 5 0 0 0 0 0 0 1 0 0 0 0 0
Aug-05 1,940 8,928.3 4.9 0 0 0 0 0 0 0 1 0 0 0 0
Sep-05 1,743 9,239.7 5.1 0 0 0 0 0 0 0 0 1 0 0 0
Oct-05 1,878 9,277.3 5 0 0 0 0 0 0 0 0 0 1 0 0
Nov-05 2,454 9,309.0 5 0 0 0 0 0 0 0 0 0 0 1 0
Dec-05 6,717 9,362.9 4.9 0 0 0 0 0 0 0 0 0 0 0 1
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FIGURE 5.8
Regression Plane for

JS  f(DPI, UR) 

(c5t10)

This figure shows the

data points and the

estimated regression

plane for the two-

independent-variable

model estimated in the

upper half of Table

5.9. The regression

plane has the equation:

JS  537.90 

 0.25(DPI) 

 66.97(UR)
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It is also possible to see the effect of disposable personal income (DPI) on JS.

Look at the edge of the plane along which UR equals 3; as DPI increases from

4,000 to 9,000, the regression plane tilts upward. Thus, as DPI increases (while

UR is held constant), JS increases.

It is obvious why the adjusted R-squared for the regression is quite low: Many

of the data points are quite a distance above or below the estimated regression

plane. Because the adjusted R-squared is quite low, the improved regression pre-

sented in the lower half of Table 5.9 was estimated.

This equation (in the lower half of Table 5.9) adds dummy variables for the 11

months of each year February through December, and a dummy variable for the

“911 effect” that equals one in September and October 2001. Recall that the JS

time series is quite seasonal (which would suggest the use of seasonal dummies)

with some trend. The forecasting equation is improved in a number of ways by the

addition of these independent variables. Note that the adjusted R-squared has in-

creased from 10.57 to 96.24 percent. The standard error of regression (labeled

SEE) has fallen, both the BIC and Akaike criteria show substantial improvement,

the F-statistic has increased, and the Durbin-Watson(1) statistic indicates that no

first-order serial correlation is present.11 Note that it is impossible to graph the

data points and the regression plane for this estimate (which has 14 independent

variables) because it would require a drawing in 15 dimensions. In fact, the re-

gression plane would now be referred to as a hyperplane. The actual and predicted

jewelry sales, however, are shown in Figure 5.9.

A forecaster could expect that estimates made with the second regression using

seasonal dummy variables and the 911 dummy would be much more accurate than

with the two-variable regression presented first.
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Jewelry Sales and

Multivariate Forecast
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11 The DW(12) for this model improves to 0.45, but this value suggests that even adding the

seasonal dummy variables may not have completely accounted for the seasonality in the

jewelry sales data.
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Charles W. Chase, Jr., Reckitt & Colman

The job of a practicing forecaster is very different

from that of the academic one. He has to prepare

forecasts for thousands of different items on a

monthly, quarterly, or annual basis, versus one or

two products, as is usually the case with an academic

forecaster. Unlike an academic forecaster, he has

deadlines to meet. If forecasts are not prepared at a

set time, the entire planning process comes to a halt.

His concern for bringing the error down to the last

decimal point is not as great as that of an academic

forecaster. He constantly weighs the costs and bene-

fits of reducing the error further. In some cases, any

further reduction in the error may not have any ef-

fect on the decision. Plus, each time a practicing

forecaster prepares forecasts, his job is at stake. If

the forecasts go awry, so does his future. The stake

of an academic forecaster, on the other hand, is

whether or not his article on forecasting is accepted

for publication. The objective of this article is to ex-

plain how forecasts of consumer products are pre-

pared in a business situation where thousands of

items are involved, and deadlines are for real.

PROCEDURE
Here is a step-by-step procedure for forecasting the

sales demand for consumer products:

Step 1
Establish an objective, which in this case is to fore-

cast the sales of consumer products. For the pur-

poses of simplicity we will refer to these products

as Brand X. Aggregate forecasts are generally more

accurate than individual forecasts. “Aggregate

forecasts” in this case refer to the forecasts of all

the products of Brand X. Individual forecasts, then,

will be the forecasts of each item (product code) of

this brand.

Step 2
Decide on the method to be used for forecasting

the sales of Brand X. There are several considera-

tions that have to be made in the selection of a

method. How much error is the company willing to

tolerate? In this case, 10 percent error at the brand

level was the chosen target. The industry average is

much higher, according to several recent studies.

Next, consider the time horizon (how far ahead we

want to forecast—one month, one quarter, or one

year). This certainly has a bearing on the selection

of a method, because some methods are good for

short-term forecasting and others for long-term

forecasting. In the consumer products industry the

time horizon is generally 3 to 12 months out into

the future. This is necessary to accommodate the

long lead times of several of the components used

in producing various consumer products. Compo-

nents include such things as plastic bottles, labels,

and cartons.

Forecasting is 80 percent mathematics and 20 per-

cent judgment. Within mathematical methods, there

are two categories: (1) time-series and (2) cause-and-

effect. In time-series methods, forecasts are made

simply by extrapolating the past data. They assume

that the sales are related to time and nothing else.

Time-series methods include simple moving aver-

ages, exponential smoothing, decomposition, and

Box-Jenkins. Cause-and-effect methods use causal

relationships. For example, sales are a function of ad-

vertising expenditures, price, trade and consumer

promotions, and inventory levels. Sales, in this case,

are a dependent variable, and advertising expendi-

tures, price, and so forth, are independent variables.

These methods assume that there exists a constant

relationship between dependent and independent

variables. Such methods are simple and multiple re-

gressions, and econometrics.

The consumer products industry in recent years

has encountered a shift in power from manufac-

turers to the trade. Today, the dominant players in

the markets are not manufacturers but big chains

such as Wal-Mart, Kmart, Kroger, CVS, and Wal-

greens. As a result, manufacturers have reduced

their expenditures on national advertising and in-

creased them on consumer and trade promotions.

This shift has played havoc with forecasting, as it

has made time-series methods obsolete. Constant

changes in amount and period of promotions have

Forecasting Consumer Products 2

(continued on next page)
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disrupted the seasonality and trend of the histori-

cal data. Thus, forecasting with time-series meth-

ods is like driving down a highway in your car with

the windshield blacked out. It’s all well and good if

you are driving in a desert with no bends in the

road. However, if you are driving on a normal

highway, sooner or later you will hit a turn. When

you do, you won’t see it until it’s in your rearview

mirror. At that point, it would be too late to react.

Taking this information into consideration, mul-

tiple regression was chosen as the forecasting

method. There are several reasons for this. First,

multiple regression has the ability to incorporate

all the variables that impact the demand for a

brand. Second, it produces extremely accurate

forecasts for periods anywhere from three months

to one year out into the future. Finally, multiple

regression has the ability to measure the relation-

ships of each independent variable with the de-

mand for a brand. (The latter attribute has impor-

tant implications for making managerial decisions.

It helps management to determine how much to

spend on national advertising, what should be the

appropriate pricing strategy, and what are the

most effective promotional programs.)

Step 3
Choose proper independent variables and gather

proper data. This is an important step in the fore-

casting process for two reasons: (1) judgmental in-

fluence comes into play; (2) it involves the users in

the process. We found that the best way to make

the users accept our forecasts is to use the variables

they believe have strong impact on their products,

and to use the source of data that they are most

comfortable with. In the consumer products indus-

try, the marketing department, in most cases, is the

primary user of sales forecasts. In fact, those same

forecasts ultimately become the marketing plan.

Since they are the main users, we chose from their

variables—the variables they believe had a strong

impact on their products. We used Nielsen syndi-

cated data (Scantrack and Audit), as well as the

data furnished by the marketing department. The

Nielsen syndicated data was used because the mar-

keting people were most comfortable with it.

When Step 3 is completed, the best possible match

has been made between the situation and the

method.

In the consumer products industry, trade ship-

ments are forecasted—shipments to the brokers,

food and drug chains, and mass merchandisers

who sell the products to the consumer. The rela-

tionship between the trade and retail consumption

plays a significant role in predicting trade ship-

ments. Most users (brand managers) agree that re-

tail consumption has some impact on trade ship-

ments. For Brand X, 10 variables were selected to

predict retail consumption (see Table 5.11). Several

dummy variables were used to capture the impact

of consumer promotions along with average retail

price, national advertising expenditures, and

Nielsen shipment data of the category for Brand X.

Dummy variables are used where the variable is de-

fined in terms of yes (when a certain element ex-

ists) and no (when it doesn’t exist). It is used in the

form of “1” for yes and “0” for no. For example,

for FSI (free-standing insert) coupon 1, we used “1”

in the equation when this coupon was used, and

“0” when it was not.

Forecasting Consumer Products (continued) 2

TABLE 5.11 Variables and Statistics of

Consumption Model

R-squared  0.96 F-stat  24.55

Adj. R-squared  0.92 DW  2.26

Variable t-Stat

1. Time  0.72

2. Average retail price  2.70

3. National advertising expenditures 2.52

4. Nielsen shipment data in units 6.48

5. FSI 1 4.38

6. FSI 2 2.31

7. Direct mail coupon 1.93

8. FSI 3 1.25

9. FSI 4 2.15

10. FSI 5 2.81

Notes: (1) Dummy variables are used to capture the effects of variables

that have no quantitative data.

(2) FSI stands for “free-standing insert.”
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Step 4
Compute the predictive regression equation for re-

tail consumption of Brand X. The equation gives an

excellent fit with an R-squared of 0.96. (See Table

5.11 for this and other statistics.) The ex post fore-

casts had an MAPE (mean absolute percentage

error) of less than 1 percent (see Table 5.12). (Ex

post forecasts are those for which actuals are

known.)

Step 5
Forecast the retail consumption by plugging the

values of independent variables into the predictive

equation computed above. To do so, we need the

values of the independent variables for the periods

we want to forecast. For example, if we want to

develop a forecast for Brand X for 2000, we need

the values of average retail price, Nielsen shipment

data of that category, national advertising expen-

ditures, and so forth, for those periods. As for the

dummy variables, we have no problem because we

control them. However, for Nielsen shipment data

we have to forecast the value, which we do by ex-

trapolating the historical data.

Step 6
Compute the predictive regression equation for

trade shipments. The equation included retail

consumption as the primary variable along with

Nielsen inventory, trade price, and several dummy

variables to capture trade promotions (see Table

5.13). Again, the fit was excellent with an R-

squared of 0.96. The ex post forecasts had an

MAPE of 3 percent, which is significantly lower

than the original target of 10 percent (see Table

5.14). Those familiar with the rule of thumb for

the t-statistic (variables are not significant if

their value is less than 2) may feel that several of

the variables should have been excluded from the

model. I found through experience that if the

TABLE 5.12 Forecasts versus Actuals: Consumption

Model

Brand X

Month Actuals Forecasts Absolute Error

January 2,578 2,563 1%

February 2,788 2,783 0%

March 2,957 2,957 0%

April 2,670 2,758 3%

May 2,447 2,466 1%

June 3,016 3,016 0%

Note: Mean absolute percentage error (MAPE)  0.81%

TABLE 5.13 Variables and Statistics of Trade

Shipment Model

R-squared  0.96 F-stat  36.93

Adj. R-squared  0.93 DW  2.41

Variable t-Stat

1. Time 2.40

2. Retail consumption 3.59

3. Trade inventory 1.87

4. Trade price  1.55

5. Trade promotion 1 early shipment 5.82

6. Trade promotion 1 sell in 16.01

7. Trade promotion 1 post shipment 4.19

8. Trade promotion 2 early shipment 9.57

9. Trade promotion 2 sell in 1.18

10. Trade promotion 3 early shipment 2.62

11. Trade promotion 3 sell in 7.29

12. Trade promotion 3 post shipment 13.55

Note: Dummy variables are used to capture the effects of variables that

have no quantitative data.

TABLE 5.14 Forecasts versus Actuals: Trade

Shipment Model

Brand X

Month Actuals Forecasts Absolute Error

January 69,158 69,190 0%

February 45,927 47,216 3%

March 40,183 40,183 0%

April 56,427 54,841 3%

May 81,854 72,788 12%

June 50,505 52,726 4%

July 37,064 36,992 0%

August 58,212 57,347 2%

September 96,566 95,112 2%

Note: Mean absolute percentage error (MAPE)  3.0%
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forecasts are more accurate with the variables

whose t-statistics are less than 2, then they should

be left in the model. As you know, as practi-

tioners, our primary objective is to produce good

forecasts.

Step 7
Forecast trade shipments by plugging the values of

the independent variables (retail consumption,

Nielsen inventory, and so forth) into the predictive

equation computed above. Here again, we need

the values of independent variables for the period

we want to forecast. The only independent vari-

able over which we have no control is the Nielsen

inventory, which we estimate by extrapolating its

historical data.

Step 8
Prepare item-by-item forecasts for all the products

of Brand X. This is achieved by using the past-six-

month rolling average ratio of each item. If item 1

represents 5 percent of the total, then the forecast

of item 1 will be 5 percent of the trade total of

Brand X; if item 2 represents 10 percent of the

total, then 10 percent of the total will be the fore-

cast of item 2; and so on.

Clearly, the main challenge to a business fore-

caster is to improve the quality of forecasts and con-

sequently the decisions. This can best be achieved by

sharing our forecasting experience with others.

Source: Journal of Business Forecasting 10, no. 1 (Spring
1991), pp. 2–6. Reprinted by permission.

Forecasting Consumer Products (continued)

Integrative Case

The Gap

PART 5: FORECASTING THE GAP SALES DATA 
WITH A MULTIPLE-REGRESSION MODEL

The sales of The Gap stores in thousands of dollars for the 80 quarters covering 1985Q1 through 2006Q4 are again

shown in the graph below. Recall that The Gap sales data are quite seasonal and are increasing over time. Data for 2006

is used as a holdout period.
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Case
Questions

1. Have The Gap sales generally followed a linear path over time? Does the graph suggest

to you that some accommodation for seasonality should be used in any forecast? Does

the graph suggest that some nonlinear term should be used in any forecast model?

2. Use a multiple regression of raw (i.e., nonseasonally adjusted) The Gap sales as the

basis to forecast sales for 2006.

3. Calculate the root-mean-squared errors both for the historical period and for the

2006Q1 through 2006Q4 forecast horizon.

Solutions
to Case
Questions

1. The Gap sales appear to have followed a highly seasonal pattern over time; in addition,

the sales pattern appears to show an increase in the rate of sales over time. In other

words, the pattern over time appears to be nonlinear and may require some accommo-

dation in a forecasting model.

2. The raw (or nonseasonally adjusted) The Gap sales were used as a dependent variable in

a multiple regression that includes the following explanatory (or independent) variables:

T  The index of time

T 2
 The index of time squared (to account for the nonlinearity)

Q2  A seasonal dummy variable for quarter 2

Q3  A seasonal dummy variable for quarter 3

Q4  A seasonal dummy variable for quarter 4

ICS  Index of Consumer Sentiment

The regression results follow:

Audit Trail--ANOVA Table (Multiple Regression Selected)

Source

of Variation SS df MS SEE

---------------------------------------------------------------------------------

Regression 175,455,195,145,618.00 6 29,242,532,524,269.60

Error 8,836,934,593,396.99 77 114,765,384,329.83 338,770.40

--------------------------------------------------------------------------------- 

Total 184,292,129,739,015.00 83

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in model Coefficient

Standard

error T-test Elasticity

Overall

F-test
----------------------------------------------------------------------------------------------

GapSales(000) Dependent  1,085,796.81 400,944.00  2.71 254.80

T Yes 2,561.10 6,189.35 0.41 0.06

T2 Yes 626.22 70.33 8.90 0.86

Q2 Yes 28,811.97 104,564.77 0.28 0.00

Q3 Yes 216,828.74 104,666.12 2.07 0.03

Q4 Yes 631,743.47 105,492.74 5.99 0.09

ICS Yes 10,926.90 4,264.03 2.56 0.58

(continued on next page)
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Since the T 2 variable is significant at the 95 percent level, it appears that The Gap sales

have indeed been increasing at an increasing rate over time. Our impressions are con-

firmed by the regression equation. Two of the seasonal dummy variables are statistically

significant; this confirms our impression of the seasonality of the data. The ICS variable

was included to account for the general level of economic activity in the economy over

time; it is also significant.

Overall, the regression appears to be a reasonable fit, as seen in the graph of actual

and predicted values on the following page.

The equation for The Gap sales here takes seasonality into account in a very different

manner than the one in Chapter 4 (which seasonally adjusted the data before running the

model). The results, however, are quite similar.

In this model we have also added T 2 as a variable to take into account that sales seem

to be increasing at an increasing rate over time. The ICS adds some further explanatory

power. The results do not seem much different from the simple regression results of

Chapter 4, but the difference lies in the explanatory power of this model in the forecast

horizon.

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

---------------------------------------------------  ----------------------------------------------

AIC 2,372.23 Durbin Watson (4) 0.50

BIC 2,374.66 Mean 1,747,909.96

Mean Absolute Percentage Error (MAPE) 29.00% Standard Deviation 1,490,096.34

R-Square 95.20% Ljung-Box 290.58

Adjusted R-Square 95.20%

Root Mean Square Error 324,347.96
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3. The RMSEs for the historical period and the 2006 forecast horizon are:

1985Q1–2003Q4 root-mean-squared error  324,347

2004Q1–2004Q4 root-mean-squared error  973,944

If we compare these results with the results presented at the end of Chapter 4, we find

that the historical period forecast has much the same RMSE, but the forecast horizon

RMSE is much lower with the multiple regression. This is due in part to the explanatory

power of the nonlinear T 2 variable.
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Holdout Period (2006) Forecast RMSE for Gap Sales

Date Forecast Actual (At  Ft) (At  Ft)
2

Mar-2006 4,553,914.17 3,441,000  1,112,914 1.23858E 12

Jun-2006 4,689,792.96 3,716,000  973,793 9.48273E 11

Sep-2006 4,984,939.98 3,856,000  1,128,940 1.27451E 12

Dec-2006 5,506,987.13 4,930,000  576,987 3.32914E 11

RMSE  973,944



USING FORECASTX™ TO MAKE
MULTIPLE-REGRESSION FORECASTS

As usual, begin by opening your data file in Excel and start ForecastX™. In the Data

Capture dialog box identify the data you want to use, as shown below. Then click the Fore-

cast Method tab.

282 Chapter Five

In the Forecast Method dialog box,

click the down arrow in the Forecasting

Technique box and select Multiple Re-

gression. Make sure the desired variable

is selected as the Dependent Series,

which is GapSales(000) in this exam-

ple. Then click the Statistics tab.



In this dialog box, select the statis-

tics that you desire. Do not forget that

there are more choices if you click the

More . . . button at the bottom.

After selecting the statistics you

want to see, click the Reports tab.

Forecasting with Multiple Regression 283

In the Report Options dialog box,

select those you want. Typical selections

might be those shown here. If you click

the Standard tab you will want to be

sure to select the Chart box. In the

Audit Trail tab (the active tab shown

here) click the Fitted Values Table.

Then click the Finish! button.

ForecastX™ will automatically apply a time-series method to forecast the independent

variables. The methods used to forecast the independent variables are given in the Standard

Report.
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Exercises 1. Explain why the adjusted R-squared should be used in evaluating multiple-regression

models rather than the unadjusted value.

2. Review the three quick checks that should be used in evaluating a multiple-regression

model. Apply these to the model for jewelry sales discussed in this chapter, using your

own words to describe each step and the conclusions you reach.

3. Explain what dummy variables are and how they can be used to account for seasonal-

ity. Give an example of how you might use dummy variables to measure seasonality for

a good or service of your choice. Explain the signs you would expect on each. Assume

that you are working with quarterly data.

4. The following regression results relate to a study of fuel efficiency of cars as measured

by miles per gallon of gas (adjusted R-squared  0.569; n  120).

Variable* Coefficient Standard Error t-Ratio

Intercept 6.51 1.28

CID 0.031 0.012

D 9.46 2.67

M4 14.64 2.09

M5 14.86 2.42

US 4.64 2.48

*CID  Cubic-inch displacement (engine size)

D  1 for diesel cars and 0 otherwise

M4  1 for cars with a four-speed manual transmission and 0 otherwise

M5  1 for cars with a five-speed manual transmission and 0 otherwise

US  1 for cars made in the United States and 0 otherwise



a. Calculate the t-ratios for each explanatory variable.

b. Use the three quick-check regression-evaluation procedures to evaluate this model.

5. Develop a multiple-regression model for auto sales as a function of population and

household income from the following data for 10 metropolitan areas:
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Area
Auto Sales
(AS) ($000)

(c5p5) Household Income
(INC) ($000)

Population
(POP) (000)

1 $185,792 $23,409 133.17

2 85,643 19,215 110.86

3 97,101 20,374 68.04

4 100,249 16,107 99.59

5 527,817 23,432 289.52

6 403,916 19,426 339.98

7 78,283 18,742 89.53

8 188,756 18,553 155.78

9 329,531 21,953 248.95

10 91,944 16,358 102.13

a. Estimate values for b0, b1, and b2 for the following model:

AS  b0  b1(INC)  b2(POP)

b. Are the signs you find for the coefficients consistent with your expectations?

Explain.

c. Are the coefficients for the two explanatory variables significantly different from

zero? Explain.

d. What percentage of the variation in AS is explained by this model?

e. What point estimate of AS would you make for a city where INC  $23,175 and

POP  128.07? What would the approximate 95 percent confidence interval be?

6. In Exercises 7 and 8 of Chapter 4 you worked with data on sales for a line of skiwear

that is produced by HeathCo Industries. Barbara Lynch, product manager for the

skiwear, has the responsibility of providing forecasts to top management of sales by

quarter one year ahead. One of Ms. Lynch’s colleagues, Dick Staples, suggested that

unemployment and income in the regions in which the clothes are marketed might be

causally connected to sales. If you worked the exercises in Chapter 4, you have devel-

oped three bivariate regression models of sales as a function of time (TIME), unem-

ployment (NRUR), and income (INC). Data for these variables and for sales are as

follows:

Period SALES ($000) INC ($ Billions) NRUR (%) TIME

Mar-98 72,962 218 8.4 1

Jun-98 81,921 237 8.2 2

Sep-98 97,729 263 8.4 3

Dec-98 142,161 293 8.4 4

Mar-99 145,592 318 8.1 5

Jun-99 117,129 359 7.7 6

Sep-99 114,159 404 7.5 7

(c5p6)

(continued on next page)



a. Now you can expand your analysis to see whether a multiple-regression model

would work well. Estimate the following model:

SALES b0  b1(INC) b2(NRUR)

SALES ___  / ___(INC) / ___(NRUR)

(Circle  or  as appropriate for each variable)

Do the signs on the coefficients make sense? Explain why.

b. Test to see whether the coefficients you have estimated are statistically different

from zero, using a 95 percent confidence level and a one-tailed test.

c. What percentage of the variation in sales is explained by this model?
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Period SALES ($000) INC ($ Billions) NRUR (%) TIME

Dec-99 151,402 436 7.2 8

Mar-00 153,907 475 6.9 9

Jun-00 100,144 534 6.5 10

Sep-00 123,242 574 6.5 11

Dec-00 128,497 622 6.4 12

Mar-01 176,076 667 6.3 13

Jun-01 180,440 702 6.2 14

Sep-01 162,665 753 6.3 15

Dec-01 220,818 796 6.5 16

Mar-02 202,415 858 6.8 17

Jun-02 211,780 870 7.9 18

Sep-02 163,710 934 8.3 19

Dec-02 200,135 1,010 8 20

Mar-03 174,200 1,066 8 21

Jun-03 182,556 1,096 8 22

Sep-03 198,990 1,162 8 23

Dec-03 243,700 1,187 8.9 24

Mar-04 253,142 1,207 9.6 25

Jun-04 218,755 1,242 10.2 26

Sep-04 225,422 1,279 10.7 27

Dec-04 253,653 1,318 11.5 28

Mar-05 257,156 1,346 11.2 29

Jun-05 202,568 1,395 11 30

Sep-05 224,482 1,443 10.1 31

Dec-05 229,879 1,528 9.2 32

Mar-06 289,321 1,613 8.5 33

Jun-06 266,095 1,646 8 34

Sep-06 262,938 1,694 8 35

Dec-06 322,052 1,730 7.9 36

Mar-07 313,769 1,755 7.9 37

Jun-07 315,011 1,842 7.9 38

Sep-07 264,939 1,832 7.8 39

Dec-07 301,479 1,882 7.6 40



d. Use this model to make a sales forecast (SF1) for 2008Q1 through 2008Q4, given the

previously forecast values for unemployment (NRURF) and income (INCF) as follows:
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Period NRURF (%) INCF ($ Billions) SF1 ($000)

2008Q1 7.6 1,928 –––

2008Q2 7.7 1,972 –––

2008Q3 7.5 2,017 –––

2008Q4 7.4 2,062 –––

e. Actual sales for 2008 were: Q1 = 334,271; Q2 = 328,982; Q3 = 317,921; Q4 =

350,118. On the basis of this information, how well would you say the model

worked? What is the root-mean-squared error (RMSE)?

f. Plot the actual data for 2008Q1 through 2008Q4 along with the values predicted for

each quarter based on this model, for 2008Q1 through 2008Q4.

7. a. If you have not looked at a time-series graph of the sales data for HeathCo’s line

of skiwear (see data in Exercise 6), do so now. On this plot write a 1 next to the

data point for each first quarter, a 2 next to each second quarter, and so forth for all

four quarters. Does there appear to be a seasonal pattern in the sales data? Explain

why you think the results are as you have found. (c5p6)

b. It seems logical that skiwear would sell better from October through March than

from April through September. To test this hypothesis, begin by adding two dummy

variables to the data: dummy variable Q2 = 1 for each second quarter (April, May,

June) and Q2 = 0 otherwise; dummy variable Q3 = 1 for each third quarter (July,

August, September) and Q3 = 0 otherwise. Once the dummy variables have been

entered into your data set, estimate the following trend model:

SALES b0  b1(TIME)  b2Q2  b3Q3

SALES ____  / ____ TIME

 / ____ Q2  / ____ Q3

(Circle  or  as appropriate for each variable)

Evaluate these results by answering the following:

• Do the signs make sense?

• Are the coefficients statistically different from zero at a 95 percent confidence

level (one-tailed test)?

• What percentage of the variation in SALES is explained by this model?

c. Use this model to make a forecast of SALES (SF2) for the four quarters of 2008 and

calculate the RMSE for the forecast period.

Period SALES ($000) SF2 ($000)

2008Q1 334,271 –––

2008Q2 328,982 –––

2008Q3 317,921 –––

2008Q4 350,118 –––

d. Prepare a time-series plot of SALES (for 1998Q1 through 2007Q4) and SF2 (for

1998Q1 through 2007Q4) to illustrate how SALES and SF2 compare.
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8. Consider now that you have been asked to prepare a forecast of wholesale furniture

sales for the entire United States. You have been given the monthly time-series data in

the accompanying table:

WFS UR PHS

1990M1 1,226.00 8.60000 843.00
1990M2 1,287.00 8.90000 866.00
1990M3 1,473.00 9.00000 931.00
1990M4 1,383.00 9.30000 917.00
1990M5 1,208.00 9.40000 1,025.00
1990M6 1,344.00 9.60000 902.00
1990M7 1,161.00 9.80000 1,166.00
1990M8 1,221.00 9.80000 1,046.00
1990M9 1,367.00 10.1000 1,144.00
1990M10 1,380.00 10.4000 1,173.00
1990M11 1,310.00 10.8000 1,372.00
1990M12 1,302.00 10.8000 1,303.00
1991M1 1,344.00 10.4000 1,586.00
1991M2 1,362.00 10.4000 1,699.00
1991M3 1,694.00 10.3000 1,606.00
1991M4 1,611.00 10.2000 1,472.00
1991M5 1,648.00 10.1000 1,776.00
1991M6 1,722.00 10.1000 1,733.00
1991M7 1,488.00 9.40000 1,785.00
1991M8 1,776.00 9.50000 1,910.00
1991M9 1,839.00 9.20000 1,710.00
1991M10 2,017.00 8.80000 1,715.00
1991M11 1,920.00 8.50000 1,785.00
1991M12 1,778.00 8.30000 1,688.00
1992M1 1,683.00 8.00000 1,897.00
1992M2 1,829.00 7.80000 2,260.00
1992M3 2,012.00 7.80000 1,663.00
1992M4 2,033.00 7.70000 1,851.00
1992M5 2,305.00 7.40000 1,774.00
1992M6 2,007.00 7.20000 1,843.00
1992M7 1,941.00 7.50000 1,732.00
1992M8 2,027.00 7.50000 1,586.00
1992M9 1,922.00 7.30000 1,698.00
1992M10 2,173.00 7.40000 1,590.00
1992M11 2,097.00 7.20000 1,689.00
1992M12 1,687.00 7.30000 1,612.00
1993M1 1,679.00 7.40000 1,711.00
1993M2 1,696.00 7.20000 1,632.00
1993M3 1,826.00 7.20000 1,800.00
1993M4 1,985.00 7.30000 1,821.00
1993M5 2,051.00 7.20000 1,680.00
1993M6 2,027.00 7.30000 1,676.00
1993M7 2,107.00 7.40000 1,684.00
1993M8 2,138.00 7.10000 1,743.00
1993M9 2,089.00 7.10000 1,676.00
1993M10 2,399.00 7.20000 1,834.00
1993M11 2,143.00 7.00000 1,698.00
1993M12 2,070.00 7.00000 1,942.00

WFS UR PHS

1994M1 1,866.00 6.70000 1,938.00
1994M2 1,843.00 7.20000 1,869.00
1994M3 2,001.00 7.10000 1,873.00
1994M4 2,165.00 7.20000 1,947.00
1994M5 2,211.00 7.20000 1,847.00
1994M6 2,321.00 7.20000 1,845.00
1994M7 2,210.00 7.00000 1,789.00
1994M8 2,253.00 6.90000 1,804.00
1994M9 2,561.00 7.00000 1,685.00
1994M10 2,619.00 7.00000 1,683.00
1994M11 2,118.00 6.90000 1,630.00
1994M12 2,169.00 6.70000 1,837.00
1995M1 2,063.00 6.60000 1,804.00
1995M2 2,032.00 6.60000 1,809.00
1995M3 2,349.00 6.50000 1,723.00
1995M4 2,218.00 6.40000 1,635.00
1995M5 2,159.00 6.30000 1,599.00
1995M6 2,240.00 6.20000 1,583.00
1995M7 2,335.00 6.10000 1,594.00
1995M8 2,388.00 6.00000 1,583.00
1995M9 2,865.00 5.90000 1,679.00
1995M10 2,829.00 6.00000 1,538.00
1995M11 2,432.00 5.90000 1,661.00
1995M12 2,395.00 5.80000 1,399.00
1996M1 1,995.00 5.70000 1,382.00
1996M2 2,232.00 5.70000 1,519.00
1996M3 2,355.00 5.70000 1,529.00
1996M4 2,188.00 5.50000 1,584.00
1996M5 2,177.00 5.60000 1,393.00
1996M6 2,333.00 5.40000 1,465.00
1996M7 2,124.00 5.50000 1,477.00
1996M8 2,463.00 5.60000 1,461.00
1996M9 2,435.00 5.40000 1,467.00
1996M10 2,688.00 5.30000 1,533.00
1996M11 2,604.00 5.30000 1,558.00
1996M12 2,393.00 5.30000 1,524.00
1997M1 2,171.00 5.40000 1,678.00
1997M2 2,136.00 5.20000 1,465.00
1997M3 2,428.00 5.00000 1,409.00
1997M4 2,264.00 5.30000 1,343.00
1997M5 2,402.00 5.20000 1,308.00
1997M6 2,320.00 5.30000 1,406.00
1997M7 2,258.00 5.30000 1,420.00
1997M8 2,675.00 5.30000 1,329.00
1997M9 2,676.00 5.30000 1,264.00
1997M10 2,629.00 5.30000 1,428.00
1997M11 2,610.00 5.30000 1,361.00

Data for Exercise 8

(c5p8)



WFS is wholesale furniture sales in millions of dollars. It is not seasonally adjusted.

PHS measures new private housing starts in thousands. UR is the unemployment rate

as a percent. You believe that furniture sales are quite probably related to the general

state of the economy and decide to test whether the unemployment rate affects furni-

ture sales. You expect that as the unemployment rate rises (and the economy thus shows

some sign of difficulty), furniture sales will decline.

a. Summarize the results of your bivariate regression by completing the following

table:
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Independent
Variable Intercept Slope t-Ratio R-squared

UR

R-squared  

Durbin-Watson  

Independent
Variable Intercept Slope t-Ratio

UR

M1

M2

M4

M9

M10

Adjusted R-squared  

Durbin-Watson  

b. After discussing the results at a staff meeting, someone suggests that you fit a

multiple-regression model of the following form:

WFS  b0  b1(UR)  b2(M1)  b3(M2)

 b4(M4)  b5(M9)  b6(M10)

where:

M1  A dummy variable for January

M2  A dummy variable for February

M4  A dummy variable for April

M9  A dummy variable for September

M10  A dummy variable for October

Summarize the results in the following table:

• Do the signs of the coefficients make sense?

• Are the coefficients statistically significant at a 95 percent confidence level

(one-tailed test)?

• What percentage of the variation in WFS is explained by the model?



c. After a staff meeting where these results were presented, another analyst suggested

that serial correlation can cause problems in such regression models. Interpret the

Durbin-Watson statistic in part (b) and suggest what problems could result if serial

correlation is a problem.

Add PHS lagged three months and time-squared (T 2 ) to the model and again

examine the results for serial correlation. Summarize the results:
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Independent
Variable Intercept Slope t-Ratio R-squared

UR

M1

M2

M4

M9

M10

T2

PHS( 3)

Adjusted R-squared  

Durbin-Watson  

Have the additional two variables affected the existence of serial correlation?

9. AmeriPlas, Inc., produces 20-ounce plastic drinking cups that are embossed with the

names of prominent beers and soft drinks.

Period Sales Time M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Jan-04 857 1 0 0 0 0 0 0 0 0 0 0 0

Feb-04 921 2 1 0 0 0 0 0 0 0 0 0 0

Mar-04 1,071 3 0 1 0 0 0 0 0 0 0 0 0

Apr-04 1,133 4 0 0 1 0 0 0 0 0 0 0 0

May-04 1,209 5 0 0 0 1 0 0 0 0 0 0 0

Jun-04 1,234 6 0 0 0 0 1 0 0 0 0 0 0

Jul-04 1,262 7 0 0 0 0 0 1 0 0 0 0 0

Aug-04 1,258 8 0 0 0 0 0 0 1 0 0 0 0

Sep-04 1,175 9 0 0 0 0 0 0 0 1 0 0 0

Oct-04 1,174 10 0 0 0 0 0 0 0 0 1 0 0

Nov-04 1,123 11 0 0 0 0 0 0 0 0 0 1 0

Dec-04 1,159 12 0 0 0 0 0 0 0 0 0 0 1

Jan-05 1,250 13 0 0 0 0 0 0 0 0 0 0 0

Feb-05 1,289 14 1 0 0 0 0 0 0 0 0 0 0

Mar-05 1,448 15 0 1 0 0 0 0 0 0 0 0 0

Apr-05 1,497 16 0 0 1 0 0 0 0 0 0 0 0

May-05 1,560 17 0 0 0 1 0 0 0 0 0 0 0

Jun-05 1,586 18 0 0 0 0 1 0 0 0 0 0 0

Jul-05 1,597 19 0 0 0 0 0 1 0 0 0 0 0

(continued on next page)

(c5p9)



a. Prepare a time-series plot of the sales data. Does there appear to be a regular pat-

tern of movement in the data that may be seasonal? Ronnie Newton, the product

manager for this product line, believes that her brief review of sales data for the

four-year period indicates that sales are slower in the colder months of November

through February than in other months. Do you agree?

b. Since production is closely related to orders for current shipment, Ronnie would

like to have a monthly sales forecast that incorporates monthly fluctuations. She

has asked you to develop a trend model that includes dummy variables, with

January as the base period (i.e., 11 dummy variables for February through

December). Use M2 for the February dummy variable, which will equal 1 for each

February and zero otherwise; M3 for the March dummy variable, which will equal

1 for each March and zero otherwise; and so forth to M12 for the December

dummy variable, which will equal 1 for each December and zero otherwise.

Summarize your results:
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Period Sales Time M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Aug-05 1,615 20 0 0 0 0 0 0 1 0 0 0 0

Sep-05 1,535 21 0 0 0 0 0 0 0 1 0 0 0

Oct-05 1,543 22 0 0 0 0 0 0 0 0 1 0 0

Nov-05 1,493 23 0 0 0 0 0 0 0 0 0 1 0

Dec-05 1,510 24 0 0 0 0 0 0 0 0 0 0 1

Jan-06 1,604 25 0 0 0 0 0 0 0 0 0 0 0

Feb-06 1,643 26 1 0 0 0 0 0 0 0 0 0 0

Mar-06 1,795 27 0 1 0 0 0 0 0 0 0 0 0

Apr-06 1,868 28 0 0 1 0 0 0 0 0 0 0 0

May-06 1,920 29 0 0 0 1 0 0 0 0 0 0 0

Jun-06 1,953 30 0 0 0 0 1 0 0 0 0 0 0

Jul-06 1,980 31 0 0 0 0 0 1 0 0 0 0 0

Aug-06 1,989 32 0 0 0 0 0 0 1 0 0 0 0

Sep-06 1,897 33 0 0 0 0 0 0 0 1 0 0 0

Oct-06 1,910 34 0 0 0 0 0 0 0 0 1 0 0

Nov-06 1,854 35 0 0 0 0 0 0 0 0 0 1 0

Dec-06 1,957 36 0 0 0 0 0 0 0 0 0 0 1

Jan-07 1,955 37 0 0 0 0 0 0 0 0 0 0 0

Feb-07 2,008 38 1 0 0 0 0 0 0 0 0 0 0

Mar-07 2,171 39 0 1 0 0 0 0 0 0 0 0 0

Apr-07 2,202 40 0 0 1 0 0 0 0 0 0 0 0

May-07 2,288 41 0 0 0 1 0 0 0 0 0 0 0

Jun-07 2,314 42 0 0 0 0 1 0 0 0 0 0 0

Jul-07 2,343 43 0 0 0 0 0 1 0 0 0 0 0

Aug-07 2,339 44 0 0 0 0 0 0 1 0 0 0 0

Sep-07 2,239 45 0 0 0 0 0 0 0 1 0 0 0

Oct-07 2,267 46 0 0 0 0 0 0 0 0 1 0 0

Nov-07 2,206 47 0 0 0 0 0 0 0 0 0 1 0

Dec-07 2,226 48 0 0 0 0 0 0 0 0 0 0 1



Do these results support Ronnie Newton’s observations? Explain.

c. While sales of this new product have experienced considerable growth in the first

four years, Ronnie believes that there has been some decrease in the rate of growth.

To test this and to include such a possibility in the forecasting effort, she has asked

that you add the square of the time index (T) to your model (call this new term T2).

Summarize the new results:
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Variable Coefficient t-Ratio

Intercept

T

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

Adjusted R-squared  

Durbin-Watson  

Variable Coefficient t-Ratio

Intercept

T

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

Adjusted R-squared  

Durbin-Watson  

Is there any evidence of a slowing of sales growth? Compare the results of this

model with those found in part (b).

d. Use the model in part (c) to forecast sales for 2008 and calculate the RMSE for the

forecast period. Actual sales are as follows:



10. Norm Marks has recently been assigned the responsibility of forecasting the demand

for P2CL, a coating produced by ChemCo that is used to line beer cans. He has decided

to begin by trying to forecast beer, wine, and liquor sales and has hired you as an out-

side consultant for this purpose.

a. Go to the http://www.economagic.com and/or Business Statistics and gather data

on retail monthly beer, wine, and liquor store sales for a recent four-year period.

Prepare a time-series plot of the data. Use data that is not seasonally adjusted (usu-

ally noted by “NSA”).

b. Develop a multiple-regression trend model with monthly dummy variables for

February (M2) through December (M12) for beer, wine, and liquor sales (i.e., use

January as the base period). Summarize your findings:
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Variable Coefficient t-Ratio

Intercept

T

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

Adjusted R-squared  

Durbin-Watson  

(c5p10)

Month Actual Sales Forecast Sales Squared Error

Jan 2,318

Feb 2,367

Mar 2,523

Apr 2,577

May 2,646

Jun 2,674

Jul 2,697

Aug 2,702

Sep 2,613

Oct 2,626

Nov 2,570

Dec 2,590

Sum of squared errors   ______

RMSE   ______

Write a paragraph in which you communicate your findings to Norm Marks.

c. Prepare a forecast for the year following the four years for which you collected data.



11. The data presented below are for retail sales in the United States quarterly from the

period 1992Q1 through 2003Q4. Also included is disposable personal income per

capita (DPIPC) (to use as a measure of the well-being of the economy).
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Date RS DPIPC Q2 Q3 Q4 T T2 DPIPC^2

Mar-96 534,392 20,763 0 0 0 1 1 431,102,169

Jun-96 595,893 21,009 1 0 0 2 4 441,378,081

Sep-96 592,083 21,203 0 1 0 3 9 449,567,209

Dec-96 644,297 21,385 0 0 1 4 16 457,318,225

Mar-97 564,164 21,631 0 0 0 5 25 467,900,161

Jun-97 617,252 21,787 1 0 0 6 36 474,673,369

Sep-97 623,555 22,023 0 1 0 7 49 485,012,529

Dec-97 669,032 22,317 0 0 1 8 64 498,048,489

Mar-98 580,778 22,753 0 0 0 9 81 517,699,009

Jun-98 655,691 23,060 1 0 0 10 100 531,763,600

Sep-98 644,369 23,315 0 1 0 11 121 543,589,225

Dec-98 706,267 23,511 0 0 1 12 144 552,767,121

Mar-99 627,589 23,684 0 0 0 13 169 560,931,856

Jun-99 702,714 23,806 1 0 0 14 196 566,725,636

Sep-99 709,527 23,979 0 1 0 15 225 574,992,441

Dec-99 768,726 24,399 0 0 1 16 256 595,311,201

Mar-00 696,048 25,094 0 0 0 17 289 629,708,836

Jun-00 753,211 25,321 1 0 0 18 324 641,153,041

Sep-00 746,875 25,690 0 1 0 19 361 659,976,100

Dec-00 792,622 25,768 0 0 1 20 400 663,989,824

Mar-01 704,757 25,996 0 0 0 21 441 675,792,016

Jun-01 779,011 25,985 1 0 0 22 484 675,220,225

Sep-01 756,128 26,665 0 1 0 23 529 711,022,225

Dec-01 827,829 26,250 0 0 1 24 576 689,062,500

Mar-02 717,302 26,976 0 0 0 25 625 727,704,576

Jun-02 790,486 27,224 1 0 0 26 676 741,146,176

Sep-02 792,657 27,163 0 1 0 27 729 737,828,569

Dec-02 833,877 27,217 0 0 1 28 784 740,765,089

Mar-03 741,060 27,480 0 0 0 29 841 755,150,400

Jun-03 819,232 27,800 1 0 0 30 900 772,840,000

Sep-03 830,692 28,322 0 1 0 31 961 802,135,684

Dec-03 874,493 28,473 0 0 1 32 1024 810,711,729

Mar-04 794,720 28,922 0 0 0 33 1089 836,482,084

Jun-04 870,834 29,300 1 0 0 34 1156 858,490,000

Sep-04 872,340 29,576 0 1 0 35 1225 874,739,776

Dec-04 936,446 30,265 0 0 1 36 1296 915,970,225

Mar-05 835,280 30,106 0 0 0 37 1369 906,371,236

Jun-05 931,513 30,477 1 0 0 38 1444 928,847,529

Sep-05 939,788 30,622 0 1 0 39 1521 937,706,884

Dec-05 986,849 31,252 0 0 1 40 1600 976,687,504

Mar-06 906,635 31,693 0 0 0 41 1681 1,004,446,249

Jun-06 1,002,064 31,970 1 0 0 42 1764 1,022,080,900

Sep-06 993,749 32,231 0 1 0 43 1849 1,038,837,361

Dec-06 1,034,094 32,561 0 0 1 44 1936 1,060,218,721

Mar-07 934,619 33,206 0 0 0 45 2025 1,102,638,436

Jun-07 1,030,508 33,525 1 0 0 46 2116 1,123,925,625

Sep-07 1,017,608 33,940 0 1 0 47 2209 1,151,923,600



a. Develop a regression model of retail sales as a function of the S&P 500. Comment

on the relevant summary statistics.

b. Estimate a new multiple-regression model using seasonal dummy variables for

quarters 2, 3, and 4. Additionally, add a time index to account for trend. Comment

on the relevant statistics of this model. Is this model an improvement on the model

above? What evidence is there that this second model provides an improvement (no

improvement)?

c. Square the time index variable and add it to the multiple-regression model above.

Does the resulting model perform better than either previous model? Explain your

reasoning.

12. An interesting experiment took place beginning in April 1979 in Albuquerque, New

Mexico. The local police department tried a procedure they thought might have the

effect of reducing driving-while-intoxicated (DWI) related accidents. The procedure

was quite simple. A squad of police officers used a special van that housed a blood

alcohol testing (BAT) device; the van became known as the “Batmobile.”

In the quarterly data set below is information on the following variables:

ACC  Injuries and fatalities from Wednesday through Saturday 

nighttime accidents

FUEL  Fuel consumption (millions of gallons) in Albuquerque

Forecasting with Multiple Regression 295

QTR ACC FUEL

27 354 54.646
28 331 53.398
29 291 50.584
30 377 51.32
31 327 50.81
32 301 46.272
33 269 48.664
34 314 48.122
35 318 47.483
36 288 44.732
37 242 46.143
38 268 44.129
39 327 46.258
40 253 48.23
41 215 46.459
42 263 50.686
43 319 49.681
44 263 51.029
45 206 47.236
46 286 51.717
47 323 51.824
48 306 49.38
49 230 47.961
50 304 46.039
51 311 55.683
52 292 52.263

QTR ACC FUEL

1 192 32.592
2 238 37.25
3 232 40.032
4 246 35.852
5 185 38.226
6 274 38.711
7 266 43.139
8 196 40.434
9 170 35.898

10 234 37.111
11 272 38.944
12 234 37.717
13 210 37.861
14 280 42.524
15 246 43.965
16 248 41.976
17 269 42.918
18 326 49.789
19 342 48.454
20 257 45.056
21 280 49.385
22 290 42.524
23 356 51.224
24 295 48.562
25 279 48.167
26 330 51.362



The first 29 observations in the data set are a control period before the implementation

of the Batmobile program. The following 23 quarterly observations are for the experi-

mental period.

Your job is to explain statistically using standard forecasting procedures whether

the Batmobile program was effective.

a. Using the “fuel” variable as a proxy for the amount of driving in any given period,

calculate the average injuries per gallon of fuel for both the pre-Batmobile period

and for the treatment period. Do the results lead to the inference that the Batmobile

was effective?

b. The data appear to have some seasonality. Construct a multiple-regression model

using the fuel variable, seasonal dummy variables, and a separate dummy variable

for the Batmobile program to explain the injuries and fatalities variable. Explain the

diagnostic statistics and present your reasoned opinion on the efficacy of the Bat-

mobile program.

c. There is some evidence that programs like the Batmobile program take some time

to “catch on.” If this is actually the case, the dummy variable representing the exis-

tence of the Batmobile program can be modified to examine whether there is a

“cascading” effect to the program. The data set also contains a “ramped” version of

the Batmobile dummy in which the variable is zero in the pretreatment period but

takes on a value of one in the first treatment period and increases in value by one for

each subsequent treatment period. In a sense, this treatment mimics a ramping up

of the effectiveness of the Batmobile effort. Run such a model and examine the

relevant summary statistics. Is there evidence of a ramping effect? What degree of

confidence do you have in your answer?

13. This is a problem in model selection. A “big box” home improvement store has

collected data on its sales and demographic variables relating to its various stores. The

cross-sectional data set for these variables is below:
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Sales X1 X2 X3 X4 X5

281 878 6,575 175 7.94 2,387

269 887 6,236 134 7.59 3,003

267 1,174 5,665 88 8.88 3,079

231 957 5,255 72 7.78 3,030

265 987 5,956 151 7.92 3,466

260 871 5,976 82 8.19 2,563

310 1,042 7,028 82 7.77 2,888

324 1,165 7,162 27 8.15 3,457

222 745 5,201 99 9.01 3,004

283 801 6,563 185 7.88 3,559

241 946 5,540 82 9.79 2,592

333 1,375 6,936 129 7.93 3,379

231 842 5,446 154 8.28 3,374

239 1,006 5,333 172 7.77 3,743

281 1,294 5,824 94 9.06 3,249

276 1,002 6,332 70 9.86 3,155

299 1,208 6,716 96 7.74 2,287

272 943 6,348 152 9.66 2,803

(continued on next page)



where:

Sales  average monthly store sales (in thousands of dollars)

X1  Households in a 5-mile ring that are do-it-youselfers (in thousands)

X2  Average monthly advertising expenditures (in dollars)

X3  Square footage of competitor stores in a 5-mile ring (in thousands)

X4  Households in a 5-mile ring that are below the poverty level (in hundreds)

X5  Weighted average daily traffic count at store intersection

a. Begin by estimating a model with independent variables X1, X2, and X3. Com-

ment on the appropriateness of this model and its accuracy.

b. Now add X4 to the model above and again comment on the appropriateness of the

model. Has the accuracy improved?

c. Finally, add X5 to the model and again comment on the accuracy of the model. Use

the appropriate summary statistics of the three models to suggest which of the five

independent variables should be in the model. Advise the “big box” retailer on

which characteristics are important when choosing new store locations.
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Sales X1 X2 X3 X4 X5

273 581 6,500 133 6.85 3,212

246 1,044 5,545 117 8.47 2,796

239 1,005 5,432 144 7.95 2,232

273 963 6,215 138 10.49 2,926

301 1,104 6,861 86 10.35 2,888

267 967 6,127 194 8.87 2,627

282 1,095 6,335 55 9.35 2,956

274 701 6,633 100 9.11 2,885

244 839 5,616 82 8.86 3,442

279 1,200 5,921 92 8.69 3,252

241 803 5,625 156 9.08 2,477

276 1,085 6,160 90 8.4 3,233

235 874 5,258 137 10.24 3,775

288 1,317 6,312 156 9.95 2,210

223 1,109 4,774 103 9.36 2,905

232 865 5,202 68 10.41 3,134

273 922 6,364 137 9.03 2,567

325 1,142 7,356 94 8.07 2,476

235 1,009 5,099 144 8.09 3,493

278 1,178 6,058 63 10.6 3,462

293 1,126 6,559 153 9.37 3,317

237 222 5,872 115 5.84 2,377
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Chapter Six

Time-Series 
Decomposition
Many business and economic time series contain underlying components that,

when examined individually, can help the forecaster better understand data move-

ments and therefore make better forecasts. As discussed in Chapter 2, these com-

ponents include the long-term trend, seasonal fluctuations, cyclical movements,

and irregular or random fluctuations. Time-series decomposition models can be

used to identify such underlying components by breaking the series into its com-

ponent parts and then reassembling the parts to construct a forecast.

These models are among the oldest of the forecasting techniques available and

yet remain popular today. Their popularity is due primarily to three factors. First,

in many situations, time-series decomposition models provide excellent forecasts.

Second, these models are relatively easy to understand and to explain to forecast

users. This enhances the likelihood that the forecasts will be correctly interpreted

and properly used. Third, the information provided by time-series decomposition

is consistent with the way managers tend to look at data, and often helps them to

get a better handle on data movements by providing concrete measurements for

factors that are otherwise not quantified.

There are a number of different methods for decomposing a time series. The

one we will use is usually referred to as classical time-series decomposition and

involves the ratio-to-moving-average technique. The classical time-series decom-

position model uses the concepts of moving averages presented in Chapter 3 and

trend projections discussed in Chapter 4. It also accounts for seasonality in a mul-

tiplicative way that is similar to what you have seen in Winters’ exponential

smoothing and the way we used seasonal indices in earlier chapters.1

THE BASIC TIME-SERIES DECOMPOSITION MODEL

Look at the data on private housing starts (PHS) that are shown in Table 6.1 and

Figure 6.1. While the series appears quite volatile, there is also some pattern to the

movement in the data. The sharp increases and decreases in housing starts appear

The information

provided by time-series

decomposition is con-

sistent with the way

managers tend to look 

at data and often helps

them to get a better

handle on data move-

ments by providing

concrete measurements

for factors that are oth-

erwise not quantified.

1 Remember that you have also accounted for seasonality using dummy variables in regression

models. That method uses additive factors rather than multiplicative ones to account for

seasonal patterns.
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TABLE 6.1 Private Housing Starts (PHS) in Thousands of Units (c6t1&f1)

Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts 
(000) Date

Private
Housing

Starts
(000)

Aug-75 117.3 Jan-79 88.2 Jun-82 91.1 Nov-85 124.1 Apr-89 129.4

Sep-75 111.9 Feb-79 84.2 Jul-82 106.8 Dec-85 120.5 May-89 131.7

Oct-75 123.6 Mar-79 152.9 Aug-82 96 Jan-86 115.6 Jun-89 143.2

Nov-75 96.9 Apr-79 161 Sep-82 106.4 Feb-86 107.2 Jul-89 134.7

Dec-75 76.1 May-79 189.1 Oct-82 110.5 Mar-86 151 Aug-89 122.4

Jan-76 72.5 Jun-79 191.8 Nov-82 108.9 Apr-86 188.2 Sep-89 109.3

Feb-76 89.9 Jul-79 164.2 Dec-82 82.9 May-86 186.6 Oct-89 130.1

Mar-76 118.4 Aug-79 170.3 Jan-83 91.3 Jun-86 183.6 Nov-89 96.6

Apr-76 137.2 Sep-79 163.7 Feb-83 96.3 Jul-86 172 Dec-89 75

May-76 147.9 Oct-79 169 Mar-83 134.6 Aug-86 163.8 Jan-90 99.2

Jun-76 154.2 Nov-79 118.7 Apr-83 135.8 Sep-86 154 Feb-90 86.9

Jul-76 136.6 Dec-79 91.6 May-83 174.9 Oct-86 154.8 Mar-90 108.5

Aug-76 145.9 Jan-80 73.1 Jun-83 173.2 Nov-86 115.6 Apr-90 119

Sep-76 151.8 Feb-80 79.9 Jul-83 161.6 Dec-86 113 May-90 121.1

Oct-76 148.4 Mar-80 85.1 Aug-83 176.8 Jan-87 105.1 Jun-90 117.8

Nov-76 127.1 Apr-80 96.2 Sep-83 154.9 Feb-87 102.8 Jul-90 111.2

Dec-76 107.4 May-80 91.7 Oct-83 159.3 Mar-87 141.2 Aug-90 102.8

Jan-77 81.3 Jun-80 116.4 Nov-83 136 Apr-87 159.3 Sep-90 93.1

Feb-77 112.5 Jul-80 120.1 Dec-83 108.3 May-87 158 Oct-90 94.2

Mar-77 173.6 Aug-80 129.9 Jan-84 109.1 Jun-87 162.9 Nov-90 81.4

Apr-77 182.2 Sep-80 138.3 Feb-84 130 Jul-87 152.4 Dec-90 57.4

May-77 201.3 Oct-80 152.7 Mar-84 137.5 Aug-87 143.6 Jan-91 52.5

Jun-77 197.6 Nov-80 112.9 Apr-84 172.7 Sep-87 152 Feb-91 59.1

Jul-77 189.8 Dec-80 95.9 May-84 180.7 Oct-87 139.1 Mar-91 73.8

Aug-77 194 Jan-81 84.5 Jun-84 184 Nov-87 118.8 Apr-91 99.7

Sep-77 177.7 Feb-81 71.9 Jul-84 162.1 Dec-87 85.4 May-91 97.7

Oct-77 193.1 Mar-81 107.8 Aug-84 147.4 Jan-88 78.2 Jun-91 103.4

Nov-77 154.8 Apr-81 123 Sep-84 148.5 Feb-88 90.2 Jul-91 103.5

Dec-77 129.2 May-81 109.9 Oct-84 152.3 Mar-88 128.8 Aug-91 94.7

Jan-78 88.6 Jun-81 105.8 Nov-84 126.2 Apr-88 153.2 Sep-91 86.6

Feb-78 101.3 Jul-81 99.9 Dec-84 98.9 May-88 140.2 Oct-91 101.8

Mar-78 172.1 Aug-81 86.3 Jan-85 105.4 Jun-88 150.2 Nov-91 75.6

Apr-78 197.5 Sep-81 84.1 Feb-85 95.4 Jul-88 137 Dec-91 65.6

May-78 211 Oct-81 87.2 Mar-85 145 Aug-88 136.8 Jan-92 71.6

Jun-78 216 Nov-81 64.6 Apr-85 175.8 Sep-88 131.1 Feb-92 78.8

Jul-78 192.2 Dec-81 59.1 May-85 170.2 Oct-88 135.1 Mar-92 111.6

Aug-78 190.9 Jan-82 47.2 Jun-85 163.2 Nov-88 113 Apr-92 107.6

Sep-78 180.5 Feb-82 51.3 Jul-85 160.7 Dec-88 94.2 May-92 115.2

Oct-78 192.1 Mar-82 78.2 Aug-85 160.7 Jan-89 100.1 Jun-92 117.8

Nov-78 158.6 Apr-82 84.1 Sep-85 147.7 Feb-89 85.8 Jul-92 106.2

Dec-78 119.5 May-82 98.8 Oct-85 173 Mar-89 117.8 Aug-92 109.9

(continued on next page)
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TABLE 6.1 (continued)

Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts
(000) Date

Private
Housing

Starts 
(000) Date

Private
Housing

Starts
(000)

Sep-92 106 Sep-95 122.4 Sep-98 141.5 Sep-01 133.1 Sep-04 164

Oct-92 111.8 Oct-95 126.2 Oct-98 155.5 Oct-01 139.8 Oct-04 181.3

Nov-92 84.5 Nov-95 107.2 Nov-98 124.2 Nov-01 121 Nov-04 138.1

Dec-92 78.6 Dec-95 92.8 Dec-98 119.6 Dec-01 104.6 Dec-04 140.2

Jan-93 70.5 Jan-96 90.7 Jan-99 106.8 Jan-02 110.4 Jan-05 142.9

Feb-93 74.6 Feb-96 95.9 Feb-99 110.2 Feb-02 120.4 Feb-05 149.1

Mar-93 95.5 Mar-96 116 Mar-99 147.3 Mar-02 138.2 Mar-05 156.2

Apr-93 117.8 Apr-96 146.6 Apr-99 144.6 Apr-02 148.8 Apr-05 184.6

May-93 120.9 May-96 143.9 May-99 153.2 May-02 165.5 May-05 197.9

Jun-93 128.5 Jun-96 138 Jun-99 149.4 Jun-02 160.3 Jun-05 192.8

Jul-93 115.3 Jul-96 137.5 Jul-99 152.6 Jul-02 155.9 Jul-05 187.6

Aug-93 121.8 Aug-96 144.2 Aug-99 152.9 Aug-02 147 Aug-05 192

Sep-93 118.5 Sep-96 128.7 Sep-99 140.3 Sep-02 155.6 Sep-05 187.9

Oct-93 123.3 Oct-96 130.8 Oct-99 142.9 Oct-02 146.8 Oct-05 180.4

Nov-93 102.3 Nov-96 111.5 Nov-99 127.4 Nov-02 133 Nov-05 160.7

Dec-93 98.7 Dec-96 93.1 Dec-99 113.6 Dec-02 123.1 Dec-05 136

Jan-94 76.2 Jan-97 82.2 Jan-00 104 Jan-03 117.8 Jan-06 153

Feb-94 83.5 Feb-97 94.7 Feb-00 119.7 Feb-03 109.7 Feb-06 145.1

Mar-94 134.3 Mar-97 120.4 Mar-00 133.4 Mar-03 147.2 Mar-06 165.9

Apr-94 137.6 Apr-97 142.3 Apr-00 149.5 Apr-03 151.2 Apr-06 160.5

May-94 148.8 May-97 136.3 May-00 152.9 May-03 165 May-06 190.2

Jun-94 136.4 Jun-97 140.4 Jun-00 146.3 Jun-03 174.5 Jun-06 170.2

Jul-94 127.8 Jul-97 134.6 Jul-00 135 Jul-03 175.8 Jul-06 160.9

Aug-94 139.8 Aug-97 126.5 Aug-00 141.4 Aug-03 163.8 Aug-06 146.8

Sep-94 130.1 Sep-97 139.2 Sep-00 128.9 Sep-03 171.3 Sep-06 150.1

Oct-94 130.6 Oct-97 139 Oct-00 139.7 Oct-03 173.5 Oct-06 130.6

Nov-94 113.4 Nov-97 112.4 Nov-00 117.1 Nov-03 153.7 Nov-06 115.2

Dec-94 98.5 Dec-97 106 Dec-00 100.7 Dec-03 144.2 Dec-06 112.4

Jan-95 84.5 Jan-98 91.2 Jan-01 106.4 Jan-04 124.5 Jan-07 95

Feb-95 81.6 Feb-98 101.1 Feb-01 108.2 Feb-04 126.4 Feb-07 103.1

Mar-95 103.8 Mar-98 132.6 Mar-01 133.2 Mar-04 173.8 Mar-07 123.8

Apr-95 116.9 Apr-98 144.9 Apr-01 151.3 Apr-04 179.5 Apr-07 135.6

May-95 130.5 May-98 143.3 May-01 154 May-04 187.6 May-07 136.5

Jun-95 123.4 Jun-98 159.6 Jun-01 155.2 Jun-04 172.3 Jun-07 137.8

Jul-95 129.1 Jul-98 156 Jul-01 154.6 Jul-04 182 Jul-07 127

Aug-95 135.8 Aug-98 147.5 Aug-01 141.5 Aug-04 185.9 Aug-07 119.2

to follow one another in a reasonably regular manner, which may reflect a seasonal

component. There also appears to be some long-term wavelike movement to the

data as well as a slight negative trend. Patterns such as these are relatively com-

mon and can best be understood if they can each be isolated and examined indi-

vidually. The classical time-series decomposition forecasting technique is a well-

established procedure for accomplishing this end.
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The model can be represented by a simple algebraic statement, as follows:

Y  T  S  C  I

where Y is the variable that is to be forecast, T is the long-term (or secular) trend

in the data, S is a seasonal adjustment factor, C is the cyclical adjustment factor,

and I represents irregular or random variations in the series. Our objective will be

to find a way to decompose this series into the individual components.

DESEASONALIZING THE DATA AND FINDING
SEASONAL INDICES

The first step in working with this model is to remove the short-term fluctuations

from the data so that the longer-term trend and cycle components can be more

clearly identified. These short-term fluctuations include both seasonal patterns

and irregular variations. They can be removed by calculating an appropriate mov-

ing average (MA) for the series. The moving average should contain the same

number of periods as there are in the seasonality that you want to identify. Thus, if

you have quarterly data and suspect seasonality on a quarterly basis, a four-period

moving average is appropriate. If you have monthly data and want to identify the

monthly pattern in the data, a 12-period moving average should be used. The mov-

ing average for time period t (MAt) is calculated as follows:

For quarterly data:

MAt  (Yt 2 Yt 1 Yt  Yt 1) 4

FIGURE 6.1 Private Housing Starts in Thousands of Units by Month (c6t1&f1)

This plot of private housing starts shows the volatility in the data. There are repeated

sharp upward and downward movements that appear regular and may be of a seasonal

nature. There also appears to be some wavelike cyclical pattern and perhaps a very slight

positive trend.
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with this model is to
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fluctuations from the

data so that the longer-
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components can be

more clearly identified.
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For monthly data:

MAt (Yt 6 Yt 5       Yt  Yt 1       Yt 5) 12

The moving average for each time period contains one element from each of

the seasons. For example, in the case of quarterly data, each moving average

would contain a first-quarter observation, a second-quarter observation, a third-

quarter observation, and a fourth-quarter observation (not necessarily in that

order). The average of these four quarters should therefore not have any seasonal-

ity. Thus, the moving average represents a “typical” level of Y for the year that is

centered on that moving average. When an even number of periods are used in cal-

culating a moving average, however, it is really not centered in the year. The fol-

lowing simple example will make that clear and also help you verify your under-

standing of how the moving averages are calculated.

Let Y be the sales of a line of swimwear for which we have quarterly data (we

will look at only six quarters of the data stream). MA3 is the average of quarters 1

through 4. To be centered in the first year, it should be halfway between the sec-

ond and third quarters, but the convention is to place it at the third quarter (t 3).

Note that each of the three moving averages shown in the following example con-

tains a first-, second-, third-, and fourth-quarter observation. Thus, seasonality in

the data is removed. Irregular fluctuations are also largely removed, since such

variations are random events that are likely to offset one another over time.

The moving average

represents a “typical”

level of Y for the year

that is centered on

that moving average.

Moving
Average

Centered
Moving
Average

Year 1:

First quarter 1 10 MISSING MISSING

Second quarter 2 18 MISSING MISSING

Third quarter 3 20 15.0(MA3) 15.25(CMA3)

Fourth quarter 4 12 15.5(MA4) 15.75(CMA4)

Year 2:

First quarter 5 12 16.0(MA5) MISSING

Second quarter 6 20 MISSING MISSING

MA3  (10  18  20  12) 4  15.0

MA4  (18  20  12  12) 4  15.5

MA5  (20  12  12  20) 4   16.0

As noted, when an even number of periods are used, the moving averages are

not really centered in the middle of the year. To center the moving averages, a two-

period moving average of the moving averages is calculated.2 This is called a

2 If the number of periods used is odd, the moving averages will automatically be centered, and

no further adjustment is usually made.

Time
Index Y
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centered moving average. The centered moving average for time period t (CMAt)

is found as follows:

CMAt (MAt MAt 1) 2

For the swimwear data used in our example we have:

CMA3  (15.0  15.5) 2  15.25

CMA4  (15.5  16.0) 2  15.75

This second moving average further helps to smooth out irregular or random fluc-

tuations in the data.

Note the “MISSING” that appears under the moving average and centered moving

average columns in the data table. With just six data points, we could not calculate

four-period moving averages for the first, second, or sixth time period. We then lose

one more time period in calculating the centered moving average. Thus, the smooth-

ing process has a cost in terms of the loss of some data points. If an n-period moving

average is used, n 2 points will be lost at each end of the data series by the time the

centered moving averages have been calculated. This cost is not without benefit, how-

ever, since the process will eventually provide clarification of the patterns in the data.

The centered moving averages represent the deseasonalized data (i.e., seasonal

variations have been removed through an averaging process). By comparing the

actual value of the series in any time period (Yt) with the deseasonalized value

(CMAt), you can get a measure of the degree of seasonality. In classical time-

series decomposition this is done by finding the ratio of the actual value to the

deseasonalized value. The result is called a seasonal factor (SFt). That is:

SFt  Yt CMAt

A seasonal factor greater than 1 indicates a period in which Y is greater than the

yearly average, while the reverse is true if SF is less than 1. For our brief

swimwear sales example, we can calculate seasonal factors for the third and fourth

time periods as follows:

SF3  Y3 CMA3  20 15.25  1.31

SF4  Y4 CMA4  12 15.75  0.76

We see that the third period (third quarter of year 1) is a high-sales quarter while

the fourth period is a low-sales quarter. This makes sense, since swimwear would

be expected to sell well in July, August, and September, but not in October, No-

vember, and December.

When we look at all of the seasonal factors for an extended time period, we

generally see reasonable consistency in the values for each season. We would not

expect all first-quarter seasonal factors to be exactly the same, but they are likely

to be similar. To establish a seasonal index (SI), we average the seasonal factors

for each season. This will now be illustrated for the private housing starts data

shown initially in Table 6.1 and Figure 6.1.

The data for private housing starts are reproduced in part in Table 6.2. Only the

beginning and near the end of the series are shown, but that is sufficient to illustrate

By comparing the actual

value of the series in

any time period (Yt)

with the deseasonalized

value (CMAt), you can

get a measure of the

degree of seasonality.
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TABLE 6.2 Time-Series Decomposition of Private Housing Starts (c6t2)

1 2 3 4 5 6 7 8 9

Time 
Date Index PHS (000) PHSMA PHSCMA PHSCMAT CF SF SI

Aug-75 1 117.3 1.10

Sep-75 2 111.9 1.06

Oct-75 3 123.6 1.11

Nov-75 4 96.9 0.90

Dec-75 5 76.1 0.78

Jan-76 6 72.5 0.73

Feb-76 7 89.9 115.21 116.40 123.16 0.95 0.77 0.75

Mar-76 8 118.4 117.59 119.25 123.20 0.97 0.99 1.00

Apr-76 9 137.2 120.92 121.95 123.24 0.99 1.13 1.12

May-76 10 147.9 122.98 124.24 123.28 1.01 1.19 1.16

Jun-76 11 154.2 125.50 126.80 123.32 1.03 1.22 1.17

Jul-76 12 136.6 128.11 128.48 123.35 1.04 1.06 1.12

Aug-76 13 145.9 128.84 129.78 123.39 1.05 1.12 1.10

Sep-76 14 151.8 130.73 133.03 123.43 1.08 1.14 1.06

Oct-76 15 148.4 135.33 137.20 123.47 1.11 1.08 1.11

Nov-76 16 127.1 139.08 141.30 123.51 1.14 0.90 0.90

Dec-76 17 107.4 143.53 145.33 123.55 1.18 0.74 0.78

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
Aug-05 361 192 173.18 173.02 136.80 1.26 1.11 1.10

Sep-05 362 187.9 172.85 173.25 136.83 1.27 1.08 1.06

Oct-05 363 180.4 173.66 172.65 136.87 1.26 1.04 1.11

Nov-05 364 160.7 171.65 171.33 136.91 1.25 0.94 0.90

Dec-05 365 136 171.01 170.07 136.95 1.24 0.80 0.78

Jan-06 366 153 169.13 168.01 136.99 1.23 0.91 0.73

Feb-06 367 145.1 166.90 165.02 137.03 1.20 0.88 0.75

Mar-06 368 165.9 163.13 161.56 137.06 1.18 1.03 1.00

Apr-06 369 160.5 159.98 157.91 137.10 1.15 1.02 1.12

May-06 370 190.2 155.83 153.94 137.14 1.12 1.24 1.16

Jun-06 371 170.2 152.04 151.06 137.18 1.10 1.13 1.17

Jul-06 372 160.9 150.08 147.66 137.22 1.08 1.09 1.12

Aug-06 373 146.8 145.24 143.49 137.26 1.05 1.02 1.10

Sep-06 374 150.1 141.74 139.99 137.30 1.02 1.07 1.06

Oct-06 375 130.6 138.23 137.20 137.33 1.00 0.95 1.11

Nov-06 376 115.2 136.16 133.92 137.37 0.97 0.86 0.90

Dec-06 377 112.4 131.68 130.33 137.41 0.95 0.86 0.78

PHS  Private housing starts (in thousands)

PHSMA  Private housing starts moving average

PHSCMA  Private housing starts centered moving average

PHSCMAT  Private housing starts centered moving-average trend (trend component)

CF  Cycle factor (PHSCMA/PHSCMAT)

SF  Seasonal factor (PHS/PHSCMA)

SI  Seasonal indices (normalized mean of seasonal factors)

 

 

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭



Time-Series Decomposition 305

all of the necessary calculations. The moving average for private housing starts is

denoted as PHSMA (private housing starts moving average) and is shown in the

fourth column of Table 6.2. The elements included in two values of PHSMA are

shown by the brackets in the table and are calculated by adding the corresponding

12 months and then dividing by 12.

The centered moving average (PHSCMA) is shown in the next column. The

calculation of PHSCMA for Feb-76 is:

PHSCMA  (115.21  117.59) 2  116.40

Notice that for PHSCMA there is no value for each of the first six and last six

months. This loss of 12 months of data over 385 months is not too severe. The six

lost months that are most critical are the last six, since they are the closest to the

period to be forecast.

Figure 6.2 shows a plot of the original private housing starts (PHS) data (lighter

line) along with the deseasonalized data (darker line) represented by the centered

moving averages (PHSCMAs). Notice how much smoother the data appear once

seasonal variations and random fluctuations have been removed.

The process of deseasonalizing the data has two useful results:

1. The deseasonalized data allow us to see better the underlying pattern in the

data, as illustrated in Figure 6.2.

2. It provides us with measures of the extent of seasonality in the form of seasonal

indices.

FIGURE 6.2 Private Housing Starts (PHS) with the Centered Moving Average of

Private Housing Starts (PHSCMA) in Thousands of Units (c6f2)

The centered moving-average series, shown by the darker line, is much smoother than the

original series of private housing starts data (lighter line) because the seasonal pattern and

the irregular or random fluctuations in the data are removed by the process of calculating

the centered moving averages.
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The seasonal factors for each quarter are shown in the eighth column of Table 6.2.

Recall that the seasonal factors measure the extent to which the observed value

for each quarter is above or below the deseasonalized value (SF  1 and SF  1,

respectively). For this example:

SFt  PHSt PHSCMAt

For the first six and the last six months, seasonal factors cannot be calculated,

since there are no centered moving averages for those months. The calculations of

the seasonal factor for Feb-76 is:

SF  89.9 116.4  0.77

It makes sense that winter months would have a low SF (less than 1), since these

are often not good months in which to start building. The reverse is true in the

spring and summer.

In Table 6.3 the seasonal factors and seasonal indices for the months of April

through August are all at or above 1 and indicate that these months are generally

high for private housing starts. Since the seasonal factors for each period are

bound to have some variability, we calculate a seasonal index (SI) for each period,

which is a standardized average of all of that period’s seasonal factors.

Date SF SI Date SF SI

Aug-75 na 1.10 Jan-05 0.85 0.73

Sep-75 na 1.06 Feb-05 0.88 0.75

Oct-75 na 1.11 Mar-05 0.92 1.00

Nov-75 na 0.90 Apr-05 1.08 1.12

Dec-75 na 0.78 May-05 1.15 1.16

Jan-76 na 0.73 Jun-05 1.12 1.17

Feb-76 0.77 0.75 Jul-05 1.09 1.12

Mar-76 0.99 1.00 Aug-05 1.11 1.10

Apr-76 1.13 1.12 Sep-05 1.08 1.06

May-76 1.19 1.16 Oct-05 1.04 1.11

Jun-76 1.22 1.17 Nov-05 0.94 0.90

Jul-76 1.06 1.12 Dec-05 0.80 0.78

Aug-76 1.12 1.10 Jan-06 0.91 0.73

Sep-76 1.14 1.06 Feb-06 0.88 0.75

Oct-76 1.08 1.11 Mar-06 1.03 1.00

Nov-76 0.90 0.90 Apr-06 1.02 1.12

Dec-76 0.74 0.78 May-06 1.24 1.16

Jun-06 1.13 1.17

This table is abbreviated to save space. All of the SFs are in the data file c6t2.

TABLE 6.3
Seasonal Factors and

Seasonal Indices for

Private Housing

Starts (Selected

Years) (c6t3)
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The determination of the seasonal indices are calculated as follows. The

seasonal factors for each of the 12 months are summed and divided by the number

of observations to arrive at the average, or mean, seasonal factor for each quarter.3

The sum of the average seasonal factors should equal the number of periods (4 for

quarters, 12 for months). If it does not, the average seasonal factors should be nor-

malized by multiplying each by the ratio of the number of periods (12 for monthly

data) to the sum of the average seasonal factors.

Doing this we find that seasonal indices for private housing starts are as follows

(rounded to two decimal places):

January: 0.73 May: 1.17 September: 1.06

February: 0.76 June: 1.17 October: 1.10

March: 1.00 July: 1.12 November: 0.90

April: 1.12 August: 1.10 December: 0.78

These add to 12.00 as expected. The warmer spring and summer months are the

strongest seasons for housing starts.

As shown above, the private housing starts’ seasonal index for January is 0.73.

This means that the typical January PHS is only 73 percent of the average monthly

value for the year. Thus, if the housing starts for a year totaled 400, we would

expect 24.3 to occur in January. The 24.3 is found by dividing the yearly total

(400) by 12, and then multiplying the result by the seasonal index [(400/12)  

0.73  24.3].

Another useful application of seasonal indices is in projecting what one

month’s observation may portend for the entire year. For example, assume that

you were working for a manufacturer of major household appliances in April 2007

and heard that housing starts for January 2007 were 95. Since your sales depend

heavily on new construction, you want to project this forward for the year. Let’s

see how you would do this, taking seasonality into account. Once the seasonal

indices are known you can deseasonalize data by dividing by the appropriate

index. That is:

Deseasonalized data  Raw data Seasonal index

For January 2007 we have:

Deseasonalized data  95.0 0.73  130.1

Multiplying this deseasonalized value by 12 would give a projection for the year

of 1,561.2.

3 A medial average is sometimes used to reduce the effect of outliers. The medial average

is the average that is calculated after the highest and lowest values are removed from the

data.
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FINDING THE LONG-TERM TREND

The long-term trend is estimated from the deseasonalized data for the variable to

be forecast. Remember that the centered moving average (CMA) is the series that

remains after the seasonality and irregular components have been smoothed out

by using moving averages. Thus, to find the long-term trend, we estimate a simple

linear equation as:4

CMA  f (TIME)

 a  b (TIME)

where TIME  1 for the first period in the data set and increases by 1 each quar-

ter thereafter. The values of a and b are normally estimated by using a computer

regression program, but they can also be found quickly on most hand-held busi-

ness calculators.

Once the trend equation has been determined, it is used to generate an estimate

of the trend value of the centered moving average for the historical and forecast

periods. This new series is the centered moving-average trend (CMAT).

For our example involving private housing starts, the linear trend of the desea-

sonalized data (PHSCMA) has been found to be slightly negative. The centered

moving-average trend for this example is denoted PHSCMAT, for “private hous-

ing starts centered moving-average trend.” The equation is:

PHSCMAT  122.94  0.04(TIME)

where TIME  1 for August 1975. This line is shown in Figure 6.3, along

with the graph of private housing starts (PHS) and the deseasonalized data

(PHSCMA).

MEASURING THE CYCLICAL COMPONENT

The cyclical component of a time series is the extended wavelike movement about

the long-term trend. It is measured by a cycle factor (CF), which is the ratio of the

centered moving average (CMA) to the centered moving-average trend (CMAT).

That is:

CF  CMA CMAT

A cycle factor greater than 1 indicates that the deseasonalized value for that

period is above the long-term trend of the data. If CF is less than 1, the reverse is

true.

4 A linear trend is most often used, but a nonlinear trend may also be used. Looking at a

graph such as the one shown in Figure 6.2 is helpful in determining which form would be

most appropriate for the trend line.
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The cycle factor is the most difficult component of a time series to analyze

and to project into the forecast period. If analyzed carefully, however, it may

also be the component that has the most to offer in terms of understanding

where the industry may be headed. Looking at the length and amplitude of

previous cycles may enable us to anticipate the next turning point in the current

cycle. This is a major advantage of the time-series decomposition technique.

An individual familiar with an industry can often explain cyclic movements

around the trend line in terms of variables or events that, in retrospect, can

be seen to have had some import. By looking at those variables or events in

the present, we can sometimes get some hint of the likely future direction of the

cycle component.

Overview of Business Cycles
Business cycles are long-term wavelike fluctuations in the general level of eco-

nomic activity. They are often described by a diagram such as the one shown in

Figure 6.4. The period of time between the beginning trough (A) and the peak (B)

is called the expansion phase, while the period from peak (B) to the ending trough

(C) is termed the recession, or contraction, phase.

The vertical distance between A and B' provides a measure of the degree of

the expansion. The start of the expansion beginning at point A is determined by

FIGURE 6.3 Private Housing Starts (PHS) with Centered Moving Average 

(PHSCMA) and Centered Moving-Average Trend (PHSCMAT) in Thousands of

Units (c6f3)

The long-term trend in private housing starts is shown by the straight dotted line 

(PHSCMAT). The lighter line is the raw data (PHS), while the wavelike dark line is the

deseasonalized data (PHSCMA). The long-term trend is seen to be slightly negative. The

equation for the trend line is: PHSCMAT  122.94  .04(TIME).
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three consecutive months of increase in economic activity. Thus, the preceding

recession is only officially over three months after the economy has turned around.

Similarly, the severity of a recession is measured by the vertical distance between

B" and C, and the official beginning of the recession is dated as the first of three

consecutive months of decline.

If business cycles were true cycles, they would have a constant amplitude. That

is, the vertical distance from trough to peak and peak to trough would always be

the same. In addition, a true cycle would also have a constant periodicity. That

would mean that the length of time between successive peaks (or troughs) would

always be the same. However, with economic and business activity this degree of

regularity is unlikely. As you will see when we look at the cyclical component for

private housing starts, the vertical distances from trough to peak (or peak to

trough) have some variability, as does the distance between successive peaks and

successive troughs.

Business Cycle Indicators
There are a number of possible business cycle indicators, but three are particularly

noteworthy:

1. The index of leading economic indicators

2. The index of coincident economic indicators

3. The index of lagging economic indicators

The individual series that make up each index are shown in Table 6.4.

It is possible that one of these indices, or one of the series that make up an

index, may be useful in predicting the cycle factor in a time-series decomposition.

This could be done in a regression analysis with the cycle factor (CF) as the

FIGURE 6.4
The General Business

Cycle

A business cycle goes
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dependent variable. These indices, or their components, may also be quite useful

as independent variables in other regression models, such as those discussed in

Chapters 4 and 5.

Figure 6.5 shows what are considered the official business cycles for the U.S.

economy in recent years. The shaded vertical bars identify the officially desig-

nated periods of recession.

The Cycle Factor for Private Housing Starts
Let us return to our example involving private housing starts to examine how to

calculate the cycle factor and how it might be projected into the forecast period. In

Table 6.2 the cycle factors (CF) are shown in column seven. As indicated previously,

TABLE 6.4
U.S. Business Cycle

Indicators

Components of the Composite Indices*

Leading Index

Average weekly hours, manufacturing

Average weekly initial claims for unemployment insurance

Manufacturers’ new orders, consumer goods and materials

Vendor performance, slower deliveries diffusion index

Manufacturers’ new orders, nondefense capital goods

Building permits, new private housing units

Stock prices, 500 common stocks

Money supply, M2

Interest rate spread, 10-year Treasury bonds less federal funds

Index of consumer expectations

Coincident Index

Employees on nonagricultural payrolls

Personal income less transfer payments

Industrial production index

Manufacturing and trade sales

Lagging Index

Average duration of unemployment

Inventories-to-sales ratio, manufacturing and trade

Labor cost per unit of output, manufacturing

Average prime rate

Commercial and industrial loans

Consumer installment credit–to–personal income ratio

Consumer price index for services

*A short description of each of the indicators is found in the appendix to this chapter.

Source: The Conference Board

(http://www.conference-

board.org/economics/bci/

component.cfm). Data in this

table are from The Conference

Board, which produces the U.S.

Business Cycle Indicators.
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FIGURE 6.5
Official Business

Cycles in the United

States

For each graph the top

line (right hand axis)

represents the corre-

sponding index, while

the bottom line (left

hand axis) is the six-

month growth rate.

Source: Business Cycle 

Indicators 10, no. 1

(January 2005). The Conference 

Board (accessed from

http://www.conference-

board.org/economics).
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each cycle factor is the ratio of the deseasonalized data (CMA) to the trend value

(CMAT). For the private housing starts data, we have:

CF  PHSCMA PHSCMAT

The actual calculation for Jun-06 is:

CF  151.06 137.18   1.10

You can see in Figure 6.3 that in Jun-06 the centered moving average was above

the trend line.

The cycle factor is plotted in Figure 6.6. You can see that the cycle factor (CF)

moves above and below the line at 1.00 in Figure 6.6 exactly as the centered mov-

ing average moves above and below the trend line in Figure 6.3. By isolating the

cycle factor in Figure 6.6, we can better analyze its movements over time.
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FIGURE 6.6
Cycle Factor (CF) 

for Private Housing

Starts (c6f6)

The cycle factor is the

ratio of the centered

moving average to the

long-term trend in the

data. As this plot

shows, the cycle factor

moves slowly around

the base line (1.00)

with little regularity.

Dates and values of

cycle factors at peaks

and troughs are shown.
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Cycle factors

 .74
 .55

 .58  .61

Jun-78   1.36

Feb-82   0.62 Feb-91   0.65

Mar-86   1.20
Oct-05   1.26

You see that the cyclical component for private housing starts does not have a

constant amplitude or periodicity. The dates for peaks and troughs are shown in

Figure 6.6, along with the values of the cycle factor at those points. Identification

of these dates and values is often helpful in considering when the cycle factor may

next turn around (i.e., when the next trough or peak may occur). For example, for

the PHS cycle factor the average of the three peaks shown in Figure 6.6 was 1.27.

The most recent peak in Oct-05 was at 1.26. We also see that the peak-to-trough

distance between Jun-78 and Feb-82 was  .74 and that the distance from peak to

trough between Mar-86 and Feb-91 was  .55. You can see the trough-to-peak

changes in Figure 6.6 are 0.58 and 0.61. The latter covered an unusually long

period from Feb-91 through Oct-05.5

The determination of where the cycle factor will be in the forecast horizon is a

difficult task. One approach would be to examine the past pattern visually, focus-

ing on prior peaks and troughs, with particular attention to their amplitude and

periodicity, and then making a subjective projection into the forecast horizon.

Another approach would be to use another forecasting method to forecast values

because CF. Holt’s exponential smoothing may sometimes be a good candidate for

this task, but we must remember that such a model will not pick up a turning point

until after it has occurred. Thus, the forecaster would never predict that the current

rise or fall in the cycle would end. If we have recently observed a turning point and

have several quarters of data since the turning point, and if we believe another

turning point is unlikely during the forecast horizon, then Holt’s exponential

smoothing may be useful. In this example ForecastX produced a forecast of the

cycle factor for private housing starts with the following results:

5 As of the date of this edition of the text, a new trough had not yet been identified.
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FIGURE 6.7
Cycle Factor Forecast

Here we see that the

ForecastX forecast for

the PHS cycle goes up

to 1.21, then flattens

out through the end of

the forecast horizon

(December 2007).
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Cycle factors CF forecast by ForecastX Procast One

Month CF Forecast

Jul-06 1.21

Aug-06 1.21

Sep-06 1.20

Oct-06 1.20

Nov-06 1.19

Dec-06 1.19

Jan-07 1.18

Feb-07 1.18

Mar-07 1.18

Apr-07 1.18

May-07 1.18

Jun-07 1.18

Jul-07 1.19

Aug-07 1.19

Sep-07 1.19

Oct-07 1.18

Nov-07 1.18

Dec-07 1.18

We see that this forecast projects a flattening of the cycle factor. Note that we have

to forecast the cycle factor for the last six months of 2006, even though we had

original PHS data for all of 2006. This is because we lost the last six observations

in developing the centered moving averages. A graph of the actual and forecast

cycle factors is shown in Figure 6.7.
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Perhaps most frequently the cycle factor forecast is made on a largely judg-

mental basis by looking carefully at the historical values, especially historical

turning points and the rates of descent or rise in the historical series. You might

look at the peak-to-peak, trough-to-trough, peak-to-trough, and trough-to-peak

distances by dating each turning point, such as we show in Figure 6.6. Then, you

could calculate the average distance between troughs (or peaks) to get a feeling for

when another such point is likely. You can also analyze the rates of increase and/or

decrease in the cycle factor as a basis on which to judge the expected slope of the

forecast of the cycle factor.

It is important to recognize that there is no way to know exactly where the cycle

factor will be in the forecast horizon, and there is no a priori way to determine the

best technique for projecting the cycle factor. A thorough review of the past be-

havior of the cycle factor, along with alternative forecasts, should be evaluated for

consistency and congruity before selecting values of the cycle factor for the fore-

cast horizon.

THE TIME-SERIES DECOMPOSITION FORECAST

You have seen that a time series of data can be decomposed into the product of

four components:

Y  T  S  C  I

where Y is the series to be forecast. The four components are:

T  The long-term trend based on the deseasonalized data. It is often called

the centered moving-average trend (CMAT), since the deseasonalized

data are centered moving averages (CMA) of the original Y values.

S  Seasonal indices (SI). These are normalized averages of seasonal factors

that are determined as the ratio of each period’s actual value (Y) to the

deseasonalized value (CMA) for that period.

C  The cycle component. The cycle factor (CF) is the ratio of CMA to

CMAT and represents the gradual wavelike movements in the series

around the trend line.

I  The irregular component. This is assumed equal to 1 unless the fore-

caster has reason to believe a shock may take place, in which case I

could be different from 1 for all or part of the forecast period.

Previous sections of this chapter have illustrated how these components can be

isolated and measured.

To prepare a forecast based on the time-series decomposition model, we sim-

ply reassemble the components. In general terms, the forecast for Y (FY) is:

FY  (CMAT)(SI)(CF)(I )

It is important to recog-

nize that there is no way

to know exactly where

the cycle factor will be

in the forecast horizon,

and there is no a priori

way to determine the

best technique for pro-

jecting the cycle factor.

A thorough review of the

past behavior of the

cycle factor, along with

alternative forecasts,

should be evaluated for

consistency and con-

gruity before selecting

values of the cycle factor

for the forecast horizon.
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For our private housing starts example we will denote the forecast value based on

the model as PHSFTSD. Thus,

PHSFTSD  (PHSCMAT)(SI)(CF)(I )

where PHSCMAT is the private housing starts centered moving-average trend.

The irregular factor (I) is assumed equal to 1, since we have no reason to expect it

to be greater or less than 1 because of its random nature. The actual and forecast

values for private housing starts are shown for 1994 through 2007 in Figure 6.8.

The actual values (PHS) are shown by the lighter line; forecast values based on the

time-series decomposition model are shown by the darker line. The forecast cal-

culations are shown in Table 6.5 for the first and last parts of the series. You will

note that this method takes the trend (PHSCMAT) and makes two adjustments to

it: the first adjusts it for seasonality (with SI), and the second adjusts it for cycle

variations (with CF).

Because time-series decomposition models do not involve a lot of mathematics

or statistics, they are relatively easy to explain to the end user. This is a major

advantage, because if the end user has an appreciation of how the forecast was

developed, he or she may have more confidence in its use for decision making.

Forecasting Shoe Store Sales by Using 
Time-Series Decomposition
Let us now apply the classic time-series decomposition method to the problem of

forecasting shoe store sales. Figure 6.9 shows the data for 1992 through 2003 that

will be used to make a forecast for 2004. The original sales series (SSS) is the

lighter solid line that fluctuates widely. The deseasonalized series (the centered

moving averages, or CMAs) is shown by the heavy dashed line, and the long-term

trend (CMAT) is shown by the thinner straight line.

FIGURE 6.8
Private Housing

Starts (PHS) and a

Time-Series

Decomposition

Forecast (PHSFTSD)

for 1994 through 2007

(c6f8)

The actual values for

private housing starts

are shown by the

lighter line, and the

time-series decomposi-

tion forecast values are

shown by the darker

line.
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TABLE 6.5
PHS Time-Series

Decomposition

Forecast (c6t5)

Forecasted
Date PHS (000) Data PHSCMA PHSCMAT SI CF

Aug-1975 117.30 1.10

Sep-1975 111.90 1.06

Oct-1975 123.60 1.11

Nov-1975 96.90 0.90

Dec-1975 76.10 0.78

Jan-1976 72.50 0.73

Feb-1976 89.90 87.71 116.40 123.21 0.75 0.94

Mar-1976 118.40 119.09 119.25 123.25 1.00 0.97

Apr-1976 137.20 136.00 121.95 123.28 1.12 0.99

May-1976 147.90 144.70 124.24 123.32 1.16 1.01

Jun-1976 154.20 148.04 126.80 123.36 1.17 1.03

Jul-1976 136.60 143.89 128.48 123.40 1.12 1.04

Aug-1976 145.90 143.31 129.78 123.44 1.10 1.05

Sep-1976 151.80 141.27 133.03 123.47 1.06 1.08

Oct-1976 148.40 151.68 137.20 123.51 1.11 1.11

Nov-1976 127.10 127.80 141.30 123.55 0.90 1.14

Dec-1976 107.40 112.98 145.33 123.59 0.78 1.18

. . . . . . .

. . . . . . .

. . . . . . .

Jan-2006 153.00 122.13 168.01 136.90 0.73 1.23

Feb-2006 145.10 124.34 165.02 136.93 0.75 1.21

Mar-2006 165.90 161.33 161.56 136.97 1.00 1.18

Apr-2006 160.50 176.11 157.91 137.01 1.12 1.15

May-2006 190.20 179.29 153.94 137.05 1.16 1.12

Jun-2006 170.20 176.36 151.06 137.09 1.17 1.10

Jul-2006 160.90 186.13 137.13 1.12 1.21

Aug-2006 146.80 182.91 137.16 1.10 1.21

Sep-2006 150.10 175.24 137.20 1.06 1.20

Oct-2006 130.60 181.67 137.24 1.11 1.20

Nov-2006 115.20 148.01 137.28 0.90 1.19

Dec-2006 112.40 126.71 137.32 0.78 1.19

Jan-2007 95 118.05 137.35 0.73 1.18

Feb-2007 103.1 122.01 137.39 0.75 1.18

Mar-2007 123.8 161.45 137.43 1.00 1.18

Apr-2007 135.6 180.32 137.47 1.12 1.18

May-2007 136.5 188.68 137.51 1.16 1.18

Jun-2007 137.8 189.92 137.54 1.17 1.18

Jul-2007 127 183.28 137.58 1.12 1.19

Aug-2007 119.2 180.47 137.62 1.10 1.19

Sep-2007 na 173.36 137.66 1.06 1.19

Oct-2007 na 180.31 137.70 1.11 1.18

(continued on next page)
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FIGURE 6.9
Time-Series

Decomposition

of Shoe Store 

Sales Data ($000)
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Note how the original series moves above and below the deseasonalized series

and the trend in a fairly regular seasonal pattern. The seasonal indices, based on

the normalized mean of the seasonal factors for shoe store sales, are:

January: 0.737 May: 1.043 September: 0.963

February: 0.800 June: 0.989 October: 0.935

March: 1.003 July: 0.982 November: 0.985

April: 1.031 August: 1.225 December: 1.308

In the spring months people may be buying shoes for summer activities, in August

there are back-to-school sales, and in December sales increase related to the holi-

day season. These are indicated by the seasonal indices that are above 1.

The final time-series decomposition forecast (using ForecastX™) is shown by

the thin solid line in Figure 6.10. The actual shoe store sales (including actual sales

Forecasted
Date PHS (000) Data PHSCMA PHSCMAT SI CF

TABLE 6.5
(continued)

Feb76 to Dec06

RMSE  9.9

RMSE as % Mean  7.6

Nov-2007 na 147.43 137.74 0.90 1.18

Dec-2007 na 126.67 137.77 0.78 1.18

MSE Jan 07 to Aug 07  2,083.18

RMSE Jan 07 to Aug 07  45.64

RMSE as % of Mean  37.3

Notes:

1. The cycle factors starting in July 2006 are estimated values rather than actual ratios of PHSCMA to PHSCMAT.

2. Forecast values for private housing starts (PHSFTSD) are determined as follows: PHSFTSD  (PHSCMAT)(SI)(CF)

3. The results that you get for PHS Forecast may vary slightly from those shown due to rounding.
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for 2004) are shown by the dashed line in Figure 6.10. For the period from July

1992 through December 2003 the RMSE for this monthly forecast was 56.3, which

is about 3.2 percent of the mean actual sales for that period. For the 12 months of

2004 (which were not used in developing the forecast) the RMSE was 95.9 or about

5 percent of actual sales for that year based on monthly forecasts. For all of 2004

actual sales totaled 23,187, while the total forecast for the year was 22,849. Thus,

for the entire year the forecast would have been low by just under 1.5 percent.

Forecasting Total Houses Sold by Using 
Time-Series Decomposition
Now we will apply the classic time-series decomposition method, as described in this

chapter, to the problem of forecasting total houses sold (THS). Figure 6.11 shows the

original series (THS) as the lighter line from January 1978 through December 2006.

The centered moving averages (THSCMAs) are shown by the darker line, and the

long-term trend values (THSCMAT) are shown by the dashed line.

Note how the original series moves above and below the deseasonalized series

in a regular seasonal pattern. The seasonal indices, based on the normalized mean

of the seasonal factors for total houses sold, are:

January: 0.89 May: 1.11 September: 0.96

February: 1.00 June: 1.08 October: 0.95

March: 1.18 July: 1.03 November: 0.84

April: 1.12 August: 1.05 December: 0.79

These seasonal indices provide evidence of generally slow sales during the fall

and winter months. The positive slope for the trend (THSCMAT), as shown in

Figure 6.11, indicates long-term growth in total houses sold.

The actual and forecast values for January 2000 through July 2007 are shown in

Figure 6.12.The RMSE for the period 1978 (starting with July) through 2006 (June)

FIGURE 6.10
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FIGURE 6.12 Time Series Decomposition Forecast for Total Houses Sold (THS)

in Thousands

This graph shows the most recent years of the time-series decomposition forecast of total

houses sold. Actual sales for 1978 through 2006 were used to develop the forecast through

July 2007. These results were obtained using the decomposition method in ForecastX. We

see that this model did not foresee the continuing downturn in the housing market.
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is 4.43 (000), which is about 7.0 percent of the mean for that period. For the first

seven months of 2007 which were not used in developing the forecast the RMSE is

27.3 (000), which is about 36.2 percent of the mean for that 7-month period.

FIGURE 6.11
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Integrative Case

The Gap

PART 6: FORECASTING THE GAP SALES DATA WITH
TIME-SERIES DECOMPOSITION

The sales of The Gap stores for the 76 quarters covering 1985Q1 (Mar-85) through 2005Q4 (Dec-05) are shown below.

(c6Gap)
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Gap Sales ($000) 1985–2005

Mike Flock, Distribution Engineer,
Vermont Gas Systems, Inc.

Vermont Gas Systems is a natural gas utility with

approximately 26,000 residential, business, and

industrial customers in 13 towns and cities in

northwestern Vermont. Vermont Gas Systems’

Gas Control Department forecasts the gas de-

mand, and arranges the gas supply and trans-

portation from suppliers in western Canada and

storage facilities along the Trans-Canada Pipeline

that deliver the gas to our pipeline. The quantities

of gas must be specified to the suppliers at least

24 hours in advance. The Gas Control Department

must request enough natural gas to meet the

needs of the customers but must not over-request

gas that will needlessly and expensively tax Trans-

Canada Pipelines’ facilities. Because Vermont Gas

Systems has the storage capacity for only one

hour’s use of gas as a buffer between supply and

demand, an accurate forecast of daily natural gas

demand is critical.

Source: Journal of Business Forecasting 13, no. 1
(Spring 1994), p. 23.

Forecasting Winter Daily Natural

Gas Demand at Vermont Gas Systems 1
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Case
Questions

1. Describe what you see in the 1985–2005 The Gap sales in the terms used in time-series

decomposition: trend, seasonality, and cycle.

2. Using The Gap sales data for 1985Q1 through 2005Q4, calculate the four-period cen-

tered moving average of The Gap sales (call it GAPCMA). Then, using a time index that

goes from 1 for 1985Q1 through 84 for 2005Q4, estimate the trend of GAPCMA (call

this trend GAPCMAT and extend it through the entire 1985Q1–2007Q1 period). Plot

The Gap sales, GAPCMA, and GAPCMAT on the same graph for the period from

1985Q1 through 2005Q4.

3. Calculate the seasonal indices (SI) based on the 1985–2005 data. Are they consistent

with your expectations? Explain.

4. Calculate the cycle factors (CF) for this situation and plot CF along with a horizontal

line at one. Your calculated cycle factors end at 2005Q2. Why do they not extend far-

ther? Make a forecast of CF for 2005Q3 through 2007Q1, explaining why you forecast

as you do.

5. Prepare a forecast of The Gap sales for the five quarters of 2006Q1–2007Q1 using the

trend (GAPCMAT), cycle factors (CF), and the seasonal indices (SI) determined above.

Plot the actual and forecast sales.

6. Use the historical period (1985Q1–2005Q4) and holdout period (2006Q1–2007Q1)

RMSEs to evaluate your results.

Solutions to
Case Questions

1. The Gap sales exhibit an increasing positive trend over the time frame being evaluated

and a very clear seasonal pattern that repeats itself year to year. It appears that the sea-

sonality may be more pronounced in the more recent years than it was in the early years.

From this graph it is not clear that there are the long-term swings that are normally as-

sociated with a cyclical pattern. However, because of the long-term nature of cycles, it

may be that these data are insufficient to make an identification of a cyclical pattern.
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2. Actual The Gap sales are shown by the dark solid line in the graph on the previous

page. The centered moving average is the lighter solid line, and the centered moving-

average trend is the dashed line. The early part of the trend is stopped where it would

become negative.

3. The normalized seasonal indices (SI) are shown below.

Date Seasonal Indices

Mar (Q1) 0.86

Jun (Q2) 0.87

Sep (Q3) 1.03

Dec (Q4) 1.24

The seasonal indices for The Gap sales in quarters three and four indicate strong sales

during the fall back-to-school buying season, followed by even stronger sales in the

fourth quarter due to holiday sales.

4. The cycle factors are calculated as: CF  GAPCMA/GAPCMAT. The cycle factors are

shown only starting in 1989 because earlier values were overly influenced by the fact

that the trend became artificially small and then negative in 1985 through 1988. The

dashed line in the graph of the cycle factors represents the actual values (CF), and the

solid line shows the forecast values (CFF).
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5. The forecast of The Gap sales based on the time-series decomposition method is

calculated as: GAPFTSD  GAPCMAT  SI  CF. A time-series plot of these results

follows.
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6. The actual (GAPSALES) and time-series decomposition forecast (GAPFTSD) of The

Gap sales are shown below for the five quarters that were forecast (in thousands).

GAPSALES GAPFTSD

Mar-06 3,441,000 3,679,979

Jun-06 3,716,000 3,767,610

Sep-06 3,856,000 4,512,937

Dec-06 4,930,000 5,520,357

Mar-07–06 3,558,000 3,888,599

The root-mean-squared errors for the historical period and for the holdout forecast

period are:

Historic root-mean-squared error  103,682

Forecast root-mean-squared error  435,697

(This is about 11.2 percent of the monthly mean for Mar-06 through Mar-07)

It is not uncommon for time-series decomposition models to yield historical RMSEs

that are relatively small. This is because these models simply decompose the data and

then reassemble the parts. As long as the seasonal factors are not dramatically different,

the historical fit of the model will be excellent. However, due to the difficulty of pro-

jecting the cycle factor into the forecast horizon, forecast RMSEs are often considerably

higher than those in the historical period. This is a good reason to test models in a hold-

out forecast horizon so that you get a realistic measure of forecast accuracy.
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USING FORECASTX™ TO MAKE TIME-SERIES
DECOMPOSITION FORECASTS

As usual, begin by opening your data file in Excel and select any cell in the data you want

to forecast. Then start ForecastX™. In the Data Capture dialog box identify the data you

want to use if the correct cells are not automatically selected (they almost always will be).

Then click the Forecast Method tab.

In the Forecast Method dialog box, click the down arrow in the ForecastingTechnique

box and select Decomposition. Click Multiplicative and select Trend (Linear) Regression

as the Forecast Method for Decomposited Data. Then click the Statistics tab.
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In the following dialog box select the statistics that you desire. Remember that there are

more choices if you click the More button at the bottom.

After selecting the statistics you want to see, click the Reports tab.

In the Reports box select those you want. Typical selections might be those shown

here. In the Audit Trail tab (the active tab shown here) click Fitted Values Table, unless

you do not want that often long table. You will get the forecast and actual values in the stan-

dard report.

Then click the Finish! button.
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Exercises 1. Using your own words, write a description of each of the four components of the clas-

sic time-series decomposition technique. Avoid using mathematical relationships and

technical jargon as much as possible so that your explanations can be understood by

almost anyone.

2. Define each of the components of the classic time-series decomposition method.

Explain how the trend, seasonal, and cyclical components are determined.

3. Suppose that sales of a household appliance are reported to be 13,000 units during the

first quarter of the year. The seasonal index for the first quarter is 1.24. Use this infor-

mation to make a forecast of sales for the entire year. Actual sales for the year were

42,000 units. Calculate your percentage error for the year. What percentage error

would result if you forecast sales for the year by simply multiplying the 13,000 units

for the first quarter by 4?
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4. In a time-series decomposition of sales (in millions of units), the following trend has

been estimated:

CMAT  4.7  0.37(T )

The seasonal indices have been found to be:

Quarter Seasonal Index

1 1.24

2 1.01

3 0.76

4 0.99

For the coming year the time index and cycle factors are:

Quarter T CF

1 21 1.01

2 22 1.04

3 23 1.06

4 24 1.04

a. From this information prepare a forecast for each quarter of the coming year.

b. Actual sales for the year you forecast in part (a) were 17.2, 13.2, 10.8, and 14.2 for

quarters 1, 2, 3, and 4, respectively. Use these actual sales figures along with your

forecasts to calculate the root-mean-squared error for the forecast period.

5. A tanning parlor located in a major shopping center near a large New England city has

the following history of customers over the last four years (data are in hundreds of

customers):

(c6p5)
Mid-Month of Quarter

Year Feb May Aug Nov
Yearly
Totals

2004 3.5 2.9 2.0 3.2 11.6

2005 4.1 3.4 2.9 3.6 14.0

2006 5.2 4.5 3.1 4.5 17.3

2007 6.1 5.0 4.4 6.0 21.5

a. Construct a table in which you show the actual data (given in the table), the centered

moving average, the centered moving-average trend, the seasonal factors, and the

cycle factors for every quarter for which they can be calculated in years 1 through 4.

b. Determine the seasonal index for each quarter.

c. Do the best you can to project the cycle factor through 2008.

d. Make a forecast for each quarter of 2008.

e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7, and

6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the

RMSE for 2008.
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f. Prepare a time-series plot of the actual data, the centered moving averages, the long-

term trend, and the values predicted by your model for 2004 through 2008 (where

data are available).

6. Barbara Lynch, the product manager for a line of skiwear produced by HeathCo

Industries, has been working on developing sales forecasts for the skiwear that is

sold under the Northern Slopes and Jacque Monri brands. She has had various

regression-based forecasting models developed (see Exercises 7 and 8 in Chapter 4

and Exercises 6 and 7 in Chapter 5). Quarterly sales for 1998 through 2007 are as

follows:

(c6p6)
Quarterly Sales ($000) at End-Month of Quarter

Year March June September December

1998 72,962 81,921 97,729 142,161

1999 145,592 117,129 114,159 151,402

2000 153,907 100,144 123,242 128,497

2001 176,076 180,440 162,665 220,818

2002 202,415 211,780 163,710 200,135

2003 174,200 182,556 198,990 243,700

2004 253,142 218,755 225,422 253,653

2005 257,156 202,568 224,482 229,879

2006 289,321 266,095 262,938 322,052

2007 313,769 315,011 264,939 301,479

a. Prepare a time-series plot of the data, and on the basis of what you see in the plot,

write a brief paragraph in which you explain what patterns you think are present in

the sales series.

b. Smooth out seasonal influences and irregular movements by calculating the cen-

tered moving averages. Add the centered moving averages to the original data you

plotted in part (a). Has the process of calculating centered moving averages been

effective in smoothing out the seasonal and irregular fluctuations in the data? Ex-

plain.

c. Determine the degree of seasonality by calculating seasonal indices for each quar-

ter of the year. Do this by finding the normalized average of the seasonal factors for

each quarter, where the seasonal factors are actual sales divided by the centered

moving average for each period. If you have done Exercise 7 in Chapter 5, explain

how these seasonal indices compare with the seasonality identified by the regres-

sion model.

d. Determine the long-term trend in the sales data by regressing the centered moving

average on time, where T 1 for Mar-98. That is, estimate the values for b0 and b1

for the following model:

CMAT  b0  b1(T )

Plot this equation, called the centered moving-average trend (CMAT), along with

the raw data and the CMA on the same plot developed in part (a).

e. Find the cycle factor (CF) for each quarter by dividing the CMA by the CMAT. Plot

the cycle factors on a new graph and project (CF) forward through Dec-08.



f. Develop a forecast for Ms. Lynch for the four quarters of 2008 by calculating the

product of the trend, the seasonal index, and the cycle factor. Given that actual sales

(in thousands of dollars) were 334,271, 328,982, 317,921, and 350,118 for quarters

1 through 4, respectively, calculate the RMSE for this model based only on the

2008 forecast period.

g. If you have done Exercises 7 and 8 in Chapter 4 and Exercises 6 and 7 in Chapter

5, write a comparison of your findings.

7. Mr. Carl Lipke is the marketing VP for a propane gas distributor. He would like to have

a forecast of sales on a quarterly basis, and he has asked you to prepare a time-series

decomposition model. The data for 1996 through 2007 follow:

(c6p7) Propane Gas Sales in Millions of Pounds (total at

end-month of each quarter)

Year March June September December

1996 6.44 4.85 4.67 5.77

1997 6.22 4.25 4.14 5.34

1998 6.07 4.36 4.07 5.84

1999 6.06 4.24 4.20 5.43

2000 6.56 4.25 3.92 5.26

2001 6.65 4.42 4.09 5.51

2002 6.61 4.25 3.98 5.55

2003 6.24 4.34 4.00 5.36

2004 6.40 3.84 3.53 4.74

2005 5.37 3.57 3.32 5.09

2006 6.03 3.98 3.57 4.92

2007 6.16 3.79 3.39 4.51

a. To help Mr. Lipke see how propane gas sales have varied over the 12-year period,

prepare a time-series plot of the raw data and the deseasonalized data (i.e., the cen-

tered moving averages).

b. Prepare seasonal indices for quarters 1 through 4 based on the normalized averages

of the seasonal factors (the seasonal factors equal actual values divided by the

corresponding centered moving averages). Write a short paragraph in which you

explain to Carl Lipke exactly what these indices mean.

c. Estimate the long-term trend for the sales series by using a bivariate linear regres-

sion of the centered moving average as a function of time, where TIME  1 for

1996Q1.

d. Develop cycle factors for the sales data, and plot them on a graph that extends from

1996Q1 through 2007Q4. Analyze the plot of the cycle factor and project it through

the four quarters of 2008. Write a brief explanation of why you forecast the cycle

factor as you did.

e. Plot the values of sales that would be estimated by this model along with the origi-

nal data. Does the model appear to work well for this data series?

f. Prepare a forecast for 2008Q1 through 2008Q4 from your time-series decompo-

sition model. Write your forecast values in the accompanying table. Given the

actual values shown in the table, calculate the root-mean-squared error (RMSE)

for 2008.
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Period Forecast Actual Squared Error

2008Q1 5.39

2008Q2 3.56

2008Q3 3.03

2008Q4 4.03
___________

Sum of squared errors  

Mean-squared error  

Root-mean-squared error  

8. Kim Brite and Larry Short have developed a series of exclusive mobile-home parks in

which each unit occupies a site at least 100  150 feet. Each site is well landscaped to

provide privacy and a pleasant living environment. Kim and Larry are considering

opening more such facilities, but to help manage their cash flow they need better fore-

casts of mobile-home shipments (MHS), since MHS appears to influence their vacancy

rates and the rate at which they can fill newly opened parks. They have 16 years of data

on mobile-home shipments, beginning with 1988Q1 and ending with 2003Q4, as

shown:

(c6p8) Mobile Home Shipments (MHS) (000s)

Year Q1 Q2 Q3 Q4

1988 56.6 49.1 58.5 57.5

1989 54.9 70.1 65.8 50.2

1990 53.3 67.9 63.1 55.3

1991 63.3 81.5 81.7 69.2

1992 67.8 82.7 79.0 66.2

1993 62.3 79.3 76.5 65.5

1994 58.1 66.8 63.4 56.1

1995 51.9 62.8 64.7 53.5

1996 47.0 60.5 59.2 51.6

1997 48.1 55.1 50.3 44.5

1998 43.3 51.7 50.5 42.6

1999 35.4 47.4 47.2 40.9

2000 43.0 52.8 57.0 57.6

2001 56.4 64.3 67.1 66.4

2002 69.1 78.7 78.7 77.5

2003 79.2 86.8 87.6 86.4

Assuming that Kim Brite and Larry Short have hired you as a forecasting consultant:

a. Provide a time-series plot of the actual MHS data along with the deseasonalized

data. Write a brief memo in which you report the nature and extent of the seasonal-

ity in the data. Include seasonal indices in your report.

b. Develop a long-term linear trend for the data, based on the centered moving aver-

ages. Let time equal 1 for 1988Q1 in your trend equation. On the basis of this trend,

does the future look promising for Brite and Short?

Time-Series Decomposition 331



332 Chapter Six

c. One of the things Ms. Brite and Mr. Short are concerned about is the degree to

which MHS is subject to cyclical fluctuations. Calculate cycle factors and plot them

in a time-series graph, including projections of the cycle factor through 2004. In

evaluating the cycle factor, see whether interest rates appear to have any effect on

the cyclical pattern. The rate for 1988Q1 through 2003Q4 is provided in the fol-

lowing table, should you wish to use this measure of interest rates.

(c6p8) Interest Rate

Year Q1 Q2 Q3 Q4

1988 16.4 16.3 11.6 16.7

1989 19.2 18.9 20.3 17.0

1990 16.3 16.5 14.7 12.0

1991 10.9 10.5 10.8 11.0

1992 11.1 12.3 13.0 11.8

1993 10.5 10.2 9.5 9.5

1994 9.4 8.6 7.9 7.5

1995 7.5 8.0 8.4 8.9

1996 8.6 8.8 9.7 10.2

1997 11.0 11.4 10.7 10.5

1998 10.0 10.0 10.0 10.0

1999 9.2 8.7 8.4 7.6

2000 6.5 6.5 6.0 6.0

2001 6.0 6.0 6.0 6.0

2002 6.0 6.9 7.5 8.1

2003 8.8 9.0 8.8 8.7

d. Demonstrate for Ms. Brite and Mr. Short how well your time-series decomposition

model follows the historical pattern in the data by plotting the actual values of MHS

and those estimated by the model in a single time-series plot.

e. Prepare a forecast for 2004 and calculate the root-mean-squared error (RMSE),

given the actual values of MHS for 2004 shown:

MHS

Period Forecast Actual Squared Error

2004Q1 35.4

2004Q2 47.3

2004Q3 47.2

2004Q4 40.9
___________

Sum of squared errors  

Mean-squared error  

Root-mean-squared error  

9. The Bechtal Tire Company (BTC) is a supplier of automotive tires for U.S. car com-

panies. BTC has hired you to analyze its sales. Data from 1976Q1 through 2007Q4 are

given in the following table (in thousands of units):
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(c6p9) BTC Sales of Tires

Year Q1 Q2 Q3 Q4

1986 2,029 2,347 1,926 2,162

1987 1,783 2,190 1,656 1,491

1988 1,974 2,276 1,987 2,425

1989 2,064 2,517 2,147 2,524

1990 2,451 2,718 2,229 2,190

1991 1,752 2,138 1,927 1,546

1992 1,506 1,709 1,734 2,002

1993 2,025 2,376 1,970 2,122

1994 2,128 2,538 2,081 2,223

1995 2,027 2,727 2,140 2,270

1996 2,155 2,231 1,971 1,875

1997 1,850 1,551 1,515 1,666

1998 1,733 1,576 1,618 1,282

1999 1,401 1,535 1,327 1,494

2000 1,456 1,876 1,646 1,813

2001 1,994 2,251 1,855 1,852

2002 2,042 2,273 2,218 1,672

2003 1,898 2,242 2,247 1,827

2004 1,669 1,973 1,878 1,561

2005 1,914 2,076 1,787 1,763

2006 1,707 2,019 1,898 1,454

2007 1,706 1,878 1,752 1,560

a. Write a report to Bechtal Tire Company in which you explain what a time-series de-

composition analysis shows about its tire sales. Include in your discussion seasonal,

cyclical, and trend components. Show the raw data, the deseasonalized data, and

the long-term trend on one time-series plot. Also provide a plot of the cycle factor

with a projection through 2008.

b. In the last section of your report, show a time-series graph with the actual data and

the values that the time-series decomposition model would predict for each quarter

from 1986Q3 through 2007Q4, along with a forecast for 2008. If actual sales for

2008 were Q1  1,445.1, Q2  1,683.8, Q3  1,586.6, and Q4  1,421.3, what

RMSE would result from your 2008 forecast?

10. A national supplier of jet fuel is interested in forecasting its sales. These sales data are

shown for the period from 1992Q1 to 2007Q4 (data in billions of gallons):

(c6p10) Jet Fuel Sales (Billions of Gallons)

Year Q1 Q2 Q3 Q4

1992 23.86 23.97 29.23 24.32

1993 23.89 26.84 29.36 26.30

1994 27.09 29.42 32.43 29.17

1995 28.86 32.10 34.82 30.48

1996 30.87 33.75 35.11 30.00

(continued on next page)
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Year Q1 Q2 Q3 Q4

1997 29.95 32.63 36.78 32.34

1998 33.63 36.97 39.71 34.96

1999 35.78 38.59 42.96 39.27

2000 40.77 45.31 51.45 45.13

2001 48.13 50.35 56.73 48.83

2002 49.02 50.73 53.74 46.38

2003 46.32 51.65 52.73 47.45

2004 49.01 53.99 55.63 50.04

2005 54.77 56.89 57.82 53.30

2006 54.69 60.88 63.59 59.46

2007 61.59 68.75 71.33 64.88

a. Convert these data to a time-series plot. What, if any, seasonal pattern do you see in

the plot? Explain.

b. Deseasonalize the data by calculating the centered moving average, and plot the de-

seasonalized data on the same graph used in part (a). Calculate the seasonal index

for each quarter, and write a short explanation of why the results make sense.

c. Develop a trend for the data based on the centered moving averages, and plot that

trend line on the graph developed in part (a). Compare the deseasonalized data

(CMA) and the trend line. Does there appear to be a cyclical pattern to the data? Ex-

plain.

d. Calculate the cycle factors and plot them on a separate time-series graph. Project

the cycle factor ahead one year.

e. For the historical period, plot the values estimated by the time-series decomposition

model along with the original data.

f. Make a forecast of sales for the four quarters of 2008, and given the following actual

data for that year, calculate the root-mean-squared error:

Jet Fuel Sales

Quarter Forecast Actual Squared Error

1 64.81

2 75.52

3 81.93

4 72.89
___________

Sum of squared errors  

Mean-squared error  

Root-mean-squared error  

g. Develop two other forecasts of jet fuel sales with:

1. An exponential smoothing method; and

2. A regression model using just time and quarterly dummy variables.

Compare the RMSE for the three models you have developed, and comment on what

you like or dislike about each of the three models for this application.
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11. The following table contains quarterly data on upper midwest car sales (CS) in the

United States for 1987Q1 through 2007Q4:

(c6p11) Upper Midwest Car Sales (CS)

Year Q1 Q2 Q3 Q4

1987 407.6 431.5 441.6 306.2

1988 328.7 381.3 422.6 369.4

1989 456.3 624.3 557.5 436.7

1990 485.0 564.3 538.3 412.5

1991 555.0 682.7 581.3 509.7

1992 662.7 591.1 616.9 529.7

1993 641.2 632.7 576.6 475.0

1994 542.8 558.9 581.7 537.8

1995 588.1 626.5 590.9 580.1

1996 589.2 643.2 593.9 612.2

1997 586.1 699.4 734.4 753.8

1998 691.6 793.4 864.9 840.8

1999 653.9 754.8 883.6 797.7

2000 722.2 788.6 769.9 725.5

2001 629.3 738.6 732.0 598.8

2002 603.9 653.6 606.1 539.7

2003 461.3 548.0 548.4 480.4

2004 476.6 528.2 480.4 452.6

2005 407.2 498.5 474.3 403.7

2006 418.6 470.2 470.7 375.7

2007 371.1 425.5 397.3 313.5

a. Prepare a time-series plot of upper midwest car sales from 1987Q1 through

2007Q4.

b. On the basis of these data, calculate the centered moving average (CSCMA) and the

centered moving-average trend (CSCMAT). Plot CS, CSCMA, and CSCMAT on a

single time-series plot.

c. Calculate a seasonal factor (SF  CS/CSCMA) for each quarter from 1987Q3

through 2007Q2. Calculate the seasonal indices (SI) for this series.

d. Determine the cycle factors CF  CSCMA/CSCMAT for the period from 1987Q3

through 2007Q2 and plot them along with a horizontal line at 1.

e. Evaluate the cycle factor (CF) and project it forward from 2007Q3 through

2008Q4.

f. Prepare a time-series decomposition forecast of CS (CSFTSD  CSCMAT  

SI  CF).

g. Calculate the historic RMSE as a measure of fit; then calculate the RMSE for the

2008Q1–2008Q4 forecast horizon as a measure of accuracy, given that the actual

values of CS for 2008 were:

2008Q1 301.1

2008Q2 336.7

2008Q3 341.8

2008Q4 293.5
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h. Prepare a Winters’ exponential smoothing forecast of CS using data from 1987Q1

through 2007Q4 as the basis for a forecast of 2008Q1–2008Q4. Compare these re-

sults in terms of fit and accuracy with the results from the time-series decomposi-

tion forecast.

12. a. Use the following data on retail truck sales in the southern United States (TS), in

thousands of dollars, to prepare a time-series decomposition forecast of TS for

2008Q1–2008Q4:

(c6p12) Truck Sales

Year Q1 Q2 Q3 Q4

1987 4,78,124 6,12,719 6,13,902 6,46,312

1988 7,12,170 8,21,845 7,84,493 7,25,615

1989 8,48,323 9,34,438 8,17,396 8,85,389

1990 8,94,359 11,26,400 9,46,504 9,47,141

1991 9,21,967 8,38,559 7,64,035 7,11,234

1992 6,34,427 5,68,758 5,32,143 4,96,188

1993 4,99,968 5,59,593 4,95,349 4,17,391

1994 5,97,296 6,05,965 5,16,173 5,28,238

1995 5,82,202 7,22,965 6,63,528 7,40,694

1996 8,52,774 9,79,159 8,28,721 8,77,681

1997 9,93,431 10,47,300 9,82,917 9,59,867

1998 9,01,757 10,95,580 10,98,730 9,32,177

1999 9,35,125 11,45,360 10,71,020 10,22,050

2000 11,39,130 12,52,900 11,16,670 10,99,110

2001 10,80,950 12,22,890 11,95,190 9,83,803

2002 10,85,270 11,72,960 10,81,380 9,21,370

2003 8,45,992 10,44,490 10,28,720 9,22,831

2004 9,57,733 12,40,610 11,71,230 11,43,440

2005 11,45,370 14,93,980 13,28,300 13,50,470

2006 14,30,080 16,36,760 14,56,740 15,02,440

2007 14,38,960 16,61,130 14,90,620 15,00,120

b. Evaluate your model in terms of fit and accuracy using RMSE.

c. Plot your forecast values of TS along with the actual values.

d. Compare the results from your time-series decomposition model with those

obtained using a Winters’ exponential smoothing model in terms of both fit and

accuracy.

13. a. Use the following data on millions of dollars of jewelry sales (JS) to prepare a time-

series decomposition forecast of JS for the four quarters of 2005:

(c6p13)

Date
Jewelry Sales

($Millions) Date
Jewelry Sales

($Millions) Date

Jan-94 904 May-94 1,367 Sep-94 1,246

Feb-94 1,191 Jun-94 1,257 Oct-94 1,323

Mar-94 1,058 Jul-94 1,224 Nov-94 1,731

Apr-94 1,171 Aug-94 1,320 Dec-94 4,204

Jewelry Sales
($Millions)

(continued on next page)
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Date
Jewelry Sales

($Millions) Date
Jewelry Sales

($Millions) Date

Jan-95 914 Sep-98 1,372 May-02 2,120

Feb-95 1,223 Oct-98 1,506 Jun-02 1,667

Mar-95 1,138 Nov-98 1,923 Jul-02 1,554

Apr-95 1,204 Dec-98 5,233 Aug-02 1,746

May-95 1,603 Jan-99 1,163 Sep-02 1,503

Jun-95 1,388 Feb-99 1,662 Oct-02 1,662

Jul-95 1,259 Mar-99 1,402 Nov-02 2,208

Aug-95 1,393 Apr-99 1,468 Dec-02 5,810

Sep-95 1,325 May-99 1,877 Jan-03 1,361

Oct-95 1,371 Jun-99 1,635 Feb-03 2,019

Nov-95 1,867 Jul-99 1,596 Mar-03 1,477

Dec-95 4,467 Aug-99 1,617 Apr-03 1,616

Jan-96 1,043 Sep-99 1,530 May-03 2,071

Feb-96 1,439 Oct-99 1,653 Jun-03 1,711

Mar-96 1,316 Nov-99 2,179 Jul-03 1,677

Apr-96 1,359 Dec-99 6,075 Aug-03 1,761

May-96 1,768 Jan-00 1,253 Sep-03 1,629

Jun-96 1,408 Feb-00 1,991 Oct-03 1,759

Jul-96 1,375 Mar-00 1,510 Nov-03 2,291

Aug-96 1,477 Apr-00 1,570 Dec-03 6,171

Sep-96 1,332 May-00 2,139 Jan-04 1,461

Oct-96 1,462 Jun-00 1,783 Feb-04 2,344

Nov-96 1,843 Jul-00 1,643 Mar-04 1,764

Dec-96 4,495 Aug-00 1,770 Apr-04 1,826

Jan-97 1,041 Sep-00 1,705 May-04 2,226

Feb-97 1,411 Oct-00 1,681 Jun-04 1,882

Mar-97 1,183 Nov-00 2,174 Jul-04 1,787

Apr-97 1,267 Dec-00 5,769 Aug-04 1,794

May-97 1,597 Jan-01 1,331 Sep-04 1,726

Jun-97 1,341 Feb-01 1,973 Oct-04 1,845

Jul-97 1,322 Mar-01 1,580 Nov-04 2,399

Aug-97 1,359 Apr-01 1,545 Dec-04 6,489

Sep-97 1,344 May-01 1,992 Jan-05 ?

Oct-97 1,406 Jun-01 1,629 Feb-05 ?

Nov-97 1,813 Jul-01 1,530 Mar-05 ?

Dec-97 4,694 Aug-01 1,679 Apr-05 ?

Jan-98 1,119 Sep-01 1,394 May-05 ?

Feb-98 1,513 Oct-01 1,586 Jun-05 ?

Mar-98 1,238 Nov-01 2,152 Jul-05 ?

Apr-98 1,362 Dec-01 5,337 Aug-05 ?

May-98 1,756 Jan-02 1,304 Sep-05 ?

Jun-98 1,527 Feb-02 2,004 Oct-05 ?

Jul-98 1,415 Mar-02 1,612 Nov-05 ?

Aug-98 1,466 Apr-02 1,626 Dec-05 ?

Jewelry Sales
($Millions)



The actual data for 2005 are:

Date Jewelry Sales ($ Millions)

Jan-05 1,458

Feb-05 2,394

Mar-05 1,773

Apr-05 1,909

May-05 2,243

Jun-05 1,953

Jul-05 1,754

Aug-05 1,940

Sep-05 1,743

Oct-05 1,878

Nov-05 2,454

Dec-05 6,717

b. Evaluate your model in terms of fit and accuracy using RMSE.

c. Plot your forecast values of JS along with the actual values.

d. Look at the seasonal indices, and explain why you think they do or do not make

sense.

e. Compare the results from your time-series decomposition model with those obtained

using a Winters’ exponential smoothing model in terms of both fit and accuracy.
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Appendix

Components of the Composite Indices
The composite indices of leading, coincident, and lagging indicators produced by The

Conference Board are summary statistics for the U.S. economy. They are constructed by

averaging their individual components in order to smooth out a good part of the volatility

of the individual series. Historically, the cyclical turning points in the leading index have

occurred before those in aggregate economic activity, cyclical turning points in the

coincident index have occurred at about the same time as those in aggregate economic

activity, and cyclical turning points in the lagging index generally have occurred after those

in aggregate economic activity.

LEADING INDEX COMPONENTS

Average weekly hours, manufacturing The average hours worked per week by

production workers in manufacturing industries tend to lead the business cycle

because employers usually adjust work hours before increasing or decreasing their

work force.

Average weekly initial claims for unemployment insurance The number of new

claims filed for unemployment insurance are typically more sensitive than either total

employment or unemployment to overall business conditions, and this series tends to

lead the business cycle. It is inverted when included in the leading index; the signs

of the month-to-month changes are reversed, because initial claims increase when

employment conditions worsen (i.e., layoffs rise and new hirings fall).

Manufacturers’ new orders, consumer goods and materials (in 1996 dollars)

These goods are primarily used by consumers. The inflation-adjusted value of new

orders leads actual production because new orders directly affect the level of both

unfilled orders and inventories that firms monitor when making production decisions.

The Conference Board deflates the current dollar orders data using price indices

constructed from various sources at the industry level and a chain-weighted aggregate

price index formula.

Vendor performance, slower deliveries diffusion index This index measures the

relative speed at which industrial companies receive deliveries from their suppliers.

Slowdowns in deliveries increase this series and are most often associated with

increases in demand for manufacturing supplies (as opposed to a negative shock

to supplies) and, therefore, tend to lead the business cycle. Vendor performance is

based on a monthly survey conducted by the National Association of Purchasing

Management (NAPM) that asks purchasing managers whether their suppliers’

deliveries have been faster, slower, or the same as the previous month. The 

slower-deliveries diffusion index counts the proportion of respondents reporting

slower deliveries, plus one-half of the proportion reporting no change in delivery

speed.



Manufacturers’ new orders, nondefense capital goods (in 1996 dollars) New

orders received by manufacturers in nondefense capital goods industries (in inflation-

adjusted dollars) are the producers’ counterpart to “Manufacturers’ new orders,

consumer goods and materials,” listed above.

Building permits, new private housing units The number of residential building

permits issued is an indicator of construction activity, which typically leads most other

types of economic production.

Stock prices, 500 common stocks The Standard & Poor’s 500 stock index reflects

the price movements of a broad selection of common stocks traded on the New York

Stock Exchange. Increases (decreases) of the stock index can reflect both the general

sentiments of investors and the movements of interest rates, which are usually other

good indicators for future economic activity.

Money supply (in 1996 dollars) In inflation-adjusted dollars, this is the M2 version

of the money supply. When the money supply does not keep pace with inflation, bank

lending may fall in real terms, making it more difficult for the economy to expand.

M2 includes currency, demand deposits, other checkable deposits, travelers checks,

savings deposits, small denomination time deposits, and balances in money market

mutual funds. The inflation adjustment is based on the implicit deflator for personal

consumption expenditures.

Interest rate spread, 10-year Treasury bonds less federal funds The spread or

difference between long and short rates is often called the yield curve. This series is

constructed using the 10-year Treasury bond rate and the federal funds rate, an

overnight interbank borrowing rate. It is felt to be an indicator of the stance of

monetary policy and general financial conditions because it rises (falls) when short

rates are relatively low (high). When it becomes negative (i.e., short rates are higher

than long rates and the yield curve inverts), its record as an indicator of recessions is

particularly strong.

Index of consumer expectations This index reflects changes in consumer attitudes

concerning future economic conditions and, therefore, is the only indicator in the

leading index that is completely expectations-based. Data are collected in a monthly

survey conducted by the University of Michigan’s Survey Research Center. Responses

to the questions concerning various economic conditions are classified as positive,

negative, or unchanged. The expectations series is derived from the responses to three

questions relating to: (1) economic prospects for the respondent’s family over the next

12 months; (2) the economic prospects for the nation over the next 12 months; and

(3) the economic prospects for the nation over the next five years.

COINCIDENT INDEX COMPONENTS

Employees on nonagricultural payrolls This series from the U.S. Bureau of Labor

Statistics is often referred to as payroll employment. It includes full-time and part-time

workers and does not distinguish between permanent and temporary employees.

Because the changes in this series reflect the actual net hiring and firing of all but

agricultural establishments and the smallest businesses in the nation, it is one of the

most closely watched series for gauging the health of the economy.
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Personal income less transfer payments (in 1996 dollars) The value of the income

received from all sources is stated in inflation-adjusted dollars to measure the real

salaries and other earnings of all persons. This series excludes government transfers

such as Social Security payments and includes an adjustment for wage accruals less

disbursements (WALD) that smoothes bonus payments (to more accurately reflect the

level of income upon which wage-earners would base their consumption decisions).

Income levels are important because they help determine both aggregate spending and

the general health of the economy.

Index of industrial production This index is based on value-added concepts and

covers the physical output of all stages of production in the manufacturing, mining,

and gas and electric utility industries. It is constructed from numerous sources that

measure physical product counts, values of shipments, and employment levels.

Although the value-added of the industrial sector is only a fraction of the total economy,

this index has historically captured a majority of the fluctuations in total output.

Manufacturing and trade sales (in 1996 dollars) Sales at the manufacturing,

wholesale, and retail levels are invariably procyclical. This series is inflation-adjusted

to represent real total spending. The data for this series are collected as part of the

National Income and Product Account calculations, and the level of aggregate sales

is always larger than GDP when annualized because some products and services are

counted more than once (e.g., as intermediate goods or temporary additions to

wholesale inventories and as retail sales).

LAGGING INDEX COMPONENTS

Average duration of unemployment This series measures the average duration (in

weeks) that individuals counted as unemployed have been out of work. Because this

series tends to be higher during recessions and lower during expansions, it is inverted

when it is included in the lagging index (i.e., the signs of the month-to-month changes

are reversed). Decreases in the average duration of unemployment invariably occur

after an expansion gains strength and the sharpest increases tend to occur after a

recession has begun.

Ratio, manufacturing and trade inventories to sales (in 1996 dollars) The ratio

of inventories to sales is a popular gauge of business conditions for individual firms,

entire industries, and the whole economy. This series is calculated by the Bureau of

Economic Analysis (BEA) using inventory and sales data for manufacturing, whole-

sale, and retail businesses (in inflation-adjusted and seasonally adjusted form) based

on data collected by the U.S. Bureau of the Census. Because inventories tend to in-

crease when the economy slows, and sales fail to meet projections, the ratio typically

reaches its cyclical peaks in the middle of a recession. It also tends to decline at the

beginning of an expansion as firms meet their sales demand from excess inventories.

Change in labor cost per unit of output, manufacturing This series measures the

rate of change in an index that rises when labor costs for manufacturing firms rise

faster than their production (and vice versa). The index is constructed by The Confer-

ence Board from various components, including seasonally adjusted data on employee

compensation in manufacturing (wages and salaries plus supplements) from the BEA,

and seasonally adjusted data on industrial production in manufacturing from the
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Board of Governors of the Federal Reserve System. Because monthly percent changes

in this series are extremely erratic, percent changes in labor costs are calculated over a

six-month span. Cyclical peaks in the six-month annualized rate of change typically

occur during recessions, as output declines faster than labor costs despite layoffs of

production workers. Troughs in the series are much more difficult to determine and

characterize.

Average prime rate charged by banks Although the prime rate is considered the

benchmark that banks use to establish their interest rates for different types of loans,

changes tend to lag behind the movements of general economic activities. The

monthly data are compiled by the Board of Governors of the Federal Reserve System.

Commercial and industrial loans outstanding (in 1996 dollars) This series meas-

ures the volume of business loans held by banks and commercial paper issued by non-

financial companies. The underlying data are compiled by the Board of Governors of

the Federal Reserve System. The Conference Board makes price-level adjustments

using the same deflator (based on personal consumption expenditures data) used to

deflate the money supply series in the leading index. The series tends to peak after an

expansion peaks because declining profits usually increase the demand for loans.

Troughs are typically seen more than a year after the recession ends. (Users should

note that there is a major discontinuity in January 1988, due to a change in the source

data; the composite index calculations are adjusted for this fact.)

Ratio, consumer installment credit outstanding to personal income This series

measures the relationship between consumer debt and income. Consumer installment

credit outstanding is compiled by the Board of Governors of the Federal Reserve

System and personal income data is from the Bureau of Economic Analysis. Because

consumers tend to hold off personal borrowing until months after a recession ends,

this ratio typically shows a trough after personal income has risen for a year or longer.

Lags between peaks in the ratio and peaks in the general economy are much more

variable.

Change in Consumer Price Index for services This series is compiled by the

Bureau of Labor Statistics, and it measures the rates of change in the services

component of the Consumer Price Index. It is probable that, because of recognition

lags and other market rigidities, service sector inflation tends to increase in the initial

months of a recession and to decrease in the initial months of an expansion.

Source: The Conference Board (http://www.conference-board.org).
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Chapter Seven

ARIMA
(Box-Jenkins)–Type
Forecasting Models

INTRODUCTION

A time series of data is a sequence of numerical observations naturally ordered in

time. Some examples would be:

• Hourly temperatures at the entrance to Grand Central Station

• Daily closing price of IBM stock

• Weekly automobile production by the Pontiac Division of General Motors

• Data from an individual firm: sales, profits, inventory, back orders

• An electrocardiogram

When a forecaster examines time-series data, two questions are of paramount

importance:

1. Do the data exhibit a discernible pattern?

2. Can this pattern be exploited to make meaningful forecasts?

We have already examined some time-series data by using regression analysis

to relate sequences of data to explanatory variables. Sales (as the dependent

variable), for instance, might be forecast by using the explanatory (or indepen-

dent) variables of product price, personal income of potential purchasers, and

advertising expenditures by the firm. Such a model is a structural or causal

forecasting model that requires the forecaster to know in advance at least some of

the determinants of sales. But in many real-world situations, we do not know the

determinants of the variable to be forecast, or data on these causal variables are

not readily available. It is in just these situations that the ARIMA technique has a

decided advantage over standard regression models. ARIMA is also used as a

benchmark for other forecasting models; we could use an ARIMA model, for

example, as a criterion for our best structural regression model. The acronym
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ARIMA stands for autoregressive integrated moving average. Exponential

smoothing, which we examined in Chapter 3, is actually just a special case of an

ARIMA model.

The Box-Jenkins methodology of using ARIMA models is a technically

sophisticated way of forecasting a variable by looking only at the past pattern of

the time series. Box-Jenkins thus ignores information that might be contained in a

structural regression model; instead, it uses the most recent observation as a start-

ing value and proceeds to analyze recent forecasting errors to select the most

appropriate adjustment for future time periods. Since the adjustment usually

compensates for only part of the forecast error, the Box-Jenkins process is best

suited to longer-range rather than shorter-range forecasting (although it is used for

short-, medium-, and long-range forecasts in actual practice).

The Box-Jenkins methodology of using ARIMA models has some advan-

tages over other time-series methods, such as exponential smoothing, time-series

decomposition, and simple trend analysis. Box-Jenkins methodology determines

a great deal of information from the time series (more so than any other time-

series method), and it does so while using a minimum number of parameters. The

Box-Jenkins method allows for greater flexibility in the choice of the “correct”

model (this, we will see, is called “identification” in Box-Jenkins terminology).

Instead of a priori choosing a simple time trend or a specific exponential smooth-

ing method, for example, as the correct model, Box-Jenkins methodology

includes a process that allows us to examine a large variety of models in our

search for the correct one. This “open-ended” characteristic alone accounts for its

appeal to many forecasters.

THE PHILOSOPHY OF BOX-JENKINS

Pretend for a moment that a certain time series is generated by a “black box”:

Black box → Observed time series

In standard regression analysis we attempt to find the causal variables that

explain the observed time series; what we take as a given is that the black box

process is actually approximated by a linear regression technique:

Explanatory Black box Observed

variables
→

(approximated
→

time series

by linear

regression)

In the Box-Jenkins methodology, on the other hand, we do not start with any

explanatory variables, but rather with the observed time series itself; what we

attempt to discern is the “correct” black box that could have produced such a series

from white noise:

White noise → Black box → Observed time series
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The term white noise deserves some explanation. Since we are to use no

explanatory variables in the ARIMA process, we assume instead that the series we

are observing started as white noise and was transformed by the black box process

into the series we are trying to forecast.

White noise is essentially a purely random series of numbers. The numbers are

normally and independently distributed. Some examples of white noise may serve

to make its meaning clearer:

1. The winning numbers in the Illinois lottery’s “Pick Four” game (where the four

winning digits are drawn daily from four separate urns, each with 10 marked

balls inside). Would knowledge of the numbers drawn for the past year help

you pick a winner? (No, but there are those who actually believe some numbers

are “better” than others.)

2. The last digit in the daily closing Dow Jones Industrial Average (or the last

digit in the day-to-day change in the average). Would knowing the digit for the

last two weeks help you to pick today’s final digit?

White noise, then, has two characteristics:

1. There is no relationship between consecutively observed values.

2. Previous values do not help in predicting future values.

White noise is important in explaining the difference between the standard

regression process and the Box-Jenkins methodology. The steps required in each

method are shown in Table 7.1. In standard regression analysis we move from
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White noise is

essentially a purely

random series of

numbers.

For standard regression analysis:

1. Specify the causal variables.

2. Use a linear (or other) regression model.

3. Estimate the constant and slope coefficients.

4. Examine the summary statistics and try other model specifications.

5. Choose the most desirable model specification (perhaps on the basis of RMSE).

Start here:

For Box-Jenkins methodology:

1. Start with the observed time series.

2. Pass the observed time series through a black box.

3. Examine the time series that results from passage through the black box.

4. If the black box is correctly specified, only white noise should remain.

5. If the remaining series is not white noise, try another black box.

Start here:

Observed Black

time series
→

box
→ White noise

Explanatory Black Observed

variables
→

box
→

time series

TABLE 7.1
Comparison of

Standard Regression

Analysis Box-Jenkins

Methodology



the explanatory variables (which we choose as a result of some knowledge of the

real world) to applying the linear regression technique in order to estimate the

constant and slope coefficients of the model. We then use the regression equation

to actually make up forecasts about future values of the time series. If our

regression model does not have good summary statistics (e.g., t-statistics,

R-squared), we may change some or all of the explanatory variables and try

again until we are satisfied with the summary statistics (including the root-mean-

squared error).

In Box-Jenkins methodology, however, we start instead with the observed time

series itself (with no explanatory variables) and examine its characteristics in

order to get an idea of what black box we might use to transform the series into

white noise. We begin by trying the most likely of many black boxes, and if we

get white noise, we assume that this is the “correct” model to use in generating

forecasts of the series. If we try a particular black box and do not wind up with

white noise, we try other likely black boxes until we finally wind up with white

noise. The test to see whether we have succeeded in winding up with only white

noise serves the same purpose as the set of summary statistics we generate with

standard regression models.

When choosing the correct black box, there are really only three basic types of

models for us to examine; there are, however, many variations within each of these

three types. The three types of models are: (1) moving-average (MA) models,

(2) autoregressive (AR) models, and (3) mixed autoregressive–moving-average

models (called ARMA models). We will examine each of these three models in

turn in the following sections.

MOVING-AVERAGE MODELS

A moving-average (MA) model is simply one that predicts Yt as a function of

the past forecast errors in predicting Yt. Consider et to be a white noise series; a

moving-average model would then take the following form:

Yt et W1et 1  W2et 2         Wqet q

where:

et The value at time t of the white noise series

Yt The generated moving-average time series

W1,2, . . . ,q  The coefficients (or “weights”)

et 1,t 2, . . . ,t q Previous values of the white noise series

The name moving average is actually not very descriptive of this type of

model; we would do better to call it a weighted-average model, since it is similar

to exponential smoothing. An example of a moving-average model is constructed
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in Table 7.2, which is an abbreviated listing of the entire 200-observation data set.

The complete data set is included on the CD accompanying this book.

In the first column of Table 7.2 we show a white noise series generated by ran-

domly selecting numbers between 0 and 1. The moving-average series was con-

structed from the white noise series by using the following equation:

Yt  et W1et 1

where:

Yt The series generated, which appears in column 2

et The white noise series appearing in column 1

W1  A constant (equal here to 0.7)

et 1 The white noise value lagged one period
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White

Noise MA(1) AR(1) AR(2) ARIMA111

-------------------------------------------------------------------

1 . 0.256454 0.399867 0.240000 0.160000 0.160000

2 . 0.230240 0.409758 0.350240 0.040000 0.569758

3 . 0.675186 0.836354 0.850306 0.735186 1.40611

4 . 0.0475159 0.520146 0.472669 0.570146 1.92626

5 . 0.716827 0.750089 0.953162 1.26297 2.67635

6 . 0.854614 1.35639 1.33120 1.85272 4.03274

7 . 0.557983 1.15621 1.22358 2.10748 5.18895

8 . 0.0390320 0.429620 0.650822 1.88481 5.61857

9 . 0.184616 0.211938 0.510027 1.92548 5.83051

10 . 0.0167999 0.146031 0.271814 1.74160 5.97654

11 . 0.596069 0.607829 0.731976 2.20029 6.58437

12 . 0.235672 0.652921 0.601660 2.12419 7.23729

13 . 0.0724487 0.237419 0.373279 1.99944 7.47471

14 . 0.858917 0.909631 1.04556 2.68336 8.38434

15 . 0.830856 1.43210 1.35363 3.10910 9.81644

16 . 0.215927 0.797527 0.892744 2.92897 10.6140

17 . 0.223007 0.374156 0.669379 2.89511 10.9881

18 . 0.254166 0.410271 0.588855 2.86653 11.3984

19 . 0.764038 0.941954 1.05847 3.34963 12.3403

20 . 0.286438 0.821265 0.815671 3.20449 13.1616

191 . 0.323975 0.782538 0.820131 4.36400 150.720

192 . 0.162109 0.388892 0.572175 4.12794 151.109

193 . 0.702011 0.815488 0.988099 4.46437 151.924

194 . 0.854660 1.34607 1.34871 4.80531 153.270

195 . 0.480850 1.07911 1.15520 4.73744 154.349

196 . 0.843475 1.18007 1.42108 5.12074 155.530

197 . 0.408600 0.999033 1.11914 4.94061 156.529

198 . 0.581711 0.867731 1.14128 5.06429 157.396

199 . 0.975937 1.38313 1.54658 5.50906 158.779

200 . 0.683960 1.36712 1.45725 5.55316 160.147

TABLE 7.2
Box-Jenkins Example

Data Series (c7t2)



This series—called an MA(1) series because it contains one lag of the white

noise term—was constructed with known characteristics. Imagine how we might

decide that a time series of unknown origin that we want to forecast could be

similar to this known series. How could we go about examining this time series to

determine whether it is an MA(1) series like that in column 2 of Table 7.2? We can

get an insight into the answer by examining two characteristics of the time series

we have purposely constructed to be an MA(1) series in Table 7.2. These charac-

teristics are the autocorrelations and the partial autocorrelations.

First, we examine the autocorrelation (or “serial correlation”) among succes-

sive values of the time series; this will be the first of two key tools in determin-

ing which model (or black box) is the appropriate representation of any given

time series. As described in Chapter 2, autocorrelation is the concept that the

association between values of the same variable at different time periods is

nonrandom—that is, that if autocorrelation does exist in a time series, there is

correlation or mutual dependence between the values of the time series at differ-

ent time periods.

As a simple example of autocorrelation, consider the data in Table 7.3. The first

column could represent sales of an item during successive periods; the second col-

umn is the first column lagged one period; the third column is the first column

lagged two periods. We can now calculate the simple correlation coefficient

between the numbers in the first column and the numbers in the second column,

treating each column as if it were a separate variable. Remember that the correla-

tion coefficient will always vary between  1 and  1. If it is  1, it indicates that

there is a perfect positive correlation between the two columns—that is, as one

increases, so does the other. If the correlation coefficient is  1, it indicates a per-

fect negative correlation—that is, as one goes up, the other goes down. The closer

the number is to  1, the more positively correlated the columns; the closer the

number is to  1, the more negatively correlated the columns.
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Original
Variable One Time Lag Two Time Lags

121 — —

123 121 —

134 123 121

133 134 123

151 133 134

141 151 133

176 141 151

187 176 141

183 187 176

214 183 187

Correlation between original variable and one time lag   0.867.

Correlation between original variable and two time lags   0.898.

TABLE 7.3
A Simple Example of

Autocorrelation

(c7t3)



Here the correlation between the first and second columns is  0.867; the cor-

relation between the first and third columns is  0.898. These values indicate the

extent to which the original series values are correlated with themselves, lagged

one and two periods (called autocorrelation since the second and third columns of

our table are not variables separate from column 1, but are actually the same vari-

able at different periods).

Apparently, autocorrelation exists in this variable for both one and two lags, and

the autocorrelation coefficients are approximately equal. These autocorrelations

provide us with the first important tool for identifying the correct model; if the

original data in Table 7.3 had been completely random white noise (ours were

not!), the correlation among lagged values (one, two, or more lags) would have

been approximately equal to zero, given a large enough data set. We will find that

the pattern of the autocorrelations will help us identify a series that behaves as a

moving-average model.

The partial autocorrelation coefficient is the second tool we will use to help

identify the relationship between the current values and past values of the origi-

nal time series. Just as the autocorrelation function measures the association of

a variable with successive values of the same variable in a time series, partial

autocorrelations measure the degree of association between the variable and that

same variable in another time period after partialing out (i.e., controlling for) the

effects of the other lags. Partial autocorrelation coefficients measure the degree of

association between Yt and Yt k when all the other time lags on Y are held

constant. The calculation of the partial autocorrelation terms is beyond the

scope of this text, but they are calculated by ForecastX™ and most other statis-

tical packages that deal with time-series analysis. It is possible, however, to

indicate how these coefficients are calculated without presenting the rather

lengthy derivation.

The partial autocorrelation coefficient is defined in terms of the last autore-

gressive (AR) term of an AR-type model with m lags. Partial autocorrelations are

calculated when we are unsure of the correct order of the autoregressive process

to fit the time series. Consider the AR(m) model (which will be explained in

more detail in the section “Autoregressive Models”) represented in the following

equations:

Yt A1Yt 1 et

Yt A1Yt 1 A2Yt 2 et

.

.

.

Yt A1Yt 1   A2Yt 2        AmYt m  et

By solving this system of equations for the A1, A2, . . . , At m terms (which are

the partial autocorrelation coefficients), we could determine their actual values.

It is most common to view both the autocorrelation coefficients and the partial

autocorrelation coefficients in graphic form by constructing a correlogram of the

autocorrelation coefficients and a partial correlogram for the partial autocorrelation
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coefficients; both graphics look very much like the residuals output in the Fore-

castX™ program.

Consider the typical MA(1) correlogram and partial correlogram in Figure 7.1.

Two distinctive patterns in the autocorrelation and partial autocorrelation func-

tions are characteristic of an MA(1) model. The a frame of Figure 7.1 displays the

first of these patterns. Note the gradual falling to zero of the partial autocorrela-

tion function and the single spike in the autocorrelation function. In general, if the

autocorrelation function abruptly stops at some point, we know the model is of the

MA type; the number of spikes (commonly referred to as q) before the abrupt stop

tells us the “order” of the MA model. In frame a there is only one spike, and so we

know the model is likely to be of the MA(1) variety.
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Frame b represents a variation of this distinctive pattern; here the single spike

(now negative) still appears in the autocorrelation function, but the partial auto-

correlation function shows alternating positive and negative values, gradually

falling to zero. This also would indicate to us an MA(1)-type model.

In any given data there may be more than one significant moving-average term;

if there were two significant moving-average terms, for instance, we could find

either of the patterns in frames c and d. Both of these situations are characteristic

of an MA(2) model; both frames show two distinct spikes in the autocorrelation

function while the partial autocorrelation function gradually slides to zero, either

monotonically decreasing or alternating between positive and negative values.

We are now ready to examine the autocorrelation and partial autocorrelation

functions for the MA(1) series in column 2 of Table 7.2. The correlograms for

each are shown for the first 24 lags in Figure 7.2. If we had not previously known

that this was an MA(1) series, we should have been able to deduce this from the

characteristic patterns shown in Figure 7.2: note that the autocorrelation function

has only one spike that appears to be significantly different from zero. The ap-

proximate 95 percent confidence intervals are shown for both the autocorrelation

and partial autocorrelation functions in Figure 7.2. A value between the confi-

dence interval is seen to be not significantly different from zero. Also note that the

partial autocorrelation function alternates from positive to negative and decreases

in absolute value as it approaches zero. This pattern is similar to that shown in

frame b of Figure 7.1 and identifies the time series for us as one of the MA(1)

variety. This knowledge of what the autocorrelation and partial autocorrelation

functions look like in an MA(1) model will allow us later to use Box-Jenkins

methodology to model and forecast any similar time series accurately.

AUTOREGRESSIVE MODELS

The second of the three classes of models we need to examine is the autoregres-

sive (AR) model. The equation for the autoregressive model is similar to the

moving-average model, except that the dependent variable Yt depends on its own

previous values rather than the white noise series or residuals. The autoregressive

model is produced from a white noise series by using an equation of the form:

Yt A1Yt 1 A2Yt 2       ApYt p et

where:

Yt The moving-average time series generated

A1, A2, . . . , Ap  Coefficients

Yt 1, Yt 2, . . . , Yt p Lagged values of the time series (hence the name

autoregressive)

et White noise series

If the model has only the Yt 1 term on the right-hand side, it is referred to as an

AR(1) model; if it has Yt 1 and Yt 2 terms, it is an AR(2); and so on. Column 3 of
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FIGURE 7.2
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-----------------------------

1 .4175 .4175

2  .1046  .3378

3  .0003 .2724

4 .0490  .1709

5  .0040 .1112

6  .0405  .1227

7  .0429 .0490

8 .0309 .0284

9 .0342  .0262

10  .0759  .0779

11  .0323 .0897

12 .0444  .0547

Obs ACF PACF

-----------------------------

13 .0019 .0281

14  .0185  .0185

15 .0246 .0517

16 .0614 .0238

17 .0363  .0094

18  .0392  .0419

19  .0441 .0181

20  .0233  .0719

21  .0573  .0146

22 .0020 .0790

23 .0134  .0973

24  .0210 .0703

---------------------------------------------------------------------------––

--------------------------------------------------------------------------–––
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Table 7.2 is an AR(1) series produced by the following equation:

Yt  A1Yt 1 et

where

Yt The series generated, which appears in column 2

et The white noise series appearing in column 1

A1  A constant (equal here to 0.5)

Yt 1 The series lagged one period

(Note: The first number in the column [i.e., 0.24] is chosen arbitrarily.)

Once again, as with the MA(1) model presented in the previous section, the

AR(1) series in column 3 is constructed from the white noise series with known

characteristics; that is, it is an AR(1) series because we constructed it to be one.

Again, ask the question: How might we decide that another time series, of

unknown origin, that we were given to forecast could be similar to this AR(1)

series? In other words, how would we go about examining a series to determine

whether it is an AR(1)-type series?

We will answer the question by again examining the characteristics of the known

series—the AR(1) series in column 3 of Table 7.2. Once again we first examine the

autocorrelation function of the series and then examine the partial autocorrelation

function of the series. We are looking for distinctive patterns in each of these func-

tions that will indicate that any time series under examination is anAR(1)-type series.

The typical correlograms and partial correlograms for an AR(1) series are

shown in frames a and b of Figure 7.3. Either of two patterns is distinctive for an

AR(1) model. In frame a the autocorrelation function falls monotonically to zero

while the partial autocorrelation function shows a single spike; note that this is

the exact opposite of the pattern exhibited by an MA(1) time series. In general, if

the partial autocorrelation function abruptly stops at some point, the model is

of the AR type; the number of spikes (p) before the abrupt stop is equal to the

“order” of the AR model. In frame a there is just one spike in the partial autocor-

relation function, and so the model is of the AR(1) type.

Frame b represents the second of two characteristic patterns for an AR(1)

model; here the single spike (now negative) still appears in the partial autocorre-

lation function, but the autocorrelation function tends to zero by alternating

between positive and negative values.

As in MA-type models, there may be more than one significant autoregressive

term; if this is the case, patterns like those shown in frames c and d of Figure 7.3

could result. Patterns like those in either frame c or d would indicate an AR(2)-

type model because of the two significant spikes in the partial autocorrelation

function. Note again that the autocorrelation function in both cases falls to zero,

either monotonically (as in frame c) or alternating between positive and negative

values (as in frame d).

We should now be able to evaluate the autocorrelation and partial autocorrela-

tion functions for the AR(1) series in column 3 of Table 7.2. Recall that we know
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that this particular time series was produced from a white noise series by using the

equation:

Yt  A1Yt 1 et

The correlograms for each are shown for the first 24 lags in Figure 7.4. If we

had not known that this was an AR(1) series, we should have been able to deduce

this from the characteristic patterns in Figure 7.4; note that the partial autocorre-

lation function has only one significant spike (i.e., it has only one spike that

appears significantly different from zero, and so the order is p 1). Also note that

the autocorrelation function decreases in value, approaching zero. This pattern is

similar to that shown in frame a of Figure 7.3, and this fact identifies the time

series as one of the AR(1) variety.
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1 .4751 .4751

2 .1478  .1006

3 .1203 .1184

4 .0659  .0406

5 .0064  .0136

6  .0165  .0187

7  .0211  .0088

8 .0175 .0456

9 .0406 .0199

10  .0562  .1104

11  .0085 .0874

12 .0337  .0084

Obs ACF PACF

-----------------------------

13  .0026  .0143

14  .0042 .0117

15 .0338 .0341

16 .0604 .0376

17 .0365  .0179

18  .0225  .0485

19  .0454  .0105

20  .0073 .0098

21  .0587  .0737

22 .0018 .1101

23 .0062  .0625

24  .0158 .0044
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MIXED AUTOREGRESSIVE AND MOVING-AVERAGE MODELS

The third and final of the three classes of models that we need examine is really a

combination of an AR and an MA model. This third class of general models is

called ARMA, which stands for autoregressive–moving-average model. This

model could be produced from a white noise series by introducing the elements

we have already seen in both moving-average and autoregressive models:

Yt A1Yt 1 A2Yt 2      

  ApYt p et W1et 1

 W2et 2         Wqet q

This equation defines a mixed autoregressive–moving-average model of order

p, q, and is usually written as ARMA(p, q). To identify an ARMA model, we again

look for characteristic patterns in the autocorrelation and partial autocorrelation

functions.

Figure 7.5 shows the characteristic patterns for an ARMA(1, 1) model; note

that any of the four frames in Figure 7.5 could be patterns that would identify an

ARMA(1, 1) model. In Figure 7.5, in each of the frames, both the autocorrela-

tions and partial autocorrelations gradually fall to zero rather than abruptly stop.

This observation (both functions falling off gradually) is characteristic of any

ARMA(p, q) model.

To identify the order of the AR and MA terms, we need to count the number of

AR and MA terms significantly different from zero. In frame b, for instance, there

is one spike in the partial autocorrelation function (AR process) and one spike in

the autocorrelation function (MA process); this would imply an ARMA(1, 1)

model. The other patterns exhibited in Figure 7.5 are less easily identified as

ARMA(1, 1) processes.

In fact, the particular identification process we have outlined requires some

experience to apply in the real world. We have, however, outlined the basic steps

to be followed in applying the identification process; skill in actual application

requires the consideration of many examples and learning from past mistakes. We

have already seen that according to Box-Jenkins methodology, if we are able to

identify the type and order of model we are faced with when we are given a time

series, then the repetitive pattern in that original time series offers us the method

for forecasting it. When we are given a time series in the real world, however, we

are not told the type of model that will fit it, and the first task is to figure out which

of the infinite variations of the three models (autoregressive, moving average, or

mixed) is the “correct” model for our data.

Fortunately, for low-order processes like the ones we have examined so far, the

correct specification of the p and q values is rather simple to make. Many real-world

processes, once they have been adjusted for seasonality, can be adequately modeled

with the low-order models, e.g., MA(1), MA(2), AR(1), AR(2), ARMA(1, 1). If

low-order models are not adequate (how to determine whether a model is ade-

quate will be explained in the section “The Box-Jenkins Identification Process”),

the selection of the proper p and q becomes more difficult. As a rule of thumb,
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however, spikes in the autocorrelation function indicate moving-average terms,

and spikes in the partial autocorrelation function indicate autoregressive terms.

When the correct model is not of a low order, you may be forced to determine

an adequate p and q by trial and error; it will be possible, you will see, to check

your guesses after the parameters of each model have been determined.

STATIONARITY

In general we have been approaching our data as if they were stationary. A

stationary time series is one in which two consecutive values in the series depend

only on the time interval between them and not on time itself. For all practical

purposes this would be consistent with a series whose mean value did not change

over time. Real-world time series are most often nonstationary; that is, the mean
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value of the time series changes over time, usually because there is some trend in

the series so that the mean value is either rising or falling over time. Nonstation-

arity can result in other ways (it could be that the variability of the time series

changes over time; perhaps the variability becomes exaggerated through time),

but the most common cause is simply some trend in the series.

If the series we examine are nonstationary, the autocorrelations are usually

significantly different from zero at first and then gradually fall off to zero, or they

show a spurious pattern as the lags are increased. Because autocorrelations

dominate the pattern of a nonstationary series, it is necessary for us to modify a

nonstationary series to make it stationary before we try to identify as the “correct”

model one of the three models we have so far examined.

There is no single way to remove nonstationarity, but two methods help achieve

stationarity most often in actual practice. First, if the nonstationarity is caused by

a trend in the series, then differencing the time series may effectively remove the

trend. Differencing refers to subtracting the previous observation from each

observation in the data set:

Y t Yt  Yt 1

where:

Y t The first difference of observation at time t

Yt Time-series observation at time t

Yt 1 Time-series observation at time period t 1

In some cases the first difference will not remove the trend and it may be neces-

sary to try a higher order of differencing. For example, second-order differences

can be found as follows:

Y  t  Y t  Y t 1

where:

Yt  The second difference

Y  t The first difference of observation at time t

Y  t 1 The first difference of observation at time period t  1

The second method for removing nonstationarity is used when there is a

change in the variability of the series (i.e., when there is a trend in the variance).

This method involves taking logs of the original time series, which usually trans-

fers the trend in variance to a trend in the mean; this trend can then be handled by

differencing. Other, more sophisticated methods of removing nonstationarity are

sometimes used but will not be covered here.

Consider the series in column 5 of Table 7.2. Glancing at the numbers down the

column, we can easily see that this series has some trend; the numbers are monot-

onically increasing throughout the time period. Figure 7.6 shows the autocorrela-

tion function for this series. This autocorrelation function is entirely characteristic

of series with a trend; that is, it shows dominant autocorrelations for the 24 lags

shown, and these autocorrelations only gradually become smaller. Figure 7.7

shows the correlograms for the same series after first differences have been taken.
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FIGURE 7.6
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Obs ACF PACF

------------------------------

1 .9854 .9854

2 .9707  .0069

3 .9562  .0031

4 .9417  .0085

5 .9272  .0064

6 .9129  .0015

7 .8987  .0031

8 .8845  .0056

9 .8703  .0105

10 .8559  .0138

11 .8414  .0084

12 .8270  .0085

Obs ACF PACF

------------------------------

13 .8124  .0127

14 .7979  .0045

15 .7836  .0020

16 .7693  .0103

17 .7547  .0139

18 .7401  .0123

19 .7255  .0043

20 .7111  .0052

21 .6966  .0114

22 .6820  .0108

23 .6674  .0102

24 .6527  .0096

-------------------------------------------------------------------------––––

-------------------------------------------------------------------------––––
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FIGURE 7.7
Autocorrelation and
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1 .4141 .4141

2  .1046  .3333

3  .0047 .2594

4 .0486  .1538

5 .0048 .1049

6  .0352  .1130

7  .0489 .0320

8 .0221 .0324

9 .0243  .0396

10  .0794  .0677

11  .0348 .0724

12 .0357  .0452

Obs ACF PACF

------------------------------

13 .0035 .0255

14  .0087  .0102

15 .0246 .0424

16 .0550 .0269

17 .0303  .0188

18  .0374  .0286

19  .0442  .0013

20  .0301  .0585

21  .0657  .0367

22 .0003 .0894

23 .0157  .0963

24  .0248 .0603

-------------------------------------------------------------------------––––

-------------------------------------------------------------------------––––



Apparently, this series contains a trend and could probably easily be modeled with

a simple time trend or a low-order ARMA model. Figure 7.7 (which shows the data

after taking first differences) could perhaps be best modeled as an ARMA(3, 1),

since there appear to be one dominant autocorrelation spike and three dominant

partial autocorrelation spikes.

When differencing is used to make a time series stationary, it is common to

refer to the resulting model as an ARIMA(p, d, q)-type model. The “I” that has

been added to the name of the model refers to the integrated or differencing term

in the model; the d inside the parentheses refers to the degree of differencing. An

ARIMA(p, d, q) model is then properly referred to as an autoregressive inte-

grated moving-average model. For example, a model with one autoregressive

term, one degree of differencing, and no moving-average term would be written

as an ARIMA(1, 1, 0) model. An ARIMA model is thus classified as an

“ARIMA(p, d, q)” model, where:

• p is the number (order) of autoregressive terms,

• d is the number (order) of differences, and

• q is the number (order) of moving-average terms.

THE BOX-JENKINS IDENTIFICATION PROCESS

We are finally in a position to set down the Box-Jenkins methodology in a pat-

terned format. The approach is an iterative one, in which we may loop through the

process many times before reaching a model with which we are comfortable. The

four steps of the Box-Jenkins process are outlined in Figure 7.8.

As a first step, the raw series is examined to identify one of the many available

models that we will tentatively select as the best representation of this series. If the

raw series is not stationary, it will initially be necessary to modify the original

series (perhaps using first differences) to produce a stationary series to model.

The first step in the process is usually accomplished by using an identify func-

tion, which is a part of every standard Box-Jenkins software package; the identify

function simply calculates and displays the autocorrelation and partial autocorre-

lation functions for the time series in question. Figure 7.2 shows these functions for

the series in column 2 of Table 7.2, which you will recall is the MA(1) data we

produced from white noise. By examining these correlograms we can observe the

distinctive pattern (like that in frame b of Figure 7.1) that we earlier identified as

representing an MA(1)-type model. It is this pattern produced by the identify func-

tion that leads us to the tentative choice of an MA(1) model. The general rules to

be followed in this identification stage of the process can be summed up as follows:

1. If the autocorrelation function abruptly stops at some point—say, after q

spikes—then the appropriate model is an MA(q) type.

2. If the partial autocorrelation function abruptly stops at some point—say, after

p spikes—then the appropriate model is an AR(p) type.

3. If neither function falls off abruptly, but both decline toward zero in some fash-

ion, the appropriate model is an ARMA(p, q) type.
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The second step in the process begins after the tentative model has been iden-

tified; the actual estimation of the parameters of the model is similar to fitting a

standard regression to a set of data. If an MA(1) model had been tentatively iden-

tified as the “correct” model, we would fit the equation

Yt  et W1et 1

The ForecastX™ software package would estimate the value for W1, using a

mean-squared error minimization routine in order to select the optimal value.

Consider again the series in column 2 of Table 7.2; we “identified” these data

as being distinctive of an MA(1)-type model when we examined the autocorrela-

tion and partial autocorrelation functions in Figure 7.2. If we now specify an

MA(1)-type model—this could also be written as an ARIMA(0, 0, 1) model—in

the software package, the output will be as shown in Figure 7.9.

The third step in the Box-Jenkins process is to diagnose in order to determine

whether the “correct” model has been chosen. In order to do this, again for the

example in column 2 of Table 7.2, we will examine the autocorrelation function

of the residuals produced by the estimation program; this is also presented in

Figure 7.9. Recall that we originally produced the “raw data” series from white

noise by specifying a function we knew would behave as an MA(1) model. That

is, we passed an MA(1) box over the white noise and turned it into an MA(1) data

set. If we now reverse the process and pass an MA(1) box over the contrived data

set, we should wind up with white noise. A look at the autocorrelation function
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Audit Trail--Statistics

Accuracy Measure                               Value              Forecast Statistic           Value

----------------------------------------------------              ----------------------------------

AIC                                           75.20               Durbin-Watson                 2.08

BIC                                           81.80               Mean                          0.80

Mean Absolute Percentage Error (MAPE)         43.45%              Max                           1.64

Sum Squared Error (SSE)                       16.72               Min                           0.14

R-Square                                      35.63%              Sum Squared Deviation        25.97

Adjusted R-Square                             35.30%              Range                         1.50

Root Mean Square Error                         0.29               Ljung-Box                     7.33

Method Statistic                               Value

----------------------------------------------------

Method selected                          Box-Jenkins

Model selected                ARIMA(0,0,1) * (0,0,0)

T-test for constant                            39.07

T-test for nonseasonal MA                     11.13
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(continued on next page)

FIGURE 7.9 The MA(1) Model Estimate from ForecastX™ and Residual Autocorrelation Plot for the

MA(1) Model Estimate (c7t2)



will tell us whether we have been left with just white noise, or whether we will

have some unaccounted-for pattern in the series.

The autocorrelation function of the residual series in Figure 7.9 shows virtually

no significant spikes. Apparently the MA(1)-type model we estimated was an

accurate representation of the data. It is most importantly the autocorrelation

function that tells the forecaster when the tentative model is actually the correct

one. If you are left with only white noise in the residual series, the model chosen

is likely the correct one.

A second test for the correctness of the model (but again, not a definitive test)

is the Ljung-Box-Pierce Q statistic. This is referred to simply as the Ljung-Box

statistic in the ForecastX™ printout. The statistic is used to perform a chi-square

test on the autocorrelations of the residuals (or error terms). The test statistic is

Qm n(n  2) 
m

k 1

which is approximately distributed as a chi-square distribution with m  p  q

degrees of freedom, where:

n  the number of observations in the time series

k  the particular time lag to be checked

m  the number of time lags to be tested

rk sample autocorrelation function of the kth residual term

Values of Q for different values of k may be computed in a residual analysis. For

an ARMA(p, q) model, the statistic Q is approximately chi-square distributed with

m  p  q degrees of freedom if the ARMA orders are correctly specified.

Thus the Ljung-Box statistic tests whether the residual autocorrelations as a set

are significantly different from zero. If the residual autocorrelations are signifi-

cantly different from zero, the model specification should be reformulated. Note

that the ForecastX™ software automatically checks for a lag length of 12 if a

r2
k
 
n  k
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Obs         ACF         PACF

-----------------------------

1        .0440       .0440

2        .0820       .0841

3         .0140        .0064

4         .0536        .0481

5        .0254       .0191

6        .0048        .0013

7        .0410       .0463

8         .0113        .0049

9         .0789        .0761

10        .1111       .1040

11         .0000        .0072

12         .0469        .0268

Obs        ACF          PACF

-----------------------------

13       .0128        .0152

14       .0125       .0055

15        .0053        .0033

16        .0445         .0481

17        .0168         .0152

18       .0121        .0093

19       .0646        .0466

20        .0620         .0396

21       .1116        .1239

22        .0542         .0694

23        .0010        .0087

24       .0350        .0352

-------------------------------------------------------------------------––––

-------------------------------------------------------------------------––––

FIGURE 7.9
(continued)



nonseasonal model has been selected; if a seasonal model has been selected, the

lag is set equal to four times the seasonal length (e.g., the lag would be set to 16 if

the data were quarterly).

The Ljung-Box statistic calculated for the Figure 7.9 model is 7.33 for the first

12 autocorrelations (which result in 11 degrees of freedom). A check with the chi-

square table (see the appendix to this chapter) shows the critical value to be about

17 at the 0.10 significance level. Since the calculated value is less than the table

value, the model is considered appropriate; that is, we believe the residuals to be un-

correlated. If this is the correct model, the residuals should be normally distributed

and independent of one another (i.e., the residuals should resemble white noise).

If either the check of the residual series autocorrelations or the Ljung-Box

statistic test had shown the model to be inappropriate, the tentative model would

have been updated by trying another variation of the possible models. In Box-

Jenkins methodology it is possible for two or more models to be very similar in

their fit of the data; Occam’s razor would suggest that the simpler of the similar

models be chosen for actual forecasting. It is important to realize that the selection

of an ARIMA model is an art and not a science.

The ForecastX™ software will automatically select a model using Box-Jenkins

methodology. The reported model may be examined in the two ways we have

shown for checking the adequacy of the model: examine the residual autocorrela-

tions and use the Ljung-Box test. Any model, whether chosen by the forecaster

manually or selected automatically by the ForecastX™ algorithm, is not necessar-

ily the optimal model. While the Ljung-Box or Q statistic is a reliable way to

check for appropriateness of the ARIMA model chosen, it is not the only diag-

nostic that should be applied. Don’t forget the other measures we have used up to

this point to determine if our models would likely make good forecasts.

Simply getting the Ljung-Box to an acceptable value (i.e., lower than the criti-

cal value in the chi-square table) while ignoring other, more important, measures

such as the MAPE or RMSE begs the question of what is a good ARIMA model?

Just as in assessing other forecasting techniques we have examined earlier in

this text, the researcher should pay close attention to whether the model fits the

past data well: Does the plot of actual and forecast values show that the forecasts

are a good fit? The use of adjusted R2 (higher is better) is used with ARIMA in the

same manner we have used it in the past. Likewise, measures of accuracy such as

MAPE (lower is better) and RMSE (lower is also better) are also useful in esti-

mating the degree of fit for an ARIMA model.

The principle of parsimony explained in Chapter 5 holds here as well. The best

advice is to “KIS”: Keep it simple. The less complex the model, the more useful it

is; simple models with few coefficients are best. With this in mind, the Akaike in-

formation criterion (and the Bayesian information criterion) can also be used with

ARIMA techniques to sort out the best model. An AIC or BIC will be lower for

better models, all other things being equal.

Using a holdout period to give the ARIMA model the acid test of forecasting

outside the range of the data set used for estimation is again a useful technique for

choosing among competing models.
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INTELSAT
At the International Telecommunications Satellite

Organization (INTELSAT), forecasting techniques

have been employed to assist in developing esti-

mates of future demand for international satellite

telecommunications. This is accomplished by using

as a base the demand projections provided by each

of the approximately 200 worldwide telecommuni-

cations entities located within 130 countries and

territories. Every year, a new 15-year projection,

which is needed for long-range financial and new

spacecraft planning, is developed.

The provision of international telephone satel-

lite trunk circuits represents a fundamental portion

of INTELSAT business. It is practically impossible for

INTELSAT to attempt to assemble accurate, world-

wide point-to-point forecasts, because of the num-

ber of technical and economic details required on

each system user. In order to develop such fore-

casts, an annual global traffic meeting (GTM) is

held, attended by each of the system users. During

this week-long meeting, users can discuss and ne-

gotiate with each of their worldwide correspon-

dents their estimates of future mutual traffic

demand. These discussions are based on the network

planning and preliminary traffic projections each

system user develops prior to the GTM. The GTM

delegates submit their mutually agreed-upon fore-

casts as they are completed, and these are entered

into a database (Oracle) for subsequent analysis

and processing.

In developing their forecast of satellite circuits,

established system users will typically make use of

quantitative forecasting methods, because there

exists a historical base of measured or known traf-

fic. In the new and emerging countries, such as the

members of the Commonwealth of Independent

States (formerly USSR), where there are either few

data or none available, the less-experienced system

users tend to accept the suggestions of their larger,

more established correspondent countries. In some

instances, user forecast estimates will not be deter-

mined from an analysis of computed demand, but

decided by the funds projected to be available to

purchase the necessary telecommunications equip-

ment.

An additional significant service category that

INTELSAT offers to telecommunications entities is

Comments from the Field An Overview 
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The final step in the Box-Jenkins process is to actually forecast using the cho-

sen model. ForecastX™ performs this function by substituting into the chosen

model in much the same manner as a standard regression forecast would be made.

It should be remembered that, as forecasts are made more than one period into the

future, the size of the forecast error is likely to become larger.

When new observations of the time series become available, the model should

be reestimated and checked again by the Box-Jenkins process; it is quite likely

that the parameters of the model will have to be recalculated, or perhaps a differ-

ent model altogether will be chosen as the best representation of the series. Con-

sistent errors observed in estimation as more data become available are an indica-

tion that the entire model may require a change.

ARIMA: A SET OF NUMERICAL EXAMPLES

Example 1
Return to the first column of Table 7.2; this is the column containing white noise

from which we constructed the other time series in the table. When we run an

The final step in the

Box-Jenkins process is

to actually forecast

using the chosen model.



leases for satellite capacity. These users’ inputs de-

scribe the technical operating qualities needed for

each lease, along with information on anticipated

start date, duration, and renewal potential. These

requests from all users are aggregated and sorted

by geographic region. The aggregated near-term

user data can provide, on a systemwide basis, fairly

accurate estimates of the potential growth trends

to be expected. The 15-year, long-term demand for

leases is developed using nonlinear regression

analysis, historical trend analysis, and the three- to

five-year near-term growth rate projections. Stud-

ies indicate that, historically, these projected trends

closely correlate to the realized system usages.

Recently, work was begun to look into method-

ologies to supplement the forecasts as provided by

the system users. Two approaches that are cur-

rently being investigated are econometric demand

models and stochastic time-series models. The de-

velopment of an econometric model is recognized

as a considerable endeavor, and one method that is

being considered is to define the model in terms of

geographic groups of countries so as to limit the

complexity of the demand function.

As a specific example of INTELSAT’s forecasting,

consider the occasional-use television channel-

hours provided to TV broadcasters needing satel-

lites to relay news coverage around the world.

Data on such occasional-use television satellite use

date back to 1983. A Box-Jenkins second-order au-

toregressive integrated moving-average model

[ARIMA (2, 1, 1)] was applied to the quarterly data

of usage statistics from 1983 through 1992Q4. The

parameters of the model were estimated by ex-

cluding the 1992 data (holdout period), and an

“ex-post” forecast was developed and compared

with the 1992 period. Having accepted the model

performance, an “ex-ante” forecast, for a future

time period, was generated.

For the future, work will continue on evaluation

and development of forecasting models appropri-

ate to each of INTELSAT’s many telecommunica-

tions services.

Source: This overview of forecasting at INTELSAT was
provided by Martin J. Kelinsky, forecasting manager,
INTELSAT, Washington, D.C.
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identify test on the white noise (that is, observe the autocorrelation and partial

autocorrelation functions), we should be able to see that this column actually con-

tains white noise. Figure 7.10 contains these correlograms; in each case there is no

distinctive pattern of spikes, or significant but descending values as we observed

with earlier time series.

In this case the appropriate model would be an ARIMA(0, 0, 0); in other words,

the best forecast would just be the mean value of the original time series (which is

about 0.47).

Example 2
The series in column 3 of Table 7.2 was constructed to be an AR(1) or ARIMA

(1, 0, 0) model. When we examined the autocorrelation and partial autocorrelation

functions in Figure 7.4, one of the characteristic patterns for an ARIMA(1, 0, 0)

model appeared; in addition, no trend is apparent in the series and so it is likely

that no differencing is required. We should then be able to specify an ARIMA(1,

0, 0) model and correctly model the time series.

Figure 7.11 presents the results from estimating an AR(1) or ARIMA(1, 0, 0)

model. Two tests will determine whether this model is an appropriate model: first,
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Obs         ACF         PACF

-----------------------------

1         .0228        .0228

2        .1366       .1371

3         .0475        .0552

4         .0313        .0098

5        .0055        .0074

6        .0149       .0122

7        .0420       .0440

8         .0117        .0107

9         .0757        .0661

10        .1134       .1132

11        .0031       .0255

12        .0465       .0078

Obs         ACF         PACF

-----------------------------

13        .0117       .0036

14        .0112       .0005

15         .0084       .0049

16         .0414        .0436

17         .0235       .0153

18        .0230       .0183

19        .0534       .0344

20        .0447      .0257

21        .1022       .1223

22         .0392        .0763

23         .0181       .0193

24        .0516       .0302

-------------------------------------------------------------------------––––

-------------------------------------------------------------------------––––

FIGURE 7.10
Autocorrelation

and Partial

Autocorrelation Plots

for the White Noise

Series in Table 7.2

(Example 1)

(c7t2)

 0.2000

 0.1500

 0.1000

 0.0500

0

0.2000

0.1500

0.1000

0.0500

ACF Upper limit Lower limit

 0.2000

 0.1500

 0.1000

 0.0500

0

0.2000

0.1500

0.1000

0.0500

PACF Upper limit Lower limit

9
5
%

 C
o
n
fi

d
en

ce

In
te

rv
al

9
5
%

 C
o
n
fi

d
en

ce

In
te

rv
al



ARIMA (Box-Jenkins)–Type Forecasting Models 369

FIGURE 7.11 AR(1) Model Estimate (Example 2) and Residual Autocorrelation Plot for the AR(1) Model

Estimate (c7t2)
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Audit Trail--Statistics

Accuracy Measure                                Value         Forecast Statistic           Value

-----------------------------------------------------  ----------------------------------

AIC                                            81.29  Durbin-Watson                 1.92

BIC                                            87.88         Mean                          0.94

Mean Absolute Percentage Error (MAPE)          33.12%         Max                           1.71

Sum Squared Error (SSE)                        17.23         Min                           0.24

R-Square                                       23.75% Sum Squared Deviation        22.60

Adjusted R-Square                              23.37%        Range                         1.47

Root Mean Square Error                          0.29  Ljung-Box                     9.98

Method Statistic                                Value

-----------------------------------------------------

Method selected                           Box-Jenkins

Model selected                 ARIMA(1,0,0) * (0,0,0)

T-test for nonseasonal AR                        8.00

T-test for constant                             15.18

(continued on next page)



the examination of the autocorrelation coefficients of the residual series, and

second, the Ljung-Box statistic.

The autocorrelation function for the residual series shows no distinctive

pattern; it appears to be white noise. This would imply that we have chosen the

correct model because when the original time series is modified by the model,

only white noise remains.

The Ljung-Box statistic offers further evidence that the correct model has been

chosen. The calculated Ljung-Box Q is 9.98 for 12 autocorrelations (which give

us 11 degrees of freedom). Checking the chi-square table shows the critical value

to be about 17.275 at the 0.10 significance level. (See the appendix to this chapter

for the chi-square table.) Since the calculated Ljung-Box is less than the table

value, the model is termed appropriate.

Example 3
The AR(2) series in column 4 of Table 7.2 may be examined in like manner.

Assume that we did not know the appropriate model for these data and examine

the identification data presented in Figure 7.12. The autocorrelation function

gradually falls over almost the entire 24 lags presented; the partial autocorrelation

function shows two clear spikes (and possibly a third). The pattern looks like that

in frame c of Figure 7.3; this identifies the tentative model as an AR(2) or

370 Chapter Seven

Obs               ACF               PACF

-----------------------------------------

1              .0283             .0283

2              .1375             .1384

3              .0547              .0643

4              .0266             .0033

5              .0124             .0030

6              .0163             .0156

7              .0336             .0365

8              .0166              .0160

9              .0827             .0755

10              .1140             .1148

11              .0011             .0330

12              .0531             .0104

13              .0185             .0071

14              .0175             .0055

15              .0129              .0074

16              .0454              .0456

17              .0272              .0217

18              .0278             .0240

19              .0493             .0274

20              .0492             .0272

21              .0952             .1135

22              .0366             .0787

23              .0167             .0232

24              .0457             .0254

-----------------------------------------

FIGURE 7.11

(continued)
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FIGURE 7.12
Autocorrelation 

and Partial

Autocorrelation Plots

for the AR(2) Series

in Table 7.2

(Example 3)   (c7t2)

Obs         ACF         PACF

-----------------------------

1         .9120        .9120

2         .8360        .0252

3         .7833        .1012

4         .7222       .0622

5         .6715        .0406

6         .6349        .0520

7         .6030        .0335

8         .5716        .0042

9         .5416       .0004

10         .4979       .0898

11         .4720        .0858

12         .4435       .0350

Obs         ACF         PACF

-----------------------------

13         .4063       .0358

14         .3834        .0399

15         .3710        .0511

16         .3540       .0045

17         .3313       .0365

18         .3047       .0493

19         .2871        .0514

20         .2746        .0182

21         .2506       .0508

22         .2345       .0242

23         .2182       .0394

24         .2014        .0124
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-----------------------------------------------------------------------–––––



ARIMA(2, 0, 0). No differencing appears to be needed, because there does not

appear to be any trend.

When the AR(2) model is run, however, the coefficients fail to damp to zero,

indicating a possible problem. In many cases like this, the use of a differencing

term eliminates the problem. Figure 7.13 presents the results of applying an

ARIMA(2, 1, 0) model to this series.

The autocorrelation function for the residuals shows largely white noise with

some significant values in the 24 lags. The Ljung-Box statistic is 4.41 for the

12 autocorrelations (which give us 10 degrees of freedom). The table value from

the chi-square table is about 15.987 at the 0.10 significance level; this would

indicate that the ARIMA(2, 1, 0) model chosen is an accurate representation of the

series.

The reader may wish to allow ForecastX™ to select a model for this series.

Because ForecastX™ uses an exhaustive iterative process, the results are often

more satisfactory than manual selection. In this case, ForecastX™ selects an

ARIMA(0, 1, 1) model that is significantly better than the model presented 

above.

Example 4
Consider finally the time-series data in Table 7.4 and assume we are given no clues

to its origin. Applying the Box-Jenkins methodology, we would first use an iden-

tification function to examine the autocorrelation and partial autocorrelation func-

tions; these are presented in Figure 7.14.

372 Chapter Seven

Audit Trail--Statistics

Accuracy Measure                               Value            Forecast Statistic           Value

----------------------------------------------------             ----------------------------------

AIC                                          228.31              Durbin-Watson                 2.29

BIC                                          234.91              Mean                          4.40

Mean Absolute Percentage Error (MAPE)          9.42%             Max                           6.36

Sum Squared Error (SSE)                       35.94              Min                           0.04

R-Square                                      83.61%             Sum Squared Deviation       219.27

Adjusted R-Square                             83.52%             Range                         6.32

Root Mean Square Error                         0.42              Ljung-Box                     4.41

Theil                                          0.83

Method Statistic                               Value

----------------------------------------------------

Method selected                          Box-Jenkins

Model selected         ARIMA(2,1,0) * (0,0,0)

T-test for nonseasonal AR                      2.09

T-test for nonseasonal AR                       7.04

(continued on next page)

FIGURE 7.13 ARIMA(2, 1, 0) Model Estimate (Example 3) and Residual Autocorrelation Plot for

ARIMA(2, 1, 0) Model Estimate (c7t2)
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FIGURE 7.13

(continued)

Obs            ACF            PACF

----------------------------------

1          .1460          .1460

2          .4033          .4338

3           .1423          .0069

4           .0405          .1332

5          .0088          .0466

6          .0477          .0909

7          .0819          .0954

8           .0904          .0004

9           .0342          .0163

10          .1466          .1166

11          .0411          .0091

12          .0845          .0156

Obs            ACF            PACF

----------------------------------

13          .0218           .0203

14          .0553          .0506

15          .0070          .0017

16          .0545           .0059

17          .0234           .0342

18          .0596          .0146

19          .0275          .0168

20          .0560          .0006

21          .0694          .0985

22          .0221          .0339

23          .0238          .0396

24          .0787          .0686
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The autocorrelation function in Figure 7.14 is entirely characteristic of a

series with a trend; that is, it shows dominant autocorrelations for the 24 lags

shown. Look at the actual numbers in the original series in Table 7.4 and observe

how they gradually creep upward in value. These data apparently have a trend

and are therefore nonstationary. Before the Box-Jenkins process can be contin-

ued, the series must be transformed to a stationary series. The most common

method of achieving stationarity is to take first differences of the original series.

Taking these first differences and again applying the identification program to

the resulting series gives the autocorrelation and partial autocorrelation func-

tions in Figure 7.15.
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TABLE 7.4 Example 4 Data Series (c7t4)

ARIMA

1 . 0.160000 35 . 22.7092 69 . 45.2098 103 . 74.0750 137 . 99.5781 171 . 126.771

2 . 0.544113 36 . 23.8470 70 . 46.0228 104 . 74.7422 138 . 100.248 172 . 128.169

3 . 1.35744 37 . 24.4950 71 . 46.5587 105 . 75.1037 139 . 101.396 173 . 129.070

4 . 1.81007 38 . 24.7342 72 . 47.2307 106 . 76.1463 140 . 102.778 174 . 130.199

5 . 2.55541 39 . 25.0825 73 . 47.9890 107 . 76.9680 141 . 103.951 175 . 131.363

6 . 3.84012 40 . 25.6879 74 . 49.2088 108 . 77.2119 142 . 105.195 176 . 132.159

7 . 4.91087 41 . 26.9086 75 . 50.5534 109 . 78.1276 143 . 106.493 177 . 132.600

8 . 5.28469 42 . 27.6985 76 . 51.9717 110 . 78.8356 144 . 107.602 178 . 132.974

9 . 5.49273 43 . 27.9592 77 . 52.5793 111 . 79.2148 145 . 108.921 179 . 133.496

10 . 5.62030 44 . 29.0047 78 . 52.7499 112 . 79.4252 146 . 109.953 180 . 134.223

11 . 6.22645 45 . 30.5438 79 . 53.1405 113 . 80.0609 147 . 110.384 181 . 134.735

12 . 6.81976 46 . 31.8912 80 . 53.3826 114 . 81.1088 148 . 111.074 182 . 135.831

13 . 7.03361 47 . 32.7602 81 . 54.3375 115 . 81.5818 149 . 112.112 183 . 136.911

14 . 7.93600 48 . 33.0873 82 . 55.8604 116 . 82.5728 150 . 113.163 184 . 137.315

15 . 9.28220 49 . 33.2974 83 . 57.3969 117 . 83.4074 151 . 113.903 185 . 137.517

16 . 9.99665 50 . 33.7224 84 . 58.2719 118 . 84.0063 152 . 114.280 186 . 137.859

17 . 10.3492 51 . 34.4206 85 . 59.1758 119 . 84.8875 153 . 115.156 187 . 138.897

18 . 10.7372 52 . 35.0356 86 . 60.4877 120 . 86.0977 154 . 116.267 188 . 139.979

19 . 11.6537 53 . 35.6169 87 . 61.6198 121 . 87.1734 155 . 116.826 189 . 140.426

20 . 12.3986 54 . 35.9999 88 . 62.2831 122 . 88.2206 156 . 117.822 190 . 141.150

21 . 12.7508 55 . 36.4831 89 . 62.6991 123 . 88.9342 157 . 118.461 191 . 141.867

22 . 13.0273 56 . 36.8279 90 . 63.5748 124 . 89.6704 158 . 118.806 192 . 142.224

23 . 13.7149 57 . 37.0943 91 . 64.3452 125 . 90.6897 159 . 119.679 193 . 143.023

24 . 14.6099 58 . 37.6164 92 . 65.0968 126 . 91.4675 160 . 120.198 194 . 144.299

25 . 15.1324 59 . 38.7882 93 . 65.4967 127 . 91.7072 161 . 120.534 195 . 145.293

26 . 15.6525 60 . 39.9187 94 . 66.4900 128 . 92.1157 162 . 121.418 196 . 146.425

27 . 16.3994 61 . 40.9344 95 . 67.6714 129 . 92.9512 163 . 121.895 197 . 147.339

28 . 17.3193 62 . 41.5441 96 . 68.1611 130 . 93.4450 164 . 122.030 198 . 148.166

29 . 18.1561 63 . 42.5229 97 . 68.2980 131 . 94.4363 165 . 122.893 199 . 149.491

30 . 19.0496 64 . 43.1073 98 . 68.9562 132 . 95.6413 166 . 123.409 200 . 150.761

31 . 19.8106 65 . 43.4389 99 . 70.3170 133 . 96.2160 167 . 123.898

32 . 20.7518 66 . 44.2401 100 . 71.5608 134 . 96.6762 168 . 124.924

33 . 21.2347 67 . 44.6401 101 . 72.3279 135 . 97.2641 169 . 125.618

34 . 21.5877 68 . 44.7896 102 . 73.2702 136 . 98.4736 170 . 125.903
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FIGURE 7.14
Autocorrelation 

and Partial

Autocorrelation

Plots for the Series in

Table 7.4 (Example 4)

(c7t4)
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Obs         ACF         PACF

-----------------------------

1         .9854        .9854

2         .9707       .0070

3         .9562       .0028

4         .9417       .0087

5         .9272       .0063

6         .9129       .0013

7         .8987       .0033

8         .8845       .0057

9         .8703       .0102

10         .8559       .0139

11         .8414       .0083

12         .8270       .0084

Obs         ACF         PACF

-----------------------------

13         .8124       .0129

14         .7979       .0043

15         .7836       .0017

16         .7692       .0104

17         .7547       .0138

18         .7401       .0124

19         .7255       .0043

20         .7111       .0051

21         .6966       .0116

22         .6820       .0107

23         .6674       .0100

24         .6527       .0096

-----------------------------------------------------------------------–––––

-----------------------------------------------------------------------–––––
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Obs         ACF         PACF

-----------------------------

1         .3906        .3906

2        .1063       .3054

3        .0021        .2231

4         .0481       .1128

5        .0046       .0684

6        .0336       .0772

7        .0488       .0006

8        .0209        .0480

9        .0266       .0352

10        .0812       .0763

11        .0333        .0702

12        .0359       .0366

Obs         ACF         PACF

-----------------------------

13         .0032        .0168

14        .0085       .0037

15         .0233        .0333

16         .0537        .0341

17         .0296       .0186

18        .0358       .0266

19        .0451       .0084

20        .0260       .0424

21        .0684       .0593

22         .0027        .1007

23         .0158       .0923

24        .0269        .0452

FIGURE 7.15
Autocorrelation

and Partial 

Autocorrelation Plots

for the Series in

Table 7.4 after First

Differences Have

Been Taken 

(Example 4)

(c7t4)
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The pattern exhibited here (after differencing) is similar to frame d of Fig-

ure 7.5; perhaps the model is a mixed model, with both AR and MA terms in

addition to the differencing required to make the series stationary. Figure 7.16

displays the results of estimating an ARIMA(3, 1, 2) model, that is, a model with

three AR terms, one degree of differencing, and two MA terms.
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Audit Trail--Statistics

Accuracy Measure                         Value      Forecast Statistic          Value

----------------------------------------------      ---------------------------------

AIC                                     84.73        Durbin-Watson                1.84

BIC                                    101.22      Mean                        72.55

Mean Absolute Percentage Error (MAPE)    1.12%       Max                        150.76

Sum Squared Error (SSE)                 17.01 Min                          0.16

R-Square                               100.00%      Sum Squared Deviation  392,388.59

Adjusted R-Square                      100.00% Range                      150.60

Root Mean Square Error                   0.29 Ljung-Box                    5.14

Method Statistic                         Value

----------------------------------------------

Method selected                    Box-Jenkins

Model selected         ARIMA(3,1,2) * (0,0,0)

T-test for nonseasonal AR                 7.79

T-test for nonseasonal AR                 0.02

T-test for nonseasonal AR                 1.04

T-test for nonseasonal MA                 2.43

T-test for nonseasonal MA                 4.46
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(continued on next page)

FIGURE 7.16 ARIMA(3, 1, 2) Model Estimate (Example 4) and Residual Autocorrelation Plot for the

ARIMA(3, 1, 2) Model Estimate (c7t4)



The results in the residual series autocorrelation function indicate that only

white noise remains after applying the model. The Ljung-Box statistic is 5.14 for

the 12 autocorrelations. The value from the chi-square table is about 12.017 for

7 degrees of freedom at the 0.10 significance level. We would then accept the

ARIMA(3, 1, 1) model specification as a “correct” forecasting model for this

series.
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-----------------------------------------

Obs               ACF                PACF

-----------------------------------------

1               .0769               .0769

2               .0013              .0046

3               .0244               .0248

4               .0390              .0355

5              .0019              .0076

6              .0075              .0072

7              .0334              .0343

8               .0074             .0114

9               .0721              .0718

10              .0910              .1013

11               .0108              .0291

12              .0410               .0340

13              .0071              .0009

14              .0112               .0175

15              .0175               .0125

16              .0510               .0510

17              .0214               .0057

18              .0027              .0099

19              .0614              .0474

20              .0460               .0399

21              .0976              .1097

22              .0469               .0784

23              .0142               .0054

24              .0317              .0355

-----------------------------------------
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FIGURE 7.16
(continued)



FORECASTING SEASONAL TIME SERIES

In many actual business situations the time series to be forecast are quite seasonal.

Recall that seasonality refers to a consistent shape in the series that recurs with

some periodic regularity (sales of lawn mowers during summer months, for

instance, are always higher than in winter months). This seasonality can cause

some problems in the ARIMA process, since a model fitted to such a series would

likely have a very high order. If monthly data were used and the seasonality

occurred in every 12th month, the order of the model might be 12 or more. There

is a process for estimating “seasonal MA” and “seasonal AR” terms for the

ARIMA process along with seasonal differencing, but the details of estimating

such terms are quite complicated. We will use the ability of ForecastX™ to esti-

mate these parameters with a total houses sold series.

TOTAL HOUSES SOLD

The total houses sold figures show trend and appear to exhibit a high degree of

seasonality. The mean of the series also shifts significantly from period to period

because of a strong seasonal variation. We will allow ForecastX™ to choose sea-

sonal AR and MA terms as appropriate.

The total houses sold data are seen to be very seasonal. Summer months are

seen as high sales months while winter months have far fewer sales.

Examining the autocorrelation and partial autocorrelation structure (Fig-

ure 7.17A), note the clear pattern of the autocorrelation plot. This pattern is very

much like the one in Figure 7.6 and this suggests that the series is nonstationary.

Using two degrees of normal differencing and one degree of seasonal differencing

on this series eliminates the pattern of nonstationarity. See Figure 7.17B and

examine the plot; the nonstationarity characteristic is now absent and the data

appear to be stationary. The high degree of seasonality is now clearly evident in

the significant spikes in the autocorrelation function every 12 months.

Figure 7.18 is the estimation for an ARIMA(1, 2, 1) (2, 1, 2) model. The second

set of P, D, Q values (usually shown as uppercase letters) represents two seasonal

AR and MA terms and one degree of seasonal differencing. The residual plot for

the first 24 lags of the residuals is also shown in Figure 7.18. Note that we now

appear to have only white noise in the residuals, and so the choice of model is

probably an accurate one. The Ljung-Box statistic for the first 48 lags is 22.54 and

confirms the accuracy of the model.

Calculating the RMSE for the model gives 4.65.

This example introduces the use of seasonal AR, MA, and differencing

terms. The ability of the ARIMA process to handle the complexity of periodic

and recurring events (i.e., seasonality) greatly increases the usability of the

ARIMA models. An ARIMA model incorporating seasonal terms, like the total

houses sold model represented in Figure 7.18, is usually designated as a model

of type ARIMA (p,d,q) (P,D,Q)s. The uppercase P, D, and Q refer to the

order of the seasonal terms, and the s refers to the length of the season used.
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Seasonality can cause

some problems in the

ARIMA process, since

a model fitted to such a

series would likely have

a very high order.
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FIGURE 7.17A Autocorrelation and Partial Autocorrelation Plots for the Total Houses Sold Series (000)

Note That the Series Appears to Be Nonstationary. (c7f17)
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Obs   ACF      PACF

--------------------

1   .9189    .9189

2   .8206   -.1522

3   .7145   –.0954

4   .6427    .1742

5   .6135    .2016

6   .5822 -.1177

7   .5787    .1889

8   .5695    .0304

9   .6048    .3311

10  .6624    .1963

11  .7116    .0362

12  .7392 -.0005

13  .6810   -.3476

14  .6016   -.0853

15  .5161    .0159

16  .4542   -.0515

17  .4178   -.0528

18  .3765 -.0837

19  .3627    .0617

20  .3563    .0477

21  .3928    .0838

22  .4509    .0663

23  .5050    .0899

24  .5366    .0299

--------------------

--------------------
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Obs    ACF      PACF

-------------------–

1   -.5120   -.5120

2    .0333   -.3101

3   -.0320   -.2526

4   -.0104   -.2366

5   -.0138   -.2512

6    .0084   -.2597

7    .0451   -.1998

8   -.0257   -.2050

9   -.0190   -.2640

10    .0566  -.2168

11   .1773    .2706

12  -.4034   -.0787

13   .2028   -.0776

14   .0104    .0484

15  -.0575   -.0326

16   .0266   -.1155

17   .0508   -.0807

18  -.0065   -.0453

19  -.0305   -.0152

20  -.0391   -.1386

21   .1110   -.0180

22  -.1437   -.0898

23   .1000    .1880

24  -.0633   -.0825

FIGURE 7.17B Autocorrelation and Partial Autocorrelation Plots for the Total Houses Sold Series after

Two Degrees of Normal Differencing and One Degree of Seasonal Differencing (000)

Note That the Series Now Appears to Be Stationary. (c7f17)
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Audit Trail--Statistics

Accuracy Measures                          Value   Forecast Statistics       Value

------------------------------------------------   -------------------------------

AIC                                    1,926.74    Durbin Watson(1)           2.19

BIC                                    1,949.42   Mean                      60.57

Mean Absolute Percentage Error (MAPE)      6.38%  Max                      123.00

R-Square                                  92.70%  Min                       27.00

Adjusted R-Square                         92.59% Sum Squared Deviation 95,833.37

Root Mean Square Error                     4.65   Range                     96.00

Theil                                      0.69  Ljung-Box                 22.54

Method Statistics                           Value

-------------------------------------------------

Method selected                       Box-Jenkins  Recall that with a seasonal

Model selected             ARIMA(1,2,1) * (2,1,2)  monthly model there are 48

T-Test for nonseasonal AR                   -0.82 lags used to calculate the 

T-Test for seasonal AR                      -1.69  Ljung-Box.

T-Test for seasonal AR                      -3.39

T-Test for nonseasonal MA                   10.64

T-Test for seasonal MA                       1.80

T-Test for seasonal MA                       0.97

FIGURE 7.18
Total Houses 

Sold Model Estimate

of an ARIMA(1, 2, 1)

(2, 1, 2) Model

(c7f17)

--------------------

Obs     ACF     PACF

--------------------

1   -.0983   -.0983

2   -.0981   -.1088

3   -.0988   -.1228

4   -.1166   -.1585

5   -.0046   -.0688

6    .0272   -.0315

7    .0273   -.0159

8   -.0682   -.0998

9    .0163   -.0161

10    .0706    .0546

11   -.0565   -.0587

12    .1036    .0916

13   -.0060    .0233

14   -.0563   -.0228

15   -.0383   -.0319

16    .0286    .0317

17    .0639    .0682

18    .0266    .0467

19   -.1167   -.1156

20   -.0698   -.0683

21    .0157    .0001

22    .0295   -.0271

23   -.0236   -.0753

24    .0184   -.0255

-------------------



If you have ever driven around the ring road cir-

cling Atlanta or the M25 circling London, you

know that congestion can be a problem. In both

the United States and the United Kingdom, how-

ever, steps have been taken to reduce the costs

of congestion not by changing the physical ca-

pacity of the existing roadways, but by utilizing

them more efficiently. Intelligent transportation

systems (ITSs) focus on improving operational ef-

ficiency of roadways by effectively using infor-

mation about dynamic system conditions.

Much of the information about current system

conditions is collected by sensors embedded in roads.

The information is not only monitored but also col-

lected and archived. Instrumentation on transporta-

tion networks became widespread throughout the

world in the final years of the 20th century; the effort

to collect data continues unabated.

The efficient use of the collected data requires ac-

curate short-term forecasts of roadway conditions. If

there are no such forecasts, traveler information and

transportation management systems simply react

only to currently sensed conditions. The result is that

the transportation management systems are essen-

tially using naive forecasts to manage the system;

current conditions become the forecast of future

conditions. According to professors Billy Williams of

North Carolina State University and Lester Hoel of

the University of Virginia, this is obviously a poor as-

sumption, especially when traffic conditions are

transitioning into or out of congestion.

Williams and Hoel have championed the use of

ARIMA forecasting techniques to improve the use

of information collected by ITS sensors. They see

the need for accurate system forecasts to predict

traffic conditions as the key factor in the deploy-

ment of smoothly functioning intelligent trans-

portation systems. Their paper in the Journal of

Transportation Engineering presents their case for

a specific type of ARIMA model to predict traffic

conditions using fixed in-road sensors. Unlike the

data we have been using that tends to be collected

quarterly or monthly, Williams and Hoel use data

that is collected at intervals ranging from two sec-

onds to two minutes. They selected a discrete time

period to work with that they felt was appropriate

to fitting traffic patterns; 15-minute intervals were

created by averaging the higher periodicity data.

They believed longer intervals would not create

the necessary correlations to create stable models

of traffic flow.

The problem they tackled was then one of pro-

ducing short-term (i.e., 15-minute) forecasts of var-

ious measures of traffic flow based only upon past

observations. Measures of traffic flow included ve-

hicle flow rate per hour, average speed of vehicles,

and lane occupancy (the percentage of time a vehi-

cle is present in sensor range).

Not surprisingly, Williams and Hoel first exam-

ined the data for stationarity. Their inspection re-

vealed little if any trend week to week, but a high

degree of seasonality from week to week. This sug-

gested the use of a “season” of 672 periods. This

seemingly strange period was arrived at by using

15-minute intervals and assuming that seasonal

patterns would probably occur weekly (i.e., 4 inter-

vals per hour  24 hours per day  7 days per week

 672 periods).

The data used to examine the accuracy of an

ARIMA forecast was collected from the Georgia De-

partment of Transportation 10048 sensor located on

northbound I-75. The empirical results produced an

ARIMA (1,0,1) (0,1,1)672 model. The model allowed

recursive forecasts for a number of periods into the

future. The acid test of this type of forecasting pro-

cedure is to examine whether it is superior to those

methods now in use in the state of Georgia.

Willams and Hoel used root-mean-squared

error, mean absolute percentage error, and mean

absolute deviation to compare their ARIMA fore-

casts with forecasts from models currently in use.

With both measures the ARIMA technique proved

to be a superior forecast:

I-75 Station 10048 Sensor

Model RMSE MAPE MAD

Seasonal ARIMA 141.73 8.97 75.02
Random walk 180.02 10.10 95.05
Historical average 192.63 12.85 123.56
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(continued on next page)



The conclusion was that “the seasonal ARIMA

models provided the best forecasts based on all

prediction performance statistics.” The authors

suggested that ITS units begin using ARIMA fore-

casting with updated parameter estimates as

new data are collected. The more accurate fore-

casts provided by ARIMA would be useful in

optimizing traffic flows in many transportation

environments.

Source: Billy M. Williams and Lester A. Hoel, “Modeling
and Forecasting Vehicular Traffic Flow as a Seasonal
ARIMA Process: Theoretical Basis and Empirical Results,”
Journal of Transportation Forecasting 129
(November–December 2003), pp. 664–72.

Intelligent Transportation Systems (continued) 2
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Since our total houses sold model uses monthly data and the actual seasonality

(i.e., recurring pattern) appears to be 12 periods in length, the s in our model is

12. The full model in Figure 7.18 would then be designated as an ARIMA

(1,2,1) (2,1,2)12.

The complete designation for an ARIMA model would then be:

ARIMA(p, d, q) (P, D, Q)s

where:

p  Level of autoregressions

d  Level of normal differencing

q  Level of moving averages

P  Seasonal level of autoregressions

D  Level of seasonal differencing

Q  Seasonal level of moving averages

s  Period of seasonality (usually 4 for quarters, 12 for months, etc.)

When ForecastX™ calculates a seasonal model like this one, the correspon-

ding Ljung-Box statistic is reported with a number of lags equaling 4 times the

number of seasons; in this case there would be 4 times 12 (or 48) lags used in the

calculation of the reported Ljung-Box statistic. The appropriate degrees of

freedom to use in evaluating this statistic would be m p q P Q. Thus, the

degrees of freedom for this example would be 48  1  1  2  2  42 degrees

of freedom. The calculated Ljung-Box of 22.54 is smaller than the table value

(imputed, because 42 degrees of freedom is outside the range of the chi-square

table in the appendix to this chapter). This means that the model estimated is an

appropriate model.
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Integrative Case

Forecasting Sales of The Gap

The sales of The Gap stores for the 88 quarters covering 1985Q1 through 2006Q4 are once again shown below. From

this graph it is clear that The Gap sales are quite seasonal and are increasing over time. Thus, an optimal ARIMA

model will likely require some seasonal terms. Recall that the 2006 data are used as a holdout period.
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Gap Sales ($000) 1985 through 2005

Gap sales (000)

(c7Gap)

Case
Questions

1. From your previous experience plotting The Gap sales over time, what ARIMA tech-

niques should you keep in mind when approaching this data?

2. Prepare a plot of the autocorrelation and partial autocorrelation coefficients of The Gap

sales data. Does this correlogram suggest an ARIMA approach that could be used for

forecasting The Gap sales?

3. Apply a model suggested by the correlogram plot and calculate the RMSE for your

forecast of the four quarters of 2006. Recall that the actual 2004 sales (in thousands)

were: Quarter 1—3,441,000; Quarter 2—3,716,000; Quarter 3—3,856,000; Quarter 

4—4,930,000.

Solutions
to Case
Questions

1. The seasonal pattern and trend should now be familiar. These data will not be station-

ary, and some adjustment will have to be made to obtain stationarity. The strong sea-

sonal pattern could require some adjustment. It is also the case that the pattern of the

data is quite regular and some ARIMA technique should do an excellent job of fitting a

model.

2. The correlogram for the unadjusted The Gap sales shows the possibility of nonstation-

arity (see Figure 7.19). Since we already know that the data are seasonal, the nonsta-

tionarity and the seasonality might be accounted for by using seasonal differencing.



3. While a number of models may perform quite well, the ARIMA(1, 0, 2) (0, 2, 1) model

seems to provide a good fit. The model estimation in Figure 7.20 indicates that the

Ljung-Box statistic is 29.95 for the 36 autocorrelations, which confirms the accuracy of

the model.

The correlogram of the residuals to the model in Figure 7.20 shows only white

noise. Also note that the Durbin Watson (4) is just 2.26, showing little residual effects

of seasonality.

The actual and predicted values for 2000Q1 through 2006Q4 are shown below. The

RMSE for the four holdout quarters is: RMSE 121,968.This is about a 3.1 percent error

based on the average quarterly sales (in thousands of dollars) for the year (3,985,750).
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FIGURE 7.19 Autocorrelation and Partial Autocorrelation Plots for The Gap Sales ($000, for the Historical

Period of 1985Q1 through 2005Q4) (c7Gap)
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1 3 5 7 9 11

ACF and PACF of Gap Sales (000)

13 15 17 19 21 23

1 3 5 7 9 11 13 15 17 19 21 23

Obs  ACF    PACF

--------------------

1  .9121 .9121

2  .8753 .2579

3  .8637 .2297

4  .8950 .4195

5  .8053   .5675

6  .7612   .0099

7  .7432 .0763

8  .7645 .1184

9  .6752   .2402

10  .6273   .0415

11  .6039 .0041

12  .6195 .0754

13  .5343   .1003

14  .4851   .0541

15  .4628 .0297

16  .4743 .0029

17  .3977   .0046

18  .3494   .0616

19  .3246   .0515

20  .3252   .0959

21  .2452 .0808

22  .1918   .0336

23  .1659 .0160

24  .1628   .0260

--------------------

--------------------
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USING FORECASTX™ TO MAKE ARIMA
(BOX-JENKINS) FORECASTS

What follows is a brief discussion of how to use ForecastX™ for preparing an ARIMA

(Box-Jenkins) forecast. As with other methods, start with your data in an Excel spreadsheet

in column format, such as the sample of The Gap data shown in the table below. Once you

have your data in this format, while in Excel highlight the data you want to use, then start

ForecastX™. The dialog box to the right of the table appears.

A Sample of The Gap Data in
Column Format

Date The Gap Sales ($000)

Mar-1994 751,670

Jun-1994 773,131

Sep-1994 988,346

Dec-1994 1,209,790

Mar-1995 848,688

Jun-1995 868,514

Sep-1995 1,155,930

Dec-1995 1,522,120

Mar-1996 1,113,150

Jun-1996 1,120,340

Sep-1996 1,383,000

Dec-1996 1,667,900

Mar-1997 1,231,186

Jun-1997 1,345,221

Sep-1997 1,765,939

Dec-1997 2,165,479

Mar-1998 1,719,712

Jun-1998 1,904,970

Sep-1998 2,399,900

Dec-1998 3,029,900

Set the Dates window to the periodicity of your data (Quarterly for this example); then

click the Forecast Method tab at the top and the following appears.
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Click the down arrow in the Forecasting Technique window and select Box Jenkins.

You can enter values for the AR, I, and MA terms, or you can leave those spaces blank and

let ForecastX™ select a suggested set of values.

Next click the Statistics tab and the Statistics dialog box will appear.

Here you select the statistics you want to have reported. You will want to experiment

with various selections. Use the More button to select the Ljung-Box statistic.We have

enabled 36 lags in this example.



Next click the Reports tab and the Report Options dialog box will appear.

As you place a check next to each of the five boxes for various reports, the options

available in that report will appear below. We suggest using the Audit report, which pro-

vides both graphic and text output that is quite complete.

Again you will want to experiment with the various reports to get a feel for the ones that

will give you the output you want for your specific application.

After you click Finish! in the lower right corner, ForecastX™ will complete the fore-

cast, and as part of the output, will identify the exact model used. Reports will be put in

new Excel workbooks—Book 2, Book 3, and so forth. The numbers of the books will vary

depending on what you have done in Excel up to that point.
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Exercises 1. A student collects data on the use of the university library on an hourly basis for eight

consecutive Mondays. What type of seasonality would you expect to find in these data?

2. When would you use differencing and when would you employ seasonal differencing?

3. Evaluate the following statement: “If an ARIMA model is properly constructed, it has

residual autocorrelations that are all equal to zero.”

4. Of what use is the chi-square test as applied to residual autocorrelations?

5. a. Calculate and display the first 50 autocorrelations for the four data series in the ac-

companying table, labeled A, B, C, and D; consider each of the four data series to be

a quarterly time series. How many of the autocorrelations fall outside the 95 percent

confidence interval (positive or negative)?

b. Is there a pattern to those autocorrelation coefficients falling outside the 95 percent

confidence interval?

c. Calculate and display the first 50 partial autocorrelations for the 100 time-series

observations. How many of the partial autocorrelation coefficients fall outside the

95 percent confidence interval?

d. Is there a pattern to those partial autocorrelation coefficients falling outside the

95 percent confidence interval?

e. Estimate the appropriate model as determined from your inspections carried out in

parts a through d and forecast for four quarters into the future. Calculate the RMSE

for each model.

EXERCISE 5 Four Data Series

A B C D A B C D

1.62 0.38 0.68 1.11

1.55 1.02 0.71 2.27

1.59 0.70 1.22 3.71

1.55 1.16 1.29 4.52

1.10 1.11 1.53 5.04

0.82 0.93 1.52 6.10

1.06 1.32 1.53 7.61

0.69 0.78 2.08 8.89

0.74 0.50 2.57 9.73

(continued on next page)

0.73 0.72 3.15 10.85

0.44 0.69 3.71 11.99

0.98 0.41 3.76 12.87

0.62 1.16 3.73 13.44

0.44 1.35 3.49 14.26

0.66 0.98 3.94 14.91

0.83 1.21 4.01 15.37

1.25 0.69 3.97 15.90

0.89 0.35 4.35 17.10
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EXERCISE 5 Four Data Series (continued)

A B C D A B C D

1.02 0.70 3.84 18.39

0.72 0.74 3.60 18.98

0.79 0.52 3.43 19.50

0.77 0.26 3.43 20.21

1.18 0.21 3.69 20.85

1.26 1.06 3.85 21.69

0.81 1.27 4.20 22.69

1.05 1.63 4.05 23.56

0.63 0.98 4.33 24.65

0.71 0.98 4.76 25.92

1.02 1.13 4.79 26.87

0.79 1.30 4.69 28.07

1.22 1.61 4.65 29.63

1.01 1.31 4.49 30.41

0.43 1.20 4.91 31.42

0.27 1.26 5.01 32.66

0.41 1.32 4.59 33.49

0.94 0.85 4.62 34.23

1.42 1.13 4.83 35.00

1.22 1.24 4.86 36.27

1.31 1.08 4.53 37.07

0.67 0.85 4.44 37.25

0.22 1.32 4.74 38.10

0.50 1.53 4.54 39.51

0.64 1.75 4.13 40.20

0.41 1.11 4.22 40.27

0.40 0.80 3.97 40.68

1.13 0.41 4.29 41.19

1.06 0.93 4.22 41.58

0.31 0.66 4.34 42.23

0.67 1.29 4.85 43.33

0.68 1.11 4.39 44.27

0.72 1.16 4.74 44.89

0.58 1.52 5.09 45.41

0.74 1.28 4.83 45.69

1.14 0.76 5.21 46.39

1.42 0.74 4.74 46.96

0.94 0.53 4.90 47.34

0.59 0.44 5.06 47.61

0.32 0.92 5.29 48.21

0.68 0.57 4.90 48.77

1.40 0.33 4.90 49.17

1.52 0.99 4.80 49.85

1.20 1.24 4.88 50.55

1.33 0.77 4.46 51.55

0.69 0.48 5.09 52.20

0.30 1.16 4.56 53.06

0.49 0.62 4.37 54.46

0.43 0.83 4.20 55.70

0.95 0.62 4.65 56.51

1.50 1.11 4.37 57.41

1.58 0.73 4.67 58.81

0.92 0.61 5.00 60.10

0.40 0.90 5.03 61.00

0.47 1.01 4.78 61.69

1.03 1.01 5.21 62.63

1.33 0.61 5.31 63.12

1.11 1.13 5.14 63.28

0.60 1.05 5.18 63.52

0.30 0.89 4.92 64.08

0.93 1.21 5.24 64.45

0.92 1.48 4.80 64.62

0.85 1.62 5.37 64.78

0.52 1.15 5.19 65.52

0.07 1.43 4.71 66.18

0.41 1.33 4.62 67.16

1.21 1.26 4.42 68.63

0.96 1.16 5.00 69.67

0.31 1.04 4.53 70.17

0.33 1.19 4.44 70.53

0.52 1.22 4.56 71.32

0.77 0.70 4.48 71.99

0.85 0.74 4.88 72.53

1.27 0.73 4.70 72.89

1.48 1.00 4.92 73.81

1.42 1.39 4.74 74.74

1.29 1.51 4.31 75.15

0.87 1.11 4.74 75.81

0.86 1.42 4.64 76.86

0.76 1.38 4.39 77.83

0.36 1.68 4.15 78.95

0.17 1.49 4.35 80.27

6. a. Calculate and display the first 50 autocorrelations for the four data series in the table

for this exercise, labeled A, B, C, and D; consider each of the four data series to be a

quarterly time series. How many of the autocorrelations fall outside the 95 percent

confidence interval (positive or negative)?

b. Is there a pattern to those autocorrelation coefficients falling outside the 95 percent

confidence interval?



c. Calculate and display the first 50 partial autocorrelations for the 100 time-series

observations. How many of the partial autocorrelation coefficients fall outside the

95 percent confidence interval?

d. Is there a pattern to those partial autocorrelation coefficients falling outside the

95 percent confidence interval?

e. Which frame in Figures 7.1, 7.3, and 7.5 does this pattern of autocorrelation and

partial autocorrelation coefficients most closely resemble?

f. Estimate the appropriate model as determined from your inspections carried out in

parts a through e, and forecast for four quarters into the future. Calculate the RMSE

for each model.
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EXERCISE 6 Four Data Series

A B C D A B C D

0.77 0.37 0.20 0.93

0.31 0.32 0.93 1.24

0.88 0.95 1.62 2.12

1.48 1.40 1.66 3.60

0.99 1.04 2.41 4.59

1.16 1.44 2.63 5.75

1.26 1.33 2.75 7.01

0.86 1.10 2.64 7.87

0.48 0.73 2.66 8.35

0.39 0.63 2.75 8.74

0.55 0.68 2.97 9.29

0.76 0.85 2.84 10.05

0.56 0.63 3.55 10.62

1.12 1.29 3.55 11.74

1.18 1.14 3.30 12.91

0.45 0.68 3.16 13.37

0.21 0.48 3.13 13.58

0.36 0.50 3.71 13.93

1.06 1.13 3.77 15.00

1.17 1.12 3.50 16.17

0.50 0.67 3.86 16.67

0.74 0.99 3.72 17.41

0.78 0.82 3.54 18.19

0.39 0.57 3.92 18.58

0.82 0.99 4.31 19.39

1.35 1.35 4.28 20.74

1.08 1.16 4.70 21.82

1.18 1.42 4.56 23.00

1.00 1.12 4.71 24.00

1.07 0.97 4.68 43.00

1.00 1.11 4.64 44.01

0.90 1.05 4.56 65.15

1.11 1.30 4.57 46.02

0.71 0.81 4.46 46.73

0.38 0.68 4.46 47.12

0.61 0.76 4.71 47.73

0.99 1.07 4.69 48.72

0.99 1.04 4.61 49.71

0.74 0.86 4.87 76.58

0.28 0.46 4.11 50.73

0.27 0.49 3.95 50.99

0.42 0.49 3.72 51.42

0.30 0.38 3.49 51.72

0.19 0.29 3.33 51.91

0.21 0.28 4.01 52.12

1.08 1.13 3.91 53.21

1.12 0.99 4.09 54.33

0.85 1.05 3.94 55.18

0.68 0.82 4.50 55.86

1.13 1.33 4.30 56.99

1.00 1.03 4.03 57.99

0.38 0.64 4.61 58.37

1.02 1.25 4.11 59.39

0.73 0.71 4.11 60.12

0.36 0.66 4.20 60.48

0.71 0.83 3.81 61.19

0.40 0.47 3.56 61.59

0.09 0.29 3.57 61.69

0.87 1.14 5.19 24.87

1.38 1.55 5.26 26.25

1.37 1.46 5.24 27.62

1.01 1.26 5.63 28.62

1.28 1.54 5.77 29.90

1.42 1.55 5.43 31.32

0.82 1.04 5.36 32.13

0.59 0.93 5.15 32.72

0.60 0.78 5.05 33.32

0.59 0.75 5.56 33.91

0.35 0.46 4.05 62.04

1.06 1.07 4.12 63.09

1.16 1.10 4.19 64.25

0.90 1.02 4.97 44.91

1.15 1.33 4.23 66.30

0.76 0.86 4.18 67.06

0.45 0.74 4.59 67.51

1.03 1.18 5.02 68.54

(continued on next page)



EXERCISE 6 Four Data Series (continued)

A B C D A B C D

1.54 1.56 5.40 70.08

1.65 1.75 5.44 71.73

1.25 1.37 5.22 35.16

1.02 1.01 5.65 36.18

1.11 1.39 5.85 37.29

1.47 1.55 5.53 38.76

0.90 1.08 5.23 39.66

0.40 0.73 5.14 40.06

0.50 0.73 4.68 40.56

0.29 0.40 4.47 40.86

0.19 0.37 4.07 41.05

0.12 0.19 4.50 41.17
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0.76 0.85 4.51 41.93

1.33 1.53 4.91 73.07

0.48 0.79 5.33 73.55

0.82 1.20 5.62 74.37

1.48 1.51 5.11 75.84

0.74 0.91 4.18 50.45

0.25 0.60 4.81 76.83

0.50 0.68 5.25 77.33

1.18 1.25 5.45 78.51

1.45 1.44 5.37 79.95

1.08 1.23 5.35 81.03

0.86 1.11 5.02 81.89

7. a. An autoregressive model is given by:

Yt 20.58  0.046Yt–1  0.019Yt–2

where Yt sales of a product. Explain the meaning of the terms in this autoregres-

sive model.

b. Write the expressions for the following models:

AR(3) MA(4)

AR(4) ARMA(1, 2)

MA(3) ARIMA(2, 1, 2)

8. A twenty-foot equivalent unit (TEU) is a standard measurement of volume in container

shipping. The majority of containers are either 20 or 40 feet in length. A 20-foot con-

tainer is 1TEU; a 40-foot container is 2TEUs.Although the height of containers can also

vary, this does not affect the TEU measurement. The following data are the total number

of containers shipped from the port of Los Angeles for the years 1995 through 2007.

Jan-95 123,723

Feb-95 99,368

Mar-95 118,549

Apr-95 123,411

May-95 114,514

Jun-95 114,468

Jul-95 125,412

Aug-95 122,866

Sep-95 115,473

Oct-95 121,523

Nov-95 104,880

Dec-95 103,821

Jan-96 111,494

Feb-96 99,785

Mar-96 96,906

Apr-96 111,204

May-96 115,513

Jun-96 119,422

Jul-96 129,984

Aug-96 134,296

Sep-96 134,657

Oct-96 144,430

Nov-96 128,521

Dec-96 122,428

Jan-97 127,065

Feb-97 112,733

Mar-97 113,063

Apr-97 129,797

May-97 136,712

Jun-97 140,220

Jul-97 143,756

Aug-97 143,389

Sep-97 143,700

Oct-97 144,425

Nov-97 131,877

Dec-97 134,315

Jan-98 125,930

Feb-98 122,976

Mar-98 154,947

Apr-98 154,522

May-98 167,204

Jun-98 159,638

Date Total TEUs Date Total TEUs Date Total TEUs

(continued on next page)
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Jul-98 158,948

Aug-98 171,152

Sep-98 157,267

Oct-98 169,364

Nov-98 158,255

Dec-98 140,165

Jan-99 142,116

Feb-99 142,080

Mar-99 141,926

Apr-99 153,559

May-99 182,975

Jun-99 169,682

Jul-99 185,017

Aug-99 188,281

Sep-99 187,081

Oct-99 208,163

Nov-99 184,662

Dec-99 178,493

Jan-00 194,180

Feb-00 175,890

Mar-00 188,438

Apr-00 220,157

May-00 217,749

Jun-00 220,071

Jul-00 243,695

Aug-00 250,551

Sep-0 227,848

Oct-00 260,469

Nov-00 210,209

Dec-00 203,021

Jan-01 212,323

Feb-01 163,332

Mar-01 217,284

Apr-01 221,465

May-01 213,860

Jun-01 243,053

Jul-01 250,344

Aug-01 261,705

Sep-01 275,559

Oct-01 274,954

Nov-01 241,730

Dec-01 225,886

Jan-02 220,810

Feb-02 244,167

Mar-02 229,954

Apr-02 276,373

May-02 284,385

Jun-02 301,447

Jul-02 271,933

Aug-02 339,690

Sep-02 330,967

Oct-02 265,218

Nov-02 301,333

Dec-02 306,099

Jan-03 276,482

Feb-03 274,740

Mar-03 298,495

Apr-03 326,709

May-03 348,276

Jun-03 305,892

Jul-03 331,741

Aug-03 360,046

Sep-03 350,476

Oct-03 372,112

Nov-03 338,379

Dec-03 306,984

Jan-04 345,412

Feb-04 247,710

Mar-04 340,748

Apr-04 345,339

May-04 367,128

Jun-04 347,056

Jul-04 365,901

Aug-04 344,109

Sep-04 324,346

Oct-04 352,718

Nov-04 340,051

Dec-04 283,268

Jan-05 305,102

Feb-05 294,022

Mar-05 262,173

Apr-05 336,087

May-05 319,472

Jun-05 340,582

Jul-05 356,716

Aug-05 349,655

Sep-05 356,912

Oct-05 375,051

Nov-05 332,037

Dec-05 328,244

Jan-06 327,009

Feb-06 251,812

Mar-06 345,401

Apr-06 370,171

May-06 368,864

Jun-06 387,957

Jul-06 413,357

Aug-06 414,004

Sep-06 431,283

Oct-06 421,694

Nov-06 390,209

Dec-06 365,591

Jan-07 367,096

Feb-07 358,601

Mar-07 323,472

Apr-07 375,512

May-07 368,874

Jun-07 393,187

Jul-07 387,573

Aug-07 379,027

Sep-07 407,915

Oct-07 393,948

Nov-07 383,241

Dec-07 346,140

Date Total TEUs Date Total TEUs Date Total TEUs

(continued)

a. Plot the series. What can you learn from examining this plot?

b. Calculate and display the first 24 autocorrelations for the series. What do the ACF

and PACF suggest about the series?

c. Suggest and estimate an optimal set of differencing to use with the series.

d. Estimate the ARIMA model that you believe to be a good candidate for forecasting

container shipments. It may help to specify the seasonality as “12.” Test the Ljung-

Box statistic and report your findings. Finally, plot the first 24 autocorrelations of

the residuals to your best model.



9. The data below shows the average hourly megawatts of electricity used in New York

City for the years 1993 through 2004.
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Month
Mean
Usage Month

Mean
Usage

Jan-93 17,074.66

Feb-93 17,822.51

Mar-93 16,900.10

Apr-93 15,417.28

May-93 14,986.03

Jun-93 16,929.04

Jul-93 18,694.29

Aug-93 18,332.28

Sep-93 16,468.28

Oct-93 15,474.31

Nov-93 16,028.48

Dec-93 17,155.07

Jan-94 18,404.18

Feb-94 17,884.69

Mar-94 16,754.90

Apr-94 15,277.75

May-94 15,040.02

Jun-94 17,836.91

Jul-94 19,349.14

Aug-94 17,734.60

Sep-94 16,015.75

Oct-94 15,382.20

Nov-94 15,941.85

Dec-94 16,833.42

Jan-95 17,056.81

Feb-95 17,695.12

Mar-95 16,351.09

Apr-95 15,495.87

May-95 15,291.26

Jun-95 17,252.93

Jul-95 19,154.12

Aug-95 19,166.08

Sep-95 16,178.87

Oct-95 15,619.46

Nov-95 16,434.09

Dec-95 17,627.00

Jan-96 17,932.43

Feb-96 17,669.17

Mar-96 16,816.22

Apr-96 15,702.85

May-96 15,478.36

Jun-96 17,209.71

Jul-96 17,770.67

Aug-96 18,314.77

Sep-96 16,906.53

Oct-96 15,745.02

Nov-96 16,486.24

Dec-96 16,880.53

Jan-97 17,860.97

Feb-97 17,030.63

Mar-97 16,586.05

Apr-97 15,712.44

May-97 15,236.65

Jun-97 17,608.56

Jul-97 18,964.37

Aug-97 18,145.33

Sep-97 16,788.25

Oct-97 16,103.79

Nov-97 16,499.30

Dec-97 17,389.77

Jan-98 17,056.34

Feb-98 17,036.37

Mar-98 16,833.40

Apr-98 15,739.52

May-98 16,059.23

Jun-98 17,779.28

Jul-98 19,460.53

Aug-98 19,705.33

Sep-98 17,751.83

Oct-98 16,035.26

Nov-98 16,490.67

Dec-98 17,349.93

Jan-99 18,014.58

Feb-99 17,472.08

Mar-99 17,188.13

Apr-99 15,811.44

May-99 15,913.57

Jun-99 19,271.75

Jul-99 21,652.70

Aug-99 19,652.57

Sep-99 18,180.01

Oct-99 16,478.46

Nov-99 16,739.43

Dec-99 17,742.58

Jan-00 18,485.60

Feb-00 17,955.94

Mar-00 16,834.31

Apr-00 16,218.50

May-00 16,656.62

Jun-00 18,980.76

Jul-00 18,745.26

Aug-00 19,480.04

Sep-00 18,018.60

Oct-00 16,607.91

Nov-00 17,231.95

Dec-00 18,737.37

Jan-01 18,439.91

Feb-01 18,069.88

Mar-01 17,608.38

Apr-01 16,140.74

May-01 16,556.55

Jun-01 19,185.78

Jul-01 19,157.38

Aug-01 21,327.08

Sep-01 17,540.95

Oct-01 16,663.81

Nov-01 16,624.80

Dec-01 17,267.98

Jan-02 17,808.09

Feb-02 17,404.08

Mar-02 16,809.13

Apr-02 16,561.17

May-02 16,168.09

Jun-02 18,691.46

Jul-02 21,372.06

Aug-02 21,300.47

Sep-02 18,505.90

Oct-02 17,157.60

Nov-02 17,201.31

Dec-02 18,362.16

Jan-03 19,065.90

Feb-03 18,741.54

Mar-03 17,400.20

Apr-03 16,358.73

May-03 15,929.05

Jun-03 17,999.87

Jul-03 20,717.03

Aug-03 20,730.96

Sep-03 18,038.57

Oct-03 16,531.88

Nov-03 16,758.73

Dec-03 18,137.06

Jan-04 19,333.36

Feb-04 18,313.19

Mar-04 17,351.52

Apr-04 16,384.22

May-04 17,001.84

Jun-04 18,798.57

Jul-04 20,040.84

Aug-04 20,222.35

Sep-04 18,643.92

Oct-04 16,775.23

Nov-04 17,308.72

Dec-04 18,617.75

Month
Mean
Usage



a. Plot the series and explain what can be learned from this plot.

b. Calculate the first 24 autocorrelations for the series, and explain what characteris-

tics of the data are shown in the ACF and PACF.

c. Suggest and estimate an optimal ARIMA model.

d. Estimate the ARIMA model that you believe to be a good candidate for forecasting

electricity usage. Test the Ljung-Box statistic and report your findings. Finally, plot

the first 24 autocorrelations of the residuals to your best model.

10. The data below show retail sales at hardware stores in the United States monthly be-

tween January 1992 and December 2005. The data are in millions of dollars and are not

seasonally adjusted.

ARIMA (Box-Jenkins)–Type Forecasting Models 399

Date Sales Date Sales Date Sales

Jan-92 846

Feb-92 822

Mar-92 962

Apr-92 1,077

May-92 1,235

Jun-92 1,170

Jul-92 1,147

Aug-92 1,086

Sep-92 1,056

Oct-92 1,110

Nov-92 1,041

Dec-92 1,168

Jan-93 883

Feb-93 808

Mar-93 987

Apr-93 1,097

May-93 1,289

Jun-93 1,210

Jul-93 1,186

Aug-93 1,101

Sep-93 1,077

Oct-93 1,111

Nov-93 1,098

Dec-93 1,204

Jan-94 959

Feb-94 866

Mar-94 1,053

Apr-94 1,232

May-94 1,296

Jun-94 1,271

Jul-94 1,217

Aug-94 1,193

Sep-94 1,138

Oct-94 1,198

Nov-94 1,165

Dec-94 1,243

Jan-95 875

Feb-95 848

Mar-95 1,061

Apr-95 1,157

May-95 1,343

Jun-95 1,340

Jul-95 1,230

Aug-95 1,182

Sep-95 1,153

Oct-95 1,141

Nov-95 1,193

Dec-95 1,241

Jan-96 977

Feb-96 920

Mar-96 1,028

Apr-96 1,251

May-96 1,369

Jun-96 1,306

Jul-96 1,242

Aug-96 1,186

Sep-96 1,083

Oct-96 1,187

Nov-96 1,177

Dec-96 1,229

Jan-97 1,003

Feb-97 880

Mar-97 1,027

Apr-97 1,203

May-97 1,339

Jun-97 1,303

Jul-97 1,277

Aug-97 1,224

Sep-97 1,172

Oct-97 1,246

Nov-97 1,140

Dec-97 1,184

Jan-98 971

Feb-98 900

Mar-98 1,105

Apr-98 1,323

May-98 1,425

Jun-98 1,427

Jul-98 1,357

Aug-98 1,313

Sep-98 1,297

Oct-98 1,302

Nov-98 1,227

Dec-98 1,363

Jan-99 1,104

Feb-99 1,007

Mar-99 1,210

Apr-99 1,416

May-99 1,495

Jun-99 1,447

Jul-99 1,390

Aug-99 1,301

Sep-99 1,286

Oct-99 1,296

Nov-99 1,295

Dec-99 1,384

Jan-00 1,073

Feb-00 1,035

Mar-00 1,316

Apr-00 1,429

May-00 1,598

Jun-00 1,551

Jul-00 1,445

Aug-00 1,433

Sep-00 1,328

Oct-00 1,326

Nov-00 1,306

Dec-00 1,384

Jan-01 1,092

Feb-01 1,063

Mar-01 1,290

Apr-01 1,441

May-01 1,657

Jun-01 1,574

(continued on next page)



Jul-01 1,460

Aug-01 1,437

Sep-01 1,328

Oct-01 1,386

Nov-01 1,399

Dec-01 1,457

Jan-02 1,158

Feb-02 1,097

Mar-02 1,297

Apr-02 1,539

May-02 1,691

Jun-02 1,605

Jul-02 1,560

Aug-02 1,471

Sep-02 1,325

Oct-02 1,406

Nov-02 1,400

Dec-02 1,460

400 Chapter Seven

Date Sales Date Sales Date Sales

(continued)

Jan-03 1,186

Feb-03 1,110

Mar-03 1,337

Apr-03 1,490

May-03 1,743

Jun-03 1,665

Jul-03 1,616

Aug-03 1,537

Sep-03 1,485

Oct-03 1,498

Nov-03 1,432

Dec-03 1,511

Jan-04 1,186

Feb-04 1,126

Mar-04 1,406

Apr-04 1,619

May-04 1,781

Jun-04 1,717

Jul-04 1,670

Aug-04 1,555

Sep-04 1,520

Oct-04 1,483

Nov-04 1,478

Dec-04 1,581

Jan-05 1,241

Feb-05 1,170

Mar-05 1,442

Apr-05 1,688

May-05 1,803

Jun-05 1,770

Jul-05 1,607

Aug-05 1,603

Sep-05 1,562

Oct-05 1,614

Nov-05 1,582

Dec-05 1,673

a. Plot the series. What can you learn from examining this plot?

b. Calculate and display the first 24 autocorrelations for the series. What do the ACF

and PACF suggest about the series?

c. Suggest a possible set of differencing to use with the series.

d. Estimate an ARIMA model that you believe to be a good candidate for forecasting

future retail sales at hardware stores. Test the Ljung-Box statistic and report your

findings. Finally, plot the first 24 autocorrelations of the residuals to your best

model.
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Possible values of 2

2

Appendix

Critical Values of Chi-Square
This table provides values of chi-square that correspond to a given upper-tail area and a

specified degrees of freedom. For example, for an upper-tail area of 0.10 and 4 degrees of

freedom, the critical value of chi-square equals 7.779. When the number of degrees of

freedom exceeds 30, the chi-square can be approximated by the normal distribution.

Degrees
of Freedom
(df)

Right-Tail Area

0.10 0.05 0.02 0.01

1 2.706 3.841 5.412 6.635

2 4.605 5.991 7.824 9.210

3 6.251 7.815 9.837 11.345

4 7.779 9.488 11.668 13.277

5 9.236 11.070 13.388 15.086

6 10.645 12.592 15.033 16.812

7 12.017 14.067 16.622 18.475

8 13.362 15.507 18.168 20.090

9 14.684 16.919 19.679 21.666

10 15.987 18.307 21.161 23.209

11 17.275 19.675 22.618 24.725

12 18.549 21.026 24.054 26.217

13 19.812 22.362 25.472 27.688

14 21.064 23.685 26.873 29.141

15 22.307 24.996 28.259 30.578

16 23.542 26.296 29.633 32.000

17 24.769 27.587 30.995 33.409

18 25.989 28.869 32.346 34.805

19 27.204 30.144 33.687 36.191

20 28.412 31.410 35.020 37.566

21 29.615 32.671 36.343 38.932

22 30.813 33.924 37.659 40.289

23 32.007 35.172 38.968 41.638

24 33.196 36.415 40.270 42.980

25 34.382 37.652 41.566 44.314

26 35.563 38.885 42.856 45.642

27 36.741 40.113 44.140 46.963

28 37.916 41.337 45.419 48.278

29 39.087 42.557 46.693 49.588

30 40.256 43.773 47.962 50.892

Source: From Owen P. Hall, Jr., and Harvey M. Adelman, Computerized
Business Statistics (Homewood, IL: Richard D. Irwin, 1987), p. 95.
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Chapter Eight

Combining
Forecast Results

INTRODUCTION

The use of combinations of forecasts has been the subject of a great deal of

research in forecasting. An indication of the importance of this concept is the fact

that the prestigious International Journal of Forecasting had a special section,

composed of seven articles, entitled “Combining Forecasts” in the year-end issue

of the volume for 1989. Some of these articles are listed in the “Suggested Read-

ings” section at the end of this chapter. In December 1992 an article in the same

journal provided strong evidence on the importance of combining forecasts to

improve accuracy. It was found that 83 percent of expert forecasters believe that

combining forecasts will produce more accurate forecasts than could be obtained

from the individual methods!1

The idea of combining business forecasting models was originally proposed by

Bates and Granger.2 Since the publication of their article, this strategy has

received immense support in almost every empirical test of combined forecasts

versus individual uncombined forecasts. The evidence on the usefulness of com-

bining forecasts using different methods and forecasts from different sources has

continued to mount over the years. A 2004 article by researchers Fuchun Li and

1 Fred Collopy and J. Scott Armstrong, “Expert Opinions about Extrapolation and the Mystery

of the Overlooked Discontinuities,” International Journal of Forecasting 8, no. 4 (December

1992), pp. 575–82.
2 Some of the material in this chapter is taken from the original Bates and Granger article; we

recommend that readers consult the original article and other articles listed in the bibliography

for more detail. J. M. Bates and C. W. J. Granger, “The Combination of Forecasts,”

Operational Research Quarterly 20, no. 4 (1969), pp. 451–68.

We have also drawn from and highly recommend J. Scott Armstrong’s book, which is a

virtual encyclopedia of forecasting methods. J. Scott Armstrong, Long-Range Forecasting from

Crystal Ball to Computer, 2nd ed. (New York: John Wiley & Sons, 1985). For a nice overview

of the state of the art in combining forecasts, see Robert T. Clemen, “Combining Forecasts:

A Review and Annotated Bibliography,” International Journal of Forecasting 5, no. 4 (1989),

pp. 559–83.



Greg Tkacz found that “our results suggest that the practice of combining

forecasts, no matter the technique employed in selecting the combination

weights, can yield lower forecast errors on average.”3 Robert Winkler and Robert

Clemen recently observed that combining forecasts from several experts also

leads to improved forecasting accuracy (with diminishing returns as more experts

are added).4 David Hendry and Michael Clements also observe, “Practical expe-

rience shows that combining forecasts has value added and can dominate even

the best individual device.”5 Even when models are misspecified, Hendry and

Clements point out that combining the models provides a degree of “insurance”

and usually is more accurate than any single model.

Throughout this book we have emphasized the use of the root-mean-squared

error (RMSE), mean absolute percentage error (MAPE), and Theil’s U as meas-

ures of the effectiveness of a particular forecasting model (forecast optimality).

The emphasis is very different in this chapter; instead of choosing the best model

from among two or more alternatives, we are going to combine the forecasts from

these different models to obtain forecast improvement. It may actually be unwise

to simply determine which of a number of forecasting methods yields the most ac-

curate predictions. A more reasoned approach, according to the empirical evi-

dence, is to combine the forecasts already made in order to obtain a combined

forecast that is more accurate than any of the separate predictions.

Any time a particular forecast is ignored because it is not the “best” forecast

produced, it is likely that valuable independent information contained in the

discarded forecast has been lost. The information lost may be of two types:

1. Some variables included in the discarded forecast may not be included in the

“best” forecast.

2. The discarded forecast may make use of a type of relationship ignored by the

“best” forecast.

In the first of these cases it is quite possible for several forecasts to be based on

different information; thus, ignoring any one of these forecasts would necessarily

exclude the explanatory power unique to the information included in the dis-

carded model. In the second situation, it is often the case that different assump-

tions are made in different models about the form of the relationship between the

variables. Each of the different forms of relationship tested, however, may have

some explanatory value. Choosing only the “best” of the relationships could

exclude functional information.
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3 Fuchun Li and Greg Tkacz, “Combining Forecasts with Nonparametric Kernel Regressions,”

Studies in Nonlinear Dynamics & Econometrics 8, no. 4 (2004), article 2,

http://www.bepress.com/snde/vol8/iss4/art2.
4 Robert L. Winkler and Robert T. Clemen, “Multiple Experts vs. Multiple Methods: Combining

Correlation Assessments,” Decision Analysis 1, no. 3 (September 2004), pp. 167–76.
5 David F. Hendry and Michael P. Clements, “Pooling of Forecasts,” Econometrics Journal 5

(2002), pp. 1–26.



BIAS

To be useful, forecasts we wish to combine must be unbiased. That is, each of the

forecasts cannot consistently overestimate or underestimate the actual value. Note

that if we combined an unbiased forecast with one that consistently overestimated

the true value, we would always wind up with a biased estimate. Combining fore-

casts is not a method for eliminating systematic bias in a forecast.

Bias can arise from a number of sources, but perhaps the most common source

is the forecaster’s preconceived notions. Predictions of forecasters not only reflect

what they believe to be the truth, but also what they would like the truth to be. This

statement is best demonstrated by the results obtained by Hayes in a survey of vot-

ers two weeks before the Roosevelt-Hoover election. Hayes found that, of the peo-

ple who intended to vote for Hoover, 84 percent thought that he would win the

election. Of the people who intended to vote for Roosevelt, however, only 6 per-

cent thought that Hoover would win. Apparently those who intended to vote for a

particular candidate are biased in the sense that they also believe that their favorite

will actually win the election.6

Professional forecasters may suffer from the same bias as voters—they may

look for forecasting models that confirm their own preconceived ideas. To elimi-

nate bias a forecaster will have to examine models that may contradict his or her

current beliefs. What this means is that you must do something that runs counter

to your intuition in order to examine models you may feel are incorrect; you

must examine forecasting models that you may believe to be inferior to your

“favorite” model. This prescription is more difficult to implement than it sounds.

Much of a forecaster’s time is spent in confirming existing beliefs of how the

world works. However, we are suggesting that a forecaster should spend some

time examining multiple forecasting models in the hope of combining some or

all of these models into a combined forecast that is superior to any of the indi-

vidual forecasts.

AN EXAMPLE

Consider a situation in which two separate forecasts are made of the same event.

It is not atypical for a forecaster to attempt in this situation to choose the “best” of

the two forecasting models on the basis of some error-minimization criterion such

as RMSE. The model not chosen is discarded as being second-best and, therefore,

unusable.

If, however, the two forecasting models use different methods, or if the two

models use different information, discarding one of the models may cause the loss

of some valuable information. To prevent this loss of useful information requires

some method for combining the two forecasts into a single “better” forecast.
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6 S. P. Hayes, Jr., “The Predictive Ability of Voters,” Journal of Social Psychology 7 (1936),

pp. 183–91.
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To illustrate, we will use a classic example taken from an appendix to the orig-

inal Bates and Granger article. In Table 8.1 we show output indices for the gas, elec-

tricity, and water sectors of the economy, drawn from the 1966 edition of National

Income and Expenditure. The actual index data in column 2 are in 1958 dollars.

Our task is to estimate a forecasting model for these data that has a low RMSE.

We will use two separate forecasting techniques that have already been intro-

duced in the text:

1. A linear time-series regression model (see Chapter 4)

2. An exponential or logarithmic model (see Chapter 5)

The regression model for forecasting with a simple linear trend in Chapter 4

was:

Y  b0  b1(TIME)

where Y is the series we wish to forecast. The linear-trend forecast in column 3 of

Table 8.1 is calculated by using the year in column 1 as the independent variable

and the actual data in column 2 as the dependent variable. The equation—

estimated with simple linear regression—for making the first forecast (the one for

1950) used only the data for 1948 and 1949:

Y   7,734  4(YEAR)

Substituting the year 1950 gives the linear forecast for 1950, which appears in

column 3:

Y   7,734  4(1950)  66

The simple linear-trend estimating equation is then estimated again, this time using

the data for the first three years (1948–50); this equation is used to forecast for the

year 1951, and that value (which is 71.3) is placed in column 3 of Table 8.1. This

procedure is repeated for each year, so that the forecast for year t is always made by

extrapolating the regression line formed by the least-squares regression of the

actual figures for 1948 through the year t  1. The results obtained and displayed

in the table would be similar to the results an actual forecaster might record as he

or she makes annual forecasts by always using new data as they become available.

For each forecast in column 3, we also calculate the squared deviation from the

actual figure as an intermediate step in calculating the RMSE (see Chapter 1 for

an explanation of root-mean-squared error). The RMSE for the simple linear-

trend approach to forecasting the index is given at the bottom of column 4.

The second model used to forecast the index is the exponential model (it is

sometimes called the logarithmic or constant-rate-of-growth model). The as-

sumption in this model is that the value we are forecasting does not produce a

straight-line plot when graphed over time. Instead the data may plot as a curve on

arithmetic paper but as a straight line on semilogarithmic paper (graph paper with

one arithmetic axis and one logarithmic axis). The equation to estimate is:

Y  b0mx
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where:

Y  The actual value of the index

b0  Value of the trend when x  0

m  The constant rate of growth (which could be negative)

x  The time value (in the present case, 1948  1, 1949  2, etc.)

The equation can be estimated with a standard regression package by using the

log linear equation:

ln Y  ln b0  x ln m

To obtain the equation for the first exponential estimate in Table 8.1, the natural

logs of the actual index data for the years 1948 and 1949 were taken and regressed

on time (with 1948  1 and 1949  2). This produced the estimate:

ln Y  3.994  (Year) 0.067

Taking the antilogs of the log values gives the following equation:

Y  (54.258)(1.069)Year

Note that the antilog of 3.994  54.258 and the antilog of 0.067  1.069. The first

forecast (the one for 1950) is calculated by making the substitution for year into

this equation (recall that the year 1950  3):

Y  (54.258)(1.069)3
 66.276

This first exponential forecast is the first number (66.276) in column 5 of Table 8.1.

The forecast for the following year (71.9) requires the fitting of another equation of

the same form, utilizing the actual index data from all three previous years. Each

subsequent forecast then requires the equation to be estimated once again.

For each forecast in column 5 we again calculate the squared deviation from

the actual figure as an intermediate step in calculating the RMSE. The results in

column 6 are again what could be expected if a forecaster were to use the

exponential method over time and keep careful track of the errors made each

year as the current year’s actual data became available. The RMSE for the expo-

nential model over the 16-year period from 1950 to 1965 is given at the bottom of

column 6.

The RMSE for the exponential forecasting model is clearly smaller (and there-

fore better) than the corresponding figure for the simple linear-trend forecasting

model. If we were to choose the “best” model, the exponential model would be the

clear choice.

However, since the two forecasts assume different forms of the relationship

between the variables, there may be a combination of the two forecasts that will

yield considerable improvements from either single model. A combined forecast

is a weighted average of the different forecasts, with the weights reflecting in

some sense the confidence the researcher has in each of the models. Some

forecasters have suggested that the weights should be selected before the forecasts

are generated in order to reduce the possibility of bias introduced by the



researcher. The use of a mechanical rule to make the selection of weights would

also satisfy this objection and will be discussed in what follows.

In our particular situation it appears that we should have more confidence in

the exponential model because it has the lower RMSE. This would suggest that

in combining the two forecasts we should weight the exponential model more

heavily than the simple linear-trend model. In column 7 of Table 8.1 we have

arbitrarily weighted the simple linear-trend model by 0.16 and the exponential

model by 0.84 (the two weights must sum to 1). The first forecast in column 7 is

then calculated as follows:

(0.16)(Linear forecast)  (0.84)(Exponential forecast)  Combined forecast

(0.16)(66.000)  (0.84)(66.276)  66.23

This procedure is repeated for each of the years from 1950 to 1965. Column 8 con-

tains the squared deviations of the combined forecast from the actual index data,

and the RMSE for the combined forecast (2.22) is at the bottom of the column.

Note that the RMSE for the combined forecast is better (i.e., lower) than for

either individual forecasting model. The combining of forecasts is a practical tool

for improving forecast accuracy and has the attraction of being both automatic and

conceptually quite simple; apparently even the less accurate simple linear-trend

model contained important information that made it possible to obtain a better

forecast. Following this approach, it should be clear that most forecast methods

contain some information that is independent of the information contained in

other forecast methods. If this is the case, combination forecasts will, quite likely,

outperform individual forecasts.

Two important observations need to be made about the results in Table 8.1:

1. Considerable improvements in forecast accuracy can be achieved by combin-

ing forecast models with an optimal weight. In this case the optimal weight

turned out to be 0.16 for the simple linear-trend model (and therefore, 0.84 for

the exponential model).

2. While the forecaster cannot assume that combining forecasts will always yield

better results, it can be shown that the combined forecasts will have an error vari-

ance not greater than the smallest error variance of the individual forecasts.7

WHAT KINDS OF FORECASTS CAN BE COMBINED?

The example of combining forecasts we used in the previous section is one of the

simpler combinations a researcher could try. In actual practice it would be more

common to find a forecaster using very different types of models in order to con-

struct a combination forecast.
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7 David A. Bessler and Jon A. Brandt, “Composite Forecasting: An Application with U.S. Hog

Prices,” American Journal of Agricultural Economics 63 (1981), pp. 135–40. See also Li and

Tkacz “Combining Forecasts.”



Recall that the premise in constructing combined forecasts is:

1. That the different forecasting models extract different predictive factors from

essentially the same data, or

2. That the different models offer different predictions because they use different

variables.

We should expect that combinations of forecasts that use very different models are

likely to be effective in reducing forecast error.

Consider Figure 8.1, which conceptually presents a 10-year forecast of air travel

in the United States. The judgmental method represents a mail survey of experts

outside the airline industry. The extrapolation method could be a form of expo-

nential smoothing. The segmentation method surveys airline travelers in different

segments of the market and then combines the results to obtain a total picture of the

industry. The econometric method refers to a causal regression model. All four

methods could be employed and their predictions weighted by the values w1 to w4 in

order to calculate the combined forecast. Such a diverse combined forecast would

benefit from both the use of the different techniques and from the use of different

sources of data. If each of the methods employed was also constructed and esti-

mated by a different forecaster, another source of possible bias may also have been

minimized; this provides a safeguard by making it difficult to cheat.

CONSIDERATIONS IN CHOOSING THE WEIGHTS
FOR COMBINED FORECASTS

Combined forecasts are used in place of individual forecasts in order to reduce

forecast error, and the results of the combined methods are quite often impressive.

Armstrong has reported results from reanalyzing eight separate studies that pro-

vided sufficient information to test the combined forecasting method against

individual forecast models.8 In each case Armstrong used equal weights for the

individual forecasts, following his belief that weight should be chosen ex ante.

The combinations of two forecasts reduced error (measured as mean absolute

percentage error) by a significant 6.6 percent. In no single case did the accuracy
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Judgmental method

Extrapolation method

Segmentation method

Econometric method

F1

F2

F3

F4

Combined forecast   

w1F1   w2F2   w3F3   w4F4

FIGURE 8.1
Combining Forecasts

from Different

Methods

Note: The w’s, the relative weights on various forecasts, should sum to 1.0.

We should expect that

combinations of fore-

casts that use very dif-

ferent models are likely

to be effective in reduc-

ing forecast error.

8 See Armstrong, Long-Range Forecasting, p. 292.



ever suffer; when more than two forecasts were combined, further improvements

were noted (in one case observed by Armstrong, the forecast error was reduced by

17.9 percent).

Even though the use of equal weights for each of the individual forecasts

offers the advantage of simplicity and also precludes the forecaster’s own bias in

the selection of weighting factors, there may be a good reason for weighting one

individual forecast more than another, as we have done in the previous example.

Equal weights do not take into account the relative accuracy of the individ-

ual forecasting models that are combined. Bates and Granger were the first to

indicate that, by weighting the more accurate of the methods more heavily, the

410 Chapter Eight

TABLE 8.2 Consumer Credit Outstanding in Millions of Dollars (c8t2)

1 2 3 4 5 6 7 8

Date Data

Linear

Forecast

Squared

Deviations

Nonlinear

Forecast

Squared

Deviations

Combined

Forecast

(0.9)

Squared

Deviations

1974 180,739 20,333 25,730,080,935 184,069 11,089,833 36,707 20,745,325,061

1975 196,671 74,661 14,886,365,018 199,658 8,923,391 87,161 11,992,440,674

1976 199,384 128,989 4,955,418,029 216,567 295,261,230 137,747 3,799,112,422

1977 214,678 183,317 983,487,311 234,908 409,266,596 188,476 686,518,984

1978 243,672 237,645 36,323,261 254,803 123,886,402 239,361 18,585,995

1979 285,274 291,974 44,884,727 276,382 79,064,974 290,414 26,424,339

1980 330,062 346,302 263,718,529 299,789 916,468,786 341,650 134,285,174

1981 349,771 400,630 2,586,597,789 325,178 604,810,277 393,085 1,876,055,487

1982 363,435 454,958 8,376,445,901 352,718 114,858,139 444,734 6,609,513,434

1983 381,765 509,286 16,261,723,035 382,590 680,729 496,616 13,190,940,855

1984 409,719 563,614 23,683,863,375 414,991 27,802,472 548,752 19,330,270,449

1985 481,656 617,942 18,574,005,439 450,137 993,424,851 601,162 14,281,676,956

1986 564,319 672,270 11,653,601,953 488,260 5,784,981,342 653,869 8,019,338,377

1987 632,345 726,599 8,883,648,403 529,610 10,554,479,492 706,900 5,558,343,309

1988 666,900 780,927 13,002,199,386 574,463 8,544,428,163 760,280 8,719,985,151

1989 713,845 835,255 14,740,314,868 623,115 8,231,951,666 814,041 10,039,181,951

1990 772,998 889,583 13,592,112,303 675,887 9,430,507,271 868,213 9,066,013,035

1991 804,736 943,911 19,369,708,543 733,128 5,127,683,613 922,833 13,946,855,508

1992 803,792 998,239 37,809,581,361 795,217 73,534,642 977,937 30,326,359,321

1993 799,841 1,052,567 63,870,831,068 862,564 3,934,287,021 1,033,567 54,628,077,612

1994 831,385 1,106,896 75,906,141,341 935,615 10,864,032,884 1,089,768 66,761,614,411

1995 930,477 1,161,224 53,243,860,306 1,014,853 7,119,291,169 1,146,587 46,703,216,419

1996 1,074,911 1,215,552 19,779,716,609 1,100,802 670,304,718 1,204,077 16,683,691,970

1997 1,203,964 1,269,880 4,344,870,955 1,194,029 98,708,323 1,262,295 3,402,453,180

1998 1,285,645 1,324,208 1,487,071,984 1,295,152 90,373,584 1,321,302 1,271,419,175

1999 1,370,766 1,378,536 60,368,490 1,404,839 1,160,939,674 1,381,166 108,160,022

2000 1,481,455 1,432,864 2,361,103,012 1,523,815 1,794,372,503 1,441,959 1,559,938,817

2001 1,618,471 1,487,192 17,234,053,163 1,652,868 1,183,169,385 1,503,760 13,158,603,552

2002 1,777,452 1,541,521 55,663,567,575 1,792,850 237,115,769 1,566,654 44,435,920,383

2003 1,893,053 1,595,849 88,330,685,734 1,944,688 2,666,100,287 1,630,733 68,812,243,775

2004 1,978,586 1,650,177 107,852,637,352 2,109,384 17,108,181,960 1,696,098 79,799,754,130

2005 2,064,499 1,704,505 129,595,376,307 2,288,029 49,965,918,037 1,762,857 90,987,391,104

Sum of Squared Deviations  855,164,364,060 148,225,899,186 666,679,711,032

RMSE  163,474 68,059 144,339
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9 See Bates and Granger, “The Combination of Forecasts,” p. 452.

overall forecast could be improved.9You have seen in Table 8.1 that the combination

using equal weights is not as effective, on the basis of RMSE, as a combination

that assigns a smaller weight to the individual forecast having the larger RMSE.

In general, a combined forecast will have a smaller error, as measured by

RMSE, unless individual forecasting models are almost equally good and their

forecast errors are highly correlated.

Consider Table 8.2, which presents data on the consumer credit outstanding

in the United States for the years 1974–2005. The actual credit figures appear in

9 10 11 12 13 14 15 16

Combined

Forecast

(0.8)

Squared

Deviations

Squared

Deviations

Squared

Deviations

Combined

Forecast

(0.5)

Combined

Forecast

(0.2)

Combined

Forecast

(0.1)

53,080 16,296,759,578 102,201 6,168,205,483 151,322 865,364,917 167,695 170,132,179

99,660 9,411,000,815 137,160 3,541,588,146 174,659 484,535,839 187,158 90,487,373

146,505 2,796,204,577 172,778 707,867,611 199,052 110,498 207,809 70,986,983

193,636 442,783,158 209,113 30,970,687 224,590 98,250,729 229,749 227,142,412

241,077 6,736,190 246,224 6,511,552 251,371 59,274,075 253,087 88,636,508

288,855 12,825,820 284,178 1,201,482 279,500 33,333,968 277,941 53,768,536

336,999 48,120,348 323,045 49,237,045 309,092 439,770,502 304,440 656,485,380

385,540 1,279,371,752 362,904 172,471,947 340,269 90,299,244 332,723 290,625,477

434,510 5,051,641,787 403,838 1,632,391,767 373,166 94,689,129 362,942 243,224

483,947 10,441,198,220 445,938 4,118,207,580 407,929 684,572,837 395,259 182,107,011

533,890 15,418,452,376 489,303 6,333,647,270 444,716 1,224,815,834 429,854 405,421,727

584,381 10,552,519,678 534,040 2,744,075,077 483,698 4,171,325 466,918 217,212,486

635,468 5,062,275,137 580,265 254,287,439 525,062 1,541,102,771 506,661 3,324,441,888

687,201 3,009,124,483 628,105 17,985,607 569,008 4,011,623,137 549,309 6,895,008,181

739,634 5,290,312,497 677,695 116,544,018 615,756 2,615,649,764 595,110 5,153,768,173

792,827 6,238,114,944 729,185 235,309,387 665,543 2,333,097,023 644,329 4,832,491,389

846,844 5,453,233,492 782,735 94,813,218 718,626 2,956,270,473 697,257 5,736,729,009

901,755 9,412,591,483 838,520 1,141,333,462 775,285 867,376,525 754,206 2,553,235,564

957,635 23,667,496,697 896,728 8,637,065,314 835,822 1,025,868,666 815,519 137,521,947

1,014,567 46,107,346,167 957,566 24,877,283,902 900,565 10,145,419,740 881,565 6,678,842,375

1,072,640 58,203,824,389 1,021,255 36,050,875,768 969,871 19,178,559,315 952,743 14,727,927,645

1,131,950 40,591,058,527 1,088,038 24,825,500,813 1,044,127 12,916,317,045 1,029,490 9,803,561,110

1,192,602 13,851,019,209 1,158,177 6,933,112,192 1,123,752 2,385,372,074 1,112,277 1,396,162,457

1,254,710 2,575,102,407 1,231,954 783,452,105 1,209,199 27,404,828 1,201,614 5,523,074

1,318,397 1,072,651,471 1,309,680 577,658,982 1,300,963 234,632,431 1,298,058 154,060,456

1,383,797 169,788,351 1,391,688 437,694,120 1,399,578 830,131,062 1,402,209 988,616,970

1,451,055 924,217,099 1,478,340 9,706,802 1,505,625 584,178,793 1,514,720 1,106,554,410

1,520,328 9,632,123,105 1,570,030 2,346,496,739 1,619,733 1,592,838 1,636,301 317,896,530

1,591,787 34,471,606,970 1,667,185 12,158,669,416 1,742,584 1,215,735,887 1,767,717 94,758,938

1,665,616 51,727,575,908 1,770,268 15,076,216,859 1,874,920 328,824,640 1,909,804 280,575,417

1,742,018 55,964,301,504 1,879,781 9,762,527,203 2,017,543 1,517,628,268 2,063,464 7,204,189,816

1,821,210 59,189,414,652 1,996,267 4,655,537,795 2,171,324 11,411,739,690 2,229,677 27,283,824,489

504,370,792,791 174,498,446,789 80,207,713,867 101,128,939,133

125,545 73,845 50,065 56,216

Squared

Deviations



column 2; in columns 3 and 5, respectively, are linear and nonlinear forecasts. The

linear forecast here is simply a trend model using the consumer credit outstanding

as the dependent variable and the time index as the independent variable. The non-

linear model here uses the natural log of credit as the dependent variable and the

time index as the independent variable. The squared deviations of these forecasts

from the actual data are given in columns 4 and 6. By calculating the RMSE for

each of the forecasting models, it is clear that the nonlinear model is a superior

forecasting tool (RMSE of 68,059 for the nonlinear model versus 163,474 for the

linear model).

Of interest here is the correlation of the forecast errors (squared) between the

two models (see Table 8.3). To do this we calculate the correlation coefficient

412 Chapter Eight

TABLE 8.3 Forecast Errors for Both the Linear and Nonlinear Models of Consumer Credit Outstanding

Date

Linear
Model
Errors

Nonlinear
Model
Errors

1974 160,405.99  3,330.14

1975 122,009.69  2,987.20

1976 70,394.73  17,183.17

1977 31,360.60  20,230.34

1978 6,026.88  11,130.43

1979  6,699.61 8,891.85

1980  16,239.41 30,273.24

1981  50,858.61 24,592.89

1982  91,522.93 10,717.19

1983  127,521.46  825.06

1984  153,895.62  5,272.80

1985  136,286.48 31,518.64

1986  107,951.85 76,059.06

1987  94,253.11 102,735.00

1988  114,027.19 92,436.08

1989  121,409.70 90,730.10

1990  116,585.21 97,110.80

1991  139,175.10 71,607.85

1992  194,446.86 8,575.23

1993  252,726.79  62,723.90

1994  275,510.69  104,230.67

1995  230,746.31  84,375.89

1996  140,640.38  25,890.24

1997  65,915.64 9,935.21

1998  38,562.57  9,506.50

1999  7,769.72  34,072.56

2000 48,591.18  42,360.03

2001 131,278.53  34,397.23

2002 235,931.28  15,398.56

2003 297,204.79  51,634.29

2004 328,409.25  130,798.25

2005 359,993.58  223,530.58

Linear

Model

Errors

Nonlinear

Model

Errors

Linear model errors 1

Nonlinear model errors  0.45 1
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between columns 4 and 6 of Table 8.2, which yields 0.69; from this low correla-

tion coefficient it is apparent that these two forecasting models are not highly

correlated. This result indicates that possible improvements would result from

some combination of the two models.

The simplest combination of the two models is obtained by weighting each

equally; this is done in column 11 of Table 8.2. The RMSE for this combined

model is 73,845, which is not as low as the nonlinear model alone.

If, however, the forecast model with the lower RMSE is more heavily weighted,

the combined forecast should improve even further. In column 15 of Table 8.2, a

weight of 0.9 is applied to the linear model and a weight of 0.1 to the nonlinear

model. This results in an RMSE of 56,216, which is the best yet. Further experi-

mentation shows that a weighting of 0.8 for the nonlinear model (and 0.2 for the

linear model) yields even better results (an RMSE of 50,065).

If, however, you ignore the rule of thumb that the more accurate forecast

should receive the larger weight, the accuracy of the combined forecast may dete-

riorate. Notice that in column 9 of the table we use a weighting of 0.8 for the lin-

ear model (and 0.2 for the nonlinear model), which results in an RMSE that is

larger than that for the optimal model.

Using an equal-weighting scheme for the two models yields a combined fore-

cast with an RMSE of 73,845, which is better than the linear model but worse

than the nonlinear model. By using heavier weights for the “better” forecasting

model (in this case the nonlinear model), we are able to improve the forecast.

A weight of 0.8 for the nonlinear model (and correspondingly 0.2 for the linear

model) resulted in an RMSE of 50,065 for the combined model. This result

emphasizes that it is the diversity of information included in the individual mod-

els that allows the combined forecast model to assemble the pieces to form a more

powerful forecasting model than any one of the parts.

THREE TECHNIQUES FOR SELECTING
WEIGHTS WHEN COMBINING FORECASTS

Is there any way to choose the weights to use in combining the individual forecasts

other than by trying all possible combinations? Yes, several researchers have sug-

gested techniques for choosing weights that take advantage of the facts we have

just demonstrated. We will present three of these techniques here.

First, Bates and Granger have suggested a method that assumes the individual

forecasts are consistent over time and that minimizes the variance of the forecast

errors over the time period covered. The weight assigned to the first forecast

model, k, is calculated in the following manner (note that the second forecast

model would receive a weight of 1  k):

k  

( 2)
2

   1 2
   
( 1)

2
 ( 2)

2
 2  1 2

It is the diversity of

information included in

the individual models

that allows the com-

bined forecast model to

assemble the pieces to

form a more powerful

forecasting model than

any one of the parts.
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where:

k  The weight assigned to the first forecast model

( 1)
2

 The variance of errors for the first model

( 2)
2

 The variance of errors for the second model

  The coefficient of correlation between the errors in the first set of

forecast and those in the second set

A second, and quite different, approach to selecting the best weighting scheme

involves allowing the weights to adapt or change from period to period. The power

of this method rests on the assumption that forecasting models may not have a

constant performance over time. An adaptive set of weights may be calculated in

the following manner:

 1,T 1      
T

t T v

where:

 1,T 1  The weight assigned to forecast model 1 in period T  1

eit  The error made by forecast model i in period t

v  The choice variable, which represents the number of periods

included in the adaptive weighting procedure

T  The total number of periods for which there is a history of forecast

errors

What is not clear is the superiority of these two methods for choosing weights

in a combined model. Bessler and Brandt examined the two weighting methods

and concluded:10

1. Forecasts from individual models are not likely to be the most accurate fore-

casts.

2. Even with no record of prior forecast performance, it may make some sense to

combine forecasts using a simple averaging method (i.e., equal weights).

3. If prior forecasting records are available, the user should weight forecasts on

the basis of past performance (with the most accurate forecast receiving the

highest weight).

e2t
2

 
e1t

2
 e2t

2

10 See Bessler and Brandt, “Composite Forecasting,” p. 139.
11 Charles R. Nelson, “A Benchmark for the Accuracy of Econometric Forecasts of GNP,”

Business Economics 19, no. 3 (April 1984), pp. 52–58.

At least one other technique is used to combine forecasts in order to improve

accuracy. This technique involves the use of a regression analysis in determining

the weights. Charles Nelson suggests that if we are trying to weight a portfolio of

forecasts in order to minimize the forecast error, an optimal linear composite

forecast would be:11

F*  b1F(1)  b2F(2)
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Justice Is Forecast 1

where:

F*  Optimal combined forecast

F(1)  First individual forecast

F(2)  Second individual forecast

b1  Weight allocated to the first forecast

b2  Weight allocated to the second forecast

The actual values of b1 and b2 would be calculated by running a regression with

the past actual values as the dependent variable and the forecasted values for each

individual model as the independent variables. Note that this is not exactly the

type of regression we have run before in the text; this regression has no intercept

term, and so the equation must be calculated in a manner different from that we

have used earlier.

Using this method, if the two (or more) individual forecasts are free of system-

atic bias, the values of b1 and b2 will sum roughly to 1. The t-ratios for the

on crime rates. Judgmental forecasts added in-

formation on the effect of such factors as policy

and legislative changes, which have the poten-

tial to cause substantial shifts in trends.

The accuracy of the individual forecasts was

estimated using two tools:

• The in-sample error: The fit of each model to

the data was estimated by the mean-squared

error (MSE) of the in-sample forecasts.

• The forecast error: The forecast accuracy of

each model was estimated by using only the

1962–1992 data to estimate each model and

then estimating “forecasts” for 1993–1995.

The forecast error was calculated as the MSE

of the 1993–1995 forecasts.

Once individual model forecasts were com-

pleted, a forecast for each offense group was

calculated by using a combination of the models.

Usually a simple average (i.e., equal weighting)

was used to combine the models.

Source: Sue Triggs, “Interpreting Trends in Recorded
Crime in New Zealand” (1997), Ministry of Justice,
http://www.justice.govt.nz/pubs/reports/.

The Ministry of Justice in New Zealand is a rela-

tively new branch of government that serves

the Department of Corrections and the New

Zealand police by carrying out research on crime

and providing statistical studies to the ministers

and associate ministers of justice.

Sue Triggs completed such a statistical study

titled “Interpreting Trends in Recorded Crime in

New Zealand.” A portion of this report deals

specifically with forecasting recorded crime

rates. These “forecasts are required for manag-

ing the impacts of crime on the workload of the

police, the courts, and the correctional system.”

Three separate types of models were used to

make crime rate predictions:

• Time-series methods, using information on the

past trends in recorded crime rates

• Regression models, using information on statis-

tically related variables

• Judgment methods, using expert opinion

Time-series methods were used because of their

inherent simplicity. Regression models were

used because they are able to take into account

demographic trends and estimate their effect



regression will essentially answer the question: Does individual forecast 1 add

any explanatory power to what is already present in forecast 2? and similarly for

forecast 2. If the b1 value passes the t-test at some reasonable confidence level,

we can be assured that the first individual model, F(1), did add explanatory

power when combined with the second model, F(2), using the weights calculated

by the regression.

To apply this method and to determine the best values for b1 and b2, a two-step

regression process is used. First, you perform a standard multiple regression of the

actual values (dependent variable) on the values predicted from the individual

forecasting methods (independent variables in this regression). We can express

this as:

A  a  b1F(1)  b2F(2)

The value of the intercept (a) should be (not statistically different from) zero if

there is no bias in the combined forecast. A standard t-test can be used to test

whether the intercept is significantly different from zero.12 Note that a two-tailed

test would be appropriate here.

Assuming that you conclude that a  0, you then redo the regression, forcing

the regression through the origin. Most regression programs provide an option

that allows this to be done quite easily. The result of regressing the actual values

on the two forecast series, without an intercept, yields the desired result to deter-

mine the best weights to be used in combining the forecasts. We have:

F*  b1F(1)  b2F(2)

Using these values of b1 and b2, along with the F(1) and F(2) forecast series, the

optimal combined forecast, F*, is easily determined.

As indicated, the values of b1 and b2 should sum roughly to 1. On occasion one

of these weights may be negative, in which case interpretation is tenuous. Some

forecasters use such a model even if b1 or b2 is negative, as long as the RMSE for

F* is lower than for F(1) or F(2) alone. However, we advise using this method only

when both weights are positive. It should be noted that this method can be extended

to include more than two forecast series in the combination process. Remember,

however, that each method should have unique information content.

An Application of the Regression Method
for Combining Forecasts
To illustrate the widely used regression method of combining forecasts, we will

apply it to the problem of forecasting the sales of a household cleaning product
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12 This is one of the few cases for which we are interested in testing to see whether the inter-

cept is different from zero. Normally, we do this test only for the slope terms.



(the product’s name is not used because the information is proprietary) using data

from 2006M4 through 2008M6. The firm that produces this cleaning product rou-

tinely uses a sales-force composite method to tap the information held by the sales

force. The column labeled “Sales Force” in Table 8.4 contains these forecasts.

Forecasts based on this model will be referred to as “sales force.” The RMSE of

the sales-force composite method was 3,423.

A Winters’ exponential smoothing model for sales was the second forecast

estimated and resulted in an RMSE of 6,744. We will refer to the Winters’ forecast

as “Winters.”
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Date Sales CFCST Sales Force Winters

Apr-06 18,364.00 21,465.21 19,197.19 31,901.94

May-06 30,008.00 32,115.60 32,823.38 30,666.56

Jun-06 34,897.00 34,494.95 34,947.72 34,217.79

Jul-06 54,882.00 48,915.66 53,449.23 32,330.57

Aug-06 34,193.00 29,716.74 30,245.30 28,901.65

Sep-06 33,664.00 31,967.89 32,806.22 29,968.75

Oct-06 38,418.00 37,668.69 38,928.83 34,179.98

Nov-06 27,865.00 24,191.78 22,115.28 33,958.61

Dec-06 35,719.00 35,643.67 37,988.11 27,549.04

Jan-07 22,688.00 21,672.12 20,193.23 28,835.05

Feb-07 25,337.00 22,303.46 20,143.32 32,330.39

Mar-07 29,549.00 36,217.87 37,962.14 30,647.20

Apr-07 30,429.00 27,677.55 28,562.09 25,286.32

May-07 23,545.00 27,118.54 27,800.05 25,546.04

Jun-07 29,014.00 29,649.77 30,072.50 29,271.92

Jul-07 24,875.00 25,291.15 24,824.56 28,410.61

Aug-07 30,204.00 29,098.32 30,847.60 23,175.14

Sep-07 22,406.00 24,702.13 25,333.20 23,226.90

Oct-07 30,648.00 34,249.05 36,338.65 27,149.80

Nov-07 27,307.00 21,919.45 21,074.17 26,457.54

Dec-07 29,730.00 30,095.13 32,335.88 22,173.51

Jan-08 22,598.00 24,035.57 24,803.64 21,959.28

Feb-08 20,590.00 24,561.18 24,415.07 26,313.12

Mar-08 17,858.00 19,309.48 18,202.10 24,816.54

Apr-08 13,971.00 18,215.03 17,931.35 20,243.83

May-08 15,822.00 16,676.25 16,428.36 18,484.41

Jun-08 20,120.00 19,292.93 18,836.49 22,090.75

TABLE 8.4
Sales of a Household

Cleaning Product

and Three Forecasts

of Sales

(c8t4)

Sales  Sales of a household cleaning product

CFCST  A combination forecast of sales where sales  0.799(sales force) + 0.192(Winters)

Sales force  Sales-force composite forecast (a judgmental forecast method)

Winters  Winters’ exponential smoothing model



Regressing sales on sales force and Winters, and using the standard method in-

cluding an intercept term, yields the following results (using 2006M4 to 2008M6):

Sales   5,445  0.81(sales force)  0.37(Winters)

( 1.42) (10.22) (2.44)

The values in parentheses are t-ratios. On the basis of these t-ratios, the intercept

( 5,445) is not significantly different from zero, but the slope terms are signifi-

cantly positive. Since the intercept is essentially zero, we conclude that there is no

bias in combining these two methods.

Repeating the regression without an intercept yields the following (again using

2006M4 to 2008M6):

Sales  0.80(sales force)  0.20(Winters)

(9.93) (2.26)

(RMSE  3,045)

We see that the combined RMSE of 3,045 is less than the root-mean-squared

error of either the sales-force composite model (RMSE  3,423) or the Win-

ters’ model (RMSE  6,744). Notice also that the coefficients sum to 1 (0.80  

0.20  1).

Note that the two methods combined in this example contain quite different

information. The sales-force composite model includes the expertise of the sales

force, while the Winters’ model statistically takes into account trend and seasonal

components of the time series (but not the collective wisdom of the sales force).

Incidentally, the correlation coefficient between the squared errors for the two

individual models is –0.18 in this case (quite small, as we would expect).

The values for sales, CFCST (the combined forecast), sales force, and Winters

are shown in Table 8.4. Figure 8.2 shows the combined forecast and the actual sales

data for the historical period. The forecast values certainly appear reasonable.
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FIGURE 8.2
Actual Sales Data

and the Combined

Forecast (CFCST)

(c8t4)
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FORECASTING TOTAL HOUSES SOLD WITH
A COMBINED FORECAST

We will now apply the forecasting concepts of this chapter to the problem of fore-

casting total houses sold. We will combine two types of the forecasting models we

have presented in previous chapters. The models chosen for combination are a

multiple-regression model and a time-series decomposition model. These two

models were chosen because they differ in both the variables included and the

type of relationship hypothesized.

The multiple-regression model contains information from the mortgage interest

rate and the index of consumer sentiment. The regression model estimated was:

THS  106.31  10.78(MR)  0.45(ICS)

The root-mean-squared error for this forecasting model is 10.06 in the historical

period.

The time-series decomposition model takes both trend and seasonality into

account. The root-mean-squared error for the decomposition forecasting model

for THS is 3.55 in the historical period.

If we were to simply choose the optimum forecasting model from only these

two, we would choose the decomposition model. The RMSE for the decomposition

model of 3.55 is less than the RMSE of the regression model. Recall, however,

that the objective in combining forecasts is not to choose the optimum forecasting

model (forecast optimality) but to improve the forecast (forecast improvement).

Let us see what happens when we combine these forecasts using the regression

method of selecting the best set of weights. For notational simplicity we will let

THSRF (total houses sold regression forecast) refer to the multiple-regression

forecast, and THSDF (total houses sold decomposition forecast) refer to the de-

composition forecast. THSCF (total houses sold combined forecast) will be used

to represent the combined forecast.

We begin by regressing the actual values of total houses sold (THS) on THSRF

and THSDF, using standard regression techniques to determine whether the

intercept is essentially equal to zero. See Table 8.5. The results are:

THS   2.54  0.06(THSRF)  0.97(THSDF)

( 1.2) (1.53) (31.8)

where the t-ratios are in parentheses. Given a t-ratio of –1.2 for the intercept, we

would conclude that it is not statistically different from zero at any meaningful

significance level.

Next we do the same regression, but this time we force it through the origin by

eliminating the constant term (i.e., the intercept). See Table 8.5. The new regres-

sion results are:

THS  0.03(THSRF)  0.97(THSDF)

(0.96) (31.73)
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Audit Trail-–Coefficient Table (Multiple Regression Selected)

Series

Description

420 Chapter Eight

TABLE 8.5 Regression with a Constant Term 

Note that the constant term is not statistically significant (c8t5)

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test
---------------------------------------------------------------------------------------

THS Dependent  2.54 2.10  1.21 0.23 1.46 1,039.99

THSRF Yes 0.06 0.04 1.53 0.13 2.34 0.06

THSDF Yes 0.97 0.03 31.80 0.00 1,011.45 0.97

Audit Trail–-Statistics

Accuracy Measures Value Forecast Statistics Value

-----------------------------------------------    ------------------------------------

AIC 772.92 Durbin Watson(12) 1.71

BIC 775.89 Mean 67.94

Mean Absolute Percentage Error (MAPE) 4.23% Max 107.00

R-Square 93.65% Min 40.00

Adjusted R-Square 93.56% Sum Squared Deviation 28,071.56

Root Mean Square Error 3.52 Range 67.00

Theil 0.52 Ljung-Box 67.50

Regression without a Constant Term (Constant  0)—This Regression Is Used for the Combined Forecast

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

Included

in Model Coefficient

Standard

Error T-test P-value F-test Elasticity

Overall

F-test

---------------------------------------------------------------------------------------

THS Dependent 0.00 0.00 0.00 0.00 0.00 1,035.93

THSRF Yes 0.03 0.03 0.96 0.34 0.93 0.03

THSDF Yes 0.97 0.03 31.73 0.00 1,006.76 0.97

Audit Trail--Statistics

Accuracy Measures Value Forecast Statistics Value

----------------------------------------------    -------------------------------------

AIC 774.40 Durbin Watson(12) 1.72

BIC 777.37 Mean 67.94

Mean Absolute Percentage Error (MAPE) 4.20% Max 107.00

R-Square 93.59% Min 40.00

Adjusted R-Square 93.49% Sum Squared Deviation 28,071.56

Root Mean Square Error 3.54 Range 67.00

Theil 0.52 Ljung-Box 66.87

where the t-ratios are in parentheses. These results are interesting. First, they show

that the coefficients do sum approximately to 1 (0.03  0.97  1). Second, we see

that by far the greatest weight is assigned to the decomposition model, which has

an RMSE about one-third the size of the RMSE for the regression model. Third,

we see that after accounting for the contribution of the regression model, the



amount of explanatory power added by the decomposition model is substantial

(note the large t-ratio for THSDF). This is not surprising, since the correlation

coefficient between the squared error terms resulting from THSRF and THSDF is

quite low. These results suggest that the amount of improvement from combining

these models could possibly (but not necessarily) be significant.

Using this set of weights to determine the combined forecast (THSCF), we have:

THSCF  0.03(THSRF)  0.97(THSDF)

The resulting root-mean-squared error of 3.54 shows only a very modest im-

provement over the 3.55 RMSE based on the decomposition model alone. The

forecast values based on THSCF are plotted for the historical period as well as for

the forecast horizon, along with actual THS, in Figure 8.3. The data are shown in

tabular form in Table 8.6.
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FIGURE 8.3
Total Houses Sold

(THS) and Combined

Forecast (THSCF)
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This graphic shows
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combined forecast is:

THS  0.03(THSRF)

 0.97(THSDF)
Ja

n-
92

M
ay

-9
3

Ja
n-

94

Sep
-9

4

M
ay

-9
5

Ja
n-

96

Sep
-9

6

M
ay

-9
7

Ja
n-

98

Sep
-9

8

M
ay

-9
9

Ja
n-

00

Sep
-0

0

M
ay

-0
1

Ja
n-

02

Sep
-0

2

M
ay

-0
3

Sep
-9

2

120

100

80

60

40

20

0

THS

THSCF

TABLE 8.6
Total Houses Sold

and Three Forecasts

of THS (c8t5)

Date THS THSRF THSDF THSCF

Jan-1992 48.00 45.48 48.00 48.02

Feb-1992 55.00 42.50 55.00 54.73

Mar-1992 56.00 43.77 56.00 55.74

Apr-1992 53.00 45.27 53.00 52.87

May-1992 52.00 48.10 52.00 51.98

Jun-1992 53.00 50.36 53.00 53.02

Jul-1992 52.00 52.77 51.87 51.99

Aug-1992 56.00 54.16 53.17 53.30

Sep-1992 51.00 54.59 47.88 48.17

Oct-1992 48.00 51.73 47.43 47.65

(continued on next page)
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Date THS THSRF THSDF THSCF

Nov-1992 42.00 54.70 44.27 44.66

Dec-1992 42.00 58.21 41.93 42.50

Jan-1993 44.00 59.61 46.52 47.00

Feb-1993 50.00 62.08 53.97 54.32

Mar-1993 60.00 63.70 61.83 62.00

Apr-1993 66.00 63.89 59.31 59.56

May-1993 58.00 61.53 59.60 59.77

Jun-1993 59.00 62.61 59.08 59.30

Jul-1993 55.00 62.87 57.09 57.37

Aug-1993 57.00 64.08 59.40 59.65

Sep-1993 57.00 66.39 54.41 54.87

Oct-1993 56.00 69.50 53.66 54.23

Nov-1993 53.00 65.28 49.53 50.09

Dec-1993 51.00 68.29 46.56 47.30

Jan-1994 46.00 72.19 51.03 51.76

Feb-1994 58.00 70.73 58.97 59.43

Mar-1994 74.00 64.26 67.14 67.18

Apr-1994 65.00 57.85 63.61 63.56

May-1994 65.00 54.92 62.67 62.56

Jun-1994 55.00 56.36 60.33 60.33

Jul-1994 52.00 53.12 57.39 57.37

Aug-1994 59.00 55.40 58.83 58.84

Sep-1994 54.00 53.91 52.02 52.17

Oct-1994 57.00 51.31 50.00 50.14

Nov-1994 45.00 48.24 45.63 45.79

Dec-1994 40.00 49.47 43.04 43.31

Jan-1995 47.00 51.13 48.18 48.36

Feb-1995 47.00 53.46 56.41 56.43

Mar-1995 60.00 55.31 64.46 64.31

Apr-1995 58.00 57.80 61.02 61.04

May-1995 63.00 60.48 60.33 60.45

Jun-1995 64.00 65.98 59.17 59.49

Jul-1995 64.00 66.31 57.21 57.59

Aug-1995 63.00 64.41 60.33 60.57

Sep-1995 54.00 63.53 55.60 55.95

Oct-1995 54.00 65.84 55.18 55.60

Nov-1995 46.00 66.02 51.35 51.88

Dec-1995 45.00 69.21 48.40 49.12

Jan-1996 54.00 70.29 53.43 54.03

Feb-1996 68.00 69.39 62.31 62.63

Mar-1996 70.00 65.89 71.86 71.82

Apr-1996 70.00 62.10 68.64 68.58

May-1996 69.00 59.12 68.43 68.28

Jun-1996 65.00 57.76 67.43 67.27

Jul-1996 66.00 59.54 65.17 65.13

Aug-1996 73.00 62.50 67.67 67.64

TABLE 8.6
(continued)
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(continued on next page)

Date THS THSRF THSDF THSCF

Sep-1996 62.00 59.75 61.46 61.52

Oct-1996 56.00 63.90 60.47 60.69

Nov-1996 54.00 68.34 55.64 56.12

Dec-1996 51.00 67.53 52.46 53.01

Jan-1997 61.00 65.38 58.12 58.45

Feb-1997 69.00 68.24 67.31 67.46

Mar-1997 81.00 65.67 76.88 76.69

Apr-1997 70.00 63.71 73.44 73.29

May-1997 71.00 66.67 73.32 73.27

Jun-1997 71.00 69.94 71.90 71.98

Jul-1997 69.00 73.15 69.03 69.28

Aug-1997 72.00 72.16 71.69 71.84

Sep-1997 67.00 73.42 64.84 65.22

Oct-1997 62.00 74.75 63.82 64.26

Nov-1997 61.00 76.32 59.47 60.08

Dec-1997 51.00 75.24 56.56 57.22

Jan-1998 64.00 78.43 62.96 63.54

Feb-1998 75.00 79.58 73.20 73.53

Mar-1998 81.00 76.87 83.59 83.55

Apr-1998 82.00 77.75 79.68 79.77

May-1998 82.00 76.77 79.64 79.70

Jun-1998 83.00 77.87 78.60 78.72

Jul-1998 75.00 78.23 75.87 76.09

Aug-1998 75.00 78.20 78.54 78.68

Sep-1998 68.00 78.80 70.94 71.31

Oct-1998 69.00 77.35 69.58 69.94

Nov-1998 70.00 77.98 64.01 64.55

Dec-1998 61.00 78.62 59.94 60.61

Jan-1999 67.00 79.38 66.11 66.63

Feb-1999 76.00 81.04 76.71 76.98

Mar-1999 84.00 77.49 87.39 87.26

Apr-1999 86.00 78.29 82.68 82.71

May-1999 80.00 76.79 81.37 81.39

Jun-1999 82.00 72.70 78.86 78.83

Jul-1999 78.00 71.26 75.40 75.42

Aug-1999 78.00 67.25 77.97 77.80

Sep-1999 65.00 69.74 70.50 70.61

Oct-1999 67.00 67.64 68.72 68.82

Nov-1999 61.00 70.61 62.76 63.11

Dec-1999 57.00 67.97 58.40 58.80

Jan-2000 67.00 67.68 63.85 64.09

Feb-2000 78.00 66.07 73.54 73.46

Mar-2000 88.00 65.17 83.79 83.39

Apr-2000 78.00 67.08 79.91 79.68

May-2000 77.00 63.76 79.41 79.09
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Date THS THSRF THSDF THSCF

Jun-2000 71.00 64.32 77.97 77.71

Jul-2000 76.00 66.68 75.27 75.16

Aug-2000 73.00 67.52 78.28 78.10

Sep-2000 70.00 68.60 71.06 71.12

Oct-2000 71.00 69.34 69.89 70.00

Nov-2000 63.00 70.68 64.54 64.85

Dec-2000 65.00 70.57 60.92 61.32

Jan-2001 72.00 72.69 67.40 67.68

Feb-2001 85.00 70.65 77.99 77.92

Mar-2001 94.00 72.13 88.71 88.38

Apr-2001 84.00 69.35 83.75 83.48

May-2001 80.00 70.20 82.88 82.66

Jun-2001 79.00 70.36 81.14 80.98

Jul-2001 76.00 70.59 77.54 77.48

Aug-2001 74.00 72.13 79.78 79.70

Sep-2001 66.00 69.21 71.70 71.76

Oct-2001 66.00 71.77 69.97 70.15

Nov-2001 67.00 71.87 64.65 64.99

Dec-2001 66.00 69.63 61.08 61.46

Jan-2002 66.00 72.26 67.69 67.96

Feb-2002 84.00 72.42 79.23 79.18

Mar-2002 90.00 73.36 91.82 91.45

Apr-2002 86.00 72.37 88.36 88.06

May-2002 88.00 76.05 88.28 88.09

Jun-2002 84.00 75.77 86.64 86.48

Jul-2002 82.00 75.58 83.62 83.54

Aug-2002 90.00 77.51 86.72 86.61

Sep-2002 82.00 79.00 78.39 78.55

Oct-2002 77.00 76.33 77.09 77.21

Nov-2002 73.00 78.37 71.48 71.82

Dec-2002 70.00 79.70 68.26 68.73

Jan-2003 76.00 79.18 76.67 76.89

Feb-2003 82.00 78.93 90.04 89.88

Mar-2003 98.00 78.88 103.70 103.16

Apr-2003 91.00 81.97 99.27 98.94

May-2003 101.00 88.25 98.94 98.81

Jun-2003 107.00 89.88 96.95 96.92

Jul-2003 99.00 86.10 93.25 93.21

Aug-2003 105.00 78.59 96.66 96.31

Sep-2003 90.00 79.06 87.43 87.35

Oct-2003 88.00 82.07 85.73 85.78

Nov-2003 76.00 84.11 79.07 79.37

Dec-2003 75.00 84.16 74.44 74.87

THS  Total houses sold

THSRF  Multiple regression forecast of THS

THSDF  Time-series decomposition forecast of THS

THSCF  A combination forecast of THS where:

THSCF  0.03(THSRF)  0.97(THSDF)

TABLE 8.6
(continued)



DELFIELD
This statement was made by Deborah Allison-

Koerber, a product-line manager at the Delfield

Company, a leading manufacturer of food-service

equipment. Delfield uses a production-planning

system consisting of a master production schedule

and a corresponding material requirements plan-

ning (MRP) system. The MRP system is driven in

large part by sales forecasts. For some time, man-

agement had been relying on a heavily judgmental

sales forecast that started with a three-month mov-

ing average, incorporated judgmental factors from

an informal “jury of executive opinion,” and was

finally adjusted by “add factors” provided by the

person who was responsible for the MRP system.

According to Ms. Allison-Koerber, the results

from this approach to forecasting were unsatis-

factory from an operational perspective, and so

she started to test some more quantitative fore-

casting methods. She focused her initial attention

on a particular three-door reach-in freezer that

represented a large cost when held in inventory,

and so accurate forecasts of sales were important.

A review of the sales history for this product

showed some trend and some seasonality. Thus,

Ms. Allison-Koerber believed that a multiple-

regression model and a Winters’ exponential

smoothing model would be good candidates.

For a multiple-regression model she “reviewed

a large set of potential causal variables, but settled

on GNP and the prime interest rate as the most

important.” In addition, “dummy variables were

used to account for seasonality and a temporary

demand surge” that reflected the rollout of new

menu items by a large fast-food chain that

purchases Delfield food-service equipment. Ms.

Allison-Koerber commented,

A regression model based on this information

is comprehensive enough to forecast sales of

these freezers and yet simple enough to be

easily communicated to others in the organi-

zation. In addition, the model is desirable
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Comments from the Field Combining Forecasts

Can Improve Results

2

because it necessitates having to develop

forecasts for only two independent variables.

For the first six months of actual use, this model

resulted in an RMSE of 20.185, which compared

with an RMSE of 42.821 based on the traditional

subjective method.

Ms. Allison-Koerber found a Winters’ expo-

nential smoothing forecast to also outperform

the subjective forecast by producing an RMSE of

29.081 for the first six months of use. Because

the regression model and the Winters’ model 

contain different information, they were com-

bined. The resulting RMSE was 17.198, lower

than the regression model (20.185) or the Win-

ters’ model (29.081), and much better than the

subjective approach (42.821).

However, as Ms. Allison-Koerber commented,

it was felt that “the personnel who make the

subjective forecasts have good insights about the

industry and these insights should be utilized

when possible.” Thus, she used a regression tech-

nique to combine the quantitative and subjective

forecasts. Even though the RMSE for the subjective

forecast was much higher, the results demon-

strated that the subjective method contained

information not found in the other models. The

results are summarized in the following table:

Model RMSE

A. Regression 20.185

B. Winters’ 29.081

C. Subjective 42.821

D. A and B combined 17.198

E. C and A combined 17.944

F. C and B combined 16.724

G. C and D combined 16.168

These results confirmed for Delfield that the use of

quantitative forecasting methods and the combi-

nation of subjective and quantitative forecasts can

improve results.
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Integrative Case

Forecasting The Gap Sales Data with a Combination Model

The sales of The Gap stores for the 88 quarters covering 1985Q1 through 2006Q4 are again shown in the graph below.

Recall that The Gap sales data are quite seasonal and are increasing over time. Use the full 1985Q1 through 2006Q4

data to construct your forecast models.
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Case
Questions

1. Assume you would like to use a Winters’ model and combine the forecast results with a

multiple-regression model. Use the regression technique to decide on the weighting to

attach to each forecast.

2. Combine the two methods (i.e., the Winters’ and the multiple-regression models) with

the calculated weighting scheme, and construct a combined forecast model.

3. Calculate the root-mean-squared error for the historical period and comment on any

improvement.

Solutions to
Case
Questions

1. To see if both models may reasonably be used in a combined forecast, run the regression

that uses The Gap sales as the dependent variable and the two forecasts (one from the

Winters’ model and the other from the multiple-regression model) as the explanatory

variables. The regression (shown in upper half of Table 8.7) indicates that there is little

significance attached to the constant term (because of its t-statistic of 1.08), and so we

may reasonably attempt to combine the models.

2. The two models are combined by running the same regression through the origin (shown

in the lower half of Table 8.7). Here the dependent variable is again The Gap sales. Note

that the weight on theWinters’forecast (i.e., 0.93) is larger than the weight on the multiple-

regression forecast (i.e., 0.07); this seems appropriate because the Winters’ forecast alone

has a lower RMSE than does the multiple-regression forecast when considered separately.
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Note the very close association of the forecast with the original data as shown in the

graph below:
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The Gap sales ($000)

GCF

3. The combined forecast and the two candidate models can be compared by using the

RMSE of each model:

RMSE

Winters’ model 114,863.59

Regression model 361,694.23

Combination model 103,850.52

Since the lowest RMSE calculated belongs to the combination model, it appears that

there may be some support for forecast improvement from the combined model.

Both models we have used here, however, are statistical forecasting models and contain

similar (but not identical) information; if we had used two forecasting models employ-

ing significantly different types of information, the improvement might have been more

substantial for the combined model.

Date The Gap Sales ($000) GCF

Mar-1985 105,715.00 88,109.35

Jun-1985 120,136.00 90,830.14

Sep-1985 181,669.00 158,817.14

Dec-1985 239,813.00 281,134.86

Mar-1986 159,980.00 133,229.14

Jun-1986 164,760.00 152,847.97

Sep-1986 224,800.00 227,183.85

Dec-1986 298,469.00 333,573.86

Mar-1987 211,060.00 162,809.32

Date The Gap Sales ($000) GCF

Jun-1987 217,753.00 191,141.14

Sep-1987 273,616.00 295,356.40

Dec-1987 359,592.00 397,186.49

Mar-1988 241,348.00 215,835.30

Jun-1988 264,328.00 227,889.54

Sep-1988 322,752.00 345,520.75

Dec-1988 423,669.00 480,828.85

Mar-1989 309,925.00 274,272.01

Jun-1989 325,939.00 298,101.85



Date The Gap Sales ($000) GCF

Sep-1989 405,601.00 410,405.94

Dec-1989 545,131.00 588,955.81

Mar-1990 402,368.00 364,202.07

Jun-1990 404,996.00 394,301.04

Sep-1990 501,690.00 487,706.24

Dec-1990 624,726.00 671,140.93

Mar-1991 490,300.00 413,971.79

Jun-1991 523,056.00 457,002.96

Sep-1991 702,052.00 625,809.86

Dec-1991 803,485.00 904,147.59

Mar-1992 588,864.00 579,279.74

Jun-1992 614,114.00 577,400.07

Sep-1992 827,222.00 735,324.67

Dec-1992 930,209.00 1,009,992.46

Mar-1993 643,580.00 710,725.74

Jun-1993 693,192.00 673,211.12

Sep-1993 898,677.00 851,604.32

Dec-1993 1,060,230.00 1,062,406.52

Mar-1994 751,670.00 793,664.22

Jun-1994 773,131.00 830,671.04

Sep-1994 988,346.00 1,007,662.84

Dec-1994 1,209,790.00 1,193,403.01

Mar-1995 848,688.00 887,193.34

Jun-1995 868,514.00 935,854.67

Sep-1995 1,155,930.00 1,158,741.46

Dec-1995 1,522,120.00 1,401,021.94

Mar-1996 1,113,150.00 1,070,627.21

Jun-1996 1,120,340.00 1,193,500.77

Sep-1996 1,383,000.00 1,526,410.94

Dec-1996 1,667,900.00 1,774,076.90

Mar-1997 1,231,186.00 1,212,319.44

Jun-1997 1,345,221.00 1,295,312.30

Sep-1997 1,765,939.00 1,753,572.57

Dec-1997 2,165,479.00 2,224,782.40

Mar-1998 1,719,712.00 1,611,794.81

Combining Forecast Results 429

Date The Gap Sales ($000) GCF

Jun-1998 1,904,970.00 1,785,360.00

Sep-1998 2,399,900.00 2,402,008.16

Dec-1998 3,029,900.00 2,961,212.35

Mar-1999 2,277,734.00 2,259,675.83

Jun-1999 2,453,339.00 2,364,295.82

Sep-1999 3,045,386.00 2,995,946.00

Dec-1999 3,858,939.00 3,708,533.03

Mar-2000 2,731,990.00 2,825,320.82

Jun-2000 2,947,714.00 2,858,814.65

Sep-2000 3,414,668.00 3,516,435.30

Dec-2000 4,579,088.00 4,171,367.25

Mar-2001 3,179,656.00 3,168,953.43

Jun-2001 3,245,219.00 3,304,442.84

Sep-2001 3,333,373.00 3,784,127.20

Dec-2001 4,089,625.00 4,265,764.55

Mar-2002 2,890,840.00 2,831,538.61

Jun-2002 3,268,309.00 2,922,844.59

Sep-2002 3,644,956.00 3,508,458.04

Dec-2002 4,650,604.00 4,583,655.13

Mar-2003 3,352,771.00 3,281,668.45

Jun-2003 3,685,299.00 3,517,839.75

Sep-2003 3,929,456.00 3,959,315.51

Dec-2003 4,886,264.00 4,971,833.46

Mar-2004 3,667,565.00 3,539,330.45

Jun-2004 3,720,789.00 3,856,236.87

Sep-2004 3,980,150.00 4,029,485.05

Dec-2004 4,898,000.00 4,990,248.75

Mar-2005 3,626,000.00 3,625,727.23

Jun-2005 3,716,000.00 3,755,862.19

Sep-2005 3,860,000.00 4,016,741.10

Dec-2005 4,821,000.00 4,838,641.30

Mar-2006 3,441,000.00 3,611,228.60

Jun-2006 3,716,000.00 3,609,175.74

Sep-2006 3,856,000.00 3,942,513.79

Dec-2006 4,930,000.00 4,896,055.40

Gap Sales  Actual The Gap sales

GCF  The Gap sales combined forecast model

where:

GCF  0.12(GRF)  0.88(GWF)

GRF  The Gap sales multiple-regression forecast

GWF  The Gap sales Winters’ forecast

(continued)



USING FORECASTX™ TO COMBINE FORECASTS

As usual, begin by opening your data file in Excel and start ForecastX™. In the Data Cap-

ture dialog box identify the data you want to use, as shown here. Note that in this case you

want a sheet that has the date, the actual values for the series you are forecasting, and then

two or more of the forecasts you have developed. Then click the Forecast Method tab.
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In the Method Selection dialog box click the down arrow in the Forecasting Tech-

nique box and select Multiple Regression. Make sure the desired variable is selected as

the Dependent Series, which is the actual value of Gapsales in this example. Then click

the Statistics tab.



In this dialog box select the statistics that you desire. Remember that there are more

choices if you click the More Statistics button at the bottom.
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After selecting the statistics you want to see, click the Reports tab. In the Reports

dialog box select those you want. Typical selections might be those shown here. In the

Audit Trail tab (the active tab shown here) click Fitted Values Table.

Then click the Finish! button.

ForecastX™ will automatically apply a time-series method to forecast the independent

variables. Check the results to see that the constant term is not significantly different than

zero. This provides a way to check for systematic bias.



If the constant term is essentially zero (the p-value is greater than 0.05), you want to

redo the regression, forcing the line through the origin. To do this, estimate the regression

model again, but this time in the Method Selection screen click the Advanced button at

the bottom. In the dialog box that appears, check the box Constant is Zero. The regression

coefficients in the resulting model are the optimum weights for the combined forecast, and

the fitted values provided by ForecastX™ are the combined forecast values.
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Exercises 1. Explain why a combined model might be better than any of the original contributing

models. Could there be cases in which a combined model would show no gain in fore-

cast accuracy over the original models? Give an example where this situation might be

likely to occur.

2. Outline the different methods for combining forecast models explained in the chapter.

Can more than two forecasting models be combined into a single model? Does each

of the original forecasts have to be the result of the application of a quantitative

technique?

3. Air Carrier Traffic Statistics Monthly is a handbook of airline data published by the U.S.

Department of Transportation. In this book you will find revenue passenger-miles



(RPM) traveled on major airlines on international flights. Airlines regularly try to pre-

dict accurately the RPM for future periods; this gives the airline a picture of what equip-

ment needs might be and is helpful in keeping costs at a minimum.

The revenue passenger-miles for international flights on major international airlines

is shown in the accompanying table for the period Jan-1979 to Feb-1984. Also shown is

personal income during the same period, in billions of dollars.

Date RPM
Personal
Income

Jan-1979 4,114,904 1,834.3

Feb-1979 3,283,488 1,851.4

Mar-1979 4,038,611 1,872.1

Apr-1979 4,312,697 1,880.7

May-1979 4,638,300 1,891.6

Jun-1979 6,661,979 1,905.1

Jul-1979 6,221,612 1,933.2

Aug-1979 6,489,078 1,946.5

Sep-1979 5,258,750 1,960.1

Oct-1979 4,720,077 1,979.2

Nov-1979 4,037,529 2,000.0

Dec-1979 4,240,862 2,022.5

Jan-1980 4,222,446 2,077.2

Feb-1980 3,540,027 2,086.4

Mar-1980 4,148,262 2,101.0

Apr-1980 4,106,723 2,102.1

May-1980 4,602,599 2,114.1

Jun-1980 5,169,789 2,127.1

Jul-1980 5,911,035 2,161.2

Aug-1980 6,236,392 2,179.4

Sep-1980 4,700,133 2,205.7

Oct-1980 4,274,816 2,235.3

Nov-1980 3,611,307 2,260.4

Dec-1980 3,794,631 2,281.5

Jan-1981 3,513,072 2,300.7

Feb-1981 2,856,083 2,318.2

Mar-1981 3,281,964 2,340.4

Apr-1981 3,694,417 2,353.8

May-1981 4,240,501 2,367.4

Jun-1981 4,524,445 2,384.3

Jul-1981 5,156,871 2,419.2
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Date RPM
Personal
Income

Aug-1981 5,465,791 2,443.4

Sep-1981 4,320,529 2,462.6

Oct-1981 4,036,149 2,473.5

Nov-1981 3,272,074 2,487.6

Dec-1981 3,514,227 2,492.1

Jan-1982 3,558,273 2,499.1

Feb-1982 2,834,658 2,513.8

Mar-1982 3,318,250 2,518.6

Apr-1982 3,660,038 2,535.5

May-1982 4,014,541 2,556.2

Jun-1982 4,487,598 2,566.3

Jul-1982 5,088,561 2,588.3

Aug-1982 5,292,201 2,592.0

Sep-1982 4,320,181 2,597.2

Oct-1982 4,069,619 2,611.5

Nov-1982 3,125,650 2,621.3

Dec-1982 3,381,049 2,636.8

Jan-1983 3,513,758 2,652.6

Feb-1983 2,876,672 2,650.5

Mar-1983 3,536,871 2,670.1

Apr-1983 3,744,696 2,689.0

May-1983 4,404,939 2,719.3

Jun-1983 5,201,363 2,732.6

Jul-1983 5,915,462 2,747.6

Aug-1983 6,022,431 2,756.4

Sep-1983 5,000,685 2,781.6

Oct-1983 4,659,152 2,812.8

Nov-1983 3,592,160 2,833.1

Dec-1983 3,818,737 2,857.2

Jan-1984 3,828,367 2,897.4

Feb-1984 3,221,633 2,923.5

a. Build a multiple-regression model for the data to predict RPM for the next month.

Check the data for any trend, and be careful to account for any seasonality. You

should easily be able to obtain a forecast model with an R-squared of about 0.70 that

exhibits little serial correlation.

b. Use the same data to compute a time-series decomposition model, and again forecast

for one month in the future.

c. Judging from the root-mean-squared error, which of the models in parts (a) and (b)

proved to be the best forecasting model? Now combine the two models, using a
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weighting scheme like that shown in Table 8.1. Choose various weights until you be-

lieve you have come close to the optimum weighting scheme. Does this combined

model perform better (according to RMSE) than either of the two original models?

Why do you believe the combined model behaves in this way?

d. Try one other forecasting method of your choice on these data, and combine the re-

sults with the multiple-regression model. Do you obtain a better forecast (according

to RMSE) than with either of your two original models?

4. Estimating the volume of loans that will be made at a credit union is crucial to effective

cash management in those institutions. In the table that follows are quarterly data for a

real credit union located in a midwestern city. Credit unions are financial institutions

similar to banks, but credit unions are not-for-profit firms whose members are the actual

owners (remember their slogan, “It’s where you belong”). The members may be both de-

positors in and borrowers from the credit union.

Quarter Loan Volume Assets Members Prime Rate

Mar-98 2,583,780 4,036,810 3,522 6.25

Jun-98 2,801,100 4,164,720 3,589 6.75

Sep-98 2,998,240 4,362,680 3,632 7.13

Dec-98 3,032,720 4,482,990 3,676 7.75

Mar-99 3,094,580 4,611,300 3,668 8

Jun-99 3,372,680 4,696,720 3,689 8.63

Sep-99 3,499,350 4,844,960 3,705 9.41

Dec-99 3,553,710 4,893,450 3,722 11.55

Mar-00 3,651,870 5,089,840 3,732 11.75

Jun-00 3,832,440 5,185,360 3,770 11.65

Sep-00 4,013,310 5,381,140 3,845 12.9

Dec-00 3,950,100 5,413,720 3,881 15.3

Mar-01 3,925,100 5,574,160 3,923 18.31

Jun-01 3,717,480 5,838,990 3,941 12.63

Sep-01 3,712,300 6,150,350 3,955 12.23

Dec-01 3,677,940 6,133,030 3,943 20.35

Mar-02 3,724,770 6,119,030 3,960 18.05

Jun-02 3,787,760 6,221,090 3,971 20.03

Sep-02 3,981,620 6,229,000 3,993 20.08

Dec-02 3,848,660 6,412,230 4,011 15.75

Mar-03 3,619,830 6,795,830 4,040 16.5

Jun-03 3,623,590 7,538,210 4,103 16.5

Sep-03 3,632,120 8,496,080 4,133 13.5

Dec-03 3,482,000 9,979,390 4,173 11.5

Mar-04 3,378,500 11,475,300 4,218 10.5

Jun-04 3,433,470 12,116,900 4,266 10.5

Sep-04 3,615,430 12,686,500 4,305 11

Dec-04 3,865,780 13,457,600 4,657 11

Mar-05 3,955,270 14,118,300 4,741 11.21

Jun-05 4,394,140 14,448,600 4,826 12.6

Sep-05 4,803,630 14,687,200 4,943 12.97

Dec-05 4,952,740 14,885,800 4,945 11.06

Mar-06 5,249,760 16,106,300 5,007 10.5

Jun-06 5,943,390 17,079,400 5,112 9.78

(continued on next page)
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Quarter Loan Volume Assets Members Prime Rate

Sep-06 6,387,000 17,846,800 5,164 9.5

Dec-06 6,435,750 19,435,600 5,210 9.5

Mar-07 6,482,780 19,714,100 5,255 9.1

Jun-07 6,683,800 21,185,800 5,289 8.5

Sep-07 7,094,210 22,716,700 5,391 7.5

Dec-07 7,329,770 23,790,500 5,461 7.5

a. Estimate a multiple-regression model to estimate loan demand and calculate its root-

mean-squared error.

b. Estimate a time-series decomposition model to estimate loan demand with the same

data and calculate its root-mean-squared error.

c. Combine the models in parts (a) and (b) and determine whether the combined model

performs better than either or both of the original models. Try to explain why you ob-

tained the results you did.

5. HeathCo Industries, a producer of a line of skiwear, has been the subject of exercises in

several earlier chapters of the text. The data for its sales and two potential causal vari-

ables, income (INCOME) and the northern-region unemployment rate (NRUR), are re-

peated in the following table:

Date Sales Income NRUR

Jan-98 72,962 218 8.4

Apr-98 81,921 237 8.2

Jul-98 97,729 263 8.4

Oct-98 142,161 293 8.4

Jan-99 145,592 318 8.1

Apr-99 117,129 359 7.7

Jul-99 114,159 404 7.5

Oct-99 151,402 436 7.2

Jan-00 153,907 475 6.9

Apr-00 100,144 534 6.5

Jul-00 123,242 574 6.5

Oct-00 128,497 622 6.4

Jan-01 176,076 667 6.3

Apr-01 180,440 702 6.2

Jul-01 162,665 753 6.3

Oct-01 220,818 796 6.5

Jan-02 202,415 858 6.8

Apr-02 211,780 870 7.9

Jul-02 163,710 934 8.3

Oct-02 200,135 1,010 8

Jan-03 174,200 1,066 8

Apr-03 182,556 1,096 8

Jul-03 198,990 1,162 8

Oct-03 243,700 1,178 8.9

Jan-04 253,142 1,207 9.6

Apr-04 218,755 1,242 10.2

Jul-04 225,422 1,279 10.7

(continued)
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Date Sales Income NRUR

Oct-04 253,653 1,318 11.5

Jan-05 257,156 1,346 11.2

Apr-05 202,568 1,395 11

Jul-05 224,482 1,443 10.1

Oct-05 229,879 1,528 9.2

Jan-06 289,321 1,613 8.5

Apr-06 266,095 1,646 8

Jul-06 262,938 1,694 8

Oct-06 322,052 1,730 7.9

Jan-07 313,769 1,755 7.9

Apr-07 315,011 1,842 7.9

Jul-07 264,939 1,832 7.8

Oct-07 301,479 1,882 7.6

Jan-08 334,271 1,928 7.6
Apr-08 328,982 1,972 7.7
Jul-08 317,921 2,017 7.5
Oct-08 350,118 2,062 7.4

a. Develop a multiple-regression model of SALES as a function of both INCOME and

NRUR:

SALES  a  b1(INCOME)  b2(NRUR)

Use this model to forecast sales for 2008Q1–2008Q4 (call your regression forecast

series SFR), given that INCOME and NRUR for 2004 have been forecast to be: 

Quarter INCOME NRUR

2008Q1 1,928 7.6

2008Q2 1,972 7.7

2008Q3 2,017 7.5

2008Q4 2,062 7.4

b. Calculate the RMSE for your regression model for both the historical period

(1998Q1–2007Q4) and the forecast horizon (2008Q1–2008Q4).

Period RMSE

Historical

Forecast

c. Now prepare a forecast through the historical period and the forecast horizon

(2008Q1–2008Q4) using Winters’ exponential smoothing. Call this forecast series

SFW, and fill in the RMSEs for SFW:

Period RMSE

Historical

Forecast

← Holdout
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d. Solely on the basis of the historical data, which model appears to be the best? Why?

e. Now prepare a combined forecast (SCF) using the regression technique described in

this chapter. In the standard regression:

SALES  a  b1(SFR)  b2(SFW)

Is the intercept essentially zero? Why? If it is, do the following regression as a basis

for developing SCF:

SALES  b1(SFR)  b2(SFW)

Given the historical RMSEs found in parts (b) and (c), do the values for b1 and b2

seem plausible? Explain.

f. Calculate the RMSEs for SCF:

Period RMSE

Historical

Forecast

Did combining models reduce the RMSE in the historical period? What about the

actual forecast?

6. Your company produces a favorite summertime food product, and you have been placed

in charge of forecasting shipments of this product. The historical data below represent

your company’s past experience with the product.

a. Since the data appear to have both seasonality and trend, you should estimate a

Winters’ model and calculate its root-mean-squared error.

b. You also have access to a survey of the potential purchasers of your product. This

information has been collected for some time, and it has proved to be quite accurate

for predicting shipments in the past. Calculate the root-mean-squared error of the

purchasers’ survey data.

c. After checking for bias, combine the forecasts in parts (a) and (b) and determine if a

combined model may forecast better than either single model.

Date Shipments ($000)
Purchasers’

Survey ($000) Date Shipments ($000)
Purchasers’

Survey ($000)

Apr-2002 13,838.00 13,920.32 Jun-2003 21,056.00 24,644.20

May-2002 15,137.00 15,052.82 Jul-2003 13,509.00 14,224.17

Jun-2002 23,713.00 26,207.69 Aug-2003 9,729.00 9,194.77

Jul-2002 17,141.00 17,237.59 Sep-2003 13,454.00 12,141.25

Aug-2002 7,107.00 7,687.23 Oct-2003 13,426.00 11,971.93

Sep-2002 9,225.00 9,788.06 Nov-2003 17,792.00 17,654.14

Oct-2002 10,950.00 7,889.46 Dec-2003 19,026.00 15,580.19

Nov-2002 14,752.00 14,679.10 Jan-2004 9,432.00 9,961.98

Dec-2002 18,871.00 17,644.48 Feb-2004 6,356.00 7,368.55

Jan-2003 11,329.00 10,436.45 Mar-2004 12,893.00 11,286.25

Feb-2003 6,555.00 6,304.89 Apr-2004 19,379.00 18,915.33

Mar-2003 9,335.00 9,354.44 May-2004 14,542.00 14,056.06

Apr-2003 10,845.00 11,759.15 Jun-2004 18,043.00 20,699.38

May-2003 15,185.00 14,971.57 Jul-2004 10,803.00 12,892.97
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Data Mining

INTRODUCTION1

Data mining is quite different from the statistical techniques we have used previ-
ously for forecasting. In most forecasting situations you have encountered, for
example, in the model imposed on the data to make forecasts has been chosen by
the forecaster. For example, in the case of new product forecasting we have assumed
that new products “roll out” with a life cycle that looks like an s-curve. With this
in mind we chose to use one of three models that create s-curves: the logistic
model, the Gompertz model, and the Bass model. When we chose any of these
three models we knew we were imposing on our solution the form of an s-curve,
and we felt that was appropriate because we had observed that all previous new
products followed this pattern. In a sense, we imposed the pattern on the data.

With data mining, the tables are turned. We don’t know what pattern or family
of patterns may fit a particular set of data or sometimes what it is we are trying to
predict or explain. This should seem strange to a forecaster; it’s not the method of
attacking the data we have been pursuing throughout the text. To begin data min-
ing we need a new mindset. We need to be open to finding relationships and pat-
terns we never imagined existed in the data we are about to examine. To use data
mining is to let the data tell us the story (rather than to impose a model on the data
that we feel will replicate the actual patterns in the data). Peter Bruce points out,
however, that most good data mining tasks have goals and circumscribed search
parameters that help reduce the possibility of finding interesting patterns that are
just artifacts of chance.

Data mining traditionally uses very large data sets, oftentimes far larger than
the data sets we are used to using in business forecasting situations. The tools
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we use in data mining are also different from business forecasting tools; some
of the statistical tools will be familiar but they are used in different ways than
we have used them in previous chapters. The premise of data mining is that
there is a great deal of information locked up in any database—it’s up to us to
use appropriate tools to unlock the secrets hidden within it. Business forecast-
ing is explicit in the sense that we use specific models to estimate and forecast
known patterns (e.g., seasonality, trend, cyclicality, etc.). Data mining, on the
other hand, involves the extraction of implicit (perhaps unknown) intelligence
or useful information from data. We need to be able to sift through large quan-
tities of data to find patterns and regularities that we did not know existed be-
forehand. Some of what we find will be quite useless and uninteresting, perhaps
only coincidences. But, from time to time, we will be able to find true gems in
the mounds of data.

The objective of this chapter is to introduce a variety of data mining meth-
ods. Some of these methods are simple and meant only to introduce you to the
basic concept of how data mining works. Others, however, are full-blown sta-
tistical methods commonly employed by data miners to exploit large data-
bases. After completing this chapter you will understand what data mining
techniques exist and appreciate their strengths; you will also understand how
they are applied in practice. If you wish to experiment with your own data (or
that provided on the CD that accompanies this text), we recommend the
XLMiner© software.2

DATA MINING

A decade ago one of the most pressing problems for a forecaster was the lack of
data collected intelligently by businesses. Forecasters were limited to few pieces
of data and only limited observations on the data that existed. Today, however, we
are overwhelmed with data. It is collected at grocery store checkout counters,
while inventory moves through a warehouse, when users click a button on the
World Wide Web, and every time a credit card is swiped. The rate of data collec-
tion is not abating; it seems to be increasing with no clear end in sight. The pres-
ence of large cheap storage devices means that it is easy to keep every piece of
data produced. The pressing problem now is not the generation of the data, but the
attempt to understand it.

The job of a data miner is to make sense of the available mounds of data by
examining the data for patterns. The single most important reason for the recent in-
terest in data mining is due to the large amounts of data now available for analysis.
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Both student and full versions of the software are available from Resample.com
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Intelligence by Galit Shmueli, Nitin Patel, and Peter Bruce (John Wiley & Sons, 2007).



There is a need for business professionals to transform such data into useful in-
formation by “mining” it for the existence of patterns. You should not be surprised
by the emphasis on patterns; this entire text has been about patterns of one sort or
another. Indeed, men have looked for patterns in almost every endeavor under-
taken by mankind. Early men looked for patterns in the night sky, for patterns in
the movement of the stars and planets, and for patterns to help predict the best
times of the year to plant crops. Modern man still hunts for patterns in early elec-
tion returns, in global temperature changes, and in sales data for new products.
Over the last 25 years there has been a gradual evolution from data processing to
what today we call data mining. In the 1960s businesses routinely collected data
and processed it using database management techniques that allowed indexing,
organization, and some query activity. Online transaction processing (OLTP) be-
came routine and the rapid retrieval of stored data was made easier by more effi-
cient storage devices and faster and more capable computing.

Database management advanced rapidly to include very sophisticated query
systems. It became common not only in business situations but also in scientific
inquiry. Databases began to grow at previously unheard-of rates and for even
routine activities. It has been estimated recently that the amount of data in all
the world’s databases doubles in less than two years. That flood of data would
seem to call for analysis in order to make sense of the patterns locked within.
Firms now routinely have what are called data warehouses and data marts. Data

warehouse is the term used to describe a firm’s main repository of historical
data; it is the memory of the firm, it’s collective information on every relevant
aspect of what has happened in the past. A data mart, on the other hand, is a
special version of a data warehouse. Data marts are a subset of data warehouses
and routinely hold information that is specialized and has been grouped or cho-
sen specifically to help businesses make better decisions on future actions. The
first organized use of such large databases has come to be called online

analytical processing (OLAP). OLAP is a set of analysis techniques that pro-
vides aggregation, consolidation, reporting, and summarization of data. It could
be thought of as the direct precursor to what we now refer to as data mining.
Much of the data that is collected by any organization becomes simply a histor-
ical artifact that is rarely referenced and even more rarely analyzed for knowl-
edge. OLAP procedures began to change all that as data was summarized and
viewed from different angles.

Data mining, on the other hand, concerns analyzing databases, data ware-
houses, and data marts that already exist, for the purpose of solving some problem
or answering some pressing question. Data mining is the extraction of useful

information from large databases. It is about the extraction of knowledge or
information from large amounts of data.3 Data mining has come to be referenced
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3 D. Hand, H. Mannila, P. Smyth, Principles of Data Mining (Cambridge, MA: MIT Press, 2001),

ISBN 0-262-08290-X.



by a few similar terms; in most cases they are all much the same set of techniques
referred to as data mining in this text:

• Exploratory data analysis

• Business intelligence

• Data driven discovery

• Deductive learning

• Discovery science

• Knowledge discovery in databases (KDD)

Data mining is quite separate from database management. Eamonn Keogh
points out that in database management queries are well defined; we even have a
language to write these queries (structured query language or SQL, pronounced as
“sequel”). A query in database management might take the form of “Find all the
customers in South Bend,” or “Find all the customers that have missed a recent
payment.” Data mining uses different queries; they tend to be less structured and
are sometimes quite vague. For example: “Find all the customers that are likely to
miss a future payment,” or “Group all the customers with similar buying habits.”
In one sense, data mining is like business forecasting in that we are looking for-
ward in an attempt to obtain better information about future likely events.

Companies may be data rich but are often information poor; data mining is a
set of tools and techniques that can aid firms in making sense of the mountains of
data they already have available. These databases may be about customer profiles
and the choices those customers have made in the past. There are likely patterns of
behavior exhibited, but the sheer amount of the data will mask the underlying
patterns. Some patterns may be interesting but quite useless to a firm in making
future decisions, but some patterns may be predictive in ways that could be very
useful. For example, if you know which of your customers are likely to switch sup-
pliers in the near future, you may be able to prevent them from jumping ship and
going with a competitor. It’s always less costly to keep existing customers than to
enlist new ones. Likewise, if you were to know which of your customers were
likely to default on their loans you might be able to take preventive measures to
forestall the defaults, or you might be less likely to loan to such individuals.
Finally, if you know the characteristics of potential customers that are likely to
purchase your product, you might be able to direct your advertising and promo-
tional efforts better than if you were to blanket the market with advertising and
promotions. A well-targeted approach is usually better than a “shotgun” approach.
The key lies in knowing where to aim.

What types of patterns would we find useful to uncover with data mining?
The answer is quite different from the patterns we expected to find in data with
business forecasting methods such as Winters’ exponential smoothing. When we
applied the Winters’ model to time-series data we were looking for specific
patterns that we knew had existed in many previously examined data sets (e.g.,
trend and seasonality). The patterns we might find with data mining techniques,
however, are usually unknown to us at the beginning of the process. We may find
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MARKETING AND DATA MINING
Marketers have always tried to understand the

customer.

A.C. Nielsen created a program called Spotlight

as a data mining tool. The tool is for use in

analyzing point-of-sale data; this data would

include information about who made the

purchase, what was purchased, the price paid

for the item, the data and time of the purchase,

and so on. The Spotlight system extracts infor-

mation from point-of-sale databases, creates

formatted reports that explain changes in a

product’s market share caused by promotional

programs, shift among product segments (such

as sales shifting from whole milk to soy milk),

and changes in distribution and price. Spotlight

can also be used to report on competing products.

The Spotlight program looks for common and

unique behavior patterns. Spotlight was designed

to enable users to locate and account for volume

and share changes for given brands. It won an

award for outstanding artificial intelligence appli-

cation from the American Association for Artificial

Intelligence.

Spotlight became the most widely distributed data

mining application in the industry for packaged

goods.

Source: This information is drawn from Byte.Com’s
archive of “The Data Gold Rush” that appeared in the
October 1995 issue of Byte magazine.
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descriptive patterns in our data; these tell us only the general properties of the
database. We may also find predictive patterns in the data; these allow us to make
forecasts or predictions in much the same manner as we have been seeing in the
preceding chapters.

THE TOOLS OF DATA MINING

Shmueli, Patel, and Bruce use a taxonomy of data mining tools that is useful for
seeing the big picture. There are basically four categories of data mining tools or
techniques:

1. Prediction

2. Classification

3. Clustering

4. Association

Prediction tools are most like the methods we have covered in previous
chapters; they attempt to predict the value of a numeric variable (almost always a
continuous rather than a categorical variable). The term classification is used
when we are predicting the particular category of an observation when the vari-
able is a categorical variable. We might, for example, be attempting to predict the
amount of a consumer expenditure (a continuous variable) in a particular circum-
stance or the amount that an individual might contribute yearly to a particular
cause (also a continuous variable). The variable we are attempting to predict in
each of these instances is a continuous variable, but the variable to be predicted
might also be a categorical variable. For example, we might wish to predict



whether an individual will contribute to a particular cause or whether someone
will make a certain purchase this year. Prediction then involves both categories of
variables: continuous and categorical.

Classification tools are the most commonly used methods in data mining. They
attempt to distinguish different classes of objects or actions. For instance, a
particular credit card transaction may be either normal or fraudulent. Its correct
classification in a timely manner could save a business a considerable amount of
money. In another instance you may wish to know which characteristic of your ad-
vertising on a particular product is most important to consumers. Is it price? Or,
could it be the description of the quality and reliability of the item? Perhaps it is
the compatibility of the item with others the potential purchaser already owns.
Classification tools may tell you the answer for each of many products you sell,
thus allowing you to make the best use of your advertising expenditures by pro-
viding consumers with the information they find most relevant in making pur-
chasing decisions.

Clustering analysis tools analyze objects viewed as a class. The classes of the
objects are not input by the user; it is the function of the clustering technique to
define and attach the class labels. This is a powerful set of tools used to group
items that naturally fall together. Whether the clusters unearthed by the techniques
are useful to the business manager is subjective. Some clusters may be interesting
but not useful in a business setting, while others can be quite informative and able
to be exploited to advantage.

Association rules discovery is sometimes called affinity analysis. If you have
been handed coupons at a grocery store checkout counter your purchasing pat-
terns have probably been subjected to association rules discovery. Netflix will rec-
ommend movies you might like based upon movies you have watched and rated in
the past—this is an example of association rules discovery.

In this chapter we will examine four techniques from the most used data min-
ing category: classification. Specifically we will examine:

1. k-Nearest Neighbor

2. Naive Bayes

3. Classification/regression trees

4. Logistic regression (logit analysis)

Business Forecasting and Data Mining
In business forecasting we have been seeking verification of previously held
hypotheses. That is, we knew which patterns existed in the time-series data we
tried to forecast and we applied appropriate statistical models to accurately esti-
mate those patterns. When an electric power company looks at electric load de-
mand, for instance, it expects that past patterns, such as trend, seasonality, and
cyclicality, will replicate themselves in the future. Thus, the firm might reason-
ably use time-series decomposition as a model to forecast future electric usage.
Data mining, on the other hand, seeks the discovery of new knowledge from the
data. It does not seek to merely verify the previously set hypotheses regarding
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the types of patterns in the data but attempts to discover new facts or rules from
the data itself.

Mori and Kosemura4 have outlined two ways electric demand is forecasted in
Japan that exemplify the differences between data mining and standard business
forecasting. The first method for forecasting load involves standard business fore-
casting. ARIMA models are sometimes used because of their ability to match
those patterns commonly found in time-series data. However, causal time-series
models such as multiple regression are more frequently used because of their ability
to take into account local weather conditions as well as past patterns of usage ex-
hibited by individuals and businesses. Multiple regression is a popular and useful
technique much used in actual practice in the electric power industry. Data mining
tools are beginning to be used for load forecasting, however, because they are able
to discover useful knowledge and rules that are hidden among large bodies of
electric load data. The particular data mining model that Mori and Kosemura find
useful for electric load forecasting is the regression tree; because the data features
are represented in regression tree models as visualizations, if-then rules can be
created and causal relationships can be acquired intuitively. This intuitive acquisi-
tion of rules and associations is a hallmark of data mining and sets it apart
methodologically from the standard set of business forecasting tools.

The terminology we use in data mining will be a bit different from that used in
business forecasting models; while the terms are different, their meanings are
quite similar.

Data Mining Statistical Terminology

Output variable  Target variable Dependent variable
Algorithm Forecasting model
Attribute  Feature Explanatory variable
Record Observation
Score Forecast

Source: Eamonn Keogh.

A DATA MINING EXAMPLE: k-NEAREST-NEIGHBOR

Consider the following data mining example from Eamonn Keogh; while it is
not business related, it is easy to see the technique unfold visually. You are a
researcher attempting to classify insects you have found into one of two groups
(i.e., you are attempting to forecast the correct category for new insects found).
The insects you find may be either katydids or grasshoppers. These insects look
quite a bit alike, but there are distinct differences. They are much like ducks and
geese: many similarities, but some important differences as well.

Data Mining 445

4 ”A Data Mining Method for Short-Term Load Forecasting in Power Systems,” Electrical

Engineering in Japan, Vol. 139, No. 2, 2002, pp. 12–22.
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Source: Eamonn Keogh.

Katydids Grasshoppers

You have five examples of insects that you know are katydids and five that you

know are grasshoppers. The unknown is thought to be either a katydid or a

grasshopper. Could we use this data set to come up with a set of rules that would

allow us to classify any unknown insect as either a katydid or a grasshopper? By

seeing how this might be done by hand through trial and error we can begin to

understand one general process that data mining techniques use.

Abdomen length Thorax length

Leg length

Spiracle diameter

Antennae length

Mandible size

Has wings?
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Insect ID
Abdomen

Length (mm)
Antenna

Length (mm) Insect Class

1 2.7 5.5 Grasshopper
2 8.0 9.1 Katydid
3 0.9 4.7 Grasshopper
4 1.1 3.1 Grasshopper
5 5.4 8.5 Katydid
6 2.9 1.9 Grasshopper
7 6.1 6.6 Katydid
8 0.5 1.0 Grasshopper
9 8.3 6.6 Katydid

10 8.1 4.7 Katydid
Unknown 5.1 7.0 ?

There are many characteristics we could use to aid in our classification. Some
of them would include abdomen length, thorax length, leg length, and so on. The
10 insects we have in our database have the following values for the attributes
titled abdomen length and antenna length.
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The unknown insect is represented by the last row in the table. We have only in-
cluded two attributes in our table for demonstration purposes. As we have seen in
discussing business forecasting techniques, it is usually a good idea to graph the
data in order to look for obvious relationships. We can do the same here by plac-
ing abdomen length on one axis and antenna length on the other, thus creating a
scatterplot of the data.
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The resulting plot is quite informative; the katydids (shown as squares) cluster
in the upper right-hand corner of our plot while the grasshoppers (shown as cir-
cles) cluster in the lower left-hand corner of the plot. While neither characteristic
by itself would do well in helping our classification, the combination of the two at-
tributes might accurately define unknown insects. This unknown insect appears to
fall closest to the katydids. But can we come up with a mechanistic (i.e., rules-
based) way of choosing the unknown as a katydid rather than as a grasshopper?
One method would be to look at the geographical neighbors of the unknown in-
sect. Which neighbors are the closest to the unknown? We could describe this
process by drawing distance lines between the unknown insect and its neighbors.

If the distance to the unknown is closest to the katydids (as measured by sum-
ming the distance to katydid neighbors and comparing this to the summation of
the distances to grasshopper neighbors), then the unknown is likely a katydid. In
essence the k-Nearest-Neighbor model of data mining works in just this manner.
In actual practice it is not necessary to calculate the distance to every neighbor;
only a small subset of the neighbors are used. The “k” in k-Nearest-Neighbor
refers to the number of nearest neighbors used in determining a category correctly.

When using k-Nearest-Neighbor we use a subset of the total data we have
available (called a training data set) to attempt to identify observations in the
training data set that are similar to the unknown. Scoring (or forecasting) new un-
knowns is assigning the unknowns to the same class as their nearest neighbors.
While Euclidian distance is shown in the diagrams here, there are other metrics
possible that are used to define neighbors and some are used in the various
commercial data mining packages. What we are interested in is classifying future



Cognos is a company providing data mining software

to a variety of industries. One of those industries is

higher education. The University of North Texas has

more than 33,000 students in 11 colleges that offer

96 different bachelor’s degrees, 111 different mas-

ter’s degrees and 50 different doctorate degrees. The

university uses data mining to identify student pref-

erences and forecast what programs will attract cur-

rent and future students. Admission, faculty hiring,

and resource allocation are all affected by the out-

comes of the data mining performed by Enterprise

Information Systems at the university.
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unknown insects, not the past performance on old data. We already know the
classifications of the insects in the training data set; that’s why we call it a training
data set. It trains the model to correctly classify the unknowns by selecting close-
ness to the k-nearest-neighbors. So, the error rate on old data will not be very
useful in determining if we have a good classification model. An error rate on a
training set is not the best indicator of future performance. To predict how well
this model might do in the real world at classifying of unknowns we need to use it
to classify some data that the model has not previously had access to; we need to
use data that was not part of the training data set. This separate data set is called
the validation data. In one sense, this separation of data into a training data set and
a validation data set is much like the difference between “in-sample” test statistics
and “out-of-sample” test statistics. The real test of a business forecast was the “out-
of-sample” test; the real test of a data mining model will be the test statistics on
the validation data, not the statistics calculated from the training data.

In order to produce reliable measures of the effectiveness of a data mining tool
researchers partition a data set before building a data mining model. It is standard
practice to divide the data set into partitions using some random procedure. We
could, for instance, assign each instance in our data set a number and then
randomly partition the data set into two parts called the training data and the
validation data (sometimes researchers also use a third partition called the test

set). If there is a great deal of data (unlike the simple example of the katydids and
grasshoppers), there is little trouble in using 60 percent of the data as a training set
and the remaining 40 percent as a validation data set. This will ensure that no
effectiveness statistics are drawn from the data used to create the model. Thus an
early step in any real data mining procedure is to partition the data. It is common
practice to fold the validation data back into the training data and re-estimate the
model if the model shows up well in the validation data.

5 Galit Shmueli, Nitin Patel, and Peter Bruce, Data Mining for Business Intelligence, (John Wiley

& Sons, 2007).

A BUSINESS DATA MINING EXAMPLE: k-NEAREST-NEIGHBOR

What would such a model look like in a business situation? We now turn to ex-
amining a data set used by Shmueli, Patel, and Bruce.5 This data set represents in-
formation on the customers a bank has in its data warehouse. These individuals
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have been customers of the bank at some time in the past; perhaps many are cur-
rent customers in one dimension or another. The type of information the bank has
on each of these customers is represented in Tables 9.1 and 9.2.

Universal Bank would like to know which customers are likely to accept a per-
sonal loan. What characteristics would forecast this? If the bank were to consider
expending advertising efforts to contact customers who would be likely to con-
sider a personal loan, which customers should the bank contact first? By answer-
ing this question correctly the bank will be able to optimize its advertising effort
by directing its attention to the highest-yield customers.

This is a classification problem not unlike the situation of deciding in what
class to place an unknown insect. The two classes in this example would be: (1)
those with a high probability of accepting a personal loan (acceptors), and (2)
those with a low probability of accepting a personal loan (nonacceptors). We will
be unable to classify customers with certainty about whether they will accept a
personal loan, but we may be able to classify the customers in our data into one of
these two mutually exclusive categories.

The researcher would begin by first partitioning the Universal Bank data. Re-
call that partitioning the data set is the first step in any data mining technique.
Since each row, or record, is a different customer we could assign a number to
each row and use a random selection process to choose 60 percent of the data as a
training set. All data mining software has such an option available. Once the data
is selected into a training set it would look like Table 9.3. This partial rendition of
the table is produced using the XLMiner© software.

ID Customer ID

Age Customer’s age in completed years

Experience No. of years of professional experience

Income Annual income of the customer ($000)

ZIP code Home address, ZIP code

Family Family size of the customer

CC Avg. Average spending on credit cards per month ($000)

Education Education level (1) Undergrad; (2) Graduate; 
(3) Advanced/Professional

Mortgage Value of house mortgage if any ($000)

Personal loan Did this customer accept the personal loan offered in the
last campaign?

Securities account Does the customer have a securities account with the
bank?

CD account Does the customer have a certificate of deposit (CD)
account with the bank?

Online Does the customer use Internet banking facilities?

Credit card Does the customer use a credit card issued by Universal
Bank?

TABLE 9.1
Universal Bank

(Fictitious) Data 

The bank has data 
on a customer-by-
customer basis in
these categories
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Note that the “Row ID” in Table 9.3 skips from row 1 to row 4 and then from
row 6 to row 9. This is because the random selection process has chosen cus-
tomers 1, 4, 5, 6, and 9 for the training data set (displayed in Table 9.3) but has
placed customers 2, 3, 7, and 8 in the validation data set (not displayed in Table
9.3). Examining the header to Table 9.3, you will note that there were a total of
5,000 customers in the original data set that have now been divided into a training
data set of 3,000 customers and a validation data set of 2,000 customers.

When we instruct the software to perform a k-Nearest-Neighbor analysis of
the training data the real data mining analysis takes place. Just as in the insect
classification example, the software will compare each customer’s personal loan
experience with the selected attributes. This example is, of course, much more
multidimensional since we have many attributes for each customer (as opposed to
only the two attributes we used in the insect example). The program will compute
the distance associated with each attribute. For attributes that are measured as
continuous variables, the software will normalize the distance and then measure it
(because different continuous attributes are measured in different scales). For the
dummy type or categorical attributes, most programs use a weighting mechanism
that is beyond the scope of this treatment.

The accuracy measures for the estimated model will tell if we have possibly
found a useful classification scheme. In this instance we want to find a way to
classify customers as likely to accept a personal loan. How accurately can we do
that by considering the range of customer attributes in our data? Are there some at-
tributes that could lead us to classify some customers as much more likely to accept
a loan and other customers as quite unlikely?While the accuracy measures are often
produced by the software for both the training data set and the validation data set,
our emphasis should clearly be on those measures pertaining to the validation data.
There are two standard accuracy measures we will examine: the classification

matrix (also called the confusion matrix) and the lift chart.The classification matrix
for the Universal Bank data training data is shown in Table 9.4.

When our task is classification, accuracy is often measured in terms of error
rate, the percentage of records we have classified incorrectly. The error rate is
often displayed for both the training data set and the validation data set in separate
tables. Table 9.4 is such a table for the validation data set in the Universal Bank
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Validation Data Scoring—Summary Report (for k  3)

Cut off prob. val. for success (updatable) 0.5

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 118 76
0 8 1,798

TABLE 9.4
Classification Matrix

(confusion matrix)

for the Universal

Bank Data

The number of nearest
neighbors we have
chosen is 3



case. The table is correctly called either a confusion matrix or a classification

matrix. In Table 9.4 there were 118 records that were correctly classified as “class
1” (i.e., probable personal loan candidates). They were correctly classified be-
cause these records represented individuals that did indeed take out a personal
loan. However, eight records were classified as class 1 incorrectly; these were in-
dividuals that the model expected to take out a personal loan when, in fact, they
did not historically do so. In addition, the table shows 1,798 records predicted to
be class 0 (i.e., not probable loan candidates). These records were classified cor-
rectly since historically these individuals did not take out personal loans. Finally,
76 records were incorrectly classified as class 0 when they actually were loan
acceptors. The table can then be used to compute a misclassification rate. This
calculation simply shows the percentage of the records that the model has placed
in the incorrect category. In this case we have 2,000 records in the validation data
set and we have correctly classified 1,916 of them (1,798  118). But we have
also incorrectly classified 8 records as class 1 when they were actually in class 0.
We have also incorrectly classified 76 records as class 0 when they were actually
in class 1. Thus we have incorrectly classified 84 records (8  76). The misclassi-
fication rate is the total number of misclassifications divided by the total records
classified (and is usually reported as a percentage). Most packages show the
calculation and report it.

In Table 9.5 the misclassification rate is shown in the lower right-hand corner
as 4.20 percent (calculated as 84/2,000 and expressed as a percentage). It should
be noted that there are two ways in which the error occurred in our example and
although some errors may be worse than others, the misclassification rate groups
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Validation Data Scoring—Summary Report (for k  3)

Cut off prob. val. for
success (updatable)

0.5
(Updating the value here will
NOT update value in detailed report)

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 118 76
0 8 1,798

Error Report

Class #Cases #Errors %Error

1 194 76 39.14
0 1,806 8 0.44

Overall 2,000 84 4.20

TABLE 9.5
Classification Matrix

(confusion matrix)

and Misclassification

Rate Calculation for

the Universal Bank

Data

The number of nearest
neighbors has been
chosen to be 3
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Validation Error Log for Different k

Value of k % Error Training % Error Validation

1 0.00 5.30
2 1.30 5.30
3 2.70 4.20           <— Best k
4 2.60 4.20
5 3.43 4.70
6 3.27 4.50
7 3.70 4.85
8 3.40 4.30
9 4.47 5.15

10 4.00 4.85
11 4.83 5.65
12 4.33 5.35
13 5.00 5.60
14 4.60 5.35
15 5.20 5.70
16 4.93 5.40
17 5.33 5.75
18 5.23 5.60
19 5.83 6.00
20 5.60 5.90

TABLE 9.6
Validation Error 

Log for the Universal

Bank Data

The best number of
nearest neighbors
has been chosen to
be 3 because this
provides the lowest
misclassification rate

these two types of errors together. While this may not be an ideal reporting mech-
anism, it is commonly used and displayed by data mining software. Some software
also allows placing different costs on the different types of errors as a way of dif-
ferentiating their impacts. While the overall error rate of 4.2 percent in the validation
data is low in this example, the absolute error of classifying an actual loan acceptor
incorrectly as a non-loan acceptor (76 cases) is much greater than that of incor-
rectly classifying an actual nonacceptor as a loan acceptor (only 8 cases).

Notice that in both Tables 9.4 and 9.5 the summary report is for the k   3 case
(see the top of either table), meaning that we have used three neighbors (not three
attributes) to classify all the records. The software has taken a “vote” of the three
nearest neighbors in order to classify each record as either a loan acceptor or a
non-loan acceptor. The software actually varied the number of nearest neighbors
used from a small number to a large number and reported only the best results.
Usually the researcher may specify the range over which the program searches
and the program will respond by choosing the number of neighbors that optimizes
the results (in this situation XLMiner© minimized the misclassification error rate).

In Table 9.6 the XLMiner© program provides an easy way to visualize how the
number of nearest neighbors has been chosen. The misclassification error rate of
4.20 percent is lowest for three neighbors (it’s actually the same for four neighbors
but using the principle of parsimony, three nearest neighbors are chosen as the
reported optimum).
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FIGURE 9.1 Lift Chart and Decile-wise Lift Chart for the Universal Bank Validation

Data Set
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Lift

A second way of examining the accuracy and usefulness of a data mining
model can be demonstrated with our Universal Bank example. All data mining
programs will display a lift chart for any calculated solution; the one for the
Universal Bank k-Nearest-Neighbor model is displayed in Figure 9.1.

Lift charts are the most common way (and perhaps the fastest) to compare dif-
ferent classification models. Lift is actually a ratio. Lift measures the change in
concentration of a particular class when the model is used to select a group from
the general population.

Consider why Universal Bank is attempting to classify the records in its data-
base into acceptors and nonacceptors. Perhaps Universal Bank is considering a
direct mailing to individuals in the database in order to solicit new personal loan
applications. Based on previous experience, the percentage of individuals who re-
spond favorably and take out a personal loan is 0.2 percent (that is not 2 percent,
but two-tenths of 1 percent). Very few of the direct mailing recipients took out a
personal loan. What if the bank could identify, before sending the mailing, the
most likely acceptors? And what if the number of these likely acceptors was quite
small relative to the size of the entire database? If the bank could successfully
classify the database and identify these likely acceptors, then it might pay for the
bank to restrict the direct mailing to only those individuals. Mailing and prepara-
tion costs would be saved and the bank would receive a lift in the percentage of
recipients actually accepting a loan. What we may be able to help the bank do is to
mail only to those customers with a high probability of loan acceptance, as
opposed to mailing to everyone in the database. Remember, most of the people



represented in the database are not likely loan acceptors. Only a relatively small
number of the records in the database represent acceptors.

The lift curve is drawn from information about what the k-Nearest-Neighbor
model predicted in a particular case and what that individual actually did. The
lift chart in Figure 9.1 is actually a cumulative gains chart. It is constructed with
the records arranged on the x-axis left to right from the highest probability to the
lowest probability of accepting a loan. The y-axis reports the number of true
positives at every point (i.e., the y-axis counts the number of records that represent
loan acceptors).

Looking at the decile-wise lift chart in Figure 9.1, we can see that if we were to
choose the top 10 percent of the records classified by our model (i.e., the 10 per-
cent most likely to accept a personal loan) our selection would include approxi-
mately seven times as many correct classifications than if we were to select a ran-
dom 10 percent of the database. That’s a dramatic lift provided by the model when
compared to a random selection.

The same information is displayed in a different manner in the lift chart on the
left-hand side of Figure 9.1. This lift chart represents the cumulative records cor-
rectly classified (on the y-axis), with the records arranged in descending probabil-
ity order on the x-axis. Since the curve inclines steeply upward over the first few
hundred cases displayed on the x-axis, the model appears to provide significant lift
relative to a random selection of records. Generally a better model will display
higher lift than other candidate models. Lift can be used to compare the perform-
ance of models of different kinds (e.g., k-Nearest-Neighbor models compared
with other data mining techniques) and is a good tool for comparing the perfor-
mance of two or more data mining models using the same or comparable data. No-
tice the straight line rising at a 45-degree angle in the lift chart in Figure 9.1—this
is a reference line. The line represents how well you might do by classifying as a
result of random selection. If the calculated lift line is significantly above this ref-
erence line, you may expect the model to outperform a random selection. In the
Universal Bank case the k-Nearest-Neighbor model outperforms a random selec-
tion by a very large margin.

CLASSIFICATION TREES: A SECOND CLASSIFICATION TECHNIQUE

Our second data mining technique is variously called a classification tree, a deci-
sion tree, or a regression tree. As the name implies, it is, like k-Nearest Neighbor,
a way of classifying or dividing up a large number of records into successively
smaller sets in which the members become similar to one another. Regression
trees are used to predict or forecast categories rather than specific quantities. Data
miners commonly use a tree metaphor to explain (and to display results from) this
technique. Because the term regression is most often used to forecast a numeric
quantity, when the data mining technique is predicting numeric quantities it is
called a regression tree. When the technique is classifying by category, it is usu-
ally called either a classification tree or a decision tree.
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As a child you may have played a game called “Animal, Mineral, or Vegetable.”
The origin of the game’s name some believe arises from the fifteenth-century be-
lief that all life was either animal or vegetable, while all inanimate objects were
mineral. Thus, the three categories could effectively separate all matter into three
neat categories. In the game, as you may recall, one player picks any object and
other players must try to guess what it is by asking yes or no questions. The object
is to ask the least number of questions before guessing the item correctly. In a
sense, classification trees are like the game—we begin by knowing virtually noth-
ing about the items we are sorting, but we make up rules along the way that allow
us to place the records into different bins with each bin containing like objects. In
“Animal, Mineral, or Vegetable,” the set of questions you successfully used to de-
termine the object’s name would be the set of rules you could again use if the same
object were to be chosen by another participant. In the same manner, we create a
set of rules from our successful classification attempt, and these rules become the
solution to the classification problem.

We now return to our insect classification problem.
In Figure 9.2 we ask first if the abdomen length is greater than 7.1. The verti-

cal line drawn at a value of 7.1 is the graphical representation of this question (or
rule). Note that when we draw this line all the known instances to the right of the
line are katydids—we have a uniform classification on that side of the line. To the
left of the line, however, we have a mix of katydids and grasshoppers in the known
instances.

A further question (or rule) is necessary to continue the classification. This
time we ask whether the antenna length is greater than six. The horizontal line
drawn at a value of six in Figure 9.2 is the graphical representation of this ques-
tion (or rule). An examination now of the entire set of known instances shows that
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FIGURE 9.2
The Insect
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there is homogeneity in each region defined by our two questions. The right-hand
region contains only katydids as does the topmost region in the upper left-hand
corner. The bottommost region in the lower left-hand corner, however, contains
only grasshoppers. Thus we have divided the geometric attribute space into three
regions, each containing only a single type of insect.

In asking the two questions to create the three regions, we have also created the
rules necessary to perform further classifications on unknown insects. Take the
unknown insect shown in the diagram with an antenna length of 5 and an abdomen
length of 4.5. By asking whether the unknown has an abdomen length of greater
than 7.1 (answer  no) and then asking whether the antenna length is greater than
6 (answer  no), the insect is correctly classified as a grasshopper.

In our example we have used only two attributes (abdomen length and antenna
length) to complete the classification routine. In a real-world situation we need not
confine ourselves to only two attributes. In fact, we can use many attributes. The
geometric picture might be difficult to draw but the decision tree (shown on the
right-hand side of Figure 9.2) would look much the same as it does in our simple
example. In data mining terminology, the two decision points in Figure 9.2 (shown
as “abdomen length  7.1” and “antenna length  6”) are called decision nodes.
Nodes in XLMiner© are shown as circles with the decision value shown inside.
They are called decision nodes because we classify unknowns by “dropping”
them through the tree structure in much the same way a ball drops through the
Pachinko game. (See Figure 9.3).

The bottom of our classification tree in Figure 9.2 has three leaves. Each leaf is
a terminal node in the classification process; it represents the situation in which all
the instances that follow that branch result in uniformity. The three leaves in
Figure 9.2 are represented by the shaded boxes at the bottom of the diagram. Data
mining classification trees are upside-down in that the leaves are at the bottom
while the root of the tree is at the top; this is the convention in data mining circles.
To begin a scoring process all the instances are at the root (i.e., top) of the tree;
these instances are partitioned by the rules we have determined with the known
instances. The result is that the unknown instances move downward through the
tree until reaching a leaf node, at which point they are (hopefully) successfully
classified.

At times the classification trees can become quite large and ungainly. It is
common for data mining programs to prune the trees to remove branches. The un-
pruned tree was made using the training data set and it probably matches that data
perfectly. Does that mean that this unpruned tree will do the best job in classify-
ing new unknown instances? Probably not. A good classification tree algorithm
will make the best split (at the first decision node) first followed by decision rules
that are made up with successively smaller and smaller numbers of training
records. These later decision rules will become more and more idiosyncratic. The
result may be an unstable tree that will not do well in classifying new instances.
Thus the need for pruning. Each data mining package uses a proprietary pruning
algorithm that usually takes into account for any branch the added drop in the mis-
classification rate versus the added tree complexity. XLMiner© and other data
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mining programs use candidate tree formulations with the validation data set to
find the lowest validation data set misclassification rate—that tree is selected as
the final best-pruned tree. While the actual process is more complicated than
we have described here, our explanation is essentially correct for all data mining
software.

Classification trees are very popular in actual practice because the decision
rules are easily generated and, more importantly, because the trees themselves are
easy to understand and explain to others. There are disadvantages as well, how-
ever. The classification trees can suffer from overfitting and if they are not pruned
well, these trees may not result in good classifications of new data (i.e., they will
not score new data well). Attributes that are correlated will also cause this tech-
nique serious problems. It is somewhat similar to multicollinearity in a regression
model. Be careful not to use features that are very closely correlated one with
another.
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FIGURE 9.3
Classic Pachinko

Game
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A Business Data Mining Example: Classification Trees
We can once again use the Universal Bank data from Table 9.2 in an attempt to
classify customers into likely or unlikely personal loan clients. The first step, as al-
ways, would be to partition the data into training and validation data sets; the
training data set was displayed in Table 9.3. Note that while the data miner selects
the attributes that are to be used, the data mining software algorithm selects the
decision rules and the order in which they are executed. Table 9.7 displays a
portion of the classification tree output from XLMiner© for the Universal Bank
data. We have used a number of attributes to help in making up the decision rules;
most of the attributes can be seen to intuitively affect whether a person is a likely
personal loan candidate. Among the attributes used are:

• Customer’s age

• Individual’s average spending per month on credit cards

• Value of the individual’s house mortgage

• Individual’s annual income

• And others.

The scoring summary format is identical to the one we saw with the k-Nearest-
Neighbor technique. For the classification tree technique the misclassification rate
is just 1.80 percent; this is even lower than the 4.20 percent achieved with the
k-Nearest-Neighbor model. A scant four individuals were expected to be likely to
accept personal loans and yet did not do so.
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Validation Data Scoring—Summary Report (Using Best Pruned Tree)

Cut off prob. val. for 
success (Updatable)

0.5 (Updating the value here will
NOT update value in detailed report)

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 182 32
0 4 1,802

Error Report

Class #Cases #Errors %Error

1 194 32 16.49
0 1,806 4 0.22

Overall 2,000 36 1.80

TABLE 9.7
Scoring Summary

Using the Best

Pruned Tree on the

Validation Data Set

of the Universal Bank



Looking at the decile-wise lift chart on the right-hand side of Figure 9.4, we
can see that if we were to choose the top 10 percent of the records classified by
our classification tree model (i.e., the 10 percent most likely to accept a personal
loan) our selection would include approximately 8.5 times as many correct clas-
sifications than if we were to select a random 10 percent of the database. That re-
sult is even more striking than the one we obtained with the k-Nearest-Neighbor
model.

The lift chart on the left-hand side of Figure 9.4 is a cumulative gains chart.
Recall that it is constructed with the records arranged on the x-axis left to right
from the highest probability of accepting a loan to the lowest probability of
accepting a loan.The y-axis reports the number of true positives at every point (i.e.,
the y-axis counts the number of records that represent actual loan acceptors).
The fact that the cumulative personal loan line jumps sharply above the average
beginning on the left side of the chart shows that our model does significantly
better than choosing likely loan applicants at random. In other words, there is
considerable lift associated with this model.

The actual topmost part of the classification tree that was produced by
XLMiner© is displayed in Figure 9.5.

The classification tree first divides on the income variable. Is income greater
than 100.5? That results in 1,507 of the instances being classified as unlikely to
accept a personal loan; these individuals are shown in the leaf node in the upper
left-hand corner of the diagram. XLMiner© then sorted on the basis of educational
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FIGURE 9.4 The Lift Chart and Decile-Wise Lift Chart Using the Best Pruned Tree on

the Validation Data Set of the Universal Bank
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level followed by sorts based upon the family size of the customer (Family) and
the annual income of the customer (Income). While examining the tree in Fig-
ure 9.5 is useful, it may be more instructive to examine the rules that are exempli-
fied by the tree. Some of those rules are displayed in Table 9.8.

The rules displayed in Table 9.8 represent the same information shown in the
diagram in Figure 9.5. Examining the first row of the table shows the split value as
100.5 for the split variable of income. This is the same as asking if the individual
had a yearly income greater than 100.5. It is called a decision node because there
are two branches extending downward from this node (i.e., it is not a terminal
node or leaf). The second row of the table contains the information shown in the
leaf on the left-hand side of the classification tree in Figure 9.5; this is called a
terminal node or leaf because there are no successors. Row two shows that
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FIGURE 9.5
The Topmost Portion

of the Classification
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Pruned Tree on the

Validation Data Set
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TABLE 9.8 The Topmost Portion of the Tree Rules Using the Best Pruned Tree on the Validation Data Set

of the Universal Bank

Best Pruned Tree Rules (Using Validation Data)

#Decision nodes 8 #Terminal nodes 9

Level Node ID Parent ID Split Var Split Value Cases Left Child Right Child Class Node Type

0 0 N/A Income 100.5 2,000 1 2 0 Decision

1 1 0 N/A N/A 1,507 N/A N/A 0 Terminal

1 2 0 Education 1.5 493 3 4 0 Decision

2 3 2 Family 2.5 316 5 6 0 Decision



1,507 cases are classified at 0, or unlikely to take out a personal loan in this
terminal node. It is these rules displayed in this table that the program uses to
score new data, and they provide a concise and exact way to treat new data in a
speedy manner.

If actual values are predicted (as opposed to categories) for each case, then the
tree is called a regression tree. For instance, we could attempt to predict the sell-
ing price of a used car by examining a number of attributes of the car. The relevant
attributes might include the age of the car, the mileage the car had been driven to
date, the original selling price of the car when new, and so on. The prediction
would be expected to be an actual number, not simply a category. The process we
have described could, however, still be used in this case. The result would be a set
of rules that would determine the predicted price.

NAIVE BAYES: A THIRD CLASSIFICATION TECHNIQUE

A third and somewhat different approach to classification uses statistical classi-
fiers. This technique will predict the probability that an instance is a member of a
certain class. This technique is based on Bayes’ theorem; we will describe the the-
orem below. In actual practice these Naive Bayes algorithms have been found to
be comparable in performance to the decision trees we examined above. One hall-
mark of the Naive Bayes model is speed, along with high accuracy. This model is
called naive because it assumes (perhaps naively) that each of the attributes is in-
dependent of the values of the other attributes. Of course this will never be strictly
true, but in actual practice the assumption (although somewhat incorrect) allows
the rapid determination of a classification scheme and does not seem to suffer ap-
preciably in accuracy when such an assumption is made.

To explain the basic procedure we return to our insect classification example.
Our diagram may be of the same data we have used before, but we will examine it
in a slightly different manner.

The known instances of katydids and grasshoppers are again shown in Fig-
ure 9.6, but only a single attribute of interest is labeled on the y-axis: antenna
length. On the right-hand side of Figure 9.6 we have drawn a histogram of the an-
tenna lengths for grasshoppers and a separate histogram representing the antenna
lengths of katydids.

Now assume we wish to use this information about a single attribute to classify
an unknown insect. Our unknown insect has a measured antenna length of 3 (as
shown in Figure 9.7). Look on the problem as an entirely statistical problem. Is
this unknown more likely to be in the katydid distribution or the grasshopper dis-
tribution? A length of 3 would be in the far-right tail of the katydid distribution
(and therefore unlikely to be a part of that distribution). But a length of 3 is
squarely in the center of the grasshopper distribution (and therefore it is more likely
to be a member of that distribution). Of course there is the possibility that the un-
known with an antenna length of 3 is actually part of the katydid distribution (and
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therefore is actually a katydid), but that probability is small as evidenced by a
length of 3 being in the small tail of the distribution. It is far more likely that our
unknown is part of the grasshopper distribution (and is therefore truly a grasshop-
per). So far we have used only a single attribute. What if we consider an additional
attribute? Would that perhaps help our accuracy in making classifications?

Figure 9.8 represents two attributes (antenna length on the y-axis and abdomen
length on the x-axis) for the known katydids and grasshoppers. By using the two
attributes together we effectively create a quadratic boundary between the two
classes of known insects. An unknown would be classified by its location above or
below the boundary. One of the important features of the Naive Bayes model is
that it handles irrelevant features quite well. If an irrelevant feature is included in
the attributes list it has little effect on the classifications the model makes (and
thus introduces little error).
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FIGURE 9.6
Insect Example This
has only a single
attribute displayed:
antenna length
abdomen length is
still measured on 
the x-axis

Source: Eamonn Keogh.
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To examine this technique we will use actual data from the passenger list of the
HMS Titanic. On Sunday evening April 14, 1912, the Titanic struck an iceberg.
The ship sank a scant two hours and forty minutes later. We have somewhat com-
plete information on 2,201 souls on the ship at the time of the accident. We say the
information is “somewhat” complete because this data is based on a report made
shortly after the event and the White Star line (the owners of the Titanic) kept their
records in a peculiar manner.6 For instance, boys are classified by the title “Mas-
ter,” but girls are not clearly distinguished from women. The data are not without
some ambiguity but we can still attempt to ascertain characteristics of the sur-
vivors. We are attempting to classify individuals as survivors of the disaster or
nonsurvivors (i.e., those who perished). Our data looks like the following:

Age Sex Class Survived

Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
Adult Male First Alive
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FIGURE 9.8
Two Sets of

Histograms

These represent the
antenna lengths of
katydids on the
y-axis, and abdomen
lengths on the x-axis

Source: Eamonn Keogh.
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6 The Titanic data set is used by permission of Professor Robert J. MacG. Dawson of Saint

Marys University, Halifax, Nova Scotia. See “The Unusual Episode, Data Revisited.” Robert

J.MacG. Dawson, Journal of Statistics Education, vol. 3 no. 3 (1995).



The data set contains information on each of the individuals on the Titanic. We
know whether they were adult or child, whether they were male or female, the
class of their accommodations (first class passenger, second class, third class, or
crew), and whether they survived that fateful night. In our list 711 are listed as
alive while 1,490 are listed as dead; thus only 32 percent of the people on board
survived.

What if we wished to examine the probability that an individual with certain
characteristics (say, an adult, male crew member) were to survive? Could we use
the Naive Bayes method to determine the probability that this person survived?
The answer is Yes; that is precisely what a Naive Bayes model will do. In this case
we are classifying the adult, male crew member into one of two categories: sur-
vivor or dead.

The Naive Bayes process begins like our two previous techniques; the data set
is divided into a training data set and a validation data set. In Table 9.9 we present
the Validation Summary Report for the model as computed in XLMiner©.

The misclassification rate computed by XLMiner© is 26.14 percent but the lift
chart and the decile-wise lift chart in Figure 9.9 show that the model does improve
on naively selecting a class at random for the result.

The Naive Bayes model rests on Bayes’ theorem. Simply stated, Bayes’

theorem predicts the probability of a prior event (called a posterior probability)
given that a certain subsequent event has taken place. For instance, what is the
probability that a credit card transaction is fraudulent given that the card has been
reported lost? Note that the reported loss preceded the current attempted use of
the credit card.
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Validation Data Scoring—Summary Report

Cut off prob. val. for
success (updatable)

0.5 (Updating the value here will
NOT update value in detailed report)

Classification Confusion Matrix

Predicted Class

Actual Class Alive Dead

Alive 172 123
Dead 107 478

Error Report

Class #Cases #Errors %Error

Alive 295 123 41.69
Dead 585 107 18.29

Overall 880 230 26.14

TABLE 9.9
Validation Data 

Scoring for the Naive

Bayes Model of

Titanic Passengers

and Crew



The posterior probability is written as P(A | B). Thus , P(A | B) is the probability
that the credit card use is fraudulent given that we know the card has been reported
lost. P(A) would be called the prior probability of A and is the probability that any
credit card transaction is fraudulent regardless of whether the card is reported lost.

The Bayesian theorem is stated in the following manner:

P(A | B)  
P(B | A)
  
P(B)

P(A)
 

where:

P(A) is the prior probability of A. It is prior in the sense that it does not take
into account any information about B.

P(A | B) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the specified
value of B. This is the probability we are usually seeking to determine.

P(B | A) is the conditional probability of B given A.

P(B) is the prior probability of B.

An example will perhaps make the use of Bayes’ theorem clearer. Consider that
we have the following data set showing eight credit card transactions. For each
transaction we have information about whether the transaction was fraudulent and
whether the card used was previously reported lost (see Table 9.10).
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FIGURE 9.9 Lift Chart and Decile-Wise Lift Chart for the Naive Bayes Titanic Model
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Applying Bayes’ theorem:

P(Fraud | Card Reported Lost)   
P(Lost
  

| Fraud )

P(Lost)
   

P(Fraud )
 

  23   
3

8 
 

_________
 .667

 
3

8

and

P(NonFraud | Card Reported Lost)   
P(Lost
  

| No
 
nFraud )

P(Lost)
   

P(Non
 
Fraud )
 

  15   
5

8 
 

_________
 .333

 
3

8

Thus, the probability of a fraudulent transaction if the card has been reported
lost is 66.7 percent. The probability of a nonfraudulent transaction if the card has
been reported lost is 33.3 percent.

Returning to the Titanic data and the Naive Bayes model calculated by
XLMiner©, we may now demonstrate the calculation of the posterior probabili-
ties of interest. These are the answers to our question concerning the probabil-
ity that an adult, male crew member would survive the disaster. XLMiner© pro-
duces an additional output for the Naive Bayes model displaying the prior class
probabilities and the calculated conditional probabilities. These are displayed in
Table 9.11.

To answer our question concerning the survival probability of an adult, male
crew member we need once again to apply Bayes’ theorem. We first need to cal-
culate the conditional probabilities required in the Bayes’ theorem:

Conditional probability of “alive” if you were a crew member, male, and adult:

P(alive)  (0.295673077)(.53125)(.9375)(0.314912945)  0.046373782

Transaction No. Fraudulent? Reported Lost?

1 Yes Yes
2 No No
3 No No
4 No No
5 Yes Yes
6 No No
7 No Yes
8 Yes No

TABLE 9.10
Credit Card

Transaction Data Set



Note that we are now multiplying probabilities assuming they are independent. In
like manner we calculate the “dead” probability:

Conditional probability of “dead” if you were a crew member, male, and adult:

P(dead)  (.450828729)(0.917127072)(0.9640884)(0.685087055)  0.273245188

To compute the actual probabilities, we divide each of these probabilities by their
sum:

Posterior probability of “alive” if you were a crew member, male, and adult:

 (0.046373782)/(0.046373782  0.273245188)  0.145090831

and

Posterior probability of “dead” if you were a crew member, male, and adult:

 (0.273245188)/(0.273245188  0.046373782)  0.854909169

There are only two possible outcomes here (“dead” or “alive”) and the probabil-
ities should (and do) sum to one. Naive Bayes has assumed the attributes have in-
dependent distributions.While this is not strictly true, the model seems to work well
in situations where the assumption is not grossly violated. Use of larger data sets
will all but eliminate the problem of including irrelevant attributes in the model.
The effects of these irrelevant attributes are minimized as the data set becomes
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Classes —>

Input
Alive Dead

Variables Value Prob Value Prob

Age
Adult 0.9375 Adult 0.964640884
Child 0.0625 Child 0.035359116

Sex
Female 0.46875 Female 0.082872928
Male 0.53125 Male 0.917127072

Crew 0.295673077 Crew 0.450828729

Class
First 0.295673077 First 0.071823204
Second 0.146634615 Second 0.10718232
Third 0.262019231 Third 0.370165746

TABLE 9.11
Prior Class

Probabilities and

Conditional

Probabilities

Calculated in

XLMiner© for 

the Titanic Data

Prior Class Probabilities

According to relative occurrences in training data

Class Prob.

Alive 0.314912945 <— Success Class
Dead 0.685087055

Conditional Probabilities



larger. We can again use the Universal Bank data and apply the Naive Bayes model
in order to predict customers that will accept a personal loan. Figure 9.10 displays
the Naive Bayes results from XLMiner© for the Universal Bank data.

Once again it is clear that the model performs much better than a naive selec-
tion of individuals when we try to select possible loan acceptors. Looking at the
decile-wise lift chart on the right-hand side of Figure 9.10, we can see that if we
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Validation Data Scoring—Summary Report

Cut off prob. val. for
success (updatable)

0.5 (Updating the value here will
NOT update value in detailed report)

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 122 72
0 77 1,729

Error Report

Class #Cases #Errors %Error

1 194 72 37.11
0 1,806 77 4.26

Overall 2,000 149 7.45

FIGURE 9.10
The Naive Bayes

Model Applied to

the Universal Bank

Data

Included are 
confusion matrix, 
misclassification
rate, and lift charts
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were to choose the top 10 percent of the records classified by our classification
tree model (i.e., the 10 percent most likely to accept a personal loan) our selection
would include approximately 6.5 times as many correct classifications than if we
were to select a random 10 percent of the database. While Naive Bayes models do
extremely well on training data, in real-world applications these models tend not
to do quite as well as other classification models in some situations. This is likely
due to the disregard of the model for attribute interdependence. In many real-
world situations, however, Naive Bayes models do just as well as other classifica-
tion models. While the Naive Bayes model is relatively simple, it makes sense to
try the simplest models first and to use them if they provide sufficient results.
Clearly data sets that contain highly interdependent attributes will fare poorly
with Naive Bayes.

REGRESSION: A FOURTH CLASSIFICATION TECHNIQUE

Our final classification data mining technique is logistic regression or logit analy-
sis (both names refer to the same method). This technique is a natural complement
to linear least-squares regression. It has much in common with the ordinary linear
regression models we examined in Chapters 4 and 5. Ordinary linear regression
provides a universal framework for much of economic analysis; its simplified
manner of looking at data has proven useful to researchers and forecasters for
decades. Logistic regression serves the same purpose for categorical data. The
single most important distinction between logistic regression and ordinary regres-
sion is that the dependent variable in logistic regression is categorical (and not
continuous). The explanatory variables, or attributes, may be either continuous or
categorical (as they were in linear least-squares models). Just like the ordinary
linear regression model, logistic regression is able to use all sorts of extensions
and sophisticated variants. Logistic regression has found its way into the toolkits
of not only forecasters and economists; but also, for example, into those of toxi-
cologists and epidemiologists.

TRUE LIFT
Victor S. Y. Lo of Fidelity Investments uses logistic

regression models and Naive Bayes models to dif-

ferentiate between customers who would be ex-

pected to respond to some sort of stimulus (e.g., a

mail campaign or a telephone call) and customers

who would respond without any added stimulus.

He calls the result true lift. The methods Lo uses

specifically find customers who will take a desir-

able action regardless of the treatment. His aim

was to find the characteristics of customers whose

response decisions can be positively influenced by a

campaign. Customer development campaigns, in-

cluding upselling and cross-selling, would benefit

greatly from such a tool.

Source: Victor S. Y. Lo, “The True Lift Model—A Novel
Data Mining Approach to Response Modeling in
Database Marketing,” SIGKDD Explorations, December
2002, Volume 4, Issue 2, pp. 74–86.

Comments from the Field 3
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The Universal Bank situation we have been examining provides a case in point.
The dependent variable, the item we are attempting to forecast, is dichotomous—
either a person accepts a loan or rejects the loan. There is no continuous variable
here; it is more like an on/off switch. But why are we unable to use linear least-
squares models on this data?

Consider Table 9.12—it contains information about 20 students, the hours they
spent studying for a qualifying exam, and their results. If they passed the exam the
table shows a 1; if they failed the exam, the table shows a 0.

If we graph this data as a scatterplot (Figure 9.11) we see there are two possible
outcomes: pass (shown as 1) and fail (shown as 0).

Student No. Hours of Study Pass/Fail

1 2.5 0
2 22.6 1
3 17.8 0
4 5.4 0
5 14 0
6 13.3 1
7 26 1
8 33.1 1
9 13.6 0

10 45.3 1
11 1.9 0
12 31.4 1
13 27 1
14 10.1 0
15 2.7 0
16 16.3 1
17 14.5 1
18 4.5 0
19 22.6 1
20 17.1 1

TABLE 9.12
Data on 20 Students

and Their Test

Performance and

Hours of Study

FIGURE 9.11
Scatterplot of

Student Performance
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It appears from the scatterplot that students who spent more time studying for
the exam had a better chance of passing. We might seek to quantify this percep-
tion by running a least-squares regression using “hours of study” as the indepen-
dent variable and “pass/fail” as the dependent variable. Running this regression
results in the output in Table 9.13.

Since the “hours of study” coefficient is positive ( 0.03), it appears to indicate
that more study leads to a higher probability of passing. But, is the relationship
correctly quantified? Suppose an individual studies for 100 hours. How well will
this individual do on the exam? Substituting into the regression equation we have:

Pass/fail  0.002053  (0.032072)  (100)

3.209253  0.002053  (0.032072)  (100)

What does this mean? Is the predicted grade 3.209 percent? This doesn’t seem
to make sense. Examining the regression line estimated and superimposing it on
the data scatter may make the problem clear (see Figure 9.12).

The difficulty becomes clearer when examining the diagram. There are only two
states of nature for the dependent variable (pass and fail). However, the regression
line plotted in Figure 9.12 is a straight line sloping upward to the right and predict-
ing values all along its path. When predicting the outcome from 100 hours of study
the regression chooses a number (i.e., 3.209253) that is much greater than the max-
imum value of 1 exhibited in the data set. Does this mean the individual has passed
the test 3.209 times? Or does this mean that the expected score is 3.209 percent? Or
does this have any meaningful explanation at all? This confusing result indicates
that we have used an inappropriate tool in attempting to find the answer to our ques-
tion. In earlier chapters we assumed the dependent variable was continuous; this
one is not. Linear least-squares regression does not restrict the predictions of the de-
pendent variable to a range of zero to one as we would like in this case.

We would really like to use this same data but predict the probability that an in-
dividual would pass the test given a certain number of hours of study. To accom-
plish this we will modify the linear least-squares model by modifying what we use
as the dependent variable. Ordinarily we simply use Y as the dependent variable;
in logistic regression we will use a function of Y as the dependent variable instead.
This function of the dependent variable will be limited to values between zero and
one. The function we use is called a logit and that is the reason the technique is
called logistic regression.

Audit Trail--Coefficient Table (Multiple Regression Selected)

Series

Description

TABLE 9.13 Linear Least-Squares Regression

Included

in Model Coefficient

Standard

Error T-test P-value Elasticity

Overall

F-test

---------------------------------------------------------------------------------------

Hours of Study Yes 0.03 0.01 4.47 0.00 1.00

Pass/Fail Dependent 0.0020532033 0.15 0.01 0.99 20.02
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FIGURE 9.12
Linear Least-Squares

Regression Plot

The logit is Log(e   1X1  2X2 
...  p Xp). You will recognize this as being similar

to our explanation of the logistic curve in Chapter 3. In fact the concepts are one
and the same. We are going to use some knowledge of how growth works in the
real world just as we did in that chapter. Recall that the diffusion models’ assumed
growth proceeded along an s-curve. When we used these models to predict new
product sales we did so in the knowledge that real-world new products almost
always follow such a path. We now make the same assumption that real-world
probabilities will behave in a similar manner. This assumption has withstood the
test of time as logistic regression has proven very predictive and accurate in actual
practice.

The logistic regression model will estimate a value for pass/fail as a probabil-
ity with zero as the minimum and one as the maximum. If we were to look at the
entire range of values that a logistic regression would estimate for the student data
it would appear like the s-curve in Figure 9.13. Recall that “hours of study” are
represented on the x-axis while “pass/fail” is represented on the y-axis. If, for in-
stance, an individual had studied for a scant 10 hours the model would predict a
probability of passing somewhere near 10 percent (since the y-axis represents the
values from zero to one it can be read directly as the probability of occurrence of
the dependent event). However, if the individual in question were to have studied
for 30 hours the probability of passing is predicted to be near 90 percent.

Let’s examine the Universal Bank data with a logistic regression model and
note the difference in the output from the other classification models we have
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FIGURE 9.13
The Logit Estimated

for the Student Data
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used. As always, we begin by using a partition of the original data set to act as a
training data set. In much the same way we used ForecastX to set up an ordinary
linear regression, XLMiner© can be used to set up a logistic regression. The de-
pendent variable is specified. The dependent variable in any logistic regression is
categorical; in the Universal Bank case it is the personal loan variable that takes
on a value of either 1 (if a personal loan is accepted) or 0 (if no personal loan is
accepted). The independent variables are also specified just as in ForecastX. Note
that unlike the student study example presented above, the Universal Bank logis-
tic regression will include more than one independent variable. In this sense, it is
a multiple logistic regression. Table 9.14 shows the output from the XLMiner©

program for this data.
The output resembles ordinary linear regression output from ForecastX. There

is a constant term, the values of the coefficients are reported, and standard errors

The Regression Model

Input Variables Coefficient Std. Error p-value Odds

Constant term  12.8019095 2.16737223 0 *
Age  0.04461157 0.08051153 0.57950926 0.95636886
Experience 0.05816582 0.07969882 0.46549997 1.05989075
Income 0.05698515 0.00351325 0 1.05864012
Family 0.62984651 0.09647165 0 1.87732232
CCAvg 0.11668219 0.05372836 0.02987786 1.12376225
Education 1.80500054 0.15606253 0 6.07997465
Mortgage 0.00141519 0.0007293 0.05232161 1.00141621
Securities Account  0.8171795 0.37658975 0.03001092 0.44167566
CD Account 3.56768751 0.41729182 0 35.43455887
Online  0.70467436 0.21116103 0.00084645 0.49426949
CreditCard  1.10061717 0.26931652 0.00004375 0.33266568

TABLE 9.14
Logistic Regression

for the Universal

Bank Data



for those coefficients allow p-values to be reported. The interpretation of these
variables is much the same as it was with ordinary linear regression.

For example, the Family variable represents the family size of the customer.
Since the logistic regression coefficient for this variable is positive (i.e.,
+0.62984651) we would expect that the probability of accepting a personal loan
increases with family size. Further, since the p-value for this variable is very small
(reported as zero in the printout but actually a very small number) we believe that
the coefficient is significant at the 99 percent level. That is, we believe that there
is very little chance that the real relationship between family size and the accep-
tance of a personal loan is zero. This ability to examine individual attributes is
similar to the manner in which we examined the individual coefficients of an
ordinary linear regression.

Table 9.15 displays the validation data set confusion matrix and misclassifica-
tion rate. This information allows us to judge in part the overall fit of the logistic
regression model. The confusion matrix and misclassification rate give an overall
sense of fit. In this case the 5.05 percent misclassification rate would indicate how
well we believe the model would classify new data into the correct categories.

The validation data set lift charts are also used to judge the overall fit of the
model. Examining the right-hand side of Figure 9.14 shows that selecting the top
10 percent of the training data observations (i.e., those persons judged most likely
to accept a personal loan) resulted in a better than 7 times result when compared
to selecting individual cases at random. The same information is again displayed
in the left-hand side of Figure 9.14 in the lift chart. The steep rise in the lift com-
pared to the reference line for a naive selection of cases (i.e., the straight line in
the figure) shows significant explanatory power in the model.
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Validation Data Scoring—Summary Report

Cut off prob. val. for
success (updatable)

0.5 (Updating the value here will
NOT update value in detailed report)

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 125 69
0 32 1,774

Error Report

Class #Cases #Errors %Error

1 194 69 35.57
0 1,806 32 1.77

Overall 2,000 101 5.05

TABLE 9.15
Logistic Regression

Confusion Matrix

and Misclassification

Rate
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FIGURE 9.14 Validation Data Lift Charts for the Logistic Regression Model

BusinessWeek related the story of Michael Drosnin,

author of a bestselling book, The Bible Code. In the

book Drosnin claimed to have found references in

the Bible to President Bill Clinton, dinosaurs, and

the Land of Magog. Peter Coy, the author of the

article, pointed out many of the useful tasks to

which data mining had been put (e.g., weeding

out credit card fraud, finding sales prospects, and

discovering new drugs).

But Coy also pointed out that data mining was

the method used by Michael Drosnin to make his

“discoveries” in the Bible. It seems Drosnin wrote

out the Hebrew Bible as a grid of letters and used

data mining to look for words on the diagonal, up,

down, and across. Not surprisingly he found some

recognizable words and references. Cryptic mes-

sages appeared according to Coy such as the close

juxtaposition of the word dinosaur with the word

asteroid. According to Andrew Lo of the Massachu-

setts Institute of Technology, ‘’Given enough time,

enough attempts, and enough imagination, almost

any pattern can be teased out of any data set.’’

The moral to the story is that a formula that fits

the data may not have any predictive power at all!

There is always the chance that what a data mining

technique “observes” or “discovers” may just be a

coincidence in the current data set and not some-

thing that is reproducible in the future with other

data. The chance of this being true in data mining

is more prominent than in the standard business

forecasting routines we presented earlier in the

text. Most of those techniques relied on proven

economic theory as a basis for specifying a partic-

ular type of model. With data mining it is the data

itself that specifies the model and the analyst

should be wary of making the same mistake as

Michael Drosnin. Coy gives the example of David J.

Leinweber, managing director of First Quadrant

Corporation, who sifted through a United Nations

CD-ROM and discovered that historically, the single

best predictor of the Standard & Poor’s 500-stock

index was butter production in Bangladesh.

Leinweber called this an example of “stupid data

miners’ tricks.”

Source: Peter Coy, “Commentary: He Who Mines Data
May Strike Fool’s Gold.” BusinessWeek, June 16, 1997,
p. 40.

Comments from the Field: Fool’s Gold 4
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Exercises 1. A data mining routine has been applied to a transaction dataset and has classified 88
records as fraudulent (30 correctly so) and 952 as nonfraudulent (920 correctly so).

The decile-wise lift chart for a transaction data model:

Interpret the meaning of the bars in this chart.
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106 7 8 91 2 3

Summary In this chapter we have covered four classification techniques that are commonly used by
real data miners. Classification, however, is only a single aspect of data mining. In general
there is no one best classification technique; the individual data in a particular situation will
determine the best technique to use. The diagnostic statistics will lead the researcher to
choose an appropriate model; there may be no optimal model.

Data mining also uses other tools such as clustering analysis and neural network analy-
sis. These tools are not covered here but there are excellent resources for those interested in
pursuing the study of data mining. The growth in the use of commercial data mining tools
rivals the growth in business forecasting software sales; SAS Enterprise Miner and SPSS
Clementine have become important additions to the forecaster’s toolkit in recent years.



3. Calculate the classification error rate for the following confusion matrix. Comment on
the pattern of misclassifications. How much better did this data mining technique do as
compared to a naive model?
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Predict Class 1 Predict Class 0

Actual 1 8 2

Actual 0 20 970

4. Explain what is meant by Bayes’ theorem as used in the Naive Bayes model.

5. Explain the difference between a training data set and a validation data set. Why are
these data sets used routinely with data mining techniques in the XLMiner© program
and not used in the ForecastX™ program? Is there, in fact, a similar technique presented
in a previous chapter that is much the same as partitioning a data set?

6. For a data mining classification technique the validation data set lift charts are shown
below. What confidence in the model would you express given this evidence?

C

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 30 32

0 58 920

D

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 920 58

0 30 32

A

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 58 920

0 30 32

B

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 32 30

0 58 920

2. Which of the following situations represents the confusion matrix for the transactions
data mentioned in question 1 above? Explain your reasoning.
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7. In data mining the candidate model should be applied to a data set that was not used in
the estimation process in order to find out the accuracy on unseen data; that unseen data
set. What is the unseen data set called? How is the unseen data set selected?

8. Explain what the “k” in the k-Nearest-Neighbor model references.
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Chapter Ten

Forecast Implementation
In this chapter we discuss the forecasting process and provide a framework that

will help you get the most out of any forecasting effort. While every forecasting

problem has unique features, there is enough commonality in forecasting that

guidelines can be helpful in several ways. First, the guidelines we provide will

help you come to grips with some of the nuts-and-bolts issues related to data prob-

lems. Second, these guidelines will help you in making certain that the effort that

goes into forecasting has the desired result in terms of the decision process.

Finally, the guidelines discussed in this chapter will help you make logical choices

regarding the technique(s) you should use for any particular situation.

KEYS TO OBTAINING BETTER FORECASTS

As part of an ongoing research study that has focused on very practical forecast-

ing issues, a group of researchers led by John Mentzer has identified key elements

to improving forecasts.1 These elements are summarized in Table 10.1. One of

the findings of Mentzer’s group is that blind reliance on computer-generated quan-

titative forecasts is not a good management practice. As indicated in Chapter 1 of

this text, judgments are important in forecasting even when quantitative methods

are used. You have spent considerable time and effort developing a working

knowledge of many quantitative techniques and how they can be implemented

using a software package. Our own personal experiences, as well as the experi-

ences of others, provide convincing evidence that quantitative forecasting meth-

ods tend to outperform qualitative forecasts. However, the best software cannot

automatically take into account the specific industry, marketing, and economic

knowledge that a business professional may have. To obtain the best forecast

outcomes, both quantitative and qualitative information should be valued and,

when possible, combined in preparing a forecast.

The work of Mentzer and others has also helped to clarify the distinction

between forecasts, plans, and goals. In a recent discussion, a veteran forecaster in

the automobile industry commented: “I prepared what I thought was a logical and

well-thought-out forecast, but when it was presented to management the response

1 Mark A. Moon, John T. Mentzer, Carlo D. Smith, and Michael S. Garver, “Seven Keys to

Better Forecasting,” Business Horizons, September–October 1998, pp. 44–52; and Mark A.

Moon and John T. Mentzer, “Improving Salesforce Forecasting,” Journal of Business Forecasting,

Summer 1999, pp. 7–12.

Both quantitative and

qualitative information

should be valued and,

when possible, com-

bined in preparing a

forecast.
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TABLE 10.1 Seven Keys to Better Forecasting

Source: Adapted from Mark A. Moon, John T. Mentzer, Carlo D. Smith, and Michael S. Garver, “Seven Keys to Better Forecasting,”

Business Horizons, September–October 1998, p. 45. Reprinted with permission from Business Horizons by The Board of Trustees

at Indiana University, Kelley School of Business.

Understand what

forecasting is and

is not

Computer system as

focus, rather than

management processes

and controls

Blurring of the distinction

between forecasts, plans,

and goals

Establish forecasting group

Implement management

control systems before

selecting forecasting

software

Derive plans from forecasts

Distinguish between

forecasts and goals

An environment in which

forecasting is

acknowledged as a 

critical business function

Accuracy emphasized

and game playing

minimized

Forecast demand,

plan supply

Use of shipment history

as the basis for

forecasting demand rather

than actual demand

Identify sources of

demand information

Build systems to capture

key demand data

Improved customer

service and capital

planning

Communicate,

cooperate, and

collaborate

Duplication of forecasting

effort

Mistrust of the “official”

forecast

Little understanding of the

impact throughout the firm

Establish a cross-functional

approach to forecasting

Establish an independent

forecast group that

sponsors cross-functional

collaboration 

All relevant information

used to generate forecasts

Forecasts trusted by users

More accurate and relevant

forecasts

Eliminate islands

of analysis

Mistrust and inadequate 

information leading

different users to create

their own forecasts

Build a single “forecasting

infrastructure”

Provide training for both

users and developers of

forecasts

More accurate, relevant,

and credible forecasts

Islands of analysis eliminated

Optimized investments in

information and

communication systems

Use tools wisely Relying solely on either

qualitative or quantitative

methods

Integrate quantitative and

qualitative methods

Identify sources of improved

accuracy and increased error

Provide instruction

Process improvement in

efficiency and effectiveness

Make it important No accountability for poor

forecasts

Developers not understand-

ing how forecasts are

used

Training developers to

understand implications of

poor forecasts

Include forecast performance

in individual performance

plans and reward systems

Developers take forecasting

more seriously

A striving for accuracy

More accuracy and credibility

Measure, measure,

measure

Not knowing if the firm is

getting better

Accuracy not measured at

relevant levels of

aggregation

Inability to isolate sources of

forecast error

Establish multidimensional

metrics

Incorporate multilevel 

measures

Measure accuracy whenever

and wherever forecasts are

adjusted

Forecast performance can

be included in individual

performance plans

Sources of errors can be

isolated and targeted for

improvement

Greater confidence in

forecast process

Keys
Issues and
Symptoms Actions Results



was that the forecast was wrong and that I should go back and redo it.” In this

individual’s case, what management wanted was a plan (what the company intends

to do) or a goal (the company target) rather than an objective projection of what is

likely given the current business environment. This scenario is not uncommon.

What it points out is a serious confusion on the part of many between a forecast, a

plan, and a goal. The forecast should be one piece of objective information that

plays a part in the development of plans and/or goals, but it should not be con-

fused with the planning or goal-setting functions.

The emergence of widely available and sophisticated forecasting software has

made it possible for people to implement complex forecasting methods quickly

and easily. However, there is danger in implementing a technique about which one

does not have a reasonable level of understanding. For example, suppose that you

are a brand manager who has some forecasting responsibility for certain brands,

but that this function is only about 10 percent of your overall workload. In this sit-

uation you might be inclined to make relatively simple judgmental forecasts, or if

you have come to realize that quantitative methods can improve forecast accuracy,

you might be tempted to use an automated forecast “black box” to develop your

forecasts. In either case you are likely to have difficulty explaining and/or justify-

ing the forecast to those to whom you report. However, if you have a basic under-

standing of forecast methods (which you have now developed), you can articulate

the reasoning behind your forecast and how the quantitative methods employed

are well suited to the type of data that represent sales of your products. You will be

able to make qualitative judgments and adjustments to the forecasts and be able to

explain why such adjustments may be necessary. You may not be able to derive the

formulas for the Winters’ exponential smoothing model or for developing an

ARIMA forecast, but you know enough about how these methods work to know

when they are appropriate.

As we will discuss in more detail later in this chapter, communication, cooper-

ation, and collaboration are important if the forecasting effort is to be as success-

ful as it can be. Many times the people who develop a forecast do so in a vacuum

of sorts. They look at the data and prepare a forecast, which is then sent to users

who have had little or no input into the forecast process. The forecast may not be

in a form that is useful to the end user, or the units forecast may be inappropriate

for their use, or they may simply not have enough understanding of the forecast to

use it properly.

Often there are two particular groups that need to communicate well: the ana-

lysts or number crunchers, and the sales, marketing, and customer service people.

Each of these groups may have quite different perspectives on the forecasting

process. Sean Reese, demand planner at Ocean Spray Cranberries, Inc., has

observed that for collaborative forecasting to be successful, all parties need to

work together by treating the perspectives and biases of others as valuable inputs

rather than as obstacles to overcome.2 These days the need for communication,
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2 Sean Reese, “The Human Aspects of Collaborative Forecasting,” Journal of Business

Forecasting, Winter 2000–2001, pp. 3–9.



cooperation, and collaboration goes beyond company boundaries. To maximize

the benefits to be derived from the forecast process, communication, cooperation,

and collaboration should involve the entire supply chain.

Everyone is well aware that inventory is expensive and there may be substan-

tial savings if inventory levels can be reduced. Such reduction was the premise

upon which “Just in Time” processes were developed. As Moon reports,

When demand can be predicted accurately, it can be met in a timely and efficient

manner, keeping both channel partners and final customers satisfied. Accurate

forecasts help a company avoid lost sales or stock-out situations, and prevent cus-

tomers from going to competitors. . . . Perhaps most important, accurate forecast-

ing can have a profound impact on a company’s inventory levels. In a sense, inven-

tory exists to provide a buffer for inaccurate forecasts. Thus, the more accurate the

forecasts, the less inventory that needs to be carried, with all the well-understood

cost savings that brings.3

In Chapter 1 you read an example based on the brake parts company in which

savings of $6 million per month resulted from an improved forecasting system.4

THE FORECAST PROCESS

The forecast process begins with a need to make one or more decisions that de-

pend, at least in part, on the future value(s) of some variable(s) or on the future oc-

currence of some event. Subjective forecasting methods, such as the Delphi

method, are usually the most useful in forecasting future events such as the nature

of the home computer market 20 years from now. The quantitative techniques you

have studied in this text are widely used in providing forecasts of variables such as

sales, occupancy rates, income, inventory needs, and personnel requirements.

Regardless of the specific scenario, the forecast is needed to help in making the

best possible decision.

We have divided the entire forecasting process into the nine steps first intro-

duced in Chapter 2 and shown again in Figure 10.1. These begin and end with

communication, cooperation, and collaboration between the managers who use

the forecasts and the technicians who prepare them. This communication and

cooperation are critical if forecasting is to have the desired positive effect on

decisions. Most of the students who study this text will probably be managers and

will be better able to communicate with their professional forecasters because

they have developed an understanding of the methods that can be used.
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3 Moon et al. “Seven Keys to Better Forecasting,” p. 44.
4 John T. Mentzer and Jon Schroeter, “Multiple Forecasting System at Brake Parts, Inc.,”

Journal of Business Forecasting, Fall 1993, pp. 5–9.
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FIGURE 10.1
A Nine-Step

Forecasting Process

1. Specify objectives

2. Determine what to forecast

3. Identify time dimensions

4. Data considerations

5. Model selection

6. Model evaluation

7. Forecast preparation

8. Forecast presentation

9. Tracking results

Step 1. Specify Objectives
The objectives related to the decisions for which a forecast is important should

be stated clearly. Management should articulate the role that the forecast will

have in the decision process. If the decision will be the same regardless of the

forecast, then any effort devoted to preparing the forecast is wasted. This may

sound too obvious to deserve mention. However, it is not uncommon for a man-

ager to request a forecast only to ignore it in the end. One reason that this hap-

pens is that the manager does not understand or have faith in the forecast. This

issue will be addressed more fully in steps 7, 8, and 9, but a grounding of faith

and understanding should begin here in step 1. If the manager who needs the in-

formation from a forecast and the technician who prepares the forecast take the

opportunity to discuss the objectives and how the forecast will be used, there is

increased likelihood that the ultimate forecast will be one that the manager un-

derstands and has faith in using.
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Step 2. Determine What to Forecast
Once your overall objectives are clear, you must decide exactly what to forecast.

For example, it is not sufficient to say that you want a sales forecast. Do you want

a forecast of sales revenue or unit sales? Do you want an annual forecast or a quar-

terly, monthly, or weekly forecast? It is generally better to base sales forecasts on

units rather than dollars so that price changes do not cloud actual variations in unit

sales. The unit sales forecast can then be converted to a dollar figure easily enough.

If the effect of price on sales is important, you may want to use a regression-based

technique that incorporates causality. Good communication between forecast user

and forecast preparer is important in making certain that the appropriate variables

are being forecast.

Step 3. Identify Time Dimensions
There are two types of time dimensions to consider. First, one must establish the

length of the forecast horizon. For annual forecasts this might be from one to five

years or more, although forecasts beyond a few years are likely to be influenced

by unforeseen events that are not incorporated into the model used. Quarterly

forecasts are probably best used for one or two years (four to eight quarters), as are

monthly forecasts (perhaps as long as 12 to 18 months). The objectives dictate the

time interval (year, quarter, and so forth) that is appropriate in preparing the fore-

cast. For inventory control, short time periods are often necessary, whereas an an-

nual forecast may be sufficient for the preparation of an estimated profit-and-loss

statement for the coming year.

Second, the manager and the forecaster must agree on the urgency of the fore-

cast. Is it needed tomorrow? Is there ample time to explore alternative methods?

Proper planning is appropriate here. If their forecasting process is integrated into

ongoing operations, then the forecasting personnel can plan an appropriate sched-

ule, which will contribute to better forecasts.

Step 4. Data Considerations
The data necessary in preparing a forecast may come from within or may be

external. Let us first consider internal data. Some people may believe that internal

data are readily available and easy to incorporate into the forecasting process. It is

surprising how often this turns out to be far from correct. Data may be available in

a technical sense yet not readily available to the person who needs them to prepare

the forecast. Or the data may be available but not expressed in the right unit of

measurement (e.g., in sales dollars rather than units sold).

Data are often aggregated across both variables and time, but it is best to have

disaggregated data. For example, data may be kept for refrigerator sales in total

but not by type of refrigerator, type of customer, or region. In addition, what data

are maintained may be kept in quarterly or monthly form for only a few years

and annually thereafter. Such aggregation of data limits what can be forecast and

may limit the appropriate pool of forecasting techniques. Communication and

cooperation among the personnel involved in database maintenance, forecast
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Mark Walden, Sales Forecasting 
Manager, PartyLite Gifts, Inc.

One of the fundamentals of making good forecasts is

to understand exactly what comprises the historical

data to be used in preparing forecasts. Do not accept

the data at face value. In fact, this is one of the rea-

sons why forecasts, and the resulting financial deci-

sions based on those forecasts, can go awry. This may

also be part of the reason a forecast department can

lack credibility. The best statistical model in the world

is only as good as the input data. To provide effective

forecasts and market analyses, one has to fully un-

derstand the business. The best way to begin is to in-

quire into the systems that feed your source data.

There is no single answer as to what constitutes the

best data.

Source: Journal of Business Forecasting 15, no. 2
(Summer 1996), p. 23. 

How to Evaluate and Improve a

Forecasting Process

1

488

preparation, and forecast use can help alleviate many unnecessary problems in

this regard.

External data are available from a wide variety of sources, many of which

have been discussed in Chapter 1. Data from national, state, and local govern-

ment agencies are generally available at low cost. The more local the level of gov-

ernment unit, the more likely it is that the data will not be available as quickly as

you might like or in the desired detail. Other sources of secondary data include

industry or trade associations and private companies, such as some of the major

banks. Often, secondary data are available on computer disk, a CD, or on the

Internet.5

Step 5. Model Selection
There are many methods to select from when you set out to make any forecast.

There are subjective or judgmental methods, some of which were reviewed in

Chapter 1, and a growing set of quantitative methods is becoming available. The

most widely used of these quantitative methods have been discussed in the previ-

ous chapters. Now, how can you decide which methods are most appropriate for a

particular situation? Some of the things that should be included in making the

selection are:

1. The type and quantity of data available

2. The pattern that the data have exhibited in the past

3. The urgency of the forecast

4. The length of the forecast horizon

5. The technical background of the people preparing and using the forecast

5 One of the best starting points for finding data on the Internet is http://www.economagic.com.



This issue of selecting the appropriate methods to use is of sufficient importance

that we will come back to it in the next section. There we provide specific guide-

lines for each of the methods discussed in the text.

Step 6. Model Evaluation
Once the methods that we want to use have been selected we need to do some

initial evaluation of how well they work. For the subjective or judgmental meth-

ods, this step is less appropriate than for the quantitative methods that have been

stressed in this text. For those subjective methods, the comparable sixth step

would be to organize the process to be used (e.g., setting up procedures for gath-

ering information from a sales force or Delphi panel).

For quantitative methods, we should apply the techniques to historical series

and evaluate how well they work in a retrospective sense. We have referred to this

as an evaluation of the “fit” of the model. If they do not work well in the historical

context, there is little reason to believe that they will perform any better in the

unknown domain of the future.

If we have sufficient historical data, a good approach to model testing is to use a

“holdout” period for evaluation. For example, suppose we have quarterly data on sales

for10years.Wemightuseonly theearliestnineyears (36datapoints) andmakea fore-

cast for the 10th year. If the model performs well when the forecast values are com-

pared with the known values for the four quarters of year 10, we have reason to believe

that the technique may also work well when the forecast period is indeed unknown.

Out-of-sample evaluations such as this provide a measure of forecast “accuracy.”

Once you are satisfied with a model based on historical and holdout period

evaluations, you should respecify the model using all the available data (historical

and holdout) and then use it for your actual forecast.

Suppose a technique turns out not to perform well when tested. The purpose of

testing is, at least in part, to help us avoid applying a method that does not

work well in our unique situation. Therefore, we should go back to step 5 and

select another method that is appropriate to the problem at hand. It is not always

possible to tell ahead of time how well a particular method will actually perform

in a specific forecasting environment. We can apply reasoned judgment to our

initial selection, but ultimately the proof is in the pudding. We must apply the

method to see whether it performs adequately for the purpose at hand.

Step 7. Forecast Preparation
At this point, some method or set of methods has been selected for use in developing

the forecast, and from testing you have reasonable expectations that the methods

will perform well. We recommend using more than one forecasting method when

possible, and it is desirable for these to be of different types (e.g., a regression

model and Holt’s exponential smoothing rather than two different regression

models). The methods chosen should be used to prepare a range of forecasts. You

might, for example, prepare a worst-case forecast, a best-case forecast, and a

most-likely forecast. The latter may be based on a combination of forecasts devel-

oped by following the procedures suggested in Chapter 8.
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Step 8. Forecast Presentation
For a forecast to be used as intended, it must be presented to management clearly,

in a way that provides an understanding of how the numbers were obtained and

that elicits confidence in the forecast. It does not matter how much work is put into

developing the forecast. It does not matter how confident the preparer is in the re-

sults. It does not matter how sophisticated the methodology may be. What matters

is whether or not the manager understands and has confidence in the forecast. All

too often, quantitative analyses are put on a shelf and do not play the role in deci-

sion making that they should, because the results are not effectively presented to

management. Mark J. Lawless, who has been involved with forecasting within a

number of corporations, including Chrysler, NCR, Ponderosa, and Hanson Indus-

tries Housewares Group, has commented that:

In communicating the forecast results to management, the forecaster must be capa-

ble of communicating the findings in language which the functional managers can

understand and which is compatible with the corporate culture.6

The forecast should be communicated to management both in written form and

in an oral presentation. The written document should be at a level that is appro-

priate to the reader. In most cases the managers who read the forecast document

will have little interest in technical matters. They need just enough information to

give them a general understanding of the method used. They do not need the

amount of background and detail to be able to prepare the forecast themselves.

Tables should be kept relatively short. Rarely would it be desirable to include

an entire history of the data used and historical forecasts. The most recent obser-

vations and forecasts are usually sufficient. The long series should, however, be

shown graphically and should include both actual and forecast values. In such

graphic displays, colors and/or patterns can be used effectively to distinguish

actual and forecast values.

The oral presentation should follow the same form and be made at about the

same level as the written document. Generous use should be made of flip charts,

slides, overheads, or projections of computer displays to heighten interest and in-

volvement in the presentation. This oral presentation provides an excellent oppor-

tunity for discussion and clarification, which helps the manager gain a more com-

plete understanding of the forecast and confidence in its usefulness.

Step 9. Tracking Results
Neither the preparer nor the user is done with the forecast after the presentation

and incorporation of results into the relevant decisions. The process continues.

Deviations from the forecast and the actual events should be discussed in an open,

objective, and positive manner. The objectives of such discussions should be to

understand why errors occurred, to determine whether the magnitude of the errors

was sufficient to have made a difference in the decisions that were based on the
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forecast, and to reevaluate the entire process with the intent of improving per-

formance in the next round of forecasts. Input from both managers and techni-

cians is important for the continual refinement of the forecasting process.

It is important to stress once more the critical role that communication and

cooperation between managers and technicians play in building and maintaining a

successful forecasting process. This is true whether forecasts are prepared “in

house” or by outside suppliers. Without a commitment to communication and

cooperation, it is not likely that any organization can get a maximum return from

the forecasting effort.

CHOOSING THE RIGHT FORECASTING TECHNIQUES

In the spring 1991 issue of the Journal of Business Forecasting, Charles W. Chase,

Jr. (currently at the SAS Institute), commented that:

The key task of a practicing forecaster is to determine at the outset the best match

possible between the situation and the methods before doing anything else.7

Now that you have an understanding of a variety of forecasting techniques, you

need a general framework that will help you determine when to use each method.

There are few hard-and-fast rules in this regard, but there are guidelines to assist

in making the determination. If you understand how to use the methods discussed

in this text, you have a good start toward determining when each method is likely

to be useful. For example, if you are preparing a quarterly forecast of sales for a

product that exhibits considerable seasonality, you would want to use one of the

methods that is designed to handle such seasonal fluctuations.

In this section we evaluate the forecasting methods presented earlier in the text

relative to the underlying conditions for which they are most likely to be useful.

There are many characteristics of a forecasting situation that might be considered

in selecting an appropriate method. We will focus attention on three major areas:

data, time, and personnel. For data, we consider the type and quantity of data that

are available as well as any pattern that may exist in the data (e.g., trend, cycle,

and/or seasonality). The time dimension focuses on the forecast horizon. For

personnel we consider the necessary technical background of both the preparer

and the user of the forecast. We begin with the methods discussed in Chapter 1

and progress sequentially through the text, ending with the ARIMA technique.

Table 10.2 provides a quick reference summary of the data and time issues.

Sales Force Composite (SFC)
In using the sales force composite method, little or no historical data are neces-

sary. The data required are the current estimates of salespeople regarding expected

sales for the forecast horizon. Historical data may be considered by the sales
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a Or data that have been transformed to a stationary series.
b May be used for seasonal data if the data are first deseasonalized.

Forecasting
Method

Data
Pattern

Quantity of
Historical Data
(Number of
Observations)

Forecast
Horizon

TABLE 10.2 A Guide to Selecting an Appropriate Forecasting Method

Subjective Methods

Sales force composite Any Little Short to medium

Customer surveys Not applicable None Medium to long

Jury of executive

opinion

Any Little Any

Delphi Any Little Long

Naive

Stationarya 1 or 2 Very short

Moving Averages

Stationarya Number equal to the

periods in the

moving average

Very short

Exponential Smoothing

Simple Stationarya,b 5 to 10 Short

Adaptive response Stationarya,b 10 to 15 Short

Holt’s Linear trendb 10 to 15 Short to medium

Winters’ Trend and seasonality At least 4 or 5 per

season 

Short to medium

Bass model S-curve Small, 3 to 10 Short, medium, and

long 

Regression-Based

Trend Linear and nonlinear

trend with or without

seasonality

Minimum of 10 with

4 or 5 per season if

seasonality is included

Short to medium

Causal Can handle nearly all

data patterns 

Minimum of 10 per

independent variable

Short, medium, and

long 

Time-Series Decomposition

Can handle trend,

seasonal, and cyclical

patterns

Enough to see 2 peaks

and troughs in the

cycle

Short, medium, and

long

ARIMA

Stationarya Minimum of 50 Short, medium, and

long 

Data Mining

Any Used with large

databases

Prediction usually for

near-term use
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force, but not necessarily. Thus, this method may not reflect patterns in the data

unless they are obvious to the sales force (e.g., Christmas season sales of jewelry).

The method may, however, provide early warning signals of pending change (pos-

itive or negative) because of the closeness of the sales force to the customer. SFC

is probably best used for short- to medium-term forecasts.8 The preparation time

is relatively short once a system for gathering data from the sales force is in place.

This method requires little quantitative sophistication on the part of the preparer

or the user, which contributes to its ease of use and to ready acceptance of results.

Customer Surveys (CS)
Forecasts that are based on surveys of buyers’ intentions require no historical data,

and thus the past plays no explicit role in forecasting the future. Customer surveys

are most appropriate for medium- to long-term forecasting. For example, a natural

gas utility has used this method to help in long-term planning by gathering survey

data on customers’ plans for future energy use, including long-term capital

expansion plans. The time necessary to develop, conduct, and analyze a survey

research project can be relatively extensive. Rarely can such a project be com-

pleted in less than two to three months. If the same survey is used year after year,

however, this time can be shortened considerably. CS is not a method to consider

if there is a sense of urgency in getting the forecast. Those involved in preparing

such a forecast need considerable technical expertise in the area of survey re-

search. Users, on the other hand, need not have a sophisticated technical back-

ground, as long as they know enough about survey research to interpret the results

appropriately.

Jury of Executive Opinion (JEO)
The executives included do not need a formal data set. They need only the body of

experience that they have developed to make judgments concerning the most

likely value of the forecast variable during the period of interest. Historical data

patterns may or may not be reflected in the opinions expressed, although regular

patterns such as seasonality are very likely to receive attention, albeit implicit

attention. A JEO may be used for any forecast horizon and is generally a relatively

quick procedure. This method does not require much quantitative sophistication

on the part of either preparers or users, but it does require a substantial base of

expertise on the part of the participants.

Delphi Method
The Delphi method does not require a historical data series, other than what is in

the knowledge base of the panel members, and therefore does not necessarily reflect

patterns that may have existed in the past. It is most often applicable for long-range

forecasting but can be applied to medium-term projects as well. In these respects

it is much like JEO. However, the time to develop the Delphi forecast can be
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considerable unless the responses of panel members stabilize quickly. Computers

can be effectively used to speed the flow of information and thus shorten the time

considerably. The Delphi method requires only modest technical sophistication on

the part of the preparer, and no particular technical sophistication is necessary for

the end user, other than to understand the process through which the forecast was

developed. The Delphi approach, as well as a jury of executive opinion and cus-

tomer surveys, are sometimes useful in forecasting the sales of new products. We

will discuss new product forecasting in more detail later in this chapter.

Naive
The basic naive model requires only one historical value as a basis for the forecast.

An extended naive model that takes the most recent trend into account requires

just two past values. This method is best suited to situations in which the data are

stationary or in which any trend is relatively stable. Seasonality can sometimes be

accounted for in a reasonably stationary series using a seasonal time lag, such as was

demonstrated for total houses sold and The Gap sales in Chapter 1. The naive ap-

proachissuitedonlyforveryshort-termforecasts.Preparationtimeisminimal,and no

technical sophistication is necessary on the part of either the preparer or the user.

Moving Averages
Moving averages are most appropriate when the data are stationary and do not ex-

hibit seasonality. Relatively few historical data are necessary. The number of past

observations must be at least equal to the number of periods in the moving aver-

age. For example, if a four-period moving average is used, you need at least four

historical data points. Moving averages are normally used to forecast just one pe-

riod ahead and require very little quantitative sophistication.

Simple Exponential Smoothing (SES)
Historical data are necessary to establish the best weighting factor in simple ex-

ponential smoothing, but thereafter only the most recent observed and forecasted

values are required. Five to ten past values are sufficient to determine the weight-

ing factor. The data series should be stationary (i.e., have no trend and no season-

ality) when SES is used. This method is appropriate for short-term forecasting and

requires little technical sophistication. While the arithmetic work can be done by

hand, a computer can be helpful in determining the best weighting factor. Once

the weighting factor is known, forecasts can be developed very quickly.

Adaptive–Response-Rate Single Exponential
Smoothing (ADRES)
The adaptive–response-rate single exponential smoothing model may be used

when the data are stationary and exhibit no seasonality but have a shift in level.

Ten to fifteen historical observations should be available when ADRES is used,

and forecasts should be for only a short forecast horizon, typically one or two pe-

riods ahead. This method requires a bit more quantitative sophistication by the

preparer than does SES, but users need little quantitative background.
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Holt’s Exponential Smoothing (HES)
As in SES, Holt’s exponential smoothing model requires historical data to deter-

mine weighting values, but only the very recent past is required to apply the

model. It is desirable to have at least 10 to 15 historical observations in determin-

ing the two weights. HES can be used effectively with data series that exhibit a

positive or negative trend, and thus this method has a much wider scope of appli-

cation than SES. However, it should not be used when the data contain a seasonal

pattern unless the data have been deseasonalized. HES is appropriate for short-

and medium-term forecasts and, like SES, can be implemented rapidly once the

weights have been selected. Some technical expertise is required of the preparer,

but users with little sophistication can understand HES well enough to use it prop-

erly. A computer is desirable, but not necessary, for model development.

Winters’ Exponential Smoothing (WES)
Sufficient historical data to determine the weights are necessary in using Winters’

exponential smoothing model. A minimum of four or five observations per season

should be used (i.e., for quarterly data, 16 or 20 observations should be used). Be-

cause this method incorporates both trend and seasonal components, it is applica-

ble to a wide spectrum of data patterns. Like HES, this method is most appropri-

ate for short- to medium-term forecasts. Once the weights have been determined,

the process of making a forecast moves quickly. The preparer needs some techni-

cal expertise, but the nature of the method can be understood by users with little

technical sophistication. Use of a computer is recommended for the process of se-

lecting the best values for the weights in the WES model. Even if weights are re-

stricted to one decimal place, the number of combinations that might be evaluated

becomes too cumbersome to do by hand.

Regression-Based Trend Models
The data requirement for using a regression-based trend depends to a considerable

extent on the consistency in the trend and whether or not the trend is linear. We

look for enough data that the t-statistic for the slope term (i.e., the trend) is signif-

icant (a t-value of 2 or more in absolute value is a handy rule of thumb). For a simple

linear trend, 10 observations may be quite sufficient. A simple trend model can be

effective when the series being forecast has no pattern other than the trend. Such

a model is appropriate for short- to medium-term forecasts and can be developed

and implemented relatively quickly. The preparer needs to have a basic under-

standing of regression analysis but does not need a sophisticated background for

simple linear trends. More complex nonlinear trends require deeper understand-

ing. Using a computer simplifies preparation of the forecast. The method is suffi-

ciently straightforward that the user needs little technical sophistication.

Regression-Based Trend Models with Seasonality
To include seasonality in a regression-based trend model, it is desirable to have at

least four or five observations per season. Thus, for quarterly data a minimum of

16 observations would be appropriate. For monthly data, 48 or more observations
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James G. Steen, Forecasting Analyst,
Sensormatic Electronics Corporation

TEAM WORK: KEY TO SUCCESSFUL
FORECASTING
Sensormatic Electronics is a manufacturer of elec-

tronic surveillance equipment. The most challeng-

ing part of our forecasting effort is getting the

market management and product development

groups together to come up with a consensus fore-

cast. This is important because they are in frequent

contact with salespeople, customers, and account

managers, and thus have access to information

vital for forecasting. But, due to their hectic sched-

ule, the information is often not communicated

in a timely manner to be used effectively in prepar-

ing forecasts. Because of the lead time of certain

products, ample time is needed to plan and manu-

facture products. We often don’t hear of a large

order or potential order until the end of our fiscal

quarter. At that point, there is little or no time left

to react.

Once every quarter we have a meeting in which

we discuss, review, and update our forecasts. Such

meetings are very helpful but not quite adequate

to do the job. Many things change during the period

between one meeting and the next. But the infor-

mation about the changes is often not passed on to

those responsible for preparing the forecasts. We

are currently working on improving the flow of

information from our sales force to those involved

in forecasting at our head office.

The “team” approach is the only way we can be

successful since no one person has all the necessary

information to prepare forecasts. By working to-

gether, we can all benefit and keep our customers

satisfied.

Source: Adapted from Journal of Business Forecasting
11, no. 2 (Summer 1992), p. 22. Reprinted by
permission.
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should be used. Regular seasonal patterns in the series are often modeled quite

well by using dummy variables. As with simple trend models, linear or nonlinear

forms can be used; the models are best for short- to medium-term forecasts, and

the time necessary for preparation is short. Except when nonlinear models are

used, little mathematical sophistication is necessary on the part of either the

preparer or the user of the forecast. A computer regression program is a virtual

necessity, however.

Regression Models with Causality
The quantity of data required for the development of a causal regression model

depends on the number of independent variables in the model and on how much

contribution each of those variables makes in explaining variation in the depen-

dent variable. One rule of thumb is that you should expect to have a minimum of 10

observations per independent variable. Thus, for a model with three independent

variables you should have at least 30 observations. You can see that developing

and maintaining a database for multiple-regression models can be a significant

undertaking. The effort may be worthwhile, however, since multiple-regression

models are often effective in dealing with complex data patterns and may even

help identify turning points. Seasonality can be handled by using dummy vari-

ables. Causal regression models can be useful for short-, medium-, or long-term



Debra M. Schramm, Manager, Sales
Forecasting, Parke-Davis

HOW TO SELL FORECASTS 
TO MANAGEMENT
One of the universal problems forecasters have is

“selling” their forecast to others, especially mar-

keting management. Management is reluctant, at

best, to use numbers from a group or individual

who is viewed as only able to analyze numbers.

They question why our crystal ball should be any

better than theirs. Our company was no exception.

Five years ago the forecast area was viewed as a

department that did something with the sales

numbers. No one seemed to know what our role

was in the organization or how we meshed with

the big picture. Although our forecasts were used

to feed manufacturing and distribution, they were

not considered in the management review process,

which took place each month, to determine the

division’s sales numbers. It became our goal to

change our image or the lack of it.

Today the forecasting department and its fore-

casts are an integral part of the management

process. Our system forecasts are used as the basis

for the monthly review, the annual, and longer-

term plans. We continue to support marketing

with reliable information, anticipating their future

needs and experimenting with external data in

order to improve the forecasts. There is no point

lower than to work at something, then find you

are the only one who believes in what you do. If we

as forecasters are to raise our image in business, we

must be able to prove ourselves and prove the in-

tegrity of the data we supply. The process can be

long and frustrating, but it is attainable with de-

termination, patience, and perseverance. Once

achieved it is immensely rewarding.

Source: Adapted from Journal of Business Forecasting 10,
no. 4 (Winter 1991–92), p. 22. Reprinted by permission.
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forecasts. Because the causal variables must usually be forecast as well, regres-

sion models may take more effort to develop. It can take a long time to develop a

good causal regression model. Once the model is developed, preparation of a fore-

cast can be done reasonably quickly. In using causal regression models, you

should reestimate equations at least once a year so that structural changes are

identified in a timely manner. The technician who prepares regression forecasts

needs to have a solid background in regression analysis. Managers, on the other

hand, can use such forecasts effectively as long as they have a basic understanding

of regression methods.

Time-Series Decomposition (TSD)
The quantity of data needed for time-series decomposition should be enough for

you to see at least two peaks and two troughs in the cycle factor, if the cycle fac-

tor is important. If the cycle factor does not appear important (i.e., has not been

far above or below 1.0 during the historical period), then the quantity of data

needed should be determined by what is necessary to adequately identify the

seasonal pattern. A rule of thumb would be at least four or five observations per

season (e.g., for quarterly data you should have at least 16 to 20 observations).

TSD is quite good at picking up patterns in the data. The challenge is for the

analyst to successfully project the patterns through the forecast horizon. This is



generally fairly easy for the trend and seasonal pattern, but is more difficult for the

cyclical pattern. TSD is especially appropriate for short-term and medium-term

forecasting. If the cycle pattern is not important or if it can be projected with con-

fidence, the method can also be used effectively for long-term forecasts. This

method may be one of the best in terms of being able to identify and incorporate

turning points. Doing so is dependent on the analyst’s ability to correctly interpret

when the cycle factor may turn up or down. The preparation time for a TSD fore-

cast is relatively short, and this method does not require much sophistication on

the part of the preparer or the user. In fact, most managers find the concepts

inherent in the TSD model quite consistent with how they see the world.

ARIMA
A long data series (at least 50 data points—more if data are seasonal) is necessary

to make use of the ARIMA models. These models can handle variability in the

data as long as the series is stationary or can be transformed to a stationary series.

This method can be applied to short-, medium-, or long-term forecast horizons.

Because of the complexity of model identification, forecast preparation can take

an extended period of time. This complexity also means that the preparer needs a

highly sophisticated technical background. Users of ARIMA forecasts must also

be quite sophisticated, because even achieving a basic understanding of the

method is not easy. It is rare to find a manager who has a good feel for how an

ARIMA forecast is developed, and rarer still to find a manager capable of

explaining the forecast derivation to others who must use the results. This may be

part of the reason that ARIMA models have had relatively low ratings in terms of

importance, accuracy, and use by business managers.

SPECIAL FORECASTING CONSIDERATIONS

In the text a number of situations have been discussed for which special forecast-

ing techniques are appropriate. Four of these are (1) situations when we must

make forecasts if “events” of some type influence the forecast, (2) situations when

we have multiple forecasts, each of which may contain valuable information that

we do not want to ignore, (3) situations when we need to forecast a new product

for which we have little historical information, and (4) situations in which we need

to predict some outcome and we have very large, often somewhat unrelated, data-

bases that hold hidden keys to the likely outcome. Here we review some important

aspects of each of these four.

Event Modeling
When forecasting sales or demand in a highly promoted market, using event mod-

eling can often significantly improve forecast accuracy. Event modeling is a fea-

ture of some exponential smoothing programs, such as ForecastX™. This feature

allows the user to specify the time of one or more special events, such as irregular
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promotions and natural disasters, in the calibration data. For each type of special

event, the effect is estimated and the data adjusted so that the events do not distort

the trend and seasonal patterns of the time series.

The method of event modeling follows in the same pattern as the other smooth-

ing models except that the event model adds a smoothing equation for each of the

events being considered. Event models are analogous to seasonal models: just as

each month is assigned its own index for seasonality, so, too, each event type is

assigned its own index. Event adjustments are created through the use of an indi-

cator variable that assigns an integer for each event type to the period during

which it recurs. An example of integer value assignment would be that 0 indicates

a period where no event has occurred, 1 indicates a period where a free-standing

advertising insert was used, 2 indicates a period where instant redeemable

coupons were used, and so on. The event indicator variable must be defined for

each historical period and future period in the forecast horizon.

Combining Forecasts
Instead of choosing the best model from among two or more alternatives, a

more reasoned approach, according to the empirical evidence, is to combine the

forecasts in order to obtain a forecast that is more accurate than any of the sepa-

rate predictions. Any time a particular forecast is ignored because it is not the

“best” forecast produced, it is likely that valuable independent information

contained in the discarded forecast has been lost. The information lost may be of

two types:

1. Some variables included in the discarded forecast may not be included in the

“best” forecast.

2. The discarded forecast may make use of a type of relationship ignored by the

“best” forecast.

In the first of these cases it is quite possible for individual forecasts to be based on

different information; thus, ignoring any one of these forecasts would necessarily

exclude the explanatory power unique to the information included in the dis-

carded model. In the second situation, it is often the case that different assump-

tions are made in different models about the form of the relationship between the

variables. Each of the different forms of relationship tested, however, may have

some explanatory value. Choosing only the “best” of the relationships could

exclude functional information. To prevent this loss of useful information requires

some method for combining the two forecasts into a single better forecast. We

should expect that combinations of forecasts that use very different models are

likely to be effective in reducing forecast error.

New-Product Forecasting (NPF)
Most products for which we are likely to have to prepare a sales forecast are prod-

ucts with a substantial amount of sales history for which the methods you have

learned in earlier chapters will work quite well. However, often we are faced with
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new, or substantially altered, products with little sales history. These new products

pose particularly difficult issues for a forecaster. You have seen that understanding

the concept of a product life cycle (PLC) can be helpful in developing a forecast

for a new product. During the introductory stage of the product life cycle, only

consumers who are innovators are likely to buy the product. Sales start low and

increase slowly. Near the end of this stage, sales start to increase at an increasing

rate. As the product enters the growth stage of the PLC, sales are still increasing

at an increasing rate as early adopters enter the market. In this stage the rate of

growth in sales starts to decline. Near the end of the growth stage, sales growth

starts to level off substantially as the product enters the maturity stage. Businesses

may employ marketing strategies to extend this stage; however, all products even-

tually reach the stage of decline in sales and are, at some point, removed from the

market.

Product life cycles are not uniform in shape or duration and vary from industry

to industry. Think, for example, about products that are fashion items or fads in

comparison with products that have real staying power in the marketplace. Fash-

ion items and products that would be considered fads typically have a steep intro-

ductory stage followed by short growth and maturity stages and a decline that is

also very steep. High-tech products often have life cycles that are relatively short

in comparison with low-technology products. For high-tech electronic products,

life cycles may be as short as six to nine months. An example would be a tele-

phone that has a design based on a movie character.

Methods such as analog forecasts, test marketing, and product clinics are often

useful for new-product forecasting. The Bass model for sales of new products is

probably the most notable model for new-product forecasting. The Bass model

was originally developed for application only to durable goods. However, it has

been adapted for use in forecasting a wide variety of products with short product

life cycles and new products with limited historical data.

Data Mining 
Sometimes people think of forecasting only in the context of time-series data. In

some manner past data are used to help predict the likely outcomes in the future.

These include univariate time-series methods, such as exponential smoothing, as

well as causal models, such as multiple regression. We have seen that at times

regression models may be useful with cross-sectional data to predict some

outcome, such as sales volume. Data mining is another technique that has been

developed to help one predict outcomes when there is a great deal of data avail-

able that might contain hidden information.

Data mining techniques work often with very large and somewhat unrelated

databases. There was a time when decision makers had too little data upon which

to base decisions. Now that has changed dramatically and decision makers have so

much data that it is difficult to find the information content from the data. This is

where data mining becomes a useful tool.

Data mining has become a new application for some types of forecasting in

which we have huge amounts of data but we know little about the structural
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Mark J. Lawless, Senior Vice President 
of the Business Group, National Fire
Protection Association

FORECASTS MUST BE RELEVANT 
AND EFFECTIVE
The environment of business is continuing to

change at an increasing rate, and the demands on

management to create value are increasing with it.

The role of forecasters is changing as well, and the

value created by the forecaster is very much a con-

sideration in the role which forecasting plays in the

management-decision process.

If management must create value for the share-

holder, the forecaster must create value for the

shareholder as well. Hence, rather than pining for

earlier times when things were better for forecasters,

we need to adapt to the changing environment as

well. We need to be continuously asking: “How can

we create value? How can we enhance value? How

can we assist others in creating value?” If forecast-

ers will ask themselves these simple questions, and

act upon their answers, the ability of forecast func-

tions to be effective and credible will take care of

itself. Looking to the needs of the management

decisions, using whatever information that is avail-

able (imperfect though it may be), and developing

the forecasts and recommendations in the context

of these management needs are important parts of

the forecast function.

To be successful in the future, there are two im-

portant ground rules for all forecasters—be rele-

vant and be effective.

Source: Adapted from “Ten Prescriptions for Forecasting
Success,” Journal of Business Forecasting 16, no. 1 (Spring
1997), pp. 3–5.
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relationships contained therein. Data mining is a tool that helps us uncover rela-

tionships that are often quite unexpected yet useful in making predictions. For

example, a California retailer found through data mining that shoppers who buy

diapers are also likely to buy beer.9 Such knowledge would not be likely to be

uncovered using more simplistic data analysis but can be useful in predicting sales

of both items and in developing new ways to structure marketing communications

involving both products.

Suppose you wanted to forecast the number of sports cars an insurance com-

pany would insure. It is obvious to us that one factor would be the price (premium)

charged for coverage, which in turn would be influenced by the number of claims

filed by sports car owners. Conventional wisdom might suggest that sports car

owners would have more claims for accidents and/or thefts. However, through

data mining, Farmers Group found that sports cars owned by people who also

owned another vehicle have fewer insurance claims. As a result they restructured

their premiums in these situations with a resulting increase in premium revenue of

over $4 million in two years without having a substantial increase in claims.10 It

was only possible to make the prediction about the potential new market by using

data mining.

9 Donald R. Cooper and Pamela S. Schindler, Marketing Research, McGraw-Hill/Irwin, 2006,

p. 261.
10 Carl McDaniel and Roger Gates, Marketing Research Essentials, 6th ed., John Wiley & Sons,

2008, pp. 79–80.



Summary The forecasting process begins with the need to make decisions that are dependent on the

future values of one or more variables. Once the need to forecast is recognized, the steps to

follow can be summarized as follows:

1. Specify objectives.

2. Determine what to forecast.

3. Identify time dimensions.

4. Data considerations.

5. Model selection.   ←

6. Model evaluation.

7. Forecast preparation.

8. Forecast presentation.

9. Tracking results.

Throughout the process, open communication between managers who use the forecasts and

the technicians who prepare them is essential.

You have been introduced to the most widely used forecasting methods and need to

know when each is appropriate. The section entitled “Choosing the Right Forecasting Tech-

niques” (page 491) provides a guide to help you in determining when to use each technique

and when each should not be used. Table 10.2 also provides a handy summary of that

discussion.

Developing a forecast for new products is an especially difficult task. Because little or

no historical data are available, we are forced to use methods based on judgments and/or

various marketing research methods. Often, looking at the sales history of relatively simi-

lar products can provide a basis upon which a forecast for the new product can be built.

Information gathered using a survey technique about intention to purchase on the part of

potential customers may also provide helpful insight.

In Chapter 9 you have seen that data mining is a relatively new tool that can be used in

forecasting when we have such large databases that uncovering relationships can be diffi-

cult. A variety of data mining tools were discussed. These tools once were accessible only

if one had access to very large computers, but now even personal computers can be used for

some data mining applications. In the future we can expect to see data mining become a

more common tool in the forecaster’s toolbox.
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USING PROCAST™ IN FORECASTX™

TO MAKE FORECASTS

As usual, begin by opening your data file in Excel and start ForecastX™. In the Data

Capture dialog box identify the data you want to use, as shown below. Then click the

Forecast Method tab.

In the Method Selection dialog box click the down arrow in the Forecasting Technique

box and select ProCast™. Click the down arrow in the Error Term box and select Root

Mean Squared Error (or another error term you want to use). Then click the Statistics tab.

In this dialog box select the statistics that you desire. Remember that there are more

statistics choices if you click the More Statistics button at the bottom. 
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After selecting the statistics you want to see, click the Reports tab. 

In the Reports box select those you want. Typical selections might be those shown here.

When you click the Standard tab select the Show Chart and Classic. In the Audit Trail

tab (the active tab shown here) click the Fitted Values Table.

Then click the Finish! button. In the Audit Trail output you will find the method that

ProCast™ used to make the requested forecast.

Using an automated forecasting method such as ProCast™ is all right if you understand

the selected method well enough to evaluate whether it is truly a logical choice. It is wise

to exercise some caution when allowing any software to select a method automatically. By

using a software package over a period of time, such as ForecastX™, you may develop con-

fidence in the selections it makes. Then using an automated process may provide consider-

able time savings—such as in situations where there are hundreds or thousands of items

that must be forecast frequently.
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506 Chapter Ten

Exercises 1. You have read the statement that the forecast process begins with a need to make one or

more decisions that depend on the future value of some variable. Think about this as it

relates to the daily weather forecast you hear, and write a list of five decisions that might

depend on such a forecast.

2. Why do you think communication between the person preparing a forecast and the fore-

cast user is important? Give several specific places in the nine-step forecast process

where you think such communication is especially important and explain why. 

3. The availability and form of data to be used in preparing a forecast are often seen as

especially critical areas. Summarize, in your own words, the database considerations in

the forecasting process (step 4).

4. Suppose that you have been asked to recommend a forecasting technique that would be

appropriate to prepare a forecast, given the following situational characteristics:

a. You have 10 years of quarterly data.

b. There is an upward trend to the data.

c. There is a significant increase in sales prior to Christmas each year.

d. A one-year forecast is needed.

e. You, as the preparer of the forecast, have good technical skills, but the manager who

needs the forecast is very nontechnical.

f. You need to have the forecast done and the presentation ready in just a few days.

What method(s) would you consider using and why?

5. Write an outline of what you would like to see in a forecast presentation from the per-

spective of a manager who needs to use the forecast.

6. Explain in your own words how artificial intelligence can be used in a forecasting

environment.

7. If you had been assigned the task of forecasting the demand for MP3 players when they

were a new product, how might you have approached the problem?
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